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ABSTRACT

Contract No. NAS8-20076 encompasses an analytical and experimental
investigation of the thermal conductivity and dielectric constant of
non-metallic materials. Principal emphasis was placed on evaluating
the mechanisms of heat transfer in evacuated silicate powders and in

establishing the complex dielectric constant of these materials

Experimental measurements of the complex dielectric constant of glass
beads, pumice, and basalt powders, and solid glass, pumice, and basalt
were made at wavelengths of 3 2 cm and 12 an over the temperature range
from 77°K to 400°K  The thermal conductivity of these materials and
quartz powders were measured using the line heat source method at gas

8

pressures of 107 to 10_9 torr and at temperatures ranging from 150°K

to 400°K

The dielectric constants of the silicate powders measured vary from
1.9 to 2 9 The loss tangents of these materials vary from about 0.004
to 0.030 The dielectric constants of the solid silicates from which
the powders were prepared range from 5.4 to 8 6

The effective thermal conductivities of the evacuated powders of
particle size 3~75u vary from about 4 x 10_6 w/em®C to near 40 x lO_6
w/cm®C over the temperature range from 150°K to 400°K, and can be repre-
sented by the sum of a constant term and a term which has a cubic tem-
perature dependence. The ratio of the radiation to solid conduction con-
tributions to effective thermal conductivity varies from less than 0 1

to over 5 depending upon the powder size, composition, and temperature

Experimental measurements and results are discussed in relation to

postulated lunar surface materials.
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| SUMMARY

A PURPOSE AND SCOPE

Contract No. NAS8-20076 encompasses an analytical and experimental
investigation of the thermal conductivity and dielectric constant of
non-metallic materials. Principal emphasis has been placed on evaluat-
ing the mechanisms of heat transfer in evacuated silicate powders and in
establishing the complex dielectric constant of these materials The
experimental measurements and results are discussed in relation to postu-
lated lunar surface materials

A brief review of radio astronomical and infrared observations of
the lunar surface is given to establish the requirements for dielectric
constant and thermal conductivity measurements, Theoretical and empirical
relationships among dielectric constant, wavelength, density, and loss
tangent are described; and their significance to the interpretation of
observational data is reviewed. The mechanisms of heat transfer in
particulate and porous silicates are described; theoretical and empirical
models for estimation of effective conductivity are proposed; and the
significance of available laboratory thermal conductivity data to the

interpretation of lunar surface materials data is summarized

Experimental measurements of the complex dielectric constant of glass
beads, pumice, and basalt powders, and solid glass, pumice, and basalt
were made at wavelengths of 3.2 cm and 1 2 ecm over the temperature range
from 77°K to 400°K; the terminated waveguide and the slotted waveguide
methods were used for the measurements

The thermal conductivity of glass beads, pumice, basalt and quartz
powders, and solid glass were measured using the line heat source method,
Measurements were made at pressures of 10—& to 10"9 torr at temperatures
ranging from 150°K to 400°K. The experimental data were examined using

empirical models of radiation and conduction in the particulate systems.
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B RESULTS AND CONCLUSIONS

1 Dielectric Constant

The dielectric constants of the silicate powders measured vary from
1.9 to 2 9 The loss tangents of these materials vary from about 0.004
to 0.030. The dielectric constants of the solid silicates from which
the powders were prepared range from 5.4 to 8.6, There is no significant
difference in the dielectric constant of the powders at the two wave-
lengths investigated. The loss tangents of the powders are larger at
the shorter wavelength, The effect of temperature on the real part of
the dielectric constant of the powders is negligible over the range from
~77°K to 400°K. The imaginary part of the dielectric constant and the
loss tangent tend to increase at the upper temperature limit of this
range, particularly for basalt powders The dependence of the dielectric
constant of the powders on density is adequately represented by theore-
tical formulas which relate the dielectric constant to the fraction of
the solid and the dielectric constant of the solid, There is no well-
defined correlation between thermal conductivity and dielectric constant
of the silicate powders. The correlation proposed by Troitskiidoes not
hold for the powders and solids we studied. If the dielectric properties
of the lunar surface are similar to those of the minerals and powders
studied in this work, the penetration depth of microwaves is much greater
than the thermal penetration depth (approximately 40 times greater for
3 28 an waves and 10 times greater for 1.18 an waves) Small amounts
of metallic (iron) particles present in the dielectric silicates tend to

decrease the penetration depth significantly

2 Thermal Conductivity

The effective thermal conductivities of the evacuated powders of
particle size 5-75u vary from about 4 x 10_6 w/em®C to near 40 X 10_6
w/em®C over the temperature range from 150°K to 400°K, and can be repre-
sented by the sum of a constant term and a term which has a cubic tem-
perature dependence, In the temperature range of 150°K to 400°K, the

ratio of the radiation to solid conduction contributions to effective
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thermal conductivity varies from less than 0.1 to over 5 depending upon
the particular powder size and composition

The solid conduction contribution to effective thermal conductivity
decreases with increasing particle size, and the radiation contribution
increases with increasing particle size The radiation contribution
to effective thermal conductivity can be predicted adequately on the basis
of available correlations which take into account the refractive index
and its variation with wavelength. The solid conduction contribution to
thermal conductivity cannot be predicted adequately using correlations
which consider only Hertzian contact areas and the thermal conductivity
of the solid There is no direct correlation between thermal conduc-
tivity of particulate, vesicular, and solid silicates and density The
structure of the material influences thermal conductivity more than
density

C  RECOMMENDATIONS

In analyzing lunar infrared temperature data, the thermal parameter
should not be treated as independent of temperature A more desirable
procedure is to include the variation of both specific heat and density
with temperature,

Additional measurements of dielectric constant at other wavelengths,
and of thermal conductivity of other postulated lunar materials at low
temperatures should be carried out

In order to develop a better understanding of contact between particles,
additional experiments are required under conditionswhere conduction heat
transfer can be measured independently of other mechanisms

Qrthur D.4ittle, Inc.
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IT. INTRODUCTION

The flow of heat in heterogeneous materials can be described by
thermal conduction and radiation processes acting simultaneously in
series and parallel combinations in each phase. |In a dispersed system
consisting of a gas phase and a non-metallic solid phase confined by
boundaries with specified temperatures and properties (typically a
powder or fibrous material within a container), heat may flow from one
boundary to another by gaseous conduction, solid conduction (i.e., through
the solid phase across areas of contact between particles or fibers), and
radiation from surface to surface through the gas phase and within the
solid phase

In many practical applications the total heat flux through a hetero-
geneous material is the important quantity to be specified or measured
In some simple systems, the heat flux is uniquely determined by the aver-
age temperature gradient in the material and the bulk thermal properties
of the material In the general case, however, the heat flux depends
upon the radiation characteristics of the boundary surfaces (their emit-
tance and reflectance) and the thickness of the material as well as the
temperature gradients and thermal properties of heterogeneous material
Accordingly, effective thermal conductances are used to characterize the
heat flow in heterogeneous systems  The effective thermal conductivity
can be defined as a conductivity value which, if substituted into a
Fourier—type equation, will result in the correct heat flux for a particu-
lar system with specified boundaries and dimensions For an isotropic
opaque solid material, the effective thermal conductivity equals the true
thermal conductivity (i.e., it is independent of boundary properties,
system dimensions and temperature gradients, and is a function only of
the material and its temperature) In heterogeneous systems, because of
the multiplicity of heat transfer mechanisms and their non-linearity,
the effective thermal conductivity does not have the intrinsic properties
of the true thermal conductivity Extrapolation of thermal test data and
use of effective thermal conductivity values for conditions other than
those during which the values were obtained can lead to significant errors.

5
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An important application illustrating the ambiguity of thermal con- !
ductivity data can be found in the interpretation of lunar thermal data
Photometric, polarization, and infrared observations of the moon have }
led to the general conclusion that the lunar surface is covered with a

highly porous material of low thermal conductivity. In analyses of the

temperatures of the lunar surface, it is generally assumed that the cover-
ing material is opaque in the infrared region and that its conductivity

is constant, independent of the thickness, temperature, or temperature
gradients. Because of the apparent high porosity and large temperature
gradients, radiation transmission in the lunar surface material could be
significant and calculations based upon single valued thermal conductivi-
ties may yield results which are not representative of the true thermal
conditions on the lunar surface

The attempts to characterize the nature of the lunar surface have
proceeded along another line of investigation, i.e , microwave observa-
tions at different stages of lunations and eclipses to provide detailed
signature maps of lunar subsurface temperatures The complex dielectric
constant and its dependence on material type and density are parameters
of significance in evaluating the properties of the surface and subsur-
face materials by microwave measurements.

Within the past two years, measurement capabilities in the millimeter
and microwave portions of the spectrum have experienced dramatic improve-
ment, and detailed infrared thermal maps for many individual regions of
the moon over a full lunation cycle are now available. Insufficient data
are available to correlate thermal properties and electrical properties
of materials currently under investigation as representative of the lunar
surface and to provide signature characteristics of microwave and milli-
meter radiation for such materials As a result, some controversy exists o

as to the interpretation of lunar thermal and microwave data

One analytical technique for studying heat transfer in heterogeneous
materials IS to ascribe the total heat flow to the super position of heat
flow due to the mechanisms previously listed, The effective thermal con-

ductivity can be partitioned into contributions for each mechanism, and

Arthur D Hittle, Iuc, }
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each contribution can be analyzed in terms of the physical quantities
responsible for the mechanism of heat flow. Although this technique is
not rigorous (there is an interaction between the heat flow mechanisms),
it is useful in explaining the overall properties of heterogeneous mate-
rials and forming a sound basis for engineering use of thermal property
data

In our work under Contract NAS8-1567 (Everest, et al , 1962; Wechsler,
et al , 1963, and Wechsler and Glaser, 1964), we have measured the effec-
tive thermal conductivities of solid, powdered, and vesicular non-metallic
materials  Although some information has been obtained on the importance
of the various heat transfer mechanisms, the program has been directed
mainly toward obtaining data on the properties of postulated lunar surface
materials, Because of the fundamental importance of the knowledge of the
mechanism of heat transfer in heterogeneous materials and the applicability
of the knowledge to both lunar surface conditions and other systems where
insulating materials are used, our studied of non-metallic materials have
been extended

In the work described in this report, we have carried out experimental
and theoretical studies of the mechanisms and rates of heat transfer in
particulate and sintered materials to permit estimates of the separate
contributions of radiation and conduction to be made V¢ have also mea-
sured the dielectric properties of the materials used in the thermal
studies in an attempt to relate thermal conductivity, density, and di-
electric constant data. This information will aid in the understanding
of the thermal behavior of lunar surface materials as well as other
planetary surface materials

Arthur 2. Wittle, Inc.
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IIT  DIELECTRIC CONSTANT

A REVIEW OF EXISTING DATA

1. Radio-Astronomical Observations

Thermal emission of a celestial body, such as the moon, can be ob-
served over a very wide frequency interval including short radio waves
and microwaves From the measured radiant power density, one can determine
the brightness temperature of the body, and, if the emittance is known,
the black-body temperature of its surface Conversely, if the surface
temperature is known from the other measurements (= .z , infrared radio-
metry), the emittance may be determined and from it the dielectric con-
stant In the case of lunar thermal emission, the situation is somewhat
complicated by two circumstances: (@ because the rocks and minerals
are fairly "“transparent’” to the radio waves, the radiant energy emitted
by the surface contains components from various depths; and (b) the tem-
perature of the moon varies periodically during lunation, though not in
a simple harmonic manner.

The following formulation of the problem was originated by Piddington
and Minnett (1949), who were the first to obtain quantitative microwave
measurements of the lunar thermal emission at 1 25 cm wavelength over the
entire lunation period. The problem was subsequently treated theoretically
by Jaeger (1953) IT the temperature of the lunar surface varies in time
as:

T(O,t) = ] T cos (et~ ¢) (I11-1)
n=0

and the observed microwave brightness temperature contains contributions
from varying depths according to the expression;

T, = L-R) 1 T (x) ¢ % dx (11-2)
0

Arethur D Wittle Ine,



then the solution of the heat transfer equation yields the following ex-
pression for the time dependence of the observed microwave surface bright-
ness temperature:
® 2 -1/2
T, () =(Q-R) ] T (Q+25 +28° cos (m@t-¢ - V)

o=~0 B
(I11-3)

This solution applies for the homogeneous lunar model.

€ = 2n/P is the lunation frequency @ = 29 53 days)
@ - r) = the radiofrequency emittance of the moon
R = reflectance

a = attenuation factor for the radiofrequency waves in the
lunar material

s_ =L /L_ is the ratio of the radiofrequency penetration
n dgpt (Lr) to the heat wave penetration depth (Lt>

L =at

~1/2
_ (i | pc
L= G K

o = density
c = specific heat
k = thermal conductivity

§
tany, = qF)
n

In practice, the limited accuracy of the radio-astronomical observation
permits only the first two terms of equation 11I-3 to be determined.
The first term, @ - R) T, IS the (constant) brightness temperature, and
the second term represents the phase-shifted first harmonic component of
the periodic brightness temperature It is apparent that by definition
the radiofrequency phase lag ¥, cannot exceed 40°; if it is found to be
greater than 45°, as it has been claimed to be by some observers, the
homogeneous model of the lunar surface would have to be replaced by a
more general one (s.g , a stratified model)

10
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From two observed parameters, such as the amplitude and the phase of
the brightness temperature, one can determine, at least in principle,
the two components of the complex dielectric constant that characterize

the dielectric properties of the lunar surface, since:

R = (—ii-_//:z_)z (111-4)

and
tan ¢ = 1—+JE (I1I-5)

where

e = ¢' ~ ig" (111-6)

and
o = _'r}\r__ -E",-' Ve' (for e" << g') (III-7)

o

The magnetic permeability of the lunar surface is here assumed to be
equal to 1 The early radio-astronomical observations by Piddington and
Minnett (1951), indicated a phase lag of approximately 45° and thus
justified the assumption @ ¥ 0, e % 0  Accordingly, €' could be ob-
tained by equation III-4 from the observed value of (1- R).

In this way, Gibson (1958) estimated the real part of the dielectric
constant of the lunar surface material to be between 3 and 5 More re-
cent measurements seem to indicate that this estimate is too high The
Russian workers made several studies of lunar thermal emission at wave-
lengths from 0.4 to 3.2 cm. A summary of this work may be found, e g ,
in Troitskii (1962) From his own measurements as well as those sum-
marized in the above mentioned papers, Troitskii concluded that the lunar
surface has a dielectric constant €’ % 1 6 This estimate appears to be
rather low compared with other data Most recent measurements made by
Gary, Stacey and Drake (1965) led the authors to assume a value of ¢' ®
2 8 for the lunar surface.

11
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The paucity of results and the wide spread of the values derived ]
from the observations are indicative of the difficulties involved in
the data acquisition and their reduction. Moreover, the approximate
analysis based on the Piddington and Minnett method has a drawback in

requiring a priori knowledge of the surface temperatures (from the in-

frared measurements) and of the thermal parameters of the surface mate-
rial This situation makes it desirable to determine in the laboratory
both the dielectric properties and the thermal parameters on representa-
tive samples of probable lunar materials prior to further evaluation of
radio-astronomical data.

2. Radar_Observations

The moon and several of the near planets have been studied in numerous
investigations by radar at wavelengths ranging from 0.86 an to 784 cm.
Radar studies of the moon have been reviewed in detail by Pettengill and i
Evans (1965). The radar method is capable of providing manifold informa-
tion about the moon, including its distance, rotation, and topography; we |
shall discuss here only that part of the radar information which relates

to the dielectric properties of its surface. §

If the moon were a perfect sphere having a reflectance R determined
by the dielectric constant of its surface material according to equation
I1I-4, its radar scattering cross section would be:

a = Rna’ (111-8)

where a is the radius of the moon. Equation III-8 is valid under the
following assumptions; (a) the beam of the radar antenna is wide enough
to illuminate the whole moon, (b) the pulse is sufficiently long to allow
the reflections from the most distant parts of the limb to be received,

dnci?

and (c) the wavelength Ao is short compared with the radius of the moon
Most of the moon's surface is actually found to be gently undulating
about the mean spherical shape (Nagfors, 1964) This can be formally

described by an amendment of equation 111-8

a=g Rra’ (111-9)

12
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where g is a directivity factor of the form:
2
g=1+na"y (III~10)

here n is a constant (¥ 2) and a is a term comparable to the mean square
surface slope  Some areas of the moon's surface reflect as a rough
(Lambertian) scatterer, in that case g has a theoretical value of 8/3
The total radar cross section contains both components. Pettengill and
Evans estimated about 82%of the projected surface to be of the "diffuse™
kind and 18%to be of the "smooth' kind, when observed with a 68 an
wavelength radar.

The directivity factor g has been calculated theoretically for dif-
ferent kinds of scatterers (Grieg, et al , 1948; Daniels, 1961; Evans
and Pettengill, 1963; and Rea, et al , 1964) This makes it possible
to determine the reflectance R from the experimentally observed value
of ¢ by using equation III-9 Earlier determinations of the scattering
cross section were subject to fairly large errors because of instrumental
difficulties, such as calibration of the system, antenna gain, trans-
mitted power variations and atmospheric attenuation, the effect of pulse-
length dependence on the radar return, the effect of localized scatterers,
and the Doppler shift in the return pulse frequency caused by lunar rota-
tion  Consequently, the original estimates of the dielectric constant
of the lunar surface were not very reliable,

From a compilation of radar data, Senior, Siegel, and Giraud (1962)
estimated the real part of the dielectric constant to have a value of
approximately E* % 108, which is undoubtedly too low Evans and
Pettengill (1963) obtained a value of E* # 2.6 to 2 8 from their measure-
ments; and Rea, Hetherington, and Mifflin (1964) arrived at a value
E' &% 2 8 by a method of analysis different from those previously cited
Most recently, Hagfors and his coworkers (1966) concluded from their
measurements made with circularly polarized radar at 23 an wavelength
that a two-layer model of the lunar surface provides the best fit with
the observation The top layer was estimated to have a dielectric constant

13
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e' of about 1.7 to 1.8 and a depth of approximately 20 cm, on the average,
The base layer would have a value of & &% 4.5to 5.

3 Laboratory Measurements

Laboratory data on dielectric properties of particulate materials
measured at microwave frequencies are very sparse. The early work of
Straiton and Tolbert (1947) deals with a few terrestrial materials de-
fined only as "Arizona soil"™, or "Austin, Texas, soil, very dry"; data
were obtained at a wavelength of 32 on  For the two materials referred
to above, the dielectric parameters measured by Straiton and Tolbert are,
respectively, & = 3.2, ¢" =0.19 and e© = 2.8, e~ = 0.014. Similar sets
of data on various types of soils are tabulated in the compendium on di-
electrics edited by Von Hippel (1954). The value of this particular

tabulation is in the wide frequency range it covers (102 to 1010 cps)

Fensler and coworkers (1962) made an extensive study of electromagnetic
parameters, including the dielectric constants, of numerous rocks and
meteorites both in solid and powdered form. Their work includes an experi-
mental study of the effect of particle size and packing factor on the
effective dielectric constant of some of the selected materials, Because
these measurements were made at low frequencies (1000 cps) the comparison
with those made at UH- and microwave frequencies (107 to 1010 cps) is
uncertain. Only the solid chondrites and tektites were measured at U+
frequencies (between 420 and 1800 Mc) The dielectric constant &' of
glassy tektites from various localities was found to vary between 3 88
and 8.8 (measured at 500 Mc) Chondrites had values of ' between 10.4
and 45.9 and high dielectric loss tangent (between 0 028 and 0 199)

Troitskii (1962) refers to (unpublished) measurements made at a wave-
length of 3 2 em (o 1010 cps) on various terrestrial volcanic rocks of
Armenia and Kamchatka (tuff, tufo-lava, volcanic slag, obsidian, pumice,
clay, etc.). Without further detail regarding the experimental work, he
states that the dielectric constant €' was in the range from 1.65 to 3.3
for different rocks having density between 0 5 and 1 25 g/cm3 The loss
tangent of these materials was between 6 x 10_3 and 23 x 10~3; the speci-

mens were measured in dry air under ordinary conditions

14
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B. THEORETICAL CONSIDERATIONS

1. Reflectance and Emittance of Dielectric Materials

Reflectance of a semi-infinite dielectric body bounded by a plane
surface is given, for normal incidence, by formula III-4 cited earlier
At angles of incidence other than zero (normal incidence), reflectance
is given by the well-known Fresnel formulas.

These formulas (including equation 1II-4) are valid under the follow-
ing assumptions: (a) the curvature of the surface is large compared with
the wavelength, (b) the surface roughness is small compared with the wave-
length, (c¢) the dielectric body is homogeneous on a scale small compared
with the wavelength; and (d) the dielectric body is thick compared with
the penetration depth ("*semi-infinite™). These conditions can be readily
met under laboratory conditions with carefully prepared powdered samples
It is obvious, however, that when applied to celestial bodies, such as
the moon, the formulas may not strictly apply Assumption (a) is
usually justified by the observation that the radar reflection obtained
with a narrow-beam antenna and a short-pulse resolution comes predominantly
from the central area of the disc, the reflected power falling off very
rapidly toward the limb  Assumption (b) may be somewhat in doubt in view
of the surface profile information gathered from the Surveyor experiment
If the surface is rough on a scale comparable to the wavelength, diffuse
reflection will occur in addition to the specular reflection. Smooth
undulation of the surface on a scale greater than the wavelength can
be accounted for by the method of Hagfors (1964) Homogeneity of the di-
electric material constituting the surface of the moon or the planet is
likely to be good on the scale of short—wavelength microwaves  However,
numerous observations indicate that the dielectric properties of the
lunar surface vary considerably over areas of distinctly different geology
(e.g., maria vs crater rims) (Pettengill and Evans, 1965) Finally,
the assumption of “semi-infinite* thickness is certainly valid, inasmuch
as the penetration depth is only of the order of a few wavelengths

The analysis of radar data in terms of the dielectric properties of

the spherical celestial bodies based on Fresnel formulas has been

15
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criticized by Rea and coworkers (1964) These authors claim that the
quantity R in equations III-8 and III-9 cannot be interpreted as the
Fresnel reflection coefficient at normal incidence (equation III-4), but
rather has the meaning of the albedo averaged over the hemisphere. Their
approach is based on treatment of the scattering of light by rough di-
electric surfaces where the surface elements are large in comparison

with the wavelength. The results of analysis of existing radar reflec-
tion data by their method do not differ appreciably in numerical values
from other results as far as the dielectric constants are concerned;

some differences appear in the values of average slope data.

Emittance E of a dielectric body can be obtained from the reflectance
by means of the relation:

R+E+ T*=1 (TII-11)

where T*% is the transmittance In this relation we made implicit use of
Kirchhoff's law by substituting emittance for absorptance. In a "semi-
infinite body T# = 0 and, consequently,

E=R -1 (ITI~12)

The assumption T* = 0 is justified for a celestial body of a large size,
such as the moon. Under laboratory conditions this may not be the case
and transmittance resulting from the finite thickness must be taken into

account

If the reflectance R in formula III-12 is taken to be the Fresnel
reflectance as given by equation III-4, E has the meaning of the direc-
tional, normal emittance. However, it can be shown (Gardon, 1950) that
the thermal radiation emerging from the plane boundary of a semi-infinite
dielectric body is not directional but diffuse, obeying very nearly a
cosine directional law. Consequently, E should be interpreted as a hemi-
spherical emittance, in a way analogous to the argument given by Rea,
Hetherington, and Mifflin (1964) for the diffuse reflectance

16
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2 Complex Dielectric Constant and the Penetration Depth

Electromagnetic waves traveling through a lossy medium are characterized

by the two complex parameters:

E =€ - ie" (dielectric constant) (T1I-13)
w =u' " iy" (permeability)

The amplitude varies exponentially as:

iwt = ax
where w Is the angular frequency and

vy = o + 1B (111-14)

is the propagation constant. As a is assumed always positive, the waves
are attenuated as they proceed forward:

-ax ei(wt - Bx)

e (I11-15)

a is the absorption coefficient and 8 = w/v is the phase constant From
Maxwell's equations, one obtains for the phase velocity v in the medium:

v =c (e M2 (111-16)
and for the propagation constant;

y = %& Vo (111-17)

Inserting in III-17 from III-13 and equating the real parts of III-17 and
III-14, one obtains for the attenuation factor:

z
a = Aw ) (e’ uu + g u') (III-].B)
4nc
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Planetary rocks and soils may reasonably be assumed to be non-magnetic,
hence p' = 1and y" =0 In this case, equation III-18 simplified to:

2 (II1-19)
AW " Do ¢

28 a1 e
0

1f, furthermore, " << €' and u = 1, we obtain from 111-16:

_ WVET‘E: -
o = "——7\0 Py (111-20)
and for the penetration depth L = a_:L
ro !
Lr = (I11-21)
et e

This may be expressed in terms of other parameters often used in the
radio engineering practice, the loss tangent defined as:

e”
tan § = £+ (I11-22)

or the dielectric conductivity, defined as:
a=uwE" (111-23)
Then we obtain:

L = 2 = =2 (I1I-24)

T /% tan 6 ™o

However, a does not necessarily represent the conductivity in the
conventional sense. It may include the motion of free charge carriers
(electrons) if conducting material is present in the medium, and may also
result from other dissipative processes on the molecular scale, even in

the absence of free carriers.

From the definition of a (equation III-15), the penetration depth is

seen to represent that depth at which the amplitude of the electromagnetic
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wave decreased to e~1 or to about 37% of its value at the surface. Ac-
cording to the exponential law, the amplitude would drop to 13 5%at a
depth of 2Lr, to 4,98% at 3Lr’ and so forth.

Equation 111-24 shows that the penetration depth decreases with free-
space wavelength A Taking as typical values &' = 2 3 and tan & = 0 01,
we can estimate the penetration depth for 3 an wavelength radiation Lr =
63 cm; for 3 mm wavelength, the penetration depth would be only 5.3 cm.

It is also seen that penetration depth increases with decreasing value
of tan 6 In materials of low dielectric loss (" << E'), tan 6 is the
dominant factor determining the penetration depth; at the same time, the
real part of the dielectric constant (') becomes the factor determining
the reflectance.

3 Dielectric Properties of Solids and the Nature of the Loss
Mechanism

Both ' and e~ are frequency-dependent and interrelated in such a
manner that if one is given as a function of frequency over the entire
frequency range from zero to infinity, the value of the other is uniquely
determined  This mutual dependence of ' and e* may be mathematically
described, for instance, by the Kramers-Kronig relations, which are a
general form of dispersion relations.

The physical reason for the existence of dispersion relations in di-
electric materials is the presence of permanent or induced molecular and
atomic dipoles in the structure of material, capable of resonant inter-
action with the electromagnetic waves The resonances are sharp and
clearly observable only in gases and liquids possessing simple molecular
structure, which, because of dispersion relations, also permit quantita-

tive calculations to be made with a fair degree of accuracy

Insolids, the situation is complicated by the simultaneous action
of several dispersive mechanisms. At low frequencies, dielectric after-
effects of the Maxwell type cause dissipation of energy in the medium,
particularly if it is heterogeneous. Another mechanism effective in
heterogeneous media is the migration of ions adsorbed on internal surfaces
At higher frequencies the molecular dipole orientation effects of the
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Debye type are the principal source of dissipation. According to the
Debye theory, molecules or parts of molecules carrying an electrical
dipole moment tend to orient themselves along the alternating electric
field of the electromagnetic wave This tendency to rotate is opposed

by "frictional™ or "viscous™™ forces assumed to be proportional to the
angular velocity Consequently, the orientation lags behind the electric
field by an angle 6. At very low frequencies 6 = 0; as the frequency in-
creases, a resonance is approached and passed. At resonance, |tan 6]
attains a maximum and then decreases to low values at very high frequencies
as the dipoles cease to follow the rapid vibrations of the wave field.
Since natural solid materials involve a great variety of molecular group-
ings, the resonance frequencies are spread over a wide frequency spectrum
from about 105 to 1010 cps  Beyond about 1010 cps, electronic polariza-
tion in the individual atoms is responsible for the dielectric properties
of solids

As a result of this spread of dispersion frequencies, the dielectric

parameters of silicate minerals and rocks are found to vary with frequency

only to a slight degree; in fact, both ¢' and ¢"

nearly constant between about 107 to 10]‘0 cps (von Hippel, 1954)

are found in practice

The real part of the dielectric constant £ is determined largely by
the chemical structure of the solid and is relatively insensitive to the
presence of impurities The reverse is true of the loss tangent (tan 6)
which is strongly influenced by the presence or absence of impurities
This may be illustrated on the example of the simplest silicate, i.e ,
silica (3102) Pure silica in the vitreous form ("fused quartz') has the
lowest loss tangent of all silicates As shown in Table III-1, when ad-

ditional ions are introduced, the loss increases

Addition of ions other than sodium produces similar effects Un
fortunately, no simple rules correlating tan & with the concentration of
any particular ion in a given silicate matrix seem to be evident, and
the body of empirical facts is very limited. Consequently, it appears
impossible to draw any conclusions regarding the presence of minor con-
stitution elements in naturally occurring silicates from the experimentally
determined values of tan 6
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TABLE IIT-1

DIELECTRIC LOSS IN SILICA AND SODIUM SILICATE GLASSES

AT A FREQUENCY oF 1010 ¢/s amp 25°C

100%8102 0.0001
96% SiOz, 4% 8203 and NaZO 0.0009
91%8102, 9% Na20 0.013
80%8:‘.02, 20%Na20 0.020
70% SiOz, 30%Na20 0.024

Source: won Hippel (1954)
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4, Dielectric Constants of Particulate Media and Mixtures l

One of the objectives of the present investigation was to study the
dielectric properties of particulate media For this reason we shall f
briefly review the theoretical basis of determining the effective di- '

electric parameters of such media from the properties of the solid We

shall assume from the outset that the medium consists of particles uni-
formly smaller than the wavelength, and that the volume fraction occupied
by particles of i-th kind is f. and the volume fraction of the voids fo !
is vacuum, the volume fraction: being normalized, fi =1

The problem of the effective dielectric constazt of a dilute medium {
containing small particles has been solved by many researchers, starting
with Maxwell in 1873 Some of the often used formulae are valid only for |
special cases (e.g , spherical particles) or over a small concentration
range. Troitskii (1962) uses a formula of the following type:

- 2¢" 4+ 1

[ - T - e — -
et =t [17 36, € -1t 5 1l (111-25)
This formula, which Troitskii attributes to odelevskii and Levin, gives
the effective dielectric constant €' of a porous medium containing only
one kind of particle of dielectric constant e'; it refers to the real
parts of E only Pettengill and Evans make use of an equivalent formula

adapted for the volume fraction f of the particles rather than that of

the voids: 1
gt =1+ —1—3%7 (111-26)
where
P AN
yEIETFD

All of these formulas can be deduced from a general expression de-
rived by Emslie (1966) of the form:
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- 1 2 -
_(;l;li)z,;l = z fi (ni lki) 1

- - - (111-27)
G+in2sez i (n, - iki)z +2

Here, n and k designate the real and imaginary parts of the refractive
index, defined by the following relation:

(n - ik)2 =¢g' - ie" (II1~28)
The “barred” quantities represent the effective parameters of the particu-
late medium The quantities with indices refer to the parameters of the

i—-th (solid) component, i = O refers to vacuum (voids). Furthermore, from
equation III-28 we obtain;

E” = 2nk, and (IT1~-29)

x~
1l

(1/2) n tan 6.

Formula III-26 is obtained from 111-27 simply by substituting the
following values. e = n2, k = 0 (hence tan 8§ = 0), and fi =f These
formulas have been used in radio-astronomical and radar investigations
of the moon to infer the degree of porosity of the surface material We

shall make use of them in the interpretation of the experimental results

The real part of the dielectric constant e° of solid terrestrial rocks
of the types likely to occur on the moon ranges from about 5 (quartz
sandstone) to 17 (olivine basalt); at the same time, the observations of
the lunar properties result in estimates of e’ between 16 and 2 8
(Section 111, A, land 2) The difference can be explained by the assump-
tion that the lunar surface is porous or vesicular, in which case its
effective void fraction is then calculated from equation 111-25 or III-26.

In this way Troitskii (1962) estimated the effective density of the
lunar surface to be between 0,5 and 1 25 gm/cm3; similarly, Pettengill and
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Evans (1965) concluded the effective density of the lunar surface to be
approximately 40% of the solid.

5. Relations Between the Dielectric Thermal Properties of
Particulate Materials

In radio-astronomical studies of the lunar surface the thermal and
dielectric properties are related by virtue of equations 111-2 and 111-3
It seems reasonable, therefore, to inquire whether there is any funda-
mental relation between the electrical and thermal parameters of particu-
late materials pertinent to the present investigation.

In a general sense, we may assert that there is no fundamental con-
nection between the dielectric constant and thermal conductivity or
specific heat The well-known Wiedemann-Franz law which expresses the
proportionality between thermal and electrical conductivities applies
only to a very special class of solids, namely metals It results from
the fact that free electrons are responsible both for the current flow
and most of the heat flow.

In dielectric solids there are normally no free electrons and the
electric polarization and heat conduction are caused by entirely independ-
ent mechanisms. The dielectric constant is a measure of the deformability
of the electron orbitals responsible for chemical bonding of the solid
(polarizability) by the electric field. The thermal properties of solids
are determined in principle by their elastic properties Specific heat
is related to the distribution of energy of thermally excited quantized
lattice vibrations (phonons), while heat conductivity is determined by
scattering of phonons by lattice imperfections. Consequently, any rela-
tions between dielectric and thermal properties are indirect and are

certainly not established at present on a consistent theoretical basis.

However, when density is considered a variable, as is the case in
particulate materials, electrical and thermal properties become implicitly
dependent. Semi-empirical investigations of this dependence have been
discussed by Troitskii (1962), who noted that the ratio 6n of the electrical
penetration depth to the thermal penetration depth is very nearly propor-
tional to the wavelength Ag of the radio waves in the range from 0.4 to
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3.2 an and has a numerical value of about 2 cm_l, ie,
Lr

§ ====2A (111-30)
Ly

From this relation and from equation 111-24, Troitskii concluded that the
loss tangent of lunar surface material is independent of wavelength

He considered his findings to be consistent with the behavior of typical
silicate minerals (see also preceding section), and he observed that such
behavior would not be the case if there were any appreciable fraction
(greater than 2-3%) of metallic particles of meteoritic origin present

in the surface material By inserting for Lt from equation 111-3 and

for L from equation 111-24, he deduced from equation 111-30 an equation
of the form:

S t_a_g_.é = Cyey (III-31)

Where ¢ is the specific heat of the surface material, v = (kpc)_l/2 and
C;is a constant independent of the constitution of the material and its
density Troitskii used this equation to derive Ye' of the lunar surface
from electrically measured values of tan 8/p of terrestrial materials and
radiometric values of ¥ of the lunar surface In doing so, Troitskii
arrived at a value of effective dielectric constant €' near unity; by
adjusting both e and density, he estimated €' to be near 1.6 and effec-
tive density E to be 0.5, The value of E= obtained in this manner is too
low in comparison with more recent data. This is not surprising because
equation 111-31 is at best an empirical correlation and has no basis in

fundamental relations.
C. DIELECTRIC CONSTANT MEASUREMENTS AT WAVHENGTHS OF 3.2 CM AND 1.2 CM
1. Methods

W used two methods to measure the complex dielectric constants of
particulate materials at microwave frequencies For measurements in
vacuum and over a temperature range from 77°K to 400°K, we used the

terminated waveguide method (Roberts and von Hippel, 1954) For dielectric
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powders in air and at ambient temperatures, we supplemented the data by
measurements of attenuated standing waves in a slotted waveguide filled
with the sample (Redbeffer, 1947)

The principle of the terminated waveguide method is shown schematically
in Figure ITII-1, The sample of thickness D fills the end section of a
waveguide terminated by a short circuit. A slotted section of the wave-
guide interposed between the sample and the generator makes it possible
to determine the position of the first minimum (xo) and the relative
amplitude r = Em,_n/Emax of the maxima and minima by means of a traveling
detector probe Because there is a length of waveguide intervening be-
tween the slotted section and the sample, and the scale on the probe
reads from an arbitrary origin, the position of the first minimum must be
found by taking a reference reading of the minimum in the absence of
sample If the position of the minimum in the absence of sample is read
on the scale of the slotted section at Xy, and in the presence of the sample
is read at 255 then:

(I1I-32)
where nland n, are two integers.
If the sample is thin (D < 1/4 )\32, the number of half-wavelengths

in the waveguide is the same with or without sample (nl =n, = n), and
we may write:

A
1 2 4 (111-33)

It can be shown from transmission line theory that upon reflection
at a short-circuit termination overlaid by a thickness D of sample having
a complex propagation constant v = a +ig (see equations III~14 to III-19),
the following relation holds:

r - 1 tan (2mx_/A.)
A o' "1
taghyD _ _ ; do T- 11 tan 2mx /)

(I1I-34)
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FIGURE III-1 PRINCIPLE OF THE TERMINATED WAVEGUIDE METHOD
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Here » is the wavelength in the empty waveguide, which for the TE
mode is given by the formula:

5. ~1/2
Ay =, [1 - ()\D/)\c) ] (111-35)

where , = 2a is the cutoff wavelength corresponding to the dominant mode
in the rectangular guide of width a

If the sample has a low dielectric loss, the ratio r = (E_, /E _ )
min® “max

tends to zero and equation ITII-34 simplifies to:

A
555332 = - 5%5 tan (2rx_/;) (I1I-36)

This equation is solved numerically for gD =y by using some of the
existing tables of the function tan y/y  Having found y, we obtain the
wavelength in the sample:

A = 2qD/y

Finally, the real part of the dielectric constant - is obtained from
the relation:

1/2

A=Ay [e' - (Ao/xc)Z]- (I11-37)

which represents the wavelength of the waves propagating the waveguide

filled with the sample (assuming e" << ¢')

The imaginary part of the dielectric constant or, rather, the tan & =
/e is obtained by equating the imaginary parts of equation III-34,
assuming oD << 1, which is equivalent to ¢" << ¢! After considerable

manipulation we obtain:

A, (8/By)tan(2mx /A)[1 + cos 28D +sin 26D1 L. L A, 2

tan § | _Q €
T (1/r61)(1 + cos 28D) = 2 D tan (ZWXO/Al) £

(I11-38)
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where By = Zn/}\l is the imaginary part of the propagation constant in
the empty waveguide.

The measured parameter in equation 111-38 is the ratio r = Emin/Emax’
which we chose to measure directly, by means of a calibrated precision
attenuator Ve found this method to be more accurate than the often
used indirect method, based on the measurement of the width of the stand-

ing wave curve near the minimum

The values of tan 6 obtained by this method must be corrected for
the resistive loss in the waveguide, which is not negligible in spite of
the gold plating of the inner walls. This correction is determined by
measuring the ratio r in the absence of sample. An "effective' loss
tangent (tan &, is then calculated from equation 111-38 by putting
D=0, B = B2

2 1 1 A 2
tan § = 7 r tan (21TXn/A1) [::T -3 (r) 1
(111-39)
and the corrected tan 6 of the sample is obtained as:
tan § = tan 6 - tan 6 (111-40)
corr

The second method used for measuring the dielectric constants makes
use of the direct measurement of wavelength and attenuation in a wave-
guide filled with the sample The method is particularly suited for
powders which can be easily filled into the slotted waveguide The probe
in the slotted section is inserted only far enough to "plough' gently
through the powder In this case, e' is obtained directly from the mea-
sured value of A by means of equation 111-37. The loss tangent in the
sample is calculated from the formula:

tan 8 = &% (1II-41)

T e

where £ is the length of the waveguide from the short circuit termination

to the probe.
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2 Description of Apparatus

The microwave apparatus for measurement of dielectric constants of
powders and other materials in vacuum is shown schematically in Figure
III-2, This apparatus functioned according to the terminated waveguide
method described in the preceding section. The waveguide was mounted in
the vertical position so that the sample rested at the bottom of the
waveguide by its own weight.

Starting from the bottom, we note the individual components of the
microwave system. All waveguides are of the standard type (RG 52/U,
0 900 x O 400 in,,inside dimensions) appropriate for the X-band (3 2 cm
wavelength). The sample waveguide is 20 inches long, with a solid short-
circuit plate silver—soldered to the bottom and an O-ring gasketed
flange (choke flange) at the top The inside of the waveguide is gold
plated to minimize losses and to prevent oxidation of the surface. A
small slot milled through the wall of the waveguide provides connection
to a high-vacuum system consisting of an 8 liter/sec Vaclon pump backed

by a sorption-type forepump

The lower end of the waveguide containing the sample may be maintained
at any desired temperature Measurements were made at 77°K by immersing
the waveguide in a dewar with liquid nitrogen and at temperatures up to
400°K by heating it in a small oven. A thermocouple attached to the wall
measured the temperature, which was assumed to be equal to that of the

sample

The sample waveguide is closed off against the atmosphere by a special
glass-metal window soldered into the flange mating with the upper end
The window (Type MA-1338, Microwave Associates, Inc.) was especially se-
lected to have a minimum reflection at the operating frequency Its
standing-wave ratio was less than 102 at 9 150 Ge/s

Immediately above the connecting piece containing the vacuum window
is the slotted waveguide section with the traveling probe. This preci-
sion slotted section (Type 8098, Hewlett—Packard (0.) carries a scale
permitting the determination of the position of the standing—wave minima
and maxima (and thus of x for equations 111-38 and III-39) with a
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FIGURE I11-2 DIAGRAM OF THE APPARATUS FOR MEASURING THE DIELECTRIC
CONSTANTS
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repeatability of better than 0.01 cm. The probe itself is an adjustable
extension of a coaxial line protruding only a few tenths of a millimeter
into the waveguide It is integrally connected to a silicon diode detec-
tor which is matched by a tunable stub. Its output is measured by a

cathode-ray oscilloscope or a standing-wave detector (Model B812A, FXR Co.)

The slotted section is preceded by a precision calibrated attenuator
(Model 1958, PRD Co ) which is used in measuring the ratio r = Emin/Emax’
required for the determination of tan § For this purpose the traveling
probe is set to a minimum voltage and the indication of the standing—wave
detector noted, the probe is then set to the maximum and the attenuation
increased until the same voltage is indicated by the standing-wave detec-
tor. The difference of the two attenuator readings (in db) gives the
ratio z, independent of the linearity and calibration of the standing-
wave detector.

The frequency of the microwaves is measured by a direct-reading cavity
wavemeter (Model 4104, FXR Co.) fed from the main waveguide by a direc—
tional coupler (Model X 6104, FXR Co.). The microwave power is supplied
by a klystron (Type VA-58, Varian Assoc ) connected to the main line
through a ferrite isolator (Model 1203, PRD Co ), which prevents any re-
flections that might occur in the measurement system from influencing the
frequency of the klystron, The klystron is supplied from a stabilized
power supply (Model 7164, H-P Co ), which also provides a square-wave
modulation at 1000 cps  The components just described refer to the X-

band (3.2 an wavelength) system

The K-band (12 an wavelength) system was essentially identical to

the one described above; only the components were different.

Waveguides: RG 53/U (0420 x 0.170 in , inside dimensions)
Slotted section: Model K 102A (FXR (o )

Precision attenuator: Model K 164F (FXR Co )

Wavemeter:  Model K 410F (FXR Co )

Directional coupler: Model K 611C (FXR Co.)

Ferrite isolator: Model K 131 (Cascade Res. Co )

Klystron: VA 254 (Varian)

Power supply: Mod. 716A (H-P Co.)
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For measurements by the sample-filled waveguide method the same appa-
ratus were used, only the long sample section was omitted and a short-
circuit termination was bolted directly at the flange of the slotted
section. This termination was made of a flat, heavy brass plate which
was gold plated for low loss and good electrical contact. The entire
set-up was placed horizontally on the bench so that the measuring section
could be filled with powder up to the slot, The powder was prevented
from pouring out into the attenuator and the waveguide by a tightly
fitting plug of Styrofoam which was tapered at the front end to prevent
reflections

3  Sample Materials

The materials used in the microwave measurements of dielectric con-
stants and those used in the thermal conductivity measurements described
in Section IV, C were the same: natural pumice, basalt, and commercial
soda-lime glass  The powders were prepared from natural minerals and
graded to sizes listed in Table IV-5 (where two size powders are listed
in the table, the larger was used in the dielectric constant measurements)
The natural minerals from which the powders were prepared were also mea-
sured in their solid form. The pumicite was measured not only in its
vesicular form but also as a solid glass, melted down from the mineral
Glass beads were also melted to solid glass for measurement of the di-
electric constants,

The density of solid samples was determined from the volume of
rectangular blocks and their weight The bulk density of powdered
samples, as measured in the waveguide, was determined from the height
to which a known weight of powder settled under its own weight. This
was done in a transparent (Plexiglas) container of exactly the same
cross section as the waveguide. Since it was desirable to vary the bulk
density over a fairly large range and mostly toward values lower than
the "naturally packed'™ density, we diluted the mineral powders with poly-
ethylene powder. Having determined the dielectric constant €' of poly-
ethylene powder and knowing the amount added to the sample, we could
derive the dielectric constant of the mineral sample at any desired bulk
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density by using the mixing formula 111-27. The dielectric constant of
solid polyethylene was found to be e* = 2.5, and the loss factor tan 6
was smaller than the limit of sensitivity of our method (approximately
0.0005) .

Prior to dielectric measurements, powders were stored in closed jars
in dry atmosphere, but no particular effort was made to remove traces of
adsorbed atmospheric water We found, however, that a sample of powdered
pumice, which had a moisture content of approximately 0.5%, gave the
same values of e' and tan 6 (within limit of our experimental error) as
the sample that was thoroughly outgassed in the evacuated waveguide (16
hours at 200°C at 10_6 torr pressure)

4. Results of Measurements

The principal objective of the microwave measurements of dielectric
constants was to obtain a consistent set of data on the same powders
which were the subject of thermal measurements The results of these
measurements, performed at two wavelengths (3.28an and 1 18 cm), are
summarized in Tables ITI-2, and 111-3. The average experimental error
of the values of e' and e~ is estimated to be approximately + 5%
Powders referred to in Tables III-2 and III-3 were lightly packed by
their own weight. The bulk densities indicated are typical average
values from many individual determinations Particle size and composi-
tion of the powders were given in the preceding section

In order to test the applicability of equation III-27 to the powders
being tested, we determined the dielectric constant ' and loss tangent
of the solid materials and then calculated the values appropriate to

ppowder/psolid '
shown in Table 111-4, and results of calculations are shown in Table III-5.

the volume fractions f = Results of the measurements are

The calculated values of &' were computed from equation 111-27 under
assumption of k = 0, which is justifiable since " << g Under this

assumption and for a single component, equation III~27 simplified to:

1

g -1 es_l
vz foTa (111-42)
8
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TABLE 111-2

DIELECTRIC CONSTANTS OF POWDERS AT 9.150 Ge/s ()\U =328 cm)

Sample Temperature e! tan ¢ E"
°C)
Glass Beads -196 29 0 0077 0.022
(0 ¥ 160 gm/en”) + 24 29 0.0077 0.022
+ 98 2.9 0 0082 0,024
Pumice Powder -196 21 0.0042 0 0088
(e % 0.90 gm/cm”) + 24 21 0 0045 0.0095
+124 2.0 0.0051 0 0102
Basalt Powder 3 -196 29 0.0060 0 0172
(p % 1.20 gm/cm™) + 24 29 0.0067 0 0194
+ 98 28 0.0136 0.0380
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TABLE 111-3

DIELECTRIC CONSTANTS OF POAMDERS AT 25.35 Gef's (Au = 1.18 cm)

Sample Temperature el tan ¢
°c)

Glass Beads 3 -196 29 0.0075
(0 * 1.60 gm/cm”) + 25 2.9 0.0077
+110 2.8 0.010

Pumice Powder 3 -196 19 0.0060
(e % 0 90 gm/cm”) + 25 1.9 0 0070
+124 2.0 0.015

Basalt Powder 3 -196 2.8 0.010
(0 * 1.20 gm/em”) + 25 2.8 0.012
+125 2.7 0 030

. 36

0 022
0 023
0 029

0.011
0.013
0.030

0 028

0 033
0,080
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TABLE ITI-4

DIELECTRIC CONSTANTS OF SOLID MATERIALS AT 9.150 Gc/s
(. =328 cm) AND 25°C

Sample E tan & E"
Glass (melted beads) 6.5 0.013 0.085

(0 % 250 gn/cm)

pumice (melted pumicite) 5.4 0.0072 0.039
@ % 250 gm/cms)

Basalt (solid mineral) 8.6 0.014 0.12
P % 2,78 gm/cma)
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TABLE III-5

DIELECTRIC OONSTANTS OF PFOAMERS CALCULATED AND IVEASRED

Sample

Glass Beads
(£ = 0.57)

Pumice Powder
(f = 0.36)

Basalt Powder
(f = 0.43)

AT 9.150 Ge/s AND 25°C

E' tan §
Calculated Observed Observed
2.7 29 0.0077
1.8 2.1 0,0045
2.7 29 0 0067
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where e denotes the dielectric constant of the solid

Similarly, a simplified formula was used for calculation of the loss
tangent :

tan 6 = f tan 8 (111-43)

where 65 refers to the solid.

With the exception of pumice powder, the calculated values were found
to be in agreement with the measured values within the limits of our ex-
perimental accuracy Encouraged by this agreement, we made additional
measurements of ' with a two-component system in which basalt powder was
diluted with polyethylene powder. These tests were made at 25 35 Ge/s
(AD = 1.18 cm) and 25°¢ The dielectric constant of polyethylene was
found to be 1.6. The powders were mixed volumetrically at predetermined
volume fractions f  The results are shown in Table 111-6. The agreement
between calculated and measured values is again good, with the exception
of one observation (at f = 0.,10) which is in error for unknown reasons

W also determined the dielectric constants of pumice in its natural
vesicular form. The test samples cut from the natural rock had a bulk
density of approximately 0.42 gm/cm3 At 3 28 an wavelength, pumice was
found to have values of ' = 1.56 and tan § % 0.002; at 1.18 an wavelength,
the values were ' = 1.59 and tan 6 = 0,008

At the suggestion of Dr Klaus Schocken, we made a few experiments
with mineral powders to which a small amount of metallic particles was
added In a measurement with pumice powder at 1 18 an wavelength and
25°C the dielectric parameters of the pure powder were e = 1.9 and tan 6
= 0.0070 With a small amount (0 7wt %) of iron particles added
(average size 0.1 to 0.5 micron), the dielectric constant decreased
slightly to ' = 180, and the loss tangent increased appreciably to
tan 6 = 0,067
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DIELECTRIC GONSTANT E-

Al 25.35 Ge/s Qo =118 cm) AND 25°C

Volume Fraction f of Basalt

1.0
05
0.33
0.20
0.10
0

TABLE 111-6

OF BASAI T-POL YETHYI ENE FOMDER MIXTURES
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Calculated Observed
- 2.80
2 10 216
193 189
179 172
170 1.54
- 1 60
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5. Discussion and Interpretation of Results

Based on the results of the measurements presented in the preceding
section we can make the following observations

The three types of silicate materials are characterized by dielectric
constants €' ranging from 5 4 to 8.6 in the solid state and from 1 9 to
2.9 in the powdered state The imaginary parts e~ of the dielectric con-
stant are quite low (a few per cent of E')

Dielectric constant e is almost independent of temperature from 77°K
to 400°K, possibly dropping slightly at the upper temperature limit
Also, it is almost invariant with wavelength from 1 18 an to 3 28 cm.
The imaginary parts e+ of one dielectric constant increase slightly with
temperature, particularly from 25 to 125°C  This increase is the largest
in basalt e+ and tan § tend to increase as wavelength decreases but far
less than proportionately.

Both E* and e increase with density of the powder, and their changes
with the volume fraction of the solid appear to be expressed with suffi
cient accuracy by the theoretical formulas

Penetration depths of microwaves calculated by equation 111-24 from
data presented in Tables 111-2, -3, and -4 are summarized in Table III-7
Penetration depths are seen to increase with increasing wavelength  The
increase is far more than proportional to the increase in wavelength
The penetration depth is markedly decreased when a small amount of iron
particles is added to the pumice powder.
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TABLE 111-7

PENETRATION DEPTH _IN MINERALS AND POADERS AT 25°C

Material

Basalt, solid mineral
(p = 2.78 gm/cm?’)

Basalt, powder
(0 = 1.20 gn/cmd)

Pumice, melted solid
(p = 250 gm/cms)

Pumice, powder
(p = 0.90 gm/cms)

Pumice, powder
(with 0.7 wt % iron particles)

-0
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at A

Penetration Depth Lr (cm)

=3.28

26

92

159

at A =1.18 cm
Al A, =220 CM

19

39

41
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IV THERMAL PROPERTIES

A REVIEW OF EXISTING DATA

In this section we will review briefly pertinent studies of the
thermal conductivity of non-metallic materials and the interpretation
of lunar infrared measurements which have been reported since our last
report (Wechsler and Glaser, 1964) We will not examine these refer-
ences in great detail but will point out areas which will be discussed
in subsequent sections of this report and have significance to our
experimental and analytical work,

1 Observational Data and Their Implications

During the past several years, there has been a continuation of ob-
servational measurements of infrared and microwave temperatures of the
moon during eclipses and lunations Most of these studies have been di-
rected at investigating thermal anomalies which characterize predominant
surface features (ray craters, highlands, maria, etc ), e.g , Saari and
Shorthill (1963) These studies have substantially increased our under-
standing of the nature of these surface features In addition, several

other investigations were carried out by both Russian and American workers

The principal theme of the Russian work is summarized in several
papers In a report to the International Space Science Symposium held
in Washington in 1962, Troitskii (1962a) presents some results about the
nature, thermal conditions, and structure of the lunar surface, obtained
from analysis of lunar radio emission data Troitskii makes several
interesting conclusions based on measurements of the ratio of the con-
stant part of the lunar radio emission to the amplitude of the first
harmonic of this emission The dependence of this ratio on wavelength
points out the absence of any visible non-uniformities of the surface
up to a depth of several meters Measurements of the lunar radio emission
carried out during 1961 resulted in the following temperatures obtained
for the constant component; for wavelengths of 1 6 cm, a mean y?mpera—
ture of 208 + 6°K was obtained; at a wavelength of 3 2 cm, 211 3°K was
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obtained; at a wavelength of 9 6 cm, 218 + 4°K was obtained, on the
basis of calculations of the thermal conditions at the lunar surface and
measurements of the radio emission at the largest wavelength @ 3 av),
Troitskii concludes that the mean spherical emittance of the moon lies
between 0 93 and O 97 Additional calculations of temperature at the
lunar surface and comparison of these temperatures with the radio emis-
sion temperatures and the ratio of the constant component to the ampli-
tude of the first harmonic show that the thermal parameter v has a value
of 350 + 75 Using a specific heat of O 2 cal/gn°¢ and a density of O5
gm/ cm3 obtained from measurements of dielectric constant, Troitskii con-
cludes that the thermal conductivity of the lunar surface materials is
@+ 09 x 1074 cal/encc sec Thus, Troitskii concludes that the lunar
surface material must be porous rather than an unconsolidated dust

Krotikov and Troitskii (1963a) presented a review of data giving the
emittance of the moon at centimeter wavelengths From data on the micro-
wave temperatures of the moon, these authors conclude that the reflec-
tivity of the lunar surface at a wavelength of 3 2 cm is between O and
0.07 and hence the emittance is greater than 0 93 Further analysis
of the radio temperature measurements leads these authors to conclude that
the dielectric constant of the surface material lies in the range of 1 1
to 1 7 and that the density of the surface material must be in the range
02 too0.89 gm/cm3 These values are similar to those reported in the
1962 papers by Troitskii

In a second paper, Krotikov and Troitskii (1963b) report on the thermal
conductivity of lunar materials from measurements of lunar radio emission
This paper and a companion paper by Krotikov and Shchuko (1963) were dis-
cussed in our previous report (Wechsler and Glaser, 1964) The heat
balance on the lunar surface during lunation was calculated for homogene-
ous models of the lunar surface as a function of the thermal parameter v
The corrections to the original work by Jaeger were pointed out in our
previous report The conclusions drawn from the Krotikov and Troitskii
and Krotikov and Shchuko papers are that the best value of the thermal
parameter y is 350+ 75  This, combined with the value of O 5 gm/cm3
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for the density of lunar material, gives a thermal conductivity, 1 X 10_4

cal/cm®C sec, indicative of a porous material

Three methods are used to obtain this "best" value of thermal para-
meter  The first method relies on the dependence of the time averaged
temperature of the lunar surface on the thermal parameter v  Krotikov
and Troitskii show that there is a relation between the time averaged tem-
perature and the thermal parameter which decreases from a value of about
280°K at very low values of the thermal parameter to about 220°K at values
of gamma of about 1000 Using the microwave measurements of the lunar
temperature, the authors conclude that the range of thermal parameters
corresponding to a temperature of about 230 to 236°K is between 250 and
450 The authors also show that the ratio of the constant component to
the first harmonic term has a much greater dependence on the thermal
parameter v  The value of this ratio ranges from about 2 8 at v = 20
to a value of 1 3 at vy = 1200 From the measurements of this ratio of
approximately 15 + 0 1the range of thermal parameters resulting is be-
tween 250 and 550 The third relation that is used to determine v is
the relation between the lunar midnight surface temperature and the thermal
parameter Here the dependence of the midnight temperature on v is about
the same as the dependence of the constant component on vy  From measured
values of approximately 125 + 5°K, the corresponding values of Y lie in
the range 300 to 440, More recent information on the lunar midnight tem-
perature of perhaps 90°K would indicate much higher values of v, on the
order of 1000

OfF the three methods used, the dependence of a constant temperature
component and a lunar midnight temperature on v are absolute techniques,
i e ,lunar surface temperatures are never measured, rather energy emitted
from the moon is measured The third technique, using the ratio of the
constant component to the fluctuating first harmonic component, does not
depend on absolute measurements. From these three techniques the authors
conclude that the value of the thermal parameter to within 20% is 350

Estimates of the density of lunar surface materials have been made
by Troitskii (1962b), using the following method Troitskii assumes that
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the thermal conductivity of rocks in the form of either foams or par-
ticulate materials can be expressed as a function of the density of the
material and the conductivity of the general group of solid materials of
which the foam or particulate material is constituted For both porous
foamy materials and friable or particulate materials, Troitskii gives the
following relationships:

ky =k (ko/po, 0y ky = ky (kylog, 0) (Iv~1)

where subscripts 1 and 7 refer to porous or particulate materials; kq

and o4 refer to the conductivity and density of the material in the non-
porous state; and o refers to the density of the material in the porous
state Troitskii concludes that for almost all rocks the ratio ko/po
varies within the limits of + 30% from the value of O 8 for material like
granite, marble, or basalt; 1 for quartzite; O 8 for sandstone; and 0 6
for limestone. (The units in this equation are conductivity in Kcals-m~
degree'l— hour,_land o is in tons-m > ) Although Troitskii indicates that
the variation of conductivity for various materials under high vacuum has
not been studied experimentally to a sufficient extent, there are some

data available upon which tentative conclusions of the dependence of thermal
conductivity on density may be based For low porosities (U to 20 to 30%),
Troitskii indicates that the Maxwell formula for thermal conductivity can
be used, i.e., kl is approximately equal to ko/oO times p  For large
porosities (greater than 0.4 or 0.5), this formula is incorrect On the
basis of experimental data by Woodside and Messmer (1961), Troitskii de-
rives the following formulas:

L

klzalpk2=a2p,0<p<1_5 av-2

where "y and a, are much less than ko/po. This expression should be valid
in the density interval from O to 1.5 g/cm3 From experimental data on
frothy materials in air and data which indicate that the conductivity de-
creases by a factor of three from air to vacuum, Troitskii concludes

that the conductivity of foamy materials is given by the equation:
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klzleo“l‘p (02 <p <1.,5) 11V-3)

where thermal conductivity is in the units of cal et et degree ™t and
p IS In g/cm 3 For particulate materials, the thermal conductivity has
the form given by the following equation:

k, =5X107 5 (02 <p < 15) (TV-4)
Using these relationships between conductivity and density, one can then
determine the density of lunar materials from measured (or deduced)
values of the thermal parameter v (v = (kpc) -1/2
by the formula

)  The density is given

p, = —2—— (0.2 <p <1.5) (IV-5)

v x¥/0, ¢

Substituting the values for a derived from the measurements of Woodside
and Messmer, Troitskii concludes that o = 160/y for a porous frothy mate-
rial and ¢ = 320/v for a friable or particulate material (in these equa-
tions v has cgs units)

Based upon measurements of the thermal parameter v by Krotikov and
Troitskii (1963b), the density of the lunar material isO4 + 0 1 g/cm 3
for porous material or 0 9 + 0 2 g/cn 3 for particulate material Troit~
skii concludes that the lower density values correspond better to those
obtained from electrical parameters and, therefore, the lunar surface is
more probably a porous foamy material Troitskii admits that this method
for determination of density is dependent on a rather inaccurate knowledge
of the thermal conductivity of material in vacuum and suggests additional
studies of the relationship of conductivity and density under vacuum
conditions The behavior of conductivity as a function of density and
material type has been the subject of a number of investigators. however,
little information is available for studies conducted under high vacuum.
Later in this report we will examine our experimental data to determine
if the relationships between thermal conductivity on density used by
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Troitskii are substantiated by our experimental measurements.

The thermal emission in the infrared region of the spectrum for
various regions of the lunar surface were examined by Markov and Khokh-
lova, who measured the radiation emission from the lunar surface in two
atmospheric "windows™ at 8 to 13 microns and 3 6 microns during the
lunar eclipse of August 7, 1963, and during the month of July, 1963 |
The resolving power of the instrument was about 100 km on the surface
of the moon and was thus sufficiently high for reliable separation
of the maria and continental lunar areas  The authors conclude that
the variation in emittance E3 6 microns is from 0.83 (maria) to 0 62 1
(continent)  Although the moon can be considered to be approximately a
gray body radiator (i e , no variation in emittance with wavelength), in-
dividual sections on the moon show some small variation in infrared emit-
tance It should be noted that these values of emittance are generally
lower than those assumed for a lunar surface material in the infrared
region From measurements of the unilluminated part of the moon, Markov
and Khokhlova conclude that the measured differences in radiative flux
from the continental and maria regions of the moon can be ascribed to
both variations in emittance of the moon and variation in the thermal
parameter (koc)_l/2 Based on an average value of vy of 600 (cgs units),
the observed difference in radiative flux from the maria and continental
areas corresponds to a 20%variation in y  Thus, vy might vary from 480
to 720, with a corresponding 40%variation in thermal conductivity and
density

The principal efforts of American and western investigators in
the interpretation of lunar observational data involve the examination of
lunar surface models in which (1) the thermal properties vary with tem-

perature, (2) thermal properties vary with depth, and (3) the surface
material is not homogeneous

The effects of variation of thermal properties with temperature were
first considered by Muncey (1962), who assumed that both thermal conduc-
tivity and specific heat were proportional to the absolute temperature
These assumptions were based upon the data of Scott (1957), which indicated
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d

that the thermal conductivity of evacuated perlite was directly propor-
tional to temperature, and evidence that the specific heat of materials
such as Fe,0,, €aCl,, and 41,510 was directly proportional to temperature
Muncey concludes that the observed behavior of lunar temperatures during
a lunation and an eclipse can be reproduced very closely by models which
consist of a dust layer with a thermal parameter of 1500 at 350°K over-
lying rock or gravel He also concludes that if the lower substratum
were rock with a thermal parameter of 20 at 350°%, up to 80% of the sur-
face might be covered with deep dust

More extensive studies of the effects of variation in thermal proper-
ties with temperature have been carried out by Watson (1964), Chiang
(1965), and Linsky (1966) Watson examines the eclipse data of Pettit
and Nicholson (1930) and Murray and Wildey (1963) using models in which
the thermal conductivity and specific heat are either constant or vary
with temperature The variation of specific heat with temperature was
obtained by least squares quadratic fit to data on quartz and quartz
glass (Birch, 1942) The variation of conductivity with temperature had
the form:

k=B + aTS (IV-6)

with the constants evaluated by experimental measurements with glass
beads Watson concludes that: (@) the eclipse data of Pettit and Nich-
olson may be explained on the basis of models with thermal properties
independent of temperature, depth, and lateral variation; (2) the ec-
lipse data of Murray and Wildey cannot be explained using a constant
property model or a model in which the material is homogeneous but with
thermal properties which vary as indicated above. and (3) no simple model
can explain all the eclipse data

Chiang has considered several homogeneous and non-homogeneous models
and compared the resultant calculations with the data of Pettit The
homogeneous models include:

(@ Constant thermal inertia (kpc)ll2 ,

@ Thermal inertia, (kpc)ll 2, linear dependent on temperature
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(i e ,k and c are linear dependent on temperature)

(3) Thermal inertia proportional to the square of temperature
(i.e., k is proportional to T3 and c is proportional to
temperature)

(4) A combination of models 1land 2,

(5) A combination of models 1, 2, and 3

Each of these models fails to meet the emphasis in the umbral phase of
the eclipse of reaching the observed cooling rate  Chiang then considers
non-homogeneous models, similar to Fremlin (1959), in which materials of
two types, a porous material and base rock, are distributed over the
lunar surface Chiang assumes that either the thermal inertia of the

porous material is proportional to T1 3

(i.e , that p and c are independ-
ent of temperature and that k is proportional to T3 >or that the thermal
inertia is proportional to T2 (i.e., c is proportional to T and k is
proportional to T3) Excellent agreement between observational data and
calculations is obtained with approximately 3%base rock distributed over
the surface Chiang further concludes that the porosity of the surface
material is between 69 and 93%, the maximum particle size is in the range
from 0 4 to 2 mm, and that the thickness of the porous surface is between
dand 5 cm. The effective conductivity of the surface material (not the
base rock) is in the range from 2 25 x 10"]'3 T3 (cal/sec cm®C) for a
density of 0 89 gm/em® to 10 x 1072 1°

0.20 gm/cm3 Chiang also concludes that the porous material is more likely

(cal/sec cm®C) for a density of

particulate in nature than a solid with interconnecting pores  These con-

clusions are in substantial agreement with recent Surveyor data

Linsky (1966) considers three different models for lunar surface
materials:
(1) Temperature independent thermal properties,
(2)Radiative thermal conductivity (k = kc + 4ecT35) specific
heat a function of temperature (C = CoTb), and
(3)Power law approximation to thermal properties (i e,, k = koTa
and C = T )
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Linsky also has difficulty in interpreting the eclipse data of Murray and
Wildey (1964) and uses the minimum temperature reached during the lunar
night for comparison of the different models Because only the minimum
temperature is used, each model satisfies the minimum temperature but
yields different values of kpc and R (the ratio of radiative to conduc-
tive flux) As may be expected from the work of Chiang, the eclipse data
of Pettit (1940) is not exactly reproduced by any of the models consid-
ered Linsky analyzes the assumptions and conclusions made by Krotikov
and Troitskii (1963b) and concludes that the value of 350 + 20%given for
the thermal parameter is based upon dubious infrared measurements, an
absolute radio brightness temperature for which small errors greatly
affect the conclusions, and an extrapolation procedure that gives ambiguous
results In comparing microwave observational data with the temperatures
calculated using the various lunar models, Linsky concludes that all of
the eight models used are in agreement with the radio data at high angular
resolution but that the models including significant radiative energy
transfer during lunar daytime are the most plausible The thermal para-
meters used and corresponding conductivities are given in Table IV-1

Some of the values of conductivity will be compared to our data and
other data later These values represent the range of conductivity/den-
sity ratios which are in agreement with observational data We note that
if the thermal properties are temperature dependent, the most likely values
of the thermal parameter are in the range of 625~885 rather than in the
range of 280 to 420 given by the Russian investigators

Other calculations of lunar surface temperatures based upon tempera-
ture dependent thermal properties have been made by Halajian and Richman
(1965) and Winter (1965) Halajian places principal emphasis upon cor-
relating mechanical and thermal properties and relating these to lunar
surface materials. Radiative and combined radiative and conductive
heat transfer in particulate and vesicular materials are being considered
Winter emphasizes examination of the cooling behavior of solids contain-
ing periodically spaced deep cavities The results show that there is

considerable difference in cooling characteristics of homogeneous solids
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Table Iv-1

THERMAL PARAMETERS AND CORRESPONDING
CONDUCTIVITIES FOR VARIOUS LUNAR MODELS

*

Model S Y350 R350’ a, b Conductivitysggngigg (k /p or k_/p)

o c o
(mm) (cgs units) (cal Cm2/°C sec gm)

1 1075 433 x 107°

2 1075, 250 for x > 30 cm 4 33 X 10_6/3 46 x 107°

3 0.16 885, R=1,b=0 320 x 107°

4 0.25 810,R=2,b =0 2 55 x 1078

5 032 750, R =3, b = 0 2,22 x 107°

6 027 670, R =1, b = 1 5 54 x 107°

7 850, a=1,b =0 199 x 1078

8 625, a=1,b =1 363 x 1078

* R iis the ratio of radiative to conductive heat flux at 350°K, and

S is the particle spacing in the radiative model
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and materials with parallel wall cavities These differences could
explain some of the anomalies in lunar temperature data

2 Analytical Studies

A review of the mechanisms of heat transfer in porous and particu-
late materials and the analyses which form the basis for our present
knowledge of radiation and conduction in non-metallic materials was
given in our previous report (Wechsler, et a1 , 1963) In the interval
since this report, few basic analytical investigations of the mechan-
isms of heat transfer in particulate or porous materials have been re-
ported in the literature We will briefly review those which are per-
tinent

A critical review of the theoretical equations for predicting the
thermal conductivity of mixtures, with particular reference to powders,
is given by Godbee and Ziegler (1966) These authors derive a new ex-
pression for the effective conductivity of powders in which the effec-
tive conductivity is equal to the sum of the contributions of solid con-
duction only, gas conduction and solid conduction in series and parallel,
and radiation. The solid conduction contribution is assumed to be neg-
ligible for the authors® investigation (the study of magnesia, alumina,
and zirconia powders at elevated temperatures) The radiative contribu-
tion is given as:

kK =4n? ¢ E (1/\1‘:1 -D DSTS (Iv-7)

where n is the index of refraction. ¢ is the Stefan-Boltzman constant.

E is the emittance: Yy is the volume fraction of the dispersed phase:

D is the particle diameter: and T is the absolute temperature This
radiative contribution is similar to that used by many investigators

The equations derived for the gas-solid series and parallel conduction
were derived using kinetic theory and a simplified model of a well mixed
heterogeneous powder in which the isotherms are planes perpendicular to
heat fiow. The results of the experimental studies confirm the equations
derived over a wide range of temperatures However, measurements were

not made in vacuum or at low temperatures
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Butt (1965) in a study of thermal conductivity of porous catalysts was
concerned with the apparent thermal conductivity of the solid phase mate-
rial. He proposes the use of the following equation originally developed
by Wilhelm, et al (1948) :

K
1
Logy, (i, 10°) = 0.859 + 3 12 ;? (IV-8)

where k' is the contribution to conductivity through the solid phase, ks
is the thermal conductivity of the bulk solid, and p' is the porosity of
the microporous particles considered (Note that equation (IV-8) is dimen-
sional, i.e., k' is in units of cal/sec em®C.) The equation is based upon
measurements in packed beds with porosities of 0.18to 0 52  The equa-
tion is not suitable for direct correlation with the silver catalyst for
which the variation of conductivity with gas pressure was available, With
some modifications Butt could correlate conductivity versus pressure data
for alumina and silver catalyst pellets

In an examination of heat transfer in non-evacuated cryogenic insula-
tions, Johnson and Hollweger (1965) indicate that a large portion of the
heat transferred in gas filled powders occurs in the adsorbed gas film on
the particle surfaces as well as across particle contacts These authors
also indicate that in many powdered materials extensive relaxation occurs
during sample fabrication so that equations in which powder packing loads
are used may not be valid

In his study of thermal conductivity of silicate powders in vacuum,
Watson (1964) considers the model in which the effective thermal conduc-
tivity is represented as:

_ am3
kg = AT 1B (1v-9)
where A and B are numerical constants dependent upon the particular powder

and may be evaluated by experiment The first term represents a "radiative
conduction™ and is derived in the usual manner, assuming the sample
opacity is independent of wavelength and the optical depth of a sample

is large. The effects of scattering are neglected but can be considered
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as equivalent to an absorption process if the scattering is isotropic
The use of equation IV-9 indicates that the solid conduction term is
temperature independent Watson indicates that this may not necessarily
be the case, but that the other uncertainties in contact conduction make
rigorous analyses of the effects of temperature on solid conductivity
unwarranted

Watson also analyzes the contact conduction in a bed of uniform size
spheres  For glass spheres with a Poisson's and Young's modulus of 0.18
and 7 x 1011 dynes/cmz, respectively, the ratio of the solid conduction

in a powder bed to the bulk phase solid conduction is given by the formula:

K, od . lo7/3 L p-2/3

k T L/2b

bulk 7 i—1/3 (1v-10)
i=lI

where L is the depth of the bed, and b is the particle radius The suma-
tion takes into account the variation in loading between the spheres at
different heights in the bed Table IV-2 presents Watson's numerical
results for the solid conduction in the bed

The results given above (for perfect welded contact between the grains
across the contact area) indicate that the solid conduction contribution
is insensitive to grain size The experimental results, discussed later,
indicate that the contact conduction for glass spheres decreases as the
particle size increases, and Watson concludes that the thermal contact may
be unrelated to the elastic contact The microscopic roughness of the con-
tact surfaces and presence of thin surface films may cause departures
from the "‘welded contact™ model

3 Laboratory Measurements

There have been few measurements of evacuated powders or porous
materials reported in the literature which are pertinent to the present
program. In addition to those discussed in our last report (Wechsler and
Glaser, 1964), measurements using ceramic powders and porous catalysts have
been carried out but not at significantly low pressures

55

Qrethur D Hittle Tuc,



TABLE 1V-2

SOLID CONTRIBUTION TO POWDER CONDUCTIVITY (watt/cm°C)

Particle Size L =02 cm L=0.5an L= 1.0 an
(microns)

1000 8.9x10% 107 x10® 128 x 1078

200 75x 1078 97 x100% 119 x 107®

100 72x107° 9.4 x10°® 1.7 x 107®

50 70x 1078 93 x 107 116 x 107°

Source: Watson (1964)
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For example, the work of Mischke and Smith (1962) on alumina catalyst
pellets was carried out at 10 to 25 microns; values of conductivity were
almost an order of magnitude greater than those reported for evacuated
powders in our studies Similarly the conductivity of the catalyst pellets
studied by Masamune and Smith (1963a) were on the order of J.O_'3 watt/cm®C
at 10—2 torr The pellets were quite large and the conductivity value is

not representative of a powder material but a pressed or sintered agglomera-
tion of particles

The conductivity values given by Masamune and Smith (1963b) for glass
beads were discussed in our previous report The conductivity
values obtained at low pressures are on the order of 5 X 1074 watt/em®C,

an order of magnitude higher than those obtained both in our work and in
that of Watson

The most useful and extensive data are those obtained by Watson on
silica glass microbeads, quartz, olivine and hornblende powders The
particle size, denmsity range, and contributions to thermal conductivity

(given by A and B in equation IV-9) are shown in Table IV-3

Several interesting observations may be made from these data. For
glass beads, the radiative term is inversely proportional to the
particle size down to about 50u. This suggests two possible causes:
(1) an increased opacity with decreasing grain size due to radiative
transport between grains and (2) for small grain sizes, thecombined
effects of radiation between and through the grains  There is no apparent
effect of composition on solid conduction or radiative contributions In
Watson's experimental method, the density value was obtained from weight
and sample height measurements, the latter being difficult to make,
Watson did not attempt to correlate the relative contributions with den-
sity because of the uncertainties in measurements For most of the mate-
rials studied, there appears to be an increasing radiative contribution
with increasing density and a decreasing conduction contribution with in-
creasing density This variation is not easily explained. From Table 1v-3
it can be seen that the relative magnitude of the radiative to conductive
contributions at 300°K varies from about 3 for small glass beads to over
30 for 300 micron beads For other materials the radiative to conductive
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contributions range from about 0 3 to 3 5 These values are in the range
used by Linsky in his analyses of lunar temperatures, Our data will be
compared to Watson’s data in subsequent sections of this report

B. THEORETICAL CONSIDERATIONS

For particulate and porous materials in a simulated lunar environ-
ment, solid conduction and thermal radiation are the only important con-
tributions to thermal conductivity. [In our studies, the effects of gas

conduction are eliminated by operation in high vacuum

1 Solid Conduction Contribution to Effective Thermal Conductivity

Solid conduction in powders can be examined in terms of two conduction
paths: (1) conduction within the solid comprising the particles and
(2) conduction across points of contact between the powder grains  The-
ories of thermal conduction in solids have been described by several
investigators (e g , Drabble and Goldsmid, 1961) A substantial amount
of data is available in the literature on the thermal conductivity of
non-metallic materials, particularly glasses, single crystals, and poly-
crystalline solids. Conduction in solids is generally attributed to
several mechanisms: (1} phonon transport or lattice vibrations and
(2) free electron conduction. Lattice vibrations are the important pro-
cesses in dielectrics where the thermal conductivity is limited by phonon
scattering (normal and umklapp processes) and boundary and impurity
scattering In amorphous solids “boundary scattering” predominates; in
a crystalline material phonon scattering by umklapp processes or impuri-
ties predominates Free electron conduction is the more important process
in metals

The effect of temperature on the thermal conductivity of solids de-
pends upon the type of material as well as the temperature range, Accord-
ing to classical theory, the lattice conductivity of a pure crystal will
be proportional to 1/T at high temperatures (above the Debye temperature)
As the temperature is lowered below the Debye temperature the lattice
conductivity increases rapidly, reaches a maximum, and decreases with a
dependence on T3 near absolute zero The effects of impurities will

modify these general rules
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In many glasses, it is not possible to separate the radiative and
conductive components of heat transfer when making thermal conductivity
measurements, and effective conductivity data are used. Figure 1y-1
shows the effects of temperature on the thermal conductivity of several
glasses It can be seen that the crystalline materials show a decrease
in thermal conductivity with temperature, whereas the conductivity of
amorphous materials tends to increase in the temperature region between
100 and 400°K. The thermal conductivity of other glasses follows the
trends shown in the figure. Given the type and composition of the glass
and the state of crystallinity, it should be possible to evaluate or mea-
sure the conduction heat transfer within the solid

The phenomenon of conduction heat transfer across areas of contact be-
tween particles is more difficult to analyze The effective thermal con-
ductance will depend upon the properties of the solid and the size and
nature of the contact areas The size of the contact area is dependent
upon the elastic properties of the material, the size, shape, and geometrical
arrangement of the particles, and the forces between the particles, In
addition, physically or chemically adsorbed gases on particle surfaces may
change the contact resistance. In the lunar environment, for example, the
lower gravitational force, absence of physically adsorbed gases, possible
sintering and aggregation of dendritic structures caused by \solar
radiation or meteorite infall may have a strong influence on conduction
across contact areas

Many empirical and semi-theoretical expressions have been described
for evaluating the contribution of solid conduction to thermal conductivity.
The independent parameters often used in characterizing the conduction are:
true thermal conductivity of the solid, porosity of the media, particle
radius, elastic modulus, particle shape factors, applied loading factors
and others A review of many relationships used in relating the effective
thermal conductivity of a heterogeneous material to these parameters was
given in our previous studies (Wechsler, et al., 1963) None of these
empirical relationships has been shown to be valid for a wide range of
porosities, particle sizes,and material types, especially for fine particles
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For foamed materials, where the solid conduction is large, agreement
between experimental data and several empirical expressions is adequate
(Loeb, 1954; Kunii and Smith, 1960)

The work of Watson (1964) in deriving an expression for solid conduc-
tion in a particle bed has been discussed (Section IV, A) Although the
values obtained from theoretical calculations are of the same order of
magnitude as those obtained by interpretation of experiments, the depend-
ence of solid conduction on particle size was not as great as that ob-
served. Because the same types of glass beads were used in Watson's
investigations as in our work, his values of the solid conduction may be
used to estimate the contribution of solid conduction to effective thermal
conductivity  These values for glass spheres, based upon a bulk solid
conductivity of 10_2 watt/em®C, were given in Section IV, A  For other
temperatures at which the bulk conductivity is not 10_2, a simple ratio
method can be used to estimate the solid conduction contribution.

For quartz at room temperature, Young's modulus varies from 7 86 x
10 dynes/em® to 10.3 x 10MT

tion, Also, there is an increase in modulus with decreasing temperature

dynes/cmz, depending upon crystal orienta-

Because the dependence of contact conduction on the modulus is only the
1/3 power, the contact conduction for quartz should be quite similar to
that of glass with a modulus of 7 x 1011 dynes/cm2 If all the contacts
were made in the high strength direction, the conduction contribution for
quartz should be about 12%Iless than that of glass. However, the higher
thermal conductivity of quartz significantly increases the contact con-

duction compared to glass

2. Radiation Contribution to Thermal Conductivity

Heat transfer in powders by thermal radiation can take place in sev-
eral modes Radiation leaving a boundary surface may pass directly
through voids to other boundary surfaces if the material is sufficiently
porous In fine powders radiation is absorbed and scattered by individual
particles and may encounter many reflections and direction changes on

passing through the powder material
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The calculation of radiative transfer from theoretical principles
can be carried out in two stages: (1) calculation of the absorption and
scattering characteristics of individual particles and (2) an analysis
of the transfer process with allowance for multiple scatter and reradiation

a Single Particle Absorption and Scatter

The absorption and scatter of radiation by a single particle can be
equated to the projected area of the particle and to an efficiency factor
Xa or XS which gives that fraction of the area which is effective in ab-
sorbing or scattering radiation. The efficiency factors are functions of
the index of refraction n, the index of absorption k, and a ratio of the

particle characteristic dimension and the wavelength A, as follows.

Xa = fl (n, %, 2%/}) (IV-11)

X =£, (n,« 2mr/A) (1v-12)

The ratio of the perimeter (for a spherical particle) to wavelength,
2nr/x, 1S usually defined as the size parameter and will be denoted by x.

The efficiency factors may in principle be obtained by the solution
of Maxwell's equations A general solution, however, is available only
for a sphere and, even then, the solution is in the form of a series of Bessel
functions with complex arguments which are tedious to evaluate, Fortu-
nately, when the particles are much larger or smaller than the wavelength
of the radiation, solutions may be obtained without recourse to Maxwell's
equations  The fractions of the radiation incident on a large opaque
particle which are absorbed and scattered are given by the absorptivity,
a, and reflectivity, p, or, in terms of the nomenclature introduced above,
when r >> A,

X, =o = £, (n, «) (1v-13)
XS =0, = f2 (n, ) (1v-14)
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On the other hand, particles smaller than the wavelength or radiation ab-

sorb and scatter according to Rayleigh's equations, When r <0 14A/n,

L (Iv-15)
2 2

+2) +4n ¢

X =
a

[ &

(n2—:<

2
X =§x_l: [(n2—1<2- 1) (ILZ—K2+2L+4I12 KZ] +36n20<2
E 3 2 5 2 2 2 2

[(n” - " +2) + 4n" 7]

(1vV-16)

In the range of particle sizes, where the characteristic dimension is
comparable to the wavelength of radiation, the solution to Maxwell's
equations must be used Numerical values of Xa and X have been computed
for spheres for a few values of n and k and share-distributed programs

are available for generating additional values for any n, « combination.

The distribution of the scattered radiation is also of interest
It is given by the phase function p(8), which is defined as the ratio
of the intensity, scattered in a direction ® to the direction of propaga-
tion of the incident beam, and the average intensity of all the scattered
radiation. For large particles whose surface reflects specularly:

T =

p(®) = e)/ph (IV-17)

o

) is the reflectivity for a beam incident at an angle (" _2 e)

relative to the surface normal, and Py is the hemispherical reflectivity

where o (& ;

If the surface of the large sphere is a Lambert diffuse reflector,

p(9) = —% (sin 6 - 8 cos 0) (Iv-18)
For small particles,
p(n) = % a+ cos? ) (1v-19)
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For particles in the intermediate size range the directional distribution
of the scattered intensity is a complex function of angle, in general with
scatter predominantly in the direction of propagation (i.e , forward
scatter).

b. Absorption and Scatter by Thin Powder Layers

Once the absorption and scatter cross sections and the phase function
have been determined, the calculation of the absorptance, reflectance,
and transmittance of a thin powder layer is straightforward. A thin layer
here refers to a layer thin enough so that the radiation is scattered
before it escapes from the layer The fractional absorption of the radi-
ation incident on a layer of thickness dL is therefore given by:

2

absorbed = f N(x) 7 r Xa dr dL = Ka dL (1V-20)
o

where N(r) is the number of particles per unit volume whose radius is be-
tween r + dr Similarly, the fraction of the incident radiation scattered
is:

2
ered (r) 7 r Xs dr dL = KS dL (1v-21)

The terms in the brackets, representing the fractional attenuation per
unit length due to absorption and scatter, are the conventional absorption
and scatter coefficients K and KS.

The reflectance equals the fraction of the radiation scattered back-
wards, and it may be calculated from the phase function for any directional
distribution of incident radiation. The transmittance must, of course,
equal the complement of the absorptance and reflectance

The above presentation has assumed that particles scatter independently
The possibility of interaction has been the subject of a number of
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investigations  Van der Hulst (1957) gives as a criterion for independent
scatter a center-to-center distance of separation between particles of

at least 1.5 diameters (this corresponds to particle concentrations less
than 20%of the total volume) Churchill, et al. (1960) have arrived at
similar conclusions from a study of scatter by latex suspensions. We
conclude that the assumption of independent scatter is good for powder

systems except for materials which have been compacted under pressure

c Radiation through Deep Powder Layers

The mathematical formulation of the radiative transfer through deep
powder layers with allowance for multiple scatter and reradiation by the
particles gives rise to an integral equation identical in form to the
equations studied extensively by the physicist and the astrophysicist
The most general solution, due to Chandrasekhar (1950), gives the trans-
mission and reflection of radiation through absorbing scattering media of
thickness L in terms of the optical thickness of the medium (Ka + KS)L,
the ratio of the scatter to the total attenuation coefficient KS/(Ka +Ks),
and the phase function p(8) Numerical evaluation of Chandrasekhar's
solutions have been given by Churchill, et al. (1961) for a number of dif-
ferent situations

A simplified approach to the calculation of radiative transfer through
powdered insulation is possible when the powder layers are many mean free
paths deep In this case the radiative transfer can be treated as a dif-

fusion process with the flux density at any wavelength given by:

2
4n dE
HDTIE, TR a (IV-22)

where E)\ is the monochromatic black emissive power The flux density,
integrated over the entire spectrum, is then:

3 ©

2
& __n _ dE -
q‘[qx 4% =3 J &, +K) a4 (1v-23)
o (¢}

A weighted mean absorption coefficient may be defined such that
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4n2 dE

1 3® +K) dr
a 8" ave

(IV-24)

where E is the total black emissive power given by the Stefan-Boltzman
law. This average, known as the Rosseland mean, may be obtained from the
following integral

1

1 L

e
= dg (IV-25)
(Ka + Ks)ave I (Ka + KS)A

where values of g have been tabulated as functions of AT

The above derivations are valid provided (Ka + KS)L is greater than
three throughout the spectrum and the scatter is isotropic  Anisotropy
of scatter can be included by defining an effective attenuation K related

to the true value by the following equation:
K =K (1 - cos 8) (IV-26)

where cos 6 is a measure of the unbalance of the radiation scattered for-

ward and backward It is given by
cos € = ¢ p(8) cos € d@/4n (v-27)

and it is zero for isotropic scatter, positive or negative for radiation
scattered predominantly forwards or backwards, respectively

d. Application of Powder Systems

For particles which are large or small compared to the wavelength of
radiation, absorption and scattering, parameters can be evaluated if the
bulk optical properties and refractive indices are known For particles
of intermediate size, more difficulty is encountered in evaluating the
parameters, but adequate estimates can be made if the optical properties
are known.
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For most powder layers the diffusion approach to radiative heat trans-
fer will be acceptable in view of the normally high values of absorption
and scattering coefficients The effective thermal conductivity due to
radiation can be estimated from equation 1V-24 for a gray body, as follows:

16 0 n° T3
— T (1v-28)
kr = qr 2E s 3 ®_ T X))
4 a S ave

The contribution of radiation to thermal conductivity would be proportional
to the cube of the absolute temperature, provided that Ka and KS were not
functions of temperature For gray bodies, where the optical properties
are independent of wavelength, the absorption and scattering parameters
should be only slightly dependent upon temperature The equation above

is the one normally used for radiative transport in porous and particu-
late materials, where the values of (Ka + KS)ave are related to the
emittance of the material and a function of the particle size or spacing.
For real materials, Which in general are not gray, it is necessary to
evaluate radiation conductivity from the following equation:

2
4| = 3E
k=3 J K +x o1 (1v-29)

It is thus necessary to have values for n, Ka, and KS

e. Measurements of Absorption and Scatter Coefficients

We intended to make experimental measurements of the transmission of
infrared radiation through powder samples in order to evaluate these
parameters  Such measurements proved impracticable for a number of rea-
sons The first and greatest difficulty derives from the great opacity
of silicate materials in the spectral range of importance (~5-31u for
400°K and ~19-125uy for 100°K) In reasonable thicknesses most silicates
are quite opaque throughout much of this region, although they become
more transmissive toward the ends of the region The opacity due to
absorption is only a lower limit, because for most particles sizes scatter-
ingwill also increase the opacity. These conditions result in the require-

ments for exceedingly thin samples for experimental measurements. Such
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powder samples would result in experimental problems involving uncertain
areal coverage as well as introducing possible interference effects into
the measurements

f Evaluation of Radiative Conductivity from Optical Constants

V¢ decided, therefore, on an approach involving computer calculations,
utilizing new theoretical results concerning the radiative properties of
fine powders (Emslie, 1966b; Aronson, et al , 1966). By using a fine
powder for the test model, we were able to neglect scattering, which
falls off rapidly with particle size when the particle size is less than
the wavelength  Under these conditions the equation used in the calcula-
tions (Clark, 1957) was:

T 2
_E(E..__(lz_lla_ V=30
k=3, n ( )
0
where a=4§K

It was shown (Aronson, Emslie, Allen and McLinden, 1966) that the
optical constants, n and k, of a composite medium where scattering is
negligible can be represented by:

2
n':‘u<2-l=zf (n_ - ic) 1
@-10? %2 p P i)’ s2 (Iv-31)

where p refers to the species present (and formally includes vacuum as
one of the species) and f is the volume fractions of each of the various
species

For several reasons, quartz was chosen as a material for use with
equations IV-30 and IV-31 in order to test our calculations. First, the
data in the relevant wavelength region (Spitzer and Kleinman, 1961) is of

high quality and quartz is a well characterized, easily obtainable
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material. Second, because anisotropic crystalline materials have differ-
ent optical properties in different directions, we were able to test the
mixing equation 1V-31by using data from crystals aligned both parallel

and perpendicular to the incident radiation Since quartz has a chonchoidal
fracture and, therefore, no significant preferred orientation of the
crystallites, we were able to assume that twice as many crystallites would
be oriented with their optic axis perpendicular (X-cut quartz) to the radi-

ation beam than would be oriented parallel (Z-cut quartz) to it

Using the dispersion parameters obtained by Spitzer and Kleinman
(19611, our computer program recomputed the optical constants of quartz
in order to avoid errors in reading data points from their graphs The
optical constants were then used with equation IV-31 to obtain the
“averaged” optical constants. These in turn were used in equation IV-30
to calculate the radiative conductivity The results for a temperature
of 400°K are shown in Table IV-4.

The integration was carried out from 5-37u, excluding less than 7%
of the black-body energy for a system at 400°K, It must be remembered
that the value of kr calculated here is an upper limit because scattering
will decrease it further The validity of our approach is limited to
small size particles and voids (less than a few microns) so that scatter-
ingwill be small and our mixing rule for composites can be used

These results appear to be in reasonable agreement with the results
of experimental measurements of the conductivity which are discussed
later. This technique can be applied to other systems provided the optical
constants are known. In many cases, it will be more direct to measure
optical constants than to attempt to obtain the scatter and absorption
coefficients. Furthermore, once the constants are measured, they can be
used to predict the radiative conductivity over any temperature range
for a variety of packing densities and factors.

3, The Thermal Parameter-=(kpc)-1/2

In many analyses of lunar temperatures the parameter (kpc)—llz has
been used. As explained in our last report (Wechsler, 1964) this forms
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TABLE 1V-4

CALCULATED RADIATIVE CONDUCTIVITY OF QUARTZ AT 400°K

Material Fraction ko watts/em®K
Z-cut Quartz 1 3.48 x 107
X-cut Quartz 1 2.83x 107°
**Random"* Quartz 0.33 zZ-cut 2.8 x 107°
0 67 X-cut

Diluted Random Quartz 0 5 random 482x 1077
0.5 vacuum

Diluted Random Quartz 0.1 random 1.91 x 10—4
0 9 vacuum
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part of the parameter which controls the surface temperature during luna-
tions and eclipses When the conductivity or specific heat is a function
of temperature, the thermal parameter has less significance because it is
not constant but varies during the course of the lunation To provide a
common point of comparison for use with the data of other investigators
we will calculate values of (kpc)-llz taken at temperatures from 200 to
400°K. This temperature range was chosen because it is near the middle
of the lunar temperature range and is commonly used for reporting thermal
conductivity data.

¢ THERMAL CONDUCTIVITY MEASUREMENTS

1 Approach

To provide a better understanding of the mechanisms and rates of heat
transfer in powdered and vesicular materials, we have carried out a series
of measurements of thermal conductivity and analyzed the results in order
to ascertain the relative magnitudes of the conduction and radiation

mechanisms. The following steps were carried out:

a, Selection and preparation of powdered and porous samples for
the test program;

b Measurement of the effective thermal conductivity of the
powdered and porous materials in the temperature range
from 100°K to 400°K;

c. Determination from the literature or experimental measure-
ments of the dependence of the bulk phase thermal conduc-
tivity on temperature;

d. Analysis and correlation of the data on the basis of theore-
tical models to obtain the radiation and solid conduction

contributions to thermal conductivity;

e. Evaluation of the radiation contribution to thermal conduc-
tivity by an independent analytical or experimental method
and comparison of the results with those obtained from ana-

lysis of the experimental thermal conductivity data; and
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f Examination and comparison of the experimental data and the
ratio of conduction to radiative heat transfer with the re-

sults of other experimental measurements

The details of the measurements and the program results are discussed
below.

2  Sample Materials

In our initial considerations, we proposed to examine two glasses and
two crystalline materials; a natural and an artificial material of each
type was to be used Original choices were enstatite, olivine, and
silica particles, It became evident that the preparation of these mate-
rials in the required size ranges and volumes for the experimental pro-
gram would not be possible within our present scope of work Also, it
was desirable to use materials which had been examined by other investi-
gators and materials for which radiation calculations could be made For
these reasons we chose glass beads, pumice, basalt, and quartz powders;
pumice and basalt in the natural vesicular form; solid glass and quartz
for the program. The principal characteristics of the materials used are
summarized in Table IV-5 Experimental measurements were carried out on
all samples except vesicular basalt and solid quartz, sufficient literature
data were already available on these two materials.

Glass beads were purchased from Microbeads, Inc , Jackson, Mississippi
The beads are a soda lime glass and are prepared in a variety of size
ranges. Two sizes were ordered. 44-62u and 22-28u Also, a sample
of the bulk glass used for making the microbeads was obtained The beads
with a size of 22-28u were a special order After eight months' delay,
the material could not be provided by Microbeads, Inc , and the order was
cancelled.

Approximately 98-100% of the larger size beads pass a No 230 sieve
(62u); 92-100%are retained on a No 325 sieve (44u). The manufacturer
indicates that the thermal conductivity of the bulk material is 2 5 x
1073 cal/em sec®C (105 x 1072 watt/em°C), that its density is 2 5 gn/cm,
and that the modulus of elasticity is 11x 106 lb/in2 (7.6 x 1011 dynes/cmz)
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Prior to use, the sample was baked out for 14 hours at 600°K under vacuum.

Pumice powder samples were prepared from the pumice sample used in
our previous work (Wechsler, et al , 1963) The pumice has an average
composition of 5102—70.42, A1203-15.8%, Fe(-1 4%, T102—0.3%, and H20—3 2%
The powder was prepared by grinding the pumice in air and separating the
material by standard sieving methods Two size samples were used  44-74u
and <37u. Examination of the sample with smaller particle size showed
that 95%of the particles were within the range of 10-37u. The samples
were baked under atmospheric pressure and under vacuum prior to use,

Basalt powder samples were prepared from the vesicular basalt sample
(Arizona basalt) used in our previous work (Wechsler, et al,, 1963) The
nominal composition is: 3102—49 10/0%1203—15(7%, Fe0-6.7%, Fe, 0,-5 4%,

273
Mg0-6.2%, CuC-9,0%, N320—3 1%1;20—1 5%,T102-O.4%, P205—0 2%, and H,0-
1 3%. The material was ground in a ball mill in air and sieved to the

desired size fraction. Samples with particle sizes of 44-74 and 10-3%

were obtained. Samples were dried before use in the conductivity measurements

Quartz powder was prepared by crushing and grinding a crystalline quartz
sample  The particle size range, obtained from microscopic counts of sev-
eral samples, is estimated as follows:

Size Volume %
<lu 1

1~ 5u 95

5~10u 3

10~30u <0.5
'3Q Negligible

The pumice sample was obtained from the same material used in our pre-
vious work Nb special preparation techniques were used The line heat
source (probe) apparatus was drawn through the center of a large sample
(See discussion of apparatus ) The sample was not baked out prior to use
but was evacuated for several days prior to measurements

A solid microbead glass sample was prepared by melting a portion of

the glass supplied by the manufacturer in a clay crucible and pouring the
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molten glass into a ceramic sample holder containing the wires for the
thermal conductivity apparatus The techniques used for making the appa-

ratus are discussed below.

3  Experimental Methods and Apparatus

a Powder Samples

(1) Method. The line heat source method was used for all
measurements of thermal conductivity of powders  The method was chosen
because of its simplicity, the small volume of sample required, and the
suitability for use in a high vacuum system.

The constant heat production by a line source of heat enclosed in an
infinite volume of material produces a cylindrical temperature field.

The temperature rise at any point above the initial ambient (assumed to
be uniform) temperature is:

2
T=- B (1V-32)

where g is the power per unit length, k and o are the effective conductivity
and diffusivity of the material, t is the time from the initiation of heat-
ing,and Ei represents the exponential integral and is given by:
e = [ £ 0 v-3)
X
X
The boundary conditions are: t =0, r# 0, T=0; t> 0, r =2, T =0;

and t > 0, r + 0, g = const :—2nrkgﬂ;'.

From measurements of the rate of rise of temperature, the conductivity
of the sample may be ascertained. In most applications of the line heat
source apparatus, it is customary to carry out the experiment for suffi-
ciently long durations so that the exponential integral may be approximated
as: - 0.577 = In Z&Lt-' Then, the temperature rise at any distance from
the source becomes proportional to time,and the conductivity may be computed
from a plot of temperature rise versus logarithm of time In this case,
it is not necessary to know the thermal diffusivity or the distance from
the source.
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Because of the low thermal diffusivity of the powders, it is not de-
sirable to wait the long times required for the logarithmic formula to be
valid The conductivity can still be evaluated in the following manner,
The temperature rise at any point in the sample is proportional to the
heater power, inversely proportional to the thermal conductivity, and

proportional to a generalized function of the form Ei (~ -g-"),where Z repre-
sents lmt/rz Therefore, a plot of logarithm temperature rise versus loga-
rithm time should have the same shape as a generalized plot of logarithm
Ei (- —Z‘]) versus logarithm Z

To find the conductivity, the experimental data plot (1n T versus 1ln
t) is fitted to the generalized plot of 1n Ei (- %) versus In Z, and the
temperature, T* corresponding to an ordinate (Ei (- %)) of unity is ob-
tained (In matching the curves it is necessary to maintain the axes
parallel ) The conductivity is then given as:

R
k=73 (IV-34)

Because of the characteristic shape of the curves, they are easy to match
and matching errors are usually small.

Several sources of error must be considered in the use of the line
heat source, namely: (1) in an actual system, the heat source is neither
infinitely long nor thin; (2) the sample has been assumed to be infinite
in extent and homogeneous; (3) heater power may vary during a measurement;
and (4) temperature measurements may be in error The last two errors
may be controlled by careful experimental technique Heater power was
constant in our experiments to within 4+ 12%&nd was measured to an accuracy
of + 2%.

The finite length and diameter of the heat source (and temperature
sensor) affect the measurement in two ways. (1) heat is lost by axial
conduction along the wire and temperature sensor, and (2) some of the
material is displaced by the heater and sensor wires Methods for analyz-
ing these effects are described by Salisbury and Glaser (1964). The
error introduced by the finite wire diameter is less than 0 5%for the

77

Axthur 0. Little Inc.



wire spacing O 11 inch and diameter O 001 inch used The relative error
caused by axial heat loss in the heater and thermocouples is given by the
equation:
kw A a. 2 Aa

error = ﬁ; G (Iv-35)
where k, is the conductivity of the heater (or thermocouple) wire; LN is
the sample conductivity;and a and L are the radius and length of the wires
We have chosen constantan for the heater wire and an iron-constantan

thermocouple because of the low conductivities of these materials For
the system we used:

k = 0.225watt/em’C
constantan

L, = 0.55 watt/cm°C

a = 0.0005" = 0,0013cm
L = 15 2 am

sample = 10_5 watt/en®C

For the worst case of the iron wires in a typical powder sample, the rela-
tive error is less than 2%; for the actual case where there is a combina-
tion of constantan and iron wires, the relative error should be less than
1% Thus,a line heat source of 15 em length should be adequate for our
measurements We have also examined the effects of sample size and con-
cluded that for most powders a sample 2 cm thick and 2 cm deep should be
satisfactory for experiment durations up to four hours It is difficult
to assess the effects of sample homogeneity and initial temperature dis-
tribution However, care was taken in placing the sample on the appara-
tus and assuring that a homogeneous sample of relatively uniform density
was used. Although the initial temperature distribution in the sample is
not known, the change in temperature with time at the sensor was monitored
prior to tests. Tests were not initiated unless the temperature drift
was less than 0.2°C per hour
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In summary, the errors in the applicability of the theory of the line
heat source method should be less than + 2%; errors in evaluating the
conductivity from matching the experimental curves with the standard curve
are about * 4%; errors in measurement of the heater power and length are
less than * 2% Thus the overall error in the measurements should be less
than + 8%

(2) Apparatus and Procedure. A small chamber suitable for
use with an ion pumped vacuum system was designed and constructed,

Figure IV-2 shows a schematic diagram of the chamber It is constructed
of stainless steel and contains several Conflat flanges which are con-
nected to (1) pumping ports, (2) an ionization guage, (3) the sample
holder, and (4) heater and thermocouple wire feedthroughs The entire
system may be baked out by surrounding the chamber with an oven Two
Varian 8-liter Vaclon pumps are normally used, one during system bakeout
and the second during the measurements A copper sample holder was fabri-
cated from sheet copper and copper coils were brazed to the holder The
sample holder has dimensions of 16 5 an long x 2 4 an square The copper
coils are attached to stainless steel "pant legs', so that a fluid can be
introduced to the interior of the chamber and circulated in the coil around
the sample holder. The sample holder and thermocouple-heater wire feed-
through are attached to the vacuum chamber by means of a Conflat flange,
so that the holder can be removed from the chamber without disconnecting
the cooling fluid or electrical connections Figure IV-3 is a photograph
of the sample holder showing the high vacuum flange, electrical lead wires
and sample (Basalt powder), Figure IV-4 shows the line heat source appa-
ratus The base is a copper plate 0 16 an thick which fits snugly into
the sample holder, Pyrex glass supports were originally used to support
the heater and thermocouple wires, but these were changes to stainless
steel hypodermic tubing (0.020 in. diameter) to reduce breakage during sample
preparation A small piece of ceramic tubing was cemented to the stainless
steel post to insulate the electrical leads. The heater wire was 0 001 in,
(0 0025 cm) constantan, 8 in (20.4 cm) long. The length of unsupported
wire (between the stainless steel or glass posts) was 6 in (152 cm)  An

iron-constantan thermocouple (silver brazed), 0.001 in. (0.0025 cm) diameter
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was placed total thermocouple wire length was also 8 in. (20 4 am)
Heavier copper, iron and constantan leads were used for connecting the
heater and thermocouple to the feedthrough  The feedthroughs, which were
silver brazed at one end, were hollow tubes through which the continuous
heater or thermocouples were led The resistance of the heater leads was
less than 196f the resistance of the 8 in, length of the one mil con-
stantan heater wire

The remainder of the apparatus consisted of a 12-volt battery as a
power supply, a K-3 potentiometer for temperature measurements, a
Honeywell Electronik recorder with a full scale deflection of 100 uvolts,
and Weston ammeters and voltmeters A recirculating fluid bath with a
dry ice-Freon mixture was used to obtain temperatures near -40°C  For
other temperatures, cold or hot water, hot oil, or liquid or gaseous
nitrogen was used as the circulating fluid Pressure measurements were
made with a Varian gauge control and a "nude™ gauge

The following test procedure was used for all powder tests:

(1) The sample was baked in an oven in air for at least 24 hours
and cooled in a dessicator.

(2) The sample was carefully placed on the line heat source apparatus
and slightly vibrated to obtain a uniform distribution, the sample
was weighed and its dimensions obtained,

(3) The sample holder was carefully placed into the sample chamber
and sealed, and the system was baked again under high vacuum

after the chamber was slowly evacuated with absorption pumps

(4

—

After bakeout, the sample and chamber were allowed to cool The
high vacuum valve between one of the pumps and the sample was
closed, and the other pump (i e , the one which had been baked
out) was started

(5) When the sample was at the desired temperature, controlled by
the temperature of the circulating fluid, and the temperature
change was less than 0 2°C per hour, the initial temperature was
measured and a test was started.
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(6) Power was applied to the heater, and the response of the thermo-
couple was recorded, Measurements of the system pressure and
heater power were recorded several times during the two hour test
period

(7) At the conclusion of the test, the system was allowed to return
to thermal equilibrium and another test was carried out at a dif-
ferent heater power or initial temperature,

During the tests with quartz powder and basalt 10-37y powder, only
one VacIon pump was in operation; nevertheless, low sample pressures were
obtained.

b Solid Glass Samples

The guarded cold plate, thermal conductivity probe, and line heat source
methods were considered for use with solid samples The cold plate has sev-
eral disadvantages: (1) a large sample size is required; (2) the sample
should be flat and have parallel sides; and (3) large gradients are normally
used which, in the case of glasses, may introduce boundary effects The
use of the probe also requires a fairly large sample in which a hole has
been carefully drilled; also, the contact resistance between the probe and
the sample may introduce errors.

We chose the line heat source method for the program because it re-
quires the smallest sample, avoids contact resistance problems, and
permits measurements to be made as a function of temperature  However,
it is necessary to embed heater wires and temperature sensors within the
glass. Several methods for forming a line heat source in the glass were
considered feasible: (1) use of resistance wires embedded in a sample by
casting the molten sample into a frame containing and supporting the
wires, (2) use of a heater and thermocouple wires casted as above,

(3) vapor deposition of thin resistance elements onto carefully prepared
glass samples, and (4)preparing two plates of the solid and "“sandwiching"
the heater and temperature sensors between them. The fourth technique
was eliminated after an experimental trial because of the difficulties

in preparing the sample in flat plates and eliminating gaps between the
plates. The third technique was eliminated because of the high cost and
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requirements for plating one sample and then fusing it to another sample
On the basis of our past use of thermocouples, we chose to cast a heater
and thermocouple wire into a glass sample

Ina first attempt to prepare such a sample, glass beads similar to
those to be used were melted in a clay crucible and poured into a mold
made from magnesia firebrick  Although the wires suspended in the mold
were distorted because of their thermal expansion and inadequate tension
devices, the glass formed a clear mass surrounding the platinum/platinum~
rhodium thermocouple and Nichrome heater wires In other tests, we placed
platinum wires on a flat slab of glass and covered the glass with an
identical slab  The slabs were fused in a vacuum oven at 620°C and
annealed A distinct interface between the two slabs remained even
though they were fused Because this interface could invalidate the ex-
periments, we again tried the casting method After several unsuccessful
attempts we prepared a glass sample from the bulk Microbead material by
pouring the molten glass onto a heated cast iron "casting plate™ containing
tensioned wires By slowly cooling the plate, an adequate sample about
4 in. long and 1in square was obtained A platinum heater wire and a
platinum-rhodium thermocouple were used because of their stability in the
high temperature molten glass However, the emf of this couple decreases
at low temperatures so that it was not satisfactory for use below about
-20°C V¢ attempted to prepare another glass sample using a chromel-
alumel thermocouple, but a reaction with the hot glass sample prevented
us from obtaining a suitable sample

Because of the high melting point of the pumice and basalt samples,
we were unable to prepare adequate solid samples of these materials
Literature data will be used to estimate the solid conduction contribu-
tion for these materials and for quartz

Using the techniques described earlier, we analyzed the effects of
axial heat losses and sample size for the line heat source method with
solid glasses The results indicated that the effects of sample boundaries
would be negligible for experimental times of 4-5 minutes for the 4 x 4 x
10 cm sample  Axial heat flow in the sample would not seriously affect
the results until after 5 or 6 minutes
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Experiments were carried out using a 24 volt battery power supply,
and the instrumentation and technique described above for powder samples

All measurements were made at atmospheric pressure. The sample was im-
mersed in a Dewar flask containing a stirred fluid for temperature control
during measurements

Data were reduced from plots of temperature rise versus logarithm

time, Because of the high diffusivity of the glass, the logarithmic

method is applicable.
¢ Vesicular Samples

The principal vesicular material examined in this study was pumice
Several attempts were made to prepare a vesicular glass by sintering the
glass bead powder, but this approach was not useful until large particle
sizes were used The thermal conductivity probe method was chosen to
study the vesicular material Analysis of the initial time lag errors and
axial heat flow errors was carried out prior to the design of the probe
The results indicated that a probe 6 in long and 1/16 in, diameter would
be suitable for the measurements. This type of probe was used satis-
factorily in our earlier work (Wechsler and Glaser, 1964) Because of
the extremes of temperature and vacuum to be used in the program, we
investigated the possibility of using a swaged and sheathed probe con-

struction similar to that used in commercially available protected
thermocouple assemblies ~ After discussion with manufacturers, a design

for a stainless steel sheath, Mgl insulated probe 1/16 in diameter,

6-1/2 in. length was evolved The probe would contain a *"U" shaped heater
running the length of the probe and either a chromel-alumel or copper-
constantan thermocouple at the center. With this construction the probes

could be baked out at 400°C if desired

Several probes were ordered from Conax Corporation, and a four
month delivery was required for this special order. When the probes
were received, several difficulties were encountered. The thermocouple
locations were only 2 in from the upper end of the probe and several of
the internal wires were shorted to the sheath Two probes were returned

for repair.
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In order not to delay the program, a modified probe was constructed

and used for room temperature measurements at pressures of 10-4 3

to 10
torr The probe consisted of a 0 023 in (0,058 cm) diameter stainless
steel hypodermic tube, 10 in. (25 4 cm) long A butt welded copper-
constantan thermocouple (#40 wire) was pulled through the stainless steel
tube after the tube had been drawn through a block of pumice with
dimensions of approximately 25 4 x 14 x 24 an  Current leads and voltage
leads were attached to the ends of the stainless steel tube, Thus, the
tube itself formed the heater and contained the temperature sensor The
sample was placed on a vacuum table, covered with a bell jar, and evacu-
ated to pressures in the 10_5 torr range Probe tests were carried out
at several power levels, using the instrumentation described earlier

The results of these initial tests were disappointing The time-
temperature rise data could not be correlated easily by the logarithmic
or the curve matching method The linear relation between temperature
rise and logarithm of time existed for only a few minutes rather than
the long times expected Furthermore, when the data were reduced as well
as possible using either of these methods, the conductivity values were
not reproducible, and they were at least an order of magnitude lower then
expected Two sources of error may have been poor contact of the probe
and the sample or the thermocouple and the sample and resultant axial
heat losses. The results obtained in the first five tests carried out
at pressures of 1.6 to 3 8 x 10_5 torr, with the data reduced by both
methods are shown in Table IV-6

Two tests were then carried out at atmospheric pressure with dry
nitrogen  Test results at widely different power levels gave conductivity
values of 129 x 107> and 1.31 x 107> watt/em®C  The data were well re-
presented by a linear temperature rise—logarithm time relationship and
the results were in agreement with our previous pumice measurements In
an attempt to improve the contact between the stainless steel heater and
the sample, a larger 0.035 in. diameter tube was inserted in the same
hole in the sample, a new copper-constantan couple was used, and two
additional tests were carried out. The conductivity values obtained were

57 x 10_5 and 2.0 x 10_4 watt/ecm®C. Because these values were also
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TABLE 1V-6

RESULTS OF THERMAL CONDUCTIVITY MEASUREMENTS OF
PUMICE USING 0.023"" DIAMETER PROBE

Thermal Conductivity (watt/cm°C)

Heater Power (mw) Curve Matching Logarithmic Method

~5 -5
18.9 26 x 10 30 x 10
19.9 1.9 x 107° 2.1 x 107°
14.2 19x107° 23 x 107>
83 2.1 x 107° 24 % 107°
120 2.0 x 107° 22 x 1677
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lower than expected and not reproducible, we replaced the probe with a
0 032 in diameter stainless steel sheath which contained a #40 heater
wire folded 8 times within the tube A copper-constantan thermocouple
was used again. As shown in Table IV-7, poor test results were again
obtained.

The results could not be explained other than on the basis that there
was poor contact between the probe and sample or that the pumice has a
very low conductivity in vacuum. Previous test measurements discount the
latter possibility  Extensive pumice measurements were carried out in

our previous work and those results will be used later in the discussion.

4, Experimental Results

The results of the thermal conductivity measurements of powders and
solid glass are shown in Table IV-8 and in Figures IV-5 through V-8
Data are plotted as effective thermal conductivity versus absolute tem-
perature. The curves drawn through the data points are least square
lines based upon appropriate theoretical models (See discussion in next
section ) Also shown in the figures are literature data for each mate-
rial The density and particle size have been indicated

Examination of the figures shows that the scatter of the data is
generally within the reproducibility of the line heat source method As
mentioned previously, we have estimated the accuracy of the method to be
better thank 8% The reproducibility of the data points should be better
than + 5% (+ 4% for error in curve matching and £ 12%n power measurement)
"“Error bars"™ corresponding to + 8%are shown on the curves Several data
points which differ significantly from the others are usually the results
of tests made at the completion of the thermal cycle

5 Discussion and Interpretation of Results

a. Comparison with Literature Data

In general, good correlation with literature data is shown in the
figures The values obtained for the Microbeads are within about 20% of

the values reported for similar size and density beads by Watson (1964)
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TABLE V-7

RESULTS OF THERMAL CONDUCTIVITY MEASUREMENTS OF

PUMICE USING 0.032"

DIAMETER PROBE

Thermal Conductivity (watt/cm®C)

Test Pressure Heater Power Curve Matching Logarithmic Method
(torr) (mwatt)
-1  1x107° 52.0 34 x 107° 430 x 1070
-2 1x107° 12.2 35 x 1077 380 x 107°
53 1x 107 5.1 36x 1070 3.90 x 107>
5-4  5x 1072 483 43 x 107 5.00 x 107°
-5 760 58.3 - 139 ¢ 1073
J-6 760 112 0 147 % 1073
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Also the shapes of the curves are very similar Data reported in our
previous work on "3M" glass beads of similar size are about twice the
values obtained in this work  This may be a result of the greater clean-
liness of the material used in the present work or a difference in com-
position.

Data on crushed quartz are within 25% of that reported by Watson
(1964) W note that the particle size and densities are considerably
different  The smaller size powder used in the present experiment could
result in a larger solid conduction and smaller radiation contribution
which could account for the displacement of our curve from Watson's curve.
The shapes of the curves are similar up to 300°K but diverge above this
range

Data on pumice powder are only in fair agreement with that given in
our previous work. Difference in particle shape, size distribution,and
composition (the powders were ground from two similar samples but not
necessarily of the same composition) could account for the differences
W note that the effect of temperature for both types of samples is nearly
the same.

Data on basalt powder are in reasonable agreement with that reported
earlier although the trend in decreasing conductivity with increasing
particle size does not seem to hold when the present data are compared to
the previous work. Discrepancies may be due to the type of basalt, grind-
ing method, and the lower pressure in the present work. All materials show
the trend of increasing conductivity with temperature. The data of
Barnett, et al (1963) are in fair agreement with the present work but

show a slightly greater temperature effect

Data for the solid glass are in excellent agreement with the manufac-
turer's value. There is essentially no effect of temperature on thermal

conductivity The data have also been plotted in Figure IV-1to show the
comparison with Pyrex and fused quartz  The values are close to those of

Pyrex
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b Evaluation of Heat Transfer Mechanisms

(1) Experimental Evaluation. Evaluation of the contributions

of solid conduction and thermal radiation to effective thermal conduc-
tivity may be carried out by analysis of the effects of temperature on
thermal conductivity. As discussed previously, the solid conduction con-
tribution in a powder is a function of the particle size, packing, loading,
and other factors, as well as the thermal conductivity of the solid The
solid conduction contribution at any temperature can be represented as:

kC =F (e, d, load, etc ) x kS (1v-36)
where Fl (p, d, load, etec.) represents the unknown function of particle
parameters,and k is the bulk solid conductivity We have assumed a
direct proportionality on the conductivity of the material from which the
powder is prepared As shown in Figure IV-1, the bulk solid conductivity
varies with temperature in a manner which depends upon the type of solid
For glasses, the solid conductivity generally has one of the following

forms:

glass: k = constant = B' (Iv-37)

ork =8'"+t¢' T (1V-38)

In crystalline materials, the conductivity (over the temperature range we

are considering) may often be represented by:
kK = B' + % (1v-39)

Thus, the solid conduction contribution to effective conductivity may
have any of the following forms:

k,=F B =B (1V-40)
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k, = F (8' +tcm=ptcT (IV-41)
k =r, (B +29 =B+$ (IV-42)

The radiation contribution to thermal conductivity, as discussed
earlier in this section, often has the form:
k = AT (Iv-43)

Thus, the effective conductivity of a powder may be represented by any
of the following equations:

Modell k =k +k =8+ ATS (IV-44)
e c T

Model 2 =B +cr+ar’ (TV=45)

Model 3 =3B +% + ar3 (1V-46)

Models 1 and 2 should be representative of a powder prepared from a
glassy material with little or no temperature coefficient of conductivity
Model 3 is more representative of a powder prepared from a crystalline
material with a strong temperature coefficient The terms B and A should
be positive (i.e , the radiation term and the solid conduction should
both be positive at low temperatures) The terms C and D may be positive
or negative, depending on the type of glass; positive values of C indicate
a conductivity increase with temperature, positive values of D indicate a

conductivity decrease with temperature.

The experimental data were fitted by least squares techniques to the
equations for each model given above The values of the coefficients and
the root mean square deviations were examined to establish which model
best represented the data

Glass beads. On the basis of experimental data for solid glass (see
Figure 1v-8), it was clear that Model L1 or Model 2 would be more appropriate
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than Model 3 The least squares fit using Model 2 resulted in negative
coefficients for € and A, thereby indicating that Model 1was more appro-
priate. Values of the coefficients using Model 1were: B = 4.66 X ]_0"6
watt/em®C and A = 2.99 x 10"13 watt/cm°K4. The standard deviation of the
data from this least squares line was 12%. Using these values, the solid
conduction contribution is 4 66 x 10_6 watt/cm®C, and the radiative con-
tribution is 2.99 x 10—13 T3 watt/em®C  Values obtained by Watson (1964)
for similar size powder were B = 7 0 x 10'6 watt/cm°C and A = 3 4 X 10_13
watt/cm°K4 (see Table IV-3) The agreement between our results and
Watson's is very good, W also note that there is good agreement between
the value of the solid conduction contribution and that calculated from
the model described earlier in this section The ratios of the radiation
to solid conduction contribution at several temperatures are shown in

Table IV-9

Quartz powder, From examination of the data on solid quartz, it was
apparent that Model 3 should best correspond to this powder The least
squares analysis showed that the root mean square deviations of the data
were 5%, 3%, and 2% for Models 1, 2, and 3, respectively. However, the
coefficients obtained for Model 2 were unreasonable  Values for the

coefficients using Model 3 were: B = 375 X 10—6 watt/em®C, D = -2 165 x

1072 watt/em, and A = 153 x 10713

that the solid conduction contribution increases with increasing tempera-

4 .
watt/cm °K These values indicate

ture; this tendency is not expected of crystal quartz but is representa-
tive of fused quartz  For crushed quartz of a larger size, Watson obtained
a value of 33.5 x 1070

This compares with values of 26.8 x 10

watt/em®C for the solid conduction contribution
6 303x 107, and 32 1x 107°
watt/cm®C at temperatures of 200, 300, and 400°K, respectively, using
Model 3 If Model 1is accepted, the value of B is 25 2 x 10—6 watt/cm®C.
The high value of the solid conduction contribution may be caused by the
high conductivity of crystalline quartz Watson's value of the radiative
term A was 4.2 X ].0‘13 watt/cm°K4, compared with the value of 153 x 10713
watt/cm°K4 we obtained using Model 3 and the value of 3.03 x 10'l3 watt/

cm"Kz’ obtained using Model 1,
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On the basis of this comparison, it appears that Model 1is a better
representation of the quartz powder In Figure IV-5, least squares lines
for both Model 1 and Model 3 are drawn  The radiative contributions may
be compared to those calculated earlier. For the quartz powder at 400°K
we calculated a maximum k of about 60 x 10_6 watt/cm®C (extrapolated
to the appropriate porosity) The experimental value at 400°K was 19 3 x
10—6 watt/em®C  Although the agreement is not excellent, the calculated
value is the upper limit which would be further reduced by scattering
The fact that some of the particles were comparable to the wavelength
would also tend to reduce the calculated value Relative values of the
radiative and solid conduction contributions to thermal conductivity at
several temperatures are shown in Table IV-9

Pumice powders. Data for pumice powders were best fitted by using
Model 1 When Models 2 and 3 were used, no appreciable reduction of the
room mean square deviation was observed, and the coefficients ¢ and D
were not consistent with the temperature coefficient of vesicular pumice

or solid glass  For the 10-37u pumice powder, B and A were 5 09 x 10_6

watt/em®C and 3 12 x 10_13 watt/cm°1(4, respectively For the 44-74y
pumice, B and A were 2 51 x 1076 watt/cm®C and 3.57 X 10713 watt/em®K?,
respectively. The root mean square deviations were 8%for both sets of
data Thus the solid conduction contribution decreased for the larger
particle size (in agreement with Watson's data), but the radiative term
increased only slightly. W note that the conduction term 1s much smaller

than it is €or quartz and is comparable to that for glass beads

Basalt powder. Data for the 10-37u basalt powder were best fitted by
Model 3. Values of the coefficients were: B = 20.6 x 10—6 watt/em®C,
D=-157 x 1072 watt/cm, and A = 0.88 X 10713 watt/cm°K4 The rms de-
viation was 2 7% (compared to 13%for Model 1) Thus the solid conduc-
tion contribution increases with temperature Data for 44-74u basalt
powder were best fit by Model 1with coefficients B = 6.14 x 10-6 watt/cm®C
and A = 2 14 x 10"13 watt/cm°l<4; and an rms deviation of 9% Thus the
solid conduction contribution decreases with increasing particle size,

and the radiation contribution increases with increasing particle size
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Solid glass, The data for the solid glass were well represented by
the equation:

k, =B tCT (IV-47)
where B = 0 845 x 1072 watt/cm°C and C = 0 537 X 10™° watt/en°CZ, with
an rms deviation of 6.6%

The contributions of solid conduction and radiation for the materials
studied are also summarized in Table IV-9. The important trends to be ob-
served are: (1) an increase in radiative contribution with increased
particle size, (2) a decreased conduction contribution with increased
particle size, (3) the relatively high values for solid conduction for
quartz and basalt powders, (4) the low radiative contribution for the
small diameter basalt powders, and (5) the ratio of radiative to conduc-
tion contribution for the powders studied increases with temperature and
has values from 0 05 to 9 1 over the temperature range of 200 to 400°K

(2) Analytical Evaluation, Theoretical models for the radi-

ation contribution to thermal conductivity in a particulate or fibrous
material prepared by various investigators have the form given by equa-
tion IV-43. The values of the constants are given below

A=4oe DP 6 Damkohler (1937)
A=4oecD, (5 - s34 173 Russell (1935)

A=4/3 ¢ DP Rosseland (1936)

A=4/3 0 DP Ll_;__gl (for fibers) Strong, et al (1960)
A= 4 nr2 o Dp €7 E 3 Godbee and Ziegler (1966)
AXbge DP Schotte (1960)
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where
o = Stefan-Boltzman constant

E = particle emittance

DP = particle diameter
§ = porosity
n = refractive index

Values of the radiation constant term for the powders investigated
shown in Table IV 10 are generally lower than those obtained by experi-
mental fit of the data, One reason for the difference in values is that
the optical mean free path in the expressions given above is assumed to
be equal to the product of the particle diameter and a porosity factor
For materials which are partially transparent, as quartz and glass are in
the wavelength region of 0 5-5u, the mean free path may be significantly greater
than a particle diameter. Furthermore, only the equation of Godbee and
Ziegler correctly includes the index of refraction, Closest agreement
of the experimental data is obtained with the predicted values of Godbee
and Ziegler Variations in the index of refraction and the incorrect
use of an average value can account for the discrepancy between the pre-
dictions and experiment.

V¢ have calculated the radiative conductivity for quartz at 400°K,
according to the method outlined in Section IV, E, 2, f The value ob-
tained for powder of 62%porosity is 6.0 x 1077 watt/em°C at 400°K
This value compares with that of 3.33 x 10_6 watt/em®C, evaluated from
the Godbee and Ziegler correlation, and that of 194 x 10_5 watt/cm®C
obtained experimentally. The significant difference between the results
of the simplified correlation and the more complex calculation procedure
indicates the effects of taking into account the variation of optical
constants with wavelength and the distribution of the solid phase mate-
rial, The experimental value is lower than the value we calculated be-
cause the method used in Section IV, B, 2, f does not include scattering

which will further reduce the radiation heat trasnfer contribution,
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The solid conduction contributions to effective thermal conductivity
have been evaluated by the method proposed by Watson (1964) and described
in 111, B, 2 For a material with elastic modulus E (dynes/cmz), and
Poisson's ratio v, the ratio of solid conduction in the powder to solid
conduction in the bulk may be written as:

, 13
K, p /3 rea Qo) él =)
e = IV-48)
K /75 (
b o 3

i=1

where L is the particle depth, b is the particle radius, ¢ is the bulk
density; and g is the acceleration due to gravity Using available data
for the moduli and solid thermal conductivity (Birch, 1942), the values
of solid conduction contribution of the powder shown in Table IV-11 were
evaluated for a temperature of 300°K

As noted on Table IV-11, and in the work of Watson, particle size
has little effect on the solid conduction contribution calculated from
the equation given above The high value for quartz is caused by the
high thermal conductivity at 300°K, Except for the agreement between
the measured and calculated values for the smaller size basalt powder,
the experimentally obtained values of the contact conduction are lower
by a factor of 2 to 5 than those calculated These results indicate
that a detailed understanding of contact resistance between particles
has not yet been established. To increase our understanding, additional
analyses of the solid conduction contribution must be performed In
addition, experimental measurements should be carried out under conditions
where solid conduction can be examined independently of other system
variables

D. CORRELATION OF THERMAL CONDUCTIVITY AND DIELECTRIC GCONSTANT
VEASUREVENTS

In order to evaluate the correlations between dielectric and thermal
parameters using the results obtained on the various materials studied,

we calculated the values of the parameter C. which, according to equation

1
III-31 should be a constant and independent of density and possibly other
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TABLE IV-11

CALCULATED VALUES OF SOLID CONDUCTION CONTRIBUTION OF VARIOUS POWDERS

Material

Glass beads
Pumice
Pumice
Basalt
Basalt

Quartz

Size
"

44-62

44-74

10-37

44-74

10-37

10

k
c

(experimental)

k
c

(calculated)

047 x 1072

051x 107

0.5 x 1073

061x 1077

1.54 x 107

250 x 107°

110

116 x 107>

1.37 1077
135 10‘5
1.58 x 1077
15 x 307

049 4 107°

watt/cm°C
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variables. The results are shown in Table IV-12 Even though the ex-
perimental evidence presented here concerns only three materials it is
evident that the presumed *constant* Clvaries greatly with density
This cases some doubts on the assumptions made in the derivation of
equation III-31,

One of these assumptions was that of the proportionality of 6 to
the wavelength (equation ILI-30). 6n is the ratio of the electromagnetic
to the thermal penetration depth as defined by equations ITI-3 and III-24
While the ratio of 6n/‘)\° should be independent of wavelength, we find
that it varies considerably; in pumice powder it has values of 13 and
9.8 at 3 28 and 1.18 an wavelengths, respectively, and in basalt powder
it has values 10 and 5.8 at the same wavelengths, respectively

We also attempted to obtain an empirical correlation between diel-
ectric constant (or loss tangent) and thermal conductivity The results
were not satisfactory. The correlation between dielectric constant and
thermal conductivity can easily be evaluated by examining the effect of
density on each of these parameters. Figure IV-9 shows the variation
dielectric constant (3.28 cm) and the loss tangent at the same wave-
length with density. As expected from the discussion presented earlier,
there is a strong correlation between ' and density; namely, that the
logarithm of the dielectric constant is proportional to density A
similar relation holds for the loss tangent, if the data for pumice (the
lowest of the loss tangent data points) are assumed to be on a separate
curve. The dependence of thermal conductivity on density for the materials
we studied is shown in Table IV-13

Although there is a general trend toward increasing thermal conduc-
tivity with density, there are several exceptions; namely, (1) the
vesicular pumice's having a very low density with a moderately high
conductivity, (2) the insensitivity of thermal conductivity with density
of the powders, and (3) the increase of thermal conductivity of over
1000 with a 3-fold increase in density. (The dielectric constant varies

only by a factor of 3 or 4 for the same density variation.)
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TABLE 1V-12

VALUES OF "CONSTANT' C OF EQUATION 111-31

Material

Glass, beads
(p = 1.6 gm/en™)

Glass, solid
(e = 2.8 gm/cm™)

Basalt, powder 3
(p = 1.2-14 gnfem™)
Basalt, solid 3
(p = 2.6-2 8 gm/cm™)

Pumice, powder

(0 = 0.,80-0.90 gm/cm®

)

Pumice, vesicular*
(p = 0 4-0.5 gmn/cm™)

Pumice, glass**
(P =2.5 gn/em

ci= Ye' tan & Yk/oC

T vk/pC at A = 328 ¢cm at A = 1.18cm
(°K)  (cm sec™2)
300 3.2x 1003 42 x1003 4.2 x 1072
400 4.4 x 10 6.2 x 10 7.3% 10
300 7 5x 1072 2.5 1073 not determined
300 41x1073 45 x10; 8.2x 107,
400 5.7 x 10 13 x 10 2.8 x 10
300 69 x 1072 2.8 1073 not determined
300 42x107 2751072 4.0 x 1073
400  6.1x 10 44 x10 9.3 x 10
300 45x107% 1.1 x 107t 45 x 1074
-2 -3 .
300 6.5 x 10 1.0 10 not determined

# Thermal conductivity data from previous work (Wechsler, 1964).
**Thermal conductivity of solid pumice assumed equal to solid crown glass
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TABLE IV-13

DEPENDENCE _OF THERMAL CONDUCTIVITY ON DENSITY

Measured Thermal Conductivity
Thermal Conductivity Calculated from
Material Density at 300°K Troitskii Equation
(gm/cms) (watt/cm®C) (watt/cm°C)

. -3 ~4
Pumice 0.4 -05 1x10 4 x 10
Pumice powder 0.8 12-14 x 107° 17 x 1074
Quartz powder 1.0 32-35 x 107° 21 x 1074
Basalt powder  136-1.43 1.0-1.8 x 107° 2.9 x 1074
Glass beads 1.42 12x 107 3.0 x 1074
Solid glass 2.5 1x 1c72 2.8 x 1072
Solid basalt 2.8 2.3 x 1072 3.1 x 1072
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Also given in the table are the thermal conductivity values calculated
from the correlations used by Troitskii (see Section IV, A). The values
obtained for the vesicular and solid materials are in good agreement with
experimental data however, calculated values for the particulate materials
are much higher than those measured This difference between calculated
and measured values has considerable bearing on the conclusions reached

by Troitskii concerning the properties of lunar surface materials

Whereas the dielectric constant is directly related to density, the
thermal conductivity is apparently more a function of mechanical strength,
cohesion, or state of aggregation of the material. For this reason we
would expect a more adequate correlation of thermal conductivity with
bearing strength, sonic velocity, or other indications of the structural
properties of the samples

E APPLICATION OF THE RESULTS CF POSTULATED LUNAR MATERIALS

The objective of this program has been to provide data on the thermal
conductivity and dielectric constant of silicate powders and solids It
was not our primary aim to attempt to assess possible lunar surface mate-
rials on the basis of the observational data and measurements made in this
study; however, some of the results and conclusions we have reached have
direct application to the evaluation of lunar materials and possibly
materials on other planetary surfaces

1 The Thermal Parameter (kpC)—l/Z

As discussed in Section 1V, the thermal parameter (kpC)—l/Z is often
used in evaluating lunar surface materials because, for constant thermal
properties and density and assumed constant emittance and absorptance,
the thermal parameter completely specifies the surface temperature of a
semi-infinite material exposed by periodic radiation flux The experi-
mental measurements carried out in this program have shown that the
assumption of constant thermal properties is not justified in analyzing
lunar temperature data, particularly when powdered materials are consi-
dered. As an illustration Table IV-14 gives values of the thermal

parameter (sec1/2 cm2 °C/cal) at various temperatures. In calculating
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TABLE IV-14

EFFECT OF TEMPERATURE ON THERMAL PARAMETER

Thermal Parameter (se.cl/2 cm2 °C/cal)

Material 200°K 300°K 400°K

Glass beads 1480 1070 790
Quartz powder 820 790 700
Pumice powder (14~74u) 2140 1380 970
Pumice powder (10-37u) 1820 1380 1010
Basalt powder (44-74u) 1380 1120 820
Basalt powder (10-37yw) 1080 930 770
Pumice (vesicular) 200 180 160
Solid glass 31 29 27
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these values, we have assumed the specific heat to have the constant value
of 0 2 cal/gm°C

Although the value of (kpC)_l/Z for evacuated powders is near 1000
and in agreement with most data, there is a variation of over a factor
of 2 in the thermal parameter of some powders over the lunar temperature
range. (Because the specific heat of most silicates also increases with
temperature, the actual variation of the thermal parameter would be
greater than that shown in the table.) We recommend that in all subse-
quent analyses of lunar infrared data the thermal conductivity be repre-
sented by a constant term plus a term with a cubic temperature dependence,
as was done by Linsky (1966) and Chiang (1965) Also, the effect of tem-
perature on specific heat should not be overlooked in these analyses
“12 ¢ 700-1500 (secl/2 em?
°C/cal) represent most of the powdered materials we studied over the range
of 200 to 400°K.

For simplified calculations, values of (kpC)

2. Ratio of Radiation to Conduction Heat Transfer

As discussed in Section IV, Linsky (1966) uses values of 1to 3 for
the ratio of the radiative to conductive heat transfer at 350°K  The
ratios we obtained experimentally at 350°K were: glass beads, 2 75;
quartz powder, 0.51; pumice powder (10-37y), 2 63; pumice powder (44-74y),
6 1; basalt powder (10-37n), 0 23; basalt powder (44-74y), 150 Our
results indicate that the range of values used by Linsky should be
expanded However, the thermal parameter values which we obtained differ
by less than 40% from those used in Linsky’s analysis. V¢ recommend that
in subsequent calculations values of radiative/conductive flux of about
0 3 to 6 be used, depending upon the powder size and composition

3 Lunar Surface and Subsurface Temperatures

The surface and subsurface temperatures of the moon may be calculated
using the thermal conductivity data presented in this report and estimates
of the emittance and absorptance of the lunar surface As an example, we
have calculated the surface temperatuare for a homogeneous particulate
surface and a homogeneous vesicular surface (see Figure IV-10) The thermal

properties used in the calculations were:
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k (watt/cm°K) 2 (gm/cm3,) C (joules/pgm°K)

Powder 462 x 10°% + 3 05 x 10723 17 11 0502 +7.4%x 1074 T

Vesicular 15 x 1072 + 0.2 x 10727 0.9 0502+74 x107%T

where T is in °K

Values of infrared emittance and solar absorptance were chosen as
0.93 (These calculations were performed in another program carried out
at Arthur D. Little, Inc Details of the computation program may be ob-
tained in the report, "A Study of Thermal Response of the Lunar Surface
at the Landing Site during the Descent of the Lunar Excursion Module (LEM)",
Technical Report prepared by J T Holland and H. C Ingrao, Harvard
College Observatory, Cambridge, Massachusetts, April 1, 1966 )

Although the surface temperatures obtained from calculations with
the powder properties are not exact duplications of observational data,
the maximum and minimum temperatures and the slope of the temperature-
time curve during lunar night are in relatively good agreement with
published data. The curves presented here would differ considerably

from those obtained with materials having constant thermal properties

4. Dielectric Constant Values

The values of the dielectric constant obtained in this program may
be considered typical for silicate powders V¥ suggest that in the ana-
lysis and evaluation of radio emission data from silicate particulate
surfaces, values of 2.0 to 2 9 be used for the real part of the dielectric
constant and values of 0.004 to 0.015 be used for the loss tangent The
variation of the dielectric constant and loss tangent with density shown
in Figure IV-9 and the trend of increasing loss tangent with temperature
as shown in Table III-2 and III~3 should be considered when examining
radio emission data in detail.
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V. CONCLUSIONS

On the basis of the results presented in the preceding sections, we
have made the conclusions which are detailed below

A DIELECTRIC CONSTANT

1. The dielectric constants of the silicate powders we studied at
3 28 an and 1.18 an wavelengths have values ranging from 1.9 to 2 9
The loss tangents of these materials vary from about 0.004 to O 030.
The dielectric constants of the solid silicates from which the powders
were prepared are in the range 5.4-8.6.

2. There is no significant difference in the dielectric constant
of the powders at the two wavelengths studied. The loss tangents of the
powders are larger at the shorter wavelength

3 The effect of temperature on the real part of the dielectric
constant of the powders is negligible over the range 77°K to 400°K  The
imaginary part of the dielectric constant and the loss tangent tend to
increase at the upper temperature limit of this range, particularly for
basalt powders.

4. The dependence of the dielectric constant of the powders on
density is adequately represented by theoretical formulas which relate
the dielectric constant to the fraction of the solid and the dielectric
constant of the solid.

5. There is no well defined correlation between thermal conductivity
and dielectric constant of the silicate powders The correlation pro-

posed by Troitskii does not hold for the powders and solids we studied

6. |If the dielectric properties of the lunar surface are similar to
those of the minerals and powders studied in this work, the penetration
depth of microwaves is much greater than the thermal penetration depth

(approximately 40 times greater for 3 28 an waves and 10 times greater
for 1.18 cm waves)

7 Small amounts of metallic (iron) particles present in the dielectric

silicates tend to decrease the penetration depth significantly
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B. THERMAL CONDUCTIVITY

1 The effective thermal conductivities of typical evacuated quartz,
pumice, basalt, and glass powders of particle size 5-75u vary from about
4 X :LO"6 w/cm®C to near 40 x 10_6 w/em®C over the temperature range 150
to 400°K,

2. The effective conductivity of the evacuated powders studied is
well represented by the am of the constant term and a term which has a
cubic temperature dependence

3. In the temperature range of 150 to 400°K, the ratio of the radia-
tion to solid conduction contributions to effective thermal conductivity
varies from less than 0.1 to more than 5, depending upon the particular
powder size and composition

4. In the powders we examined, the solid conduccion contribution to
effective thermal conductivity decreases with increasing particle size,
and the radiation contribution increases with increasing particle size,

5 The radiation contribution to effective thermal conductivity can
be predicted adequately on the basis of available correlations which take

into account the refractive index and its variation with wavelength.

6 The solid conduction contribution to thermal conductivity cannot
be predicted adequately using correlations which consider only Hertzian
contact areas and the thermal conductivity of the solid.

7. There is no direct correlation between thermal conductivity of
particulate, vesicular, and solid silicates and density. The structure

of the material seems to influence thermal conductivity more than density

8. In analyzing lunar infrared temperature data, the thermal parameter
should not be treated as independent of temperature. A more desirable
procedure is to include the variation of both specific heat and density
with temperature.
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“

Vi,  RECOMVENDATIONS

To gain more insight into the mechanism of heat transfer in particu-
late and porous materials under conditions such as exist in the lunar and
other planetary environments, we recommend that studies be continued to
establish the following in more detail: (1) the conduction and radiation
contributions to effective thermal conductivity as a function of particle
or cell size and temperature, (2) the absorption and scattering mechanisms
for radiation attenuation as a function of particle or cell size, (3) the
effects of adsorbed gases on the conduction contribution to heat transfer

The results of the first two studies will be of fundamental importance
in determining the thermal behavior of powders and vesicular materials
that may be present in the lunar environment The third study is also
of importance in determining the behavior of powders or vesicular materials
in the terrestrial and Martian environments.

To carry out these studies four types of experimental measurements
or calculations must be made: (1) measurement, using the modified line
heat source method, of the thermal conductivity of a specific material
in the solid form as a function of temperature over an extended range;
(2) measurement of the effective thermal conductivity of the particulate
and vesicular form of this material as a function of temperature (70 to
450°K), particle size (1-100uy), and adsorbed gases (e.g , water, nitrogen,
and carbon dioxide); (3) calculation of the effective radiation conduc-
tivity of these forms of the same material, making allowance for both
absorption and scattering; and (4) acoustic measurements, such as com-
pression wave velocity, attenuation, and bulk modulus To obtain the most
complete information and to establish most accurately the relative import-
ance of the heat transfer mechanisms, we recommend restricting attention
to various physical forms of a single material that has a well-characterized
composition.

Because of the importance of dielectric parameters for the interpre-
tation of radio-astronomical and radar observations of lunar and planetary
surface properties, we recommend that the measurements be extended both to
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shorter and longer wavelengths than those used in this work. We recom-
mend using those materials considered for thermal property measurements
Also, the effects of adsorbed gases, primarily water and carbon dioxide,
on the dielectric constant and loss tangent should be evaluated.
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