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SUMMARY

This report contains in part material presented 1in
previous interim reports and in part new material to pre-
sent a comprehensive study of the H-guide with artificial
dielectrics. The study was carried out by Roy H. Propst
under the direction of Dr. Frederick J. Tischer during
1967. The resulting report was submitted by Mr. Propst as
a thesis for the Degree of Master of Science at the North
Carolina State University at Raleigh, N. C.

The study deals with H-guide structures with artifi-
cial dielectrics. The application of artificial dielectrics
represents one approach for the reduction of the attenuation
caused by the dielectric slab in H-guides. Emphasis is placed
on a new type of H-guide, the corrugated H-guide. The
attenuation of this guide is computed, evaluated numerically
and compared with that of other waveguides. Results of
measurements verify the analytical results.

After a review of the literature, the attenuation for
three wave-guiding structures is calculated. The structures
are: an infinite dielectric sheet, an infinite corrugated
plane, and a dielectric H-guide. These preliminary calcula-
tions are necessary for developing the method of computation,
the normalizations to be used, and for purposes of subsequent
comparison.

The distribution of the field components for the cor-

rugated H-guide is determined by employing the method of



field matching. From this, the attenuation is computed
and evaluated numerically at various frequencies by computer.

The attenuation of the corrugated H-guide is compared
with three other wave guides: a dielectric H-guide, a lami-
nated dielectric H-guide, and a standard rectangular wave
guide, all operating at 10 GHz.

Measurements were made at 10 GHz for the verification
of the analytical results for the corrugated H-guide struc-
ture. They were carried out in a transmission-type cavity
which formed a shorted section of H-guide. Experimental
techniques are described for determination of the guide

wavelength and attenuation.
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1. INTRODUCTION

As frequency increases beyond X-band (10 GHz), the low-loss qualities
of rectangular wave guides become degraded considerably; for example, the
ion of standard rectangular wave guides operating at 70 GHz is
approximately twenty times that of X-band wave guide at 10 GHz. This occurs
because of the reduction in the ratio of cross-sectional area to wall area,
and increase in surface resistance. There is further a degradation in the
power handling capability as the size becomes small.

One alternative solution is the use of "oversize" wave guides; that is
wave guides with a width of several half-wavelengths. However, this
introduces modes of higher order than the fundamental , which means there
willl be losses incurred when the power is extracted.

Semi-open wave guides, such as the H-guide which may also be "oversize",
offer another possibility in that the top and bottom walls of a rectangular
guide are removed and replaced by a central dielectric slab whose loss can be
less than that of the walls removed. The H-guide behaves somewhat as a
surface wave guide since the field decays exponentially with distance from
the central dielectric slab, thus confining the field to a region near the
slab. An interesting feature of the dielectric H-guide is the disappearance
of the component of the magnetic portion of the field normal to the slab,
thereby eliminating longitudinal wall currents. This means that the contact
resistance between H-guide sections is of no consequence and does not
introduce significant losses as in the case of rectangular wave guides.

It is intended for this investigation to determine quantitatively the
advantage in using artificial dielectrics, as opposed to a single dielectric

slab, within the H-guide. Two cases will be considered: a corrugated



structure, and a laminated dielectric structure. The corrugated structure
consists of an array of rectangular metallic plates placed in parallel within
a low-loss foam dielectric; and the laminated, an array of dielectric slabs
each of which occupies a position similar to the slab in the usual H-guide.
Initially, the attenuation for three other structures--infinite
dielectric plane, infinite corrugated plane, and dielectric H-guide--is
found. This is necessary since the attenuation for the infinite corrugated
plane was not available elsewhere, and that for the infinite dielectric
plane and the dielectric H-guide was not available in a form suitable for
comparisons. The attenuations for the infinite cases also provide a
validity - check for the attenuation of the H-guides, since in the limit as
the width of the H-guides becomes infinite, the attenuations approach that

of the infinite planes.
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2. REVIEW OF THE LITERATURE

2.1 Surface Waves

A surface wave is defined as a wave which propagates along an interface
belween two different media without radiation; radiation meaning energy
converted from the surface-wave field to some other form.

Hertz was probably the first to examine surface waves analytically
(Jones, 1893). 1In 1889, he determined the electric field produced by a
wave propagating along a wire of infinitesimal thickness. However, he did
not solve the problem completely; this was left to Sommerfeld (1899). 1In
1888, Hertz constructed a single wire transmission line excited by resonant
spark discharges (Jones, 1893). He found that the wavelength, as measured
between adjacent modes on the wire, was independent of the size of the wire
and the material from which it was made, and, thus, concluded the velocity
of propagation to be independent of these parameters. This line is a
surface wave transmission line in that the waves are traveling along the air-
conductor interface.

The Harms-Goubau line, a single wire covered with a layer of dielectric
material, is perhaps one of the most widely known surface wave guides. This
was first analyzed by Harms (1907) by direct solution of the Maxwell equations.
Goubau (1950) extended the work, and later performed measurements on such s
line. The attenuation of a two-mile line of this type was measured at 200
MHz, and found to be only six decibels per mile (Goubau, 1954). It was found
that the sum of the conductor and dielectric losses for this line w: g less
than the conductor losses for a conventional two-wire transmission line;
however, launching loss and loss due to supports was fairly large; therefore

short lines would not be practical.
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Zucker (1954) classifies traveling waves into two categories; if the
phase velocity, vp, of a wave is slower than the velocity of light, c, in
the medium, then most of the energy of the wave is contained within a small
reglon near the interface.and the wave is termed a guided or "trapped" wave
(surface wave); if vy is greater than c, then the wave radiates and is
termed a "leaky" wave. This can be observed from the equation relating the
propagation constants of a wave traveling in the z-direction along an infinite
interface. If x is the direction normal to the interface, the propagation

constants are related by

d?c = kzz - k® (2.1)

or, in terms of velocities, as

a,i:_‘i’__%_ (2.2)
p

It follows from (2.2) that if v, is greater than c, then o _must be complex
and, therefore, eliminating the guiding property of the interface.

If the guiding structure is closed in the y-direction, then (2.1) becomes
_ .2 2 _ ' .
ai = ky + kz K® (2.3)

or (2.2) may be written as

w
A
1Y

Q|E

k° . 2.4
+ k7 (2.4)

Now, if vp is greater than c, o need not necessarily be imaginary due to
the presence of ky. This illustrates the difference between a semi-open and

a completely open (infinite) guiding structure.



2.2 H-Guide

The H-guide was proposed by Tischer (1953). The cross-sectional area
view, from which the name is derived, is in the form of an "H"; essentially
a parallel-plate wave guide with a dielectric bar separating the plates. An
investigation of the properties of the structure carrying the low-loss wave
mode was made by Tischer (1956) and extended to other wave modes by Cohn
(1959). Attenuation was calculated but not rlaced in a form suitable for
comparison with later structures. Tischer (1959) investigated the properties
of an H-guide with a central bar composed of two dielectric slabs separated
by air; it was found that losses could be reduced in this manner. In the
same paper, an H-guide with multiple laminations of dielectric slabs for the
central bar was proposed; however, no calculations were performed.

An experimental investigation of the dielectric H-guide was performed
by Tischer (1959) whereby a distribution of the electric portion of the field
was plotted. Griemsman and Birenbaum (1959) also investigated the same
structure and demonstrated that losses are definitely reduced by the insertion
of the dielectric slab; thus, H-guide as opposed to parallel plates alone.

This work indicates that the H-guide is a feasible wave guiding
structure, and that the possibility exists for reducing attenuation by the

use of artificial dielectrics.

2.3 Artificial Dielectrics

An artificial dielectric is a large-scale model of an actual dielectric,
which can be obtained by arranging conducting obstacles in some three-
dimensional pattern (Collin, 1960). In actuality, the obstacles are supported
by some material such as styrofoam which has a dielectric constant nearly

equal to unity. When an external field is applied, charge on the surfaces



of the obstacles is displaced, thus establishing an electric dipole. Each
obstacle thereby behaves as molecule in an ordinary dielectric. The combined
effect of all of the obstacles produces a net average dipole polarization,

P. The permittivity, e, is greater than e., since

0

eE = GOE + Ei.

The analysis of the artificial dielectric problem is approached in three
manners. The simplest solution is obtained by considering only dipole
interaction between obstacles. This is valid if the obstacle size is small,
as compared to spacing, and spacings are less than one-tenth wavelength.

For larger obstacles, all of the multipoles can be accounted for by a complete
static field solution (the second method). A third method is to solve the
Maxwell equations directly in some approximate manner; this approach will be
used for the solution of the corrugated wave guide problems, which follow.

Brillouin (1948) discussed several types of structures capable of
supporting waves whose phase velocity is less than the velocity of light in
the medium. These structures were corrugated plates of rectangular or
cylindrical geometry.

Elliott (1954) examined a rectangular wave guide with a corrugated
bottom surface. He was interested primarily in the structure as a means of
exciting a corrugated radiator, and therefore did not compute the attenuation

for the structure.



3. ATTENUATION OF A DIELECTRIC SLAB

3.1 Introduction

The purpose of this section is to determine the attenuation of waves of
the fundamental TM (Transverse Magnetic) mode propagating along an intinite
dielectric slab in terms of the medium properties, and a normalized decay
constant (p = ozx/ko) of the field above the dielectric.

To facilitate the solution of the problem, an equivalent problem may be
considered (Figure 3.1); namely, the dielectric slab placed on a perfectly
conducting sheet, which later will be removed using the method of images.
Another slab, whose thickness is the same as that of the original, will be
substituted in its place. TImplicit is, of course, the necessity for
excitation which is symmetrical about x = 0. The solution will be obtained
by the use of field matching at the boundary between the dielectric and air
regions. Two solutions to the wave equation, one for each region, will be
found; one valid for x = a (air).

There is, of course, another set of solutions which would arise if the
Plane were a perfect magnetic conductor. In this case, the electric field

would be a maximum at the conductor rather than zero.

3.2 Development of the Field in Terms of Longitudinal Components

The source-free, time harmonic Maxwell equations are

VXE = - Jou, H (3.1)

and

vx H

Jweye E. (3.2)

Expansion in rectangular coordinates yields



/

Figure 3.1 Infinite dielectric slab over perfectly conducting plane



\O

BEZ BEy
3y "%z - I W E (3.3)
ok BEZ
_az_-aTz-pr,OHy, (3.&)
OE BEX
= TS - e E (3.5)
dH JH
BYZ - SEX =Jw €0 €x Ex ? (3.6)
oH BHZ
BT--B_}Q_szeo SrEy, (3'7)
and
aHy aH%
= T T e ey (3.8)

The solution is now restricted to the fundamental TM mode (Hé = 0), and
by symmetry considerations the y-variation is zero (g% = 0); therefore, only
three field components will remain. In this type structure, the z-variation,

-Jk 2z

z . - .
nust be of the form e for waves traveling in

the positive z-direction; (3.3) through (3.8) reduce to

- - Jw €o €p aEZ ( )
Y kK e - k2 dx 3-9
0O r Z
and
-Jk OE
Z Z
EX = k= e - kz Ox > (3.10)
r b4
where
2 = 0? g e (3.11)

and
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2+ (k3 €. - ki) E, =0 . (3.12)

3.3 Solution for the Field in the Dielectric Region

Boundary conditions specify

Therefore, (3.12) yields a solution of the form

EZ6 = A sin (kXx) , (3.13)
where

2 _ 1,2 2

K2 = kK26, - K. (3.14)

The other two field components may be obtained from (3.9) and (3.10); the

total field variation is then

Jk
Eve = e & Hﬁ sin (kvx) ) (3‘15)
g wv.oor ~ <
Hy€ = Hy cos (kxx) s (3.16)
and
kz
EXe = T H, cos (kxx) , (3.17)
defining
-Jwe, e A
0O "r
B = T . (3.18)
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3.4 Solution for the Field in the Free-Space Region

It is desired to have a solution which describes waves traveling along the

interface between the dielectric and free-space regions, which means the field

must decay as x increases from the value =.

meeting this requirement is of the form

-aXx

Ez = Be ’
where

o =K -k

b'e Z 0

Requiring continuity of EZ at x = a, 1.e.,

E =E
Z Z€

for x = a, this yields

Jjk
H. sin (k. a) e
X

weoer 0

The remaining two field components may be obtai

total field is then

j -0 X
Jor o

and

E =—H e
X weo 0

where

o4
X

a

The only type of solution of (3.12)

(3.19)

(3.20)

(3.21)

ed from (3.9) an

i3

(3.25)
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H k @ a
sin (kxa) e

(3.26)

X r
Requiring further, that the other tangential field component, H&, must also be

continuous at x = a, i.e.,

H = H (3.27)

for x = a, which yields

k ten (ka) = e . (3.28)

3.5 Power Transport

The total power, P, carried by the guide will be due partly to the

dielectric, Pe’ and partly to the free-space region, PQ; hence,

P=P +F,. (3.29)

The Poynting identity yields

a
-
P =% R, j; fi EX€H§e dydx (3.30)
and
!
1
Po= %R, f; j; B H dydx . (3.31)

Equations (3.15) and (3.16) yield

Te T Tmegek, | s oein (Ba) 1y (3.32)

also, (3.23), (3.24), and (3.31) yield

k Hk®

_ z 0x .2
P, = e 2 of sin’ (kxa) . (3.33)
0"r x

Combining (3.29), (3.32), and (3.33), the total power transported is
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sz% 1 kisinz(kxa) N
P = { [(2k_a + sin(2k_a)] + 3 ro. (3.34)
M»eoer 2 X X €oe e J
3.c: Power Loss

Power losses due to the conducting plane are not considered since, in the
last analysis, it will be removed. The total losses are, therefore, due to the
dielectric alone; they are predicted by the Poynting identity as

a 1
- 1 . ¥
P. = %R j‘o j‘o J, - EX ayax , (3.35)
which becomes
we e a 3
_ O’r * *
P, = —5— tan(6) R_ j‘o jo (B, EX, + B E¥) ayax , (3.36)

when Omm's law, J = ¢ E, is substituted into (3.35).

Introducing (3.15) and
(3.17) into {3.36) and performing the integration,

H%tan(é)
Py = g—EESE—E—-{ 2kxak%er + [kg(2-er) + 201] sin(2kxa) } . (3.37)
r X

3.7 Trigonometric Identities

It will be useful to consider the following identities before calculation
of the attenuation

sin(2kxa) =2 sin(kxa) cos(kxa) s

(3.38)
sin(k,a) - = , (3.39)
Jl + cotg(kxa)
and
cos(an) = =

. (3.40)
Jl + tan® (kxa)

i -



1k

Combining (3.14) and (3.20), yields

k2

X.__

k%(er-l) - ai . (3.41)

Equations (3.39) and (3.40) can now be evaluated in terms of nontrigonometric

functions by using (3.38),

€.

sin(kxa) = ﬂlx s (3.42)
where
W = K2 (e,-1) + oA (e2-1) (3.43)
and
Ky
cos(an) =5 (3.4k)

Combining (3.38), (3.42) and (3.4k4) yield

X e o

sin(2kxa) = ——%?E;E-. (3.45)

3.8 Attenuation
Having completed the preliminaries, the attenuation can be evaluated.

The attenuation, power loss per unit length, in the z-direction is given by

P
a:e—{; . (3.16)

From (3.34%) and (3.37), it follows that

i tan(s) { 2kxak%er + [k%(2—er) + Eai]sin(Ban) }
*= N kising(kxa)
hx k —{2k a + sin(2k_a)] +
o Ugtons + sh(an] = ——

(3.47)

Using now the identities, (3.42) and (3.45), and multiplying numerator and

denominator by hzax yields
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tan(8)o. { 2ake n® + [k2(2-¢ ) + 2°]2¢ o }
o = X O'r 0 r }x r X . (3.&8)

bk { ao h® + e + K¢
& P29 AL P2

L

Introducing (3.41) and simplifying,

2 2 4
tan(8) { ke o [ab® + (2-er)ozx] + 2¢ o }

o = - 5 - . 3.49)
2k { aha + k%er(er-l) } (39

of the slsb b bined with

=,
)

1ickness, s, is given by (3.28). Wher 1is is com

(3.41), it becomes

_ 1 — €%
a-_Nﬁéé(er-l) - ai = { J&%(er_l) - %4 } } 20

X

defining p, the normalized decay in the x-direction as

{ AN o 27 1\ .
Hhale =L)L L T po\e_Tl)/] e b
al? = O T z tan™t { a } > (3.51)
, 2
after defining

(e~1)[1 + p° (e, +1)]

H =J tan t { frt v2 } . (3.52)

2
€. - 1l -p €. - 1l-179p

Equation (3.51) may be written

at® =k, H, (3.53)

noting that H depends on frequency only through p. The attenuation can now

be written in terms of p and H by using (3.51) and (3.53);

g i
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tan(8)k, e p[H + p(2-e ) + 20°]
T 2 ;/1 + p° [Hp + e (e 1)l (3:54)

& function of H, p, e, and tan($) except for the linear

ko dependence.

3.9 Physical Parameter Values

Tt would now be useful to determine the numerical range of physically
meaningful values for Qk and p. Suppose it is desired that the fields decay

to lOO/M percent of the value at x = a, at a distance SKO, viz.,

e—axsko 1,
=%
that is,
In(M)
% = Tox : (3.55)

0

If the following conditions are desired:

M=10,

s =1.5,
and

Ao = 3 x 107® meters (f = 10 GHz) ,
then

% = 51 feter (3.562)
or

B neper

plo = 0.242 radian ’ (3.56b)

since
radian
k a~ 210 —/—— . (3.56¢)

0 meter



17

Similarly for the same value of M and s, but for

Ay = .857 x 1072 meters (f = 35 GHz) ,
Q/x = 192 meter
and
_ neper
P = 0.0261 —== . (3.57)

Examination of (3.51) yields the possible range of ¢, for a given o as

2
€. >p° +1

3.10 Computer Program

3.10.1 Introduction

Listed below is the computer program which was used to determine the
attenuation of the infinite-dielectric surface wave guide; a flow chart,
Figure 3.2, is also included. The normalized decay constant (p), initial
relative permittivity, frequency, and loss tangent are initially-fixed
parameters. Relative permittivity is varied from the initial value to one
hundred; attenuation and thickness are computed for each value of permittivity,
all of which are printed.

A subroutine, GRAPH, is used to plot the results by utilization of a
Calcomp Model 563 plotter in conjunction with an I.B.M. 360 series, Model 30
computer;'a flow chart can be seen in Figure 3.3. The language used for all
of the programming was Basic FORTRAN IV.

The numerical results appear in Figures (3.4) through (3.7).

lTriangle Universities Computation Center, Research Triangle Park,
Research Triangle, North Carolina.
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3 READ
P,ER, FREQ, TAND
M.K . NAME

1

WRITE

NAME
Y

CALCULATE
PROPAGATION CONSTANT,XKO

L %
A SET
L-0,ERO-FR

S —€

READ NAME
L
OF GRAPH € A C%LATE

AND AXES

Y CALCULATE
CALL [M = © THICKNESS
GRAPH B
27| Go Y
IF,M To | A | cALcuLATE
3 XN, XD
{stop M # 0 ¥

IR 50| IF,I

34 YI < 50

331 X(I)=ER
Y

ALPHA(T) l=I+1Jk 20 ] TRK || K <0 |1 1tnl| arpna(r)
=B 35 36 . XN/XD

4 Y

- WRITE

WRITE XKO,X(1)
XK0,X(I) ALPHA(I)
ALPHA(I)

T Y
GO TO 2 GO TO 2

Figure 3.2 Flow chart for main program
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-
Q
e

ESTABLISH
ORIGIN OF
GRAPH

NT = 2 ? NT £ 2
IF, NT

ESTABLISH |- LABELf-on] DETERMINE f-rrd TABEL ESTABLISH
NEW | GRAPH TYPE OF GRAPH NEW

ORIGIN GRAPH ORIGIN

Y

GO TO 15 15 GO 10
SCALE

. FACTORS

+ 201

LAY OFF

AXES
1

Y 202

PLOT THE -

CURVE
y

RETURN ORIGIN
TO LOWER LEFT
CORNER, FOR
NEXT CURVE

Y
RETURN

Y

END

Figure 3.3 Flow chart for subroutine
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3.10.2 Main Program

X IS RELATIVE PERMITTIVITY
IF K=0 ALPHA IS THICKNESS
IF K=1 ALPHA IS ATTENUATION
TAND IS LOSS TANGENT
P IS NORMALIZED DECAY CONSTANT
NAME IS APPROPRIATE COLUMN NAME
DEPENDING ON VAILUE OF K
EO IS FREE-SPACE PERMITTIVITY
XMO IS FREE-SPACE PERMEABILITY
XKOS IS PROP. CONSTANT SQUARED
XKO IS PROP. CONSTANT
B IS THICKNESS OF SIAB
ERO IS INITIAL PERMITTIVITY
DIMENSION X(55),ALPHA(55), WORK(210),ANAME(3)
READ(1,199)P,ER,FREQ, TAND,M,K , NAME
FORMAT(2F10.5, ElS 8,E15.8 15 15 A12)
WRITE(3, 306)NAME
306 FORMAT(lHl '"PROP. CONSTANT',1X,'RELATIVE EPSILON',3X,Al2)
PI=3.14159
EO=(1.E-09)/(36.%PI)
XMO=(1.E-07)*4 . *¥PI
XKOS=U . *PT*PI*FREQ*FREQ*XMO*EO
XKO=SQRT(XKOS)
I=0
ERO=ER
2 Y=I
ER=ERO+Y*Y*.0k
Z=1./(XKO*SQRT(ER-1.-P*P))
B=7%ATAN(ER¥P/SQRT(ER-1 .-P¥P))
H%B*XKO*(ER-l )*(1 +P*P*P(ER+1 ))
XN=TAND*ER*XKO*P*( H+P*(2.-ER)+2 . ¥P*P*P)
XD=2.%3QRT(P*P+1. ) *( H¥P+ER*(ER-1.))
IF(I-50)33,34,34
33 X(I)=ER
IF(K-1)35,36,36
35 I=I+1
ATPHA(I)=B
WRITE(3,405)XKC,X(I),ALPHA(T)
405 FORMAT(1X,3E15.8)
GO TO 2
36 I=I+l
ALPHA(T)=XN/XD
WRITE(3,405)XK0,X(I),ALPHA(TI)
GO TO 2
34 READ(1,20) ANAME(1),ANAME(2),ANAME(3)
20 FORMAT(3(Ah 6X))
J=0
CALL GRAPH (X,ALPHA,WORK,50,ANAME,36,2,1,J)

oNeoNoNoNoNoNoNoNoNoNoNoNe!

]
O
\O (»n
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3.10.
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CALL PLOT (0.,0.,999)
IF(M)38,37,38

GO TO 3

STOP

END

3 Sub routine

SUBROUTINE GRAPH(X,Y,WORK,N,ANAME,L,NT,KR,J)
WORK IS A DUMMY MATRIX USED IN PLOTTER INSTRUCTIONS
DIMENSION OF WORK IS DIMENSION OF X PLUS DIMENSION OF Y PLUS 100
N IS NUMBER OF DATA POINTS
ANAME(1) NAME OF GRAPH
ANAME(2) NAME OF X-AXIS
ANAME(3) NAME OF Y-AXTS
X IS HORIZONTAL AXIS
Y IS VERTICAL AXIS
DIMENSION OF X IS N+2 DIMENSION OF Y IS N+2
1L IS THE DECIMAL INTEGER CODE INDICATING POINT SYMBOL USED
NT=1 LONG AXIS VERTICAL IE Y-AXIS VERTICAL
NT=2 LONG AXIS HORIZONTAL IE X-AXIS HORIZONTAL
KR=0 PLOT CURVE ON SAME AXIS
KR=1 DRAW NEW AXIS FACH TIME
J=0 NO DATA POINTS OUTLINED
J=1 DATA POINTS OUTLINED WITH CHARACTER TYPE L
DUMMY DIMENSION STATEMENT SW, SH GET DUMMY INITIAL VALUES
DIMENSION X(1),Y(1),WORK(1),ANAME(1)
NBYTE=2¥N+2
SH=5.
SW=5.
ESTABLISH WORK AREA
CALL PLOTS(WORK(1),NBYTE)
IS THIS A REPEAT
IF(KR)101,202,101
IS THIS THE FIRST GRAPH. IF SO,ESTABLISH PEN LOCATION AND ORIGIN.
FIND BOTTOM OF PAPER

101 CALL PLOT(0.,-11.,-3)

ESTABLISH ORIGIN OF WORK AREA
CALL PLOT(12.,.5,-3)
AREA ORIGIN IS NOW ESTABLISHED
DETERMINE TYPE GRAPH TO BE PLOTTED TYPE 1 HAS LONG AXIS VERTICAL,
TYPE © HAS LONG AXIS HORIZONTAL.
IF(NT-2) 11,12,11
TYPE 1
LABEL GRAPH NAME WITH .25 INCH LETTER LOWER LEFT CORNER 3.5,10.0
11 CALL SYMBOL(7.5,10.0,25,ANAME(1),0.,4)
ESTABLISH NEW ORIGIN
CALL PIOT(2.,.5,-3)
SW=8.
SH=10.
GO TO 15
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TYPE 2
12 CALL SYMBOL(6.5,8.50,.25,ANAME(1),0.,4)
ESTABLISH NEW ORIGIN

CALL PLOT(2.,1.,
SW=10.
SH=8.
COMPUTE SCALE FACTORS
15 . CALL SCALE(X,SW,N,1,10.)
CALL SCALE(Y,SH,N,1,10.)
LAY OFF AXES
201 CALL AXIS(O.,0.,ANAME(2),-4,5W,0.,X(N=1),X(N+2),10.)
CALL PLOT(0.,0.,3)
CALL AXTS(0.,0.,ANAME(3),4,SH,90.,Y(N+1),Y(N+2),10.)
CALL PLOT(0.,0.,3)
PLOT THE CURVE
202 CALL LINE(X,Y,N,1,J,L)
CALL PLOT(0.,0.,3)
CHECK FOR COMPLETION OF CURVE
RETURN ORIGIN TO LOWER LEFT ORIGIN OF WORK REGION
IF(NT-2) 21,22,21
TYPE 1
21 CALL PLOT(-2.,-.5,-3)
RETURN
TYPE 2
22 CALL PLOT(-2.,-1.,-3)
RETURN
END

=2)
~ 7/
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L. ATTENUATION OF AN INFINITE CORRUGATED WAVE GUIDE

4,1 Introduction

The infinite corrugated wave guide, Figure L.1, behaves much the same as
the dielectric surface wave guide in that the field is confined to a region
Just above the corrugations; that is, the corrugations perform as an artificial
dielectric.

The attenuation for the corrugated guide is to be calculated and compared
with that of the dielectric guide; as a comparison criterion, the normalized
decay constant, p, will be the same for both cases.

Here again, the same technique as in the dielectric case will be
employed; namely, the problem will be solved under the assumption of symmetrical
excitation, with a perfectly conducting plane passing through the center of
the corrugated guide, which requires finding the field for x-positive, the
other half being symmetrical. The field matching technique will be utilized,

matching the field solution above the corrugations with that below at x = 3.

4.2 Development of the Field in Terms of Longitudinal Components

The source-free, time-harmonic Maxwell equations are

VX.E_ = - J w U'O _E ()4-.].:‘
and
V'X.]_l = j w e P (ll-.g)
O -_—
which become, upon expansion in rectangular coordinates
3E, IE_
— -~ =< = - j L.
3y " 3z I W ko By o (4.3)
Ok JE

% oTse T Wk (1)
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P

y

Figure 4.1 Infinite corrugated wave guide over perfectly conducting
plane
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L X _

x ¥y I @y H o (4.5)

oH oH

_Z - —y = 4+ W 2 E ,“+ 6\

dy 3z ¢ %0 Tx V=)

BHX oH

32 " 3% - tdweg Ey ; (&.7)
and

aHy BHX

87.-39‘—=+Jw€OEZ. ()"'8)

For the case under consideration, the field may be separated into TE
(Transverse Electric) and TM (Transverse Magnetic) modes. If now it is
assumed that only TM modes are present and symmetry is considered, (4.3)
through (4.8) become

B =0, (4.9)

3

5" o, (h.10)

BEy

_aTz-quoHX, (k.11)

BEX bEZ

% " 5% =-pr,oHy, (k.12)

BEy

3% = 0o, (4.13)

oH
BHX
—aZ = Jw eo Ey y ()_’_.15)
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and
ol
S;{—- = j w go __,Z ("-5--16)

4.3 Solution for the Field Within the Corrugations

Boundary conditions require Ey =0 at x = a, but (4.13) specifies Ey to

be independent of x; it must therefore be concluded that

E =0 (4.17
y (k.17)
for all x. Equation (4.17) together with (4.11) now yield the further

restriction

H =0 . (4.18)

The remaining field components, (4.12), (4.14), and (4.16), can now be

written
BEX BEZ
E——--aT'-t—jwpoHy, ()4"19)
. dH
- d_ _J
EX - weo dz ’ (4.20)
and
. OH
E = - I, (k.21)
z  Wwe, 3x

If now (4.19) through (4.21) are combined, a wave equation results; namely

¥ Hy 3® Hy .
+ + k< H =0
A dz° 0y ’

(k.22)

where

2
k= 0° pg ey - (k.23)
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In rectangular coordinates, variables may be separated, and (4.22) becomes

1 B¥X 1 ¥z 2

- —— 4+ = == 4+ k° =

X 7 32° tE 70
where

H = X(x) z(2) .

Therefore, upon separation,

X

dx®
and

Fz

dz°
where

K +

X

Equations (4.25) and (4.26) yield solutions of the form

X

and

N
Il

The total H&e variation, the product of X and Z, must be

H
ve

+ k% X=0
X

|
o
\o

+ k° 7 =
Z

_ e

Axmcos(kxmx) + mesin(kxmx)

nt ._/nm
Azncos(?;) + BZns1n(1;) .

m 3
= ¥ [A cos(kxmx) + me51n(kxmx)]

M=-co XM

©
n.—.zioo[ Azn

which reduces to

cos(%? z) + ansin(%g z)] ,

-~~~
N

g

(4.25)

(4.26)

(k.27)

(4.28)

(4.29)

(&.30)
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- r .
Hye = .2 Axncos(kxnx) + ansln(kxnx)]

nt . ,nm
[Azncos(:;-z) + an51n(:; z)] ,

since upon substitution of L nm/s into (4.27) yields

2 DMy 2
K+ (S )2 = Log

implying m = n; therefore becoming

2 Oy _
kxn + (s » = k% *

32

(4.31)

(b.32)

(4.33)

In actuality, this requires each individual term of the series expansion

for H&e to satisfy the wave eqiation; however, this does not necessarily mean

that each term (mode) must satisfy the boundary conditions stipulated by the

Maxwell equations, since these boundary conditions need apply only to the

total field, The boundary conditions are

Exe =0
for
z = i/s,
where
i=0,+1,+2,.
and
EZe =0
for
x=0.

If it is now assumed that the series describing Hye is uniformly

convergent, (4.20) and (4.21) together with (4.31) specify
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J_ & (nm ;
Exe weovnzlcx S)[Axncos(kxnx) + anSln(kan)]

. [-A"“sin(gg-z) + B"“cos(gg z)] (&.34)
and
-j ® k [ .
Eze = 5;g~ngtm - -Axn81n(kxnx) + ancos(kxnx)]
nm . ,nm
[Azncos(7;~z) + an31n(?; z)] . (4.35)

Noting the boundary conditions have not, as yet, been enforced.
The uniform convergence is in fact true, since the series is actually a
Fourier expansion of the field, and the field will be required to be continuous

(Lanczos, 1966).

4.4 Solution for the Field in the Region Above the Corrugations

In this region, as before, the same restrictions apply to the fielgd, i.e.,

H =0, (L.36)

Z

d
30 (%.37)
= . 8
B, =0, (4.38)

and

H =0, (4.39)

yielding again, (4.19) through (4.23).
Surface wave propagation is desired, and by definition, this requires the
field to decay with increasing distance normal to the wave guide (increasing

x). The following form for the x-variation is therefore imposed upon the field
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- X
® O’xm

X = mzlm &, e s (4.4o0)

which, of course, satisfies the wave equation

X

m
=z - o X =0, (k.41)

t
Xm being the m h term of the series. Since the total field variation for H&

azzm .

3z° * kszm =0, (k.h2)
where

2 .2

kzm = ko + aim . (L.43)

The periodicity of the structure in the z-direction requires the Floquet
theorem (Collin, 1960) to be satisfied by the z-variation. That is, between
any two points separated by a distance, s, the field differs only by a phase

change; namely

-jk .s
0
Z(z+s) = Z(z) e %,
requiring
-Jjk .z
0
Z(Z) = CP(Z) e 2 P)
where

9(z+s) = o(z) .
Since this is true for ¢(z), then @(z) may be expanded in Fourier series of

period s,

s ¢ 2mT
@ -5z
w(z) = mgzm bm e .
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It follows that the total z-variation must then be of the form

N g -'jk'rmz P
z(z) = neeo Pme (b.hb)
where
2mm
an = Fp0 vt 5 (k.45)

This, with (4.40), specifies the total H_variation as

- x =-Jjk
pes «@ 9% om?

H =% He ™ ¢ . (4.46)

Y mEte m
Since, as before, there exist no "cross terms" where the series, (4.40) and
(4.44), are multiplied because of (4.43). Equations (4.20) and (4.21) then

vield with (L4.46):

-0 x =-jk =
E == § Hk e W (4.47)
X weo MN==c0c mM 2zl
and
. -¢_x =Jjk =z
E =34 §F Hog e Wz (4.48)
z U.)eo M==-cc M XM

L.5 Continuity of the Field at the Boundary

Requiring the tangential field components to be continuous at the
boundary specifies

E =F (k.49)

7€ Z
and

H = L,
e = (1.50)

for x = a. This will yield two equations from which others may be generated

by using the orthogonality property of the field components, from which all of
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the unknown constants may be found. The results specifying exactly (as the

chosen model permits) the field everywhere; however, the solution will be

lengthy.

Alternatively, the corrugated regions may be considered as infinite

parallel-plate wave guides which, for s < A/2, would be cut-off for TE and TM

modes, i.e., only allowing the TEM mode to propagate.

must be that Ex = 0, which occurs if

n=20,

reducing (4.31) and (4.35) to

Hy€ = Axocos(kxox) + Bx031n(kxox)

and

- =J - .
ze we kxOAzO[ AxOSIn(kxOx) * BxOCOS(kxOX):|
Boundary conditions require

B.=0.

v
P

Therefore, with (4.33), (4.52) and (4.53)

Hye = Hbcos(kxox)
and

B, =4d7% Hbs1n(kxox) s
where

Hb = AxO ?

AzO =1
and

For the TEM mode, it

(k.51)

(4.52)

(k.53)

(4.54)

(4.55)

(k.56)

(4.57)

(k.58)

(%.59)



37
Tangential field components can now be matched using (4.49) and (4.50),
yielding

hoy

J.J.O

1r  ~
XK. .&a
0 m=-cc M

~
Mg
4
N
s
=
N
O
~—

cocl
COS\

F

and
. X xm zm
— 1
kO H681n(koa) = e Ho e e . (4.61)
By use of the orthogonality property of the harmonics forming the total field,

(4.60) and (4.61) can be simplified. The procedure is as follows: multiply

Jk ..z
(4.60) and (4.61) by e 2¥ , integrate the resulting equations over the

fundamental period, s, of the field, and note the right sides of the equations

are zero if r is not equal to m. Upon setting r = m, the results are

s jhzmz e
— 1
Hocos(kya) j‘o e dz = H' e s (k.62)
and
S jkzmz -8
S —_ \]
k, H651n(koa) f; e dz = Ho e s , (4.63)

the s, appearing in the right sides, resulting from the integration. If (L.62)

is now divided by (4.63),
o =‘k0tan(koa) (4.6k)

results. This specifies that there is only a single value for m, i.e., only
a single term in the series expansion for the field, since the right side of
(k.6L4) is a constant. Equation (4.43) essentially declares this value of m
to be zero since k o isa constant. After evaluation of the integrals, (4.62)

through (4.64) become



Jk s
[ e 203 ] ~%o®
= = | =m
Hbcos(koa) T H e s ,
z0
Jk s
zZ -0 .8
e -1 | _ x0
ko H651n(koa) [ jkzo ] Ho“xo e s ,
and
axO = Kotan(koa)

The solution of (4.66), in terms of Hj explicitly, yields

k. H sin(koa)eaxoa

g - 0 0 [ e -1 ] )
0 %0° sz

Equation (4.43) then stipulates

1
kzO - kO [ cosikoai J :
Now, substitution of (4.67) and (4.69) into (L4.70) gives

Jk s
_— s s z0
HO - § Ho[J J € ] 2

where

dxoa
cosz(koa)e

kos

Expanding (4.70) yields

v s s -
By = 8 H, { s1n(kzos) + Jl1 cos(kzos)] ]
and, therefore,

By' = 8 HY { sin(k,gs) - J[1 - cos(k s)] } ,

(4

(b4

(4

(4

(k.

(4

(b

(4
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.65)

.66)

(0)
—~J
~—

.68)

.69)

70)

.71)

.72)

.73)



combining

0]

which will

For O

ye

and

E =
ze

For a <sx < o,

and

2

B HY' = & Hy Hg 21 - cos(k s)] ,

later be useful in the calculation of the sttenuation.

L.6 Total Field, after TEM Mode Approximation

<x<a,

51n(k0x) .

L.7 Power Transport

39

(b.74)

(&.56)

(k.57)

(4.75)

(k.76)

(&.77)

The power is transported totally in the region above the corrugations,

and is, from the Poynting identity, given by

P=%R j: ji ExH* - ds

or

P' = 1R jp ExH* . ds ,
2 He |y 252 =

(4.78)

(%.79)
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Lo
P' being the power transported per unit width of guide. Substitution of

(k.75) and (4.76) into (4.79) yields

k o) -2(1/ X
z0 x0
P’ = Bue, HY B J"a e dx ; (4.80)
now, performing the integration
vOH¥Y
o _ S0 Mo By -Bem o
* Toe o ¢ . (4.81)
we o

07x0

4.8 Power Loss

Power will be dissipated by the walls of the corrugations, since in

actuality these will be nonperfect conductors. The power loss is given by

P, = ?J‘O }Hyelg dx . (k.82)

P. is only the power dissipated by one vertical wall in a single corrugation.
L
. 1 .
There are, however, two walls per corrugation and-g corrugations per meter.
The total power dissipated per meter, is then

R, a .
P, = ?J‘o | B [° ax . (4.83)

With (4.56), it becomes

R

a
P = ?S B, B J‘o cos® (kx) dx . (4.84)

Integrating yields

Rs Hb Hg
P][_‘ =T sk [2koa + sin(ekoa)] . (L.85)

o)
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4.9 Trigonometric Identities

Before the task of computating the attenuation is undertaken, the details
can be greatly simplified by considering the following identities.

It will be advantageous to define a normalized decay constant, p, as

p-2. (4.86)

Equation (4.43) then becomes

k 1+ p°
20 _ . (4.87)
%x0 P
Consider
sin(2k0a) = 2sin(koa)cos(koa) R (4.88)
sin(koa) = 1 5 (L.89)
J& + cotz(koa)
and
cos(koa) = 1 . (4.90)
J& + tanz(koa)
Equation (4.64) then yields
tan(koa) =p . (k.91)
Equations (4.88) through (4.91) become
sin(koa) = R (4.92)
p° + 1
cos(k.a) = = (4.93)
0 2 ?
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and

sin(2k a) —————— . (4.94)
l+p

The attenuation may now be computed.

4.10 Attenuation
The attenuation, o, is defined as the average power loss per unit length

of wave guide, which means

P!
o = 511;_ ) (4.95)

Using (4.81) and (4.85), this becomes

R H Ha [2koa + sin(QkOa)] hweod

o= —20 o x0 (4.96)
2.4 ko 20 O H%' e
Substitution of (4.71), (4.74), and (4.87) into (4.96) will remove the Hy and
Hé dependency and simplify the attenuation as
. R, ko w e, ps(2koa + sin 2koa) ' (h.97)
hcos4koa 1+ p° [1- cos(kzos)]

The previously developed trigonometric identities, (4.93) and (4.94), may now

be used

R k. we,ps(l +p )3/2 (2k a + ——“—5)
o = 00 (L.98)
L 11 - cos(k ZOs)] :

Introducing for a, (4.91) and simplifying,

R, kg 0 e pel2(1 + p)¥ 2an (p) + 2p L + 52 i
*= h 1 - cos(kzos)] ) (4-99)
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Using k . from (4.43), then expressing this in terms of p, yields

|
koo=ky1+0° . (%.100)

Using this, o at last becomes

Rs Ko w pel2(1492)%/ Zean (p) + 2 1 + 97 ]
o = = . (4.101)

b1 - cos(k0 1+ p® s)]

It would be expected that the attenuation would become quite large as s
becomes small, since the number of corrugations per meter increases, hence,
increasing the losses. This can be observed if the Maclaurin expansion for

the cosine is considered. For small s,

— £ (145°) 7
cos(ko 1+p° s)al- — - (4.102)

The attenuation is now given by

R 6w € P [ 2(1+p° )%tan'l (p) +2 < D «/]_._14? >]

o = , (i.103)
kos

which, as expected, does increase as s decreases.

4.11 . Computer Program

4.11.1 Introduction

A computer program, written in Basic FORTRAN IV, appears below, along
with a flow chart in Figure 4.2. The normalized decay constant (p), frequency
and loss tangent are input parsmeters. The spacing of the corrugations (s)
is varied; height of corrugations (a) and attenuation (o) are output variables.

The results of the numerical calculation are given in Figures 4.3 and

h.h,
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READ: P, ER, FREQ
TAND, R

Y

COMPUTE
PROP. CONST, XKO

Y

ALLOW S
TO VARY

CALCULATE
HEIGHT, A

Y

CALCULATE

ATTENUATION
ALPHA

!

STOP

Figure 4.2 Flow chart for program
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Figure 4.3 Attenuation of infinite corrugated wave guide at 35 GHz
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4.11.2 Computer Program

3
199

Lok

105

Q@
(@6

|.__I

h.11

DIMENSION X(55),A(55),ALPHA(55)
READ(1,199)P,ER,FREQ, TAND,M,X,R
FORMAT(2F10.5,E15.8,E15.8,15,15,F10.5)
WRITE(3,404)P,ER,FREQ, TAND,M,K,R
FORMAT(1X,4E15.8,15,15,F10.5)
WRITE(3,105)

FORMAT('1',LX, ' SEPARATION' ,8X, 'HEIGHT' ,8X, ' ATTENUATION' ,4X, 'PROP. '
$,'CONSTANT* )

PI=3.14159

EO=(1.E-09)/(36.%PI)
XMO=(1.E-07)*4 ,*PI

XKOS=U . ¥PT*PT*FREQ*FREQ*XMO*EQ
XKO=SQRT( XKOS )

DO 88 I=1,50

Q=I

¥Y=Q*.01

XL=( .3E+09) /FREQ

S=(.09+Y ) *XL

B=(1./XKO)*ATAN(P)

Z=2 . ¥XKO¥B*(1.+P*P)*SQRT(1.+P*P) +2.¥P*SQRT(L.+P*P)
XN=R¥XKO*2 , ¥*PT¥FREQ*EQ*P*S*Z,

XD=L . %(1.-COS(XKO*SQRT(1.+P*P)*8))
X(I)=s

A(T)=B

ALPHA(T)=XN/XD
WRITE(3,100)X(I),A(I),ALPHA(I),XKOS
FORMAT{1X,4E16.8)

STOP

END

.3 Identification of Program Variables

A IS HEIGHT OF CORRUGATIONS
ATPHA IS ATTENUATION
P IS NORMALIZED DECAY CONSTANT

DEFINED  P=ALPHA/XKO

FREQ IS FREQUENCY

TAND IS LOSS TANGENT

ER, M AND K ARE NOT USED

R TS SURFACE RESISTANCE

XMO IS FREE SPACE PERMEABILITY

XKO IS PROPAGATION CONSTANT OF FREE SPACE



48

5. DIELECTRIC H-GUIDE

The structure considered is that of a H-guide utilizing a dielectric
slab for the center section (Figure 5.1). The dielectric slab has dimensions
2a by b. The sidewalls are assumed to be large enough in the x-direction
such that the field components are essentially zero at x = h, and therefore

may be considered unbounded in the field analysis.

5.2 Introduction

The dielectric H-guide is examined analytically by employing the field
matching technique. Upon matching the field components, it was found that
the Hg component vanishes, implying the longitudinal wall currents are zero.
Attenuation is found for the guide and plotted as a function of relative
permittivity for various values of p; the normalized x-decay constant,

defined p = ak/k, o, being the x-decay constant.

5.3 Method of Solution

To facilitate the solution, that portion of the guide for x = 0 may be
considered alone, if a perfect electrically conducting plane is placed at
x = 0, and removed later. Generally applicable expressions for the field
are found; one set useful above the dielectric and another within. The field
matching technique is employed to assure continuity of tangential (it may
also happen normal) field components at the boundary x = a. The field now
having been completely specified, the conducting plane may be removed and a
symmetrical portion of guide revealed in the region, where x < O, as predicted
by the method of images. Excitation must be forced to meet the symmetry

requirements imposed by this technique.
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Figure 5.1 Dielectric H-guide on perfectly conducting plane
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It should be noted that the above considers only one-half of the total
solution to the problem; that is, there also exists a set of field components
which would arise from placing a perfect magnetically conducting plane at
the center of the wave guide. In this case, the tangential magnetic field
would be zero at the center rather than the electric; the electric being a
maximum in this case. These two types of solutions are sometimes denoted
the even and odd modes, depending on whether the transverse magnetic field is

odd or even with respect to the center of the wave guide.

5.4 Development of a Wave Equation

. The total field in a linear, isotropic, homogeneous region free of sources,
must satisfy the Maxwell equations, which are, under the assumption of sinusoidal

time variation

VXE='jle-E) (51)

H=jweE, (5.2)

VE=0, (5.3)
and

V-H=0 . ' (5.4)

Applying the curl operator to (5.1) and using (5.2) and (5.3), a wave

equation for E is obtained that is

VE + k°E =

0, (5.5)
where
k2 =w? yoe. (5.6)

Similarly, a wave equation for H may be obtained, which is

VH + k®H =

0. (5.7)
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In the case of rectangular coordinates, any one of the six field components,

denoted f(x,y,z), can be seen to satisfy

I
O

Pf(x,y,2) - Bzf(x,y,z)y+ " f(x,y,2)
< 2

~ + kgf(x,y,z)
oz

. (5.8)

ox oy
It follows that by knowing any two field components, two E-components, or
two H-components, a third component can be found from either (5.3) or (5.4),
specifying completely either E or H. The remaining three unknown components
can be found from either (5.1) or (5.2).

Solutions of (5.8) must now be found for two field components.

5.5 The Field Within the Dielectric

The choice of components which satisfy (5.8) is arbitrary; EX and Ey
will therefore be chosen. Before the choice is made, it will be assumed
that since the H-guide will be excited by a TElO field within a rectangular
wave guide, then only a single half-sinusoidal variation will be present in
the y-direction. The tangential E components will be required to be zero,
as specified by the Maxwell equations at the boundary of a perfect conductor.
Under these requirements, Ex and Ey have the form

-szz

=5
1

Aefcos(kxx) + Cesin(kxx)] cos(kyy) e (5.9)

Xe

and

-Jjk =z
E Be sin(kxx)[sin(kyy) + D, cos(kyy)] e 2 . (5.10)

ye

Now, by using (5.3), the third component must be

BEX aEy
Eze=—J\(-aT+Ssr—)dZ+Cl,




. which becomes upon substitution from (5.9) and (5.10).
E, = - f { \ekx[-sin(kxx) +C, cos(kxx)] cos(kyy)

Alr .
_!JLX
. ) z
+ Beky51n(kxx)[cos(k y) - D, sin(k_y)]le dz ,

becoming, after simplification and integration,

-szz
£

- 3 ,
sz

E,. = - (-Aekx + Beky) s1n(kxx) cos(kyy)

if the possibility of a static solution is eliminated. It will be convenient
to redefine the constants Ae and Be as
A - A k
€ €z
and
‘l’ B -B k .
e z

The total E component of the field now becomes

-Jk =
Uz
Exe = Aekzcos(kxx) cos(kyy) e s (5.11)
-jkzz
E o = Bk, sin(k x) Sin(kyy) e ; (5.12)
-jkzz
Eze = J(Aekx - Beky) 31n(kxx) cos(kyy) e s (5.13)
kK2 +k° +k? = ¢ K°, (5.14)
X y Z r O
ki)
k=g (5.15)

and
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The magnetic portion of the field may be found from (5.1) with the aid

of (5.11) through (5.13); it is therefore given by

j -jkzz
had . F_s/la P PR W TS & VYRR NI DU 4 U S

H =< [_s(a - i ,

xe ~ wp FT9VeTx Pyl ByPHES SRy €

-jkzz
+ ijBestin(kxx) sin(kyy) e 1,

. -Jk z
J . 2 Z
H = -

ve = un [ JAekz cos(kxx) cos(k.y) e

-jk =z
i z
ka(AekX - Beky) cos(kxx) COS(kyJ) e ],

and

-jk
dJ ZZ

s
Il

J .
e = o [kaZB€ cos(kXx) 51n(kyy) e

-Jjk =z
., z7,
+ Aekzky cos(kxx) s1n(kyy) e 1,

which become after simplification

-jk =z
L 2 . ) Z
H.= ™ [(Aekx - Beky) ky - K Be] s1n(kxx) 31n(kyy) e ,  (5.17)
1 . -jkzz
H&e = on [(Aekx - Beky) k o+ k2 Ae] cos(kxx) cos(kyy) e ,  (5.18)
and
-jk =z

H .= ;&-[(Aeky + Bekx) k ] cos(k x) sin(kyy) e % . (5.19)
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5.6 The Field Above the Dielectric

In the same manner, as for the field within the dielectric, EX and Ey

will be chosen for the field sbove; they become, after enforcing the boundary

conditions,
- X -jkzz
E =Ae cos(kyy) e (5.20)
and
-oL X —jkzz
E =B in(k + C k ; 21
y=Be * [sinky) + Coos(ky)le  * ; (5.21)
and again, (5.3) yields E, to be
-o X -jkzz
E, = - f { -A a, e cos(kyy) e
-axx -jk z
+ B ky e [cos(kyy) -C sin(kyy)] e % 3,
which becomes upon simplification,
o x e-JKZZ
= -[- _— .22
E [- A @, +3B ky] cos(kyy) e =y (5.22)

Again, redefining the constants, A and B, as

A=Ak
z
and
B-Bk ,
(5.20) through (5.22) become respectively

- X -jkzz
E =A kZ e cos(kyy) e s (5.23)
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- X -jkzz
Ey =Bk, e sin(kyy) e , (5.24)

and

- X -jkzz
E j -
. J[A @, - B ky] e cos(kyy) e

(5.25)

Equation (5.1) along with (5.23) through (5.25) now specify the magnetic

portion of the field asg

3 -a X —jkzz
H = ™ -k jJ(Ao. -Bk)e 31n(kyy) e
-0 X —jkzz
+ jk° B e s1n(kyy) e ],
J 2 'S -jkzz
H = = k¥ A k
= o [ -3 e cos( yy) e
-o. X -Jjk 2
o j(a a - B "y) e cos(k. y) e 1,
and
j - X -ijZ
Hz = o [--ozX Bk e 31n(kyy) e
-axx -ijZ
+ ky Ak e s1n(kyy) e s
which become after simplification
1l 2 ot -jkzz
H% = EE.[(A a - B ky) ky - kz B] e s1n(kyy) e ’ (5.26)
1 .02 ToX -Jk 2
H, = o (), A-oa (Ao -B ky)] e Cos(kyY) e ’ (5.27)



- X -jk =z

HZ = j%-[(A ky - B ax) kz] e ¥ sin(kyy) e Z s (5.
and

k% = - ai + k§ + kz . (5.

5.7 Field Matching

All of the field components will be matched at the boundary, x = =

Emmtkms(5Jl)ami(523)ykﬂdfbrEX
-0 a

ens A cos(kxa) =eh e oy (5

(5.12) and (5.24) yield for Ey
-dxa

B€ sin(kxa) =B e ; (5
(5.13) and (5.25) yield for E,

(A, - Bk) sin(ka) = (A oy - B k) e X (5
(5.16) and (5.26) yield for Mot

-¥_a

[Aekxky - Be(k;+k;)] sin(k ) = [ A ok - B(k;&k;)] e X (5

(5.17) and (5.27) yield for H&
- 8

[Ae(ki+kz) - Bekxky} cos(kxa) = [A(-a§+k2) + B axky] e * (5

(5.18) and (5.28) yield for HZ
- &
(Asky + Bk ) cos(ka) = (A k - B @) e £ (5

(5.30) and (5.31) yield
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.30)

.31)

.32)

.33)

.34)

.35)
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Ae - Z; cosikxai ) (5.36)

and

e

Be =B sin{kxa5 : (5.37)

\ Equations (5.32) with (5.36) and (5.37) specify

-y 8 -y &
A © X kx Be * ky -0 8
[E_ cos(k_a) sin(k éji] SIH(an) = (& - B ky) © ?
r bl X
and after simplification this becomes
k sin(kxa)
A[e cos(k_a) Ok] - B(ky-ky) -
r X
. It follows that
€0 = kx ‘tan(kxa) , (538)

\ since it is not desirable to have A = O. Now B can be obtained in terms of

A from (5.35) by utilizing (5.36) and (5.37); that is,

-dxa —axa
e k B e k - a
[A

A y X i _ x
€. cos(kxaj * sin(kxa) ] cos(kxa) = (2 ky B ax) © ?

which becomes

k k
- A(-=L X =
A( e © ky) * B(tankaas * o[x) 0

r

and therefore

1
k (1-—) tan(k_ a
) e
. kx o, tan(kxa)
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or, after simplification

k k_ tan( _a)
B=AXJ X

) (5.39)
er(k§+k3)

after using (5.14), (5.:9), and (5.38). This can be written as

k tan(kxa)

B(k®+%®) = A k
(ky >) y . )

r

but (5.38) specifies this as

B(k;+ki) = A kyax . (5.40)

Comparing this with (5.33), it must be concluded that Hg and er are zero

everywhere.

5.8 Trigonometric Identities

It is advantageous to consider the following identities, which will

gimplify the field equations considerably:

sin(k a) = - ; (5.11)

1

cos(k_a) = (5.42)
x J& + tanz(kxa) ’
and
sin(2kxa) =2 sin(kxa) cos(kxa) . (5.43)
Utilizing (5.38), (5.41) through (5.43) become respectively
e
sin(kxa) = ilx , (5.4h)
ky
cos(kxa) =5 (5.45)
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and
Eeraxkx
51n(2kxa) =0 s (5.46)
where
B =K+ & of . (5.47)

5.9 Simplification of the Field Components

Vil

The field components can now be obtained in terms of a single variable,
A, by utilizing (5.36), (5.37) and (5.40). The field within the dielectric
becomes
..dxa

I\k o
. e szz

e ™ oy sonlige) ool eoslin) e F (5:42)

-8
A axkykz e _‘jkzz
E_ = sin(k_x) sin(k e i
ye  sin(k_a)(k®+k°) (k) ( yy) ’ (5.49)
X y 2z
k o k2 -0 _a
E = jA[ X - Xy X
2 .
VA er COS(an) (k;+kz) 51n(kxa)
-jkzz
. sln(kxx) cos(kyy) e s (5.50)
2 2 2
- ) A kX+kZ dxkxky ] Q;Xa

ye  wp [er cos(kxa) B sin(kxa)(k;+k2)

-jkzz
. cos(kxx) cos(kyy) e s (5.51)

and
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. k k kk k o -0 a
g oo dt- vy z N X2z Yy X ] X
= s 7 _
ze  W. Te cos(kxa) 81n(kxa)(k§+ki)
-jk z

V4

. cos(kxx) sin(kyy) e (5.52)

The identities, (5.44) and (5.45), can now be employed simplifying the field

to be
A'kzh —jkzz
EXe =% cos(kxx) cos(kyy) e s (5.53)
T X
A'kykzh -jkzz
Eye = ;_EEEZEES.Sin(kXX) sin(kyy) e s (5.54)
rVy oz
jA'kzzh -Jk_z
E = —————————-sin(kxx) cos(kyy) e , (5.55)

ze er(k”;—*-kaz)

A'weokzzh -3k 2
Hy€ = E_EEE:EEY cos(kxx) cos(kyy) e , (5.56)
X\y g
and
jA'we Xk k h -Jk 2z
H =-————113L3L-cos(kxx) sin(kyy) e Z (5.57)

ze " T 0502)

where, for convenience,

-¢_a
A'=Ae X .

The field components above the dielectric region will now be simplified

in the same manner that is

-0 X -szz

E, =Ak e X cos(kyy) e , (5.58)
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Ey = —zigzisj e sin(kyy) e s (5.59)
| X -d
’ E, = z;;;ggy e cos(kyy) e s (5.60)

Hy = .(_k;Tkz_) e cos(kyy) e » (5.61)

and

JA weokzky -0 X -szz

HZ = —Zk?y:kaz—) e Sil’l(kyy) e . (5.62)

The entire field is thus expressible in terms of a single variable which

- -

depends upon the excitation.

5.10 Power Transmitted

The power transmitted by the wave guide will have two contributing
the dielectric, Pe’ and lhat
delivered by the field zbcve the dielectric. PO. Consequently, the total
power, P, is given by

P=P_+7, . (5.63)

The power transmitted within the dielectric region is

Upon substitution from (5.53) and (5.56), it becomes

. A'zweOKth b/2 J‘a 1L+ cos(2kxx)] 1+ cos(2kyy)]

® f 20050508 Tof2 T 2 2

} axay
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or, after integrating,

A'®pe k%h®b

P = — i . .
¢~ T (2 nZ) [2kxa + 51n(2kxa)] (5.65)
rxy oz

The power transmitted above the dielectric region is similarly given by

R, b/2
Py == Ib/g j‘a EHX dxdy . (5.66)

Using now (5.58) and (5.61), the power becomes

Auwe kz b/2 -2 x [1 + cos(2kyy)]

0
I 1 e dxd (5.67)
0 2(k§,+kzz) “b/2 "ra o I

and, upon integration,

4 h® . 1
P=—————{ " -[2k 1+ sin(ck a)] +— 1.
8(k%+E) 2erk; = X o,

Equation (5.46) will simplify this to be

A'%we k°b abfq_ + ¢ (of+k3)

0z [ pe r'"x X ]
8(k2+x2) e Kq
v oz rxx

Equations (5.20) and (5.29) simplify this further as

12 3
o A weokzb
= 5 =
8(ky+k‘; Je Koo

[an®a, + e k% (e -1)] . (5.68)

The total power transmitted is available in terms o! a single unknown; the

power dissipated must be now developed in a similar manner.
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5.11 Power Dissipated

The power dissipated will have two sources, the dielectric loss and the
imperfect conductor loss. The total power dissipated will, thus, be composed
of three terms: the dielectric loss, PLe; the wall loss within the dielectric
region, PLb; apd the wall loss above the dielectric region, “;a. The total

power dissipated, PL, is therefore given by

P.=P. +P. +P . (5.69)

R, b/2 a
Pre = —2-‘[b/2 ‘ro I+ B &y, (5.70)
which is
we e tan(s) b/2 a . .
PLe = 5 R, ‘_J‘b/e fo (|EX€|2 + IEyeI + IEZGI ) dxdy .

Substitution from (5.53) through (5.55) into this yields

u)eo‘:xz tan(§)A'® b/2 a 1«:2Z |
P - o J. e [ii [ [2 + cos(ak,x)](1 + cos(ak y)]
k;kz
+ z£§;£§7 { [1 - cos(2kxx)][l - cos(2kyy)]

k‘L
+ zi;%gﬁj,{ [1 - cos(2kxx)][l + cos(EKYY)] } ]
v oz

or, after performing the integration and simplifying with (5.46),
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12 212 1.2
. wey tan(§)A'"b { kz(ky+kz)
Le 8e_ (k% +k® )k
rvy z7x

2
5 [kxah + eranX]
X

k?
(k?+k2) [kz(k ah® - epok) + ki(kxahz - ek )]

Combining further, it becomes

tan(§)A'"%b k°

) Z r(,2,.2 2 2 2
(ky+k )(ah® + ¢ 9 ) +k ( h* - erax)]

P. =
Le 2,2 2
8er(ky+kz) k3

Simplifying once again and using(5.14), it is given by

we tan(§)A'®b k°

Pre = 8k (kB +k2 ) - athg * ax[k%(g'er) * Eaij b (5.71)
x\y oz

The power dissipated within the walls below the dielectric is given by

(2)RS a
Pp s o, 1Bl (5.72)

per meter in the z-direction, where y is evaluated at the wall (y = b/2).

Substituting from (5.77) yields

A'z(we k k )zh? a[1 + cos(2kxx)]
Frp = R | ke(k2+k2)2 o 2

dx

and, after evaluation of the integral, this becomes

RSA'Q(weOkykz)zhz
P.. = [2k_a + sin(2k_a)]
Ib 3(,2 122 X X
2kx(ky+kz)

Simplification, by use of (5.46), yields

R A% (we k k )2
0
Py = Skz(k2+k2:;,22 (an® + erozx] . (5.73)
X\y Tz
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The power dissipated within the walls above the dielectric is similarly

given by
(2R o
S r ~rh
Pl =% fa |12 ax {(5.74)
and again y is evaluated at the wall. Substitution from (5.62) yields
2 2
. R _A (weokzky) J‘oo 20, X
- = IR e dx ,
La (K +x3) a
Yy z
which becomes upon performing the integration
12 1 2
o R_A (weokzxy) . (5.75)
La ou (KB +K° )R
X'y z
5.12 Attenuation
The attenuation for a wave guide is given by
P
L
o = E . (5'76)

For the wave guide under consideration, this may be separated into three

terms: that due to the dielectric, «

B that dvue to the walls within the

dielectric region, @ ; and that due to the walls above the dielectric region,

@, - That is, the total attenuation, «, is given by

=yt oy -

The attenuation due to the dielectric is given by

_PLe
% =7Zp

which may be evaluated using (5.68) and (5.71). Hence,
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2 2.2 2
_ v tan(8)b k> { an kg + ax[kO(E-er) + 2a§] }
a we, k30
16e (K2+K2)k2 0z [ahza + € kz(e -1)]
ry zx 8(k2+k3)€ Ko X ro‘r
Yy z'rx x

It will be advantageous to define two new parameters, the normalized x-decay

constant, p, and the normalized y-propagation constant, q, as

o
X

p = (5.77)
kO

and

k

q = EX . (5‘78)
0

Using these, (5.30) can be written in the form

B 2 2
k= ko1 +p < . (5.79)
Substitution of (5.77) through (5.79) into @y, it becomes
. h®
3 /N 1 W3 a . A~ . A~ 217 1
tan(éje kopky { = pL2 - e, + 207] }
0]
o, = . (5.80)

d 2 2 ,2rab®
2ky 1+ 0% - q kO[—kO + e (e,-1)]

This can be simplified in the following manner. Equation (5.38) can be

written as

[>3(e 4
a = — tan™! (—2) , (5.81)

L
k
X

but (5.14) and (5.29) specify k. in terms of o ; therefore,

k, kg Jer -1-9p°. (5.82)

Equation (5.81) can now be obtained in terms of p and q by using (5.82);
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that is,

ah? (er-l)[l + p?(e_+1)] . €.p
— = / T = tan™t [ ) (5.83)
0 fp 7270 Jér -1 - P

after multiplying by h® and using (5.47). ©Now defining for convenience,

&o_w. (5.84)

The attenuation, @y, can now be written as

tan(s )k, e PLH + p(2-¢ +2p%)]
@y = — - : (5.85)
-

’ - [H + e (e-1)]

This result can be compared with that of the infinite dielectric slab,
allowing the width to become infinite hence q tends to zero; the results
are identical.

The attenuation due to the wall losses within the dielectric region

may now be computed; it is given by

% = 52 5 (5.86)

which, becomes upon substitution from (5.68) and (5.73),

2 2
) Rs(weokykz) [ah® + e ]
% = weokib ’
2 (12 1.2 )2 2 2 _
2kx(ky+kz) [ah a, + erko(er 1)]

2,18\ 2
8(ky+kz)erkxax

and after simplifying, it becomes

i L‘steok;erf’}[ahz te, o] (5.67)
% (k§r+k22)kzb[aheo:x+ erkg(er-l)] )

0

Using now (5.79), (5.84), and normalizing in terms of p and q, it becomes
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2
bR e a’p[H + e p]

=2 . .88
R b /ey (140°)Hp + ¢ (e -1)]1 VT + p°- F (5-88)

The final attenuation term, that due to the walls above the dielectric is

given by

aa =%p (5-89)

and substitution from (5.68) and (5.75) yields

2
Rs(weokzky)
a ‘”eok;b >
bo (K2 +x2 )2 Woa + ek’ fe -1
x( y z) 8(k°+k? )e KPu [a Y% e S )]
y z'r xx

becoming, after simplification,

2 2
2steokyerkx

% = bkz(k§+k§)[ah2ax + epkd(ep-1)] .

The same normalization will be performed as previously, namely using (5.79),

B X)) wi+h » a3 A A~ +FlheavaParma hammana e
(5.82), and (5

, an

o

= : , = : 5.90
2 v/ufe; (%) e (e -]/ TTFECF (5.90)

Equations (5.88) and (5.90) tend to zero s b becomes infinite, as expected.

5.13 Numerical Results

o
A computer program was written’ to evaluate the attenuation as a function

of relative permittivity for fixed values of p. The results appear in Figure

5.2.

2Personal communication. C. W. Bostian, Department of Electrical
Engineering, North Carolina State University, Raleigh, N. .
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6. ARTIFICIAL DIELECTRIC H-GUIDE

&
O

.1 Description of Structure

The structure under consideration is an H-guide, utilizing a corrugated
section in the center, which behaves as an artificial dielectric (Figure 6.1).
Each corrugation is a metallic plate whose dimensions are 2a by b; the
thickness is assumed to be negligible as compared to one wavelength of the
operating frequency. The sidewalls are assumed to be large enough in the
x-direction such that the field components are essentially zero at x = h;

therefore, they may be considered unbounded in the field analysis.

6.2 Introduction

The artificial dielectric H-guide structure is examined analytically by
employing the field matching technique. The zero™ order field approximation
is made. That is, the field within each corrugation is assumed to be constant

in the z-direction. Attenuation for the wave guide is calculated under this

for a given value of p, the normalized x-decay constant, defined p = ax/k,

o being the x-decay constant.

6.3 Method of Solution

To facilitate the solution, that portion of the guide for x = 0 may be
considered along, placing a perfect electrically conducting plane at x = 0, to
be removed later. Generally applicable expressions for the field are found;
one set useful above the corrugations and another for below. The field
matching technique is employed to assure continuity of tangential (and it may
so happen normal also) field components at the boundary x = a. The field now

having been completely specified, the conducting plane may be removed and a
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Figure 6.1 Corrugated H-guide over perfectly conducting plane
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symmetrical portion of guide revealed in the region where x < 0, as predicted
by the method of images. Excitation must be forced to meet the symmetry
requirements imposed by this technique.

It should be noted that the above considers only one-half of the total
solution to the problem; that is, there also exists a set of field components
which would arise from placing a perfect magnetically conducting plane at the
center of the wave guide. 1In this case, the tangential magnetic field would
be zero at the center rather than the electric, the electric being a maximum
in this case. These two types of solutions are sometimes denoted the even

and odd modes, depending on whether the transverse tangential magnetic field

is 0dd or even with respect to the center of the wave guide.

6.4 Development of a Wave Equation

The total field in a region which is linear, isotropic, homogeneous and
and source-free with sinusoidal time variation must satisfy the Maxwell

equations in the complex form:

VXE = - jwop H, (6.1)

VxH = jweE , (6.2)

V-E=0, (6.3)
and

V'E =0 . (6.)4-)

If the curl operator is applied to both sides of (6.1), with the aid of (6.2)

and (6.3), a wave equation for E is obtained; namely

VE + k°E = 0 , (6.5)

where
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¥ =o e . (6.6)
Similarly, applying the curl to (6.2) and using (6.1) and (6.4), yields a wave

equation for H, that is

VH + k*H =

0. (6.7)
In the case of a rectangular coordinate system, any one of the six field

components, denoted f(x,y,z), can be seen, by (6.5) and (6.7), to satisfy

azf(x,y,z) + azf(x,y)z) + azf(x,y,z)
3x° dy* dz?

Therefore, by knowing any two electric (or magnetic) components, then the

+ kK¥f(x,y,z) = 0 . (6.8)

remaining component is given by (6.3) [or (6.4)] specifying completely the
electric (or magnetic) portion of the field. The remaining portion, magnetic
(or electric) can be found from (6.1) [or (6.2)]. In general, one electric
and one magnetic component could be known and the remaining components found,
but this would be somewhat more involved, and since the choice will be free,

two components of the same type will be chosen.

6.5 Solution of the Wave Equation Under Special Periodic Conditions

From physical considerations of the problem, it would be expected that
the field would have the same complex amplitude at any two points separated by

the distance s in the z-direction, since the structure is periodic with period

s. The field would not be periodic within some region near the excitation point,

but as z increases further down the structure, the field would assume a periodic

behavior, and the periodicity, s, of the physical structure would be imposed

upon the field. This can be stated mathematically as

-jkzos
f(x:y)z"‘s) = f(x,y,z) e 5 (6.9)
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where the exponential term allows for a phase change in the z-direction. This
is known as Floquet's theorem and can be established somewhat more rigorously
(Collin, 1960). If (6.9) is to be satisfied, then it must be that

-jk 2
f(x,y,z) = ¢(X)Y:Z) € 20 P)

where
@(X)y}2+s) = @(X:Y9Z) .
That is Q(x,y,z) is a periodic function with a period s. This being the case,

@(x,y,z) may be expanded in a Fourier series, that is

_jZnﬂ
< s
o(x,¥,2) = = g, (x,y) e

This means the total z-variation is of the form

) -Jk 7z

zZn
t(5,y,2) = T 8 (x,y) e , (6.10)
where
2ntm
k=Kot - (6.11)

Here it should be noticed that the x- and y-variation have not been separated
from the z-variation, since the Fourier coefficients are, in fact, functions
of x and y. The uniform convergence of the Fourier series is guaranteed if
the function to be expanded, f(x,y,z), is continuous (Lanczos, 1966) which

is assumed for physical reasons. This being the case

= >

Y n=-o ~zn

. ST
Fr(x,y,2) _ £k g (x,y) e zn (6.12)

however for the x- and y-variation, uniform convergence must be assumed in

order to write formally
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2 .
Prlogyn) | g g (x,¥) e-Janz (6.13)
dx? N=-c dx® ’ )
and
2 .
aZf(X y Z) ~ ozo: a gn(x)Y) -JanZ (6 lu’)
———S§é—l——-— N ———533——— e . .

Substitution of (6.12) through (6.14) into (6.8) now yields

2 . 2 .
o g (xy) -dk 2 o g (xy) -Jk .z
nglm dx? € * nzlm ay2 €

-Jk = -jk =z

>~ 5 zn 2 @ zn _
-2 K e (k) e +k % g (x,y) e =0 . (6.15)

If each series is assumed convergent, then (6.15) becomes

-jkznz
(R ) g (x,7) ] e 0. (6.16)

® 1azgn(X:.V) azgn(x;y)
z [ " + e

This must be true for arbitrary values of x and y; therefore, it must be that

N=-w

] - N= X R SRR I | m. _ o =
callii CUOCLL1ICLIeU LD 4CLU. il LS

e (x,7) g (x,) . ;
T T ) g(xy) =0 (6.17)

The method of separation of variables may now be employed. That is, let

8,(x,y) = X (x) Y (y) . (6.18)

Simply substituting (6.18) into (6.17) yields

. N O N ¢ )
X, ef T o

2 1,2 _
+ (k -kzn) =0,

which must be true for arbitrary values x and y; therefore, each of the two

variable terms must be a constant, defining these constants
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FX_(x)
2 _ 1 n
Yn X_(x) ax® (6.19)
and
3*Y_(y)

A n .

I ¢ B (6-20)
®® - K +k® -k =0. (6.21)

The signs in (6.19) through (6.21) were chosen such that the decay
exponentially in the x-direction, which, by definition, leads to surface
waves propagating in the z-direction. The choice of the negative sign for the
y-variation is in anticipation of standing waves in this direction, due to
reflections between the two walls. Solutions of (6.19) and (6.20) can be

written in the form

o4
Xn

X
X (x) +Dbe X (6.22)

il

Y
o]

o

and

Yn(y) cncos(kyny) + thin(kyny) s (6.23)

but bn must be zero, since the energy is unlikely to become unbounded for
large x.

The total variation for any field component is therefore given by

-0, X =Jk =z
£(x,5,2) = X [apcos( y) + b sin(k y)le * e = (6.24)

after redefining the constants. Equation (6.24) now represents the general
variation of any field component. Of course, as yet, boundary conditions have

not been applied.



7

6.6 The Field Above the Corrugations

Any two field components may be selected at random, e.g., E_ and Ex’ and

zZ

from these the remaining field components can be calculated. The two field

components must be described, in general terms, by (6.24); therefore let

S / . ~OnX ~IET _
2 = e anCUS\Kyny) + ons1n(Kan)] e e (6.25)

ed
1l

-0 x =k =z

= oL [eqoo(s v) +asin(k )] e * e 20, (6.26)

I}

E
Boundary conditions require
E =E =0 (6.27)

for

y==+b/2.

This does not mean that, in general, each individual term (harmonic) of
the series must satisfy the boundary conditions, but only the entire field
quantity. However, later a finite approximation in connection with the
matching of the field components will be made where the matched terms of the
series satisfy individually the boundary conditions.

If the wave guide is excited by a rectangular wave guide or horn carrying
the TE , field, the energy traveling in the guide will primarily have only a
single half-sinusoidal variation in the transverse direction. This assumption
will simplify analysis greatly; it must be realized that higher order modes
may exist, but will hopefully contribute little to the power transport.

Upon application of the boundary conditions, (6.27), to each term of the

series, the field components become
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@ “n® KT
E, = cos(kyoy) hE e B e s (6.28)
© -0 x -jk z
. X . zn o
E = cos(kyoy)nzz_°° b e e s (6.29)
and
2 2 2 _
afm-kyo+k-kzn_o, (6.21a)
where
ul
kyo =+ (6.30)
after substituting bn for e
Ey may be found from (6.3); that is
X aEz
= - —— e — + .
Ey I (ax 3z ) dy + ¢
This becomes, upon substitution for EX and Ey
1 . L = @ -avh _‘jkwv\z
Ey =5 51n(kyoy) L nzlm bnakn e e
yO
o -0 x =-jk =
+ ¥ Jja_k e o zn l+c.
Nn==-c n zn
This may be written
sin(k_y) o -0 x -jk =z
E - YO T (bLo + jak )e S zn s (6.31)
y kyO N=-c0c ' 1N XN n zn

¢ being chosen zero, since this would correspond to a static field.
The total electric part of the field being now known allows the magnetic
part to be found by utilization of (6.1). Carrying out the differentistion

yields
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xn
H = [-k s1n(kyoy) T e
sin(k__y) - -3k
i xn n
I B G v e

=L Xn
B o= [cos(kyoy) nZe Pp(-dk ) e o
cos(k y) X ( ) TTxn -jkznz]
- yoy n= an o n e e R
and
sin(k y) o x -k 2
_ yO ® . n
HZ - Wi k n:z—m (-axn)(bnaxn + Ja k ) e e
yO
- x -Jk =z
i Xxn zZn
+ kyos:Ln(kyOy) i e e 1,

which becomes upon simplification

J

H = a—-s1n(kyoy) ot Jankzn) - kyoan]
o, x -Jk =z
Lo X ST (6.32)
. -0, x =Jk =z
_J x _ Xn zn
Hy = o cos(kyoy) o Lo Jo k e e , (6.33)

and
3 oy
H = on 51n(kyoy) Ew [b kyO (bndxn Ja, kzn)]

- nx -jk =z

e o (6.34)
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The total field above the corrugations is now known in terms of four

constants: a s bn’ Ays and kzO’ which will be interrelated by field

matching at x = g.

6.7 The Field Within the Corrugations

The same procedure will be used as before, that is, all of the field
components must satisfy the wave equation, (6.8). Choosing again B, and E,
as potential functions, solutions can be separated as

£(x,y,2) = X(x)¥(y)z(z) . (6.35)
Upon substitution of (6.35) into (6.8) yields

1 *X(x) L1 *Y(y) L1 *Z(z)
X(x) 3% Y(y) 3y z(z) 3z?

+ K2 -0, (6.36)

which means each term is constant; therefore, constants may be defined

2 _ _ 1 aZX(X) 6

k= X(x) a (6.37)

K2 - 1 Py(y) (6.38)

y o ¥(y) % ’
and

2 _ __1 2%z(z) .

ﬁz = " Zz) 3z 3 (6.39)
therefore,

2 <2 2 _ 2

K2+ ky + ez = k® ., (6.40)

Solutions of (6.37) through (6.39) are of the form

X(x)

a cos(kxx) +b sin(kxx) s (6.41)

Y(y)

]

c cos(kyy) +d sin(kyy) s (6.42)

and



Therefore

and

Ezc
Boundary

Exc
for

y =
and

Exc
for

7 =
Further

Ezc
for

X =
Applying

Exc

and

Z(z) = e cos(ﬁzz) + f sin(ﬁzz) .

E

Xc

o

= [a cos(kxx) +

sin(kxx)] [e cos(kyy) +d sin(kyy)]

« [e COS(BZz) + f sin(BZz)]

=[g cos(kxx) + h sin(kxx)] [i cos(k

- [u cos(szz) + v sin(BZz)] .

conditions require

:E :O
zc
+b/2,
=E =0
yc

0, s

=E =O
yc

O.

these boundary conditions to (6.44) and (6.45) yields

=c [cos(kxx) + D sin(kxx)] cos(kyy) sin(BZz)

81
(6.43)

(6.4k)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)
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E . = sin(kxx) cos(kyy) [a cos(BZz) + e sin(BZz)] s (6.50)

after redefining the constants. The boundary conditions also stipulate

ko= Eip=0,21,%2 (6.51)
and
mT
Bon =3 s m=0,%1, %2 .3 (6.52)

the subscripts, p and m, denoting the number of half-sinusoidal variations
in the y- and z-directions respectively. The individual field modes must

satisfy (6.37) through (6.40). This yields

3 1 82Xém(x)

Kom = 7 % (x) %2 g (6.372)
pm
*Y_(v)

A 2 .
—— (=) (6.39¢)

zm Zm(z) 2% 7 '

and

K2+ k2 4+ B = kR, (6.40a)

Xpm yp zm

and therefore

]

xepm [cos(kxpmx) + bpm s1n(kxpmx)] cos(kypy)

.

c sin(Bzmz) (6.49a)

rm

and

sepn = Sin(k ) cos(ie y) [a cos(Bz) + e sin(Bz) . (6.508)
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Now restricting the solution, by means of proper excitation to a single
half sinusoidal variation in the y-direction, that is, let p = 1. Equation

(6.50a) must become

kim + k§0 + eim = k% , (6.50p)
where
i
ko=5%>

kyO denoting the fundamental variation in the y-direction. With these changes,

(6.49a) and (6.50a) become

Il

E
xcm

cos(kyoy) c. [cos(kxmx) + b sin(kxmx)] . sin(BZmz) (6.49b)
and

E
zcem

cos(kyoy) sin(kxmx) [dm cos(BZmz) +e sin(BZmz)] . (6.500)

The total field must be a linear combination of these individual wave modes,

therefore, the total varigtion of Exc and EZC is

3]
|

o = cos(kyoy) mjim e [cos(kxmx) + o sin(kxmx)] sin(BZmz) (6.49c)

and

E
zc

z)] . (6.50¢)

o]
cos(kyoy) e s1n(kxmx) [dm cos(Bzmz) + e 51n(Bzm

Ey can now be found from (6.3), that is

Epe . Fye
Eyc=-~[\(?+¥)dy+1)'

Upon substitution for EXc and Ezc
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Eyc = - Sin(kyoy) I kxm[-sin(kxmx) + b cos(kxmx)]

- e sin(szmz) + mjim Sin(kxmx) Bzm [-dm sin(szmz) te cos(BZmz)] } +D;

simplification yields

. Sln(kyOY) © X [ .
ye = k__ e { - S0k %) - oy <:os(kxmx)] “m
J\J

. 51n(Bzmz) + 31n(kxmx) Bzm[dm s1n(BZmz) - e, cos(ﬁzmz)] } .
Here, as for the field above the corrugations, D is zero. Equation (6.47)
specifies

e, =0, (6.53)

b =0 . (6.54)
It will be assumed later that the field can be approximated by a finite number
of

The total electric portion of the field becomes, after enforcing boundary

conditions
E .= cos(kyoy) mjim c. cos(kxmx) sin(BZmz) s (6.55)
E .= cos(kyoy) D sin(kxmx) cos(Bzmz) , (6.56)
and
sin(k__y)
E.. = ki_ nLo sin(k x) [k, ¢ +B a7 sin(B z) . (6.57)

v
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The total magnetic portion may now be found from (6.1); performing the

differentiation yields

H =-1{_-k _sin(k ¥y ¥ d sin(k x) cos(B _z)
XC Wi yu yu MN==o I CXin pAL\
31n(kyoy) © . :
- __kyo pog Sin(k x) B [k oo + B,m 4l + cos(B_z) } ,
_ 3 S
Hyc = o { cos(kyoy) . cos(kxmx) Bzm c, cos(BZmz)

- cos(kyoy) e & Ko cos(kmx) cos(BZmz) }

and

sin(k__.y)
H = ___yO S k cos(k_ x) [k, c +B 4]
ZC W kyO Mm=-c« xm xm xm m Zm m

m .
. sln(Bzmz) + kyO sm(kyoy) 1w Cm cos(kxmx) 51n(Bzmz) 5

and simplifying yields

B

H = wi 51n(kyoy) 2 sin(kmx)[-kyodm - rj;(km y * Bon dm)]

. cos(ﬁzmz) s (6.58)
Hyc = (;)J_LL cos(kyoy) mf_m cos(kxmx)[BZm S kxm dm] cos(ﬁzmz) 5 (6.59)

and
] 2 S

HZC = (-J.)—p: Sin(kyOY) m=2_m cos(kmx)[%(km Cm + Bzm dm)

+ kyO cm] sin(Bzmz) . (6.60)
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The total field within the corrugated region has been found in terms of

three constants: c¢ , & , and k.
m’ m

ar_

[o] e .
6.8 Field Ma behing

The method of field matching is based on the assumption of continuity
of certain properly chosen field components at the boundary between any two
regions, in this case, at x = a. Continuity of all field components is not
necessarily guaranteed. Matching at the boundary will lead to a set of
equations which may be solved for the unknown constants of the field.

Tangential field components will be matched first. That is

E =E_ (6.61)

Ey =B, » (6.62)

Ho=H_, (6.63)
and

Hy = Hyc (6.64)
for

X =a .

Equations (6.28), (6.56), and (6.61) yield for E

® "% Ik, ® .
nE B e = 24 31n(kxma) cos(ﬁzmz) ; (6.65)

(6.31), (6.56), and (6.62) yield for Ey

- -jk =z
x Y%n® Hon

nJ;w (bnaxn * Jankzn) € € =

mj:; sin(kga)k ¢ +B_ a7 sin(B_z) ; (6.66)
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(6.34), (6.60), and (6.63) yield for H

o -0_a -J Z
preel ) xn zn
n=2co l:brlkyo - kyo(bnaxn * Ja“nkzn):l € © B
o] km
e cos(l<:xma)[§5(l«:Xm e + Ezm dm) + kyO cm] s1n(Bzmz) ; (6.67)

(6.33), (6.59), and (6.64) yield for H_

® " mdkz
r (aa_-jbk )e e =
n xn n zn

nN=-cw

mﬁiw cos(kma)[ﬁzm c, - kx:m dm] cos(BZmz) . (6.68)

The matching of the normal components requires, if there is no charge or

current on the boundary

E =E__ (6.69)
and .

Ho=H, (6.70)
at

X = 8a .

Equations (6.29), (6.55), and (6.69) yield for E,

® - a =-jk =z o
Xn zn . )
nfie n © € = 2 Cp cos(ka) sin(B 2) ; (6.71)

(6.32), (6.58), and (6.70) yield for H
JK e "jkznz

& zn .
e [kyo (bnozxn + Jankzn) - kyoan] e e =

mimsin(kma)[-k d - k_::)l(km c, + Bzm dm)] cos(Bzmz) . (6.72)

yO
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There now exist seven unknown quantities, a > bn, Cp’ dm, oy kzO’ and kx,
of which one will depend on the excitation amplitude, and seven equations,
(6.21), (6.65) through (6.68), (6.71), and (6.72) for their determination.
There will have to be made an approximation for the solution; therefore, the

assumption can be made that the major contribution to the total field will

result from the fundamental modes within the corrugations; that is, let

m = 0. The field components within the corrugations reduce %o
EZC = cos(kyoy) dy sin(kxox) s
H. = S%—sin(kyoy) sin(kxox) (-kyodo) s

and
Hyc = i&-cos(kyoy) cos(kxox) (—kxodo) .

These components are a standing TElO mode in the x-direction; that is, the

corrugated region may be considered a shorted section of rectangular wave

o s N man e ey Tn
a Llcyuciley dulll

that only the TE. . mode is present; all other modes cut-off. This assumption

10

further reduces the unknowns since kxO can now be approximated by k = Vjue .

The TE field can now be written

10
B . =d, sin(kx) cos(kyoy) s (6.73)
_5d X
H - % sin(icx) sin(k oy) (6.74)
and
~jd
H&c =~ cos (kx) cos(kyoy) . (6.75)
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Field matching may now be performed on the above components: for EZ,

ngiw a e e =4, sin(ka) ; (6.76)

- -jk
otxna J 2 Z

® zn . n
1’l=2-co [k (bnaxn * Jankzn) - kyoan:l © € -
sin(ka) (—kyo dy) 5 (6.77)
and for H_,
Yy
-0 a =Jk =2
& . xn Zn
o [anozxn - ankzn] e e = cos(ka) (-k do) . (6.78)

The orthogonality of the z-variation may be employed to eliminate the
+Jk .2
. summation over n; that is multiply by e JEzv and integrate from O to s.

Equations (6.76) through (6.78) become respectively

_a‘r ‘a
a, € Yos = dy sin(ka) I , (6.79)
Hav "%y
ja_k -k = - si .
[kyo (b\)axv + Ja zv) yOa\)] e s sin(ka) kyO dy I, (6.80)
and
-o 8
[a\)axv - Jb\)kzv] e s = cos(ka) (-k do) I, (6.81)
where
s -jkzvz
I-= e dz .
[, 2
' The unknowns are now N do, LAY kxO’ kzv’ and bV; simplification will

result if a new constant b\') is defined such that
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-o_ a
a_e 7 s=4d. sin(ka) I s (6.82)
v 0
Koy TVt
LYt s
[k (bvdxv + avkzv) + kyOav] e s = sin(ka) kyO dy T, (6.83)
yo
and
o,
(avaxv + bvkzv) e s = - cos(ka) k do I . (6.84)
Division of (6.83) by (6.82) yields
1 2
kzv(bvaxv i avkzv) * kyoa\) . (6.85)
2 & = %50 2 :
v yO
and simplifying yields
k
b! = - a —22 | (6.86)
v Vo
Substitution of (6.86) into (6.84) now specifies
(—aiv * kzv) eV
a e s =cos(ka) kd, I,
v o o)
XV
and division by (6.82) further simplifies to
2 _ .
K- djw =k o cot(ka) ; (6.87)
however the left side is reduced by (6.21) to
2 2 _
k? - kyO =ka cot(ka) . (6.88)

It must be concluded from (6.88) that there exists only a single value for

dxv which may be denoted Y that is, there is only a single term present in
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the Fourier expansion representing the field components above the corrugations,

the fundamental mode. Equation (6.88) may be now written

(kz-kg) tan(ka)

Gyo = i 3 (6.89)
(6.86) becomes
k
Voo z0
bl = - a, Txo . (6.90)

(6.82) can also be written

-0 3
a. e *x0 5
0

dO ~ Tsin(ka) I ° (6.91)

The field components above the corrugations are now greatly simplified;

that is, (6.28), (6.29), (6.31) and (6.32) through (6.34) become respectively

-o. X =-jk .z
x0 z0
E =a, cos(kyoy) e e s (6.92)
-av X _jknmz J N
B, = by cos(kyoy) e e , (6.93)
(ak -+ Dbla ) -o_x =-jk .z
E = j 020 0 XO sin(k y) e x0 e z0 , (6.9)4-)
y k yO
yO

.k -a_~x -jk .z

- zd r_z0 x0 z0
HX = o [k béaxo +a k ) + kyO O] sin(k Oy) e , (6.95)

yO
: - ~x =Jk .z
- i . x0 z0 6. 6
Hy wu(aodxo + bokzo) cos(kyoy) e e s (6.96)
and

- x =-jk 2z

. x0 z0
HZ - =L [bo 40 kyo(bo o F aokzo)] s1n(kyoy) . e e . (6.97)
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. Equation (6.90) now eliminates one varisble allowing (6.90) through (6.97) to

be written

B, = &, cos("yoy) & e s (6.98)
k ~o. X -jk .z
- zO x0 z0 .
E_ = -ja. — cos{k__.y) e e R (6.99)
X 0 %0 yO
Ey =0, (6.100)
-Jk _.a -a.x =Jjk .z
H = myO 31n(kyoy) e ¥0 o 720 5 (6.101)
2
Jag (-7 0) Gyt 3K 02
H = cos(kyoy) e e s (6.102)
Y W 0!xO
and
ak k -2 x -jk .7
H = '? Zg O sin(k Oy) e X0 7207 (6.103)
Wt x0
The field commonente avre naotr natm in +erme AF o ecdrnale vroviahle o ThArrAaTrAaa
L o o SN B sl LIC L VD b LA\ VY 4Mld\s WY LL il [SAw A Iye) T (&7 UJ—LLB_A_\.— VOLL L 'LJ»O_, LiUWCO vCO. b

it will be advantageous to define a new constant H(') such that the work may be

compared with that of the chapter entitled ATTENUATION OF A DIELECTRIC SLAB;
that is, let

s =]

Jag(of ok )

HY = T . (6.104)

The field components may now be written in terms of H(') since

- Jupar
0" TE ey
( x0~ zO)

. Before doing this, (6.21a) allows a, to be written
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Jw, o
ao = kz_-l?— Hé s (6.105)
vO

k . being given by (6.30). Now (6.98) through (6.103) become respectively

PAS

Jou, H - _x -jk =z
x0 0 x0 0
e sl e e T, (6.206)
yO
wpk H! - ~X -Jk .z
_ PBE0% X0 20
Ex albr-a- cos(kyoy) e e R (6.107)
yO
k H! - X =jk .z
x0z0"0 ., x0 z0
H% 52 81n(kyoy) e e 5 (6.108)
yO
- x -Jjk .z
o x0 z0
Hy = B} cos(kyoy) e e s (6.109)
and
Jk_k__HI - x -k .z
B -—29590 ok ) e X0 o 7207 (6.110)
z k= -k~ JY

6.9 Power Transport

The determination of the attenuation requires knowledge of the power
transmitted and the power dissipated within the wave guide. The power

transmitted will now be calculated. The Poynting identity specifies it to be

P=4[[ExE . as. (6.111)
In the present case, this reduces to

P=%[] EXH; dxdy . (6.112)

Substitution from (6.107) and (6.109) yields



oL

wpk  HUH!* b/2 o (1 + cos(2k_y) -20 .x
p-—2000 YO o X0 gxay . (6.113)

2(k?-kyo) -b/2 a 2

Upon integration, this becomes

-20_ .8
Wk OHOH(')* be X0
P - . (6.11%)
(k®-x%2 )
xO yO

6.10 Power Loss
The total power dissipated will have two contributing factors, the power
loss within the walls above the corrugations, Pa’ and the power loss within
the corrugations themselves, Pb; the total power loss is therefore given by

P, =P +P . (6.115)

In either case, the power loss will be given by

the surface under consideration. Pa now becomes, for a single corrugated

section

—(2) J' j‘ (|5 % + |8 |?) axaz ,
y being held constant at the value b/2 . Substitution from (6.108) and
(6.110) yields

Rk® H'H* g -20

X
P (;ygzo)g I j' (o + ¥2) sin®(k cb/2) e X0" axdz .

Upon simplification this becomes
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H H'*(a2 + k2 )
yO 070 zO
P f f e %0 gya
a 2 _1 2 2 b

and finally integrating, the power loss is

2 1 1* 2 -
. RskypoHb (a? + K O) 2oz

a 2@ (kz-kz )2 © ’

(6.117)

after division by s since there are l/s corrugations per meter.
The power loss within the corrugations will have two contributing
factors, the power loss on the sidewalls, Pw’ and the power loss on the end

plates, Pe’ the total given by
P =P +P_ . (6.118)

As before in either case, the power loss is given by (6.166). On the

sidewalls, (6.116) becomes

RS s a
= (2) 2?-fo fo |5, |? axdz , (6.119)

where y is evaluated at b/2. Upon substitution of (6.74) this becomes

R k° d? S

P ——-19—- jo jj [1 - cos(2kx)] dxdz . (6.120)

W
Yielding upon integration

R d2k®
P s O

v = TP [2ka - sin(2ka)] . (6.121)

Again, dividing by s since there are l/s corrugations per meter. For the

contribution due to the corrugations, (6.116) becomes

(2) f /2 fa |E |? axa (6.122)
P = (2) —< X . .
c 2 ‘Ib/2 [e] J v
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Substitution from (6.75) yields
R k°d% b/2 =
P, = ZZF;E—-{b/E Jo [1 + cos(2kx)] [1 + cos(2kyoy)] dxdy ,

which yields upon integration

R kd®b
S V)

PC " Baw? u

[2ka + sin(2ka)] , (6.123)

as the power loss for the two end plates per corrugation, after again,
division by s.
The total power dissipated within the corrugated region is now given by

(6.118), which becomes, upon substitution from (6.121) and (6.123)

R a2 2 k®
50 2 kb sin(2ka) kb yO
P = K+ + — - =11 . 6.12k
b = BT E la(kly + 52) > = -1 (6.12k)

The total power dissipated could now be found from (6.117) and (6.124);
however the resulting expression would be quite unwieldy and therefore the
attenuation for the wave guide will be found in parts, each part due to a

given dissipation term.

6.11 Identities
Before the calculating the attenuation for the wave guide, it is
advantageous to consider some identities and define two new quantities, p,
the normalized decay constant in the x-direction and g, the normalized

propasgation constent in the y-direction, as

(o3
p=—32 (6.125)
and
k
q = Tyo ) (6.126)




A relationship will be needed between the two amplitude constants,

this may be found by considering (6.91) and (6.105), which yield

22 o %0
= [— ,
HyHA* s1n(ka)(k2-k§O)I

where

Evaluating the integral yields

. -Jk s
I= Ei— (e 207 _ 1),
z0
and expanding further
- -1 -3 si
I = E [cos(kzos) 1 -3 51n(kzos)]

Now forming the square of the magnitude,
? -2 [1 - cos(k_.s)]
k?o z0 !
z

(6.127) becomes

-2a_~8

H and 4

0
d% (wusaxokzo)z e x
: = -2 2 .2 \2 _
HOHé* 2 sin® (ka)(k -kyo) (1 cos(kzos)]

Consider, also, the following identities

sin(ka) = L

-_N/l + cot®(ka)

and

97

0’

(6.127)

(6.128)

(6.129)

(6.130)
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cos(ka) = 1 . (6.131)
J& + tan® (ka)
Rewriting (6.89) in terms of p and q yields
tan(ka) = lfga , (6.132)
and substitution of this into {6.129) and (6.130) yield
sin(ka) = P (6.133)
Jo7 + (1)
and
2
cos(ka) = 1-9 . (6.134)
ng + (1-¢7)?
Since
sin(2ka) = 2 sin(ka) cos(ka) ,
(6.133) and (6.134) specify
sin(2ka) = pll-a0) (6.135)

P° o+ (1-¢°)3

It is further advantageous to write (6.21a) in terms of p and q; that is

k o=k /pz +1-q° . (6.136)

6.12 Attenuation
The normalized power dissipated per meter of length in the direction of

propagation is the attenuation, denoted o, this is given by

o« =5 - (6.137)

The attenuation can be separated into three terms; that due to the walls
above the corrugations Ye? that due to the walls within the corrugated region

awb’ and that due to the corrugations themselves o, that is



= + + .
@ o‘fwa aWb oIc
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(6.138)

The first term may be obtained from (6.114) and (6.117), using (6.137) then

Pﬂ
%o T TP
that is
. . -2axoa
IR:EE"S
L R HH! kyo(aio + kzo) e
wa

wpk H'H*be X0

2 1,2 \2 z000
uaxo(k -kyo)

k®-K°
S o (& -K20)
Simplifying yields
2 2
o 2Rsky0(aio * kzO)
wubkzo(k kyo)

and in terms of p and q it becomes

kzO

2 2 2 2
_RECL + (57)°]
Ya T

wuk, b(1-q°)

Substituting (6.136) for k o then yields

_ BRwege °[20° + 1 - 7]
e =

kb(1-¢°) /p® +1 - ¢

The attenuation due to the walls within the corrugations may be

calculated from (6.114) and (6.121), therefore

+d

-,
Yo = TP

that is

-20 _.a °

(6.139)
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R, d2k2 [2ka - sin(2ka)]

Wb -2axoa

Simplification yields this as

RS 7% (ka -k° )[2ka - sin(2ka)] d%
o4 = - (||*
wb 2axoa Hbe

3 3
Wy, kkzo b e

Substituting (6.129) for the ratio of the square of the amplitude coefficients

yields
2 2 .2 2 2 2 "2 08
-k - si 2
. R kyoa (K yo)[2ka sin(2ka)] w?p’s aiokzo e
Wb —2axoa ?
a3 .2 2 .2 )2
w3ukk o b e 2 sin®(ka)(k -kyo) [1 - cos(kzos)]
and simplifying,
k2 g2
R K yO 20 xO [2ka - sin(2ka)]
a—r.ﬂ-\ = A _._.-2/__\/12 1- Ak e 1 A1
Wi WKL sin® \Ka (K i 8/

yO}L - UUS\AZO
Substitution of (6.133), (6.135), and the definition of p and q yields

R°K°k_s®p { Zka[p® + (1-¢®)?] - 2p(1-¢°) }
Yo T 2wpb(1-g®)[1 1\cos(kzos)]

Simplification and substitution for L3N (6.136), it becomes

Rskweoerq?sep { 2ka[p® + (1-9®)%] - 2p(1-¢®) } o +1 - &

o[w'b =

2b(l‘q2)[l - COS(kS p2 + 1 = q2)]
(6.140)
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Finally, the attenuation due to the corrugations can be calculated from

(6.114) and (6.123), then

P
c
o =7
that is
Rskdgb[2ka + sin(2ka)]
Y T -20_.a "
ok H'H*Dbe X0
l6sw2u2 W z0"00
8o (K®-K° )
x0 yO
Simplifying yields
. 2 .2 2
i Rsk[2ka + sin(2ka)] axo(k —kyo a8 )
% = -20_.a H'H'*/ *
3 3 x0 00
28w kzO e

and substitution of (6.129) into o, beccmes

-2a_.a
: 2 12 2 2.2 x07 | o
o R k[2ka + sin(2ka)] axo(k -k :) w?y?s aio e K2
“e . —2axoa s 5 s ’
3 - _
25wk e sin® (ka) (K -kyo) 2[1 cos(kzos)]

Further simplification yields

3 .
Rsksaxokzo[2ka + sin(2ka)]

% = hwp,sin?(ka)(ka-kéo)[l - cos(kzos)]

Substitution of (6.133), (6.135), and (6.136), in terms of p and q into o,

i1t becomes

R kweye sp { 2ka[p® + (1-¢°)%] + 2p(1-a®)} fp® + 1 - ¢®
a = .

© 4(1-¢®)[1 - cos(ks ,fp® + 1 - ¢®)]
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Equation (6.132) can now be substituted for ka, eliminating the a-dependency;

that is
R kwe.e ps ,Jp° + 1 -
o - o v L N
¢ 4(1-9%)

{ 2p® + (1-97)°] tan™ (352) + 2p(1-¢°) )

(6.141)

2 -
1- cos(ks,\/p +1-q°%)

The total attenuation is now the sum of (6.139), (6.140) and (6.141).
Equation (6.141) may be compared with the attenuation for an infinite
corrugated wave guide, Section 4, as b becomes infinite the two attenuations

become identical; further, (6.139) and (6.140) become zero as expected.

6.13 Group Velocity

The group velocity of a wave traveling in the z-direction is given by

AW

Vg = a—k: 3 (6.111-2)
which may be written

1 akz

-V—' = a—w— . (6-1&3)

g
Equation (6.136) then specifies

1.3 |2 42

il mil SR V1 RN G A (6.14k)

g

Differentiating this yields

13

1
—_ = (* +1 - q°) (6.145)
Ve JoP 1@ ’

and simplifying

|



k
i) op

1 .
= Ny
g JfoP 1o ¥
(6.89) can be written in terms of p and q as

p = (1-¢°) tan(ka) .

Differentiating (6.147) yields

%% = - 2q-§; tan(ka) + (1-¢®) sec®(ka) N
since
ky
4=1%
Then
-k
«a_ v 1
w  Jue o
and
ka
aaw ) . e Jpe .
Equation (6.148) then becomes
2
%£-= —%— tan(ka) + (1-g®) sec®(ka) a /e ;
simplifying,
2 2
X _2C tan(ka) + (1-9%)e 1 .
w w (ka) c cos® (ka)

The group velocity, (6.146), now becomes

1

2 2
P [%3 tan(ka) + K;:% )a

cos® (ka)

].

103

(6.146)

(6.147)

(6.149)

(6.150)
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6.14% Numerical Results

ZEOORCACRVERGS S

The attenuations o, o ., and o, as well as the total attenuation, are
wa Wi C

calculated for various values of p, the normalized x-decay constant. The

periodic plate spacing, s, is varied from one-tenth to six-tenths wavelength

at the four frequencies considered, 10, 35, 70, and 150 GHz.

A computer program was written to facilitate the computations. The

computer used was an IBM System/360 Model 30 and the language, Fortran IV.

The program is given below along with a flow chart, and the numerical results

in Figures (6.2) through (6.12).

6.14.2 Computer Program

S5.0001

5.0002

S.0003
S.000k4

8.0005
S.0006

S.0007

C

DIMENSTON ALPHA(55),ALFWA(55),ALFWB(55),ALFC(55) ,ALFWC(55),
*XNLAM(55)
CORRUGATED E-GUIDE ATTENUATION

c
C---DEFINE VARIABLES---

Qoo

Qoo

QQ

QQ

F=FREQUENCY IN GIGAHERTZ

RS=SURFACE RESISTIVITY (TQ BE MULTIPLIED BY 1.E-Q7¥SQRT OF F)

P=NORMALIZED DECAY CONSTANT IN X-DIRECTION--ALPHAX/XK

XK=OMEGA*SQRT(MU¥EPSILON)

B=WALL SEPARATION IN CENTIMETERS

Q=NORMALIZED PROPAGATION CONSTANT IN Y-DIRECTION--XKYO/XK

XKYO=PROPAGATION CONSTANT IN Y-DIRECTION--PI/B
PI=3.1415926536

S=PERIOD OF WAVE GUIDE

A=HALF HEIGHT OF CORRUGATIONS

XLAM IS WAVELENGTH, XNIAM(I) IS NUMBER OF WAVELENGTHS TAKEN FOR S
GET DATA

1 READ(1,100)P,F,B,RS
100 FORMAT(L4F10.5)

CALCULATE XKS-- (XK SQUARED) AND XK
XKS=(L./9.)¥PI*PI*F*F*(1.E+02(
XK=SQRT(XKS)

CALCULATE Y-PROPAGATION CONSTANT XYKO
XKYO=PI/(B*(1.E-02))



nnmnmn non

Nnonn

.0008

.0009

.0010

.0011

.0012

.0013

L0014

.0015

.0016

0017

.0018
.0019
.0020
.0021

.0022
.0023
.002k4
.0025

QQQ QaQQQQ QQ

QQQ

QQQQ aQQQQ

QQQ

QaQQQQ
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CALCULATE @

Q=XKYO/XK

CALCULATE ONE HALF THE HEIGHT OF THE CORRUGATIONS A
A=ATAN(P/(1.-Q%Q)) /XK

ADJUST RS TO ACTUAL VALUE
RS=RS*(1.E-07)*SQRT(F*(1.E+09))

CALCULATE Z-PROPAGATION CONSTANT---XKZO---
XKZO=XK*SQRT(P*P+1 .-Q*Q)

CALCULATE X-DECAY CONSTANT---ALFXO-~-
ALFXO=XK*P

DEFINE EPSILON---EPSIL
EPSIL=(1./(36.%PI))*(1.E-09)

DEFINE MU (XMU)

XMU=4 . *¥PI*(1.E-0T7)

CAICULATE FREE SPACE WAVELENGTH
XLAMF=(3.E+08) /(F*(1.E+09))

CALCULATE GUIDE WAVELENGTH AND PHASE VELOCITY

XLAMG=2.%PT/XKZ0
VPHAS=F*(1.E+09)*XLAMG

CALCULATE GROUP VELOCITY  VGRP=1./(X*(Y+Z))
X=XK¥P/SQRT(P*P+1.-Q*Q)

Y=2.%Q¥Q* (SIN(XK*A)/COS(XK*A) ) /(2. ¥PI*F*(1.E+09))
Z=(1.-Q%Q)*A/ (COS(XK¥*A)*COS(XK*A)*(3.E+08))
VGRP=1./(X*(Y+Z))

CALCULATE ALFWA(1)---UPPER WALL ATTENUATION---ALFWA(1)=X*Y/Z

X=RS*Q¥Q
Y=2.%P¥P+1.-Q*Q
Z=B*SQRT(XMU/EPSIL)*SQRT(P¥P+1.-Q*Q)*(1.-Q*Q)*(1.E-02)
ALFWA(1)=X*Y/Z
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C
C PRINT OUT PARAMETERS WHICH ARE NOT DEPENDENT UPON S(1)
C
S.0026 WRITE(3,101)P,F,B,A
S.0027 101 FORMAT('1','P=',Fk.3,2X, 'F="',F9.4,1X, 'GHZ' ,LX, 'SIDEWALL SPACING=',
*F6.4,1X,'CM',16X, 'ONE HALF CORRUGATION HEIGHT=',E15.8,1X, '"METERS')
$.0028 WRITE(3,208)VPHAS, VGRP
S.0029 208 FORMAT(1X, 'PHASE VELOCITY=',1X,E15.8,3X, 'METERS PER SECOND',15X,
*'GROUP VELOCITY=',1X,E15.8,1X, 'METERS PER SECOND')
S.0030 WRITE(3,207)XLAMF , XLAMG
S.0031 207 FORMAT(1X, 'FREE SPACE WAVELENGTH-',1X,F15.8,3X, 'METERS',19%,
*'GUIDE WAVELENGTH='1X,E15.8,3X, 'METERS')
S.0032 WRITE(3,201)RS,ALFX0
S.0033 201 FORMAT(' ','SURFACE RESISTANCE-',E15.8,2X,'OHMS PER SQUARE',15X,
*'X-DECAY CONSTANT=',E15.8,2X, 'RADIANS PER METER')
S.003k WRITE( 3,202)XKY0, XKZ0
S.0035 202 FORMAT(' ','Y-PROPAGATION CONSTANT-',E15.8,2X, 'RADIANS PER METER',
*9X, 'Z-PROPAGATION CONSTANT=',E15.8,2X, 'RADIANS PER METER')
$.0036 WRITE(3,210)ATFWA(1)
S.0037 210 FORMAT(1X,35X,'UPPER WALL ATTENUATION='1X,E15.8,3X,
¥'NEPERS PER METER')
o
C ADJUST F TO ACTUAL VALUE
c
S.0038 F=F*(1.E+09)
o
c ADJUST B TO ACTUAL VALUE
C
S.0039 B=B*(1.E-02)
C
o
C ESTABLISH DO LOOP FOR VARYING S FROM .1 LAMBDA TO .5 LAMBDA IN 50 STEPS
¢
c
S.ooko DO 10 I=1,50
S.004k1 VAR=I
S.0o0k2 VAR=VAR¥*.01
S.0043 XLAM=( . 3E+09) /F
S.o0kkL XNLAM(I)=( .09+VAR)
S.00k45 S(I)=XNLAM(I)*XLAM
c
C
C CALCULATE ALFWB(I)---LOWER WALL ATTENUATION---ALFWB(I)=X*Y/Z
C
S.0046 X=RS*2 . ¥PI*FXEPSIL¥XK*Q*Q*S(I)*S(I)*P
S.00kT Y=SQRT(P*P+1.-Q*Q)
S.0048 Y=Y*( 2. ¥XK*A% (P*¥P+(1.-Q¥Q)*(1.-Q*Q) )-2.¥P*(1.-Q*Q))
S.004k9 Z=B¥*(1.-Q¥Q)*(1.-COS(XK*SQRT(P*P+1.-Q*Q)*S(I)))*2.
$.0050 ATFWB(I)=X*Y/Z

CALCULATE ALFC(I)---ATTENUATION DUE TO CORRUGATIONS ALFC=U¥V*(W+X)/Z

QQQQ
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U=RS*¥XK*2 . ¥PT¥F¥EPSIL¥P*S(TI) /L.
V=SQRT(P*P+1.-Q*Q)/(1-Q*Q)

W=2. ¥XK*A%(P*P+(1.-Q¥%Q)*(1.-Q%Q))
X=2.%¥P*(1.-Q%Q)

Z=1.-COS (XK*SQRT(P¥P+1.-Q*Q)*S(I))
ALFC(I)=U*V*(W+X) /2

CALCULATE TOTAL WALL ATTENUATION---ALFWC(I)---

ALFWC(TI)=ALFWA(I)+ALFWB(I)

CALCULATE TOTAL ATTENUATION ALPHA(I)=ALFWA(I)+ALFWB(I)+ALFC(I)
10 ALPHA(I)=ALFWA(I)+ALFWB(I)+ALFC(I)

PRINT OUT TABLE HEADING

WRITE(3,103)

103 FORMAT('G',13X,'PERIODIC PLATE SPACING',12X,
*'LOWER WALL ATIN',7X,'TOTAL WALL ATTN',7X,
*'CORRUGATION ATIN',9X,'TOTAL ATTN')

WRITE(3,104)

104 FORMAT(1X,8X, 'IAMBDA',16X, 'METERS',11X,
*'NEPERS PER METER',6X, 'NEPERS PER METER',6X,
*'NEPERS PER METER',6X, 'NEPERS PER METER!')

PRINT OUT DATA

NN NN T_1 [=7aY

20 WRITE(3,105)XNLAM(I),S(I),ALFWB(I),ALFWC(I),ALFC(I),ALPHA(I)
105 FORMAT(' ',3X,E15.8,5(7X,E15.8))
GO TO 1
STOP
END
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‘ Imm
P,F,3,RS

CALCULATE PROPAGATION CONSTANTS
XK, ALFX0, XKYO, XKZO, Q

Y

CALCULATE
EPSIL, MU

Y

CALCULATE
XLAMF, XLAMG

Y

CALCULATE
VPHAS, VGRP A

Y

PRINT PARAMETERS WHICH ARE INDEPENDENT
OF PLATE SPACING, S(I): P, F, A, VPHAS,
VGRP, XLAMF, XLAMG, RS, ALFXO, XKYO, XKZO,

ALFWA(1)

I

VARY PIATE SPACING AND
CALCULATE ATTENUATION

Y

PRINT ATTENUATIONS:
ALFWB(I),ALFWC(I),
ALFC(I),ALPHA(I)

Y

RETURN -

Figure 6.2 Flow chart
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7. COMPARISON OF ATTENUATIONS

T.1 Laminated Dielectric H-Guide

The attenuation for a dielectric H-guide (adH) will be considered in
detail and some conclusions drawn on the minimization of the attenuation.

The attenuation is due to two sources, the dielectric, and the walls;
it may be separated into two terms as

% = % T o
the subscripts referring to dielectric and wall respectively. The

dielectric attenuation may be written in the form [see (5.85)]

er[A - er]
B[C + er(er_l)j ) (7'1)

ay = tan(§)

where A, B, and C are independent of ¢ and tan(8). This can be written in

a further simplified form as

ay = tan(§) ¢(€r) s (7.2)
where
er[A - er]
@(er) =3¢ + er(er_l)] . (7-3)

It is now apparent that oy varies directly with tan($); further Figure 5.2
shows there is a minimum for Q(er) near e, = 4. To minimize @y, €, should
be chosen to be approximately four, and tan(8), should be minimized.

If the dielectric is laminated rather than solid, and yet has an
equivalent relative permittivity of about four, the attenuation may be
reduced. The laminations will need to have a relative permittivity greater

than four to achieve this, which means generally that the loss tangent,

tan(éslab), of each lamination will be greater than that of some solid
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dielectric with ¢, = L4 and a loss tangent of tan(ah). However, the
equivalent loss tangent of the laminated structure, tan(éeq.), will be
less than tan(éslab), and it may be possible to make tan(éeq.) less than
tan(éu). If this is possible, then the laminated structure will have all of
the necessary properties of the optimum solid dielectric and will have a
smaller value for the loss tangent.

The case for a laminated dielectric in a static electric field
considering only normal components has been examined by C. W. Bostian.3
The optimum material for this application seems to be Eccoceram Hi K
[er = 90, tan(§) = O.OOl:I.LL The relative permittivity and loss tangent for
various common materials gppear in Table 7.1.

For the desired equivalent permittivity of four, an equivalent loss
tangent of 0.000035 can be obtained. This represents a reduction in the
loss tangent of about twenty [assuming tan(§) = 0.0007 originally].

If this analysis were exact, then the dielectric attenuation would be

~r Hovrevor
Y . oowever, $i 1Sy

normal electric component, and in the case of an H-guide there exist
tangential components also. The assumption will be made that the attenuation
due to these components is not reduced significantly. It, therefore, seems
reasonable in this approximation to let the reduction in the loss tangent

be a factor of seven, since only one-third of the total electric field

experiences a reduction. It was found that %y and o, are different by a

3. J. Tischer, Principal Investigator (C. W. Bostian, Instructor;
Roy Propst, Graduate Assistant), May 15, 1967. NASA Progress Report on
Study of Rectangular-Guide-Like Structures for Millimeter Wave Transmission.
NGR-34-002-047. Department of Electrical Engineering, North Carolina State
University, Raleigh, North Carolina.

Emerson and Cumming, Inc., Canton, Massachusetts.
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®

Table 7.1 Relative permittivity and loss tangent of several materials at

10 GHz
Loss Tangent
Material Relative Permittivity (to be multiplied
by 10°%)
Styrofoam 1.03 1.5
Teflon® 2.08 3.7
Polystyrene 2.5k4 4.3
Rexolite’ 2.54 6.6
Formica® 3.90 45.0
Pyrex glassd 4.80 98.0
Water (25° C) 55.00 5400.0
Eccoceram’ Hi K 90.00 10.0

®E. I. Du Pont de Nemours and Co., Inc., Wilmington, Delaware.
bEmerson and Cumming, Inc., Canton, Massachusetts.
. ®The Formica Company, Cincinnati, Ohio.

dCorning Glass Works, Corning, New York.

factor of ten at 10 GHz for a sidewall spacing of 2.286 cm. Let this value

of attenuation be D; that is

@, =10 o =D, (7.4)

which means the total attenuation is given by

agy = 10D + D . (7.5)

Let Y31y denote the attenuation for the laminated H-guide. It was seen
above that the dielectric attenuation was reduced by a factor of seven;
therefore

ypy = %O- D+D . (7.6)

‘ It follows that
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1l
Oty = T Ay - (7.7)

thus, yielding a reduction in total attenuation of about four and one-half.

7.2 A Comparison of Three H-Guides with the Rectangular Wave Guide

The attenuation for three H-guides (dielectric, corrugated, and
laminated dielectric) has been obtained. A comparison of the attenuations
can be made for a fixed value of: sidewall spacing (2.286 cm.), normalized
x-decay constant (p = 0.2), and frequency (10 GHz). This particular value
of p corresponds to a field which decays by ninety percent, in a distance
of five centimeters from the dielectric at the above frequency. The value
of attenuation chosen will be that which is minimum in each case for the
given value of p.

The values of attenuation for the dielectric and corrugated H-guides
can be found directly from the curves provided in the respective sections;

that of the laminated dielectric H-guide can be found from (7.7). The

results are shown in Table T.2.

Table 7.2 Attenuation for various wave guides at 10 GHz

Wave guide type 1 Attenuation
(nepers per meter)
Rectangular 12 x 1073
(standard X-band)
H-guide 5 x ]_O_3
(dielectric)
H-guide 1x10°3

(laminated dielectric)

H-guide 2 x 1073
(corrugated)
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8. EXPERIMENTAL PROCEDURES ANI RESULTS

The properties of surface wave guide structures can be determined by
different techniques: such as, direct measurement of the structure under
operational conditions or measurement of the characteristics of various types
of modes whén the structure is enclosed in a cavity. The cavity method offers
some advantages in that probes and the change in the fi+13 due to the insertion
of a probe for measurements are eliminated; further, the structure is isolated
from external fields. As a first step, a test cavity, which can later be
converted into a shorted section of the H-guide, must be thoroughly analyzed
and pertinent parameters determined. The parameters are tlie resonant frequencies
of the various possible modes (which may interfere with the desired mode), the
frequency shifting.due to various types of loading, and the Q-values of the

modes.

8.2 Description of the Test Cavity

The rectangular cavity considered is of the transmission type coupled
by circular irises between two sections of rectangular wave guide (Figure
8.1).

The inside width of the cavity was made equal to the inside width of
standard X-Eand wave guide (RG 52/U) to insure that only modes of one-half
period sinusoidal variation in that direction would be present. The inside
height was four inches and the longitudinal length six.

Coupling to the wave guide was accomplished by circular irises centered
in the wave guide cross-section; hence, centered in the cavity end plates.

During all of the measurements, irises of one-quarter inch diameter were
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used since smaller diameters increase the insertion loss to an extent that
the signal amplitude has approximately the amplitude of the noise level.

The cavity was constructed of one-half inch thick brass sides and one-
quarter inch thick brn:: 2nd plates having 0.050 inch thick inserts for
changing the size of the coupling iris; the entire assembly was electroplated
with several ten-thousandths thickness of silver. A dete led view of one

end can be seen in Figure 8.2, the other end being identical.

8.3 Determination of the Resonant Frequencies for the Empty Cavity

The solution of the Maxwell equations within a closed uniform region,

upon separation of variables, yields a relationship between the propagation

constants a«
K = K + kK o+ K, (8.1)
X ¥y z
where
2 _ 2
¥ = (enf) bo€oSy 2 (8.2)

’
and the remiining terms the squares of the propagation constants in the

subscripted directions. Boundary conditions for a rectangular cavity admit

only sinusoidal solutions which means that (8.1) becomes

1 - im my\3 N3 =
£, = =)? 4+ (5)° + (5)712, (8.3)
imn 2”«2;%; ra; a d
wvhere n, m, i =0, 1, 2, . . . , and a, b, and d are the dimensions of the

cavity. It can be seen that n, m, and i describe the number of half
sinusoidal variations in their respective directions. For the cavity under

consideration, and for the unloaded case

3xlOl
imn (1.893 + ()_Tg Sh)z (6x2 5)+/ 12, (8.4)

N
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It is now possible to calculate all of the possible modes for the
cavity. The frequency range shall be limited to 9.0 to 11.0 GHz. The
results are tabulated in Table 8.1 along with the measured values. Only the
modes with even numbers‘in the vertical direction appear in the table since
the odd modes were not assumed to be excited, due to the excitation
discriminating agginst odd modes.

It should be noted that the measured values are lower than the calculated
values. This may be due to several causes: first, the velocity of light
was approximated to facilitate calculations; second, losses within the cavity
walls and the coupling irises will tend to lower the resonant frequencies;
and third, s very slight error was made in the measurement of the cavity
width (0.005 inches), implying the value 1.893 should be a small amount

less. The average .deviation is approximately 30 MHz.

Teble 8.1 Frequencies of cavity modes

Mode Calculated frequency - Measured frequency
TE

(GHz) (GHz )
107 9.515 9.502
108 10.250 10.220
109 11.030 11.000
126 9.327 9.295
a7 9.955 9.9kL
128 10.650 10.635
142 9.020 9.032
143 9.320 9.295
1hh 9.690 9.651
145 10.100 10.080

146 10.615 10.580
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8.4 Determination of the Resonant Frequencies
of the Dielectric-Loaded Cavity

In the case of a fully loaded cavity, (8.3) shows that the mode
frequencies will be decreased by‘Jgr s that is, all frequencies will be

decreased by the same amount.

determination becomes quite difficult; however, the problem may be approximated
in the following manner. A typical cross-section of the loading to be
coneidered is shown in Figure 8.3. To a first approximation, it appears that
the dielectric affects primarily the x-variation of the field; in fact, the
dielectric may be considered to increase the x-dimension by an amount

(/E; -1)D, where D is the thickness of the dielectric. Equation (8.3) may be
utilized, simply replacing b by b + Q/E; -1)D. The results of the calculations

for the even modes appear in Table 8.2.

Table 8.2 Frequencies of cavity modes with central slab loading

Cavity loading Mode Calculated Frequency
(GHz )
1/8" Rexolite 1422 slab in 126 9.290
center of cavity 127 9.947
128 10.620
e, = 2.53 143 9.120
1hh 9.515
tan(§) = 0.00066 1ks 9.968
146 10.490
1/4" Rexolite 1422 sleb in 126 9.249
center of cavity 127 9.890
128 10.600
¢, = 2.53 143 9.005
14k 9.380
tan(§) = 0.00066 145 9.810
146 10.450

Mg,
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Figure 8.3 Cutaway view of test cavity with
central dielectric loading
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8.5 Excitation of Cavity Modes

The field configuration within the rectangular wave guide, which
delivers energy to the cavity, is due only to the TE N mode, all others
being damped out since operation is rot above the cutoff frequencies of the

higher order modes. The field due to the Tﬁﬁo mode is given by

. TX
Ey = E, 31n(7;) s
E
H_ =‘—9— sinﬂgi) s
ZTR
and
H = il cos (=
z ~ 2aT a’’
where
T
S S,
TE . A2
%
and
i,
1=k

These are the only possible field components available for excitation of the
cavity. Figure 8.4 shows the cross-sectional view of the cavity and wave

guide located centrally about the iris. Boundary conditions require Ey and

HZ to be zero on the wave guide end plate, leaving only the Hk component
present there. If the assumption is made thut the iris diameter is small
enough not to appreciably disturb the field within the wave guide, within the
iris itself only the Hx component will be present, since the field must be
continuous. It now appears that only the H& component of the wave guide field
is present within the cavity region. Furthermore, there will be no Ez component

excited within the cavity region under ideal conditions. The absence of the EZ
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component within the cavity restricts the results to TElmn modes within the

cavity. Dielectric loading will possible cause excitation of cother modes.

It is possible for the ™ modes with m even to be excited, since at

1mn
the coupling hole these wave modes have transverse magnetic field components
which are coupled to the fields within the wave guide. The resonant

frequencies for these modes are identical with the corresponding TE modes

1mn
for the homogeneous cavity, and it is therefore impossible to separate the

two modes by examination of the cavity output.

8.6 Wideband Measurement Technique

A swept frequency method was used in order to facilitate the measurements,
since continuous recording of data is possible. The output signal of the
cavity, which is connected at the input to a swept-frequency generator, is
measured at the exit port. This output may be considered as the transfer
function of the cavity since the input signal is essentially independent of
frequency, due to the signal leveling system of the sweep oscillator. This
transfer function can be examined with an oscilloscope or, for a permanent
record, & X-Y recorder which is swept by the same sawtooth voltage as the
oscillator; the test circuit diagram is shown in Figure 8.5. The swept-
frequency generator is an Alfred Model 650 (manufactured by Alfred Electronics,
Palo Alto, California) with the 7.0-12.4 GHz plug-in unit (Model 654AK-S1)
(manufactured by Alfred Electronics, Palo Alto, California). External
leveling of the signal is accomplished by feeding back a portion of the input
signal to the leveling input of the generator. Two frequency meters were }
used in the circuit since the precision (.0l5 percent absolute maximum
frequency error) PRD Model 559-A (manufactured by PRD Electronics Inc.,

Westbury, New York) has a range vwhich only extends up to 10 GHz; the Hewlett
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Figure 8.5 Circuit used for wideband and Q-value measurements
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Packard Model X532B (manufactured'by Hewlett Packard, Palo Alto, California)
(.08 percent maximum error) is used for the higher frequency part of the swept
spectrum. The precision type frequency meter is especially useful for narrow
band measurements, as Q-measurements, since divisions of 1 MHz are directly

readsble on the meter.

8.7 Q-Value Measurement Technigque

The procedure for the Q-value measurements is essentigally the same as
the wideband measurements except normally the sweeping range is limited to
Af = 10 MHz rather than 2 GHz. The circuit is identical to that shown in
Figure 8.5.

Initially the desired sweeping range is set, and the first two variable
attenuators are adjusted for a convenient amplitude level. Two attenuators
are available since it is desirable to set the second attenuator (precision
type) to an even dB setting, then vary the first one for the desired amplitude
at terminal A. First terminal A is connected to the y-axis input of the
plotter and a Q-curve is described on the plotter, then an additional 3 4B is
inserted by the second attenuator and another Q-curve is drawn--a straight
line across the peak of the second curve marks the 3 dB points on the first
curve. Frequency calibration is carried out in the same manner as in the
case of the wideband measurement, and described below.

The x-axis of the recorder is driven by the sweep circuit of the
generator; the y-axis may be excited by either terminal A or B, A being used
to plot the mode spectrum of the cavity, whereas B is used for frequency
calibration--the unused terminal is terminated with a 50 ohm load. The high
Q-value of the absorption type frequency meter is utilized for calibration

purposes. The Hewlett Packard 423A diode (manufactured by Hewlett Packard,
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Palo Alto, California) has a negative rcsponse characteristic; therefore,
the frequency to which the absorption meter is tuned appears as a positive
peak. In this manner tl..n, the frequency meter is adjusted to a ¢iven
frequency and, after i{ie peak is drawn, quickly advanced some predetermined
interval and repeated throughout the spectrum yielding a sequence of peaks

whose frequency is precisely known. During the calibration process, the

frequency changing.

The procedure, therefore, is to first connect the y-axis of the recorder
to terminal A and place a 50 ohm termination on B; plot the mode spectrum of
the cavity, then interchange the termination and the y-axis input and finally
plot the frequency calibration peaks. It is advantageous to perform the
measurements sequentially as quickly as possible, since there is some frequency
drift associated with the sweeper which usually performs low amplitude drift
oscillations about a center frequency for a small time interval, then shifts

= enm M ma
€r ireguency.

8.8 Wideband Measurement Results

The mode spectrum of the empty cavity for a 2 GHz sweeping range can be
seen in Figure 8.6. There is some degeneracy present.

The cavity was next loaded fully with very inexpensive styrofoam material
purchased in a department store, normally used for Christmas decorations
(Figure 8.7), which incidentally turned out to be less lossy than material
purchased specifically for low-loss properties (Eccofoam, Type PS available
from Emerson & Cumming, Inc., Canton, Massachusetts). The entire spectrum
can be seen to be shifted approximately 75 MHz, corresponding to a relative

Permittivity of 1.03 for the styrofoam. There exists some mode splitting
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(127 and 151) which is probably due to inhomogenities in the material. The
variation in the relative amplitudes of the various modes is probably due to
the change in the impedance which the cavity and irises present to the wave
guide system which changes with frequency. Figure 8.8 shows the effects of a
single one-inch thick slab of styrofoam located symmetrically in the center
of the cavity (al! of the slabs used for loading extend the full width of the
cavity). There was only a slight shifting of the modes, perhaps 30 MHz.
Again, the position occupied (in the empty cavity) by the 127, 135, and 143
modes split into two separate modes.

More could be determined about the effects of the slab by using a high
permittivity dielectric [Rexolite 1422 (manufactured by Emerson & Cumming,
Inc., Canton, Massachusetts) €, = 2.53, and comparing the spectrums for
different thicknesses. The spectrum of the cavity loaded with an one-eighth-
inch slab of Rexolite can be seen in Figure 8.9 and correspondingly, an one-
fourth-inch slab in Figure 8.10. It should be expected that modes without
any x-variation, that is 107,
dielectric behaves as a surface wave guide with the fields decaying
exponentially at right angles to the surface.

There exists a transition from excitation of all cavity modes to a
gradual decrease in amplitude resulting from reduced coupling, except for
the 107, 108, and 109 modes. With a sufficiently thick dielectric slab in
the center to cause the fields to decay to essentially zero at the top and
bottom surfaces, the cavity becomes a shorted section of H-guide.

The low amplitude modes can be damped out quite effectively by
placing absorbing material on the top and bottom surfaces of the cavity
(Figure 8.11). The H-guide modes are not disturbed since they have

essentially zero field intensity on the top and bottom surfaces.
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a one-

inch strip of inexpensive dielectric described in text
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The effect of the dielectric slab in the center of the cavity carrying
surface waves (H-guide) can be seen more distinctly by comparing Figures 8.12
and 8.13. Figure 8.12 shows the cavity with the absorbing material on the top
and bottom surfaces without the dielectric in the center. No field is excited
in the cavity. A dielectric slab inserted in the center of the cavity causes
the H-guide modes to be excited. They are modified 107, 108, and 109 modes,
which can be seen in Figure 8.13.

The actual identification of the H-guide modes was made on the basis of
Figure 8.9. The frequencies of 127, 145, and 146 modes were calculated
(Table 8.2) and identified in Figure 8.9; comparison with Figure 8.6 shows

that the remaining large magnitude modes must be the modified 107, 108, and

109.

8.9 Q-Value Measurement Results

Results of the measurements described in Section 8.7 are shown in Figure
8.1k for the empty cavity and for the 107 mode. The extraneous "spikes" in
the calibration curve were caused by the technique used. At first, the
frequency meter is adjusted to 9.498 GHz, then the sweeping circuit energized,
and a part of the curve for this frequency setting is plotted. After the pen
of the plot has passed the peak of the 9.498 GHz setting, frequency meter
is quickly moved to 9.500 GHz causing a "spike." The recorder then plots a
section of the frequency curve for the new setting until the frequency meter
is moved to the next frequency setting. In this way, series of resonance
curves are obtained as references for the frequency scale.

The Q-measurements were made with one-quarter-inch irises. The Q
would be higher for smaller diameters since the coupling losses would be

reduced. This size was decided upon since the insertion loss becomes
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objectionable for small diameters with the present power capability (10 mw.)
and available detection system (crystals). The results of the measurements
can be seen in Table 8.3. The 107, 108, and 109 modes were examined since
they ultimately become the only modes present under all types of loading
considered. As was expected, the loaded Q-value decreases with increasing

dielectric loading. No specific conclusions can be made shout the Q-value of

the different modes for a fixed type of loading since the impedance of the

irises changes with frequency and the unloaded Q would have to be isolated

from the various loading factors; that is,
1 1
-—:——+—,
9@ % S
where the subscripts specify loaded, unloaded, and coupling (irises)

respectively. To determine the unloaded Q, the frequency dependent coupling

Q must be separated from the loaded Q.

Tegble 8.3 Loaded Q-values of the test cavity

TE
Cavity Loading Mode Loaded Q-value
Empty 107 16000
108 16080
109 -
Dielectric 107 11000
(Styrofoam e, = 1.03) 108 11160
Completely filled 109 9065
Dielectric 107 3410
1/4" Rexolite 1422 strip 108 3435
(ep = 2.53) centered 109 3200
in cavity parallel to top
and bottom surfaces
Dielectric
as above except additional 1/2" 107 3015
thick absorbing material on top 108 2620

and bottom surfaces (Eccosorb LS) 109 2220
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8.10 Theoretical Technique for Unloaded Q-Value Measurement

A transmission cavity can be considered in terms of lumped circuit
parameters, Montgomery (1947); an equivalent circuit for the cavity is shown
in Figure 8.15. 1In general, the input and output coupling would be different,
but here the symmetric case is considered since the input and output irises
are identical. The irises will thus be represented by ideal transformers with
turn ratios n:l. If the equivalent circuits of the transformers are utilized
Figure 8.15 becomes Figure 8.16.

The loaded Q, QI’ for the circuit in Figure 8.16 is given by

w L
U

“Lo RS m® (R +Ry) (8.5)

where W, is the particular resonant frequency under consideration. Equation

(8.5) can be written in terms of the unloaded Q, Qu, as

Q, - o1 + T(r+r )] . (8.6)

If the system is matched in both directions from the cavity (RG = RL),

which can be accomplished by making the voltage standing wave ratio, VSWR,

small in both directions, then (8.6) becomes

Qu = Q,L(l-l-ea) ) (8.7)
where the coupling parameter, 8, has been defined as
2
n®z
0
B = R (8'8)

and



149

3,

<

1:n n:1

Figure 8.15 Equivalent circuit of transmission cavity with coupling
irises shown as ideal transformers



n®R R L C n°R
g L
AN AN N }}7 AN
nV

Figure 8.16 Alternative form for the circuit shown in
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The current for the loop in Figure 8.16 can be written in the form

- nVv
1= m b} (89)
. 0
R[(1#28) + § @ (7= - =]
® ey )
since
1
wg =15 - (8.10)

The real power delivered to the load impedance is given by

2 2
Pro= |I]° o® 2, (8.11)
or in terms of B as
2
P = |I]® BR . (8.12)
Now, substituting from (8.9) into (8.12) the power becomes
2 a2
P = V B . (8'13)
L W wO 2
2 2 ® 0
Z[ (1+28) +Qu(wo - )?]

If the generator were to see a matched load, as in Figure 8.17, the power

delivered to the load would be given by

p - ng_o . (8.14)

A transmission function, T(w), defined as PL/P’ can be found from

(8.13) and (8.14), that is

T(w) = Le” , (8.15)

W “o
[(1+28)% + Qi(% - 371

which becomes at resonance
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T(wg) = —b

e (8.16)

or for § in terms of T(wo) as

VTEwOi

= . 8.
P 2f1 - JT(wo)] (817

T(w,) is a measurable quantity. Upon measuring it, (8.17) yields B,

and then (8.7) specifies Qu after Q. is measured.

8.11 Experimental Technique for Q-Value Measurements

The circuit used for loaded Q-value and insertion loss measurements is
shown in Figure 8.18.

The VSWR, as seen in both directions from the cavity must have a low
value 1f the previously described method is to be employed. This can be
accomplished by inserting attenuation in the wave guide. If ten dB of
attenuation is inserted by both attenuator 1 and attenuator 2, the VSWR in
both directions was found to be less than 1.02:1.

The system must now be balanced. With the cavity removed from the system
and attenuator 1 set to approximately ten dB, the signal is measured at B;
the switch now is turned to the other arm and attenuator 2 is adjusted for
the same signal amplitude at A, thus balancing the system.

A six-inch section of wave guide is inserted in the position formerly
occupied by the cavity. The difference between the signals at A and B is
one-quarter dB, indicating the loss for two coupling flanges and a six-inch
section of wave guide, which represents the coupling loss from the wave

guide to the irises.
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Figure 8.18 Circuit used for INSERTION LOSS and Q-value measurement
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Insertion loss measurements may now be performed. An oscilloscope is
connected to B, the frequency adjusted to the resonant frequency of the mode
to be measured, attenuator 3 adjusted to a convenient level, and the signal
level recorded. The switch is now turned to the left arm and attenuator 3
adjusted until the signal level is the same as that previously measured. The
difference between the final and initial settings of attenuator 3 yields the
insertion loss. The results of the mcasurcments appear in Table 8.4,

The loaded Q-value, QL’ is measured as follows. Terminal A is connected
to the y-axis input of the X-Y recorder. Sweeping will be performed manually
at the generator. The resonant frequency, fO’ of the particular mode under
consideration is determined and the generator adjusted to this frequency.

A minus three-dB level is now established. A line is drawn on the paper
in the plotter parallel to the x-axis and near the vertical center of the
sheet. Attenuator 3 is adjusted such that the pen coincides with this line

at the resonant frequency. Attenuator 3 is now adjusted to a value three

an 1 - -3 o

- N mccmmen 2 Taan A tlhas mmmma s 2T mrr s Ala maanan 4+~
clLore alld g g=-Curlr've 418 afawlil OIl

less tThan 1€ BEeneravox
to sweep several MHz about the resonant frequency. The frequencies, fl and
fz’ at which the Q-curve crosses the line previously drawn are the half power

frequencies. The loaded Q-value is now given by

Q’L =5 - (8.18)

The loaded Q-values for the modes considered appear in Table 8.k.

The coupling parameter, B, can be calculated from (8.17), thus yielding
Q, from (8.7).

The Q-values for the 1@107 mode in the empty cavity provides a validity-

check on the method. Analytically, this was calculated to be 22,700 and
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measured as 22,000. This result is within the experimental error of the
measurement (5%), which was obtained by repeating identical measurements and
noting the differences incurred.

The H-guide structure which was inserted into the cavity was supported
by a rectangular piece of dielectric identical in size to the inside dimensions
of the cavity. Consequently, dielectric losses are introduced and must be

-

considered. nder earlier conditions, for a QL of 16,000, a value of 11,000
was measured when the cavity was filled with dielectric of the same type as
used for supporting the H-guide structure. It would therefore seem reasonable
to multiply the measured Q-values for the H-guide by a factor 16/11 to
determine the Q-value for the H-guide structure above.

The unloaded Q-value for the H-guide, Qu, now contains losses due to
the top and bottom surfaces as well as the end plates. If the losses due
to the top and bottom surfaces are neglected, since the field decays
exponentially normal to the corrugations, it should have a small value of
amplitude at these surfaces. The losses due Lo lhe end plates can be

accounted for in terms of a Q-value, QE. The H-guide Q, QH’ is now given by

1 1 1
1 _ 1 (8.19)
QH Qu QE

QE was calculated to be 143,000. The Q-value, QH’ must now be relsgted to

attenuation, «o.

8.12 A Relationship Eetween Attenuation and Q-Value

A cavity may be considered as a shorted section of the wave guide, whose

attenuation is given by

a =55, (8.20)
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where
S 2 ) & 70 e N
PL=—2—§C |2, |° as (8.21)
and
P = %-Re [ (zxE®) . as |, (8.22)
2 vg v == =
c

C being the contour enclosing the cross-sectional ares Sc' The Q-value for

the cavity, excluding the losses on the end plates, is

W.
q - —E(nax) (8.23)

= Pi s
where
- £ . ¥
Mo(max) =2 { J, JE - E* (8.24)
and
Rs
Fp = Z?'I . I !Htlz ds , (8.25)

S' being the internal surface area, excluding the end plates, and V the
volume enclosed by the cavity.
tjkzz
For the case of TE waves propagating as e , the tangential field

components are related as (Collin, 1960)

B | = 205 |H] (8.26)
where
kO
ZTE =T e (8.27)
Z

and T is the intrinsic impedance of free space, defined by
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n =\/“‘OTC; . (8.28)

Applying this restriction to (8.22), (8.25) and (8.25), they become

P = (8.29)
= 2y’
v Med
E(max) 2 (8.30)
and
Pl = Pd , (8.31)

where d is the length of the cavity in the direction of propagation (z), and

for convenience M has been defined as

M= Is |E|® as . (8.32)
¢/

The product of o and Q may now be formed, that is

WW.., -

_E{(max) L
@ = —gp (8.33)

substituting from (8.29) through (8.31) yields

wMedPL
J

) 2MPLd

QZTE

oQ =

and simplifying yields

wez
A = ZTE ) (8.34)

Using the definition for ZTE simplifys further, and the product becomes

-

2
0
2k’
z

oQ = (8.35)
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here Q is the Q-value of the cavity including the losses due to any inserted

ructure, but excluding the losses due to the end plates.

*

The attenuation for the H-guide structure may be obtained from (8.19)

i S MO

d (8.35). The z-propagation constant was calculated by the computer program

P

eviously written. Attenuation values appear in Table 8.k,

YR W ﬁdgz

b
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9. CONCLUSION

numerically by a digital computer. Comparisons were made at a frequency
P, the normalized x-decay constant, in
all cases; that is, the same field confinement. A shorted section corrugated

H-guide was constructed and the attenuation measured.

9.2 Findings

The analytical solution for the dielectric H-guide yielded the
diseppearance of the longitudinal wall current as expected; however, for
the corrugated H-guide, the only field component disappesring was the
transverse electric. This could be in fact true or could be due to the
particular approximation made in the solution. It was assumed that the
fundamental mode (no longitudinal variation) was dominant within the
corrugations, and all other modes could be neglected. The approximation
is not entirely without merit since good agreement was found with measurements.

The attenuation for the corrugated H-guide was found to be less than
-half that of the dielectric H-guide at a frequency of 10 GHz and the same
value of x-decay constant. By using laminations rather than a solid slab
for the dielectric H-guide, the attenuation could be decreased by a factor

of approximately five, half that of the corrugated H-guide.
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