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ABSTRACT

The use of finite difference methods for the
numerical treatment of initial value problems depends
on two concepts, namely stability and degree of appro-
ximation. The latter can ke improved significantly if
derivatives of higher order are used. In this report,

the stability problem is solved for such generalized
finite difference schemes.
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Finite Difference Forms Containing Derivatives

of Higher Order.Z’

by

Manfred Reimer!)

1. Introduction

Let us consider finite difference forms L defined by

k +m~1
- _ (0) N A () ()
(1.1) Ly = E: {av Yv + 2‘ h a, Yv }
\)=O rA=xr
where
y\()") = v s ), n>o .

Here k,r,m are assumed to be positive integers, and the a

(0)
are real numbers, a, + 0.

The forms (l.l) are related to the differential

equation
(1.2) v = £(x,y)

which, under some restrictions (high degree, stability),
can be solved numerically by means of them with good
success. (See Dahlquist [2].)

Let f% denote the class of all real polynomials of

degree not exceeding n. Let p be defined by
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= 0 for all y € P
(1.3) Ly { £ 0 for one y Gﬁgir"l”
r.

We call p the degree, k the order and m the rank of the
difference form. Often it is convenient to describe the

difference form (1.1l) by means of the polynomials

k
p}\-S) ".Z‘ a\) s ()\" H r,r+l,...,r+m—l).
=0

which are called the generating polynomials of L,

Definition (Stability).

L is called stable if and only if p > 1, all zeros
of p_ are situated on the disk |s|< 1 and none of the
zeros on the unit circle has a multiplicity exceeding r.

For a discussion of the significance of this definition,
see Dahlquist [2], Ch. 2; let us remark here only that it is
indispensable to admit zeros of multiplicity r on the unit
circle since otherwise there are no stable forms at all
(see section 3).

With regard to numerical applications, those forms are
of particular interest which are stable and of as high a
degree as possible. Dahlquist already determined this
maximum degree and all stable forms realizing it in the

cases m = l andm = 2, r =1 or 2. We are going to generalize




his results for - with some restriction - arbitrary m.
The basis for our approach will be a new characterization
of the degree p (see (2.2)).

Finally we mention that (l1.l) contains two remarkable
cases of degeneration: For (k, r, m) = (0,1l,») we obtain
Taylor's series and for m = 0, Po = (s—l)k the k-th difference

of y.

2. Characterization of the Degree

L being linear, we can define p as follows (see (1.3)):

Ly vanishes identically on a basis of PP ,
P+r-1

is a value x = X such that Ly does not vanish at this point

but there

for one (and hence for any) polynomial of degree exactly p + r.
Without restriction of generality, we may assume x0 = 0. Thus

we are led to the following characterization of p:

v { =0 for w =0, 1, ptr-1,
(2.1)  Ix !x=0 1 + 0 for w =p + r.

On the other hand we get from (1.1)

k ) r+m-1
W AR (0) w | ¥ (A) 1Y e (um L HEA
Lx lx=0 = h va {av v o+ Z a, - B (p-1) (p=r+1) - v }.

A=r

Now let




and define D" for A < 0 by zero. Then we get

r+m-1 \
W = pPpH + ) ~1) - .. (w=2+1) - D*~ ]
Lx*| _, =h [D Po Z b (w-1) Py oy,

A=x

' Being aware of this and combining the inequality and the

requalities of (2.1)" linearly we find that p can be

characterized also by means of the relations

r+m-1

T () = 0 for all m € JP
(2.2) ,[n(D)po + Uér m (D)p)\]s=l { $ 0 for one m €

It shall be seen that this characterization offers some
advantage over the original definition (1.3). We shall need
some rules concerning the operator D; they are listed below,
for details see Reimer (4], p. 373 f.

Let f,g,u,v be polynomials. If

u(s) = 2‘ av s

v=0
and the polynomial u* is defined by

u*(s) = s? u(s™),

then the following formulas hold:

n
(2.3) £(D)u =Z £(v) a s,
v=0
n
(2.4) £(D) (uv) = E: a, s’ £f(D+v)v(s),
v=0

(2.5) [£(D)ul* = £(n-D)u*,

+r—l'

p+r.



In particular, because of (2.3)

(2.6) f(D)u = g(D)u if £ = g mod w
is valid if @ is the polynomial
w{x) = x(x=1)eee(x-n).

The basis for section 5 is a theorem which we state here
without proof:

Theorem 2.1,

Let u be a real polynomial with degree exactly n and

with no zeros outside the unit circle. Assume f to be a
real polynomial satisfying

£(n-s) = (-1)" £(s)
with some integer {. Let

AME(WY > 0
for all integers v ,) with

0 <V <n-)\, 0<A<n; \ =¢ mod 2.
Then the polynomial £(D)u has no real zero outside the
interval [-1,1], and (-1)*, u an integer, is one of its
zeros if and only if

u* = (=1) p.n+1,+l. a

This theorem is a specialization of theorem 3.3 of Reimer [4].



3. Construction of Degree p > m(k+1l)

Because of (2.2),p > 0 is valid if and only if each

of the polynomials

r-1

(o]
D po: D reeos D p

]
Po o

vanishes for s = 1. This is true if and only if

(3.1) b (8) = (s-DVo(s), o eR_,

which in turn implies the restriction
(3.2) l1<r<k

for r. Therefore the following statement holds:

Theorem 3.1, Iflr >k then L is unstable.
Henceforth let p > 0, i.e., let (3.1) be valid. We define
the index set

3= {(v,u)|v,p integers; 0 < v<k, O<pu<m-1}.

For each (i,3) € ¥ we define qij to be the (as well known,

unique) solution of the interpolation problem

(i,3),
(Vlu‘)E}o

1 for (v, )
(3.3) q., €P 0 for (i,3)

P 0V PR
i3 mk+1) -1 Gig VT

=it- i

1

Then we define Qij to be the (unigque) solution of the initial
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value problem
,3.4 (r)___ . Ky _ oo (ko = alr-1) k -
Together with the polynomials
llxlle LRI 'Xr""l,
the Qij obviously form a basis for the space j?n(k+l)+r-l.

Thus it follows from (2.2) and (3.1) that p = m(k+l) is
valid if and only if
m-1
(r+ p,) -I _ .
[Qij(D)po+§:Qij (D)pr+pJ 0 for all (i,3j) € ¢ 3
p,:O s=1

which is, because of (3.4), (3.3) and (2.3), the same as

o (x+3) _ %z Q. . (%) 2 (0)

* v =0 +3J v

(3.5) for all (i,j) € 3.

Hence, given a polyndmialpo satisfying (3.1), all other
generating polynomials are well defined by the condition

p > m(k+1l):

Theorem 3.2,

Let 1 < r <k and P, be a nonzero polynomial with
s = 1 as zero of multiplicity not less than ¥ . Then there
is one and only one difference form (1.l) with degree -

P > m(k+1l) and with P, as its generating polynomial.




Remark 1. If Po is chosen so that the stability condition
holds, then Theorem 3.2 states the existence of exactly one
stable form L with P 2S its generating polynomial and with
degree p > m(k+l). Thus the set of all stable forms of
such a degree is a (k-r)-parameter family.

In section 5 we shall examine how far the degree of a
stable form can really exceed the value m(k+1l).

Remark 2, A difference form (1.1) is called open, if

(£} (x+1) _ _ (r+mel)
X = ak = L., = ak = 0,

a
It then defines an extrapolatory difference method. If we

replace k by k-1 in the definition of ‘¥ above and likewise

o . .
J&(k+l)_l by R 4 in (3.3), then the conclusion already

used above yields.

Theorem 3.3.

Let 1 < r <k and p_ be a nonzero polynomial with s = 1
as zero of multiplicity not less than r. Then there is one
and only one open difference form (l1.1) with p 2 m -k and
with P, @S its generating polynomial.

The next section places some lemmas at our disposal and

may be skipped by readers being not interested in details.




4, Lemmas

Within the interval -1 < x < k + 1 we define the

following functions, which are related to the beta function:

-

' s 1. _
(4.1) B(x) = Bx+1, k+l-x) = I £X(1-6) 5% 4¢
3

’

_ kij .m .
(4.2) Fpy(x) = (x =37 B (x) (3=0,1,...).
Because of B(k-x) =B (x), obviously

(4.3) F;;)(k-X) = (1) Fég)(x) (x,3=0,1,...)

is valid. We are going to prove the.

Lemma 4.1. Let j and \ be integers and 0 < j < A, A = j mod 2,

Then
F(X) >0 (-l <x< k + 1)

holds.

Proof. Because of (4.3) it is sufficient to prove the

statement only for-%-g_x <k+1, this® is done by induction.

From (4.1) it follows that
1
(.4) 2P0 - f{tx(l-t)k‘x+(-1)l(l-t)k'x}<?“I§€?l at

1
2

and thus

k
2

(4.5) B(i)(x)(z) 0 for 5 < x < k+1, i=0,1,...,
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where equality is even excluded if i = O mod 2. Under

the assumptions of the Lemma, we get from (4.2)
J _
Fl(;) = =y G ey EF b,
. w=0
and thus together with (4/5) that

W

(4,65 Fég)(x) 2) 0 for 3 <x <k +1

(
is valid at least if m = 1, equality being excluded if

A= j mod 2. On the other hand, we obtain from (4:2)
)\ .

() % Ay R (a=p)
Frl, 3 -HZO (W) B Fins

and thus by means of (4.5),(4.6)

(\) ())

B({x).PF
Fm+l,j(x) z B(x) m3

(x) (gi 0,
equality on the right-hand side being excluded again if
A = j mod 2. Thus validity of (4.6) for m = 1 yiglds‘
validity for all m = 1,
For convenience we introduce the next lemma although

it is essentially equivalent to theorem 2.1:

Lemma 4.2.

Let H be a real and (k-r)-times continuously differen-

3

tiable function on o < x < k-r. Suppose that

H(k-r-x) = (-1)1H(X)

H(X)(x) >0 for 0 < x < k-r, A\ =t mod 2
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is valid for some integer + and let P be any polynomial
such that
TV
P{v) = (-1) H(v) for v=0, 1,. ., kX -1
for some integer uw . If ¢ is a real polynomial of degree
exactly k - r with no zeros outside the unit circle, then
I =
[P(D)(P45=1 = 0

is valid if and only if

' k-x)+1+1 |
o* = (_l)u( T)+ 1+ e

-

Proof. Le£ ﬁ be the interpolation polynomial associated with
H and the pointlset {0,1,..., k-r}. The assumptions of the
lemma imply that

f(kerex) = (-1)" &G0,

A ﬁ(v) >0 for 0 < v < k-r-\, 0 < A < k-r, A = 1 mod 2,
On the other hand, it follows easily from (2.3) that

[P(D)plgeg = [H(D)glg=(-1)"-
The last three relations yield the statement of the lemma,
if theorem 2.1 is applied.

Finally we prove a lemma concerning the rate of growth
of the function B(x):

Lemnma 4.3.

Let ¢ > 0 be an arbitrary number. Then there is a

number y > 1 such that
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e3

B{x'') 2B (x') - vy~

for all x', x'' € (-1, k+1) with

B

(N1
W
™

I

Proof. Because of B(k-x) = B(x) it is sufficient to prove

the statement under the additional condition

k
3 =< X' < x'' < k+1l; x''" 2 X' + .

If we take into account that

t

1n 1T -t

z 2 (2t - 1) for 1

then (4.4) implies the estimate

(=

B'(x) =z B(x+2, k+1-x) - B{x+1, k+2-x)

for'%_s x < k+1, and if we recall the relation

T(u+tv) - B(u,v) = T'(u) - T'(v),

we obtain finally

B'(x) . 4
B (x) T k+2

(X—l;—) for_]zf_sx<k+l.

Integration from x' to x'' now yields

B(X' l)

2 v Ky 4o, Kyel L 2 63
1n B(x"') =X +2 [(x '3)2 - <x'§)2]_ e::»:‘

|
~
+

and the statement of the lemma is evident.
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5. Maximum Degree

Throughout this section, the difference form (l.1)

is assumed to be stable and of degree
p=mn{k+1) +d, &> O.

Cgbe theorem 3.2, remark 1.) Because of (2.2), d can be
characterized by the fact that for 3 = 0, 1, ..., d there
are polynomials m with degree exactly m(k+1l)+r+j such
that the ieftJhand side of (2.2) vanishes for j =0, 1, ...,
d -1, but.not for j =4d.

We are free in the choice of the polynomials m and there-
fore proceed as follows: Let

w(x) = x(x = 1)---(x - k)

and let g ¥ 0 be an - as yet arbitrary - polynomial with
degree exactly j. Define w to be the solution of the initial

value problem

(5.1) n(r) =dq w ; n(']%

— ' 5 — —_ (I'—l) l<_ =
) = a'(3x) = cee= 5) = 0.
Then, obviously, w has the degree m(k + 1) + r + j and

satisfies

(5.2) . ’“(X) = 0mod @w for A = r,r + 1, r+m- 1.

e oy

" Because of (2.2) and (2.6), 4 has therefore the property that

[ﬂ(D)po]s=l
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vanishes for j = 0, 1, ..., 4 - 1 but not for j = d. Let

(5.3) P(x) = A" m(x);

then, using (3.1) and (2.4), we get

["(D)po]s=l - [E(D)¢]s=l

and d' can be characterized by

’

Olll---t d"l
d

s [, {7555

In order to apply lemma 4.2, we need some information

concerning P. From (5.3) and (5.1) it follows that P has

the representation
r

P(x) = f q(x + t)- o™ (x + t)-8(t) 4t
O

where § = Qr denotes the Peano-kernel belonging to the

operator A" (see e.g. Davis [§ p.70). Note that

L

(5.5) $(0) = 3(xr) = 0; &(t) = 3(r = t) >0 for O < ¢ < r

m .
is valid. On the other hand, w can be represented in
the form

m

w(x) =C-B (x)+ sin" nx (-1 <x <k + 1),

where B has been defined by (4.1) and ¢ # 0 is a constant

(see Reimer [4 , p.383). Now set
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ax) =™ (x - 573,

then from (4.2) we finally obtain

.. r
(5.6) P(x) = I ij(x+t)~sinm m(x+t)+¥(t)dt (-1l< x < Kwl-r).
o)

Now introduce the function

. r
(5.7) H(x) = j ij(x+t)-sinm mted(t)dt (-1 < x < k+l-r).
. (o]

Then (4.3) and (5.5) yield
(5.8) H(k-r-x) = (-)™FD*T gy

and because of (5.6) and (5.7), it follows that

(5.9) P(v) = (-1)™ H(v) (v=0,1,..., k= 1).

At first assume that m is even and j = 0 or 1. Then
the kernel of the integral in (5.7) is non-negative and

lemma 4.1 yields

(5.10) H(X)(x) >0 for 0 <x<k-r, A =jmd2, \»>0.

Because of (5.8) to (5.10), H and P satisfy the assumptions

of lemma 4.2 with t=3j, u = m. Thus
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(5.11) [P(D):p]szl =0

holds for j = 0 if and only if

QP*

But because of ¢*(l) = ¢(1l) , this condition implies

@ (1) = 0 in contradiction to the stability condition,

Therefore (5.11) does not hold for j = 0 and from (5.4)

it follows that d = 0. Altogether we have proved the

Theorem 5.1.

Let L be stable and m even. Then p < m (k + 1).

Henceforth, we assume that m is odd and j = 0 or 1.

Now the kernel of the integral in (5.7) changes in general

its sign and

the arguments become more complicated, as

Dahlquist already observed in the case m = 1. The two

cases r = 1 and r = 2, which he was able to treat and

which are of
can again be

At first
non-negative

arguments as

(5.12) o* =

particular interest in the numerical applications,
investigated completely.

assume r = 1. The Xernel of (5.7) is still

so that (5.10) is valid again. By the same

above, we see that (5.11) is valid if and only if

(—l)k+j¢.
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Now let r = 2. The kernel of (5.7) then changes its
sign at t = 1; however, from (5.7) and (5.5) it follows
that

T t
_H(x) = f f Fr;lj (x + 1 + u) -sin™ wt -3(t) dudt.
t .

Thus application of lemma 4.1 yields

-

n

(5.13) —H(X)(x) >0 for 0O<x<k-r, A j+ 1 mod 2,

Now because of (5.8), (5.9) and (5.13), - H and - P
satisfy the assumptions on H and P in lemma 4.2 provided
we choose t = j + 1 and py = m , and hence (5.11) is

valid again if and only if (5.12) is.

Now let r = 1 or 2. Since (5.12) cannot be valid for
j = 0 as well as for j = 1, because of ak.+ 0 , we
get from (5.4) the estimate d < 1 . On the other

hand, d = 1 is valid if and only if
k
o* = (-1)"g.
Because of ¢(1) § O, this equality can be realized by
a stable difference form again if and only if k is even.

We thus have proved

v
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Theorem 5.2. Let L be stable and m be odd, r =

I
‘_.l
O
2]
N
[¢]
o]

1l if k¥ is even,
0 if k is odd.

p <m(k + 1) +
If kX is even then p attains its maximum value m(k + 1) + L
if and only if

r
* - -
Pe = (-1) Py

Note that the last equality is equivalent with the re-
lation ¢* = o.

Ifm

1, r = 3 or 4 then there are stable difference
forms, as Dahlquist [2], p.30, has shown, with a degree
strictly exceeding the bound given in theorem 5.2. Examples
like these can be regarded as exceptions, as the following
theorem shows.

Theorem 5.3.

Let (k,r) be any pair of positive integérs with
1 < r < k. Then a number “2}k’r) exists with the following

property: If L is stable and m is odd, m > mo(k,r), then

1 if k is even,
0 if k is odd.

p <m(k + 1) +
If k is even, then p attains its maximum value m(k + 1) + 1
if and only if

r
p¥ = (-1)" pg-

*
(o]
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Proof. As we saw in the proof of theorem 5.2, it is
sufficient to prove the equivalence of (5.11) and (5.12)
for j = 0 and j = 1. Thus, let 1 < r < k and j be one
of‘these numbers and moreover, let m be odd. With

X, 4

(5.14)  a(x) = (x - 9’

it then follows from (5.7) and (4.2) that

r
(5.15)  H(v)=H_(v)=] a(v+t)-B"(v+t) -sin™nt . 8(t) - at
’ o)

for v=20,1,..., k = r. From (4.1) and (4.5) we obtain
k
(5.16) 0 < B(3) < B(x) < B(k) (0 <x<Xk).
Hence we can select a number
1
such that
(5.18)  B(K):sin"nt << B(X) for 0 < t < e.

Now set

A

(5.19)  I_(x,v) = | a(e) B (t)-[sin m £|™ a(t-v)at
m )\—l

for all pairs (A,v) of integers satisfying
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(5.20) l<i<ki A-r<v<\-1.

In the following, (\:,vi) and {(\z,vz) are assumed to
be two such pairs of integers, satisfying the additional
condition

k+1 k+1

(5.21)  |n -5 < | -5

This condition guarantees that
(5.22) |ty - -]5-\>\t - —]5\ if £, € [\;-1+e,\;-e¢] for i=1,2
: 2 2 B 2 i i e § '
and that the intervals
—) and [Aa=1l+e, Ag-¢]
have no point in common so that
k+1

(5.23) &(t) z & (—2——) > 0 for t € [Ag=1l+s, Ag=¢]

is valid.

We now decompose Im into
= +
(5.24) Im(K.v) Rm(k,v) Sm(X,v)

with
A—¢

s Onv) = [ ale)- BM(e) +[sin n €] - a(t-v),
r-l+e

From (5.19), (5.24) it follows that




- 21 -

(5.25) R (A, ,v)|<2-¢ (BT fori=1,2

where

C = - .
1 q(k) qgiér §(t) > 0.

Moreover, using (5.22) and lemma 4.3, we get

Ag—e
IS,0n ) <6 - 8 ] B™(t) |sin m t|™ dt
)\g—l+€ .

where § < 1 is a number depending only on . On the
other hand, we obtain with the help of (5.23) and (5.5)

the estimate

he-e m m
Is_(Aa,va) | > c, f B (t) |sin w £|™ at
xg -l+e
h
TSRS Lokt . min &(8)> 0.
2 =47 ect<r-e

Together the two last estimates yield

‘Sm()‘l’vl) \ < C3 6m‘sm()\2 1\’2)‘

where C; = C, C;7* > 0 . Thus we can derive from (5.24)

the inequality

lIm(Xl:v1)LSlRm(Kllvl)\+cs & {‘Im(xafvz) P*lRm(Xz:Va)l}.

Moreover, using (5.16), (5.17) and (5.23) we get
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%,
m P ) 1 =%k T
|1m(x2,v2)LZ C,*B (%)- j sin” m t dt > %5 Cp[ 2 zsci)]r,
e |
The last two inequalities and (5.25) finally imply
I ()\1,\)1) ___I‘(}. -0
Sl <46 2% 4 " {1L+4cC, - 22 }
lIm levz)‘ - ® e 3
and thus
II‘(‘()\llvl)
(5.26) lim - = 0 (m » », m = 1 mod 2).
Em()\zl\’z) .

Now, let A,v be non-negative integers satisfying
0O<v<k-1r- 3. From (5.15) and (5.19) it follows that

r A

(5.27) a*m_(v) = le 0 @ DM L (e, veae)
p‘= &:

In order to apply theorem 2.1 we investigate the difference

(5.27) under the additional condition

(5.28) A=xr + 3+ 1 mod 2,

Since it follows from (5.8) by (5.28) that

(5.29) Ax Hm(k - =X =y = Ax Hm(v),

it is obviously sufficient to consider the case

k-r-2

> '_<_E\)_<_k—r—)\.
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If 2v > k~-r-)A, then the sum in (5.27) is dominated by
its element for (u,%) = (r,\). To be more precise:

because of (5.26) and (5.28) we have

A r+l

(5.30) A Hm(v) ~ (-1) Im(v +r+ A, v+

]

for m - », m 1l mod 2.
If 2y =k - r - ), then, using the symmetries occuring

within the integrand of (5.19) (see (4.1), (5.5) and

(5.23)), we find
(-DF T (v+1, v) =I (v+er+r, v+ 2.
m m

Thus, the two dominating elements in the right-hand side

of (5.27) equal one another and therefore

r+
(5.31) A H_(») ~ 21T LT (v oz, v+ )

is valid in this case form - o, m = 1 mod 2.
The right-hand sides of (5.30) and (5.31) are positive.
Therefore, since we are only dealing with a finite number

of pairs, (\,v), an integer mo(k,r) can be found such that

(—l)r+l ah Hm(v) > 0 for m > mo(k,r), m=1 mod 2

holds for all pairs (A,y) with 0 < y <k - r - ), which

satisfy (5.28).
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1 mod 2 and assume H(x)

Now let m > mo(k,r), m
is the interpolation polynomial associated with the function
r+l .
(-1)” "H(x) and the point set {0,1,..., X - r}. Then ob-

viously

A"H (v) >0 for0<v<k-r-i A=r+3j+1mod 2

and

H(k - r - x) = (1) fx)

hold (see (5.8)). Finally as a consequence of (5.9), (2.3) we
have

[P(DIgplg=1 =[H(D)glg= _q-

From the last three relations, it follows by theorem 2.1
that the statements (5.11) and (5.12) are equivalent. Thus

theorem 5.3 has been proved.
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