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SUMM_RY

This report contains in part material presented in

previous interim reports and in part new material to pre-

sent a comprehensive study of the H-guide with artificial

dielectrics. The study was carrled out by Roy Ho Propst

under the direction ot Dr. Frederick J_ Tischer during

1967_ The resulting report was submitted by Mro Propst as

a thesis for the Degree of Master of Science at the North

Carolina State University at Raleigh, No C_

The study deals with H-guide structures with artifi-

cial dielectrics. The application of artificial dielectrics

represents one approach for the reduction of the attenuation

caused by the dielectric slab in H-guides. Emphasis is placed

on a new type of H-guide, the corrugated H-guide, The

attenuation of this guide is computed, evaluated numerically

and compared with that of other waveguides_ Results of

measurements verify the analytical results°

After a review of the literature, the atteDuatlon for

three wave-guiding structures is calculated° The structures

are: an infinite dielectric sheet, an infinite corrugated

plane, and a dielectric H-guide_, These preliminary calcula-

tions are necessary for developing the method of computation,

the normalizations to be used, and for purposes of subsequent

comparison_

The distribution of the field components for the cor-

rugated H-guide is determined by employing the method of



field matching. From this, the attenuation is computed

and evaluated numerically at various frequencies by computer.

The attenuation of the corrugated H-guide is compared

with three other wave guides: a dielectric H-guide, a lami-

nated dielectric H-guide, and a standard rectangular wave

guide, all operating at i0 GHz.

Measurements were made at 10 GHz for the verification

of the analytical results for the corrugated H-guide struc-

ture. They were carried out in a transmission-type cavity

which formed a shorted section of H-guide. Experimental

techniques are described for determination of the guide

wavelength and attenuation.
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i. INTRODUCTION

As frequency increases beyond X-band (i0 GHz), the low-loss qualities

of rectangular wave guides become degraded considerably; for example, the

attenuation of standard rectangular wave guides operating at 70 GHz is

approximately twenty times that of X-band wave guide at i0 GI!z. This occurs

because of the reduction in the ratio of cross-sectional area to wall area,

and increase in surface resistance. There is further a degradation in the

power handling capability as the size becomes small.

One alternative solution is the use of "oversize" wave guides; that is

wave guides with a width of several half-wavelengths. However, this

introduces modes of higher order than the fundamental, which means there

will be losses incurred when the power is extracted.

Semi-open wave guides, such as the H-guide which may also be "oversize",

offer another possibility in that the top and bottom walls of a rectangular

guide are removed and replaced by a central dielectric slab whose loss can be

less than that of the walls removed. The H-guide behaves somewhat _

surface wave guide since the field decays exponentially with distance from

the central dielectric slab, thus confining the field to a region near the

slab. An interesting feature of the dielectric H-guide is the disappearance

of the component of the magnetic portion of the field normal to the slab,

thereby eliminating longitudinal wall currents. This means that the contact

resistance between H-guide sections is of no consequence and does not

introduce significant losses as in the case of rectangular wave guides.

It is intended for this investigation to determine quantitatively the

advantage in using artificial dielectrics, as opposed to a single dielectric

slab, within the H-guide. Two cases will be considered: a corrugated
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structure, and a laminated dielectric structure. The corrugated structure

consists of an array of rectangular metallic plates placed in parallel within

a low-loss foam dielectric; and the laminated, an array of dieTectric slabs

each of which occupies a position similar to the slab in the usual H-guide.

Initially_ the attenuation for three other structures--infinite

dielectric plane, infinite corrugated plane, and dielectric H-guide--is

found. This is necessary since the attenuation for the infinite corrugated

plane was not available elsewhere, and that for the infinite dielectric

plane and the dielectric H-guide was not available in a form suitable for

comparisons. The attenuations for the infinite cases also provide a

validity - check for the attenuation of the H-guides, since in the limit as

the width of the H-guides becomesinfinite, the attenuations approach that

of the infinite planes.



3

2. REVIEWOFTHELITERATURE

2.1 Surface Waves

A surface wave is defined as a wave which propagates along an interface

b_we_m Lwo different media without radiation; radiation meaning energy

converted from the surface-wave field to some other form.

Hertz was probaoiy the first to examine surface waves analytically

(Jones, 1893). In 1889, he determined the electric field produced by a

wave propagating along a wire of infinitesimal thickness. However, he did

not solve the problem completely; this was left to Sommerfeld (1899). In

1888, Hertz constructed a single wire transmission line excited by resonant

spark discharges (Jones, 1893). He found that the wavelength, as measured

between adjacent modes on the wire, was independent of the size of the wire

and the material from which it was made, and, thus, concluded the velocity

of propagation to be independent of these parameters. This line is a

surface wave transmission line in that the waves are traveling along the air-

conductor interface.

The Harms-Goubau line, a single wire covered with a layer of dielectric

material, is perhaps one of the most widely known surface wave guides. This

was first analyzed by Harms (1907) by direct solution of the Maxwell equations.

Goubau (1950) extended the work, and later performed measurements on such a

line. The attenuation of a two-mile line of this type was measured at 200

MHz, and found to be only six decibels per mile (Goubau, 1954). It was found

that the sum of the conductor and dielectric losses for this line _ s less

than the conductor losses for a conventional two-wire transmission line;

however, launching loss and loss due to supports was fairly large; therefore

short lines would not be practical.



I,

Zucker (1954) classifies traveling waves into two categories; if the

phase velocity, Vp, of a wave is slower than the velocity of light, c_ in

the medium, then most of the energy of the wave is containe_ within a small

region near the interface and the wave is termed a guided or "trapped" wave

(surface wave); if v is greater than c, then the wave radiates and is
P

termed a "leaky" wave. This can be observed from the equation relating the

propagation constants of a wave traveling in the z-direction along an infinite

interface. If x is the direction normal to the interface, the propagation

constants are related by

= k2 - k= (2.1)z

or, in terms of velocities, as

oF • (2.2)x v g
P

It follows from (2.2) that if v is greater than c, then _ must be complex
p x

and, therefore, eliminating the guiding property of the interface.

If the guiding structure is closed in the y-direction, then (2.1) becomes

or (2.2) may be written as

w w + (2.4)
_X = V C y

P

Now, if v is greater than c_ _ need not necessarily be imaginary due to
p x

the presence of k . This illustrates the difference between a semi-open and
Y

a completely open (infinite) guiding structure.
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2.2 H-Guide

The H-guide was proposed by Tischer (1953). The cross-sectional area

view, from which the name is derived, is in the form of an "H"; essentially

a parallel-plate wave guide with a dielectric bar separating the plates. An

investigation of the properties of the structure carrying the low-loss wave

mode was made by Tischer (1956) and extended to other wave modes by Cohn

(1959). Attenuation was calculated but not placed in a form suitable for

comparison with later structures. Tischer (1959) investigated the properties

of an H-guide with a central bar composed of two dielectric slabs separated

by air; it was found that losses could be reduced in this manner. In the

same paper, an H-guide with multiple laminations of dielectric slabs for the

central bar was proposed; however, no calculations were performed.

An experimental investigation of the dielectric H-guide was performed

by Tischer (1959) whereby a distribution of the electric portion of the field

was plotted. Griemsman and Birenbaum (1959) also investigated the same

structure and demonstrated that losses are definitely reduced by the insertion

of the dielectric slab; thus, H-guide as opposed to parallel plates alone.

This work indicates that the H-guide is a feasible wave guiding

structure, and that the possibility exists for reducing attenuation by the

use of artificial dielectrics.

2.3 Artificial Dielectrics

An artificial dielectric is a large-scale model of an actual dielectric,

which can be obtained by arranging conducting obstacles in some three-

dimensional pattern (Collin, 1960). In actuality, the obstacles are supported

by some material such as styrofoam which has s dielectric constant nearly

equal to unity. When an external field is applied, charge on the surfaces
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of the obstacles is displaced, thus establishing an electric dipole. Each

obstacle thereby behaves as molecule in an ordinary dielectric. The combined

effect of all of the obstacles produces a net average dipole polsr_zatiom_

_. The permittivity, ¢, is greater than CO, since

The analysis of the artificial dielectric problem is approached in three

manners. The simplest solution is obtained by considering only dipole

interaction between obstacles. This is valid if the obstacle size is small,

as compared to spacing, and spacings are less than one-tenth wavelength.

For larger obstacles, all of the multipoles can be accounted for by a complete

static field solution (the second method). A third method is to solve the

Maxwell equations directly in some approximate manner; this approach will be

used for the solution of the corrugated wave guide problems, which follow.

Brillouin (1948) discussed several types of structures capable of

supporting waves whose phase velocity is less than the velocity of light in

the medium. These structures were corrugated plates of rectangular or

cylindrical geometry.

Elliott (1954) examined a rectangular wave guide with a corrugated

bottom surface. He was interested primarily in the structure as a means of

exciting a corrugated radiator, and therefore did not compute the attenuation

for the structure.
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3. ATTENUATION OF A DIELECTRIC SLAB

3.1 Introduction

The purpose of this section is to determine the attenuation of waves of

_iransverse Magnetic) mode propagating along an in1'inite

dielectric slab in terms of the medium properties, and a normalized decay

constant (p = _x/KO) of the _'ield above the dielectric.

To facilitate the solution of the problem, an equivalent problem may be

considered (Figure 3.1); namely, the dielectric slab placed on a perfectly

conducting sheet, which later will be removed using the method of images.

Another slab, whose thickness is the same as that of the original, will be

substituted in its place. Implicit is, of course, the necessity for

excitation which is symmetrical about x = 0. The solution will be obtained

by the use of field matching at the boundary between the dielectric and air

regions. Two solutions to the wave equation, one for each region, will be

found; one valid for x _ a (air).

There is, of course, another set of solutions which would arise if the

plane were a perfect magnetic conductor. In this case, the electric field

would be a maximum at the conductor rather than zero.

3.2 Development of the Field in Terms of Longitudinal Components

The source-free, time harmonic Maxwell equations are

V xE = - j W _0 _ (3.1)

and

VxI-I = j m Co _r E .

Expansion in rectangular coordinates yields

(3.2)
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Figure 3.1 Infinite dielectric slab over perfectly conducting plane
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8Ez BEy

B--_ Bz - j m _0 Hx ' (3.3)

BE BE
X Z

Bz Bx - J (3.4)

BE BE
y x _

8x By j wbO Hz ' (3.5)

BH BH
z y

_r Bz - j w cn Cr Ex ' (3.6)

and

BHx BH z

Bz Bx - j w 60 _r Ey , (3.7)

Y
Bx BY - j w co cr Ez ' (3.8)

The solution is now restricted to the fundamental TMmode (Hz = O), and

by symmetry considerations the y-variation is zero (_ = O); therefore only
By

three field components will remain. In this type structure_ the z-variation,

-jk z

_v_ _±_±_ v_±_ _b_ u_ of un_ _urm e _u±" waves Lraveiing in

the positive z-direction; (3.3) through (3.8) reduce to

and

- j w co cr BE z

H : 2 - k_ B-x-- (3.9)
Y ko Cr z

- jk 8E
E = z

x k_o Cr - k2 BxZ

where

ko: _iO _0

, (3 .i0)

(3.11)

and



32E
z_x_ + Cr z z

= 0

i0

(3.12)

for

3.3 Solution for the Field in the Dielectric Region

Boundary conditions specify

E = 0
z

x = 0

Therefore, (3.12) yields a solution of the form

Ez¢ = A sin (kxX) , (3.13)

where

k s 2 _ k s
x = ko Cr z (3.14)

The other two field components may be obtained from (3.9)and (3.10); the

total field variation is then

jk

E o-,,,. _ }Io _in (<_) , (3.1_)
-_ w_O_ r --

and

H : H 0 cosy_ (kxX) , (3.16)

k

_ z H0 cos
Ex¢ W¢0S r (kxX) , (3.17)

defining

- j w ¢0 Cr A

I{o = k (3.18)
X
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3.4 Solution for the Field in the Free-Space Region

It is desired to have a solution which describes waves traveling along the

interface between the dielectric and free-space regions_ which means the field

must decay as x increases from the value a. The only type of solution of (3.12)

meeting this requirement is of the form

-_ x

E = Be x (3.19)
z

where

: Pz - ko_ (3.2o)

Requiring continuity of E
z

at x = a_ i.e._

z Z8

for x : a; this yields

jk _ a

B - x H0 sin e x
w¢0er (kxa) (3.22)

The remainin_ two f_e]d commonent_ m_v b_ nbt,_n_a frnm (_.a] _a (3 7n); +_

total field is then

J_x -_ x
x (3.23)

E - H_ e
z we 0

and

x (3.24)
%: H_ e .,

k -0{ X

z x (3.25)
Ex = WC---_H_ e

where
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a

Hokx ,_ _x (3.26)
=- sin kkxa; e

x r

Requiring further_ that the other tangential field component, Hy, must also be

continuous at x : a, !._.,

H = H
Y Y_

(3.27)

for x = a, which yields

k tan (kxa) = ¢r_x •X

(3.28)

3.5 Power Transport

The total power, P, carried by the guide will be due partly to the

dielectric, Pc, and partly to the free-space region, PO; hence,

P = P + PO "¢

The Poynting identity yields

p :½R _o E _ ay_e xc y¢

(3.29)

(3.30)

and

oo 1

Po: ½Re y

Equations (3.15) and (3.16) yield

kzH_ [ 2k a + sin (2kxa) } ;
PC = _¢O_r kx x

also, (3.23), (3.24), and (3.31) yield

kzl_ok _

PO - 4_eOe_O_ x sine (kxa)

Combining (3.29), (3.32), and (3.33), the total power transported is

(3.3l)

(3.32)

(3.33)



kz 0{p= I
_eOe r _--[ (2kxa + sin(2kxa)] +

x

k2xsin2 (kxa) _

COer_3x

13

(3.34)

.L- U W_I .JJU _ S

Power losses due to the conducting plane are not considered since, in the

-a_u _la±d_±_ it---'_ be z'_moved. '±ne _o_am mosses are_ therefore, due to the

dielectric alone; they are predicted by the Poynting identity as

a I Je E* dydx (3.35)PL = ½ Re to _O --¢ '

which becomes

w¢0¢ r a

PL = 2 tan(6) R e to _0 (ExeEx*e + EzeE_e)dydx _ (3.36)

when Ohm's law, £ = _ E, is substituted into (3.35). Introducing (3.15) and

(3.17) into (3.36) and performing the integration,

%tan (6 )

PL = R m_ o
.... 0 _r--x

{ 2kxak_e r + [k_(2-er) + 2_.x] sin(2kxa) (3.37)

3.7 Trigonometric Identities

It will be useful to consider the following identities before calculation

of the attenuation

sin(2kxa) = 2 sin(kxa ) cos(kxa ) , (3.38)

and

= i
sin(kxa) I ' (3.39)

cot2 (kxa)+

= i
cos(kxa) (3.40)

Jl + tan2(kxa )
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Combining (3.14) and (3.20), yields

k_ : k_(_-i)-
Y Y

Equations (3.39) and (3.40) can now be evaluated in terms of nontrigonometric

functions by using (3.38),

(3.41)

CrOlx
sin(kxa) : h ' (3.42)

where

and

h_ :k_(_r-l)+_x(_r-l) (3.43)

k
x

c°s(kxa)- h " (3.44)

Combining (3.38), (3.42) snd (3.44) yield

2kx_ tO( x

sin(2kxa) - h2 (3.45)

3.8 Attenuation

Having completed the preliminaries, the attenuation can be evaluated.

The attenuation, power loss per unit length, in the z-direction is given by

P_
O_ _ _ •

2P

From (3.34) and (3.37), it follows that

(3.46)

tan(6) [ 2kxak_¢ r + [k_(2-¢r) + 2a2x]Sin(2kxa ) ]

: kexsin2 (kxa) (3.47)i
4k k [ _---[2k a + sin(2k a)] + ]

x z x x x eO_r_x

Using now the identities, (3.42) and (3.45), and multiplying numerator and

denominator by h2_ x yields
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tan(6)ot x [ 2ak_)Crh2 + Ek_(2-_ r) + 2a_x]2_rOt x ]
OL =

Z X X r _ _

Introducing (3.41) and simplifying,

(3.48)

tan(6) { k_rOtx[ahm + (2-6r)O_x] + 2_rOL_ ]

z x ko¢r(er-l) ] ....

(3.41), it becomes

a = _k_(¢r_l) _i C_x tan-Z (_k_(¢r_l) _ C_x } .. (3.50)

defining p_ the normalized decay in the x-direction as

x

p - k0

Substitution of p into (3.50) and multiplying by h2 then specifies

'1_ f_ -t '_F'_ __2 ,= '_'1

--O,_r-±,L- + L_ (mr'''J tan -L { } , (3.51)ah 2 _ rP

V 6r - I - p_ _ _ - I - p2
r

after defining

(¢r-l)[l + Pm(¢r+l)] 6rP } (3.52)
H = / _r- I- pm tan-Z :{_¢ r - i- p_

Equation (3.51) may be written

ah m = k 0 H , (3.53)

noting that H depends on frequency only through p. The attenuation can now

be written in terms of p and Hby using (3.51) and (3.53);
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tan(8)k 0 CrP[H + p(2-_r) + 2p s]

= 2 "_i + p2[H __ + Cr(_r+l) ] (3.54)

_ is now e_-plicitly a fuuction of H, p, _r' and tan(6) except for the linear

k 0 dependence.

3.9 Physical Parameter Values

It would now be useful to determine the numerical range of physically

meaningful values for _ and p. Suppose it is desired that the fields decay
x

to IO0/M percent of the value at x = a, at a distance Sko, viz.,

that is_

(3.55)

If the following conditions are desired:

M=IO,

s = 1.5 ,

and

k0 = 3 x 10-2 meters (f = i0 GHz) ,

then

or

= 51 neper
x meter

= 0.242 neper
Plo radian '

(3.56a)

(3.56b)

since

radian

k 0 _ 210 meter (3.56c)
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Similarly for the same value of M and s, but for

X0 = .857 x 10 -2 meters (f = 35 GHz) ,

= 192 "'-_-__x meter

and

= 0.0261 neper
P_B meter (3.57)

Examination of (3.51) yields the possible range of
r

CrOp 2 +i

for a given _ as
x

3.10 Computer Program

3.10.1 Introduction

Listed below is the computer program which was used to determine the

attenuation of the infinite-dielectric surface wave guide; a flow chart,

Figure 3.2, is also included. The normalized decay constant (p), initial

relative permittivity, frequency, and loss tangent are initiaAAy-_ixed

parameters. Relative permittivity is varied from the initial value to one

hundred; attenuation and thickness are computed for each value of permittivity,

all of which are printed.

A subroutine, GRAPH, is used to plot the results by utilization of a

Calcomp Model 563 plotter in conjunction with an I.B.M. 360 series, Model 30

computer_ a flow chart can be seen in Figure 3.3. The language used for all

of the programming was Basic FORTRAN IV.

The numerical results appear in Figures (3.4) through (3.7).

i
Triangle Universities Computation Center, Research Triangle Park_

Research Triangle_ North Carolina.
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READ

P, ER, FREQ, TAND
M. k". NAM'I_.

WRITE

NAME

CALCULATE

PROPAGATION

SET

READ NAME

OF GRAPH

AND AXES

2

CALCULATE

CALCULATE

THICKNESS

B

<

CALCULATE

XN,XD

< 50

_(z)
=B 35

K<O

WRITE

XK0,X(I)
A_(I)

f
oo_o_I

Figure 3.2 Flow chart for main program

WRITE

XKo,X(1)
ALPHA(1)

t '
I (;o,_,o_P
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ESTABLISH

NEW

NT= 2

IF, NT

DETERMINE

TYPE OF

GRAPH

NEW

ORI(IIN

15

COMPUTE J 15
SCALE

FACTORS

201

J LAY OFF JAXES
I

T 202

[ PLOT THE 1CURVE

RE TuStN ORIGIN

TO LOWER LEFT

CORNER, FOR

NEXT CURVE

Figure 3.3 Flow chart for subroutine
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Figure 3.5 Attenuation of infinite dielectric slab at J5 GHz
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3.10.2 Main Program

C X IS RELATIVE PERMITTIVITY

C IF K=0 ALPHA IS THIC_Z__.TESS

C IF K=I ALPHA IS ATTENUATION

C TAND IS LOSS TANGENT

C P IS NORMALIZED DECAY CONSTANT

C NAME IS APPROPRIATE COLUMN NAME

C DEPENDING ON VALUE OF K

C EO IS FREE-SPACE PERMITTIVITY

C XM0 IS FREE-SPACE PERMEABILITY

C XKOS IS PROP. CONSTANT SQUARED

C XKO IS PROP. CONSTANT

C B IS THICKIYESS OF SLAB

C ERO IS INITIAL PERMITTIVITY

DIMENSION X(55),ALPHA(55), WORK(210),ANAME(3)

5 READ (i, 199)P, ER, FREQ, TAND,M, K, NAME

199 FORMAT(2FI0.5,EI5.8,EI5.8,15,15,AI2)

WRITE (3,306)NAME

306 FORMAT(IHI, 'PROP. CONSTANT',IX, 'RELATIVE EPSILON',3X,AI2)

PI=3.14159

E0:(I.E-09)/(36.*PI)
XM0: (i .E- 07)'4 .*PI

XKOS=4. *P I*P I*FREQ*FREQ*XMO*E 0

x O:S T(x 0s)
I=O

ERO=ER

2 Y=I

ER=ERO+Y*Y*. 04

Z=I. / (XK0*S_T (m- 1. -P-P) )
B:Z*ATAN(F,R*p/,qO_rP(_.__q _p.p] ]

XD: 2. *SQRT (P*P+l. )* (H*P+ER* (ER- i. ))

1F(I-50)33,34,34

33 X(1)=ER

IF(K-I) 35,36, 36

35 I=I+i

ALPHA( I):B

WRITE (3,405)XKO, X(I) _ALPHA(1)

405 FORMAT(IX, 3E15.8)

GO TO 2

36 I=I+i

ALPHA(I) :XN/XD

WRITE (3,405 )XK0, X(I) ,ALPHA( I )

GO TO 2

34 READ(I,20) ANAME(1),ANA_ME(2),ANAME(3)

20 FORMAT(3 (A4,6X))

J=0

CALL GRAPH (X,ALPHA,WORK, 50,ANAME,B6,2,I,J)



CALLPLOT(0.,0.,999)
IF(M)38,37,38

37 GOTO3
38 STOP

END
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3.10.3 Subroutine

SUBROUTINE GRAPH(X,Y,WORK,N,ANAME,L,NT,KR,J)

C WORK IS A DDMMYMATRIX USED IN PLOTTER INSTRUCTIONS

C DIMENSION OF WORK IS DIMENSION OF X PLUS DIMENSION OF Y PLUS i00

c N IS OF POINTS
C ANAME(i) NAME OF GRAPH

c oF x-AXIS
C ANAME(3) NAME OF Y-AXIS

C X IS HORIZONTAL AXIS

C Y IS VERTICAL AXIS

C DIMENSION OF X IS N+2 DIMENSION OF Y IS N+2

C L IS THE DECIMAL INTEGER CODE INDICATING POINT SYMBOL USED

C NT=I LONG AXIS VERTICAL IE Y-AXIS VERTICAL

C NT=2 LONGAXIS HORIZONTAL IE X-AXIS HORIZONTAL

C KR=O PLOT CURVE ON SAME AXIS

C KR=I DRAW NEWAXISEACH TIME

C J=0 NO DATA POINTS OUTLINED

C J=l DATA POINTS OUTLINED WITH CHARACTER TYPE L

C DUMMY DIMENSION STATEMENT SW_ SH GET DUMMY INITIAL VALUES

DIMENSION X(1),Y(i),WORK(i),ANAME(1)
NBYTE=2*N+2

SH:5.

SW: 5 .

C ESTABLISH WORK AREA

CALL PLOTS(WORK(1),NBYTE)

C IS THIS A REPEAT

IF(KR)I01_202,101

C IS THIS THE FIRST GRAPH. IF S0,ESTABLISH PEN LOCATION AND ORIGIN.
C FIND BOTTOM OF PAPER

iOl CALL PLOT(O.,-]I.,-3)

C ESTABLISH ORIGIN OF WORK AREA

CALL PLOT(12.,.5,-3)
C AREA ORIGIN IS NOW ESTABLISHED

C DETERMINE TYPE GRAPH TO BE PLOTTED TYPE i HAS LONGAXIS VERTICAL,
C TYPE 2 HAS LONG AXIS HORIZONTAL.

IF(NT-2) 11,12,11
C TYPE i

C LABEL GRAPH NAME WITH .25 INCH LETTER LOWER LEFT CORNER 3.5,10.0

li CALL SYMBOL(7.5,10.O,25,ANAME(1),0.,4)
C ESTABLISH NEW ORIGIN

CALL PLOT(2.,.5,-3)
sw=8.
SH=I0.

GO TO 15
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C

C

C

C

C

C

C

C

C

TYPE 2

12 CALL SYMBOL(6.5,8.50,.25,ANAME(1),0.,4)
ESTABLISH NEW ORIGIN

U,AT,T., PT_.OT(2. ,!. _-3)
SW=I0.

SH=8.

COMPUTE SCALE FACTORS

15 CALL SCALE(X, SW,N,I,10.)

CALL SCAIN(Y, SH,N,I,10. )
LAY OFF AXES

201 CALL AXIS(O. ,0. ,A_E(2),-4, SW,O. ,X(N=I),X(N+2),10. )

CALL PLOT(O. ,0. ,3)

CALL_S(O. ,0. ,_ma_(3),4, s_,90. ,Y(_+I),Y(N+2),IO. )
CALL PLOT(O. ,0. ,3)

PLOT THE CURVE

202 CALL LI'NE(X,Y,N,1,J_L)

CALL PLOT(O. ,0. ,3)

CHECK FOR COMPLETION OF CURVE

RETURN ORIGIN TO LOWER LEFT ORIGIN OF WORK REGION

IF(NT-2) 21,22,21

TYPE i

21 CALL PLOT(-2.,-.5,-3)
RE%TIRN

TYPE 2

22 CALL PLOT(-2.,-I.,-3)

RETURN

EIkID



4. ATTENUATIONOFANINFINITE CORRUGATEDWAVEGUIDE
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4.1 Introduction

The infinite corrugated wave guide, Figure 4.1, behaves much the same as

the dielectric surface wave guide in that the field is confined to a region

just above the corrugations; that is, the corrugations perform as an artificial

dielectric.

The attenuation for the corrugated guide is to be calculated and compared

with that of the dielectric guide; as a comparison criterion, the normalized

decay constant, p, will be the same for both cases.

Here again, the same technique as in the dielectric case will be

employed; namely, the problem will be solved under the assumption of symmetrical

excitation, with a perfectly conducting plane passing through the center of

the corrugated guide, which requires finding the field for x-positive, the

other half being symmetrical. The field matching technique will be utilized_

matching the field solution above the corrugations with that below at x = a.

4.2 Development of the Field in Terms of Longitudinal Components

The source-free, time-harmonic Maxwell equations are

_ = - j w _0 _H (4.1j

and

_':::;2 = J w 6 0 E , (4.2)

which become, upon expansion in rectangular coordinates

8E 8E

z _,, (4 3)- J '

8E 8E
X Z _

3z _x j w _0 Hy , (4.4)
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x

z

Figure 4.1 Infinite corrugated wave guide over perfectly conducting
plane
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_E _E xY J H
_x _y _0 z ' (4._)

8H 8H
Z Y _- _ m

8y 3z - ' _- CO _x ' k'¢. u)

and

8H 8H
x Z

8z _x -+J_¢oEy,
11

_*.7)

8H 8HxY

8x 8y - + j w ¢0 Ez (4.8)

For the case under consideration, the field may be separated into TE

(Transverse Electric) and TM (Transverse Magnetic) modes. If now it is

assumed that only TMmodes are present and symmetry is considered, (4.3)

through (4.8) become

H :0,
z (_.9)

D _-- 0

8y
(h qn_

JWboH x , (4.1z)

8E 8E
x Z

8z 8x JWbob, (4.12)

8E
Y

_X -
O , (4.13)

8H
Y

8z - j w ¢0 Ex ' (4.14)

8H
x

3z - j _0 ¢0 Ey , (4.15)



and

SH
Y

- J :_ ¢0 Ez8x

3O

_'+ ..Luj

4.3 Solution for the Field Within the Corrugations

Boundary conditions require E = 0 at x = a, but (4.13) specifies E
Y Y

be independent of x; it must therefore be concluded that

E = 0
Y

for all x. Equation (4.17) together with (4.11) now yield the further

restriction

H = 0
X

The remaining field components, (4.12), (4.14), and (4.16), can now be

written

to

(4.17)

(4.18)

= - j w _0 Hy ,
(4.19)

and

E w

X we 0 8z

(4.2o)

E : -j . (4.21)
z we 0 Bx

If now (4.19) through (4.21) are combined, a wave equation results; namely

_2 H _2H
Y+ Y+ _ _ : o (4.22)

_ _z--T- ko y '

where

2 : w2 (4.23)
k0 _0 ¢0 "
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In rectangular coordinates, variables maybe separated, and (4.22) becomes

_svo_+ i __3-+ ks = 0 r) ,_I_
1

X 3x2 Z Bz 2 -0 '

: X(x) Z(z) .
Y

Therefore, upon separation,

32x+k _ x 0 (4.25)
_X 2 X

and

8e___Z+ k2 Z : 0 (4.26)
_Z 2 Z '

where

+k =k_ .z

Equations (4.25) and (4.26) yield solutions of the form

x : axCOS(kx_) + B sin(_xm_)xm

and

(4.27)

(4.28)

Z = AznCOS(_) + Bznsin(_ )

The total H variation, the product of X and Z, must be
Ys

(4.29)

O0

= Z [AxmCOS(kxmX ) + Bxmsin(kxmX)]Hye m=-co

_. [AznCOS(_ z) + B sin z)] ,n=-_ zn
(4.30)

which reduces to
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H = _. FA cos(kxnX ) +y¢ n=-- xn Bxnsin(kxnX) ]

zn

since upon substitution of k = nTT/S into (4.27) yields
Z

(4.31)

+ :k , (4.32)

implying m = n; therefore becoming

k2xn + (___)2 = % • (4.33)

In actuality, this requires each individual term of the series expansion

for %e to satisfy the wave equation; however, this does not necessarily mean

that each term (mode) must satisfy the boundary conditions stipulated by the

Maxwell equations, since these boundary conditions need apply only to the

total field.

E = 0
xe

for

z = i/s,

where

and

for

The boundary conditions are

i = 0 , _= i , ± 2 , .

E = 0
ze

x = 0 .

If it is now assumed that the series describing H Js uniformly
ye

convergent, (4.20) and (4.21) together with (4.31) specify



Ex¢ = w_J-_on=__(-_-)[AxnCOS(kxnx)_ + Bxnsin(kxnX)]
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and

[-Az sin(_W., z)+ BznCOS(_ w z)] (4.34)

Eze = w¢--_-j n=-_ kxn[-Axnsin(kxnX) + BxnCOS(kxnX)]

nw nw
• [AznCOS(T z) + Bznsin(T z)] . (4.35)

Noting the boundary conditions have not_ as yet, been enforced.

The uniform convergence is in fact true, since the series is actually a

Fourier expansion of the field, and the field will be required to be continuous

(Lanczos, 1966).

4.4 Solution for th___eFiel_ i__nnth___eRegion Above the Corrugations

In this region, as before, the same restrictions apply to the field, i.e.,

: n (_._
--Z - _ _ •

= o , (4.37)

E = 0 , (4.38)
Y

and

Hx = 0 , (4.39)

yielding again, (4.19) through (4.23).

Surface wave propagation is desired, and by definition, this requires the

field to decay with increasing distance normal to the wave guide (increasing

x). Tne following form for the x-variation is therefore imposed upon the field
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-_xm x
x= z a e , (4.4o)m=-_ m

which, of course, satisfies the wave equation

8aX

m-a_ X =0,
bx2 xm m

th
X being the m term of the series. Since the total field variation for H
m y

must _-¢__=_±_ (4. ° _ +_ must sa +_sey_2;, ....n the ...._+'_

(4.41)

b2 Z

+_ z = o , (4.42)
Bz2 zm m

where

k2zm= k02+ @xm " (4.43)

The periodicity of the structure in the z-direction requires the Floquet

theorem (Collin, 1960) to be satisfied by the z-variation. That is, between

any two points separated by a distance, s, the field differs only by a phase

change; namely

-JkzoS
Z(z+s)= Z(z)e

requiring

-Jkz0Z
Z(z) = _(z) e

where

_(z+s): _(z) .

Since this is true for _(z), then _(z) may be expanded in Fourier series of

period s,

_m_
o_ -J(T)Z

m_z; = r b em=-_ m



It follows that the total z-variation must then be of the form
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-JkzmZ
Z(z) = Z b em:-_ m ' (4.44)

where

k = k__ +-- .
zm _v s

This, with (4.40), specifies the total H variation as
Y

(4.45)

-_xm x -JkzmZ
H : E H' e e . (4 46)y m=-_ m

Since, as before, there exist no "cross terms" where the series, (4.40) and

(4.44), are multiplied because of (4.43). Equations (4.20) and (4.21) then

yield with (4.46):

and

1 _ -_x_ x -JkzmZ
:-- E H' k e e (4.47)

Ex we 0 m=-_ m zm

E = J E H'
z _¢0 m=-_ m xm

-_xm x -JkzmZ
e e (4.48)

4.5 Continuity of th___eField at th___eBoundary

Requiring the tangential field components to be continuous at the

boundary specifies

and

= H (4.5o)Y

for x = a. This will yield two equations from which others may be generated

by using the orthogonality property of the field components, from which all of



36

the unknown constants may be found. The results specifying exactly (as the

chosen model permits) the field everywhere; however, the solution will be

lengthy.

Alternatively, the corrugated regions may be considered as infinite

parallel-plate wave guides which, for s < k/2, would be cut-off for TE and TM

modes, i.e., only allowing the TEMmode to propagate. For the TEM mode, it

m_ust be that E = O, which occurs if
x

n= 0 ,

reducing (4.31) and (4.35) to

Hy¢ : AxoCOS(kxoX ) + Bxosin(kxoX )

and

E -J
z¢ : _ kxoAzo[-Ax0sin(kxoX) + BxoC°S(kxoX)] "

Boundary conditions require

Bxo = 0 .

Therefore, with (4.33), (4.52) and (4.53)

and

where

and

Hy¢ = HoCOS(kxoX)

Ez¢ = j Z 0 H0sin(kxoX) ,

H0 = Ax0 ,

A =i
zO

zo : _%/% •

(4.5l)

(4.52)

(4.53)

(4._4)

(4.55)

(4.56)

(4.57)

(4.58)

(4._9)



Tangential field components can now be matched using (4.49) and (4.50),

yielding
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and

-_ a -JkzmZ
fit __ _, xm

_coS_o_; = _ e e (4._m_

ko  oSin(koa)=
-_xm a -JkzmZ

E H'_ e e . (4.61)
m=-_ m

By use of the orthogonality property of the harmonics forming the total field,

(4.60) and (4.61) can be simplified. The procedure is as follows: multiply

(4.60) and (4.61) by ejkzrz , integrate the resulting equations over the

fundamental period, s, of the field, and note the right sides of the equations

are zero if r is not equal to m. Upon setting r = m, the results are

_ ogxiflac°s(k0a) s JhzmZ H' e s (4.62)H0 e dz = m

and

s JkzmZ -_xm a

k0 H0sin(k0a) _o e dz = H'_mxm e s , (4.63)

the s, appearing in the right sides, resulting from the integration.

is now divided by (4.63),

If (4.62)

results. This specifies that there is only a single value for m, i.e., only

a single term in the series expansion for the field, since the right side of

(4.64) is a constant. Equation (4.43) essentially declares this value of m

to be zero since k is a constant. After evaluation of the integrals, (4 62)
zm

through (4.64) become

_xm = k0tan(k0a) (4.64)
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JkzOS_l -_xO a[e ]HoOO_(kO_) jkzO : H8 e s ,
(4.65)

[O  zo°]ko HoSin(koa) e -i = H'_ _ e s ;
Jkzo u xu

(4.66)

and

_xO = kotan(koa)
(4.67)

The solution of (4.66), in terms of H0 explicitly, yields

k 0 Hosin(koa)e_xoa JkzOS_l ] "
H_ = _xO s E e Jkzo

(4.68)

Equation (4.43) then stipulates

kz0 koE i ]
= cos(koa) "

(4.69)

Now, substitution of (4.67) and (4.69) into (4.70) gives

JkzoS

_& = _ Ho[J- j e ] , (4.70)

where

_xO a

cos2(k0a)e

koS

(4.71)

Expanding (4.70) yields

H& : % H0 [ sin(kzoS) + j[1 - cos(kzOS) ] ]
(4.72)

and; therefore;

_0' = _ _ [ sin(kzOS) - j[1 - coS(kzoS) ] ] , (4.73)



combining

H;_o'= _ % _o2[i-cos(kzoS)],

which will later be useful in the calculation of the attenuation.
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(4.7_)

and

4.6 Total Field, after TEM Mode Approximation

For OKxKa

TT _ _ fl

H = nOcoS _KoX )Y¢
(4.56)

E = j Z 0 Hosin(kox ) •zc

For a K x < _ ,

(4._7)

-_xoX -Jkz0Z (4.75)
_y= H_ e e ,

and

kzoH0 -_xoX -JkzoZ (4.76)E - e e ,
x we 0

j _ ^Hi -_xO x -JkzoZ (4.77)E = XUUe e

z _¢0

4.7 Power Transport

The power is transported totally in the region above the corrugations,

and is, from the Poynting identity_ given by

S 2
e a o ----

(4.78)

or

ExH* • ds , (4.79)
P' = ½Re __ - --



P' being the power transported per unit width of guide.

(4.75) and (4.76) into (4.79) yields

Substitution of

4O

p, kz0 _ -2_x0X

- 2W¢oHO _0' _a e

now, performing the integration

kz0 H$ H_' -2_x0a
P' = e

4w e O_xO
(k.Si)

4.8 Power Loss

Power will be dissipated by the walls of the corrugations, since in

actuality these will be nonperfect conductors. The power loss is given by

Rs a [_ (4.82)

PL is only the power dissipated by one vertical wall in a single corrugation.

There are, however, two walls per corrugation and ! corrugations per meter.
s

The total power dissipated per meter, is then

s (4.83)

With (4.56), it becomes

R a

P_'----_s_o_o_ocos_(koX)_x. (4.84)

Integrating yields

R s H0 H_O

PL - 4 s k 0 [2k0a + sin(2koa)] (4.85)
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4.9 Trigonometric Identities

Before the task of computating the attenuation is undertaken, the details

can be greatly simplified by considering the following identities.

It will be advantageous to define a normalized decay constant, p, as

_xO f), _h

p - k 0 _.... ;

Equation t_. _.__,.,_} then becomes

kz 0 _ + p2

_xO P

Consider

(4.87)

sin(2koa ) : 2sin(kOa)cos(koa ) , (4.88)

and

= i
sin(k0a)

_l + oot_(koa)
, (4.89)

cos(k0a) : i

_i + tan2(koa )

Equation (4.64) then yields

(4.90)

tan(koa) : p

Equations (4.88) through (4.91) become

(4.91)

sin(koa ) : P

2 +i

, (4.92)

I

c°s(k0a) = Jp2 + I
, (4.93)



and
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_koa = 2!° rI, _,,
sin(_ ) 1 + pe _'*'_'+;

The attenuation may now be computed.

4.10 Attenuation

The attenuation, _, is defined as the average power loss per unit length

of wave guide, which means

P}
= 2P--T (4.95)

Using (4.81) and (4.85), this becomes

R s H0 }_0 [2koa + sin(2k0a)] 4w¢0_xO

= _2_xoa (4.96)

2.4_k0 kzo_8H_'e

Substitution of (4.71), (4.74), and (4.87) into (4.96) will remove the H0 and

H6 dependency and simplify the attenuation as

R s k0 w ¢0 ps(2koa + sin 2k0a )

: (4.97)

4cos4k0a _ + pe [i - cos(kz0S)]

The previously developed trigonometric identities, (4.93) and (4.94), may now

be used

Rs ko ® % p_(i + p_)3/2(2koa + l+__p )

ot : 4 [i - cos(kzoS)] (4.98)

Introducing for a, (4.91) and simplifying,

Rs ko w e0 ps[2(l + p2)3/2tan-l(p) + 2p J + p_]
ol =

4 [i - cos(kzoS)]
(4.99)



Using kz0 from (4.43), then expressing this in terms of p, yields
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I

kz0 = k0 41 + P_ (4.100)

Using this, _ at last becomes

Rs k0 w ¢_uPS[2(l+p2)3/2tan-l(P)+ 2P_F + pe ]
= (4.101)

4 [1 - cos(k0J+ p_ s)]

It would be expected that the attenuation would become quite large as s

becomes small, since the number of corrugations per meter increases_ hence_

increasing the losses. This can be observed if the Maclaurin expansion for

the cosine is considered. For small s_

cos(ko J + p2 s) _ i -
k_(l+p2 )s2

2 (4.102)

The attenuation is now given by

R w ¢0 p [ 2(l+p2)Itan-l(p) + 2( i ) ]
s pJ+p2

: _o s , (4.,o_)

which, as expected, does increase as s decreases.

4.11 _ Computer Program

4.11.i Introduction

A computer program, written in Basic FORTRAN IV_ appears below, along

with a flow chart in Figure 4.2. The normalized decay constant (p), frequency

and loss tangent are input parameters. The spacing of the corrugations (s)

is varied; height of corrugations (a) and attenuation (_) are output variables.

The results of the numerical calculation are given in Figures 4.3 and

4.4.



READ: P, ER, FREQ

TAND 3 E

COMPUTE

PROP. CONST, XK0

ALLOW S

TO VARY

t
CALCULATE IHEIGHT, A

CALCULATE

ATTENUATION

ALPHA

STOP

Figure 4.2 Flow chart for program
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Figure 4.3 Attenuation of infinite corrugated wave guide at 35 GHz
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4.11.2 Computer Program

Dn_SION X(55),A(55),A_Pm(55)
3 READ(1,199)P,ER,FREQ_TAND,M_K,R

199 FORMAT(2FIO. 5 ,El5.8,E15.8,15,15,FI0.5)

WRITE (3,404)P, ER, FREQ, TAND,M, K,R

4o4 FORMAT(ZX_4_15.8,15,15,FlO.5)
WRI_(3,Z05)

105 FORMAT( 'i' ,4X, 'SEPARATION' ,8X, 'HEIGHT' ,8X, 'ATTENUATION' ,4X, 'PROP.'

$, 'CONSTANT' )

PI=3.14159

_O=(Z.E-Og)/(36.*PI)
_0=(i .E-07)'4.*PI
XKOS=4. *p I*P I*FREQ*FREQ*XM0*E 0

XK0=SQR_(XKOS)
DO 88 I=i_50

Q=I

Y=Q*. 01

x_ (.3_,+o9)/F_Q
s:(.o?+Y)*_
B=(I./XKO)*ATAN(P)
Z=2.*_O*B*(I.+P*P)*SQ_T(1.+P*P)+2.*P*SQ_(I.+P*P)
XN=R*XKO*2. *PI*FREQ*E0*P*S*Z

XD:4.*(1.-C0S(_0_T(_. +P*P)*S))
x(i):s
A(1)=B

AnPHA(1)=XN/XD
88 WRITE( 3, IO0)X(I) ,A(I) ,ALPHA(1), XKOS

I00 FORMAT(IX, 4E16.8)

STOP

END
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4.11.3 Identification of Program Variables

A IS HEIGHT OF CORRUGATIONS

ALPHA IS ATTENUATION

P IS NORMALIZED DECAY CONSTANT

DEFINED P=ALPHA/XKO

FREQ IS FREQUENCY

TAND IS LOSS TANGENT

ER_ M AND K ARE NOT USED
R IS SURFACE RESISTANCE

XMO IS FREE SPACE PEBMEABILITY

XKO IS PROPAGATION CONSTANT OF FREE SPACE
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5. DIELECTRIC H-GUIDE

5.1 Description of Structure

The structure considered is that of a H-guide utilizing a dielectric

slab for the center section (Figure 5.1). The dielectric slab has dimensions

2a by b. The sidewalls are assumed to be large enough in the x-direction

such that the field components are essentially zero at x = h_ and therefore

may be considered unbounded in the field analysis.

5.2 Introduction

The dielectric H-guide is examined analytically by employing the field

matching technique. Upon matching the field components_ it was found that

the H component vanishes_ implying the longitudinal wall currents are zero
X

Attenuation is found for the guide and plotted as a function of relative

permittivity for various values of p; the normalized x-decay constant,

defined p = _x/k, _x' being the x-decay constant.

5.3 Method of Solution

To facilitate the solution_ that portion of the guide for x _ 0 may be

considered alone_ if a perfect electrically conducting plane is placed at

x = O_ and removed later. Generally applicable expressions for the field

are found; one set useful above the dielectric and another within. The field

matching technique is employed to assure continuity of tangential (it may

also happen normal) field components at the boundary x = a. The field now

having been completely specified, the conducting plane may be removed and a

symmetrical portion of guide revealed in the region_ where x _ O_ as predicted

by the method of images. Excitation must be forced to meet the symmetry

requirements imposed by this technique.
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Figure 5.1 Dielectric H-guide on perfectly conducting p[arle
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It should be noted that the above considers only one-half of the total

solution to the problem; that is_ there also exists a set of field components

which would arise from placing a perfect magnetically conducting plane at

the center of the wave guide. In this case_ the tangential magnetic field

would be zero at the center rather than the electric; the electric being a

maximum in this case. These two types of solutions are sometimes denoted

the even and odd modes_ depending on whether the transverse magnetic field _s

odd or even with respect to the center of the wave guide.

5.4 Development of a Wave Equation

The total field in a linear_ isotropic_ homogeneous region free of sources_

must satisfy the Maxwell equations, which are, under the assumption of sinusoidal

time variation

vx_= j ® eE , (5.2)

v._, : o, (5.3)

and

v._ = o . (5.4)

Applying the curl operator to (5.1) and using (5.2) and (5.3), a wave

equation for E is obtained that is

V_E+ k_E = o , (5.5)

where

k 2 : _2 _ ¢ • (5.6)

Similarly, a wave equation for H may be obtained_ which is

V_H+ k_H : o . (5.7)
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In the case of rectangular coordinates, any one of the six field components_

denoted f(x,y,z), can be seen to satisfy

+ + =
_ Oy OZ

It follows that by knowing any two field components, two E-components, or

two H-components, a third component can be found from either (5.3) or (5.4),

specifying completely either E or H. The remaining three unknown components

can be found from either (5.1) or (5.2).

Solutions of (5.8) must now be found for two field components.

5.5 The Field Within the Dielectric

The choice of components which satisfy (5.8) is arbitrary; E and E
x y

will therefore be chosen. Before the choice is made_ it will be assumed

that since the H-guide will be excited by a TEl0 field within a rectangular

wave guide, then only a single half-sinusoidal variation will be present in

the y-direction. The tangential E components will be required to be zero_

as specified by the Maxwell equations at the boundary of a perfect conductor.

Under these requirements, E and E have the form
x y

and

-jk z

Ex¢ = A¢[cos(kxX) + Ccsin(kxX)] cos(kyy) e z (5.9)

-jkzz

Ey e = Be sin(kxX)Esin(kyy ) + De cos(kyy)] e . (5.10)

Now, by using (5.3), the third component must be

BE 8Ey
E = - _ _x + dz + ,z¢ _-) CI



which becomesupon substitution from (5.9) and (5.10).

EZ¢ = - _ { %¢kx[-Sin(k×x) + C¢ cos(kxX)] cos(kyy)

52

+ Bckysin(kxX)[Cos(kj) - De sin(kyy) ] ]e z

_ _ @+_-_

-jk z
z

:- k + B k .) sin(kxX ) cos(kyy) eEz¢ (-A¢ x ¢ Y -jk
z

if the possibility of a static solution is eliminated.

to redefine the constants A and B as
e e

A -A k
_ z

and

B _B k .
C Z

The total E component of the field now becomes

dz

It will be convenient

-Jk z
Z

: ajzOOS( x )cos( /)e (5.11)

-jkzz

Eye : B kzsin(kxx ) sin(kj) e (5.12)

-jk z

Eze : J(Ackx - Be 3k_) sin(kxX ) cos(kyy) e z

k2 + k2 + k2 = ¢ k[
x y z r u

(5.13)

(5.14)

and

k = D
y b ; (5.15)

2 = W2 2
ko bO 0 " (5.16)
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The magnetic portion of the field may be found from (5.1) with the aid

of (5.11) through (5.13); it is therefore given by

H
xe

-jk z

_ j mymliik_xl j eO0_ L-Jk_e_ x e y

-jk z

j,j z+ ji<z_ei<zSin_xXj.7_ I- . t, _ sia(k e ]

-jk z

J [-JAck_ cos cos(kyy) zEye = 0]-_ (kxx) e

-jk z

- k ) oo (kx )cos(k )e ]- Jkx(Aek x B e

and

-jk z

H : _ [k k B cos(kxX ) sin(kyy) e z
ze m_ x z e

+Akk
ezy

-jk z
Z

cos(kxX ) sin(kyy) e J ,

which become after simplification

i -jkzz

- Beky ) ky - k_z Be] sin(kxX) sin(kyy) e , (5.17)

and

-jk z

= _ _ + k2 cos(kyy) zHys [(Aekx Beky) kx z Ae] c°s(kxx) e , (5.18)

• -jkzz

Hze = _ [(Aeky + Bekx) kz] cos(kxX ) sin(kyy) e . (5.19)



5.6 The Field Above the Dielectric
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In the same manner, as for the field within the dielectric, Ex and Ey

will be chosen for the field above; they become, after enforcing the boundary

conditions,

and

X-_x -JkzZ

-_xx -jkzZ
E = B e [sin(kyy) + C cos(kyy)] e ; (5.21)Y

and again, (5.3) yields Ez to be

--i-_ x -jK z

,1" x j) zE : - { - A_x e cos(l< e
z

+Bk
Y

-_ x -jk z

x yy) ze [cos(k - C sin(kj)] e ] ,

which becomes upon simplification,

-jk z
-Or X Z

X e

Ez = - [- A _x + B ky] cos(kJ) e _jkz. (5.22)

Again_ redefining the constants_ A and B, as

A_Ak
Z

and

B-*Bk ,
Z

(5.20) through (5.22) become respectively

-_X x -jk z

yy) z (5.23)E x = A k e cos(k e ,Z
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and

-_x x -jkzz
E = B k e sinCk _r) e

2
y z

(5.24)

-_x x - jkz z

E = j[A _x - B k .] e cos(k_j) ez Y
(5.25)

Equation (5.1) along with (5.23) through (5.25) now specify the magnetic

portion of the field as

-or x -jk z

-- -kyj x y)H J _ (A - B k.) e sin(k e
x = _ _x

- jkzz
-(_xX e ]

-_x x -jkzz

H = g----" [ - jk 2 A e cos(kyy) e
y _# z

-jkzz

+ C_x j(A C_x #, k ) _ -_xx cos(kyy) _ "1

-=xx -jk z
= _ [-_x h _ e sin(ky)e z

z _ z

-_xx -jkzz
+ ky A kz e sin(kyy)e

which become after simplification

H l ky) - k_ B] e-_xxsi_(kyy)e jkzx = _-_ [(A _x - B ky z

X-_x JkzZ

Hy = -_i [k_ A - _x(A C_x - B ky)] e cos(kyy) e

(5.26)

(5.27)
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and

H
z w_ y

-%x
- B kz]e

-jk z
Z

sin (kyy) e (5.28)

2 - _ + k 2 + k2
k0= x y z " (5.29)

5.7 Field Matching

A!! of the field components will be matched at the boundary; x = a.

Equations (5.11) and (5.23) yield for E
X

-a a

¢0¢r A¢ cos(kxa) : ¢0A e

(5.12) and (5.24) yield for E
Y

(5.30)

-_ a
X

B sin(kxa).. = B eC

(5.13) and (5.25) yield for E
z

(5.31)

As
--_ a

X

(Ack x - B k _) sin(kxa ) = (A _ - B k _) e
¢ y x y

(5.16) and (5.26) yield for _0Hx

[A k k - B (k2+k2)] sin(kxa ) : ? A _ kcxy ¢ Y Y _ xy

(5.17) and (5.27) yield for H
Y

-_ a

- B(k_+_°')]-_ - e
X

---_y z

-_ a

[A¢(k_+k_) - Be xy:kk ] cos(kxa) = CA(__x+k_ ) + B _xky] e x

(5.18) and (5.28) yield for H
Z

- _x a

(Acky + Bckx) cos(kxa ) : (A ky - B _x) e

(5.30) and (5.31) yield

(5.32)

(5.33)

(5.34)

(5.35)
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-_X a
A e

A -
¢ Cr c°s(kxa)-- _

(5.36)

and

-_ a
x

e
B =B
S sJn(k a)

• X

(5.37)

Equations (5.32) with (5.36) and (5.37) specify

-_X a
e k

[A x
Cr c°s(kxa)

-_X a
Be k -_a

sin(kxa) y] sin(kxa ) = (A _x - B kF.) e x

and after simplification this becomes

k sin(kxa)
A[ x

6r c°s(kxa)
- O_x] = B(ky-ky) .

It follows that

¢_x : k tan(kxa) , (5.38)X

since it is not desirable to have A = O. Now B can be obtained in terms of

A from (5.35) by utilizing (5.36) and (5.37); that is,

-_x a -C_xa
e k Be k

[,Acr c°s(kxa)Y + sin(kx a)x] c°s(kxa) = (A ky

-_ a
x

-B%) e

which becomes

k k

- A(-6--_ + ky) + B(tan(kxa ) + _x ) = 0 ,
r

and therefore

B=A

k (i- i) tan(kxa)
Y Cr

k + _x tan(kxa)X



or, after simplification
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B=A
k k tan(x y xa)

(ks+ks)
r y z

after using (5.14), (5._'_), and (5.38). This can be written as

B(k2+k 2) = A k
y z y

kx tan(kxa)

r

but (5.38) specifies this as

B (k2 +k2 ) = A k
y z yx

Comparing this with (5.33), it must be concluded that H and H
x xe

everywhere.

(5.39)

(5.4o)

are zero

5.8 Trigonometric Identities

It is advantageous to consider the following identities, which will

_l_ev +_ field equations _o_d_ab]y.

= i
sin(kxa)

_i + cot_(ka)
(5._1)

cos (kxa)
= i

Jl + tan2(kxa )

and

sin(2kxa) = 2 sin(kxa ) cos(kxa ) .

Utilizing (5.38), (5.41) through (5.43) become respectively

sin(kxa ) = CrUx
h '

k
f _ x

c°stkxa/- h '

(5.42)

(5.43)

(5.44)

(5.45)
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2 _rOlxkx

sin(P-kxa ) = h2 , (5.46)

where

_ = k_ + _ ax • (5.47)x r

5-9 Sim_p]i9_+_ _? +_= Field r....... +-

The field components can now be obtained in terms of a single variable_

A, by utilizing (5.36), (5.37) and (5.40). The field within the dielectric

becomes

- Otxa

k e -jk z

z (5.48)
= Z cos(kxX ) cos(k_) eEx¢ Cr c°s(kxa)

-_X _

A _xkykz e -jkzz

Eye: sin(ka)(k_+ks) sin(kxX)sin(_])e
x y z

, (5.49)

k _k s -_a

---- - ] eEz¢ jA[ x x y x
Cr c°s(kxa) (_Y+k_z) sin(kxa)

-jkzz

• sin(kxX ) cos(k_) e

ks +ks

H A [ x z

Y¢ Wb ¢ cos(kxa)r

k ks -_ a

xxy ).] xsin(k_)(k_+k_ e
y z

-jkzz

oos(k_)cos(kj)e

(5.5o)

(5.51)

and
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k k kxkzk _x -_xa
H =-- L +

z¢ _b Cr c°s(kxa) sin(kxa) +k_z
v

"JkzZ (5.527
coS(kxX ) sin(k#) e

The identities_ (5.44) and (5.45)_ can now be employed simplifying the field

to be

h -JkzZ (5.537
A'kz cos(kxX ) cos(kyy) e ,

Ex¢ - ¢ k
r x

A'k k h -JkzZ

y _ sin(kx)_in(k_)e
Ey e - ¢ (k_+k_)

r y z

(5.54)

jA,k2h -JkzZ

z sin(kxX ) cos(k_) e
<.¢: __(_+k_)

(5.55)

A'Weok_ (5.567
= oos(_x) _o_(k_)e-jk_ ,
kx(%+k

and

JA'W¢oky kzh cos(kxX ) sin(k_) e-jkzz (5.577H =

where_ for convenience;

- (_X a

A' =Ae

The field components above the dielectric region will now be simplified

in the same manner that is

E =Ak
X Z

-_xx -JkzZ (5.58)
e cos(kyy) e ,
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kk -_x
A Sx y z x -JkzZ

E - e sin(k_) ey (ka+k_)
(5.59)

jA _xk._ -_ x -jk z" ' X - Z

E - e co=(kg) eZ (k2+k 2 )
(5.60)

and

xA w¢ok _ -_x -JKzZ

H - g)y (k_+k__) e cos(k e
y z

(5.61)

jA m¢okzky -Sx x -jkzz
H = e sin(kv] e
z (_+k_) % ylJ l

y z

(5.62)

The entire field is thus expressible in terms of a single variable which

_cp_z_u_ upu_, the excitation.

5.10 Power Transmitted

The power transmitted by the wave guide will have two contributing

delivered by the field above the dielectric. T_ Consequently, the total_0"

power_ P_ is given by

P = P + (5.63)¢ PO "

The power transmitted within the dielectric region is

R b/2 a

¢ 2 /2 o x¢ y¢

Upon substitution from (5.53) and (5.56), it becomes
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or_ after integrating_

A '2_0¢nk3h2b
v ZP =

¢ 16S kS(kS+k _) [2kxa + sin(2kxa)] .
rx y z

(5.65)

The power transmitted above the dielectric region is similarly given by

P0 Re E H* dxdy .-_ _a xy (5.66)

Using now (5.58) and (5.61), the power becomes

A_®¢Ok[ b/2 . -%_ I1 + cos(_y)]
P0- 2(k e+k e) < _ e

y z /2 a 2

dxdy (5.67)

and_ upon integration_

P0=

^ ,2.. __3.

_ W¢OAzU

y ,-

Th_ total power _s now g_r_ by (5 K_ +_o+ is

p
_oO_,z_ ___.._

k_ [2k '_ + sin(2kxa)] + __i ]
8(ky+k_) { 2¢ r x Otx

Equation (5.46) will simplify this to be

p

+
8(k_+k_) [ x ke_ .] •

y z Cr xx

Equations (5.20) and (5.29) simplify this further as

A '2w ¢0ksbz

P = 8(kS+k_)¢ k_ [ah2otx + Crk_(¢r-l)] • (5.68)
y Z r _ _

The total power transmitted is available in terms oY a single unknown] the

power dissipated must be now developed in a similar manner.
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5.11 Power Dissipated

The power dissipated will have two sources, the dielectric loss and the

imperfect conductor loss. The total power dissipated will_ thusj be composed

of three terms: the dielectric loss_ PL¢; the wall loss within the dielectric

region, PLb] and• the wall loss above the dielectric region_ _La" The total

power dissipated_ PL_ is therefore given by

PL = PL¢ + PLa + PLb " (5"69)

The power dissipated within the dielectric is given by

Re b/2 a

:--__J/ Z J • _,__dy, (5 7o)PL¢ 2 2 o --¢ --¢

which is

u0¢0¢r tan(6)

PL¢ = 2

b/2 a

ReJ-b/2_o(1_'_1_ + I_'y_l_ + I_z_l_) dxdy.

Substitution from (5.53) through (5-55) into this yields

= W¢O]_ tan(8)A '2 b/2 aEk2 z
PL¢ 8¢r -b/2 _o _x [ [1 + cos(2kxX)][1 + cos(2kyy)]

+

k2ke
yz

(_y+_z)
[[l - cos(2kx)][l- cos(2_y)]

z
{ [i- cos(_xx)][l+ cos(my)] ] ]

or, after performing the integration and simplifying with (5.46),
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PL¢ =

we 0 tan(6)A'2b k_(k__k_ )
z y z [kah 2 +

[ ks X CrO_xkx ]
X

z [ky(kxahS kI (kxah2 ] ](k_+k _ ) - CrOlxkx ) + - CrClxkx ) •
y z

Combining further, it becomes

PL¢ =

we 0 tan(6)A'mb k_

Z r 2+k 2 SrOlx) + k_( _h2 Olx)] ._(ky z )(ah2 + - Cr
8Sr(ky+k _) kI

Simplifying once again and using(5.14), it is given by

_¢0 tan(6)A'2b k2

: z ah2kg Olx[k_( 2_ Cr)PL_ 8k_(k_+_ ) { + + 2_] ] (5 7_)
x y z

The power dissipated within the walls below the dielectric is given by

(2)Rs a
PLb - 2 Hz s __

per meter in the z-direction, where y is evaluated at the wall (y = b/2).

Substituting from (5.77) yields

A'_(®_oi_kz)_h_a [i+ coS(_xX)]
PLb =R [" ]fo dx

S ke (k_+k _ )_ 2
x y z

and, sfter evaluation of the integral, thisbecomes

RA,_(_ok_)2_
s [2_k a + sin(2kxa) ]PLb = s _ _2

y

Simplification, by use of (5.46), yields

A'2(_¢0kykz)2
RS [ah 2 + CrUx ] •

PLb = k2 (k2 +ke )_
x y z

(5.73)
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The power dissipated within the walls above the dielectric is similarly

given by

(2)R s

and again y is evaluated at the wall. Substitution from (5.62) yields

R A2 (W¢okzky)2 -2_xX
= e d____

PLa (k _ +k _- )$ a
y z

which becomes upon performing the integration

PLa =

R A '_
s (Weokzky)2

2_ (t_ +1_ )a
x y z

(5.75)

5.12 Attenuation

The attenuation for a wave guide is given by

PL

2P " (5.76)

For the wave guide under consideration, this may be separated into three

terms: that due to the dielectric, _d; that due to the walls within the

dielectric region, _b; and that due to the walls above the dielectric region,

. That is, the total attenuation, _, is given bya

= _d + CZb + _a "

The attenuation due to the dielectric is given by

which may be evaluated using (5.68) and (5.71). Hence,
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_d =

_c 0 tan(5)b ks { ah_ 2 + 2 2a_x] ]z ko _x[ko(2-Cr) +

w ¢0k_b
i6¢ (k_ +k2 )k_ - "

r y z x 8(k_+k_)¢ k_ol [ah_(_x + Crk_(er -I)]
y z r xx

It will be advantageous to define two new parameters_ the normalized x-decay

constant, p, and the normalized y-propagation constant, q_ as

x (5.77)

p - k 0

and

k

_z (5.78)
q = ko

Using these; (5.30) can be written in the form

k = k 0_I + p2 q2 (5.79)
Z

Substitution of (5.77) through (5.79) into _d' it becomes

_d =

oam<O}Sr_OP_o t _0 + pLm - Cr + _p J ]

2k 0 _ p2 qe 2 ah 2
+ - kO[_o P + Cr (¢r -I)]

(5.80)

This can be simplified in the following manner. Equation (5.38) can be

written as

1 CrUx

a = _-- tan -z (--_---) ,
X X

but (5.14) and (5.29) specify k
X in terms of Gx; therefore;

(5.81)

kx ko Jar " i - pS • (5.82)

Equation (5.81) can now be obtained in terms of p and q by using (5.82);
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ah 2 (Or-l)[ 1 + p2(¢r+l)] erP

= pe]k0 / ¢ - i - p_ tan-Z [ /e,_ r _ r - I -

(5.83)

after multiplying by h2 and using (5.47). Now defining for convenience,

-- H •

k o

The attenuation, _d' can now be written as

tan(6)k 0

_d = 2

CrP[H + p(2-¢r+2p2)]

"L pm qm
/ + - [H + ¢r(¢r-l)]

(5.85)

This result can be compared with that of the infinite dielectric slab,

allowing the width to become infinite hence q tends to zero; the results

are identical.

The attenuation due to the wall losses within the dielectric region

may now be computed; it is given by

(5.86)

which, becomes upon substitution from (5.68) and (5.73),

Rs(WSokykz)2[ah2 + Crex ]

% = ,
2 2 2 2 2

2kx (ky+kz) 8(ky+kZz) Crk_xOtx [ ah2 °tx + crko(¢r -1)]

and after simplifying, it becomes

4RsW¢okyCr_x[ah2 + CrUx ]

_b = (kZ+k _)k b[ahZe + ¢ k_(¢r-I )] (5.87)
y Z Z X i_

Using now (5.79), (5.84), and normalizing in terms of p and q, it becomes
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4Rs¢ r q_p[H + CrP ]

(5.88)

The final attenuation term, that due to the walls above the dielectric is

given by

P_e_

_a - 2P ' (5.89)

and substitution from (5.68) and (5.75) yields

R (_eok ky) 2Ot = S Z

a w ¢ok3zb '

4_x(k2+k2)_y z [ah2_x + ¢rk_tCr-I)],,''8(k_*k _)c k2_
y z rxx

becoming, after simplification_

_w¢_k2¢k 2
s uyrx

a bkz(k_+kSz)[ah2_x + crk%(¢r_l) ]

The same normalization will be performed as previously, namely using (5.79),

2Rs¢ r q2(¢ r - 1 - p2)

% :b/_o (I+p_)E_ Cr(¢r-1)]<-_ p_ q_
(5.90)

Equations (5.88) and (5.90) tend to zero _s b becomes infinite, as expected.

5.13 Numerical Results

A computer program was written p to evaluate the attenuation as a function

of relative permittivity for fixed val],es of p. The results appear in Figure

5.2.

_ersona.L communication. C. W. Bostian, Department of Electrical

Engineering, North Carolina State University, Raleigh, N. _.
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6. ARTIFICIALD_L_CTRICH-GUIDE

7O

v.l Description of Sor_o_re

The structure under consideration is an H-guide, utilizing a corrugated

section in the center, which behaves as an artificial dielectric (Figure 6.1).

Each corrugation is a metallic plate whose dimensions are 2a by b; the

thickness is assumed to be negligible as compared to one wavelength of the

operating frequency. The sidewalls are assumed to be large enough in the

x-direction such that the field components are essentially zero at x = h;

therefore, they may be considered unbounded in the field analysis.

6.2 Introduction

The artificial dielectric H-guide structure is examined analytically by

employing the field matching technique. The zero th order field approximation

is made. That is, the field within each corrugation is assumed to be constant

in the z-direction. Attenuation for the wave guide is calculated under this

for a given value of p, the normalized x-decay constant, defined p = _x/k,

_x being the x-decay constant

6.3 Method of Solution

To facilitate the solution, that portion of the guide for x _ 0 may be

considered along, placing a perfect electrically conducting plane at x = 0, to

be removed later. Generally applicable expressions for the field are found;

one set useful above the corrugations and another for below. The field

matching technique is employed to assure continuity of tangential (and it may

so happen normal also) field components at the boundary x = a. The field now

having been completely specified, the conducting plane may be removed and a



yl

Figure 6.1 Corrugated H-guide over perfectly co_ducti.n_ p.lan_•
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symmetrical portion of guide revealed in the region where x _ O, as predicted

by the method of images. Excitation must be forced to meet the symmetry

requirements imposedby this technique.

It should be noted that the above considers only one-half of the total

solution to the problem; that is, there also exists a set of field components

which would arise from placing a perfect magnetically conducting plane at the

center of the wave guide. In this case_ the tangential magnetic field wo_d

be zero at the center rather than the electric, the electric being a maximum

in this case. These two types of solutions are sometimes denoted the even

and odd modes, depending on whether the transverse tangential magnetic field

is odd or even with respect to the center of the wave guide.

6.4 Development of a Wave Equation

The total field in a region which is linear, isotropic, homogeneous and

and source-free with sinusoidal time variation must satisfy the Maxwell

equations in the complex form:

VxE_ = - j w _ H , (6.1)

= o, (6.3)

and

If the curl operator is applied to both sides of (6.1), with the aid of (6.2)

and (6.3), a wave equation for E is obtained; namely

where
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k2 : w2 _ ¢ • (6.6)

Similarly, applying the curl to (6.2) and using (6.1) and (6.4), yields a wave

equation for H, that is

__H + k2_H = 0 . (6.7)

In the case of a rectangular coordinate system, any one of the six field

components, denoted f(x,y,z), can be seen, by (6.5) and (6.7), to satisfy

_2f(x,y,z) _2f(x,y,z)_2f(x,Y,z) + + + k_f(x,y,z)= 0 . (6.8)
_x_ _y2 _z2

Therefore, by knowing any two electric (or magnetic) components, then the

remaining component is given by (6.3) [or (6.4)7 specifying completely the

electric (or magnetic) portion of the field. The remaining portion, magnetic

(or electric) can be found from (6.1) [or (6.2)7. In general, one electric

and one magnetic component could be known and the remaining components found,

but this would be somewhat more involved, and since the choice will be free,

two components of the same type will be chosen.

6.5 Solution of the Wave Equation Under Special Periodic Conditions

From physical considerations of the problem, it would be expected that

the field would have the same complex amplitude at any two points separated by

the distance s in the z-direction, since the structure is periodic with period

s. The field would not be periodic within some region near the excitation point,

but as z increases further down the structure, the field would assume a periodic

behavior, and the periadicity, s, of the physical structure would be imposed

upon the field. This can be stated mathematically as

-JkzoS
f(x,y,z+s) : f(x,y,z) e , (6.9)
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where the exponential term allows for a phase change in the z-direction. This

is known as Floquet's theorem and can be established somewhat more rigorously

(Collin, 1960). If (6.9) is to be satisfied, then it must be that

-Jkz0Z
f(x,y,z)= _(x,y,z)e

where

_(x,y,z+s)= _(x,y,z).

That is q0(x,y,z) is a periodic function with a period s.

q0(x,y,z) may be expanded in a Fourier series, that is

This being the case,

•2nw
oo -J--Z

_0(x,y,z) = n=E-_ gn(X,y) e s

This means the total z-variation is of the form

-jk z

f(x,y,z) = _ gn(X,y) e znn=-= ' (6.10)

where

2nw
k + (6.11)zn = kzo s

Here it should be noticed that the x- and y-variation have not been separated

from the z-variation, since the Fourier coefficients are, in fact, functions

of x and y. The uniform convergence of the Fourier series is guaranteed if

the function to be expanded, f(x,y,z), is continuous (Lanczos, 1966) which

is assnmed for physical reasons. This being the case

-JkznZ
_f(x_y_) z k_ gn(_,y)e , (6 12)

8 z2 = n=-== zn

however for the x- and y-variation, uniform convergence must be assumed in

order to write formally
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and

8_ gn(X,Y) -JkznZ

8x2 - n=-_ 8x 2
(6.13)

82 gn(X,Y) -JkznZ
82f(x?Y_Z) -- E e

8y2 n=-_ 8y2

Substitution of (6.12) through (6.14) into (6.8) now yields

(6.14)

82gn(X,y) -JkznZ co 82gn(X,y) -jk z
_. e + _ e zn

n=-_ 8x 2 n=-_ 822

k2 gn(X,y) e-jkznz _ -JkznZ+ k2 _ gn(X,y) e = 0 (6 15)n=-_ zn n=-_ "

If each series is assumed convergent, then (6.15) becomes

[ 82 gn(X'Y) 82gn(X;y) ] "E + + (k2 2 -JkznZ
n=-_ 8x 2 822 -kzn) gn(X,y) e = 0 (6.16)

This must be true for arbitrary values of x and y; therefore_ it must be that

_ _ _'t_ tt__ _ --_.c'__. __. _.__-tt" -" ...... r'm_ _ _-

82gn(X,Y) 82 gn(X,y)
2 B

+ + (k-kzn ) gn(X,y) : 0 . (6.17)8x2 _22

The method of separation of variables may now be employed.

gn(X,y) : Xn(X ) Yn(Y) •

Simply substituting (6.18) into (6.17) yields

That is, let

(6.18)

i 8SXn(X) i _2Yn(Y)
+

8x 8r + --0 ,

which must be true for arbitrary values x and y; therefore, each of the two

variable terms must be a constant, defining these constants
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and

1 _Xn(X)
_ = (6.19)
xn Xi(x) _x_ '

_2 - k2 + k2 - k2 : 0 . (6.21)
xn yn zn

The signs in (6.19) through (6.21) were chosen such that the decay

exponentially in the x-direction; which_ by definition; leads to surface

waves propagating in the z-direction. The choice of the negative sign for the

y-variation is in anticipation of standing waves in this direction; due to

reflections between the two walls. Solutions of (6.19) and (6.20) can be

written in the form

and

-0( X +Of X
xn xn

X <_:_:- a e + b e C_._o_
n n n

Yn(Y) = CnCOS(kynY) + dnSin(kynY) , (6.23)

but b must be zero; since the energy is unlikely to become unbounded for
n

large x.

The total variation for any field component is therefore given by

-_xn x -JkznZ

f(x,y,z) = n:-_E [anCOS(kynY ) + bnsin(kynY)] e e (6.24)

after redefining the constants. Equation (6.24) now represents the general

variation of any field component. Of course, as yet, boundary conditions have

not been applied.
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Any two field components may be selected at random, _e'g',--Ez and Ex, and

from these the remaining field components can be calculated. The two field

components must be described, in general terms, by (6.24); therefore let

and

-_ x " Z
r ,_ _ . . ,. _ xn -8kzn

E = E LanCOSk_ynY} + e e (6.25)z n=-_ °nSZnk_ynY)J

-_ x -jk z

Ex = n:-=E ---[CnC°S(kynY) + dnsin(kynY]].., e xn e zn . (6.26)

Boundary conditions require

x z

for

y = • b/2 .

This does not mean that, in general, each individual term (harmonic) of

the series must satisfy the boundary conditions, but only the entire field

quantity. However; later a finite approximation in connection with the

matching of the field components will be made where the matched terms of the

series satisfy individually the boundary conditions.

If the wave guide is excited by a rectangular wave guide or horn carrying

the T_o field, the energy traveling in the guide will primarily have only a

single half-sinusoidal variation in the transverse direction. This assumption

will simplify analysis greatly; it must be realized that higher order modes

may exist, but will hopefully contribute little to the power transport.

Upon application of the boundary conditions, (6.27), to each term of the

series, the field components become
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-Or X "
xn -JkznZ

Ez = cos(ky0Y) n=___ ane e (6.2s)

and

-_ x -.ikznZOo
_ A xnE = _tl. _._

x yv n=-= n (6.29)

a_x - k2 + k2 - ks = 0n yO zn

where

k P

yO b

after substituting b for c .
n n

E may be found from (6.3); that is
Y

(6.2!a)

(6.30)

8E 8E

x ____z) dy + c.
y

This becomes_ upon substitution for E and E
x y

= _z_ sin(k y) [ E b _ e ....
Ey ky 0 yO n=-_ n xn

-jk z

e

-_xn x -JkznZ
+ _ " k e e ]+c .n=-ao Jan zn

This may be written

sin(kyoY) =
E = Z
y k n=-_

y0

-_xn x -JkznZ

(bn_xn + Jankzn ) e e , (6.31)

c being chosen zero, since this would correspond to a static field.

The total electric part of the field being now known allows the magnetic

part to be found by utilization of (6.1). Carrying out the differentiation

yields
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co

[ kyoSin(kyOy)_=ZHx=_ n

-_kn x -JkznZ
e e

sin(kyo_r) -_ x -ik z• . _ xn _ zn

(_jkzn)(bn%n + j_n ) e e ]k n=-_
yO

-(_xnx - JkznZ

J [cos(ky0y) eHy = _0-_ n--Z-_bn (-jkzn ) e

-_xn x -JkznZ

co_(kyoy) _ a C%n) e e ],

and

sin(kyoY) _ -_xn x
H = j'_ [ ' _ ('Qlxn)(bn_xn + Jankzn) e
z _ ky 0 n=-_

-_xn x -JkznZ
E b e e ],

+ kyosin(kyoY) n=-_ r_

which becomes upon simplification

-JkznZ
e

J
H -

x t_
n=-_ _Jkzn'_

sin(ky0Y) _ [_--k°n_xn + Jankzn) - kyoa n]

and

-_xn x -JkznZ
e e

-_xn x -JkznZ

j coS(kyoY ) =- [an_xn Jbnkzn ] e eHy = w--_ n_ _ -

(6.32)

(6.33)

_xn, b

H J sin(kyoY) _yO < n_xn + kzn)]z = m'-_ n=_-m [bnkyo - Jan

-_xn x -JkznZ
• e e •

(6.34)



The total field above the corrugations is now known in terms of four

constants: an' bn' _xn' and kz0 , which will be interrelated by field

matching at x = a.

8O

6.7 The Field Within the Corrugations

The same procedure will be used as before_ that is, all of the field

components must satisfy the wave equation, (6.8). Choosing again E and E
X Z

as potential functions_ solutions can be separated as

f(x,y,z) = X(x)Y(y)Z(z) .

Upon substitution of (6.35) into (6.8) yields

(6.3_)

1 _Sx(x) 1 _Sy(y) 1 _Z(z) ks
x-U__-yS--+y_7 _--F--+z-_7_--p--+ :o ,

which means each term is constant] therefore_ constants may be defined

(6.36)

ks 1 _SX(x)
x = X(x) _ ' (6.37)

and

_s = 1 _Sy(y)
Y Y(y) _W ' (6.38)

Sz : - z-_ _z° ]

therefore,

ks + ks + _2 = ks .
x y z

Solutions of (6.37) through (6.39) are of the form

X(x) = a cos(kxX ) + b sin(kxX ) ,

Y(y): c cos(<j) +
sin(kyy)J

(6.39)

(6.4o)

and



Z(z) : e coS(_zZ) + f sin(_zZ) .

Therefore

_'xc = [a cos(kxX) + b sin(kxX)] [° cos(ky) + d sin(ky)]

' [e coS(_zZ) + f sin(_zZ) ]

and

E = [g cos(kxX ) + _ sin(kxY)] [i cos(_ y) + =_Fw vh]ZC .... "--Y-" P ....'--Y_'J

[U COS(SzZ ) + v sin(SzZ)] .

Boundary conditions require

E =E =0
XC ZC

for

and

for

y=&b/2

E =E =0
xc yc

Z = 0 ; S •

Further

E
Zc

for

=E =0
yc

X = 0 •

Applying these boundary conditions to (6.44) and (6.45) yields

E : c [cos(kxX) + b sin(kxX)] cos(kyy) sin(SzZ)
XC

and
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(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)



E = sin(kxX ) cos(kyy) [d coS(_zZ) + e sin(SzZ) ]ZC

after redefining the constants. The boundary conditions also stipulate

82

(6._o)

and

rg_

_zm : 7 ; m : O, ± l, ± 2, . ; (6.52)

the subscripts, p and m, denoting the number of half-sinusoidal variations

in the y- and z-directions respectively. The individual field modes must

satisfy (6.37) through (6.40). This yields

2 B_x (x)
k_ _

xpm Xpm(X ) 3x2

(6.37a)

YP

i _%(Y)

Y(y) _f
(6.3_o)

zm

i _(_)

Z(z) _z_

and

k_m+k_ + 82zm= k2 '

and therefore

(6.39c)

(6.40a)

and

Excpm = [cos(kxpmX ) + bpm sin(kxpmX)] cos(kypy)

• Cpm sin(Bzm z)
(6.49a)

Ezcpm : sin(kxpmx ) cos(kypy) [dpm coS(_zmZ) + epm sin(_zmZ) • (6.50a)



Nowrestricting the solution_ by means of proper excitation to a single

half sinusoidal variation in the y-direction_ that is, let p = i.

(6.50a) must become

where

k2 + k2 + 2 = k2
xm yO _zm

83

Equation

, (6._Ob)

ky 0 denoting the fundamental variation in the y-direction.

(6.49a) and (6.50a)become

With these changes,

Excm : c°s(kyoY) Cm [c°s(kxmx) + bm sin(kxmX)] " sin(Szm z) (6.49b)

and

E = cos(kyoY) sin(kxmX) [d coS(Szm z) + ezcm m m sin(SzmZ)] " (6.50b)

The total field must be a linear combination of these individual wave modes_

therefore_ the total variation of E and E is
XC ZC

and

Co

Exc = c°s(kyoY) m:-coZCm [c°s(kxmX) + bm sin(kxmX)] sin(SzmZ) (6.49c)

co

E =
zc c°s(kyoY) m=_'-cosin(kxmX) [dm c°S(_zmZ) + em sin(_zmZ)] • (6.50c)

E can now be found from (6.3), that is
Y

8Exc 8Ezc

Eyc : - _ (--g_-+-_-)_y+ D.

Upon substitution for E and E
XC ZC
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Ey c = _ sin(kyoY ) [ m=-_ kxm[-Sin(kxmX) + bm cos(kx)]

oo

• Cm sin(_zmZ) + _ sin(kxmX) _zm [-d sin(_zmZ ) + em=-_ m m coS(_zmZ) ] ] + D ;

simplification yields

sin(kyoY) =

Eyc - k_ m=E-_ [ kxm[Sin(kxmX) - b cos(kxmX) ] cm m
jv

• sin(SzmZ ) + j sin(kxmX) 8zm[dm sin(Szm z) - em coS(SzmZ)] ] •

Here; as for the field above the corrugations_ D is zero. Equation (6.47)

specifies

em = 0 , (6.53)

and (6.48) specifies

b = 0 . (6.54)
m

It will be assumed later that the field can be approximated by a finite number

The total electric portion of the fieldbecomes_ after enforcing boundary

conditions

co

Exc = cos(kyoY ) mT.=_ Cm cos(kxmX) sin(SzmZ) , (6.55)

and

= cos(k_y) _ d sin(kmX) , (6.56)zc m=-= m c°S(_zmZ)

sin(kyoY)

Eyc- k_ m=E_= sin(kxmx ) [kcm Cm + _zm dm] sin(_zmZ) (6.57)
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The total magnetic portion may now be found from (6.1); performing the

differentiation yields

sin(kyoY)

k
yO

E sin(kxmX) . [k cm=-_ 8zm - xm m
+ B a ] • cos(S z) } ,

'zm m- • zm

J [ c°s(kyoY) _ c°s(kxmX) 8zm c coS(_zmZ)c - _ m=-_ m

- cos(kyoY) m=__co dm kxm c°s(kxmX) coS(_zmZ) ] ,

and

H J sin(kyoY):-- k coS(_xmx) [k c
zc mb ky 0 re=Z-= xm xm m

+ _zm dm]

CO

• sin(_zmZ ) + ky 0 sin(kyoY) Zm= -co
em cos(kxmX) sin(_zmZ)

and simplifying yields

oO

H J sin(k y) _,
xc _b yO m=-oo

_zm

sin(kxmx)[-kyod m - _yo(kxm
Cm + _zm din)]

cos(S_z) ,
(6._8)

Hyc - _ m=-=
(k _)[_ c - kCOS Zm m

d] ooS(_zZ) , (6.59)

and

H J sin(kyoY) m=Z__zc wb

k

c°s (kxmX) [_0 (kxm cm
+ _zm dm)

+ ky 0 Cm] sin(_zmZ)
(6.60)
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The total field within the corrugated region has been found in terms of

three constants: Cm, dm, and k .

6.8 Field lcmbching

The method of field matching is based on the assumption of continuity

of c_rtain properly chosen field components at the boundary between any two

regions, in this case, at x = a. Continuity of all field components is not

necessarily guaranteed. Matching at the boundary will lead to a set of

equations which may be solved for the unknown constants of the field.

Tangential field components will be matched first. That is

E = E
Z ZC '

E = E
y yc '

H = H
Z ZC '

and

for

(6.61)

(6.62)

(6.63)

y yc

X ---- a

Equations (6.28), (6.56), and (6.61) yield for E
Z

Co -_xn a -JkznZ
E ae e

n _ n

co

= m_-_ dm sin(kxma) c°S(_zmZ) ;

(6.31), (6.56), and (6.62) yield for E
Y

Co

E
n=-co

-_xn a -JkznZ

(bn_xn + Jankzn) e e

(6.65)

Co

m=-co_' sin(kxma)[kxm Cm + _zm dm] sin(_zmZ) ; (6.66)



(6.34), (6.60), and (6.63) yield for H
z
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a _.i_ ,
%D.. -Oixn - dmzn Z

E [bnky 0 - __--_[bn_xn + Jankzn)] e e
n=-_ yu

k

_i cos (kxma c
m:-_ yO m

+ _zm dm) + kyo Cm] sin(_zmZ) ;

(6.33), (6.59), and (6.64) yield for H
Y

(6.67)

-_ a zxn - Jkzn

n_Z (an% - jbkzn)e e

cos(kz_na)[_z m c - k d ] cos( )m=-_ m xm m _zm z
(6.68)

The matching of the normal components requires, if there is no charge or

current on the boundary

E =E
X xC

and
H = H
x XC

(6.69)

(6.70)

at

X _ a •

Equations (6.29), (6.55), and (6.69) yield for E
x

a-_xn - JkznZ
E b e e

n=-_ n
= m_.:_ Cm c°s(kx_na) sin([zmZ) ; (6.71)

(6.32), (6.58), and (6.70) yield for H
x

rJkznr_ . -_xn a -JkznZ

Z L_-z-_On_xn + 0ankzn ) - kyoan] e e
n=-_ yO

_zm

m__ sin(kxma)[-kyod m - _--_(kxm
Cm + Bzm dm )] coS(_zm z) • (6.72)
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There now exist seven unknown quantities, an' bn' Cm' dm' _xn' kzo' and kx,

of which one will depend on the excitation amplitude, and seven equations,

(6.21), (6.65) through (6.68), (6.71), and (6.72) for their determination.

There will have to be made an approximation for the solution; therefore, the

assumption can be made that the major contribution to the total field will

result from the fundamental modes within the corrugations; that is, let

m = m. _ f_Ts _p_n+ s _+_ +_ _ +._ga_lons _ _.... +_

E : cos do sin(kxoX )zc (kyoY)

and

H = J sin(kyoY ) sin(kx0X ) (-kyodo)xc w_

J
_c = _ c°S(kyoY)c°_(kx0X)(-kx0d0)

These components are a standing TEIo mode in the x-direction; that is, the

corrugated region may be considered a shorted section of rectangular wave

that only the TEl0 mode is present; all other modes cut-off. This assumption

further reduces the unknowns since kx0 can now be approximated by k =_-_e

The TEl0 field can now be written

zo = do sin(_x)cos(_y) , (6.7_)

and

H - -Jdokyo sin(kx) sin(kyoY ) (6.74)xc _

-Jdo_

_yc: ®--_cos(_x)cos(_oy) . (6.75)
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for E ,
z

-_xn a -JkznZ

E a e e = dO sin(ka) ;n=-_ n

for Hx_

(6.76)

rJKznt- -_xn a -$KznZ

Lk--_---kOn_xn Jank ]n=-_ + zn" - kyoan] e e

sin(ka) (-ky 0 do) ;

and for H
Y

(6.77)

-_xn a -JkznZ

T [an_xn- Jbnkzn ] e e = cos(ka) (-k do)n=-_ (6.78)

The orthogonality of the z-variation may be employed to eliminate the

+Jkzvz
summation over n; that is multiply by e and integrate from 0 to s.

Equations (6.76) through (6.78) become respectively

-_x_ a

a v e s = do sin(ka) I , (6.79)

and

Jk zv,_ . -_xv a

_Oky0 v_xv + Ja kzv) - kyoa ] e
S = --

sin(ka) ky 0 dO I , (6.80)

-Of a
x_

jb z 0 e

where

s : cos(ka) (-k do) I , (6.81)

s -jk z

I=_ e zv
o

dz

The unknowns are now av; do; _xv; kxo; kzv _ and by; simplification will

result if a new constant b' is defined such that



b = jb'

Equations (6.79) through (6.81) now become

9O

a

-_ a

xv (6.82)
e s = d o sin(ka) I ,

and

k -(_ a

x_ = sin(ka) ky 0 d O I (6.83)[_V(bv_xv + avkzv) + kyoav] e s
yo

- otx_a

(av_xv + bSkzv ) e s : - cos(ka) k d O I .

Division of (6.83) by (6.82) yields

kzv(bv°_xv + avkzv) + kyoav = k
ak yO'
v yO

and simplifying yields

(6°84)

k

zv (6.86)b' : - a --
,o _ Ofv, _

Substitution of (6.86) into (6.84) now specifies

a

2 a

e

x_

s = cos(ka) k d O I ,

and division by (6.82) further simplifies to

k 2 - a_xv k cot(ka) ;Z_ : (_X_
(6.87)

however the left side is reduced by (6.21) to

k 2 - k 2 = k ot cot(ka) (6.88)
yO xv

It must be concluded from (6.88) that there exists only a single value for

_xv which may be denoted _xO; that is; there is only a single term present in
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the Fourier expansion representing the field components above the corrugations_

the fundamental mode. Equation (6.88) may be now written

(k_-k_)tan(ka)

(6.86) becomes

kzo

b$ = - a 0- . (6.90)
_x0

(6.82) can also be written

-_xO a

a0 e s

do = sin(ka) I " (6.91)

The field components above the corrugations are now greatly simplified;

that is, (6.28), (6.29), (6.31) and (6.32) through (6.34) become respectively

-_xO x -JkzoZ

Ez = a0 c°S(kyoY)e e , (6.92)

-_xO x -JkzoZ

Ex = jb_ cos(kyoY ) e e , (6.93)

(aokzo + b$_xO) -_xO x -JkzoZ

E = j sin(ky0Y ) e e , (6.94)
Y ky 0

k __xoX _ Jkzo zH =-J_ zO. ,

x _ L_--_(bO_xO+ aokzO) + kyoao] sin(kyoY) .e e
, (6.95)

and

-_xO x -Jkz0Z
Hy = J--'(a^_̂ + (6.96)U xu b$kz0) cos(kyoY ) e e ,

H =-1 _xO,_ , + )] sin(kyoY) • -°tx0X-Jkz0Z (6.97)
Z _ [b&ky 0 - G_DO_x0 aokzo e e .
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Equation (6.90) now eliminates one variable allowing (6.90) through (6.97) to

be written

-_xOx -Jkz0Z
E = a 0 _^-(_" --_ - :: __u_yO#/ _ e ko._o)z

-_xO x -kz---_Ocos(_y/ _ e ,
. _ OkzoZ

Ex = -Jao _x0 _u
(6.99)

Y

-jkyoa 0 -_xO x -JkzoZ

H - sin(kyoY) e e (6.101)x _

Ja 0 (_xo-k_o) -_x0 x -JkzoZ

Y - _ %o cos(kyOY)e e , (6.lO£)

and

H - a0kz0kyo -_xoX -Jkz0Z

z _ _xO sin(kyoY) e e . (6.103)

it will be advantageous to define a new constant H_ such that the work may be

compared with that of the chapter entitled ATTENUATION OF A DIELECTRIC SLAB;

that is, let

The field components may now be written in terms of H$ since

(6.104)

-J¢_x0

a0 - H$ .

Before doing this, (6.21a) allows a0 to be written



jw_ _xO

a0 -k2 kS H_)
- yO

ky 0 being given by (6.30).
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(6.105)

Now (6.98) through (6.103) become respectively

jwb xoH_ - xO x -Jkzo z
E = cos(k y) e
Z i._ 1.2

-_yO
e , (6.106)

WbkzoH _ - xOx -JkzoZ

E = cos(kyoY ) e e
x k_-_yO

, (6.107)

xokzoH0 xO x -JkzoZ

Hx - _-k_ sin(kyoY ) e e
, (6.1o8)

and

- xO x -JkzoZ

Hy = H_ cos(kyoY ) e e (6.109)

- . . - x0 x -JkzoZH JkzokyoH0 sin(k _y) e e
z k__k _ • yu-

yo

(6.110)

6.9 Power Transport

The determination of the attenuation requires knowledge of the power

transmitted and the power dissipated within the wave guide. The power

transmitted will now be calculated.

_--_22__x_. _s•_

In the present case; this reduces to

P=½22E_ _dy .
xy

Substitution from (6.107) and (6.109) yields

The Poynting identity specifies it to be

(6.111)

(6.112)
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'* b/2 = (i oos®_zO_;_; + (_yo y) -2_xoX
P =-,,_-k2A_ -oJ'_/2_a a e dx_y. (6.11S)

m_

Upon integration; this becomes

-2_x0a

wW_kzoH_H _ b e
= ,'_ "_ "_ I, _

( _ ) ' _..__/P 8_x0 k2-k 0

6.10 Power Loss

The total power dissipated will have two contributing factors; the power

loss within the walls above the corrugations; Pa; and the power loss within

the corrugations themselves_ Pb; the total power loss is therefore given by

PL = P + Pb " (6.115)a

In either case; the power loss will be given by

R
s

- H 2"L 2 J'Jr ] t] as , (6.116)

J-_.......
bib:ti-

n t

the surface under consideration. P now becomes; for a single corrugated
a

section

R s

a

y being held constant at the value b/2 . Substitution from (6.108) and

(6.110) yields

v V_

RskyOHSH; s _ -2_x0_

Pa = (km-k_y0)2 _o _a (a_x0 + kz0) sin2(ky0b/2) e dxdz

Upon simplification this becomes
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2

Rs_}O_H_*(_o+ k o) s -2%oX
a __ J'o _e dxdz

and finally integrating, the power loss is

2 v ,@ 2
R k ^HAHI (a>^ + -2_x0as yu u o xu kz0)

P = (k2 _2 _2 e (6.117)
a 2_x0_ .... y0"

after division by s since there are i/s corrugations per meter.

The power loss within the corrugations will have two contributing

factors, the power loss on the sidewalls, Pw' and the power loss on the end

plates, Pe' the total given by

Pb = P + P " (6.118)w e

As before in either case, the power loss is given by (6.166). On the

sidewalls, (6.116) becomes

R S a

Pw= (2) -_ ,J'o.J'oI_1_ _z , (6.119)

where y is e_aluated at b/2.

2 2

Rsky0d 0 s a

P = _ J'o J'o [1- cos(Z_x)]dxdzw 2w 2

"fielding upon integration

Pw = 4w_2k " [2ka- sin(2ka)]

Again, dividing by s since there are i/s corrugations per meter.

contribution due to the corrugations, (6.116) becomes

R b/2 a

-- ÷ ;o

Upon substitution of (6.74) this becomes

(6.120)

(6.121)

For the

(6.122)
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Substitution from (6.75) yields

Rk 2 2 b/2 as do

Pc = 4_ 2 J Jo
b/2

[l + cos(Zkx)][i + cos(_yoy)] _dy ,

which yields upon integration

R kd_b

p_ _ u [2ka + sin(2_ka)] , (6.123)
c 8s_2 2

as the power loss for the two end plates per corrugation, after again,

division by s.

The total power dissipated within the corrugated region is now given by

(6.118), which becomes, upon substitution from (6.121) and (6.123)

Rsd_ k2b) + sin(2ka) [k__b k2Pb-- {a( yO+ 2s 2 (6.124)

The total power dissipated could now be found from (6.117) and (6.124);

however the resulting expression would be quJ te unwieldy and therefore the

attenuation for the wave guide will be found in parts, each part due to a

given dissipation term.

6.11 Identities

Before the calculating the attenuation for the wave guide, it is

advantageous to consider some identities and define two new quantities, p,

the normalized decay constant in the x-direction and q, the normalized

propagation constant in the y-direction, as

_xO

p = --£- (6.125)

and

k

yO (6 126)q =-_- .

L
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A relationship will be needed between the two amplitude constants_ H0 and do;

this may be found by considering (6.91) and (6.105), which yield

-_xO a
_2

4 0 _S_x0 e
= [. ]_ , (6.127)

H'_'* sin(ka)(k 20"0 -kyo)l

where

s -jkzoZ
I = 2 e dz .

o

(6.128)

Evaluating the integral yields

I : _ (e-jkzOs l) ,

kzo

and expanding further

I : J---"[coS(kzOS)- l - j sin(_zOS)]•
kzo

Now forming the square of the magnitude,

12 = _ I1 - cos(kzoS)] ,

(6.127) becomes

- 2_x0a
2

dO (wbS_xokzo)_ e

2 sin_(_a)(_-k_)_[l- coS(kzoS)]

Consider, also, the following identities

(6.129)

sin(ka) = 1

_i + eot2(ka)

(6.130)

and
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cos(ka) = i

_i + tan 2(ka)

(6.131)

Rewriting (6.89) in terms of p and q yields

tan(ka) - P
l_q _-

(6.132)

and substitution of this into _ __o.±_} and (6.130) yield

sin(ka) = P

_ + (l-q2)_

(6.133)

and

= i- q2

cos(ka) _p_ + (i-c_2)_

(6.134)

Since

sin(2ka) = 2 sin(ka) cos(ka) ,

(6.133) and (6.134) specify

2p(l-qS) (6.135)
sin(2ka) - p2 + (l_q_)_ "

It is further advantageous to write (6.21a) in terms of p and q; that is

kzo = k_p2 + i - q2 . (6.136)

6.12 Attenuation

The normalized power dissipated per meter of length in the direction of

propagation is the attenuation, denoted _, this is given by

PL (6.137)
_=_-_.

The attenuation can be separated into three terms; that due to the walls

above the corrugations _wa , that due to the walls within the corrugated region

_wb _ and that due to the corrugations themselves _c; that is
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= %a + %b + % " (6.138)

The first term may be obtained from (6.114) and (6.117), using (6.137) then

P
a

that is

wa

-2_x0a

R _,_,._2 (<0 + as--O-_ -yO" kzo ) e

4_xo(k2-k_))2

_2_x0 a "

Wbkz0H_H 0 b e

8_ o(k_-_)

Simplifying yields

+
%a = wbbkzo(k__kyo)_

and in terms of p and q it becomes

wa

(kzo] 22RX 2q2[p2 + "_--k--." ]

®_kzOb(z-q_)

Substituting (6.136) for kzo then yields

_-Rs(D¢oSrqa[k>i 02 + 1 - q2]

_wa = " (6.139)

kb(1-q_)_p_ + 1 - q_

The attenuation due to the walls within the corrugations may be

calculated from (6.114) and (6.121), therefore

P
W

that is



_wb

-2_xoa "

_zO_O_O • b e

---- j_

Simplification yields this as

i00

Rskyo_xo(k2-k_) [2ka - sin(2ka)]

-2_xoa
8 8

w b kkzo b e

%

Substituting (6.129) for the ratio of the square of the amplitude coefficients

yields

_wb =

- 2_xoa

Rsk_xo(k2-kyo) [ 2ka- sin(2ka)] _s b2 ss <okioe

-2_xoa

wSbSkkzo b e 2 sin2(ka)(k 2 2-<o ) [i - coS(kzoS)]

and simplifying,

R k2_k ^_S^s2[2ka - sin(P_ka)]
s yu zu xu

Substitution of (6.133), (6.135), and the definition of p and q yields

_wb =

Rsq_k_kzoS_P{ _a[p_ + (1-q_)_] - m(1-q_) ]

2w_b(l'q_)[1< c°S(kzoS)]

Simplification and substitution for kzo , (6.136), it becomes

_wb =

Rsk_¢oCrq2S2 p { 2ka[p2 + (i_q2)2] _ 2p(l_q_) ]_p2 + 1- q2

2b(1-_)[1- oos(_sSp_ + 1- q_)]

(6.140)
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Finally, the attenuation due to the corrugations can be calculated from

(6.114) and (6.123), then

P
c

_c 2P '

that is

c

Rskd b[ma + si ( a)]

16sw 22

-2_xoa
T T_- be

80txO (k_ -ky O)

Simplifying yields

c

R k[2_ka + sin(2ka)] Ot _(k 2 2
-k O) d 2

s _ _ (0)

-2_xoa

2sw3bSkzo e

and substitution of (6.129) into _c' becomes

c

- 2_xoa

R k[2ka + sin(2ka)] _xo(k2-k_)we_2s2a_xO e k 2s zO

- 2_xoa

2sw3_3kzo e sin2(ka)(k2-kyo)2 2[1 - cos(kzoS)]

Further simplification yields

Rsks_okzo [ 2_ka + sin(2_ka) ]

_c : 4w_ sin 2(ka)(ks-k_)[1 _ cos(kzoS) ]

Substitution of (6 133), (6.135), and (6.136), in terms of p and q into
" _C'

it becomes

c

Rskm¢oCrSP [ 2ka[p2 + (i_q2)2] + 2p(l_q2)]_p2 + i - q_

4(i-q2)[i- cos(ks _p2 + i- q2)]
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Equation (6.132) can now be substituted for ka_ eliminating the a-dependency;

that is

c 4(1-q)

[ 2[p 2 + (1-qS) s] tan-l(!__ ) + 2p(1-q s) ]
(6.141)

The total attenuation is now the sum of (6.139), (6.140) and (6.141).

Equation (6.141) may be compared with the attenuation for an infinite

corrugated wave guide, Section 4, as b becomes infinite the two attenuations

become identical; further, (6.139) and (6.140) become zero as expected.

6.13 Group Velocity

The group velocity of a wave traveling in the z-direction is given by

V -
g Sk ' (6.142)

z

which may be written

Sk
i z
v - _w " (6.143)
g

Equation (6.136) then specifies

i _ _pS q2v - _ [ k + 1 - ] • (6.144)
g

Differentiating this yields

i _ k i _----(ps + i - qS) , (6 145)

Vg 2_ + i - q_ _

and simplifying
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k
i p 8P

7g =_p2 + i _ q2 _ '

(6.89) can be written in terms of p and q as

p = (l-q_) tan(ka) .

Differentiating (6.147) yields

_P 2q-_ to_(_o)_....+ (i-q_) se_(TM)--- _

since

k
Y

q=_-.

Then

-k
Bq y i

_=_ ®-_

and

_= a_ •

_P 2q2 tan(ka) + (l-q s) sece(ka) a /_ ;

(6.146)

(6.147)

(6,!48)

simplifying_

_P 2q2 tan(ka) + (i'q2)a i
= T c cos_(ka) "

The group velocity, (6.146), now becomes

_ r2_14 (1-q_)a= P tan(ka) +

_ _p2 + i _ q2 - _ c

i

(6.149)

(6.150)
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6.14 Numerical Results

6.14.1 Introduction

The attenuations _._, _._, and _ , as well as the total attenuation, are

calculated for various values of p, the normalized x-decay constant. The

periodic plate spacing, s, is varied from one-tenth to six-tenths wavelength

at the four frequencies considered, i0, 35, 70, and 150 GHz.

A computer program was written to facilitate the computations. The

computer used was an IBM System/360 Model 30 and the language, Fortran IV.

The program is given below along with a flow chart_ and the numerical results

in Figures (6.2) through (6.12).

6.14.2 Computer Program

S.O001

S.0002

S.0003
S.0004

S.ooo5
s.ooo6

s.ooo7

Dn_SION ALPHA(55),ALFWA(55),ALFWB(55),ALFC(55),ALFWC(55),
*mn_v_(55)

C CORRUGATED H-GUIDE ATTENUATION

C

C---DEFINE VARIABLES---

C F=FREQIIENCY IN GIGAHERTZ

C RS=SL_3ACE _T_mT]TTmV #mn _ IVWTT.mTDT.7-V_ _V 7 __nT._O_m n_ _

C P=NORMALIZED DECAY CONSTANT IN X-DIRECTION--ALPHAX/XK
C XK=OMEGA*SQRT(MU*EPSILON)

C B=WALL SEPARATION IN CENTIINETERS

C Q=NORMALIZED PROPAGATION CONSTANT IN Y-DIRECTION--XKYO/XK

C XKYO=PROPAGATION CONSTANT IN Y-DIRECTION--PI/B
PI=3.1415926536

S=PERIOD OF WAVE GUIDE

A=HALF HEIGHT OF CORRUGATIONS

XIAM IS WAVELENGTH, XNLAM(1) IS NUMBER OF WAVELENGTHS TAKEN FOR S

C

C

GET DATA

i READ(I,100)P,F,B,RS

i00 FORMAT(4FIO.5)

c_c_ ms--(_ SQUA_D) AND XK
XKS:(4./9. )*PI*PI*F*F*(1.E+02(
Z<:S_T(XKS)

CALCW__ Y-PROPAGATIONCO_ST_LWrmo
X_0=PT/(B*(Z.E-02))



s.oo08

s.ooo9

S.O010

S.O011

S.0012

S.0013

S.0014

s.ool5

S.0016

S.0017

s.ool8
s.oo19
s.oo2o

s.oo21

s.oo22

S.OO23
s.0o24

S.0025

C
C
C

C

C
C

C
C
C

C
C
C

C

C

C

C

C

C
C
C
C

lO5

CALCULATE Q

Q=XKYO/XK

CALCULATE ONE HALF THE HEIGHT OF THE CORRUGATIONS A

A=AT_ (P/(i .-Q_) )/XK

ADJUST RS TO ACTUAL VALUE

RS=RS*(I .E-07)*SQRT(F* (i .E+09) )

CALCULATE Z-PROPAGATION CONSTANT---XKZO---

XKZO= XK*SQRT (P*P+I. -Q*Q )

CALCULATE X-DECAY CONSTANT---ALFXO---

ALFX0=XK*P

DEFINE EPSILON---EPSIL

EPSIL:-(i./(36.*PI))*(i .E-09)

DEFINE MU (XMU)

XMU=4. *PI* (i.E-07)

CALCULATE FREE SPACE WAVELENGTH

XLmF:(3.E+08)/(F*(l.E+09))

CALCULATE GUIDE WAVELENGTH AND PHASE VELOCITY

ZIA_MG=2.*PI/X]{Z0
VPHAS=F* (1 .E+O9)*XLAMG

CALCULATE GROUP VELOCITY VGRP:I./(X*(Y+Z))
X:XK*P/SQRT (P*P+I. -Q*Q )

Y:2 .*Q'Q* (SIN (XK*A)/COS (XK*A))/(2. *PI*F* (1 .E+09) )

z:(1.-Q*Q)*A/(cos(XK*A)*C0S(XK*A)*(3.E+08))
vG_:l./(X*(Y+Z))

CALCULATE ALFWA (1)---UPPER WALL ATTENUATION- --ALFWA (1)=X*Y/Z

X:RS*Q*Q
Y=2.*P*P+l. -Q*Q

Z:B*SQRT(XMU/EPSIT)*SQR_(p*p+!..Q_)*(I._Q_)*(I.E_02)
AUWA(1):X*Y/Z
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S.0026

S.0027

S.0028

S.0029

S.0030

S.003!

S.0032

S.0033

S.0034

S.0035

S .0036

S .0037

S .0038

S.0039

S.0040

S.0041

S.0042

S.0043

S.0044

S.0045

S.0046

S.0047

S.0048

S.0049

S.0050

PRINT OUT PARAMETERS WHICH ARE NOT DEPENDENT UPON S(1)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

k_ITE(3, 7ml_D_v_j_,F,B,A

i01 FORMAT('I';'P:';F4.3;2X;'F=';F9.4;IX;'GHZ';4X;'SIDEWALL SPACING:',

*F6.4,1X,'CM',I6X,'0NE HALF CORRUGATION HEIGHT=',EI5.8,1X,'METERS')

WRITE (3,208) VPHAS, VGRP

208 FORMAT(IX;'PHASE VELOCITY=',IX;EI5.8_3X,'METERS PER SECOND';15X,

*'GROUP VELOCITY=',IX,EI5.8,1X;'METERS PER SECOND')

WRITE(3,207)XI-AMF,XIAMG

207 FORMAT(IX,'FREE SPACE WAVEIA-_GTH=',IX_EI5.8_3X/METERS',I9X_

*'GUIDE WAVELENGTH='IX,EI5.8,3X,'METERS')

WRITE(3;20!)RS;AL_IA_X0

201 FORMAT(' ';'SURFACE RESISTANCE=';EI5.8;2X,'OHMS PER SQUARE';15X_

*'X-DECAY CONSTANT=';E15.8;2X;'RADIANS PER METER')

WRITE(3,202)XKY0,XKZ0

202 FORMAT(' ';'Y-PROPAGATION CONSTANT=';EI5.8_2X_'RADIANS PER METER',

*9X;'Z-PROPAGATION CONSTANT=';EI5.8,2_X_'RADI-ANS PER METER')

WRITE(3,210)ALg]4A(1)

210 FORMAT(IX;35X_'IIPPER WALL ATTENUATION='IX,EI5.8;3X;

*'NEPERS PER METER')

ADJUST F TO ACTUAL VALUE

F:F*(I.E+09)

ADJUST B TO ACTUAL VALUE

B:B*(i.E-02)

ESTABLISH DO LOOP FOR VARYING S FROM .i LAMBDA TO .5 LAMBDA IN 50 STEPS

DO i0 I=i;50

VAR=I

VAR=VAR*. 01

XLAM= (.3E+09)/F

XNLAM(I): (. 09+VAR)

CALCULATE ALFWB(I)---LOWER WALL ATTENUATION---ALFWB( I):X*Y/Z

X: RS*2. *P I*F*EPS IL*XK*Q*Q*S (I )*S (I )*P

Y:SQRT(P*P+I.-Q'Q)

Y=Y*( 2 .*XK*A*(P*P+(I.-Q'Q)*( i.-Q'Q) )-2 .*P*(I.-Q'Q) )

Z:B*(! .-Q*Q)*(!.-COS(XK*SQRT(P*P+I.-Q*Q)*S(1) ))*2.

ALFWB(I):X*Y/Z

CALCULATE ALFC(1)---ATTENUATION DUE TO CORRUGATIONS ALFC=U*V*(W+X)/Z



s.oo51
s.oo52
S •0053
S _h• V k,,' J "_

s.oo55
s.oo56

s.oo57

s.oo58

s.oo59
s.oo6o

s .oo61
S .0062

_.VVvJ

s .oo64
s.oo65
S.0066

S.0067
s.oo68

C

C

C

C

C

C

C

C

C

C

C
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U=RS*XK*2.*PI*F_PSIL*P*S(1)/4.
v=s_T(P*P+I.-Q_)/(I-Q*Q)

X__ ._f-_._ _i.-Q_)
Z=i.-COS(XK*SQR_(P*P+i.-Q*Q)*S(!))

Ai3c(1):u*v.(w+x)/z

CALCULATE TOTAL WALL ATTENUATION---ALFWC( I)---

ALFWC(I)=ALFWA(!)+ALFWB(I)

CALCULATE TOTAL ATTENUATION ALPHA( I)=ALFWA( I)+ALFWB( I)+ALFC(I)

i0 ALPHA(I)=_A(1)+ALFWB(I)+ALFC(I)

PRINT OUT TABLE I_ING

W!RITE(3,103)

103 FORMAT('O',I3X,'PERIODIC PLATE SPACING',i2X,
*'LOWERWALL ATTN'_7X_'TOTALWALL ATTN',7X,

*'CORRUGATION ATTN',9X,'TOTAL ATTN')

)IZITE(3,104)

104 FORNAT(IX_SX_'LAMBDA',I6X,'METERS',IIX,
*'NEPERS PER NETER',6X,'NEPERS PER METER'_6X,

*'NEPE_.S PER NETER',6X,'NEPERS PER METER')

PRINT OUT DATA

20

105

WRITE (3 ,I05)XNLAM(1),S(1),ALFWB (I),ALFWC (I),ALFC (I),ALPHA(I)

FO_T( ' ' ,3X,_.15.8, 5(7X,_.15.8) )
GO TO 1
STOP

END
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ICA_LATE PROPAGATION CONSTA/_I_SXK, ALFXO, XKY0, XKZO# Q

CALCULATE

EPSIL, MU

l CALCULATE

I'
I CALCULATEVP_ t VU_

I
]
1

I PRINT PARAMETERS WHICH ARE INDEPENDENT

OF PLATE SPACING, S(I): P, F, A, VPHAS,

VGRP, XLAMF, XIAMG, RS, ALFXO, XKYO, XKZO,

AI/_A(1)

VARY PLATE SPACING AND

CTALC"JLATE A_CTE_NUATIw,

t
PRINT ATTENUATIONS :

AU_ (I) ,AL_C(1),

AU'C(1),A_A(I)

RETURN ,

Figure 6.2 Flow chart

Ow
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7. COMPARISON OF ATTENUATIONS
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The attenuation for a dielectric H-guide (_T) will be considered in

detail and some conclusions drawn on the minimization of the attenuation.

The attenuation is due to two sources, the dielectric_ and the walls;

it may be separated into two terms as

_dH = _d + _w _

the subscripts referring to dielectric and wall respectively. The

dielectric attenuation may be written in the form [see (5.85)]

Sr[A- sr]

_d = tan(8) B[C + Cr(¢r-l)] ' (7.1)

where A, B, and C are independent of er and tan(6). This can be written in

a further simplified form as

_d = tan(8) _(¢r) , (.7.2)

where

¢r[A- er]

_(¢r ) : B[C + ¢r(sr-l)] ' (7.3)

It is now apparent that _d varies directly with tan(8); further Figure 5.2

= 4. To minimize _d' ¢ shouldshows there is a minimum for _(¢r) near Cr r

be chosen to be approximately four, and tan(8), should be minimized.

If the dielectric is laminated rather than solid, and yet has an

equivalent relative permittivity of about four, the attenuation may be

reduced. The laminations will need to have a relative permittivity greater

than four to achieve this, which means generally that the loss tangent,

tan(Sslab), of each lamination will be greater than that of some solid
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dielectric with Cr = 4 and a loss tangent of tan(84). However, the

equivalent loss tangent of the laminated structure, tan($eq.) , will be

less than tan(Ss!ab), and it maybe possible to make tan(6eq.) less than

tan(64). If this is possible, then the laminated structure will have all of

the necessary properties of the optimum solid dielectric and will have a

smaller value for the loss tangent.

The case for a !_inated dielectric in a static electric field

considering only normal componentshas been examinedby C. W. Bostian. 3

The optimummaterial for this application seemsto be EccoceramHi K

[e r = 90, tan(6) = 0.001].4 The relative permittivity and loss tangent for

various commonmaterials appear in Table 7.1.

For the desired equivalent permittivity of four, an equivalent loss

tangent of 0.000035 can be obtained. This represents a reduction in the

loss tangent of about twenty [assuming tan(6) = 0.0007 originally].

If this analysis were exact, then the dielectric attenuation would be

normal electric component, and in the case of an H-guide there exist

tangential componentsalso. The assumption will be madethat the attenuation

due to these components is not reduced significantly. It, therefore, seems

reasonable in this approximation to let the reduction in the loss tangent

be a factor of seven, since only one-third of the total electric field

experiences a reduction. It was found that _d and _w are different by a

3F. J. Tischer, Principal Investigator (C. W. Bostian, Instructor;
Roy Propst, Graduate Assistant), May 15, 1967. NASAProgress Report on
Study of Rectangular-Guide-Like Structures for Millimeter WaveTransmission.
NGR-34-O02-047. Department of Electrical Engineering, North Carolina State
University, Raleigh, North Carolina.

4Emersonand Cumming,Inc., Canton, Massachusetts.
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Table 7.1 Relative permittivity and loss tangent of several materials at
i0 GHz

_ Loss TangentRelative Permittivity !! (to bybemultipliedlo-_)
Material

Styrofoam 1.03 1.5

Teflon a 2.08 3.7

Polystyrene 2.54 4.3
Rexoliteb 2.54 6.6

c

Formica 3.90 45.0

Pyrex glass d 4.80 98.0

Water (25 ° C) 55.00 5400.0

b
Eccoceram Hi K 90.00 i0.0

aE. I. Du Pont de Nemours and Co., Inc., Wilmington, Delaware.

bEmerson and Cumming, Inc., Canton, Massachusetts.

CThe Formica Company, Cincinnati, Ohio.

dcorning Glass Works, Corning, New York.

factor of ten at i0 GHz for a sidewall spacing of 2.286 cm.

of attenuation be D; that is

_d:10%: D, (7.4)

which means the total attenuation is given by

_dH = I0 D + D .

Let _dH_ denote the attenuation for the laminated H-guide.

above that the dielectric attenuation was reduced by a factor of seven;

therefore

i0

_d_ : _- D + D (7.6)

Let this value

(7.5)

It was seen

It follows that
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_dH_ - 77 _dH ' (7.7)

thus, yielding a reduction in total attenuation of goout four and one-half.

7.2 _ Comparison of Thre______eH-Guides with the Rectangular Wave Guide

The attenuation for three H-guides (dielectric, corrugated, and

laminated dielectric) has been obtained. A comparison of the attenuations

can be made for a _±_e_ value of: s±_ew_±± spacing (2.2_ cm.), _rm_±_e_7_

x-decay constant (p = 0.2), and frequency (i0 GHz). This particular value

of p corresponds to a field which decays by ninety percent_ in a distance

of five centimeters from the dielectric at the above frequency. The value

of attenuation chosen will be that which is minimum in each case for the

given value of p.

The values of attenuation for the dielectric and corrugated H-guides

can be found directly from the curves provided in the respective sections;

that of the laminated dielectric H-guide can be found from (7.7). The

results are shown im Tabi_ 7.2.

Table 7.2 Attenuation for various wave guides at i0 GHz

Wave guide type I Attenuation

Rectangular

(standard X-band)

H-guide

(dielectric)

H-guide

(laminated dielectric)

H-guide

(corrugated)

(nepers per meter)

12 x 10 -3

5 x 10 -3

i x 10 -3

2 x 10 -3
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8. EXPERIMENTALPROCEDURESA_ RESULTS

8.1 Introduction

The properties of surface wave guide structures can be determined by

different techniques: such as, direct measurement of the structure under

operational conditions or measurement of the characteristics of various types

of modes when the structure is enclosed in a cavity. The cavity method offers

some advantages in that probes and the change in the f:i_!_ due to the insertion

of a probe for measurements are eliminated; further, the structure is isolated

from external fields. As a first step_ a test cavity, which can later be

converted into a shorted section of the H-guide, must be thoroughly analyzed

and pertinent parameters determined. The parameters are t!_e resonant frequencies

of the various possible modes (which may interfere with the desired mode), the

frequency shifting.due to various types of loading, and the Q-values of the

modes.

8.2 Op_ipT.ion of th_ T_T_ _vitv
.......... m _ --m_ --.

The rectangular cavity considered is of the transmission type coupled

by circular Lrises between two sections of rectangular wave guide (Figure

8.1).

The inside width of the cavity was made equal to the inside width of

standard X-Band wave guide (RG 52/U) to insure that only modes of one-half

period sinusoidal variation in that direction would be present. The inside

height was four inches and the longitudinal length six.

Coupling to the wave guide was accomplished by circular irises centered

in the wave guide cross-section; hence_ centered in the cavity end plates.

During all of the measurements_ irises of one-quarter inch diameter were
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used since smaller diameters increase the insertion loss to an extent that

the signal amplitude has approximately the amplitude of the noise level.

The cavity was constructed of one-half inch thick brass sides and one-

quarter inch thick b_-_:_ _nd plates having 0.050 inch thick inserts for

changing the size of the coupling iris; the entire assembly was electroplated

with several ten-thousandths thickness of silver. A det_, led view of one

end can be seen in Figure 8.2_ the other end being identical.

8.3 Determination of the Resonant Frequencies for the Empty Cavity

The solution of the Maxwell equations within a closed uniform region,

upon separation of variables_ yields a relationship between the propagation

constants _

k2 = k2 + k2 + k2 (8 l)
x y z _

where

k2 = (2nf) s b0¢0¢ r , (8.2)

#

and the re_:aining terms the squares of the propagation constants in the

subscripted directions. Boundary conditions for a rectangular cavity admit

only sinusoidal solutions which means that (8.1) becomes

i
,iw)2 + (mq)2 + (_)2]½ (8.3)

where n_ m_ i = O_ i_ 2_ . _ and a_ b_ and d are the dimensions of the

cavity. It can be seen that n_ m_ and i describe the number of half

sinusoidal variations in their respective directions. For the cavity under

consideration_ and for the unloaded case

3xl_° , mw ,2 n_ '_n_
f.
imn- 2----_[1.893 + <_-[) + (_-_-$j ]- , (8.4)
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It is now possible to calculate all of the possible modes for the

cavity. The frequency range shall be limited to 9.0 to Ii.0 GHz. The

results are tabulated in Table 8.1 along with the measured values. Only the

modes with even numbers in the vertical direction appear in the table since

the odd modes were not assumed to be excited, due to the excitation

discriminating against odd modes.

It should be noted that the measured values are lower than the calculated

values. This may be due to several causes: first, the velocity of light

was approximated to facilitate calculations; second, losses within the cavity

walls and the coupling irises will tend to lower the resonant frequencies;

and third_ a very slight error was made in the measurement of the cavity

width (0.005 inches), implying the value 1.893 should be a small amount

less. The average deviation is approximately 30 MHz.

Table 8.1 Frequencies of cavity modes

MOdeTE I
Calculated frequency Measured frequency

(GHz) (GHz)

io7 9.515 9.5o2
108 10.250 10.220

109 11.030 ll.O00

126 9.327 9.295

127 9-955 9.944

128 10.650 10.635

142 9.020 9.032

143 9.320 9.295

144 9.690 9.651

145 10.10o lO.O8O

146 10.615 10.580
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8.4 Determination of the Resonant Frequencies

of the Dielectric-Loaded Cavity

in the case of a fully loaded cavity, (8.3) shows that the mode

freal_eies will be decreased by. _/_- : that is_ all freauencies will be

decreased by the same amount.

If the cavity is partially !oaded_ then the exact frequency shift

determination becomes quite difficult; however, the problem may be approximated

in the following manner. A typical cross-section of the loading to be

conL_idered is shown in Figure 8.3. To a first approximation, it appears that

the dielectric affects primarily the x-variation of the field; in fac% the

dielectric may be considered to increase the x-dimension by an amount

(¢_r -I)D, where D is the thickness of the dielectric. Equation (8.3) may be

utilized_ simply replacing b by b + (¢_r -1)D. The results of the calculations

for the even modes appear in Table 8.2.

Table 8.2 Frequencies of cavity modes with central slab loading

Cavity Loading Mode

1/8" Rexolite 1422 slab in

center of cavity

¢ = 2.53
r

tan(8) = 0.00066

126

127

128

143
144
145
146

Calculated Frequency

(GHz )

9.29o
9.947

lO.62o

9.12o
9.515
9.968

i0.490

1/4" Rexolite 1422 slab in

center of cavity

¢ = 2.53
r

tan(8) : 0.00066

126
127

128

143

144

145
146

9.249

9.890

lO.6OO
9.oo5
9.380

9.81o
lO.45o
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8.5 Excitation of Cavity Modes

The field configuration within the rectangular wave guide_ which

delivers energy to the cavity, is due only to the TE mode_ all others
&

being damped out since operation is not above the cutoff frequencies of the

higher order modes. The field due to the TEI o mode is given by

Ey = E0 sin(_)

E0

=

and

JEok

H = cos(-  a)z 2-_

where

and

These are the only possible field components available for excitation of the

cavity. Figure 8.4 shows the cross-sectional view of the cavity and wave

guide located centrally about the iris. Boundary conditions require E and
Y

H to be zero on the wave guide end plate, leaving only the H component
z X

present there. If the assumption is made that the iris diameter is small

enough not to appreciably disturb the field within the wave guide_ within the

iris itself only the Hx component will be present, since the field must be

continuous. It now appears that only the H component of the wave guide field
X

is present within the cavity region. Furthermore_ there will be no E component
Z

excited within the cavity region under ideal conditions. The absence of the E
Z
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componentwithin the cavity restricts the results to TEImn modeswithin the

cavity. Dielectric loading will possible cause excitation of other modes.

It is possible for the TMimnmodeswith m even to be excited, since at

the coupling hole these wave modeshave transverse magnetic field components

which are coupled to the fields within the wave guide. The resonant

frequencies for these modesare identical with the corresponding TEImn modes

for the homogeneouscavity, and it is therefore impossible to separate the

two modesby examination of the cavity output.

8.6 Wideband Measurement Technique

A swept frequency method was used in order to facilitate the measurements,

since continuous recording of data is possible. The output signal of the

cavity, which is connected at the input to a swept-frequency generator, is

measured at the exit port. This output may be considered as the transfer

function of the cavity since the input signal is essentially independent of

frequency, due to the signal leveling system of the sweep oscillator. This

transfer function can be examined with an oscilloscope or_ for a permanent

record, a X-Y recorder which is swept by the same sawtooth voltage as the

oscillator; the test circuit diagram is shown in Figure 8.5. The swept-

frequency generator is an Alfred Model 650 (manufactured by Alfred Electronics,

Palo Alto, California) with the 7.0-12.4 GHz plug-in unit (Model 654AK-SI)

(manufactured by Alfred Electronics, Palo Alto, California). External

leveling of the signal is accomplished by feeding back a portion of the input

signal to the leveling input of the generator. Two frequency meters were

used in the circuit since the precision (.015 percent absolute maximum

frequency error) PRD Model 559-A (manufactured by PRD Electronics Inc.,

Westbury, New York) has a range which only extends up to i0 GHz; the Hewlett
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Packard Model X532-B (manufactured by Hewlett Packard, Palo Alto, California)

(.08 percent maximum error) is used for the higher frequency part of the swept

spectrum. The precision type frequency meter is especially useful for narrow

band measurements, as Q-measurements; since divisions of I MHz are directly

readable on the meter.

8.7 Q-Value Measurement Technique

The procedure for the Q-value measurements is essentially the same as

the wideband measurements except normally the sweeping range is limited to

Af = i0 MHz rather than 2 GHz. The circuit is identical to that shown in

Figure 8.5.

Initially the desired sweeping range is set, and the first two variable

attenuators are adjusted for a convenient amplitude level. Two attenuators

are available since it is desirable to set the second attenuator (precision

type) to an even dB setting_ then vary the first one for the desired amplitude

at terminal A. First terminal A is connected to the y-axis input of the

plotter and a Q-curve is described on the plotter, then an additional 3 dB is

inserted by the second attenuator and another Q-curve is drawn--a straight

line across the peak of the second curve marks the 3 dB points on the first

curve. Frequency calibration is carried out in the same manner as in the

case of the wideband measurement_ and described below.

The x-axis of the recorder is driven by the sweep circuit of the

generator; the y-axis may be excited by either terminal A or B; A being used

to plot the mode spectrum of the cavity, whereas B is used for frequency

calibration--the unused terminal is terminated with a 50 ohm load. The high

Q-value of the absorption type frequency meter is utilized for calibration

purposes. The Hewlett Packard 423A diode (manufactured by Hewlett Packard,
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Palo Alto, California) has a negative response characteristic; therefore,

the frequency to which the absorption meter is tuned appears as a positive

peak. In this manner Ik<n, the frequency meter is adjusted to a given

frequency and, after !he peak is drawn, quickly advanced somepredetermined

interval and repeated throughout the spectrum yielding a sequenceof peaks

whose frequency is precisely known. During the calibration process, the

sweeping speed is ^_"_^_ _ seconds per sweepto _±±_w-77_"_mple +_-_,,_efor

frequency changing.

The procedure, therefore, is to first connect the y-axis of the recorder

to terminal A and place a 50 ohmtermination on B; plot the modespectrum of

the cavity, then interchange the termination and the y-axis input and finally

plot the frequency calibration peaks. It is advantageous to perform the

measurementssequentially as quickly as possibl% since there is somefrequency

drift associated with the sweeperwhich usually performs low amplitude drift

oscillations about a center frequency for a small time interval, then shifts

8.8 Wideband Measurement Results

The mode spectrum of the empty cavity for a 2 GHz sweeping range can be

seen in Figure 8.6. There is some degeneracy present.

The cavity was next loaded fully with very inexpensive styrofoam material

purchased in a department store, normally used for Christmas decorations

(Figure 8.7), which incidentally turned out to be less lossy than material

purchased specifically for low-loss properties (Eccofoam, Type PS available

from Emerson & Cumming, Inc., Canton, Massachusetts). The entire spectrum

can be seen to be shifted approximately 75 MHz, corresponding to a relative

permittivity of 1.03 for the styrofoam. There exists some mode splitting
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(127 and 151) which is probably due to inhomogenities in the material. The

variation in the relative amplitudes of the various modes is probably due to

the change in the impedance which the cavity and irises present to the wave

guide system which changes with frequency. Figure 8.8 shows the effects of a

single one-inch thick slab of styrofoam located symmetrically in the center

of the cavity (all of the slabs used for loading extend the full width of the

cavity). There was only a slight shifting of the modes, perhaps 30 MHz.

Again, the position occupied (in the empty cavity) by the 127, 135, and 143

modes split into two separate modes.

More could be determined about the effects of the slab by using a high

permittivity dielectric [_exolite 1422 (manufactured by Emerson & Cumming,

Inc., Canton, Massachusetts) Cr = 2.531 and comparing the spectrums for

different thicknesses. The spectrum of the cavity loaded with an one-eighth-

inch slab of Rexolite can be seen in Figure 8.9 and correspondingly, an one-

fourth-inch slab in Figure 8.10. It should be expected that modes without

any x-variation_ that _ _n7_ !08_ and 109 become predominant since the

dielectric behaves as a surface wave guide with the fields decaying

exponentially at right angles to the surface.

There exists a transition from excitation of all cavity modes to a

gradual decrease in amplitude resulting from reduced coupling, except for

the 107, 108, and 109 modes. With a sufficiently thick dielectric slab in

the center to cause the fields to decay to essentially zero at the top and

bottom surfaces, the cavity becomes a shorted section of H-guide.

The low amplitude modes can be damped out quite effectively by

placing absorbing material on the top and bottom surfaces of the cavity

(Figure 8.11). The H-guide modes are not disturbed since they have

essentially zero field intensity on the top and bottom surfaces.
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The effect of the dielectric slab in the center of the cavity carrying

surface waves (R-guide) can be seen more distinctly by comparing Figures 8.12

and 8.13. Figure 8.12 shows the cavity with the absorbing material on the top

and bottom surfaces without the dielectric in the center. No field is excited

in the cavity. A dielectric slab inserted in the center of the cavity causes

the H-guide modesto be excited. They are modified 107, 108, and 109 modes,

which can be seen in Figure o _

The actual identification of the H-guide modeswas madeon the basis of

Figure 8.9. The frequencies of 127, 145, and 146 modeswere calculated

(Table 8.2) and identified in Figure 8.9; comparison with Figure 8.6 shows

that the remaining large magnitude modesmust be the modified 107, 108, and

109.

8.9 Q-Value Measurement Results

Results of the measurements described in Section 8.7 are shown in Figure

8.14 for the empty cavity and for the 107 mode. The extraneous "spikes" in

the calibration curve were caused by the technique used. At first , the

frequency meter is adjusted to 9.498 GHz, then the sweeping circuit energized,

and a part of the curve for this frequency setting is plotted. After the pen

of the plot has passed the peak of the 9.498 GHz setting, frequency meter

is quickly moved to 9.500 GHz causing a "spike." The recorder then plots a

section of the frequency curve for the new setting until the frequency meter

is moved to the next frequency setting. In this way, series of resonance

curves are obtained as references for the frequency scale.

The Q-measurements were made with one-quarter-inch irises. The Q

would be higher for smaller diameters since the coupling losses would be

reduced. This size was decided upon since the insertion loss becomes
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objectionable for small diam.eters with the present power capability (!0 mw.)

and available detection system (crystals). The results of the measurements

can be seen in Table 8.3. The 107, 108, and 109 modes were examined since

they ultimately become the only modes present under all types of loading

considered. As was expected, the loaded Q-value decreases with increasing

dielectric loading. No specific conclusions can be made _'_out the Q-value of

the different modes for a fixed type of loading since the impedance of the

irises changes with frequency and the unloaded Q would have to be isolated

from the various loading factors; that is,

i i i

% K +QT'

where the subscripts specify loaded, unloaded, and coupling (irises)

respectively. To determine the unloaded Q, the frequency dependent coupling

Q must be separated from the loaded Q.

Table 8.3 Loaded Q-values of the test cavity

TE

Cavity Loading Mode Loaded Q-value

Empty 107 16000

i08 16080

109

Dielectric 107 ii000

(Styrofoam Cr = 1.03) 108 11160

Completely filled 109 9065

3410

3435

3200

Dielectric 107

1/4" Rexolite 1422 strip 108

(¢r = 2.53) centered 109

in cavity parallel to top

and bottom surfaces

Dielectric

as above except additional 1/2" 107 3015

thick absorbing material on top 108 2620

and bottom surfaces (Eccosorb LS) 109 2220
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8.10 Theoretical Technique for Unloaded Q-Value Measurement

A transmission cavity can be considered in terms of lumped circuit

parameters, Montgomery (1947); an equivalent circuit for the cavity is shown

in Figure 8.15. In general, the input and output coupling would be different,

but here the symmetric case is considered since the input and output irises

are identical. The irises will thus be represented by ideal transformers with

turn ratios n:l T_ _ .... _._7^__ _,_ I,+_7_z_±_ o._ e_±_.o circuits of +_ +.... _..... are

Figure 8.15 becomes Figure 8.16.

The loaded Q, _. for the circuit in Figure 8.16 is given by

wL
o

% = R + n_(RG+RL) ' (8.5)

where _0 is the particular resonant frequency under consideration. Equation

(8.5) can be written in terms of the unloaded Q, Qu' as

n2
Qu = QL [I + R--(RG+RL)] (8.6)

If the system is matched in both directions from the cavity (RG = RL) ,

which can be accomplished by making the voltage standing wave ratio, VSWR,

small in both directions, then (8.6) becomes

Qu : ,

where the coupling parameter, B, has been defined as

n2Z 0

and

Z0 = RL = Rg .

(8.7)

(8.8)
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Figure 8.15 Equivalent circuit of transmission cavity with coupling

irises shown as ideal transformers
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n2Rg R L C n2RL

Figure 8.16 Alternative form for the circuit shown in

Fi_are 8_!5



The current for the loop in Figure 8.16 can be written in the form
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since

nV

R[(I+2_)+ j % (_
w 0

The real power delivered to the load impedance is given by

P_ = I112n2 Z0 ,

or in terms of _ as

PL = 1112 _R.

Now, substituting from (8.9) into (8.12) the power becomes

(8.9)

(8.1o)

(8.11)

(8.12)

PL =
2 _o WO]2

z°[(_+2_)2+ %(_o - _" ]

If the generator were to see a matched load, as in Figure 8.17, the power

delivered to the load would be given by

(8.14)

A transmission function, T(w), defined as PL/P, can be found from

(8.13) and (8.14), that is

0

(8.15)

o

which becomes at resonance
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Figure 8.17 Generator, V, feeding a matched load z0
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or for _ in terms of T(w0) as
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(8.16)

: • (8.17)
2[z - )]

T(w0) is a measurable quantity. Upon measuring it, (8.17) yields _,

and then (8.7) specifies Qu after QL is measured.

8.11 Experimental Technique for Q-Value Measurements

The circuit used for loaded Q-value and insertion loss measurements is

shown in Figure 8.18.

The VSWR, as seen in both directions from the cavity must have a low

value if the previously described method is to be employed. This can be

accomplished by inserting attenuation in the wave guide. If ten dB of

attenuation is inserted by both attenuator i and attenuator 2, the VSWR in

both directions was found to be less than 1.02:1.

The system must now be balanced. With the cavity removed from the system

and attenuator I set to approximately ten dB, the signal is measured at B;

the switch now is turned to the other arm and attenuator 2 is adjusted for

the same signal amplitude at A, thus balancing the system.

A six-inch section of wave guide is inserted in the position formerly

occupied by the cavity. The difference between the signals at A and B is

one-quarter dB, indicating the loss for two coupling flanges and a six-inch

section of wave guide, which represents the coupling loss from the wave

guide to the irises.
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Insertion loss measurements may now be performed. An oscilloscope is

connected to B_ the frequency adjusted to the resonant frequency of the mode

to be measured_ attenuator 3 adjusted to a convenient !evel_ and the signal

level recorded. The switch is now turned to the left arm and attenuator 3

adjusted until the signal level is the same as that previously measured• The

difference between the final and initial settings of attenuator 3 yields the

insertion _ The .....7+_ _ +_ m ........ "..... e .... _ .....ts appear zn m_l_ 8.4

The loaded Q-value_ QL' is measured as follows. Terminal A is connected

to the y-axis input of the X-Y recorder. Sweeping will be performed manually

at the generator. The resonant frequency_ fo' of the particular mode under

consideration is determined and the generator adjusted to this frequency•

A minus three-dB level is now established. A line is drawn on the paper

in the plotter parallel to the x-axis and near the vertical center of the

sheet. Attenuator 3 is adjusted such that the pen coincides with this line

at the resonant frequency. Attenuator 3 is now adjusted to a value three

±_ ona_ u_±u±-_ and a _-u_ is _±_w_ _ _ _±

to sweep several MHz about the resonant frequency. The frequencies_ fl and

f, at which the Q-curve crosses the line previously drawn are the half power

frequencies. The loaded Q-value is now given by

fo

The loaded Q-values for the modes considered appear in Table 8.4.

The coupling parameter, _ can be calculated from (8.17), thus yielding

Qu from (8.7).

The Q-values for the _qo7 mode in the empty cavity provides a validity-

check on the method. Analytically, this was calculated to be 22,700 and
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measured as 22,000. This result is within the experimental error of the

measurement (54), which was obtained by repeating identical measurements and

noting the differences incurred.

The H-guide structure which was inserted into the cavity was supported

by a rectangular piece of dielectric identical in size to the inside dimensions

of the cavity. Consequently, dielectric losses are introduced and must be

considered. Under earlier conditions, for a _ of _ _±u,_, a value of 77 n_

was measured when the cavity was filled with dielectric of the same type as

used for supporting the H-guide structure. It would therefore seem reasonable

to multiply the measured Q-values for the H-guide by a factor 16/11 to

determine the Q-value for the H-guide structure above.

The unloaded Q-value for the H-guide, _, now contains losses due to

the top and bottom surfaces as well as the end plates. If the losses due

to the top and bottom surfaces are neglected_ since the field decays

exponentially normal to the corrugations, it should have a small value of

amplitude at these surfaces. _ne losses due Lo th_ _ p_a_ can _

accounted for in terms of a Q-value, _. The H-guide Q, QH' is now given by

i i i

Q_ was calculated to be 143,000.

attenuation_ _.

(8.19)

The Q-value_ QH_ must now be related to

8.12 A Relationship Between Attenuation and Q-Value

A cavity may be considered as a shorted section of the wave guide_ whose

attenuation is given by

PL

: 2-_' (8.2o)
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R

PL = -_- IHtl 2 d_
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(8.2l)

and

i ? _(Ex_ • ds,P =_Re ,--_ , _
S c

(A oo_

C being the contour enclosing the cross-sectional area S
C

the cavity, excluding the losses on the end plates, is

Q = WWE (max)

Pi '

where

The Q-value for

(8.23)

and

¢ _E "E*dvWE(max) = _ t _V --

R

p;_ s ], J' I Ht 12 ds ,
_S ! " .

S' being the internal surface area, excluding the end plates, and V the

volume enclosed by the cavity.

±JkzZ
For the case of TE waves propagating as e

components are related as (Collin, 1960)

IEtl = Z_ I_tl,

where

k 0

ZTE = _2 - ,
Z

and _ is the intrinsic impedance of free space, defined by

(8.24)

(8.25)

, the tangential field

(8.26)

(8.27)
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Applying this restriction to kS._)_ (8.25) and (8.25)_ they become
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(s.28)

and

Mcd

WE1max_,/ 2 _ _'J_/

P£ = Pt_, (8.31)

where d is the length of the cavity in the direction of propagation (z), and

for convenience M has been defined as

The product of _ and Q may now be formed_ that is

wW_I _P_
_kmax/ _.

_Q = 2PP" ' (8.33)
L

substituting from (8.29) through (8.31) yields

wMcdP L
c_Q-

2MPLd
2_

2ZTE

and simplifying yields

w CZTE
(8.34)

Using the definition for ZTE simplifys further, and the product becomes

2

k0
_Q = w

2k
Z

(8.35)
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_ere Q is the Q-value of the cavity including the losses due to any inserted

_ructure 3 but excluding the losses due to the end plates.

-_ The attenuation for the H-guide structure may be obtained from (8.19)

_d (8.35). The z-propagation constant was calculated by the computer program

L|

eviously written. Attenuation values appear in Table 8.4.
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9 .i Summary

_Ama!ytica! expressions for attenuations were obtained and ev_l_1_+_a

numerically by a digital computer. Comparisons were made at a frequency

_ !0 _-_ _ _ ÷_ _ v_111_ _ _ +_ _l_ x_decay _s+a _+ _

all cases; that is, the same field confinement. A shorted section corrugated

H-guide was constructed and the attenuation measured.

9.2 Findings

The analytical solution for the dielectric H-guide yielded the

disappearance of the longitudinal wall current as expected; however, for

the corrugated H-guide, the only field component disappearing was the

transverse electric. This could be in fact true or could be due to the

particular approximation made in the solution. It was assumed that the

fundamental mode (no longitudinal variation) was dominant within the

corrugations, and all other modes could be neglected. The approximation

is not entirely without merit since good agreement was found with measurements.

The attenuation for the corrugated H-guide was found to be less than

half that of the dielectric H-guide at a frequency of i0 GHz and the same

value of x-decay constant. By using laminations rather than a solid slab

for the dielectric H-guide, the attenuation could be decreased by a factor

of approximately five, half that of the corrugated H-guide.
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