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I. INTROI_JCT!ON

A remote probing method, called the cross-beam technique, has

been under development by the Marshall Space Flight Center and the IIT

Research Institute. The cross-beam method, a new test arrangement for the

remote sensing of fluid flow phenomena, employs the triangulation of two

collimated light beams for local studies of a preselected region. This

region is near the point of intersection of the two beams, or near the

line of minimum separation between nearly intersecting beams.

The fluctuations of radiative power received at the two detectors

are multiplied and averaged. The resulting "two-beam-product mean vahe"

is then used to determine characteristics of the fluid flow which caused,

or are related to, the fluctuations in optical properties along the two

beams. These characteristics include convection speed, eddy lifetime,

scale of turbulence, power spectrum of turbulence, and three-dimensional

wave numbers. Further discussion of the basic principles is given by,

for example, Fisher and Krause._

The basic tenets of the cross-beam technique have been confirmed

by a group of experiments. One series of experiments, carried out by

Fisher et al.2-__ involved the measurement of convection speed in flows

of known direction. Both subsonic and supersonic turbulent jets were

observed in the laboratory, using artificial light sources. The flow con-

tained traces, either injected purposely or present naturally (e.g., con-

densed water vapor). These experiments were highly successful. Independent

work by WolffT_/ utilized cross-beam apparatus in an atmospheric applica-

tion. He determined the altitude of the 5577 A nightglow, a naturally

occurring radiation of low intensity located at about I00 kilometers.

This work involved the determination of the altitude of beam crossing at

which a maximum correlation, or two-beam-product mean value, was obtained --

a simpler application than is generally considered under the classification

of cross-beam methods. Nevertheless, his efforts were successful, indi-

cating the distinct possibility of using cross-beam techniques in the

atmosphere.

It became obvious that the cross-beam technique was potentially a

powerful tool for making remote measurements in the atmosphere, as well as in

the laboratory. However, many basic differences exist in these two types of

applications. For example, the use of natural, extended light sources

vs. artifically generated optical beams; unknown flow properties vs. care-

fully produced, known flows; and potentially small correlated power fluctua-
11 - I_

tions in a nolsy background vs. large fluctuations, enhanced by tracers,

occurring over a well defined portion of the beam path -- all of these



pose unansweredquestions. In addition, one must consider the possibility
of optical fluctuations at one point in the atmospherebeing transmitte_
relatively unchangedto another point somedistance awayunder varying
meteorological conditions (in other words,being "visible" from afar).

A first feasibility study of atmospheric applications of the
cross-beam method was carried out by Krause et al.8-/ The present docu-
ment reports the findings of a more in-depth study to aid in determining
the value of the cross-beam method for atmospheric measurements. This
study was primarily analytical with support by expert opinions. Guidance
was obtained from experimental programs to measurenear-ground-level winds.
The experimental programs were being conducted concurrently with this study
by NASAMarshall Space Flight Center, IIT Research Institute, and the
Colorado State University, Department of Atmospheric Science.

The current study involved the separate consideration of many
features relating to potential applications of the cross-beam system, such
as meteorological problems and environment% optical physics, detectors,
electromagnetic power fluctuations_ etc. Then, these individual considera-
tion were combined to yield a set of tables of potential applications of
the system in the atmospheric environment. Each potential application is
given a relative ranking as to the relative usefulness and value of the
cross-beam technique.

Part II of this report presents, briefly, the main findings of
the study. Part III contains the rankings and the rationale behind the
ranking system. The reader is cautioned, however, that full understanding
of these findings and rankings will probably require study of the remainder
of the report. This is especially true if the reader is not familiar with
the cross-beam concept and the work of the past several years on this
subject.

Parts IV through XI contain in somedetail the principal findings
of the study. This material is backed up by the seven Appendices. Part
XII contains a critical discussion of the work reported here, together
with the authors'opinions concerning the most promising avenues of future
research and development of the cross-beam system.

Following the main body of the report, and preceding the Appen-
dices, are two bibliographies. The first, the cited references, are those
reports that are explicitly mentioned in either the main body or in the
Appendices. Following that is a list of supplementary references which
were referred to by the authors and which had someinfluence on the course
of the study and/or the conclusions developed.
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" II. SUMMARY

The goal of this project was to determine the potential value
of the cross-beam technique in resolving meteorological and atmospheric
problems. To attain this goal, several areas of study were undertaken.
The separate studies were followed by the evaluation of the technique in
relation to the chosen problem areas. The evaluation was to be supported
as far as possible by authoritative opinion, and experimental and analytical
results.

The major efforts in this evaluation were:

1. The identification of meteorological and atmospheric problem
areas whose resolutions have scientific and/or operational importance.

2. An appraisal of the value of the cross-beam technique in
resolving the problems, under ideal conditions.

3. An appraisal of the data requirements.

A. An appraisal of the cross-beam technique under nonideal
conditions.

5. An appraisal of the ability to reach problem regions in the
atmosphere through electromagnetic radiation which arises naturally in
extended sources.

6. A codification of all these considerations in a ranking
system.

In the area of problem identification it was found that there
is a dearth of useful quantitative information on the atmosphere. Further,
this information is in manycases prerequisite to the resolution of prob-
lems with great scientific and operational value. The problems cover all
scales from the general circulation to synoptic to microscopic. In general,
information is required about the transport and diffusion of energy and
moisture. The measurementsof convection speed and turbulence character-
istics, ideally available from the cross-beam technique, would have great
value especially if they could be combinedwith temperature and moisture
measurements. Reducedbut appreciable value could be derived from the
ideal cross-beam measurementsby themselves. Even the ability to measure
remotely one componentof convection velocity would in somecases be very
valuable.



In a majority of operational applications there is a requirement
for processed results shortly after (few seconds to minutes) the data are
obtained. A somewhatlonger time for processing would be available for
someweather prediction applications. In addition, an "all weather" capa-
bility is required for manyoperational atmospheric measurementsystems.

There are two considerations in the amount of data required.
First, it is obvious that the quantity will dependon the geographical
size of the problem, the number of grid points, the types of information
required, and the temporal duration of the problem. There is also the
question, how muchdata must be obtained at one point (or region) to define
the flow properties to a suitable degree of confidence?

The amount of data (measuredby the length in time of a data
record) depends to a great extent on the bandwidth of the analyzed signals
which, in turn, is limited by detector noise considerations. Current
atmospheric cross-beam experiments indicate that at least i0 minutes of
data are required to estimate the magnitude of the peak correlation within
SO_with 9S_ confidence. This is the least demandingmeasurement. Measure-
ments of more direct utility such as the wind vector componentwill re-
quire larger (probably significantly larger) quantities of data.

An analysis was performed for the simple, stationary (nonsweep-
ing), two beamsystem in nonideal environments. It was found that the
values of someflow features could be distorted by the nonideal situations.
However, in all cases one componentof velocity was correctly indicated.
Other flow quantities obtainable in order of decreasing reliability are:
the scale of turbulence, the power spectrum, and the eddy lifetime. The
sameanalysis indicated somepossibility of measuring a second component
of velocity under the nonideal conditions.

An analysis was madeof the flow of electromagnetic energy in
a beamthrough the atmosphere. The analysis included accounts of scat-
tering in and out of the beams, and absorption and emission within the
beams. The analysis was applied for a variety of weather conditions, a
variety of energy sources, and in three spectral regions. Twomajor
restrictions were found.

i. A cloud will block access* to information from the far side.
(The c_oud becomesa pseudo plane of diffuse emission or reflectance.)

* Access refers to the capability of detection, at one location, of optical
fluctuations occurring at another location. In a practical sense access
dependsnot only on the atmosphere at the region of interest but also
along the entire sight path. Wh_le there maybe someeffect by the op-
tics of the detection system this is not the primary consideration.



2. The present, two-beam technique is defeated when the beams
'_see" successive regions of a variably lighted or variably emissive back-
ground such as a cloud surface or the earth's surface.

Within the (current) bounds above, additional results were:

i. Access to the lower atmosphere (up to 3 to 15 kilometers)
is essentially the sameas near-ground access.

2. Access to the lower atmospheremaybe madefrom the ground,
aircraft or orbit-based equipment. In general those systems which look
at the earth have less desirable signals as a result of the back light
energy input. (This is a separate consideration from the currently dis-
barring effect associated with variable back lighting.)

3. Upward looking systems in aircraft can extend the accessible

region to slightly higher altitudes.

4. Weather conditions and primary light sources can combine

favorably or unfavorably so that the required power variations change by

at least two orders of magnitude.

With less numerical substantiation it appears that:

5. Access to the upper atmosphere may be possible using air-

glow as an emitting tracer.

6. Access to the upper atmosphere may be achieved from orbit

using spectral regions of limited path length (i.e., high extinction

coefficients).

The final effort of the evaluation was the codification of the

previous considerations in a ranking system. Separate ranking tables are

presented for ground-based systems, aircraft-based systems, and orbit-based

systems. The scientific and operational applications are also separately

ranked. The rankings in one table cannot be compared numerically with

those in another table.

The potential applications are evaluated with regard to nine

categories which are:

i. Value of applications,

2. Value of cross-beam (ideal),

5



5. Value of cross-beam with nonideal environments,

A. Accessibility of area to optical beam(ideal),

5. Accessibility of area to optical beamconsidering weather
associated with potential application,

6. Relative ease in locating problem region,

7. Relative statistical stationarity of situation,

8. Time allowed for data reduction, and

9. Volume of data required.

Under Category i, value of application, the authors have
attempted to use the proportion of the population benefited as a weight
factor. Other approaches maybe equally appropriate.

It should also be noted that nowhere is the capability of the
cross-beam technique set equal to zero. The present system is marginal in

useful signal attained and is defeated by varying backgrounds. The first

problem may be due partly to the short development period. The second

problem may be amenable to resolution by additional beams or beam-spectral

combinations. The moving-beam systems (aircraft- and orbit-based) also are

in a less well established state. Consequently the rankings must be viewed

as applicable to different time frames of development. The current ex-

perimental cross-beam system is restricted almost exclusively to the ground-

based system looking up.

The rankings are shown in the tables in Section III of the report.

III. RANKINGS OF POTENTIAL APPLICATIONS

The rankings are made separately for ground-based, aircraft-based

and orbit-based systems. Scientific and operational applications are also

considered separately.

Each potential application is given a numerical weight in each

of several categories. The product of the weights then forms a measure

of the predicted usefulness and value of the cross-beam technique for the

particular application.

6



The weight in each category varies from 0 to i. A weight of i
is always given to the potentially best application for the particular
category, with the other applications receiving somefraction of 1. The
value, l, does not imply certainty of success for the category, however.
For example, if application "B" rates twice as high as application "A", as
regards category "X", then "B" would receive a weight of 1.0 and "A" would
receive a weight of 0.5. The weights are, in manycases, subjective in
the sense that opinions must often be used. These opinions, where possible,
are based on analytical or definitive studies presented in this report or
its references.

The description of each category is given below.

Category i - Value of Application

a. Operational: An estimate of the relative value to society

of the operational application. This value is independent of the means,

cost, etc., of obtaining the data needed for the application.

b. Scientific: An estimate of the relative value to science of

obtaining the data in question. This value is also independent of the

means, cost, etc., of obtaining the data. Consideration of ultimate use-

fulness of scientific findings to society is included.

The authors have included the fraction of society benefited in

the weight factor for operational and scientific applications. Other

approaches may be equally appropriate. Furthermore, subjective opinion

is recognized as playing a part in ranking this category. This opinion is

undoubtedly influenced by the particular scientists who contributed, in

greater or lesser degree, to the present program.

Category 2 - Value of Cross-Beam

An estimate of the value of the cross-beam technique in the

application. Here it is assumed that the technique is fully capable of

providing the information (wind speed, scale of turbulence, eddy lifetime,

power spectrum) that the idealized theory indicates. The value, therefore,

considers need of other additional information, availability of simpler

techniques, etc.



Category 3 - Nonideal Environments

The probability of the cross-beam technique being able to obtain

the information indicated by Category 2 in the presence of nonideal local

environments. Only the considerations of Appendix IV are involved here.

Other factors are given in subsequent categories.

Category 4 - Ideal Accessibility of Area to Optical Beam

The effect on a generated signal due to intervening atmosphere

and the atmosphere beyond the region of interest is of concern here. In

this category, ideal (clear air) conditions are assumed. Factors considered

are the amount and properties of the atmosphere to be traversed in reaching

the region of interest and the effect on received power of a beam which

broadens with distance.

Category S - Accessibility Degradation Due to Normal Meteorological

Conditions

The weight given in this category multiplies that of Category

to give a combined effect of accessibility. Factors to be considered in-

clude the degree of the effect of adverse conditions and the need to obtain

data under the adverse conditions.

Category 6 - Relative Ease in Locatin_ Problem Re_on

Some applications involve phenomena which are localized and must

be located before studying. Included in this weight is the ease of moving

the beams to the site, or alternatively, of waiting for the phenomena to

come within range. This category does not apply to some applications. In

those cases a weight of 1.0 is sssicned.

Catecory 7 - Relative Stationarity of Situation

A reasonable period of data collection is necessary to obtain

statistically significant correlations. The longer a given situation

remains statistically stationary (or, the longer data record in time that

can be obtained), the larger weight that is given. Signal intensity is

also a factor here.



Category 8 - Time Available for Data Reduction_ i.e._ Responsiveness

This factor affects only the operational applications. A small

weight indicates relatively quick data processing is required. Cost of

such data processing is not considered here. Responsiveness could be a

significant factor for some applications.

Categor_ 9 - Volume of Data Required

Associated with data volume is cost of data processing, although

all data need not be processed. The weight considers both the volume and

the costs. The weights are not linearly relatedto the volume of data,

but more nearly to the square root of the volume. This was done to prevent

the weights in Category 9 from overriding all other categories.

Attention is directed to the fact that the categories do not

include an item which says unequivocally that the cross-beam technique wi]]

or will not work in the ranked application. Even with the added informa-

tion provided by the present project there is no reasonable basis for making

such positive distinctions. It is clear that the current system capabilities

are very limited. For instance, the concurrent experimental program has

shown that the correlated signal fluctuations are at best marginal. The

analyses performed here confirm that variably lighted backgrounds will de-

feat the present system. There are, however, no analyses or experimental

results which indicate that the signal levels cannot be improved or that

the variably lighted background is fundamentally incapable of resolution.

Consequently, in those categories which involve the probability of success-

ful measurements the rankings are based on such factors as can be evaluated.

These factors are the reliability of measurements and the electromagnetic

access to the atmospheric region involved.

As a consequence of the situation described above the rankings

presented here apply to the current state of the art and to projected

future states of this art. Some idea of current and future states can be

summarized as follows:

i. The current state shows a marginal capability to measure one

wind component near ground level using a ground-based system.

2. Short range projection for the state of the art should

show improved confidence levels in wind component measurements and the

inclusion of turbulence-descriptive quantities.

3. Short to medium projection for the state of the art would

extend the capabilities to a moving system.



4. The resolution of the variably lighted background is most
likely a relatively long range goal.

These time frames should be considered when interpreting the
tabular rankings.

Tables I to VI give the rankings of potential applications for the
current and projected cross-beam systems. Due to the "normalization" of
each category within each of the six types of applications (ground-, air-
or orbit-based; scientific or operational) it is not possible to compare

one table with another. Even if the normalization is modified, it would

still be necessary to assign a relative worth (weight) to operational vs.

scientific applications and a weight (cost?) to the orbit-based vs. air-

craft-based or ground-based systems. The authors have not done this.
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IV. ATMOSPHERIC AND METEOROLOGICAL PROBL_4 AREAS

A search was made to locate problems whose resolution would have

significant scientific or operational value. Further, an attempt was made

to determine the value of the cross-beammeasurements in resolving these

problems. Candidate problem areas were defined by a group of authoritative

meteorologists at a small symposium held for this purpose. In addition,

questionnaires were sent to a broad spectrum of meteorologists and sci-

entists in universities, government, and industry.

Two salient facts emerged from the results of this search.

(i) There is a dearth of useful quantitative information about the atmo-

sphere. (2) The acquisition of atmospheric data is prerequisite to numerous

scientific and operational activities which have great potential value.

The most valuable potentials of the cross-beam appeared to be

the abilities to measure remotely the wind or wind components, and the

characteristics of turbulence. These measurements have value in a variety

of applications as shown in Table VII.

The list in Table VII is not exhaustive for terrestrial meteo-

rology applications. In addition there are other potential applications

which, for one or more reasons, are outside this project scope. Among

these are extra-terrestrial atmosphere studies, underwater applications

and probes of cloud interiors. There is great meteorological interest

in the cloud interior both for the winds and the size and motion of pre-

cipitates. A microwave adaption of the cross-beam technique with artificial

sources is conceivable. The use of more than one wavelength might permit

sizing of precipitates and, by their motions, the driving winds might be

inferred.
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V. DETECTORS AND INTEGRATION TIME

In analyzing the usefulness of an optical detector, three sources

of noise must be considered. One source is detector signal shot noise,

a second is detector dark noise. The first source is signal-dependent while

the second is purely a property of the detector. The third noise source

is the atmosphere itself. Part (in fact, most) of the intensity fluctua-

tions arriving at the detector are uncorrelated and must be considered as

noise.

The atmospheric noise cannot be eliminated, although it can be

minimized by proper selection of optical frequency, detector altitude, etc.

It is therefore highly desirable_ if not mandatory, that the two detector-

related noise sources be small compared to the atmospheric noise sources.

Based on conservative estimates of atmospheric and optical parameters, and

detector properties available from the open literature, it appears that in

the visible range, the detector-related noise sources can be neglected. In

the infrared range, the situation is only marginal with the dark noise

being nearly as large as the atmospheric noise. Future detector develop-

ments may relax this marginal situation, however.

The detector considerations are based on the assumption that no

time restriction is placed on the data collection effort. However, atmo-

spheric phenomena are not stationary, so that only a finite amount of time

is available for the data collection. The time available depends on the

phenomena studied, and typically will range from a few minutes to a few

hours.

The effect of a finite integration time on the accuracy of cross-

correlation coefficients is examined. The results of these preliminary

estimates indicate that the magnitude of the peak correlation can be cal-

culated with acceptable accuracy in the current ground-based studies of

ground winds.* However, the accuracy deteriorated rapidly with increasing

time lags measured from the peak. An optimum filter bandwidth exists which

will minimize the error. This bandwidth depends on time lag and is given

by the expression:

i
B -

2_m

* The location, in time, of this peak is, however, much more difficult

and is not yet resolved in the current studies.
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which leads to the relative error

f--'T---.

P • = 51.4 4/_/t
mln

with 95% confidence, t is the integration time.

The accuracy, for fixed bandwidth, is strongly dependent on time

lag, being sharply peaked at the time lag corresponding to the peak in the

correlation curve. It maybe that this phenomenon will be useful in locating

the peak. That is, the variance of the correlation estimate may be a

stronger indicator of the peak than the correlation itself.

Further theoretical work should be done to develop better under-

standing and more realistic estimates of integration time requirements.

Factors to be considered include the actual atmospheric power spectrum and

the true filter transfer function.

VI. EFFECTS OF NONIDEAL ENVIRONMENTS ON

CROSS-BEAM C ORRELATIONS

The basic theory of cross-beam correlation techniques is based

on simplifying assumptions leading to what might be considered an ideal

environment. This portion of the overall study on the feasibility of

applying cross-beam techniques to atmospheric problems is concerned with

studying several types of departures from ideality which are to be expected

in the atmosphere.

The approach is based on _thematical simulation. That is, a

mathematical model containing reasonable but simple approximations to the

expected behavior of the extinction coefficient is postulated, and then

applied to a variety of physical situations. A combination of numerical

integrations performed on a digital computer and analytical proofs de-

veloped where possible is utilized. The details of the approach and the

results obtained are given in Appendix IV. The results are summarized here.

The mathematical model includes the effects of axial velocities

(along the beam normal) and cross flow (perpendicular to the beam normal).

The intensity of the extinction coefficient may vary (inhomogeneous turbu-

lence) and the convection speed need not be uniform. The mathematical

model takes the form
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Y2 ._x2 {
G(SZ,T) = < I I > < 12 > _ Jx k2(x)

i i

,[1/2
k2(y,A )j

-'r/T -
R(x,y, az,T) = e e

(x+uT)
+ (y_v )2 + }

where G is the covariance of the signal intensities from the two beams,

the first of which is aligned along the x-axis and the second alon_ the

y-axis; Az is the distance of minimum separation between the two beams

(measured along the beam normal); 7 is the time by which the signal from

the y-beam is delayed relative to the x-beam; < I I > and < 12 > are the

time-averaged signal intensities from the two beams; k the extinction

coefficient; T the eddy lifetime; L the integral scale of turbulence; w

the component of convection along the common beam normal; and u and v

the components of the cross flow. The expression is written such that the

beams would intersect (if Az = O) at x : y = 0 The limits on the

integrals represent, then, the position of the detectors and the opposite

ends of the beams (the limit of the atmosphere, say). The above expression

is written for the case where the y-beam is "downstream" of the x-beam so

that T is always taken as positive. Other arrangements are readily

obtained.

The nonideal situations are defined by including the following

possibilities:

a. Isolated bands of turbulence as opposed to turbulence of

uniform intensity throughout space.

b. Nonzero cross flow velocities.

c. Nonconstant wind speed in direction of beam normal. A

uniform shear, w' , is postulated where w is horizontal and the derivative

is with respect to y or, to within a multiplicative constant,* with

respect to the vertical.

d. A cross flow velocity which varies in the vertical direction,

in the same way as does w in case c above.

* The secant of the inclination of the y-axis from the vertical.

2_



The results of the numerical studies are given in Table VIII.
These are stated in terms of the effect of the nonideal situation on the
various parameters which are measurable in an ideal environment with the
cross-beam correlation technique. In each case where the answer no appears,
analytical proofs or demonstrations based on the mathematical form of R
given above verified that the parameter in question is, indeed, independent
of the variable in that particular situation.

The following conclusions regarding estimates of turbulent flow
parameters obtained from cross-beam correlations maybe drawn from this
analysis:

i. The axial componentof wind speed at the altitude of the
beamnormal is correctly predicted, even though the turbulence and wind
speeds are not uniform in space.

2. The scale of turbulence is correctly determined in the pres-
ence of cross flow or nonuniform wind speeds, but will be incorrectly
determined in the presence of nonuniform turbulence of unknown distribution.

3. Generally, the eddy lifetime and power spectrum of turbulence
cannot be obtained unless ideal, uniform turbulence and wind speeds prevail.

4. Under special circumstances_ it appears possible to estimate
cross flow velocities or shears -- an achievement not possible under uniform
conditions.

The above conclusions are based on the empirical form of R
chosen for the analysis, and may need to be modified for other forms not
studied. However, the general trends are expected to remain true in any
case. That is, the estimstes of turbulent flow parameters may be ranked
in order of expected reliability in the following order, most reliable
first:

i. Axial componentof wind speed,

2. Scsle of turbulence,

3. Power spect_am,

4. Eddy lifetime, and

5. Cross flow velocity componentsand/or shears.
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. VII. NATURAL ENERGY SOURCES AND OPTICAL PHYSICS

The cross-beam applications considered here are to make use of

natural, extended sources of electromagnetic radiation. The most powerful

source is solar radiation which becomes extended in skylight through scat-

tering. The second most powerful source is the thermal radiation of the

earth and atmospheric constituents. A considerably weaker source is air-

glow, an emission which takes place nonuniformly in the upper atmosphere.

About half of the solar power lies in the visible range, 0.A to

0.7 _. This radiation is scattered by molecules and particles (aerosols)

in the atmosphere. On the lighted side of the earth skylight is the dominant

extended source. And since the atmosphere is essentially transparent over

this wide spectral band it is possible to intercept a large amount of energy

which has been affected in a similar but not exactly equal fashion in

traversing the atmosphere.

Solar radiation extends into the ultraviolet and the infrared.

The atmosphere is opaque to many ultraviolet wavelengths due to absorption

by ozone (0.22 to 0.29 _), oxygen (< 0.25 _), and water vapor (especially

0.16 to 0.18 _). However, in the upper atmosphere some ultraviolet wave-

lengths may be suitable for use with scattered solar radiation. The solar

power within the ultraviolet domain will be much less than in the visible

range so that a relatively large collector would be required.

The atmosphere is also variably opaque over a large part of the

infrared spectrum where solar power is significant.

At wavelengths greater than 3 _ the thermal radiation from the

earth and atmosphere become predominant over solar radiation. In the

"window" near 9.5 _ the solar radiation is insignificant. The total power

available in an infrared band is somewhat restricted by the bandwidths.

However, at 9.5 _ a bandwidth of 2 _ would be reasonable. On this basis

the earth as a background source supplies power of about one order of

magnitude lower than the visible skylight observed at sea level. Con-

sequently, larger collector elements would be required for a cross-beam

system designed for the infrared.* Power is, however, added to the beam

by atmospheric emissions as well as lost by absorption.

Airglow is an emission from excited elements of the upper atmo-

sphere. The emissions are thought to come from relatively thick layers,

* Power collection should be tailored in the system to minimize the effects

of detector and amplifier noise while not overdriving components into

nonlinear response.
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on the order of 25 kilometers, generally located between 50 kilometers _nd
120 kilometers altitude. The emissions extend from the near ultraviolet
through the visible and into the near infrared range. There is a faint
background intensity, at least in the visible range; however, most of the
energy is emitted in lines or narrow bands characteristic of the emitting
substance and the excited energy state.* The power in these emissions is
low comparedto either skylight in the visible range or thermal radiations
in the infrared. As a background source the airglow power is about six to
eight orders of magnitude lower than skylight at the ground. As a tracer
emission where measurementsare sought within the emission altitudes the
airglow maybe more attractive. Here the comparison should be madeon
power emitted per unit volume and the airglow can be comparedto the infrared
emissions in the 9.5 _ region, due primarily to ozone and water vapor. The
airglow power is downabout four orders of magnitude from the ozone emission.

In summarizing natural energy sources, then, it appears that
scattered sunlight and thermal emission from earth and atmosphere are the
most desirable and dependable sources. Airglow maybe useful; however,
very large collectors would be needed together with minimumnoise detectors
and amplifiers. It is also true that potentially useful spectral regions
include the ultraviolet, visible, and infrared.

In passage through the atmosphere electromagnetic energy is
subject to scattering and absorption. Also, energy maybe addedby emit-
ting species.

Scattering occurs when the radiation encounters particles with
dimensions either less or greater than the wavelength. Scattering results
in changeddirections of propagation for the energy which is intercepted.
Whenthe particle is muchsmaller than the wavelength (particle size/wave-
length < 0.01) a special case called Rayleigh_/ scattering occurs. The
distribution of Rayleigh-scattered energy is shownin Figure i where it is
seen that forward and back scattering distributions are equal. Theta (8)
is the angle between the incident and the scattered directions, being zero
for forward scatterings. Scattering to the side is significant here. There
is also symmetryaround the initial direction vector. The magnitude of
Rayleigh scattering depends, of course, on the number of particles encoun-
tered. It also varies as the fourth power of the expression (particle
size/wavelength).

Someof the airglow emissions are also observed in aurorae which would
constitute an overpowering interference. Aurorae cannot be used as a
tracing emission because the excitation mechanismdoes not depend
exclusively on the atmospheric component involved. Instead the loca-
tion of aurorae depends on the impingement of high energy particles
from space.
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When the particle size is more nearly equal* to the wavelength a

more inclusive theory due to Mi le_ is needed. The energy is scattered

primarily in the forward direction, close to the original direction of prop-

agation. There is a small amount directed to the sides and back scattered.

When the scattering from a single particle is treated, the diagram of Mie-

scattered energy contains sharp spikes whose orientation and magnitude

depend on the ratio (particle size/wavelength) and the indices of refraction.

For groups of particles as found in the atmosphere this particle size dis-

tribution averages out all but the common features. The result is a diagram

such as the one shown in Figure 2, taken from D. Deirmendjian.l__/ Notice

that the ordinate scale is logarithmic. The magnitude of Mie scattering

tends to vary as the ratio (particle size/wavelength) N , where N varies

from 0 to i. The shape of the "averaged" scattered intensity function

becomes more peaked in the forward direction as the above ratio increases.

A summary of scattering, absorption, and energy sources is shown

in Figure 3 versus spectral region.

* Or, up to two orders of magnitude greater than the wavelength.
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VIII. Pg_gER AND P(_gER FLUCTUATIONS IN THE BEAM

The power and power fluctuations which reach a detector depend

on the optical system, the light sources, scattering, absorption, emis-

sion, and refractive effects in the atmosphere. We choose here to con-

sider the average refractive effects and the fluctuations about the average

separately. When this is done the optical system characteristics can be

used to define a bea_.-like volume which is "seen." The power at the de-

tector consists of energy which satisfies several requirements. It must

i. Traverse or be emitted in the beam volume,

2. Be directed (or redirected) into the optical system entrance, and

3. Not be removed by absorption or by redirection away from

the optical entrance.

A model of the above situation has been constructed and an as-

sociated analysis developed and employed. The analysis accounts for

scattering in and out of the beam (Rayleigh and Mie), absorption and emis-

sion, and the input derived from a background such as the earth's surface.

The scattering, absorption and emission characteristics are allowed to vary

along the beam simulating the changes with altitude. Some effects of mul-

tiple scattering are included implicitly, although a complete multiple-

scattering model is not formulated.

The approximations employed include central and averaged values,

small angle equivalents and the like. Approximations have been made with

care so that the basic analysis is thought to be a good description of the

actual situations.

The analysis provides a differential equation which can be

integrated and perturbed to produce the forms applicable to the cross-beam

study. The gain in power approaching the entrance pupil along the beam is

_ ki(g)Fi(g) + ki(g)li(g)

where E is the power in the beam at the location, g , along the beam.

The first group of terms represents the losses due to scattering out and

absorption; the second group represents gains due to scattering in and

emission. The ki have the following meanings:
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kI = coefficient for Rayleigh scattering out of beam, (length) -I

k2 = coefficient for Mie scattering out of beam, (length) -I

k3 = absorption coefficient, (length) -I

kA = kI but in term for Rayleigh scattering _nto beam, (length) -I

k5 = k2 but in term for Mie scattering into beam, (length) -I

k6 = emission, watts/unit volume.

The functions Fi and I i contain geometrical effects and the like. In
particular, F_ = F5 = F6 = I I = 12 = 13 = 0

The differential equation can be formally integrated to provide

the beampower at the entrance pupil, g = gp:

G
where

= i= Zki(g)Fi(g)
dg

and E o is the power in the beam at g = O. E o can be used to represent

power added at a surface or pseudo surface such as the top or bottom of a

dense cloud.

While we are interested in total power at the detector_ our prime

interest is in the power variations which result from small local changes

in the atmosphere at some position out in the beam. The solution for small

incremental changes then provides

34



Here the left-hand side is the change in beampower at g = gp due to the
change (Skj) of the jth k over a distance (8g) . The change occurs at
the position g = gv " If g_ is taken as the value of g at the de-
tector the above expression p_ovides the sought power variation due to a
well defined and located variation out in the beam.*

The above expression has been evaluated by numerical integrations
for a number of atmospheric conditions with values appropriate to the ultra-
violet, visible, and infrared regions. Thesecalculations also cover a
variety of prime light sources, considerations which affect the character
and magnitudes of the I i and Eo

IX. ATMOSPHERIC MODELS

The atmospheric models consist of the coefficients (altitude-

dependent) which are required to carry out the beam power calculations.

These coefficients are presented in the Appendices together with a descrip-

tion of sources and bases for extrapolations used. The spectral and weather

combinations are given here in Table IX.

Notice that the equation can be divided through by 8kj 8C , yielding

8j E(_p)/(SkjSg) on the left side. This expression may be interpreted

as the power change at g = Cp due to a unit chan_e in kj over a

unit of beam length at _ = gv •
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X. BEAM POWER CALCULATION RESULTS

Calculations have been made for the power at the detector and the

power variations there under a variety of conditions. The intent of these

calculations is to determine the access to information in various parts of

the atmosphere through the received power fluctuations.

Access to an atmospheric region means that the atmospheric fluc-

tuations occurring there produce at the detector power fluctuations which

are useable in the cross-beam technique. There are two requirements for

usefulness.

i. The power fluctuations arising in the atmospheric region

must be sufficiently large with respect to the steady power which is

received by the detector.

2. The power fluctuations arising in the atmospheric region must

not be "swamped" by larger fluctuations which arise in other regions along

the same line of sight. (To avoid swamping it is likely that power fluc-

tuations should be down not more than one order of magnitude from those

produced over appreciable lengths in other atmospheric regions.)

Ideally it should be possible to calculate the received power

variations which arise along the system line of sight and use them to

determine "access" as defined above. To do this the atmospheric variations

at each station along the beam would be assigned, and the associated local

optical variations would be used in the beam power calculation. Unfortu-

nately, the local atmospheric variations are not known for many meteorologi-

cal environments and the relations between atmospheric and optical vari-

ations are not quantified. Consequently, the present analysis and calcula-

tions are performed using typical atmospheric properties and the associated

optical coefficients (functions of altitude).

The results are obtained as Relative Specific Power Variations

(RSPV) versus altitude. These values may be interpretated as the decimal

percent change in received power arising from optical fluctuations at the

indicated altitude. The RSPV values provide the best current indicators

of access to an altitude region. The RSPV value itself indicates if a

region meets the first requirement in the paragraph above. (The current

experimental conditions and results provide a basis for required values.)

Conformance with the second requirement must be judged by examining RSPV

values along the line of sight and comparing them with the RSPV value in

the region of interest.
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It is clear that all the power fluctuations depend on the loca_
tion of the optical and detector system, the spectral region, sources of
light energy, and the atmospheric conditions. Calculations have been made
for a variety of these situation parameters as shownin Table X. All
calculations are for vertically oriented beams (looking up or down). There
is a capability for handling inclined beams; however, this was not con-
sidered necessary in the initial survey of electromagnetic access. In the
present calculations extended backgrounds were treated as infinite lambert
planes .*

The calculation results have been studied for the major implica-
tions. They are:

i. The access to the lower atmosphere (up to 3,000 to 15,000
meters) is essentially the sameas access to elements close to the ground.

2. Access to slightly higher elements of the atmosphere is
afforded by upward-looking aircraft-based systems.

3. Access to the lower atmosphere (not cloud blocked) from
orbit and ground is generally comparable. Somewhatless desirable RSPV
values are obtained for the orbit-based system due to earth back lighting
(see No. 4 following).

4. Background and primary radiation sources can combine favorably
or unfavorably to produce RSPVvalues which vary by at least two orders of
magnitude.

5. In its present state the cross-beam technique is defeated
when the system looks at and sees s vnrying background such as the earth's
surface or a cloud boundary. Variations in transmission, reflectivity or
emissivity in these backgrounds produce power variations which are several
orders of magnitude greater th_n variations due to the atmosphere.

6. There is a possibility of access to the upper atmosphere from
orbit using short-path-length spectral regions in the ultraviolet.

7. Calculation of the scatterin_ out and absorption in the cloud
model shows that the i kilometer thick cloud is somewhattranslucent but
not transparent to a visible and infrared beam. Consequently, thick clouds
must be considered at their surfaces as diffuse radiators or reflectors.

The bssic annlysis is not restricted to such infinite plsnes. However,
they do provide the simplest forms and are considered adequate for
the present purposes.
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Wavelength

0.45

( Visible)

9.5

(I_mred)

0.24.5

(U'trsvlolet)

O. 15

Telescope

Location

ground

ground

ground

ground

6km

6km

6km

6ks

6km

6km

2O0 kz

200 km

ground

ground

ground

ground

ground

6km

6km

2OO km

200 km

20O k.m

COND_SED TABLE C_ BEAM _ CAI_,ATI_ CASES

Orientation

look up

look up

look up

look up

look up

look up

look down

look down

look down

look down

look down

look down

look up

look up

look up

look up

look up

Weather and Other FactSrs

Clear amy and no cloud, various solar zenith an@lea and ground reflectances.

Clear day with cloud at 6 ks, no direct sunlight.

Hazy day but no cloud, various solar zenith angles and ground refleetancea.

Hazy day with cloud at g ks, no direct sunlight, oue ground reflectance _lue.

Clear day,two ground reflectanees, one solar zenith angle.

Hazy day,one ground reflectance value, cue solar zenith angle.

Clear day, two ground reflectances, one solar zenith angle.

Clear day, but cloud above 6 km so no direct sunlight is available, two earth

reflectances, beam "looking at" average reflectance area and area of twice

average reflectance.

Hazy day, one ground reflectance, one solar zenith angle.

Hazy day with clad above 6 ]ua so there is no direct sunllghtj _ne earth

reflectance _lue, beam "looking at" average reflectance area and area of

twice average reflectance.

Clear day, two earth refleetanees, three solar zenith angles, beam lo_king at

averm_e reflectance area and area with twice avere4_e reflectance.

Hazy day, one earth reflectance, one solar zenith angle, beam looking at

average reflectance area and area with twice average reflectance.

Clear day, 0.04 percent B20 vapor, typical ground radiation (1 _ band width).

Clear day, 0.04 percent _0 vapor, cloud at 6 ks, typical (equal) radiation from

ground an_ cloud.

Hazy day, 0.04 percent H20 vapor, typical ground radiation.

Hazy day,0.04 percent H20 vapor, typical ground and typical (equal) radiation

from cloud.

Above combinations with 4 percent H20 water vapor.

look up

look down

look down

look down

look down

_"_Jpical ground (or cloud) radlatlon fxr_ below: all combinations of clear and

hazy _ay, 0.04 and ¢ percent HR0 vapor.

Typical ground emission, beam "looking at" ground area of typical emission and

at ground area of twice typical emission. All combinations of clear day, hazy

day and 0.04 percent and 4 percent H20 vapDr.

as above.

45" solar zenith angle; assume zero beam power at 20 km altitude. (Solution is

less accurate than visible and infrared cases due to approximate boundary conditions.)

45" solar zenith angle; assu_e zero beam power st 120 _ altitude. (Solution is

less accurate than visible and infrared cases due to approximate boundary conditions.)
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8. No specific calculations were made using airglow; however,

related calculations indicate this source should be accessible as an

emitting tracer for the SO to i00 kilometer regions.

The results of several calculations have been plotted and will

be presented to illustrate the sources of the generalizations given above.

However, it is necessary first to describe the quantities which are plotted

versus altitude.

The beam power analysis provided a perturbation solution which

is: The power variation at the detector due to a unit change in a specified

coefficient (atmospheric property) over a unit length along the beam at a

specified location (altitude).

Since the coefficients change drastically with altitude the re-

sult of a umit change is not illustrative of the variation magnitude which

might be expected in the atmosphere. It would be more logical to expect

that the variation in a coefficient at some altitude would be proportional

to the average size of the coefficient there. This kind of value can be

obtained by multiplying the original power variation by the coefficient at

the perturbation altitude. This provides: The power variation at the de-

tector due to a i00_ increase in a specified coefficient over a unit length

along the beam at a specified location (altitude). We might call this the

specific power variation.

For the cross-beam technique the power variations are important.

However, the final utility of a power variation depends on its comparison

with the average power received. Thus a more informative quantity is

obtained by dividing the above quantity by the power at the detector. _is

provides the relative specific power variation which _s: The power varia-

tion at the detector due to a i00_ increase in a specified coefficient over

a unit length along the beam at a specified location (altitude)_ divided

by the unperturbed power at the detector.*

This is the quantity which _s plotted and discussed. The adequacy

of signal strengths can then be judged using the current experiments as a

reference._ These experiments were conducted at near-ground levels

(_00 feet) on essentially clear days.

Figure _ shows the results from two clear-day visible-region

calculations. In both runs the telescope is located at ground level.

This quantity has the dimensions (len_th)-i arisin_ from the "unit len_th

alon_ the beam." The meter was used as the unit of length in calcula-

tions and in the plotted results.
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The only difference is the solar zenith angle. (Recall that the telescopes

look straight up or down in all runs presented here.) These results can be

used as a reference since they correspond to conditions in the current ex-

perimental program. In addition, comparison between runs shows the increased

sensitivity to Mie scattering perturbations when the sun is close to the

telescope field of view.

It is clear in Figure 4 that the RSPV (relative specific power

variations) have fallen one order of magnitude at S,000 meters for Mie

scattering and at 15,000 meters for Rayleigh scattering. Absorption effects

are several orders of magnitude lower than those plotted.

Figure 5 compares clear-day access from the earth and from orbit

(200 kilometers). Access is essentially equal with a factor of four ad-

vantage to the earth-based system in Mie scattering. This advantage is

due, of course, to the preponderant forward components in the aerosol (Mie)

scattering. The orbiting telescope receives only side or back scattering

from the solar input. The accessible altitudes are approximately the same

from ground and orbit.

Figure 6 shows the effects of solar zenith angle with a hazy

day. The telescopes are ground-based, using the visible region. Here,

some RSPV are negative. This means that a local increase in the indicated

coefficient reduces power to the detector. Two of the curves cross through

zero. This behavior shows that the power in the beam has an equilibrium-

like character with respect to scattering processes. For instance, in

Run 21 at high altitude both Rayleigh and Mie scattering are adding power

to the beam. Following the beam down it is seen that the Rayleigh scatter-

ing continues to add power as the net effect of scattering in and out. Now,

however, due to the amount of power in the beam the Mie scattering begins

to remove more power than it adds. The converse is true in Run 22 where

the zenith angle is only 15 °. This interaction between scattering mecha-

nisms suggests that there may be situations where the RSPV are much lower

or higher than the values shown thus far.

Figure 7 shows the results for a case in which the combination of

beam power inputs combine unfavorably to produce small RSPV. The telescope

is aircraft-based, at 6 kilometers altitude and looking down over an area

of the earth with relatively high reflectance (0.8). The large direct

power input from the earth (in the area seen by the telescope) causes the

scattering losses to predominate. However, the balance of scattering in

and out is so nearly equal that the RSPV are two or more orders of magni-

tude below the values previously shown.
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Figure 8 compares r e s u l t s  for an earth-based and aircraf t -based 
It appears t h a t  system, both looking up, and both i n  the v i s ib l e  region. 

the  aircraf t -based system can gain useable access t o  somewhat higher a l t i t u d e s  
than the  ground-based system, 

Figures 9 and 10 both show comparisons of earth- and orbit-based 
systems operating i n  the inf ra red  window a t  9.5 p .  Figure 9 i s  f o r  a very 
dry atmosphere and indicates  a poss ib i l i t y  of access t o  the 10-kilometers 
t o  30-kilometer a l t i t u d e  region from the ground under these atmospheric c3n- 
d i t i ons .  The orbit-based system has a l e s s  a t t r a c t i v e  RSPV because of the d i r ec t  
beam input from the e a r t h ' s  surface.  
are dawn approximately one order of magnitude from the visible-region re -  
sul ts .  Notice that the f ac to r s  of importance here a r e  Mie sca t te r ing ,  
absorption and emission.  

I n  both cases the lower a l t i t u d e  RSPV 

Figure 10 shows the  results f o r  an atmosphere with r e l a t i v e l y  
high water-vapor content. The RSPV a r e  comparable with the visible-region 
r e s u l t s .  "he orbit-based system i s  again penalized by the d i r ec t  ear th  
input bu t  may have s l igh t ly  b e t t e r  access above 10 kilometers. The Mie 
sca t t e r ing  e f f ec t s  have been great ly  reduced i n  importance due t o  the  in-  
crease i n  water vapor absorption and emission, 

None of the v i s i b l e  and c lear  window infrared ( 9 . 5  p,) r e s u l t s  
showed access t o  the region above 30 kilometers. The upward looking a i r -  
craft-based system a t  6 kilometers (Figure 5) extended the vis ible-region 
access somewhat. A similar  bu t  smaller improvement i s  a t ta ined  with a i r -  
craft-based inf ra red  systems. Since only small addi t ional  access seemed 
rea l izable  from below, a d i f fe ren t  s t ra tegy  was t r i ed .  

With the long-path-length spec t ra l  regions the orbit-based sys t em 
see the perturbations i n  the  atmosphere below 10  t o  30 kilometers. A short-  
path-length system used i n  o r b i t  would not  be able  t o  "see" t h i s  f a r  and 
could not  be  swamped by lower atmosphere var ia t ions.  There a r e  several  
po ten t i a l  regions i n  both the u l t r av io l e t  and infrared.  

Figure 11 shows the  resu l t s  fo r  two narrow spec t ra l  bands i n  the 
The primary power here comes from 

These 

(The bas ic  analysis  i s  capable of handling the  short  

u l t r a v i o l e t  with an orbit-based system. 
so la r  rad ia t ion  (45' zenith angle i n  these runs).  Rayleigh back and s ide 
sca t t e r ing  together with absorption a r e  the important mechanisms. 
r e s u l t s  a r e  more approximate than those f o r  the v i s ib l e  and inf ra red  pre- 
sented previously. 
path problem; however , the  l imited boundary conditions and capab i l i t i e s  i n  
the  present computer program are not wel l  sui ted t o  t h i s  problem.) 
r e s u l t s  do ind ica te  t h i s  poss ib i l i t y  of access t o  the  upper atmosphere from 
o rb i t  using spec t ra l  regions of l imited path lengths. 

The 
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XI. BEAM SIZE AND POSITION

A simple analysis, presented in Appendix V, shows that atmospheric

disturbances affect the received power only when the size of the disturbance

is comparable to or larger than the beam transverse dimension. This feature

provides a geometric filter which can be used to advantage by averaging out

the power fluctuations associated with small scale turbulence. This facet

needs consideration in comparing access from ground, aircraft, and orbit.

It also requires knowledge of energy-scale relations which are not well

known for most of the atmosphere.

Consideration has been given to the actual beam cross section as

compared with the ideal, right circular cone element. In a more general

fashion this question is simply from what volumes in space do the power

fluctuations arise? This question can be treated in two parts, the scat-

tered-in and the refractive contributions.

The scattered-in contribution is illustrated in Figure 12 where

a column of solar radiation is shown passing through the geometrically

defined beam volume. Some of the incident solar radiation will be scat-

tered into the beam. (This is the first order process which has been modeled,

solved numerically, and reported under Beam Power Calculation Results.)

However, the solar radiation column has passed through the atmosphere and

will contain variations similar to those observed at the detector. This

second order process provides some power variations which arise in volumes

outside the ideal beam geometry. In the depicted situation the variations

external to the beam will arise in a slab-like volume extending from the

ideal beam boundaries, through the atmosphere, toward the sun. In this

case the effective beam geometry consists of the ideal volume plus the slab-

like volume taken with a very small weight factor. Even though this is a

second order process, detrimental, spurious cross correlations might be

obtained if both beams of a ccmplete system had a common slab-like region.

When the primary radiation is emitted or reflected from a plane

the individual geometric elements external to the beam are conical shells.

In summing over all such primary radiation paths the volumes just outside

the ideal beam will be emphasized. The effective beam geometry then con-

sists of the ideal beam plus closely adjunct volumes taken with a very

small weight factor.

Scattering mechanisms underlie both of the above weak extensions

of the effective beam geometry. Consequently the potential importance of

the effect is related to the relative importance of scattering in the

specific application.
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A fifth perturbation solution was obtained in the beam power analy-

s_is to evaluate the potential importance of the scattered in signals dis-

cussed above. The perturbation is treated as a 100% increase in incident

radiation over a unit beam length. The RSPV (relative specific power vari-

ations) obtained for this perturbation are generally equal in magnitude to

the most important of the other perturbed coefficients. (However, in cases

where these incident power fluctuations arise from typical atmospheric

fluctuations their final net effect at the detector should be down several

orders of magnitude from those fluctuations produced inside the beam geom-

etz_. )

Refractive effects in the atmosphere cause a variety of beam per-

turbations none of which appear serious. The largest scale refractive effect

arises from the average gradients in the overall atmosphere. This is a

relatively steady effect and will divert the entire beam (visible spectrum)

about 1 arc minute in a near horizon passage through the atmosphere.

Smaller scale variations may still be large compared to beam

cross section and will cause beam wander. Measurements near sea level

indicate beam bending of lO -4 to lO -3 radians over paths of several kilo-

meters. For a path length of 354 meters, 5 x lO -5 radians was obtained.

Variations at a scale small with respect to the beam cross-

sectional dimensions will deflect out part of the beam power and replace

it with power traveling at a very small inclined angle. This, in effect,

will make the boundaries of the beam wiggle slightly and slightly reduce

the power from the ideal beam volume. As witnessed by visual and photo-

graphic image, these effects are not highly disruptive except in the presence

of extreme temperature gradients, such as might occur in CAT.

XII. CRITICAL DISCUSSION AND FUTURE EFFORTS

In this section the authors appraise the work presented here,

express their personal opinions, and recommend the direction of future

efforts.

A. Critical Discussion

The analyses developed and employed here are thought to be

fundamentally sound. The reader has been informed of approximations and

simplifications which are for the most part considered adequate for the

purposes of this project.
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There are two rather fundamental gaps which do reduce the benefits
otherwise obtainable from this project, as well as several remaining ques-
tions of less importance. The major gaps are:

i. Quantitative knowledge of the relations between local atmo-
spheric fluctuations and local optical characteristics.

2. The characteristics of local fluctuations in various regions
of the atmosphereunder a variety of general environmental conditions.

If there were more information in these two areas it would be possible to
makemuchstronger statements about the adequacy of power fluctuations
(electromagnetic access) received from atmospheric regions. In this case
the beampower calculations would be combinedwith data in (i) and (2)
above to provide more explicit numerical results. In the sbsence of data
in (i) and (2) the reported results using relative specific power varia-
tions (RSPV) sre thought to provide reasonsble engineering guides.

The guidance provided by the RSPVvalues is probably more reliable
in the lower than the upper atmosphere. Current experiment cross-beamwork
is conducted in the lower atmosphere and other investigators have performed
related experiments in the lower atmosphere. Here it is necessary to
recognize that the lower atmosphere contains water vapor and solid aerosols
in concentrations not found elsewhere. These constituents appear to play
significant or dominant roles in the optical property fluctuations which
are being observed. Consequently, the upper atmosphere, which lacks these
high concentrations, must be considered a different environment in which
there is currently no reliable experimental base for the RSPVvalues.*

The computedRSPVvalues change smoothly with altitude and imply
that similar power fluctuations will be obtained from closely adjunct
altitude regions. However, these RSPVvalues do not contain the mesoscale
atmospheric variations which maymakeplateaus or peaks and valleys in the
actual RSPVversus altitude relation. This meansthat the received signal
fluctuations from adjunct altitude regions may differ considerably. These
variations can _rJse fr'om adjunct air masseswith distinctive species con-
centrations (ozone, water vapor, or aerosols) or with critical and non-
critics] psychrometric states. Interactions between air massesmay create
boundary regions of large RSPVdue to constituent _nhomogeneities or to
condensation processes.

* This statement does not apply to measurementsJn airglow reg,lons where
local emission is the dominant factor.
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There are several other areas which the current work did consider_
bug probably not in sufficient depth or generality. Also, someeffects
were not considered in any detail because it was expected that they were
of higher order. These other areas are discussed below.

The RSPVvalues for the ultraviolet spectrum in the upper atmo-
sphere are less accurate than similar calculations using spectral regions
with longer sight distances. The ultraviolet results do imply potential
utility for the short sight distance spectral regions in the upper atmo-
sphere. Calculations with more realistic boundary and forcing functions
are needed to reinforce this implication.

Gross refractive perturbations are not included in the beampower
analysis.* It appears that associated power and beam geometry fluctuations
should be small. The idea of relatively low significance seemssupported
by scintillation studies and studies in photographic resolution. However,
the idea of relative insignificance is not demonstrated here by a model
and numerical calculations.

The current project did not formally treat the problem of dis-
tinguishing between atmospheric waves and fluid motions. It is apparent
that these phenomenamaybe distinguishable by characteristics such as
spectral eontent_ persistence with altitude variation, and apparent life
time. The additional models which are recommendedlater in this section
would permit a formal evaluation of this distinction during data processing.

In the analysis of cross-beam results with nonideal environments
a steady wind componentwas generally specified. Consequently, the present
work cannot illuminate someinterpretative questions such as the meaning of
convection speed in a turbulent environment. By extension to a more com-
plete model, described later in this section, the relations between measured
quantities and associated atmospheric behavior can be explored and defined
in revealing detail.

In the beampower analysis the account of scattering is best
described as first order. That is_ examination of the model showsthat
the account of scattering cannot be described as single scattering_ but
that someaspects of multiple scattering should be and are included. For
instance, power from a source such as the sun maybe scattered into the
beam at one station and becomepart of the beampower. However, the beam
power is subject to scattering out at subsequent stations on the way to the
optical system and detector. Consequently, someof the energy scattered
in may later be scattered out.

* By gross refractive perturbations we meanthose which affect a significant
fraction of the beamas opposed to the refractive effects at individual
aerosol particles. The particle-related effects are included in scattering.
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This sametype of situation can be used to illustrate the most
serious neglect of multiple scattering. The direct sunlight is not the'only
radiant power which traverses the beamgeometry or volume. Sunlight which
has been scattered in other volume elements of the atmosphere also traverses
the beamvolume and may suffer a second scattering there which places it
in the beam. The incident, previously scattered_ power could be well de-
scribed by a reversed scattering diagram. In a clear earth atmosphere the
previously scattered power maybe one-sixth to one-fifth of the unscattered
solar power at sea level. Haze may increase this fraction; however_ in any
situation where previously scattered power becomesdominant, the region of
intense scattering maybecomea barrier to the beam. This is what happens
in a cloud.

It appears that the beampower analysis could be refined by
adding second order effects involving the most important aspects of multiple
scattering. However, these changeswould most likely not alter the pre-
dominate aspects of electromagnetic access obtained with the present analy-
sis.

B. Future Potential of Cross-Beam Measurements in the Atmosphere

During the course of this project the principal investigators

have formed opinions which are similar. In our opinion the cross-beam

technique will become useful for some atmospheric measurements. Initial

application will most likely be as a scientific rather than an operational

tool. This opinion is based on:

- The grest need for remote probing measurements in the atmo-

sphere;

- The considerable variety of atmospheric regions and conditions

in which the measurements are valuable;

- The marginal, but still clearly correlated signals which have

been obtained in the current attempts to measure winds;

- The considerable array of beam geometries and spectral regions

(or combinations) which might be employed; and

- The complexities of data reduction and interpretation. (Which

indicates the scientific applications as being more probable.)
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C. Recommended Future Work

It is our opinion that the best course of action in the near

future is purposeful experimentation with guidance and interpretive support

from analysis. The purposeful experimentation should include attempts to

make actual measurements, such as in the current wind study program. This

forces a "practical systems approach" in that no item or activity can be

overlooked. In addition it appears desirable to reduce the fundamental

gap on the quantitative relations between local atmospheric disturbances

and the associated perturbations of local optical properties.

The current ground level experimentation with analytical support

will provide added knowledge about the fundamental fluid and optical

mechanisms which underlie the cross-beam applications in the atmosphere.

This added knowledge can be applied for improved estimates on applicability

in other atmospheric regions.

However, it may be desirable to consider some future experimenta-

tion which bypasses the step-by-step acquisition of fundamentals. Two such

experiments are presented for consideration.

The first added experiment would be designed to answer the ques-

tion, Is the current wind measurement work a relatively difficult applica-

tion of the cross-beam technique? Two facets of the current experimental

application suggest that it may be difficult. First, the optical systems

look up through the entire atmosphere. Second, the beam diameter is small

near the ground and increases with altitude just as do the dominant scales

of turbulence. Thus the beams may be seeing the entire atmosphere and be

strongly coupled by geometric matching to the fluctuations in every atmo-

spheric region. An experiment to answer the question of relative difficulty

might take one of several forms. A horizontal-looking system might be used

with a natural or interposed background. Alternately, an aircraft-based,

upward-looking system could be used. Each of these possibilities would

need careful analytical appraisal and experiment design.

The second added experiment would be designed to answer the ques-

tion, Can cross-beam measurements (other than airglow) be made in the upper

atmosphere? Here there are two subsidiary questions. (i) Are atmospheric

fluctuations in the upper atmosphere accompanied by significant optical

effects? (2) Will the intensities of the atmospheric-optical mechanisms

provide useful signal levels?* An orbit-based system might be used to

* The analysis performed in this project implies that signal levels would

be low relative to lower atmosphere levels. However, the signals may

still be useable if the altitude region "seen" is not too extensive.
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obtain the answer. With the current state of the art it would probably
employ a spectral region of reduced sight distance. Again, the exl0eriment
would require a significant preparatory effort.

In conjunction with, or in addition to, the experimental programs,
certain analytical work should be carried out. Someof the analyses and
computer programs developed in this project can be extended and exploited
for significant benefits to the cross-beam development. In particular the
following five categories of effort should be considered.

i. Analysis of relationships bet-_eenatmospheric phenomenaand
optical perturbations.

2. Extensions of the beampuwer fluctuations work.

S. Generalization of correlations under nonideal environmental
situations.

4. More realistic appraisal of integration time requirements.

S. Documentation of existing and/or new computer programs.

The analysis of related atmospheric and optical phenomenawas
considered and dropped during the reported project due to time and fund
limitations. A simple engineering analysis appears essential to identify
the mechanismsof potential importance nnd ns n prerequisite to experimental
design.

The analysis of beampower fluctuations at the detector was based
on a sound model_ but the boundary conditions and forcing functions were
kept simple in order to satisfy project objectives. The analysis and as-
sociated computer program can be modified to contain more complete and
realistic conditions. The program would becomea powerful and flexible
tool providing results for experimental planning and interpretation.

The analyses and computer programs for correlations under nonideal
environmental situations can be extended and employed to provide more com-
plete answers to the questions, What can be measures flow can measurements
best be made?and What is the most unfavorable environment? Revisions and
capo_ilit_es of most value appear to be:

i. Applications to a moving beam system.

2. Improvements of the correlation function to

$8



a. Possess power-scale characteristics.

b. Be associated with a physically depictable model of
turbulence.

c. Be associated with a physically depictable model of

atmospheric waves.

3. Provision for frequency dependent filtering in the simulated

data processing (where power-scale characteristics are treated).

The appraisal of integration time requirements employed existing

statistical techniques. These techniques are limited to a flat power

spectrum and ideal filtering. A more flexible technique is needed which will

permit more realistic analysis.

The computer programs which have been or will be developed would

be valuable tools for organizations engaged in cross-beam experimentation

and application. These programs should be cleaned up and documented for

transmission to potential users.
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APPENDIX I

SUMMARY OF

PROCEEDINGS OF CROSS-BEA_METEOROLOGICAL PROBLEMS SYMPOSIUM

A. Introduction

On September 7-8, 1967, a conference on meteorological problems

was held at Midwest Research Institute. The purpose of the meeting was

to bring to light the problem areas of current concern in meteorology and

atmospheric physics whose solution might conceivably be aided by a remofe

sensing technique known as the cross-beam method. In addition to the

problem areas, information, in depth, concerning such matters as data

needed, space and time scale of collection effort, characteristics of the

data, and much more was elicited.

The entire two-day symposium was tape recorded. The tapes were

then transcribed, yielding a rather bulky document. The transcription

was then carefully edited and indexed. From this indexed volume, the

following sumn_rywas prepared. It remains, however, the opinions of the

panel of meteorologists. That is, care has been taken not to add to the

transcriptions, or to omit any agreed upon problem area or description.

At times, the wording of the panelist has been retained. In places, the

problem descriptions may seem incomplete or hesitant--this is because there

are simply many unknown features in our atmosphere and, in fact, is the

reason for the study in the first place.

The authorities who served on the panel are listed below in

alphabetical order:

Dr. Ferdinand C. Bates, St. Louis University

Dr. Alfred K. Blackadar, Pennsylvania State University

Dr. Richard Craig, Florida State University

Dr. Charles Hosler, Pennsylvania State University

Dr. James R. Scoggins, Texas A & M University

Dr. Paul L. Smith, South Dakota School of Mines and Technology

Also present at the conference, not as meteorologists, but to

guide the discussion and relate the topics to the cross-beam technique were

Mr. Andrew D. St. John and Dr. William D. Glauz of Midwest Research Insti-

tute. They, together with Dr. Smith, were responsible for summarizing the

discussions.
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Appreciation is expressed to Miss Joanne Jackson and Mrs. Jan_
Hess, who transcribed the tapes, and to Miss Mary Beyer_ who aided in the
indexing.

B. The Upper Atmosphere

I. Winds

Relatively few measurements have been made of the winds in the

upper atmosphere. The measurement technique currently used is the radio-

sonde. The balloon borne radiosonde provides data to about 50 km.

altitude. Above this altitude relatively small meteorological rockets are

employed. For wind measurements_ one technique utilizes a rocket

releasing chaff which is then tracked by radar. The result is a point

rather than an area measurement. That is, only the wind along the path

of the chaff can be measured.

The wind versus height is not a smooth curve and the farther up

you go the more wiggles it has. An important theoretical question is to

what extent are these wind variations with a 12 to 24 hour period and a

large horizontal scale, and to what extent are they small scale--for ex-

ample, gravity waves with periods of hours and a scale of a couple of

hundred kilometers. It would be desirable to determine the eddy lifetime,

scale of turbulence_ and power spectral density. These measurements are

not possible with the current meteorological rocket and radiosonde data.

A first step in a measurement program using a remote measuring

device would be to determine the wind at one point. We need to know what

parts of the wind are of 12 to 24 hour periods and therefore are tidal

waves and which have shorter periods and are therefore gravity waves.

Perhaps some of the eddies have a smaller period and are what we might

think of as turbulence. It would be important to make these measurements

simultaneously with conventional meteorological soundings, initially.

The time resolution (averaging time) of these first tests would be on the

order of hours to days.

It is expected that a large contributor to the upper atmospheric

winds is the phenomena of gravity waves. These waves arise from a basically

stable layer in the atmosphere. Any of a number of influences such as con-

ductive, thermal_ etc., may temporarily displace fluid from its equilibrium

state. The fluid tends to return to its equil_brium state due to the in-

fluence of gravity. In so doing, an oscillation _s set up. These oscilla-

tions are termed gravity waves.
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The wavelength of the gravity waves varies, but typically is on
the order of lO's to lO0's of kilometers. In the lower atmosphere the
predominant scale consists of a wavelength of 6 to 7 kilometers. The ampli-
tude of the density or velocity differences due to the gravity waves, from
peak to trough, is expected to be on the order of I0 percent.

The atmospheric tidal waves, another contributor to the total
winds, have basieally a 12-hour period and a horizontal wavelength of
20,000 kilometers. The vertical wavelength is estimated to be on the order
of 5 to i0 kilometers.

Care must be taken when interpreting results of a cross-beam
experiment in terms of a convection speedwhen studying gravity waves.
This is because in these wave motions it is not the fluid that is being
convected, but rather someproperty such as density. Oftentimes, there
is actually cloudiness associated with these density changes. At times,
one sees decided bands of clouds on the crests of the waves.

The practical effects of the gravity waves on society are not
known. It is generally agreed that gravity waves at, say, the 30-kilometer
level in themselves produce negligible effects at the surface. Somepeople
feel that while these gravity waves in themselves are not important, there
maybe occasions whenthrough reinforcement, interference, etc., there may
be an effect on the upper level divergence or convergence and thus they m_y

contribute to other phenomena down in the troposphere. Certainly, gravity

waves traveling at these very high altitudes would be of interest to those

who are concerned with UHF radio propagation. Furthermore, if the kinetic

energy associated with gravity waves in the upper atmosphere is roughly of

the same magnitude as that for gravity waves in the lower atmosphere, then

one might expect that the gravity waves are a major feature of the upper

atmosphere. Although this is above the level of the SST, it might be that

future vehicles would regularly use this portion of the atmosphere--neces-

sitating a better knowledge of the wind and turbulence environment at this

level.

2. Properties of the Upper Atmosphere

It is presently felt that the one property of most practical

significance at the present time is that of density. There are quite a

number of satellites that have their perigee at l_O to 180 kilometers.

Some of these have a lifetime of months to years if they have a very

large apogee. In addition, ballistic problems such as reentry of a capsule

or firing accurately an ICBM or an ABM depend on the density of the upper

atmosphere. Thus, many classes of vehicles currently spend short time

periods in this environment and are affected by it.
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The efficiency of a jet engine depends to a large degree on the
!

density of the atmosphere at flight level. This effect is often more

important than winds on overall operating economy. Thus, the continuing

measurement of density at the 20 kilometer level could have a direct

economic impact on SST flight.*

A second major property of the upper atmosphere is its composi-

tion. The component which is most well known (and is also felt to be the

most important) is ozone. The ozone absorbs the ultraviolet radiation.

Without the ozone, life as we know it on earth would not be possible.

However, it has a corrosive effect on vehicles_ such as the SST, flying

through it. Furthermore 3 it is dangerous in any but the most minute

quantities when breathed by human beings. It must_ therefore_ be removed

from the air by heating and subsequent cooling before being used in the

cabin of the SST.

There are other species which are known and could be measured_

for example, nitric oxide, atomic oxygen_ hydroxyl, sodium, and others.

The economic effects of these constituents are not know. One feature of

some of these trace constituents which might make the cross-beam technique

particularly useful in their study is the identifying emission associated

with them. In this way the main contributor to the extinction coefficient,

it is hoped_ would be fluctuations in the emission.

In addition to the existence of many chemical species in the

molecular form, the upper atmosphere also contains particulate matter.

Very little is known about this_ however. There is presun_bly some sort

of layer at about 22 kilometers. But nobody knows exactly what it is or

how it got there. It is also presumed that the particulate matter is

probably sulfates.

3. Other Features

Airglow emissions are phenomena which might conceivably be

studied by the cross-beam technique. Airglow is a source of electromag-

netic radiation of very low intensity which can be observed at the ground

at night. It appears that the airglow emission occurs as the result of

several previous steps. The sun, the basic energy source, disassociates

oxygen molecules into atomic oxygen. One theory is that the atomic oxygen

There is no clear-cut distinction between upper and lower atmosphere.

Oftentimes, the SST altitude is considered as the lower fringe of

the upper atmosphere, so is considered here.
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t_en recombines at night in three body collisions (0 + 0 + M----->02 + M,
where M is any other molecule)_ and that the third body in this process
of collision is excited to a metastable state. The majority of this
emission originates at about i00 kilometers. By careful study of these
phenomena,it is hoped that more can be learned about the energy exchange
process and the composition at this level of the upper atmosphere. Also,
it is knownthat _ch patchiness in the sense that you get time variations
on the order of 10's of minutes to an hour as well as space variations
exists. Wewould like to know more about the size or scale of this
system.

One_ould like to state that better knowledge of the upper atmo-
sphere would lead to more accurate weather prediction. Such_however,
does not appear to be the case_ at least in the immediate future. Most
meteorologists feel that the upper atmosphere, due to its small mass,
can have little effect on the lower atmosphere in which the weather occurs.
There is statistical evidence which indicates that certain features of our
weather on earth are correlated, for example, to the lunar cycles_ solar
disturbances, and meteor showers. It maybe that the upper atmosphere
plays a role in this correlation. It must be stated, however, that the
probability of finding a significant cause and effect relationship between
the upper atmosphere and weather which _ould have a large economicbenefit
is small.

It is knownthat almost any altitude affects somefrequency of
radio propagation in one way or another. Therefore_ any property of that
altitude which varies may change the efficiency with which one can propa-
gate radio waves. This question of radio propagation effects may deserve
a closer look. This would require a collaboration between upper atmo-
sphere meteorologists and specialists in wavepropagation and transmission.

C. World Weather Watch and Related Topics

i. Wind Measurements in General

The world weather watch or global observing system requires the

measurement of atmospheric properties over the entire earth surface on a

500 kilometer grid. The ideal measurement would be that which is repre-

sentative in some way of conditions over the entire S00-kilometer square.

This information is needed (and is not currently available) as initial

conditions for mathematical weather prediction models.

A first approximation to the desired measurement would be a

point measurement, say at the midpoint of each 500-kilometer square.

This, basically, is the type of measurement currently being made over
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limited areas of the earth's surface. Onewould be better off_ for
example_by taking four measurementsover the grid and averaging. A
continuous average would_ of course_ be better still.

The mathematical weather models require not only wind data but
also state data such as temperature_ moisture_ pressure_ etc. The cross-
beamtechnique would be directly applicable only to obtaining the wind
data. The remainder of this section, therefore, will be concerned only
with wind data and not the state variables.

The wind_ in addition to being measuredover a horizontal grid
of 500 kilometers square_ must also be measuredon a vertical grid. Cur-
rently_ at those locations where wind measurementsare made_the vertical
grid is determined not by altitude_ but rather by pressure level.* This
undoubtedly is the way in which they would prefer it to be done in the
future. However_measurementstaken at equal altitudes would probably be
satisfactory. The current mathematical models have up to 9 altitude
(pressure) levels or layers_ the upper layer extending up to 50 millibars.
A single value_ representative of each layer_ is what is required in the
models.

The timing of the measurementshas two considerations: the
period between measurements_and the simultaneity of measurements.
Currently_ over the _imited regions where winds are measuredthey are
usually observed at 12-hour intervals_ occasionally at 6-hour intervals.
It would be desirable if these were monitored continuously. However_12-
hour intervals or perhaps even 2_-hour intervals would be useable if on a
global basis. As for simultaneity_ all measurementsshould be taken with-
in a one-hour interval. Lacking this_ it would be acceptable to interpolate
or extrapolate the measureddata to a commonpoint in time.

A major consideration in a global weather watch schemeis the
effect of missing data. Currently, adequate data are available only over
the U.S. and a few other areas. There are virtually no data over the
oceans_over the southern hemisphere, etc. To makeuse of such data in
numerical weather prediction techniques_ an essentially complete matrix of
information is required. The existence of more than a few gaps in the
data would make it practically useless for this purpose. Partial data
would_ however_ be useful for dealing with more localized weather phenomena.
For example_ information on the winds aloft over the eastern Pacific or
over Mexico would be of extreme usefulness in severe local storm forecast-
ing in the United States.

Some_however_have their equations written in terms of isentropic sur-
faces rather than constant pressure surfaces so would like to know the
wind as a function of potential temperature.
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Also in regions around tropical storms such as hurricanes and typhoons
the wind information would be useful. Theseproblem areas are discussed
in subsequent sections.

Although it would not be of use in itself in world wide weather
prediction techniques, the measurementof only one componentof the wind
velocity vector on a global basis would aid in other areas. The North-
South componentwould be of most use to the scientific world. Knowing the
latitudinal flux of any property on a global basis would be beneficial in
refining our knowledge of the energy balance and conversion of one type
of energy to another. Of particular interest would be the transport of
moisture, momentumand energy. On the other hand, the East-West wind
componentwould be of most use to the operational people. This is be-
cause the East-West componentis generally bigger and therefore more
important for air travel considerations, for example. All in all, how-
ever, it is more valuable by a factor greater than two to obtain both
the East-West and North-South componentsthan it is to obtain only one of
them.

Again, it is emphasizedthat care must be taken in the interpre-
tation of convection speed data as wind speed. That is, the propagation
speed of a disturbance, which might be detected by the cross-beam
technique, may not be equal to the wind speed.

2. Atmospheric Stability

It would be extremely valuable both to the scientific world as

well as to the operational people to have a direct measurement, on a world

wide basis, of the stability versus altitude. The stability or instability

depends primarily on two factors: first_ the lapse rate or comparison of

the temperature change with height with the adiabatic potential temper-

ature changes; and second, the wind shears. Stable layers imbedded in an

otherwise unstable atmosphere can lead to smog problems if at low altitude

and can limit cumulus development at higher altitudes even though the

stable layer might be quite thin. On the other hand, a layer of extreme

instability could be associated with turbulence and in particular clear

air turbulence. (See subsequent section for further information.)

A common, but not universally accepted, method of measuring

the instability is by means of the Richardson number, which is the ratio

of the vertical temperature gradient to the square of the wind shear. It

would be necessary to obtain this number at intervals on the order of 300

meters in the vertical direction. Wind measurements without the temper-

ature gradients would be a help in this direction but both are really re-

quired.
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It might be possible to estimate the stability of the atmo-
sphere by knowing the power spectral density or the scale of turbulence
or eddy lifetime. This would enable direct determination of atmospheric
stability, which is not currently possible.

3. Hurricanes

Unfo_tunately_ there is much that is unknown about the growth

and decay of hurricanes. Studies of such storms are not hindered so much

by lack of data as they are by lack of knowledge of what data would be

useful in determining the course of events.

It is felt that one phenomenon which has a large role in the

growth and subsequent development of hurricanes is the energy distribu-

tion among the various eddies. It is thought to be important to know the

predominant size of the eddies that contain the energy of the system

and the way in which the energy changes. That is_ does it go from big

eddies to little eddies or vice versa and in what stages and in what places

in the hurricane?

As far as prediction of hurricanes is concerned, a first step

would be to collect data on a global scale of the winds and, more impor-

tantly_ the eddy scale. This quantity, the eddy scale, is something that

has probably not been used before as a synoptic parameter simply because

there was no convenient way to measure it. Measurements which consist of

averages over a 500-kilometer grid would be acceptable for this purpose.

These historical data would then be used to trace backward in time the

development of existing hurricanes.

Once a hurricane has developed there is much that should be

measured. Everyone is interested in circulation and the measurement of

the flux of water vapor and energy in and out of the system. There is

apparently a lot of smaller scale organizations within a hurricane. One

can't think of it in the same way as one thinks of an individual storm.

Here it is very important to see how the individual cells interact with

one another. We recognize that the flux of water vapor from the surface

is one of the very important sources of energy of the storm. After the

storm moves over land this tends to be cut off and is one of the reasons

that they dissipate so quickly over land. Also_ the wind profiles and

the boundary layer which tell us a lot about friction and momentum transfer

near the surface are important. It is not implied that these are

operational requirements. We need to know them in order to understand the

mechanics of the storms.
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An important economic problem is that of predicti_4_ the path
of an existing hurricane. The only technique currently believed valid
for this purpose is knownas the "steering method. " The technique in-
volves the computation of the flow field external to the hurricane and
then assumesthat the hurricane is a vortex imbedded in and carried with
the external flow.* The use of the steering technique requires the
knowledge of the wind field external to the storm, and measurements
taken, for example, along with the world weather watch studies would be
useful for this purpose.

The study on a smaller scale of a developed hurricane would
also be of interest. Within the hurricane is an organized system of
convective cells. One can't think of them as simply individual storms
since they interact with one another. Onewould, therefore, want to make
his study first on a scale of the order of the distance between cells,
in order to better determine the interactions between the cells. Later
one could study the individual cells in muchthe sameway as one might
study an individual thunderstorm. (See later section. ) They are basically
of the samesize as a thunderstorm, perhaps a little wider with lower
tops. Items to be measured include the vertical componentof the wind
and the circulation.

4. Clear Air Turbulence (CAT)

Conceivably, one of the most directl_ beneficial uses of a re-

mote sensing device would be in detecting or forecasting CAT. CAT is

turbulence in clear air, that is, without any visual evidence. This

presents different problems from turbulence associated with, for example,

thunderstorms and squall lines primarily because it is difficult to de-

tect and less is known about it. It is more common at the higher

altitudes (12 to 18 kilometers), and is, therefore, important to the

military and, with the advent of the SST 3 to commercial aircraft.

Currently, there are many theories and research projects under way which

attempt to relate CAT to atmospheric parameters which can be measured.

Several such parameters which might be amenable to the cross-beam

technique are discussed below.

* This neglects the effect of propagation wherein if there were an

energy source on one side and not on the other there would be a tendency

for the hurricane to propagate towards the energy source.
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First, we will consider the detection of existing patches of
CAT. The obvious and most direct approach would be to simply ascertain
the intensity of turbulence throughout the air space of interest. This
might be done_ for example, on the basis of a one-mile grid. There may
be situations where such inforn_tion would be useful. However, it does
not appear to be a feasible schemewhen carried out on a world wide or
even country wide basis. This is because the isolated pockets of turbulence
do not remain fixed, but tend to dissipate and reappear elsewhere. There-
fore, the sampling would have to be repeated at relatively frequent inter-
vals on the order of 15 to 30 minutes. The amount of data required would
thus becomeastronomical.

An approach aimed at locating the general vicinity of CAT
rather than pinpointing the phenomenamaybe of more practical use. A
possibility along this line would be to measureand determine the power
spectral density of the air as part of the world wide weather watch.
Those portions of the atmosphere containi_ CATwould have a different
power spectral density than the remainder of the atmosphere. Presumably_
if there was a significant amount of CATin a 500-kilometer square area,
the average power spectral density over the area would be detectably
different from that of a like area without CAT. Of particular interest
in such a power spectral analysis would be those wavelengths which would
elicit undesirable responses from the aircraft. Such measurementswould
probably be indicative of general conditions several hours in the future.

There is evidence indicating that the occurrences of ozone and
radioactivity at levels lower than usual maybe correlated with CAT.
Normally, the ozone and radioactive portions of the atmosphere are in the
stratosphere. It apparently gets downinto the upper troposphere on
occasions which can be correlated with periods of clear air turbulence.
Again, areas of the order of 500 kilometers on a s_de could be averaged
over for purposes of detecting ozone or radioactivity. The turbulence
layer itself maybe rather thin, say, on the order of 600 meters; there-
fore, several scans with altitude would be necessary.

In addition to the problem of detecting existing CATis the asso-
ciated problem of forecasting the future occurrence of CAT. This is
thought to be related to the Richardson number (see Section II B). An
altitude band which contains a large wind shear which is not compensated
by a large positive temperature gradient (comparedwith the adiabatic
case) maybe expected to form turbulence. Therefore, the measurementof
the w_ndas a function of altitude which would yield the wind shear would
be a start in the right direction. This should, however, be complemented
with temperature gradient measurements.
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D. Clouds and Local Storms

i. Thunderstorms

The distinction between a severe thunderstorm and a lesser storm

or cumulus cloud is based primarily on size and intensity. An isolated

severe thunderstorm may affect an area on the order of AO kilometers in

diameter, and may, in extreme cases, have internal updrafts on the order

of over 50 meters per second. It is this severe type of storm that is of

interest in this section.

Data can be obtained for both operational and research uses.

That is, there are some data which if made available quickly enough are

believed to be of operational use in the prediction and tracking of severe

storms. Most suggested studies_ however, are aimed at obtaining a more

basic understanding of the behavior and life cycle of a thunderstorm.

Those studies more nearly related to obtaining operational data will be

discussed first.

The prediction of severe thunderstorms could be enhanced by more

complete wind information. For example, if as part of a world weather

watch we had coverage of the eastern Pacific and Mexico we could improve

the accuracy of severe storm forecasts in the United States by l0 to 15

percent. In general the inputs to severe local storm prediction are the

large scale wind fields_ stability, and temperature measurements.

The detailed interaction of a thunderstorm and its environment

is not completely understood. This is particularly of interest in the

smaller stages where the interaction between the cloud and its environ-

ment is critical to the fate of the cloud. Therefore, in addition to

studying the environment near the storm (see below), it would be necessary

to observe the atmosphere that is unaffected by the appearance of the

thunderstorm. This would require measurements outside of the affected

region of, say; 40 kilometers in diameter. This relationship between a

cloud and its environment is also of extreme importance in weather

modification; discussed in a subsequent section.

Moving closer to the storm, the measurement of the wind

environment surrounding the cloud is important. Ideally, temperature

and moisture data would be obtained simultaneously from, for example,

radiosonde measurements. However, the wind data have value in themselves.

The ideal wind measurement experiment would consist of measuring the wind

speed and direction on a three-dimensional network. The grid spacing in

this network would be on the order of 500 meters between points both
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vertically and horizontally. This spacing could be relaxed for the very
large storms. If the data obtained from such a study were to be used
operationally, it would be necessary to be able to reduce the data with-
in 5 minutes of the time they were taken. The time period between measure-
ments should be from i to 5 minutes. It is doubtful that muchcould be
learned with longer periods between measurementssince the storms change
so rapidly. The total cycle or time period over which measurementsshould
be taken is about one hour. It would be desirable to be able to measure
the convection speeds to within i0 kilometers per hour.

There are less ambitious experiments involving the measurements
of winds around thunderstorms which would provide useful info_ation.
One of these is to determine the convergence. The minimumrequirement
for this, which would not be very satisfactory but would be better than
nothing_ would be measurementsat three points around the cloud. Any-
thing more than that improves the value, such as several different
altitudes_ more points_ etc. The ideal measurementwould be that which
circumscribes the entire cloud and performs an integral of the normal
componentof velocity. Another study would be that of measuring the verti-
cal wind under the base of the thunderstorm. In this case anything from
a single measurementto a detailed mapof the updraft would be of interest.
In conjunction with other observations_ it would fix certain features of
the storm.

Aside from the wind field measurementproblems_ another area of
study would be to measure the turbulence adjacent to a thunderstorm.
Measurementsof the turbulence variables would be related to the rate of
mixing and, therefore_ of value in helping parameterize the mixing of the
air within and without the storm. It might also be operationally import-
ant in helping aircraft avoid particularly severe turbulence. In this
regard, it has been recently determined that the most severe turbulence
so often found within a mile or two of the storm on the southern or south-
western flank. It would be desirable to locate these regions of severe
turbulence so as to be able to vector aircraft around them. In addition
to the turbulence it would be most desirable to be able to measurethe
eddy flux of water vapor or other flux through the edge of the cloud.

Another class of measurementsis concerned with what goes on
inside of the thunderstorm cloud. A beginning study might concern itself
with maklng measurementsat a single point within the cloud. Later_ one
would hope to be able to mapthe interior of the cloud by a sequence of
measurements. Again_ wind velocities, turbulence_ etc., would be of
interest. It would be desJ1_ble to measure eddy sizes_ for example_ as
small as i00 feet. Such studies would be primarily of scientific benefit
rather than having i_m_ed_iateoperational usefulness.
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One of the questions which might be studied is the relationship
between eddy size at the top of the cumulus and the diameter, d, of the
vertical draft. It is felt that the median eddy size is proportional to
i/d. Another question concerns a class of storms recently recognized to
be associated with a rotating updraft over sufficiently smooth terrain.
As yet_ we have no good measurementsof this draft rotation.

Another point of critical importance which appears in the
mechanics of treating a severe thunderstorm would be to measurewater
droplet spectra and density of water particles. It is not clear how the
cross-beam technique would be directly applicable to this problem. It is
clear, however, that fluctuations of water droplet density will lead
directly to fluctuations in the extinction coefficients. The water drop-
lets may not be used_ however, as simple tracer objects. There is the
additional problem here that large size water droplets or ice particles
do not moveat the samespeed as the air because of the influence of
gravity. Thus, a measurementof water droplet motion may not correspond to
motion of the air masses.

A potentially useful and interesting feature of the cross-beam
technique would appear if the technique could be used to measure the speed
of propagation of acoustic disturbances. In this instance, it would be of
interest to detect the propagation of small density or pressure fluctua-
tions. Since acoustic waves propagate at a speed proportional to the square
root of the absolute temperature, a meansof remote measurementof the
temperature as well as the wind speed around the thunderstorm might be
possible. To be useful, the acoustic speed would need to be determined
within a few tenths of a percent_ that is, within a few feet per second.

A phenomenonoften associated with the severe thunderstorm is
the tornado. Special studies related to this event are presented in the
next section.

2. Tornadoes

The detailed interpositioning of a tornado and the parent

thunderstorm remains uncertain. This is due primarily to the difficulties

in making accurate_ simultaneous measurements. It has been found, how-

ever, that the tornado appears consistently, except for one infrequent

type, on the southern or southwestern flank of the squall line of thunder-

storms_ and can appear up to a considerable distance from the parent

thunderstorm--as much as 30 kilometers. Vortices other than tornadic,

which are invisible structures, also exist below these cloud bases and

are a hazard to aviation. They do not stop abruptly at the cloud base,

but extend into the cloud for some distance. We need to know how far into
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the cloud and in what configurations these tornadic vortices exist. This
must be done by a remote sensing operation due to the hazards involved'_
Furthermore_ it must be done by meansof airborne equipment. It can be
shownthat the probability of being able to makesuch a measurementfrom
a ground station might be once in eight years. On the other hand, with
airborne equipment, one might expect to be able to makemeasurementsin
about one out of five tries.

3. Weather Modification

The study of cumulus clouds for purposes of weather modification

closely resembles the study of severe storms except that the systems in-

volved here are much smaller. Again, the primary measurement would be that

of wind speeds. It would be desJrable_ but not mandatory, to supplement

wind speed data with temperature and moisture data.

In an operational cloud seeding program_ where you want to treat

cumulus clouds as individuals, you would want very detailed observations

on a total grid something like i0 to iS kilometers on a side. Within this

grid_ measurements should be made at intervals on the order of 500 to iS00

meters. One prime purpose of these measurements is to determine where is

the inflow into the storm and what is the size of the inflow area, so that

one knows where to put in materials to alter the cloud. The data must, of

course, be analyzed in real time. In other words, the data would be of no

use for more than about a 5-minute period. These measurements are taken

within 300 to 600 meters of the physical cloud.

From a research standpoint, the requirement of the S-minute

analysis period may be relaxed. Here, the emphasis would be on collect-

ing detailed data of many types, and then analyzing them at leisure_ the

aim being to increase our knowledge of cloud physics. The difference in

whether a cloud produces rain or not is often not the overall stability

or anything that we observe about the gross characteristics of the atmo-

sphere, but is the relationship between that individual cloud and the

environment and the rate of entrainment of additional air. In this regard,

then, measurements which illuminate the mixing process, fluxes of all

kinds, etc., are of primary value in a scientific sense.

The above paragraphs all discuss phases of weather modification

which involve the modification of clouds so as to produce rain. Another

technique of weather modification that hasn't been exploited or explored

concerns precipitation that evaporates before reaching the ground. Often-

times some_ if not all, of the moisture which is precipitated out of the

cloud never reaches the ground due to evaporation. It appears that one

could increase rainfall greatly if the evaporation could be reduced. A

study program would be necessary to learn more about the particle size
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di_tribution_ falling speed, and evaporation rate. Conceivably the cross-
beamtechnique might be used to aid in this purpose.

_. Radio Frequency Emission

There are radio frequency emissions from clouds due to mechanical

and electrical processes. A great number of electron transfer processes

occur in the process of growth, evaporation, and collision of water drop-

lets and ice crystals. M_ny of these give off emissions in radio

frequencies which if monitored and studied might give vital information

about the composition and processes going on in the cloud. These

emissions are not in the optical range so, therefore, are perhaps beyond

the scope of the cross-beam technique. Conceivably, however, a similar

device operating in the proper frequency range might be of use as a

remote sensing tool in cloud physics studies.

E. Mesoscale and Microscale Studies

1. Wind Profile Measurements

The measurement of winds on a scale smaller than global has many

direct and indirect benefits to society. In a direct way, such measure-

ments would be of use in special regions such as near launch facilities,

large smokestacks, airports, etc. Other problem areas involving wind pro-

file measurements, which are just as important although perhaps of less

direct usefulness at the present time, include the study of surface

friction, of winds near thunderstorms, their relationship to turbulence

and stability, etc. These problem areas are discussed individually in sub-

sequent sections. The measurement of wind profiles is discussed on a more

general basis here.

Low altitude winds are being measured today as a matter of course

by many techniques. These techniques all possess two major flaws. First,

of course, the presence of a tower or other structure on which the measure-

ment device is mounted may disrupt the flow pattern. Second, and just as

important, is the fact that these devices give basically a point measure-

ment. Generally, the wind measurement desired is not a point value but

rather a volume or area average over some region. If the cross-beam device

would actually integrate the winds and their statistical characteristics

over an area, it would represent a tool which doesn't exist now.

A suggested approach is to start by making point measurements

in the vicinity of a tower and using standard instruments mounted on the
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tower as a basis of comparison.* These measurementsshould be madeup to
an altitude of about 150 m.; that is_ within the earth's boundary layer.
Then_a measurementprogram without towers and utilizing area averages
would be in order. The area size would depend on the proOlem_ ranging
from a few hundred feet to a kilometer.

Wewould also like to have detailed wind profiles up to i kilo-
meter or more. Above 120 to 150 m._ however_ the wind is so nearly
geostrophic that for practical purposes it isn't too important to get the
fine resolution. Beyondthe 1-kilometer altitude, it would be desirable
to obtain wind profile measurementsat intervals of 300 to 600 m. in the
vertical_ to obtain wind shear data. This_ of course, would be of use in
determining the Richardson numberwhich was previously discussed in regard
to CAT.

The motions of the mesoscale are vertical as well as horizontal
and both ought to be measured. The vertical motions on a smaller scale
that contribute to evaporation and fluxes of heat and momentum_that is_
what we normally think of as turbulence_ should also be measured.

2. Statistical Properties of Turbulence

Various aspects of turbulence are discussed in sections on

clear air turbulence_ storms, and the upper atmosphere. These features

will not be repeated here. The emphasis in this section is the study of

turbulence in a general_ scientific sense. It has been said that one of

the most important problems on all scales is to identify the characteristic

motions of the atmosphere.

The problem of describing motions on the microscale has to be

done statistically. One wishes to know the frequency distribution of

velocities_ and the spectrum of velocities. That is to say, we desire the

energy distribution of the velocities according to time frequency. Ulti-

mately_ one would hope to be able to relate these factors to other meteor-

ological parameters. We must know how to relate the statistical properties

of turbulence to parameters we can measure on a larger scale.

Initial studies of turbulence could be carried out in conjunction

with the studies of wind profiles_ energy dissipation_ and surface rough-

ness effects. One would probably start with point measurements at tower

This approach is currently being followed by people from lIT Research

Institute in conjunction with other researchers from the NASA Marshall

Space Flight Center and Colorado State University.
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altitudes and expand from this to area averages which are expected to
be more useful.

The properties of the small scale components such as power spec-
trum, etc., tend to be isotropic. That is_ their statistical properties
do not depend on direction. This is generally true in the horizontal plane
and true of the vertical also if the wavelengths involved are small com-
pared to the altitude. There are_ of course, situations in which aniso-
trophy exists. For example, in squall lines the properties along the line
are expected to differ from those perpendicular to the line. These
organized systems should be recognized as such and not confused with the
more unorganized turbulence.

3. Ener_f Dissipation

Related to the study of turbulence is a special topic--that of

energy dissipation. Most of the kinetic energy in the atmosphere is dis-

sipated into heat in the turbulent scale. If we can measure the rate of

dissipation of energy_ we may be in a better position for forecasting on

a large scale. We must know specifically how the energy is being dissi-

pated, where itfs being dissipated_ and we must try to relate this to

large scale parameters. We must measure fluctuations on a very small

scale and then try to relate the dissipation to things we can measure

over large areas.

It had been largely thought that most of the energy dissipation

in the atmosphere takes place in the boundary layer near the ground. But

recent estimates on a continental scale have suggested that the dissipation

in the free atmosphere may be equally important in magnitude. There is,

therefore, a great need to measure energy dissipation in a free atmosphere.

We have no way of determining the distribution of this energy dissipation;

that is_ where it takes place geographically_ and whether it occurs in

connection with clear air turbulence zones. (This is suspected.)

The turbulence scales which must be measured depend on the

height. Near the surface, scales that are very small compared to height

are important. We must concern ourselves with fluctuations of the order

of 1 sec. Out of the boundary layer_ however_ not enough is known about

the frequency distribution of the dissipation to say precisely what scales

are important. This determination would be a goal of a measurement

program.
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4. Friction Effect of Surface Roughness

A problem that we don't know how to tacklej mainly because of

its complexity, is the way in which the wind profile changes as the wind

moves from one kind of terrain to another. It is known that these changes

are large and can have significant effects on weather. For example_ in a

big storm system we know there is going to be large scale convergence and

uplift and that there will be cloudiness and precipitation. The details

within this storm cannot generally be predicted_ however. In other words_

we cannot tell whether there will be lines or bands and where they will

be located. These lines or bands may cause quite intense rainfall some

places and nothing elsewhere. These patterns are determined not only by

thermal influences (which may actually be secondary) but by changes in

the wind profile dictated by frictional characteristics of the surface.

The study of these frictional effects is currently under way in

this country. Initial studies involve the change in wind profile that

results from wind going from a uniformly rough surface to a uniformly

smooth surface. The studies are hampered_ however_ by the lack of remote

wind measuring apparatus and the consequent need of towers. The effects

of friction are generally close to the ground and are thought to disappear

at about i kilometer under normal circumstances. In extreme types of

situations_ such as hurricanes_ the effects could go to 3 kilometers or

higher. It is important to characterize the difference in the winds over

different types of land surfaces, and how the wind changes in going from

one surface to another. It is conceivable that such studies might even

lead to a new philosophy of weather modification.

5. Aircraft O_eratin_ Problems

Several potential applications of the cross-beam technique

which are applicable to problems involving aircraft have been discussed

in other sections. Primarily these involve the SST and the effects on

it of CAT, ozone_ and atmospheric density measurements. There are two

other problem areas_ both associated with measurements near airports_ which

should be mentioned.

One critical problem is the mean wind shear at the lowest

layers of the atmosphere_ at night particularly. This is extremely

cricical in landing jet aircraft where they let down from recent very

strong head winds into a layer of much more slowly moving air very close

to the ground.
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An associated problem is that concerning the turbulent wake be-
hind the large jet aircraft. This wake mayextend a mile or more behind
the aircraft, and not be visible to other air traffic. This is particularly
serious for small airplanes following or crossing behind the large jets.

6. Launch Facilities

There are two areas of wind measurements which are particularly

important to the launching of large space vehicles. One of these concerns

the measurements of the winds and wind shears prior to launch to which the

vehicle will be subjected. The second is the measurement of the structure

of the turbulence and gusts at the time of launching. The problem of pre-

dicting the appearance of specific gusts or gusty situations from measure-

ments made some distance away should be studied.

7. Other Problem Areas

Problem areas of potential application of the cross-beam method

which have not been covered in previous sections are mentioned briefly

here. The first, a problem on the mesoscale, concerns the effects of

topography on the air flow and wave phenomena set off by mountains. This

is, in a way, related to the frictional effects of rough surfaces except

for the much different scale involved.

A second problem, one which is beginning to be realized, is that

of the effect of small variations in the sea surface temperature on meso-

scale convection patterns. This is one area where measurements have appar-

ently never been made. The problem is associated with temperature varia-

tions on the order of one-fourth of a degree and the resulting distribution

of winds. Some people think this has an important bearing on the determin-

ation of the types of weather structures that develop.

Another research area that might be explored is that of measur-

ing the speed of propagation of acoustic waves in the atmosphere. This was

discussed previously under the subject of thunderstorms, but is mentioned

again here because of its potentially more general application. The

atmospheric temperature can be determined if the speed of propagation of

acoustic waves is known. This then opens a whole new area of possible

usefulness of remote measurement techniques.
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Finally, it should be indicated that one need not rule out
extraterrestrial applications. As an example, it is suggested that the
circulation of the _rtian atmosphere is similar to earth's. Therefore,
at least a good part of the time there should be cyclones involved.
But, if there are_ apparently they are not visible by water phenomena,
lifting of dust, etc. A remote sensing technique that would detect these
would provide useful information.
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APPENDIXII

OPTICAL PHYSICS AND ATMOSPHERIC MODELS

A. Introduction

A description is given in this Appendix of the optical physics

considerations important to the atmospheric application of the cross-beam

correlation method. The employment of the cross-beam techniques in atmos-

pheric research requires the investigation of a number of areas. These

areas are related to the selection of useable spectral regions, optical

sources and possible tracers. The selection of useable spectral regions

involves the study of atmospheric intensity changing mechanisms resulting

from scattering (both Rayleigh and Mie), absorption, and emission properties

of the environment. Except for techniques which rely on backscattering, the

study of the atmosphere by use of electromagnetic signals requires either a

sharply defined volume of study (transmission studies between a searchlight

and a detector) or an extended source. The possible general extended sources

will be considered.

The cross-beam correlation technique requires a change in ex-

tinction or emission properties within the atmospheric volume under study.

Tracers are items whose temporal and/or spatial variations cause these

changes in or near the region of interest. Consequently, it is advanta-

geous to examine possible useable tracers within the volume in conjunction

with the selection of favorable spectral regions.

Techniques which use a single optical path can be generalized to

cross-beam techniques. The simplest system is one in which a restricted

source of radiation, a path, and a detector are used, as in searchlight

transmission measurements, pyrometry, and similar single beam measurements.

A more complex system which depends on backscattering of radiation from a

specific source to a proximate detector, e.g., radar and lidar systems,

could conceivably be developed for studies in which natural light sources

could not be used. The searchlight scattering techniqule_/ v_ich depends

on a variable scattering angle suggests some of the difficulties to be en-

countered in the use of cross-correlation measurements. In all of the

single path experiments, the extinction properties of the intervening medium

must be accounted for in data analysis. The cross-beam technique has the

capability of reducing the need for estimates of signal variations that are

not directly related to the volume under consideration. The present study

considers natural radiation sources, as well as tracers and atmospheric li-

mitations which apply to both natural and man-made sources.
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The scattering properties of various types of particles expected
in the atmosphere are dependent on the light wavelength and numberdensity
(also particle size distribution for aerosols). Rayleigh scattering is
applicable whenthe ratio of the diameter of the molecule, D, to the wave-
length of the scattered light, X , is small (D/_ _ 0.01). Mie scattering
must be considered for D/_ ratios larger than 0.01. (Rayleigh scattering
is the small particle limit of Mie scattering.)

_e scattering distribution is usually expr_ssed in polar coordi-
nates with axis along the direction of the incident light. The angular dis-
tribution diagram for a distribution of particle sizes is called an indica-
trix. The indicatrix will show a wavelength dependencewhenthe particles
are large enoughto require Mie theory application. The permanent gas and
water vapor molecules are small enough that Rayleigh theory can be used for
wavelengths longer than X-rays.

Scattering properties are important in the consideration and use
of extended sources. This is particularly evident in the case of diffuse
transmission of sunlight resulting from a combination of Rayleigh scattering
and aerosol scattering.

The intensity changing mechanismsas a function of altitude are
an important consideration in the application of the cross-beam correla-
tion technique to atmospheric research. Rayleigh scattering and oxygen,
ozone, and carbon dioxide absorption variations with altitude can be readily
predicted because of their strong dependenceon gas molecular number den-
sity. However_Mie scattering and the effects of water vapor content on
absorption are highly variable and must be designed for specific conditions.
Mie scattering varies with aerosol stratification, composition and size
distribution within the atmosphere. The effects of water vapor content on
absorption can best be described by the influence of extremals in concen-
tration. The scattering due to molecular water vapor is included in the
Rayleigh scattering model.

There are someareas within the electromagnetic spectrum where
absorption due to normally present gases and aerosols will tend to restrict
useable distances between the source and detector. This is particularly
evident in the 02 and 03 absorption bands in the ultraviolet range and
in the infrared region when large water vapor concentrations are present.

Part B of this Appendix discusses the extinction and emission
mechanismswhich are important to cross-beam studies of the atmospheric
environment. Scattering (both Rayleigh and Mie) is described. Total
absorption due to gases present in the atmosphere is discussed. Plots of
representative altitude variations of Rayleigh and Mie scattering and
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absorption coefficients are presented for the ultraviolet, visible and in-
frared wavelength regions. The Mie scattering coefficients are given for
three specific aerosol models. The effects of haze and cloud models on the
infrared absorption coefficients are also presented.

Part C is a detailed discussion of possible sources of radiation.
The information in the visible and near-visible spectrum suggests that
aerosol variation is important in both skylight and surface reflectance.
The use of thermal emission frc_ either the ground or atmospheric ozone
as an infrared source is cQmplicated by interference from atmospheric water,
both cloud and vapor. Airglow emitters are a highly specialized source,
being intimately related to the presence of chemically excited species
which may serve as tracers.

The information in Parts B and C suggest that an experimental
evaluation of water vapor as a tracer could be helpful, especially since
it is so variable in amount and distribution. Other natural tracers are
not as widespread, but this does not rule out their potential usefulness.

Part D summarizessomeof the problems related to the difficulty
of collimating extended natural sources. Additional problems discussed
include triangulation error due to beamwander, and experimental error
due to multiple scattering resulting from large turbulent cells outside
the two beamvolumes.

Part E describes somepertinen@ features of collimating systems.

B. Localized Mechanisms Changing Intensity

The concept of the cross-beam system requires a variation in

electromagnetic power received at the detector. This variation is due to

both source variations and changing conditions along the optical path. The

optical path can have intensity changes resulting from l) scattering into

or out of the path, 2) absorption, and 3) emission of energy by particles

within the volume of the beam.

The change in intensity of a beam in going along a pathlength

is ideally given by

I = I o e-B_ + Ic
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where _ = BS + BA consists of both a scattering contribution, 8S ,
(which sumsall scattering processes out of the beam) and an absorptiv&
contribution_ BA" !c corrects for scattering into the beam, and for
emission into the path. Since the in-scattering and emission are indepen-
dent of I o , the correction term, I c , is required. Scattering, absorp-
tion and emission are discussed and quantified in the following.

i. Scattering Mechanisms

_en electromagnetic radiation encounters particles _lose size

is comparable with or less than the wavelength of the radiation, the

phenomenon known as scattering occurs. This scattering is a change in

direction of energy flow resulting from the interaction between the parti-

cle and the radiation. The size of particles in the atmosphere and the

size distribution encountered for large particles suggest that for wave-

lengths between 0.1Sb and 2Sb the scattering can be treated in two areas:

(a) molecular scattering, and (b) aerosol scattering. Coherent scattering

or diffraction effects are not anticipated as long term effects, so the

common treatments of incoherent scattering are adequate.

a. Rayleigh scattering coefficients: Since the characteristic

dimensions of gas molecules are much less than 0.15_, the Rayleigh

scattering theory can be used to describe the molecular scattering from

the gaseous part of the atmosphere. Since the scattering effect is

averaged over all gases, quantum mechanical transitions sufficiently close

to a wavelength which might excite resonance in one molecular type will not

significantly affect scattering behavior. The basic scattering cross

section, _ , for a single particle and unpolarized ligh it_/ is

5 _ 2+A

XA N2 6-7A

while the differential scattering cross section_ da
dw

becomes

do _ 2
dw N- 6- 7£
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w_ere n is the index of refraction (w!lich depends on the molecular number
density N), k is the wavelength, _ is the scattering angle and A is

the depolarization factor. (For isotropic polarizable particles, A is

zero, while for 02, A = 0.054.)

For atmospheric scattering under conditions of low sun and short

wavelength, the loss of energy by single Rayleigh scattering is great

enough that multiple scattering also becomes important. Davle_/ presents

an example in which secondary scattering provides a.t least 16 percent of the

intensity of primary scattering, while tertiary scattering is about 3 percent

of primary. Further work on a molecular atmosphere with optical thickness

near unity shows that the ratio of diffuse to direct transmittance rises

signii'icantly as optical thickness goes from 0.2 to i._ ChandrasekharlS-_ /

has treated the problem of molecular atmospheres including multiple scatter-

ing and polarization effects. The angular distribution is affected by the

optical path, the relative weighting of primary and multiple scattering, and

the extent of the primary source. A two order of magnitude change in total

intensity between a minimum near the source and the horizon is found for

thin atmospheres.l__/

Rayleigh scattering coefficients as a function of wavelength and

altitude can be developed from the scattering cross section_ which is de-

pendent on the wavelength of the radiation; and the atmospheric number den-

sity (1962 standard atmqspherle_9/). The tables in Handbook of Geophysics

and Space Environment_/ have been extended beyond the original 0.27b to

4.0_ wavelength range and 0 to 50 kilometers altitude range in order to

develop the material presented in Figures 13_ 14.and 15. Figure 13 is for

the ultraviolet wavelengths (0.15m to0.38_); 14 for the visible wavelength

range (0.Am to 0.7_), and 15 for the infrared wavelength region (0.8_ and

longer).

The altitude variation is separable from the wavelength variation;

thus explaining the close similarity of the figures. However; there is a

wide variation in Rayleigh scattering coefficients from 2.4 km -I at 0.15_

and sea level to 2.7 x 10 -13 km -I at ll.7m and 85 kilometers.

b. Aerosol scattering coefficients: For particles with sizes

comparable to the wavelength of the radiation_ the Mie scattering formulae

should be used. Aerosol particles fall in this range. Although the Mie

expressions reduce to the Rayleigh form in the limit of very small particles;

the differential scattering cross section for aerosol particle sizes of

interest shows a strong forward peak and a number of subsidiary maxima in

contrast to the Rayleigh scattering. The averaging of the Mie formulae over

a model particle size distribution will tend to smooth the variation of

differential scattering cross section for a given wavelength and to suppress

strongly wavelength dependent features. However; the strong preponderance

of forward scattering remains. For water-based aerosols_ the Mie theory

leads to both scattering and absorption when the index of refraction of
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water is complex. Only the averaged scattering effects will be considered
for the aerosol scattering coefficients.

The Mie scattering of radiation by a single particle of spherical
shape is reviewed by van de Hulst. The extension of this theory to
systems of identical particles in randomorientation is madedifficult only
whenmultiple scattering has to be included. For a distribution of particle
sizes and for sufficient optical thickness that multiple scattering must be
considered, the prob]em is attacked by a variety of approximate methods.
de Bary and R_ssler2_/ have shownthat a variety of particle size distri-
butions for haze at 25 kilometers altitude can approximate measurementsof
the ratio of aerosol scattering at two angles. A more stringent require-
ment exists if not only the angular scattering function but also the number
of measurable particles (radius greater than O.08p) must be approximated or
the ratio of scattering functions at different wavelengths must be matched.
de Bary and R_ssler2-_/ suggest that improved agreement between theoretical
model and experiment resulted from a division of the aerosol size spectrum
into Aitken nuclei (less than 0.06_ radius) and measurable particles with
application of a modified Junge distribution to the large haze particles.
A choice of dN/d log r proportional to r -3"5 seemsreasonable at 25
kilometers altitude.

Other aerosol models have been proposed. Fraser2__ discusses two
aerosol models for particles in the size range O.O_to 20_. Onemodel
has an order of magnitude more particles per unit volume than the other,
but the extinction coefficient in the visible spectrum is more dependent
on the number of particles with radii between 0.0_ and 20_ than on the
total numberof particles including Aitken nuclei. Using a model with
neither multiple scattering nor aerosol absorption, Fraser indicates that
polarization and intensity data on outward scattered light was insufficient
to adequately define the aerosol present. Eldridg 2_/ suggests that aero-
sols to fit specific spectral distributions of transmittance can be created
by modifying the size distribution of particles. One approximation to mul-
tiple scattering by aerosols assumesthat the effect for the smaller aerosol
particles is similar to multiple Rayleigh scattering for an atmosphere of
optical thickness comparable to that of the aerosol.2__ However, to the
authors' knowledge a satisfactory multiple scattering treatment for the en-
tire aerosol size spectrum is nonexistent.

Additional studies of the effect of changing size distribution
profiles of model aerosols and model clouds are available. A particularly
interesting summaryby Deirmendjia in_/ compares two haze distributions and
one cloud distribution. Comparablescattering results were obtained from
haze with an r -4 distribution for particles above 0.i_ radiun, no
particles below 0.0_ and with a particle density 23 times greater than
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PKECEDING PAGE _,LANK NOT FILIaED.

that of another haze with an re -a %1-9-distribution having mode radius at

0.05_. The difference is due to particles at the upper end of the size

range. The cloud model has an r6e -l-Sr distribution for n(r) with a mode

radius of 4_. The cloud model shows more scattering in the visible range
than either haze model.

One haze and the cloud from this referencl_ are used in the

atmospheric models. It is important to note that the scatter diagrams ob-

tained by the author agree well with experimental measurements on natural

haze and fog.

The lack of an adequate solution for ice crystal geometry has led

to the use of approximate values of size parameters on the argument that

the ice crystals will be large enough that the highly variable portion of

the Mie angular distribution is not needed. 2-_/

There is a greater transparency in the 0.7 to 4_ infrared region

than in the visual range for thin clouds and a possible difference between

ice crystal and water droplet reflection at 1.48 and 1.97_ . There is,

however, a wide change between the effects of water in the near infrared

and in the i0_ window. In the latter the optical density due to water

droplets seems very important.2_6_

Three different aerosol models are presented in this Appendix.

The first is an extension of a model developed by Elterman 2-0_ and tabulated

for 0.27_ to 4.0_. This is called a clear-day aerosol and is assumed to

apply to a nonabsorbing medium with an altitude-dependent number density.

The angular distribution of scattering was not defined, but should show a

preference for forward scattering. The model was extended to 0.15_ and 9.5a

by extrapolating on a wavelength dependent graph, but the aerosol number

density curve has not been extended above 30 kilometers. Figures 16, 17,

and 18 show the ultraviolet, visible, and infrared wavelength regions. This

model varies through five orders of magnitude in the aerosol scattering co-

efficient with a much stronger dependence on altitude variation of aerosol

number density than on wavelength.

A haze model has been developed by assuming the addition of

Deirmendjian's "Haze C"II/ to the clear-day aerosol between ground level

and 6 kilometers altitude(a constant haze particle number density for this

range) and a decrease to the clear-day aerosol at 9 kilometers altitude.

The dense haze is characterized by particles in the 0.05a to 5_ radius

range with a number density of 2300 cm -3 and a distribution approximating

continental hazes. Two wavelengths, 0.¢5a and 9.5a_ were chosen for the

illustrations in Figures 19 and 20. The clear-day aerosol coefficients

are used between 9 and 30 kilometers.
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A cloud model was developed from the following assumptions: i)
between 2 and 3 kilometers altitude the cloud particle number density and
size distribution (i00 particles/cm 3 and 4_ mode radius)l-_/ are supple-
mented by the haze model; 2) at ground level only a clear-day aerosol is
used; 3) at i kilometer altitude the haze value represents an appropriate
transition; A) between S and 30 kilometers the clear-day aerosol is ade-
quote; and 5) the various points can be connected by straight line segments
on semi-log graphs. The i kilometer cloud thickness is within the range
reported in papers on optical properties of clouds, while the chosen cloud
mode!l-_/ is near the lower limit of the variations discussed by Carrier
et ai.27__/ Figure 21 showsthis cloud model's scattering coefficient for
0.45_. Figure 22 showsthat at 9._ the cloud has half as large a scattering
coefficient as at 0.4_, while the aerosol is somewhatmore transparent.

2. Absorption Mechanisms

In addition to transfer of energy from a ray by scattering, hence

changing the intensity of the ray, there is also loss of energy by absorp-

tion within particles. There are two basic types of absorption to consider,

depending on the phase of the particle. Various types of gas molecules have

possible structural rearrangements which permit them to convert certain

wavelengths of radiative energy into internal energy. Liquid and solid

particles will show collective effects which can lead to absorption (aerosol

absorption). Several of the gases present in air show absorption in various

areas, while water-based aerosols have many strong absorption features in

the infrared.

a. Gas _hase absorption coefficients: For signal evaluation

purposes, the total absorption coefficient for the gas molecules is the

important factor. This absorption will show dependence on gas composition,

altitude and wavelength. For the 0.i_ to 2_ wavelength range some gases

will be unimportant due to weak or negligible absorption while other gases

will show highly localized regions of importance. Some gases will show

essentially uniform mixing ratios, while others will show altitude-dependent

or time-dependent mixing ratios. The total absorption coefficient used in

this study will be presented after a discussion of various parts of the

model.

Nitrogen has no absorption features in the 0.i_ to 2_ wavelength

region which are strong enough to be seen in a nitrogen-oxygen atmosphere.

Oxides of nitrogen are minor constituents and usually are not strong enough

to change total absorption coefficients appreciably.
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Oxygenshows strong absorption in the Schumann-Rungecontin_mm
(0.13 to 0.175_), the Schumann-Rungeband spectrum (0.175 to 0.20_) and the
Herzberg band system (0.20 to 0.28 _) The oxygen absorption used is based
on laboratory measurementsof absorption coefficients by Watanabeet ai._28/
Goldstein and Mastrup_291 and Ditchburn and Young. 30/ Specification of

absorption coefficients in the Herzberg bands is complicated by the Wulf

bands of 02-02 complexes_ which cause pressure dependent terms to appear.

Absorption coefficients were not available for the weak infrared oxygen

bands.

Carbon dioxide is another molecule which can absorb in the vacuum

ultraviolet and infrared portions of the spectrum_ but it shows no absorp-

tion in the visible region. The vacuum ultraviolet spectrum shows various

diffuse bands superimposed on continua. The ultraviolet absorption co-

efficients were developed from measurements by _nn eta!. 31/ These measure-

ments could not be extended by him beyond 0.175_ due to equipment limita-

tions on determining small k values. A carbon dioxide content of 0.034

by volume was assumed at all altitudes. Estimates of absorption coefficients

for various infrared wavelengths can be made from the 50 cm -I bandpass table

of Stull et al 3__/

Ozone is an important factor for removing solar and skylight
o

radiation in the 2200 to 2900A wavelength range. It also produces signifi-

cant absorption in the vacuum ultraviolet and diffus_ bands in the regions
o o o 3_/

2200 to 37AOA 5500 to 6100A, and 7000 to 10_090A _i The ozon_ absorption

coefficients_ k _ are based on Tanaka et al 3A/ and Vigroux 3S/ An esti-

mate of k for the 9.6_ vibration-rotation band based on Herzberg' °s_b/

collection is 0.5 cm-l_ which seems consistent with data on infrared radi-

ation from the sky. Other ozone vibration bands are less intense and less

accessible. The ozone profile used appears in Ref. 4 for 0 to 50 kilometers

and has been extended to 85 kilometers altitude by adapting Brinkmann's37/

distribution. The ozone profile will show variation at all altitudes with

the greatest variation near ground level as notable in comparing Refs. A

and 22 below 5 kilometers.

Water vapor is a particularly troublesome problem in vacuum ultra-

violet_ infrared_ and microwave regions. Manyodiffuse bands_ isolated bands_

and Rydberg series are seen in the 750 to I400A range. A continuous absorD-
o 1 o

tion in the range 1450 to 1860A_ with maximum k for 124 cm- at 1655A_38_

is not the most intense vacuum ultraviolet feature. The infrared spectrum

shows very strong vibration-rotation features at 6.27_ and 2.66_ where less

than 0.01 precipitable centimeters of water will lead to significant attenu-

ation in the more intense portions of the bands. Wyatt_ Stull_ and Plas 3a_9/

have calculated infrared transmittances for water vapor with a i00 cm -I band-

pass and various amounts of water using a quasi-random assignment of weak
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lines within the bands. There are manyother vibration-rotation bands of
water vapor in the 0.57_ to 3.2_ region, l_e water vapor spectrum also in-
cludes many features between i0 and 13.5_ which can be problems on long paths.

The main problem with developing a water model is the large vari-
ation in mixing ratio at all altitudes. The water vapor level was taken as
either _0.3 gm/kg (0.04¢ by volume) or _ 30 _zm/kg(4¢ by volume), thus not
quite approaching the dry condition 0.01 gm/kg near i5 kilometers suggested
for meanmidlatitude mixing ratio but including the upper range of surface
mixing ratios.

The total absorption coefficient for gas phase species has been
obtained by summationat various wavelengths. Figure 2S showsthe wide
variation with wavelength in the ultraviolet range (0.15 to 0.58b). The
effects of water vapor concentration are quite pronounced at 0.18b and
noticeable at 0.16 and 0.]_7b in the ultraviolet. The change from a total
density dependent curve to an ozone density profile as the wavelength
reaches 0.245_ is apparent.

The numerical results from the beampower analysis showedthat a
restricted sight length might be useful to obtain significant signal levels
from the upper atmosphere. Twonarrow bands near 0.15_ and 0.2AShmight be
suitable for instrumentation above the atmosphere. The absorption coeffi-
cients are shownin Figure 23. _nere it is seen that the lower atmosphere
is essentially opaque in these spectral regions.

Figure 2A shows absorption in the visible wavelength range by
ozone, the principal absorber there. A few wavelengths in the infrared have
been used for preparing Figure 25. The _.26b curve is illustrative of C02
bands. The effect of ozone in the 9 to 10b range is illustrated in the
9.5b curve. The prevalence and variation of water effects in the infrared
are shownby the numberof wavelengths at which the variation in water
vapor causes major variation in the total absorption coefficient.

b. Aerosol absorption coefficients: The aerosol models discussed

in the section on scattering can also show absorption if the component parti-

cles can absorb. The clear-day aerosol was assumed to be nonabsorptive.

However, since water can absorb in liquid form as well as in vapor form in

much of the infrared, the haze and cloud models presented here show a greater

absorption than the clear day aerosol for wavelengths greater than 2_. At

9.S_ t_e curve in Figure 25 is adequate for clear-day aerosol, while Figure

26 illustrates the slight changes necessary below 9 kilometers for the haze

model (where the ozone is as important as the total water content for low

mixing ratios and the water effects are predominant for higher mixing ratios).

Figure 27 shows the effect of the cloud model with the great absorption capa-

bility of the large droplets.
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3. Emission Mechanisms

Radiation emitted from atmospheric constituents may be of either

resonant or black body origin. The gaseous state does not exhibit normal

black body radiation but the ambient temperature does affect the population

of excited states and thus the resonant emission. However, there are also

nonthermal methods of populating the radiating states such as photodissoci-

ation, collisional excitation, and similar mechanisms. The emission mecha-

nisms of atmospheric importance include both gray body (emissivity less

than i) and resonance mechanisms. A major problem in the use of thermally

excited resonance radiation as a source is due to competing absorption by

other molecu_s (both of the same species in appropriate energy states and

other species with overlapping bands) located between the emitter and the

detector. This difficulty is also found in nonthermal radiation when the

source is of significant optical thickness.

The monatomic gases of most interest in the possible application

of cross-beam correlation to atmospheric studies are the airflow emitters

O, N, Na, Ca + , K, H, Li, and He. In addition, three band systems of 02 ,

one band system of N2 +, and the vibrational spectrum of the OH radical are

known in airglow. All of these airglow emitters result from nonthermal

excitation and are generally strong at altitudes near i00 kilometers. The

emission strengths are fairly low, but a study of specific emitters such as

Wolff'J-/ study of 01 0.5577_ airglow is possible.

Ozone also shows emission in the 9.6_ band due to various exciting

mechanisms which seem important in the stratosphere. Figure 28 shows the

emission in the atmosphere in the 9.5_ region. This figure was obtained by

assuming that water vapor has the same relative population of emitting mole-

cules as ozone.

Gray body thermal radiation, which has an intensity equal to a

wavelength- dependent emissivity times the black body intensity for the same

temperature, is a reasonable approximation to the infrared behavior of

absorbing aerosols. The major problem with clouds and heavy hazes results

because they both absorb and re-emit infrared radiation. For thick cloud

cover, where the absorptive optical thickness exceeds unity, the radiation

from the cloud is proportional to that from a black body at the mean cloud

temperature regardless of whether the cloud is backed by a warm body or

empty space.

Except for the cloud emission, which has a temperature dependence

that tends to favor wavelengths longer than i0_ and has spotty altitude

and breadth characteristics, the only emitters of interest to atmospheric

cross-beam exploration are better used as tracers in and near the volume

being studied than as sources beyond the volume of interest.
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C. Radiation Sources for Atmospheric Cross-Beam Experiments

The atmospheric and nonatmospheric sources which cover large

solid angles as viewed from the earth's surface, from aircraft, or from

satellites are all related to the heat balance of the earth. For ultra-

violet, visible, and near infrared portions of the spectrum the most ob-

vious source is solar radiation scattered from atmospheric molecules and

diffusely reflected from surfaces - clouds, water bodies, vegetated soils,

cultural features. The infrared spectrum is a difficult area for finding

suitable extended sources because of the vibration-rotation bands of H20,

C02, 03 and the pure rotational spectrum of H20. Certain specialized at-

mospheric emissions, such as airglow and aurora, can be used as tracer re-

lated sources. Both general extended sources and tracer related sources

are discussed in this section.

i. General Extended Sources

General extended sources include skylight (as complicated by

Mie scattering from aerosols and diffuse transmittance through clouds),

reflected light from various surfaces, and near black body emission from

the earth's surface and from clouds. These all show variations in spectral

distribution, fluctuations in intensity, and variation of mean intensity

with choice of viewing angle. A portion of this nonuniformity is due to

meteorological changes. However, variations are also due to other mecha-

nisms, such as the decay of total molecular density with increasing alti-

tude and the variation of soil and cultural conditions on the earth's sur-

face. Natural extended sources will exhibit fluctuations which need to be

carefully evaluated in the data reduction of cross-beam results.

a. Skylight: Natural skylight has variable properties depending

on the altitude from which viewed, the solar zenith angle, the viewing di-

rection, the aerosol content of the atmosphere, and the albedo of the under-

lying surface. This radiation is produced by the combined action of Rayleigh

and aerosol scattering, molecular absorption, and surface reflectance of

sunlight. The absorption by ozone in the ultraviolet (particularly in the

Hartley bands) is the primary mechanism competing with scattering in the

redistribution of solar energy into skylight. The X -A dependence of

Rayleigh scattering and the small X dependence of aerosol scattering lead

to a wide variation in spectral distribution of skylight within the visible

range.

Spectral characteristics of daylight sky have been measured from

ground based detectors located up to i,_00 meters above mean sea level.
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Winch et al. A-_/ report that the intensity of skylight is greater at
1,400 meters than at lower elevations for the 0.3_ to 0.4_ region. The corre-
lated color temperature of skylight (measurementsmadewith direct solar
rays excluded from the spectrometer) has been observed to vary from near

o o4600 K to over &0000K. At a given ground station, the skylight energy
at 0.35_ ranges from about half to at least three times that at 0.7_ which
is only part of the reason for the change in correlated color temperature.
The most commonvariations noted in studies in the U.S., Canada, and Great
Britain are a variation from yellow to blue (presence or absence of direct
sunlight in the view of the spectromet_er) and a change from green to pink,
which seemsto correlate with haze._-_/ Dueto the importance of aerosol
scattering in providing sunlight intensity, the highest correlated color
temperatures are also associated with the lowest of the clear sky radi-
ances. Henderson and Hodgkiss4-_/ found that with approximately a 6° accep-
tance angle and a fixed monachromator setting that a randomfluctuation of
+ i0_ about mean intensity was experienced in i0 minute observations. Sastri
and Da_ report that a dry dust aerosol, blown from a nearby desert, is
also able to shift the color balance of skylight.

Jones and Condit4__ tabulated skylight illuminances characteris-
tic of different weather conditions. For clear sky conditions, the maxi-
mumtabulated il!uminances range from 364 foot-lamberts (for sun at hori-
zon) to 7,000 foot-lamberts with the sun 70° from zenith. A factor of 30

between the greatest and least i!luminance is also encountered for clear

sky conditions and a given solar elevation. For-hazy conditions maximum

skylight illuminance has been reported as high as 200,000 foot-lamberts in

the forward scattered aureole about the sun and a factor of 50 lower in a

viewing direction 90 ° away from the sun. General cloud cover tends to re-

duce illuminance from the hazy sky values and to switch the maximum inten-

sity from the horizon (characteristic of clear skies) to the zenith (over-

cast conditions). The diffuse transmittance through moderate cloud cover

still provides greater visual illuminance than perfectly clear sky with

direct sunlight removed.

A more severe change than that caused by clouds is due to solar

eclipse, sunset, or sunrise. During a total eclipse, the zenith skylight

drops by 3.5 orders of magnitude at 0.52_ as contrasted to nearly seven

orders of magnitude for change from full daylight to night. During eclipse

the intensity and spectral distribution are comparable with those observed

for solar depression angles of about 5°.4-_ In both eclipse and twilight

there is a spectral shift toward the blue.

Variation in sky brightness as a function of detector altitude

has been evaluated from aircraft, balloon, and rocket and estimated from

theory at higher altitudes. Under clear sky conditions, aircraft measure-
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ments show look-anKle_variations of aD_roximatel__y A00 to 5,000 foot-l_berts4
at 1.52 kilometers and 200 to 4,000 foot-lamberts at 6.1 kilometers._-_
Recent sounding rocket dat_a_/ indicate that the reduction of skylight
illumination with altitude can be predicted from a combination of Rayleigh
scattering and ozone absorption. These upper atmosphere experimental
results are applicable up to ii0 kilometers altitude.

In addition to the Rayleigh scattered portion of skylight, there
is a significant contribution from aerosols. This contribution is diffi-
cult to evaluate, since it does not show a regular variation with altitude.
Studies of solar attenuation, searchlight scattering and skylight intensity
variation demonstrate that the aerosols are stratified. Such stratification
has been determined to at least 30 kilometers altitude._-_ Although the
solar elevation angle changes the air mass through which Rayleigh scattering
takes place, the change in aerosol scattering due to solar elevation is
not easy to formulate because of the variation in the aerosol density
throughout the atmosphere. Even in the near infrared portion of the
spectrum_ where water vapor bands are a problem, distinct stratification
of aerosols is still measurable._-_/

Daytime skylight thus provides a highly variable source. The
fall-off of number density of scatterers will reduce skylight intensity
at aircraft altitudes. At any particular time, the intensity of the
brightest part of the sky is one to two orders of magnitude larger than
the least bright parts of the sky center "uniform" aerosol coverage.
Aerosol coverage variations changenot only the photometric intensity, but
also the spectral distribution of the skylight. An order of magnitude
changeof the ratio of near ultraviolet to near infrared intensity indi-
cates a possible change in required signal if broad band detectors and
wavelength dependent tracers are used. A four order of magnitude change
in photometric brightness for general daylight sky shows the need for
detectors with a wide useful range of signal received or for variable
apertures in the detection system. The short term intensity variation
noted maybe due to multiple systems of turbulence which would be of
interest or it maybe a problem due to aerosol stratification.

b. Reflected sunlight: For views toward the earth, the problem

of source definition becomes more complex. Not only must the albedo of

the earth's surface for the specific features viewed and specific angle

between surface and viewing system be considered, but a measured change

of albedo with solar elevation must also be considered. In addition, the

atmospheric scattering will contribute to the overall signal detected

from aircraft and satellites.

CoulsonS_/ has reported the reflectance as a function of solar

angle, detector angle, and selected wavelehgths for several soil types.
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Also presented are calculations showing the relative importance of Rayleigh

scattering, aerosol scattering and reflected signal as viewed from space.

For fixed detector angles and a wavelength of 0.643_, Coulson reports

that the reflectance of sand varies by a factor of three as the source

position varied from overhead to 78.5 ° zenith angle. Airborne studies of

albedo51_____52/using broadband instruments aboard a light plane and ground

clearances near 300 meters have measured average surface albedoes from 9.5_

to 69.4_ over farmland at various times of the year, and from 2_ to 75_

over lakes depending on ice cover. Wide variations in average albedo also

occur due to land use and snow cover in a given area. The ocean luminance

has been reported to increase almost 300_. in change of observation alti-

tude from sea level to 6. i kilometers.SS__ Reflectance from deep water

runs from 1.3_ to i03 5_/ depending on angles of sun and photometer rela-

tive to the surface.

The spectral distribution will depend not only on the spectral

character of the reflectance from the surfaces viewed, but also on the

loss of reflected signal by scattering and absorption, the relative im-

portance of Rayleigh scattering and aerosol scattering, the chance occur-

rence of specular reflection into the detector, and cloud obscuration of

the surface. The intensity will also be variable even for specified photom-

eter acceptance limits, due to transition from open water (3_ reflectance)

to cropland (I0_ to 17_ reflectance) to desert (24_ reflectance) in summer

flights. 52/ Snow and ice cover may further increase reflectance values

to _ 90_.

In a case where atmospheric scattering feeds 2.1 x 10 -3 watts

cm -2 sr -I into an orbital detector with bandpass 0.4 to 0.7_ and the atmos-

pheric transmission is 70_, the total signal over open water will approach

2.3 x 10 -3 watts cm -2 sr -I while that over deep snow will be near 9 x 10 -3

watts cm -2 sr -I. These variations due to background should be considered

in data processing since the signal modulation due to meteorological effects

will generally be much smaller, and the effective source distribution is

highly variable.

The use of reflected sunlight by aircraft and satellite mounted

detectors will also encounter variable intensity. Part of this variation

will be due to the underlying surface features, part to the look angle

(due to changes in reflectance and in atmospheric scattering), part to

the solar elevation (through both atmospheric scattering and surface re-

flectance variation), and part due to aerosol changes of atmospheric trans-

mittance. The situation is somewhat variable with the wavelength band

chosen. Surface reflectance can also be highly variable with wavelength

when narrow bandpass systems are used. The problems then become: what

portion of the total source is surface reflectance and what is atmospheric

when clouds do not interfere; how much does cloud cover distort the signal,

and is the effective source position beyond the feature to be studied? The
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daytime variability of total signal encountered here should not be as great
as for ground-based detectors_ since cloud cover will change the effective
source height but thick clouds tend to be good diffuse reflectors of sun-
light.

c. Thermal radiation: For wavelengths longer than 3_, the radi-

ance of black body sources at temperatures comparable to normal surface

temperatures becomes more important than scattered sunlight. In the infra-

red spectral region the emission from water vapor, C02 and 0 3 and the

effect of absorption-emission balance leads to interesting problems and

possibilities. There are windows in the 3-4_ region and 8-12_ region

that could be of interest, along with the possibility of tracer related

studies in the wings of the molecular band systems. Water vapor and carbon

dioxide have only minor absorption in the 8 to 12_ window, but a signifi-

cant ozone band does occur at 9.6_. The tendency of the ozone distribution

to be concentrated in the 15 to 30 kilometers altitude range means that this

feature need not interfere with aircraft observations in this window.

Infrared reflectance spectra of certain rocks indicate that de-

partmre from black body emissivity in the 8-12_ window should be expected.

Hovis and Callaha 5n_/ report reflectance values within the 8-12_ window

ranging from approximately 5 to 30_ for large samples of silicates. In

the 8 to 9.5_ region the reflectance of beach sand has been reporte 5d_/

to exceed 30_. Soi_ reflectances are often in the 5 to i0_ range through

the 8-12_ window.5-_/ Thus the average surface emissivities in the 8-12_

window can run from near 0.80 to 0.99 depending on surface features.

Further complications arise from the presence of water droplets

in the atmosphere. Emission spectra of the atmosphere56__/ at various zenith

angles indicate that the wings of the water-vapor line system will,con-

tribute signals in the 8 to 12_ window over long paths. Carlon,2-_/ in an

attempt to explain large fluctuations in i0_ signal transmission over a

400 meter path, succeeded in demonstrating that water droplet nucleation

in unsaturated vapor strongly affects the i0_ transmission prior to pro-

ducing a significant effect in the visible. The combination of surface

differences in emissivity and temperature with variable atmospheric amounts

of vapor, liquid, and solid water at temperatures ranging from 200 to 300°K,

can cause variations in received "gray body" radiation in the 8 to 12_ band

from about 5 x 10 -4 to 4 x 10 -3 watts cm-2 sr-l. The lower values could

result from thick cloud cover at 200°K absorbing radiation from the earth's

surface to a greater extent than they re-emit while the higher value would

occur with minimal precipitable water over a nonreflecting surface.

Although thermal radiation should be useful as a source regardless

of solar position relative to radiating surface, aerosol, or gas, the problem

of transmission through the atmosphere still exists. The absorption-
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reradiation features within clouds for infrared radiation and within
various molecular band systems will affect the spectral region used.
Since Mie theory has not been extended to multiple scattering, the scatter-
ing effects of clouds in the 3-4 and 8-12_ regions are hard to evaluate,
but the absorption is strong enoughto limit useful signal transmission
through such layers. The major problem with using other infrared regions
is the rapid attenuation of an original signal through gas phase absorption-
emission processes, thus tending to restrict usefulness of the bands to
very short paths or paths free of the primary absorber. However, these
short path regions maybe valuable for applications where the distant vari-
ations would provide overpowering noise.

2. Tracer Related Sources

There are several known emitters that could be used for specific

cross-beam studies. The major problems are i) what sort of interference

is encountered with other molecules and particulate matter; 2) is the op-

tical density sufficiently great that absorption-emission equilibrium will

limit the useful altitude ranges; and 5) is the variation in signal due

to turbulence or population mechanisms sufficiently great to be useful?

types of specific tracers include those with a localized altitude range

as well as some with a fairly constant mixing ratio over large altitude

ranges, thus opening several regions to observation.

The

Even the use of ozone as a tracer will involve problems. The

analysis procedur, es for determining ozone distribution over an infrared

observatory57--_-_ are designed to correct for water vapor, condensed water_

and the absorption-emission balance through the ozone layer. Since ozone
57 .

seems significant in the dynamics of the stratospherS_/_ technlques to re-

duce the importance of water vapor effects on the interpretation of the

9-i0_ spectral region should be developed. ,In observing the nighttime

sky at various zenith angles, Bell et al.5-_/ obtained data that suggested

strong interference by water vapor and C02 minor lines in the 9-i0_ region

and a near obscuration of the ozone signals for large air mass paths.

Although the ozone picture is very complex, ozone signal will provide about

7.8 x 10 -5 watt cm -2 sr -I in addition to the H20 and C02 background for

vertical viewing and will show a strong departure from secant scaling.

The apparently uniform mixing ratio of C02 would tend to make it

an undesirable tracer. Similar problems would be encountered with the

microwave spectrum of oxygen near 2.5 and 5 millimeters due to the large

extent of the emitting region and the temperature effects on line width.

However, when the excitation mechanism is not thermal (as in the 02 bands

in airglow) and/or the altitude range of significant density of the emitter

is fairly localized (the atomic emission lines in airglow), the possibility
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of applying cross-beam techniques to specific problems regarding the
emission exists. Aside from ozone emission_ the most likely areas are the
airglow emitters. Although Wolff7_/ has used cross-beam techniques to lo-
cate the height of the emitting area for Ol 5577Aairglow, the problems
with cloud obscuration_ low intensity level, and the variability of inten-
sity with time and geomagnetic latitude6__/ must be carefully considered
for any specific experiment utilizing airglow as a potential source.

Specific featu_'es of the water vapor spectrum may be useful as
traces for studies on relatively short paths containing highly variable
water vapor concentration. The variations of signal with change of state
of the water would need to be studied more extensively than yet reported._-_/
Experimental evaluation of portions of the water vapor pure rotational and
vibrational spectra would be needed to estimate the usefulness of water
vapor variability as a tracer.

D. Problems Related to Correlation Volume Definition

The cross-beam correlation experiments are designed to investi-

gate behavior within volume elements of the system under study. The data

processing is designed to seek a correlation of fluctuations in _ither

extinction or emission processes. This correlation is assigned to a

volume surrounding the minimum separation of the beams. If a pure emission

or a pure absorption were the only process available in the portion of the

electromagnetic spectrum chosen for the experiment, then assignment of the

volume causing a signal would be relatively easy. The fields of view of

the two detector systems could be determined geometrically, thus permitting

a location of the volume in which minimum beam separation occurred. However_

the atmospheric application of cross-beam techniques depends on scattering

of radiation and encounters variable refractive indices. Existing models

and experiments provide us with some insight into the effects of scattering

in providing noise terms and the effects or refractive index variations on

beam position and modulation.

Since there will be molecules and aerosols between the volume

being examined and the detector_ there will be scattering of extraneous

radiation into the detector as well as loss of some of the desired radi-

ation. For telescopes with small acceptance angles and the distances in-

volved, a collimated source is impractical. Yet the fine collimation of

the detector telescope will not prevent stray light from the Aw steradian,

variable-radiance source being scattered into the field of view of the de-

tector by the material between the correlation volume and the telescope.
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Although there is no ready indication of the problems to be
encountered by scattering from a large source into a well collimated
detector, there are somepapers which relate to this area. Using a fixed

sample and fixed detector acceptance angle, Ivanov and Khairullin 6_ have

demonstrated on a laboratory scale that increases of source angle produced

an apparent increase in transmittance of a turbid medium due to scattering

into the detector. Although their experiments did not extend to large

source smiles, they did demonstrate an increasing error in extinction

measLlrements with enlarged source angles whether the medium was _r,imamily
absorptive or essentially a pure scatterer. Steward and Curci bob_/ have

reported apparent increased transmittance as a function of increased de-

tector field of view for fixed sources and paths up to 15 kilometers. A

similar increase of transmittance should be expected with extended sources.

When the illuminating source consists of scattered radiation, e.g.,

skylight, the variation of scattering properties beyond the region under

investigation can be considered source noise. Yet, additional noise will

arise from scattering into the beam between the correlation volume and the

detector. Similarly, some signal degradation will occur due to loss of

radiation from the beam by scattering. The parameters of importance in

evaluating the introduced noise are optical thickness, scattering indica-

trices characterizing the path between the correlation volume and detector,

sources feeding the scattering volume in terms of radiance and angular

distribution, and the size of the acceptance cone for the detector. Knowl-

edge of the optical thickness will permit an evaluation of signal loss

and chance of noise developing. The indicatrix and effective noise source

for a short segment of the accepted beam will determine the effectiveness

of various portions of the source in providing noise. The acceptance cone

will dictate how great a portion of the scattered radiation will stay in

the beam. The problem then is not a measurement of extinction or trans-

mittance, but an evaluation of noise arising from scattering into each

detector field of view. The relation between signal loss and noise input

between the correlation volume and the detector is of interest.

A sufficiently detailed model for use in evaluating the importance

of scattering is difficult to formulate;* however, certain simplifications

can be made. Use of the Rayleigh indicatrix will tend to overestimate the

scattering noise if the detector is aimed overhead with overcast sky (the

most intense portion is at the zenith with decreasing illumination at the

sides). An aerosol indicatrix, with its limited backscatter and strong

forward scatter at small angles, could be used in conjunction with a de-

tector aimed at a particularly variable portion in an otherwise uniformly

radiant sky. If the indicatrix is uniform in the entire volume from which

* Appendix III of this report presents a model which has been developed

to simultaneously account for the principal mechanisms which affect

power at the detector.
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the noise could arise and if the possible noise source is identical for
all points in the volume, then the problem is simplified. For a 2w source
of uniform intensity and an albedo of zero on the ground_ about half of
the signal lost from the beamby outscattering is replaced by inscattered
noise. It is possible to devise cases where the scattering of noise into
the beamexceeds the loss of signal from the beamdue to the intensity
distribution of the radiation impinging on the scatterers. The noise con-
tribution of various areas of the source (outside the geometric optics path
defined by the collimator) can be estimated from the meanscattering indi-
catrix and the intensity distribution of the source, since the transmission
of the original signal will give an estimate of optical thickness and the
indicatrix will showthe relative contribution from different portions of
the source.

Changesin refractive index of the mediumin which the radiation
is traveling will cause at least two classes of problems. A progressive
change of refractive index, such as can result from cooling of the air,
can cause beamwander which will tend to limit the accuracy of triangula-
tion procedures. Microinhomogeneities in refractive index can cause a modu-
lation of total signal in addition to that resulting from the extinction or
emission processes in the region of interest, Both of these effects have
been observed in experiments with lasers. Observedbeambending on paths
of several kilometers has been in the range of 10-4 to 10-3 radians,63_____/
while 5 x 10-5 radians has also been reporte_ for a path length of 354
meters. These figures indicate that the refractive errors can be comparable
with the angular r_solution suggested for useable altitude measurement
from satellites. However, the reduced atmospheric pressure above ground
level may also reduce the beamwander. Since the atmospheric refractive
index will normally be approximately 3 x 10-4 greater at sea level than in
a vacuum, the beamwander measurementssuggest either a large change due to
dense aerosols with refractive indices of the particles near 1.3 affecting
the average, or a multiplicity of refractive index gradients. The beam
studies suggest that part of the modulation is due to local phase changes
and muchof it is due to small inhomogeneities moving through the path.°-_/
Thus refractive index variations must be considered from both triangulation
and noise aspects.

The noise scattered into the beamwill cause problems. Part of
the noise can comefrom areas which feed both beams, thus giving a false
signal, since the noise would not be completely removedby cross-correla-
tion processing of the detector outputs. This cross-talk feature is diffi-
cult to estimate at the present time, but may be one of the problems in-
volved in interpreting present experiments on wind velocity measurement.
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E. Optical Collimation Systems

i. Purpose of Collimation

The simplest, idealized cross-beam configuration assumes that

the power which arrives at the detector has traversed and/or arisen in a

line path so that power variations are due exclusively to atmospheric

variations along the line. In practice the electromagnetic power at the

detector is controlled by an optical system which admits radiation from

some finite viewing angles which may be sufficiently restrictive to con-

stitute a "beam" of relatively small cross section. It is essential to the

cross-beam technique that the measured power has arisen in and/or tra-

versed a defined "beam"-like geometry. In the practical case the "beam"

cross section replaces a position along the idealized line and an average

over the cross section replaces the point value associated _dth the line.

2. Characteristics of Collimation Systems

The characteristics of collimation systems are often depicted

(as they will be here) by rays outside the optical system which define

geometric quantities such as "field of view." It must be recalled here that

these rays have general validity only for an infinitesimal distance out-

sidethe entrance optical element since the optical system can see only

that radiation which arrives at the entrance element. The extension of

defining rays to large distances is legitimate if the medium is optically

uniform or if the effects of nonuniformities are incorporated separately.

In the present case the effects of nonuniformities are handled separately

as described in the other sections of this report.

Some collimation systems are sho_ in Figure 29. The three

definitive rays shown separate the space around the optical system into

regions which are distinguished by the fraction of incident energy from

them which is admitted to the detector. Prior to discussing the regions

of admittance it is essential to recognize that the entrance ports in

Figure 29 are not necessarily located in the instrument. They may be pro-

jections of a limiting aperture within the instrument an_ thus in effect

be located some distance outside the instrument. The entrance ports are

located outside the instrument in most telescope designs. Consequently,

in defining regions of admittance, a distinction must be made between

volumes which lie between the entrance pupil and entrance port and volumes

which lie beyond the entrance port.
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. Config__ration No. I in Figure 29 is conventional. Between the

pupil and port there is i00_ admittance for the region inside ray Y2"

Outside Y2 the admittance diminishes until it is 50_ at ray y. Outside

ray y, there is a further reduction in admittance until it reaches zero at

ray YI. Beyond the entrance port, ray Y continues defining the 50_ ad-

mittance locations. However, the meanings attached to rays YI and Y2 are

reversed. The i00_ admittance region lies inside ray YI while Y2 indicates

the extreme edge of the fractional admittance region. The telescope em-

ployed in atmospheric wind tests has the form of Configuration No. I with

the effective entrance port located by projection at infinity. (This is

the basis of the beam model used in the analysis reported here.)

Configuration No. 2 is a limiting case of No. i where the rays

Yl are parallel to the optical axis. This configuration can be approached

but not achieved for a telescope which is focused for great distances.

Configuration No. 3 is unusual in that radiation from distant

regions is attenuated by the optical system. In the region bounded by

the Y2 and YI rays there is i00_ admittance. Beyond the intersection of

YI rays and on the optical axis the percent admittance diminishes with

associated reductions for off axis regions.

If we think of the rays in Figure 29 defining a beam, it is

apparent that the edge of the beam is characterized by gradual roll-off

rather than an abrupt cutoff. It is conventional, however, to treat the

50_ admittance ray as defining the field of view.

The above characteristics are generally achieved by multiple

limiting apertures in conjunction with refractive lenses or special re-

flective surfaces. Fields of view depend on the location and size of

limiting apertures. For systems which are focused at great distance, the

minimum fields are limited to values on the order 1/2 arc minute half

angle. A more typical value is 1/2 ° .

The percent admission values shown in Figure 29 are idealized

since some losses occur at and within the optical elements. These losses

are due primarily to reflection and absorption. In the ultraviolet and

visible spectra the losses may be in the vicinity of 5_. However, for this

value coated elements would be required and quartz or fused silica trans-

mission elements would be required below 0.25 _. In the infrared at wave-

lengths >2_, transmission losses are a problem so that reflective elements

are generally employed with the exception of an entrance element which must

be made of a nonsilicate glass for 50 to 90_ transmission.
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Chromatic aberration may have a slight but probably insignifi-

cant effect on system optics over the spectral span likely to be employed.

In some cases the detector may not cover the entire image plane

in the optical system. When the system is focused_ the detector will "see"

a beam with essentially the same angular characteristics as the entire

optical system but the entrance port (for the detector) will be reduced

in the same ratio as detector arla/image plane area. When the system is

dcfocused_ the detector will see a be_ with the above reduced effective

port area and a more extensive roll-off region at its boundaries.
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APPENDIXIII

ANALYSIS OF POWER FLUCTUATIONS IN AN OPTICAL BEAM

A. Introduction

The cross-beam technique utilizes the covariance of received

signal intensities from two intersecting (or nearly intersecting) optical

beams to infer certain characteristics of the local fluid flow near the

intersection. Paramount to the success of the technique is that this local

fluid flow disturbs the local optical properties of the medium. The de-

tected optical signal then contains power fluctuations due to the disturbance

in question (as well as due to other causes).

The power in the optical beam, as it approaches the detector, is

continually being modified due to several physical processes. These are

scattering, both into and out of the beam, absorption, and emission. These

fluctuations may (a) provide a source of beam power; (b) generate optical

noise; (c) generate the optical signal of interest; and (d) tend to cause

the loss, by attentuation, of a signal of interest. It is the purpose of

this Appendix to develop usable mathematical expressions to be used in the

study of these fluctuations.

In Section B the geometrical model of the optical beam utilized

here is presented. Generally, one would not expect great differences in

results of later sections if beams with different geometrical arrangements

are used, except perhaps close to the optical telescope. The model used

here was chosen for its simplicity plus its direct application to systems

currently in use in field test operations by NASA and its contractors.

Section C presents the mathematical functions used herein for the distri-

bution functions for Rayleigh and Mie scattering.

Section D contains the logical development for the power scattered

out of a unit thickness* element of the beam, with specific expressions

given for Rayleigh and Mie scattering. Section E gives similar results for

the power scattered into the beam. Also, several special types of power

sources are considered explicitly, such as the point source, and finite and

infinite extended plane sources. In both of these sections, single scattering

only is considered. Multiple scattering is considered beyond the scope of

* Measured along the beam.
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this work, and not important for clear air situations. For haze and cloud
situations where multiple scattering does dominate, the cross-beam tech-
nique loses its attractiveness, as even a single scattering model can
indicate.

Sections F and G consider the other two modesof power changes,
absorption and emission, respectively.

The results of the previous sections are su_narized somewhatin
Section H where they are combined in the general beammodel. The resulting
differential equation is solved to give the power at any point along the
beamin terms of the beamgeometry and atmospheric properties. The solu-
tion is a generalization of the well knownrelation between the beampower
and the integrated, generalized extinction coefficient.

The solution in Section H is, in effect, differentiated in
Section I to obtain the change in detected beampower corresponding to
various perturbations. These relations indicate how a change in any of
several quantities (e.g., scattering coefficients, absorption coefficient,
source power), effective over a portion of the beamlength, modifies the
received power at the optical detector.

B. Geometrics

The optical beam used in this study is explained by means of

Figure 30. The entrance area is determined by radius of the entrance

pupil (objective lens). The field of view is limited by the field stop.

The visibility of any point in the space in front of the objec-

tive depends on the lateral position of the point. Ideally, a point out-

side of the "field of view" is not seen at all; whereas a point within

the "field of view" is seen perfectly in the sense that all light emanating

from the point and falling on the objective is properly refracted and

focused. In actuality, there is also an intermediate region within which

a point is seen, but imperfectly.

Figure 30 shows the three general regions of visibility. The

portion of space which is perfectly visible is within the cone labeled

i00_, while the unseen region is outside the cone frustum labeled 04.

Rather than treating the intermediate region with mathematical precision,

it is standard practice to define an idealized field of view by means of

the 50_ visible line. The approximation consists of assuming the region

within this boundary is seen perfectly, while the remainder of the space
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is not seen. The assumption is expected to lead to inaccuracies only _ery
close to the objective lens, and to have little if any effect well removed
(say, i00 diameters) from this area.

Wethus define the beamfield of view to be the conical region
of half angle, Yf , with apex at the entrance pupil. The entrance pupil
has the radius, rp . The z-axis, in this Appendix, is aligned along the
centerline of the beam, directed outward, with origin at the objective lens.

Figure 31 showsan element of volume, dv , in the beam. Its
location is defined by the cylindrical coordinates, R , Yv , z It may
also be located, for convenience, by the spherical coordinates P , _v ,
Yv

The solid angle subtended by the entrance pupil at dv maybe
obtained by integration over the entrance pupil area. However, that area
is not oriented perpendicular, in general, to the vector along P The
solid angle subtended to a point on the beamaxis is given by (see Figure
s2)

2w _tan- L rp/Z

sin @ d@d_ c (III-l)

For a point off the beam axis, such as the location of dv in Figure SI,

we make the approximation

F : Fc cos _v (III-2)
P

In the above developments as well as in much of what follows it

is necessary to make simplifying approximations. The philosophy followed

is to use approximations that are valid for z >> rp but which may be

less accurate at small distances from the objective.

As a finnl preliminary step, we define the "power in the beam."

Each volume element, dv , has energy passing through it in all directions.

Of this amount, a portion is directed within the solid angle, Fp That is,

it is directed toward the entrance pupil. Thus, the power in the beam is

the energy per second which passes through an element of volume within the

field of view and which is directed toward the entrance pupil.
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C. Rayleigh and Mie Scatterin_ Distribution Functions

Radiation is scattered by small particles and aerosols. The

two types of scattering usually considered are the Rayleigh and Mie types.

The physical (atmospheric) aspects of these scattering modes are discussed

elsewhere. Our purpose here is to present the mathematical models of the

distribution functions.

The radiation incident on a small volume of scatterers is scattered

in all directions. The normalized fraction of the incident radiation

scattered in any specific direction is desired. The resultant distribution

of intensity* versus direction is known to be dependent only on the polar

angle, e , measured from the direction of the incident radiation.

The Rayleigh scattering model leads to the distribution function

p(e)= 5/4(i+cos2 e) (III-5)

The factor, 5/4 , arises from normalization such that

SO 2wF w
_0 P(8)sin 8 dedY = An (III-4)

This provides an average of unity per steradian. It should be noted that

the Rayleighmodel is symmetric in that

P(8) = P(w-e) , (III-5)

that is, back scattering and forward scattering are equivalent.

The Mie scattering model, used for larger scatterers, tends to

be highly directional, with forward scattering preferred. Deirmendjialnl--i/

gives curves and tabulations for several wavelengths and polydispersed

* For a specific wavelength and aerosol or particle size distribution.
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susp'ensions. In general, they maybe categorized by the large peak in
P(8) at e = 0 , attenuating to a value of one to five orders of magnitude
less at e = w/2 , and remaining relatively uniform, with small fluctuations
between 9 = w/2 and 8 = w . The following approximation was therefore
developed:

p(e) = po e-se

, o _ 8 <_/2

P(8) = po e-s_/2 , _/2 _ e -<

(III-6)

where

po = 2(s2+l) / El+e-S_/2(s2-s+l) ] (III-7)

by normalization.

Table XI gives typical values of the parameter

situations.

ws for specific

TABLE XI

MIE SCATTERING PARAMETER s ws

Visible (0.5 b)

Infrared (i0 _)

Cloud Model Haze Model C Clear Air

25 14 5

14 8.5 5

D. Scattering Out of the Beam

Let E(z) be the total power in the beam at any distance, z ,

from the objective lens. The power is usually expressed in lumens or watts,

with watts being used here. The intensity of the beam is given by Ein t

watts/area steradian. Both E and Ein t are wavelength dependent, but that

dependence will be suppressed here. E and Ein t are related by
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E(z) = J Eint FpdA

where the solid angle, Fp , subtended by the entrance port or its equivalent
is defined by (III-2), and the integral is over the cross section of the
beamat z .

The scattering coefficient, ks , is the fraction of the energy

or power scattered in a unit length. It has units of length -I. The power

per unit area which is in the beam and incident on a differential volume

of thickness unity and area dA , located at R , Yv ' z (see Figure 51),

is given by

2w tan -I rp/Z

EintFp= Eint e°s Jv f l sin _ d_d_c

_0 _0

(III-9)

Carrying out the integrati'on, and approximating cos _v with the first

two terms in the power series expansion for R/z small yields

1

EintFp = Eint(2w)[l-l(R/z) 2] {l-[l+(rp/Z)2] -2 }
.(Ill-lO)

The total power which was in the beam and is scattered from a slab of unit

thickness is thus

2w z tan yf

Eso : < f0 ksEintFp RdRd'v watts
(III-ll)

Using (Ill-lO) in (III-ii) and assuming k s and Ein t are constant over

the cross section, we obtain

Eso = 4_2ksEint {l-[l+(rJz)2]-l}{(1)z 2 tan2 _f-(i/8)z2 tanA _f} •

(III-12)

Equation (111-12) gives the power scattered from a segment of

the beam of unit thickness in the z-direction. This scattered power is

written in terms of the input beam intensity, the scattering coefficient,
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and factors relating to the beamgeometry. The more familiar form of
(III-12) occurs if (III-8) is used to replace Ein t with E . Carrying
out this step yields, simply,

Eso = ksE (III-35)

Neither of Eqs° (111-13) or (111-14) is complete for our purposes.

Both give the total power scattered from a part of the beam, but not all of

that power is scattered out of the beam. That is, some of the power is

scattered but remains within the beam and will still be seen by the optical

detector.

We require, then, the fraction of the scattered power which is

directed toward the objective lens -- that is, lies within the solid angle

subtended by the objective lens. For an incident ray at an angle 8d

with the vector p (see Figure 35), this ratio is

' (III-14)

F being the solid angle subtended by the objective. The total power

scattered but retained is then

E
sot : F 2_ 'nzuO Jo tan 7f_ksEintCOS _vJ0 J0n2Wntan-lr/z[£ sin _ d_dYc!_.RdRdy ,

(III-15)

which is obtained by integrating over all possible incident angles, 8 ,

which define the power in the beam passing through dv , and then by

integrating over all elements, dv , in a beam cross section.

Now, the ratio R is a complicated expression due to the com-

plexity of the definition of the region of integration in terms of e .

To avoid this unnecessary complication, the following argument is put
forth.

The power scattered but retained within the beam, Eso r , is of

higher order in R/z than Eso , so it is sufficient to consider only

the first order approximation for Eso r . To this end, we neglect the

P_-dependence of thafraction of power retaine_, and use that fraction
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obtained by consideration of a volume element on the beam axis. Also, we

neglect the dependence of R on 8d , in spite of the fact that such

dependence exists and the configurations can be readily shown as dramatic

evidence of such. The rationale of the approach lies in the fact that for large

z , the solid angle, F , approaches zero so the approximation becomes

exact, while for small z , the volume of scatterers approaches zero so that

relatively little scattering occurs. Thus, it is assumed that Eso r can

be suitably approximated by the scattering of a ray incident on a volume

element on the beam axis and which is directed taward the center of the

objective lens, a slight overestimate.* R then becomes

R Ftan-l(rJz )= ½ P(e)sin e de

uO
' (III-16)

which is dependent only on z . Equation (III-i5) then is simply

Esor = _Eso (III-17)

For future reference, we give explicit forms for g for the

two types of scattering.

Rayleigh :

I_ =½ {1-¼[l+(rJz )2] -½ _-[l+(rJz )P]-5/P } (ni-18)

Mie :

1

PO { tan-l(rp/z Is (1 -2= l_e-S ) +(z/rp) 2 )
2 s2+l

"<l'(rJz)2)-½] } (nz-19)

The power lost from the beam per unit length due to scattering

out is then

* Reference to Section C of this Appendix and particularly Table XI in-

dicates the greatest overestimate of Dower retained after scattering

would occur with the cloud model, due to the greater directional

preference therein.
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dE = ksE(1- _)dz - Es°-Es°r (III-20)

E. Scatterin5 into the Beam

Radiation is scattered into the optical beam as well as out of

it. This phenomenon causes several effects. First, it serves to generate

the beam. That is, unless the telescope is aimed at a specific source,

the only energy which enters the optical system* must be scattered into

the beam from the direction of a source such as the sun. Secondly, the

fluid flow phenomenon of interest may be "seen" by means of this scattered

energy, in conjunction with the fluctuations due to scattering out of the

beam. Thirdly, a "signal" in the form of power fluctuations moving toward

the objective may be diluted by addition of more power fluctuations along

the beam.

Consider the incident power in a small solid angle dFI centered

on a ray through the volume element dv with the direction (_l,Yi) (see

Figure 54, page 144). _I is a polar angle measured from the z-axis, _I is

an azimuthal angle. The incident power is directed away from the objective

lens when _I = 0 The power incident on dv in this solid angle is

EI(_I'71 )c°s _I dAdrl watts ,
(iii-21)

where E_ is the incident intensity in watts/unit area/steradisn. Of

this incmdent power, the amount scattered in the volume dv is

ks dz
cos Jl E1 cos Jl dAdrl : ksEl dAdrIdZ (III-22)

The fraction of the power in (111-22) which is scattered into

the beam is given, again, by (111-14)

(III-14)

* Energy may also arise from emission, as discussed in Section G of this

Appendix. 146



where the integration is over the solid angle subtended by the entrance
pupil (objective lens). Since the angle, & , is not in general close to
n , the approximation for R used in Section IV is not valid here. Instead,
we use

. P(_-_I )
•n Fp , (III-25)

where Fp is the solid angle subtended by the entrance pupil and is given

in (III-2). The approximation, valid for large z , is equivalent to stating

that the ratio, R , is independent of the distance R of the volume element

from the beam axis.

Multiplying (III-23) by (III-22) and integrating over the beam

cross section of unit thickness gives

1

dEsi wz2tan2 "{f [i- q+(rJz )2_2 ] [I-¼ tan 2 YfldF I - 2 P(n-JI)ksEI (&' 7I )

(III-24)

watts per (steradian of incident power). Equation (III-2&) must then be

integrated over &n steradians to account for all incident radiation.

Specific examples are given next.

i. A Point Source

Let the intensity, EI , be zero everywhere except for a specific

direction (_I,YI) at which it is infinite,but in the form of a dirac delta

or impulse function such that

2W "11'

]0 $0 EI(¢I'Tz)sin _Id_IdY1 = E
(III-25)

which is the total incident power per unit area. Then, the integral of

(III-2A) becomes
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wz2tan 2 7fdE

dz 2

1

ks_ P('A'-_I)!I- <l+(rJz )2 _2 13_¼ tan 2 7f ]

(III-26 )
watts per unit beam thickness.

2. An Infinite_ Plane Source Whose Outward Normal is Directed Toward

the Entrance Pupil

The volume, dv , at distance z from entrance pupil, can have

power scattered into the beam coming from any portion of the plane except

that circle defined by the radius rm (see Figure 55). Power originating

within rm and directed through dv is already in the beam_ by our pre-

fious definition. Any scattering of this latter power occurring within dv

is thus considered scattering out of the beam (or, scattered and retained)

and has already been accounted for.

able for

We assume that rm is independent of R . (This appears reason-

Zp£ >> rp) The half angle, Yf , is defined by

tan Yf = rp/Z

We let the incident power intensity be given by

EI(J I)
:'[ " o , < . I2

(111-2 )

SO that (111-25) is again satisfied. Equation (111-27) states that the

incident power intensity is independent of direction within the hemisphere

a n/2 . _nat is, the power per steradian is constant.

Integrating (lll-2A) using (111-27) yields the power increase

per unit length of

dE = wz2tan2 7f ksE1_ i l+(rJz)2 2 i -k tan2 _ a , (III-26b)
dz 2 _ "-

where Q is dependent on the scattering model, having the forms
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Rayleigh:

Q

1 +5 (r/z

_ [(l+ (rjz2 )] ½L l+(rJz) 2
(iii-28)

Mie :

{s IQ
s2+l

5. An Infinite Plane Source Whose Outward Normal Is Directed Away from

the Entrance Pupil

This example is similar to example 2 with but two differences.

First, back scattering rather than forward scattering is of concern here.

EI(_) is nonzero over the hemisphere _I _ w/2 Secondly, we chose to

integrate over the entire hemisphere without excluding the solid angle

subtended by the entrance pupil. The result obtained is given by (III-26b)

with Q defined as follows

Rayleigh:

Q = i (III-SO)

Mie:

Q = po e-s_/2 (III-51)

F. Finite Plane Source

A finite plane source which is perpendicular to the beam axis

and is circular with its center on the beam axis is readily handled. One

simply modifies (111-27) to include a specific angle, _ = _M , as a limiter

rather than _/2 _M will, in general,__ depend on z and Zp_ (see

Figure 55). Also, one should define E as convenient.

150



Other finite (or infinite) plane sources can be dealt with in
the manner described here, but the integral limits becc_e complicated.
Numerical integration mayneed to be resorted to.

G. Absorption

Of interest here is the loss in beam power due to absorption.

Let ka be the absorption coefficient, with units of length -1- The

derivation follows precisely along the lines given in Section D of this

Appendix for the power scattered from a unit thickness of the beam, except

the correction for power scattered but retained in the beam is not appli-

cable for absorption.

The power lost due to absorption is thus

dE = kaE (In-32)
dz

H. Emission

Power increases may be caused by spontaneous emission at certain

wavelengths by various species. The emission is not normally given in

terms of a coefficient, k , with units of length -1. Rather, it is con-

venient to deal with the power, Pe ' emitted per unit volume of the atmo-
sphere.

The power emitted into the beam is thus

dEdz J0j0= ^2N pz tan 7fpe(Z) 4NFPRdRdTv (ni-3 )

Using (111-2) and retaining second order terms, as before, yields
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½_z2tan 2 _f
: pe(Z)- +(rJz)2 l-¼ _f_ (III-3_)

dz 2 .

watts per unit length gained due to emissions.

I° General Beam Model

This section collects together the results of Sections D to G

in a unified model. It is convenient at this point to think in terms of a

coordinate directed in the opposite direction to z , so that such a

coordinate takes on increasing values as the entrance pupil is approached.

Let this coordinate be g , defined by

g ----Zmax-Z
(iii-35)

where Zma x is the (arbitrary) origin for g .

The results of the previous sections _an be combined to yield a

single expression for the rate of gain in power approaching the entrance

pupil. The equation is

dE

_g (6 } 6Z ki(g)Fi(g)E + Z ki(g)Ti(g)
i=l i=l

(III-56)

The first group of terms represents the losses due to scattering out and

absorption; the second group represents gains due to scattering in and

emission. The summation on i from 1 to 6 is somewhat artificial but is

a convenience for distinguishing various effects. The ki are defined as

follows:
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kI = ks (Rayleigh scattering out of beam)

k2 = k s (Mie scattering out of beam)

k5 = ka (absorption)

k 4 = ks (Rayleigh scattering into beam)

kS = k s (Mie scattering into beam)

k6 = Pe (emission)

The first five have units of length -1 , the sixth is in watts per unit

volume.

Ccm_saring (111-36) with (111-18), (111-19), (111-20), (111-32),

(111-28), and (111-34) yields the following definitions:

Fl(z) = 1-½ _i-¼ [l+(rp/Z )2] -½-¼[l+(rp/Z )2] -3/2 }

F2(z ) = l-½--s2+iP° {l-e -s ta¢1-1(rJZ)[s(l+(Z/rp)2 -½) + +(r z<i J, )2_½])j'

(liI-3v)

Fs(z) = l

F4(_.) = 0

Fs(z)= 0

F6(z) = 0

xl(z): o

I2(z)= o

13(z)= o

I4(z ) = EQ416(z)

Is(z): _Qsl_(z)
1

_z2tan2 _f _ i-f!+(rJz)2"_2] [16(z) = 2 i . i i-¼ ta2 _f

,(mlm-38)
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where

% --3/4(i+oos2 _)

'poe-ST/2

Qs = [Poe-S(_-_I)

(111-39)

for a point source. For plane sources, Q4 is given by (111-28), (111-30),

and the like, while QS is given by (111-29), (111-31), or related ex-

pressions.

Equation (III-56) is a first order linear differential equation

whose solution is

where

_'(gp) a(gp) I= e E 0
+ _0gPeG(g) [i=Zl ki(g)li(g)]dgl (111-40)

(III-41)

gp is a particular value of
entrance pupil (z = 0) . E o

reference point, g = 0 .

g which is of interest -- generally at the

is the power in the beam at the arbitrary

It is of interest to note that the first term of (111-40)

-a(gp)
e E o _ is the relation considered as fundamental to the cross-beam

theory. The so-called generalized extinction coefficient, k , is given

by

k = _ kiF i (III-42)
i=l

However, reference to (111-38) shows that the generalized extinction co-

efficient includes absorption and scattering out of the beam. Emission

and scattering into the beam are therefore not included in cross-beam

theory with the generalized extinction coefficient.
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• The second term of (111-40), the integral term, is not part of the
usual cross-beam theory. Also, it is this term which contains the effects
of emission and scattering into the beam. Often, these effects are con-
sidered separately as contributers to "noise", or, in the case of emission,
as a tracer. Their integrated effect has not, to the knowledge of the
authors, been studied as yet in relation to the cross-beam technique.

J. Beam Power Fluctuations

The previous section presented the relation between received

beam power and the various physical processes on which it depends. Now,

the quantity of most direct concern in cross-beamwork is the change or

fluctuation in this power due to local changes in physical processes along

the beam path. The relation(s) giving this result is derived here.

We consider a small change, 6kj , in the value of the coefficient

kj We wish to localize this change to a small interval, 8g , located at

g = gv We form (I+Sj)E by considering the small incremental changes

in various parts of (III-40).

The factor G(g) beccmes

O(g) a(g) for g<g ]

G(g)----_ G(g) + Fj(gv) SkjSg for g > gv+Sg I (III-4S)

G_g)---_ G(g) + Fj(gv) Skj(g-g v) for gv _ g _ gv +6g

and

G(gp)-----> G(gp) + Fj(g v) 5kjSg (III-4_)

The integral in (III-40) may be written in three parts, with the aid of

(111-45) to yield
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;gPeG(g) L_--_I )Iki(g)li(g dg

uo

;gVeG(g) [iZ_-1 )Iki(g)li(g dg

uo

gv "=

6

gP G(g)+Fj(gv)6kj6g _ [ki(g)Ii(g)]dg (III-45)
+ e

v+Sg i=l

Equations (111-45) to (111-45) are exact expressions. We now

make use of the fact that 6kj is a small change occurring over a small

interval 6g and retain only the dominant terms (i.e., we neglect higher

order terms in 8kj or 6g). We thus obtain

(l+6j)E(gp) = e -G(gp) [l-Fj(gv)6kj6g ]IEo

+ ;gVeG(g)Iz ki(g)li(g)Idg
uO Li=l

+

v L'=I <ki(g)li(g)) + lj(gv)6k dg

+ e 2

ti=l

6 L

_gv+6g i=l

(III-46)
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The'next to last line of (III-46) is of higher order in 8g so is here-
after dropped. Portions of the integrals with commonintegrands can be
combined to yield

(l+Sj)E(gp) = e-G(gP)[l-Fj(gv)SkjSg] IE ° + /0gPeG(g )li_=l ki(g)!i (g)l dg

gv+Sg-r

+ Ij (gv)SkjJ eUtg)dg
gv

+ Fj(gv)SkjSg eG(g) ki(g)li(g dg •

v+Sg Li=l

(111-47)

Subtracting (111-40) from (111-47) and retaining only the first order

terms in (SkjSg) leaves

OjE(gp) = 8kjSge -G(gp) Fj(gv) o+ FgVe G(g) _-

uo i=l

7

ki(g) Ii( g)_ d_j

G(gv)lj+ e (gv)
o (III-48)

Finally, the expression in square brackets is seen to be, within a multi-

plicative factor of e-_gv), the power in the beam at gv , so that

(III-48) takes on the simple form

8jE(gp) = 8kjSg{e-G(gP)/e-G(gv)} {ij(gv)_Fj(gv)E(gv)} . (III-49)

The terms in (111-49) are easily identified as follows. The

loss in beam power at gp due to an increase 6kj in the scattering out

(or absorption) coefficient kj over a length 6g at gv is given by

the factor of (111-49) involving Fo_(gv) The power in the beam at gv
is E(g v) and the fractional loss this power, at gv ' is 8kj6gFj(gv) .
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This effect is then attenuated over the remainder of the beamby the
factor

e-G(gP)/e-G(gv)--e
(III-50)

On the other hand, a gain in beam power occurs with an increase 6kj in

the scattering in (or emission) coefficient kj over the length 8g at

gv " The gain is given by the other factor of (111-49), which consists of

the gain at gv ' 6kj6glj(gv) , attenuated by the factor in (111-50).

It is also of interest to examine the effect on the observed

power of a small change in incident power, 6E , on an interval 6(1 at qv.

This can be simulated by using j = 6 in (111-49), which corresponds to

an incremental change in emission. However, correction must be made for

dimensional and geometrical differences. The same change in E(gp) occurs

if

61<6(=6Pe) = 6E(k4Q4+ksQ5) (III-51)

That is, a change 6_ in incident power is completely equivalent, mathe-

matically, to a change 6Pe given by (111-51).

A final statement is made regarding all of the equations developed

here. They are in a form readily adaptable to computer programming. Numeri-

cal evaluation is necessary because of the variations of the k. with
J

altitude discussed elsewhere. However, care must be taken in evaluating

many of the expressions (and in particular, (111-58)) for large and small

values of z . To retain numerical significance it is necessary in many

cases to employ series expansions in r_z or z/r , so that analyticalP
cancellation of terms of like order may be accomplished.
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• APPENDIX IV

EFFECTS OF NONI_EAL ENVIRONMENTS ON CROSS-BEAM CORRELATIONS

A. Introduction

The basic theory concerning the use of crossed or nearly crossed

optical beams for making turbulent flow measurements is discussed in many

papers and articles and will, therefore, not be repeated here. In the

theory, several simplifying assumptions are made concerning the environment

of the beams. These assumptions lead to methods of determining physical

quantities of interest in the turbulent flow studies. It is the purpose

of this section to relax seme of the idealizations and, by example, indicate

the changes to be expected in interpretation of the flew properties.

The study of nonideal environments will be limited to fixed

beams, for simplicity and ease in interpretation. Let us select a coordinate

system aligned with the optical beams. That is, beam number 1 is directed

along the x-axis, beam number 2 along the y-axis, and the beam normal,

perpendicular to the two beams, is along the z-axis. The intersection of

beam l, the beam normal, and beam 2 translated along the beam normal until

it intersects beam l, is given by the point (Xo, Yo, Zo) • The beam

separation is given by the distance, Az Furthermore, a time lag is

introduced between the signals from the two beams such that the signal from

beam2 is delayed by a time interval, T , relative to beam 1. Then, it

may be sh_/ that the covariance of the signal fluctuations is given by

O(Xo'Yo'zo+AZ'T ) =

< I1 > < I2 "_y_x l_otk(x,Yo, Zo,t)k(xo,Y, Zo+AZ,t+_)dtdxdy . (IV-l)

I1 and 12 are the beam intensities, which are to be averaged over time.

k is the extinction coefficient, which may be caused by either absorption

or scattering of power out of the beam. Emission and scattering of power

into the beam are not considered here.

The inner integral can be written in terms of the variances of

the k's and the correlation coefficient, R , between them (assuming a

sufficiently large integration time), yielding
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G(Xo,Yo zO +Az'7) :

ii/2
(iv-2)

It is at this point that certain idealizations are made in the basic cross-

beam theory. It is implicitly assumed that _ is uniform (homogeneous

flow) in some region around the beam normal and explicitly assumed that

R(x,y,Az,T) is separable so that its dependence on Az and T can be re-

moved from under the integral. Further, it is implied that the convection

sDeed of the fluid is uniform and aligned with the z-direction. That is,

the effects of other velocity components or of a nonuniform velocity mag-

nitude are not considered.

With the above assumptions, it is possible by analysis of the

measured covariance, G , to determine the behavior of the correlation

coefficient, R . From this, the following physical quantities can be

obtained:

i. z-Component of convection speed, w

2. Eddy lifetime.

3. Integral scale of turbulence.

_. Power spectrum.

These quantities are obtained from consideration of the family of curves

Xo,Yo,Zo+AZ, T)

G(Xo,Yo,Zo+O,O)
versus T

with &z as a parameter, and the envelope to the family. The convection

speed, w , is found from

w = a_z (iv-3)
T_
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where T. is the value of • at which the memberof the family defined
by Az is tangent to the envelope.* The eddy lifetime is obtained by
locating the time at which the envelope has decayed to l/e of its value
at T = 0 . The integral scale of turbulence is found from

: _® O(Xo,Yo, Zo+_Z,O)
L z JoG(xo, Yo, Zo+O,O ) dz ,

(IV-4)

and the power spectrum is obtained from the Fourier transformation of the

autocorrelation, _Xo,Yo,Zo,_)/G(xo,Yo,Zo,O ) , which is the member of the

family for which Az = 0 .

The above methods are applied in the present analysis to situa-

tions which violate one or more of the assumptions used, but which are

certainly to be expected in atmospheric applications.

B. Correlation Coefficient for Extinction Coefficient

The intensity of the turbulence** is indicated by the variance of

the extinction coefficient, _ , and the correlation coefficient (in space

and/or time) between coefficient fluctuations by R . For purposes of this

study, the variance and the correlation coefficient are considered indepen-

dently.

It is necessary to postulate a functional form for R which

agrees reasonably well with observations of turbulent flow while, at the

same time, is simple enough to allow analytic studies and/or direct physical

interpretation. To this end, we first consider the case where there is no

time lag. Thus, we require the correlation coefficient between fluctuations

at two points in space. For isotropic turbulence (which is assumed here)

the correlation coefficient can depend only on the distance, r , between

the two points and not the direction of separation. Without loss of gen-

eralitywe locate the origin of the coordinate system so that Xo = Yo = Zo
= 0 so that

Often, as an approximation, the value _' at which the curve attains

its maximum is used in place of _*

We use the term, turbulence, to include any cause of signal fluctua-

tions, whether it be flow turbulence in the usual sense or not.
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r2 = x2+y2+(Az)2

Many forms of R(r) have been postulated, 6-_/ with the exponential

function most common. Except for turbulence in its late stages where it is

dominated by viscous effects (low Reynolds number), the form

R(x,y,Az,O) = e-(X2ky2+Az2)i/2/L (iv-s)

appears acceptable. It fits velocity fluctuation data rather wet1, and

bears a resemblance to pressure fluctuation data. A better fit might be

possible by multiplying the right-hand side of (IV-5) by a power series or

Fourier series so as to duplicate the phenomena of sign changes in R ,

which are not possible using (IV-5) alone. It is felt that the attendant

analytical complications are not warranted, however, for this study,

particularly in light of the lack of agreement among measured correlation

data.

The value, L , is included in equation (IV-5) for dimensional

purposes, and, furthermore, is the integral scale of turbulence, as applica-

tion of equation (IV-_) will show.

Equation (IV-5) must be generalized to include effects of time

lag and a convection speed of the fluid. Considering, first, just the

time lag, experimental evidence indicates that the correlation should

decay exponentially with time. This behavior requires a multiplicative

factor of e-T/T where T is the eddy lifetime. The incorporation of a

convection speed requires additional considerations.

Consider a point (a small amount of fluid) located on the x-axis

(beam i), at time t = 0 , and another point on the y-axis at t = _ We

assume a uniform convection velocity with components u, v, and w in the

positive x, y, and z directions, respectively. The sketch shown in Figure

36 shows the projection in the x-y plane of the two points in question at

times t = 0 and t = _ . The distance, r , between the points is not

(x2+y2+Az2) but must be modified because of the convection.

The point on the x-axis has coordinates (x,O,O) at time t = 0 .

The point on the y-axis, at time t = _ , has coordinates (O,y,_z) At

time t = 0 , the latter point was located at (-uT,y-vT,_Z-WT) The

distance between points, at time t = 0 , is thus given by
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; 1 + 2

or

r2 = (x.u,-r) 2 * (y-v1-) 2 + (Az-w,r) 2 . (IV-6)

The same result is obtained, for uniform flow, by considering the distance

between points at time t = T For nonuniform flow, it is proper to con-

sider r as the separation at t = 0 , as above, where u , v , and w

are the velocity components at the point (O,y,Az).

Combining the previous results, we obtain

R(x,y, Az,T) = e
-T/T e- {[(X+uT)2+(y-vT)2+(Az

1

as the general form of the correlation coefficient to be used for study of

nonideal situations.

C. Effects of Nonuniform Turbulence

i. Gross Effects Obtained from Analytical Approximations

To determine the types of effects that might result from non-

uniform turbulence (more precisely -- nonuniform intensity of turbulence),

consider the hypothetical situation where k = i in some selected region

of space and k = 0 elsewhere. This problem is an approximation to the

physically realizable problem of a localized region of intense turbulence.

The actual shape of the region of high turbulence is unimportant at this

point.

Let us assume that the x-beam intersects the turbulence such that

k(x,O,O) = 1 for x I g x m x2 while the y-beam is such that k(O,y,Az) = 1

for Yl m Y g Y2 Then, dropping Xo ' Yo ' and zo , (IV-2) becomes
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G(Az;T) : e-T/T/'Y2f x2
< ii _ 12 > oyl a xl

1

'- 2 2] 2

e d_xdy .

(zv-s)

Now, it should be emphasized that, physically, (IV-8) represents

a multiple line integral along those portions of the beams which intercept

the turbulence region. Mathematically, however, the integral may be looked

on as an area integral over the rectangular area defined by Xl , x2 , Yl ,

and Y2 " Figure 37, page 163, indicates how this area, A , is related to

the turbulence region. One should take care in this type of figure not to

attacm any significance to the intersection of A and the turbulence

region, or to otherwise confuse the physical location of turbulence and the

mathematical region of integration.

Carrying the mathematical interpretation further, the value of

the integral in (IV-8) may be written, using the mean value theorem, as

_ -T/TAe-FP'G(AZ;_) e

< I 1 > < 12 > (IV-9)

where _ is the value of r corresponding to the mean value of the in-

tegrand in the area, A For the special ease where • = 0 (or, if the

convection speed is zero ) r is the distance from the origin, 0 , to a

point (x,y,Az) in the integration area. Thus, _ is a representative

distance from the origin to the area. It is not the distance to the cen-

troid, although that distance would serve as a first order approximation

in an attempt to obtain gross effects.

We now examine the effect, on G , of convection. First, let

us consider the transformation

Then, (IV-8) becomes

i"rl=

a = I ,-wTliT'

(iV-lO)
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Y2-vT __2+uT

- -T/TL2 I/,/xT - (_2+_2+a2)½d_dl] (IV-II)
G( z T) e e .

< Ii>< 12 >
l'VT +uT

Thus, in terms of the _-_ plane, the limits of integration are determined

not only by the location of the beam intersections with the turbulence

region, but also by the time lag, T In effect, the velocity components

u and v translate the integration region relative to the {-_ origin.

This translation changes the value, _ , which is indicative of the mean

value of the integrand, but does not affect the size of the integration

region, which is now

= (Y2-Yl)(X -Xl)/T'2 (IV-12)

The implications of this fact are evident in the example shown

in Figure 38. Here is depicted a horizontal "band" of turbulence located

just above the beam intersection and translating to the left with speed,

V (u = -V/_-_ , v = +V/_[2, w = 0 .) The location of the area, A , is

shown at a sequence of times starting at T = 0 It is obvious that

thus first decreases, then increases with time, leading to the conclusion

that, barring the factor e -_/T , the measured covariance, G , would first

increase, then decrease with T This would be true even for the case

Az = O.

Other situations can be looked upon in the same fashion. It is

clear that the factor e-m/T could, depending on circumstances, dominate

the time behavior. Also, the component of convection speed along the beam

normal, w (which was neglected in Figure 38), could dominate the picture.

Its effect, however, may also be looked upon as a translation of the area,

A , but in the z-direction rather than in the z-y plane. In any particular

problem, the actual location of the turbulence region, the convection

velocity vector, the eddy lifetime and integral scale of turbulence all

interact in producing the G(Az,_) curves. The important point is that

there is aDDarently no unique inverse transformation that will generate

R(x,y,Az,_) from the mensured covariance, G , when nonuniform turbulence

is present.
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The effect on the determination of convection speed in the zLdirec-

tion (see (IV-3)) of nonideal environment can be analyzed. Consider an

arbitrary member, _AZ,T) of the family of covariance curves, with param-

eter Az . Certainly, the point determined by setting T = Az/W is a

point on that curve. Define the curve, g(T) such that

= (Iv-13)

This curve intersects each member of the family at T = Az/w The slope

of this curve is dg/dT The slope of a member of the family is

_G(Az,T)/_T To prove that the curve g(T) is, in fact, tangent to each

member of the family at the point T = &z/w requires proof of

dm bT &z = wm

(IV-I%)

Proof of (IV-I_) then shows that the point of tangency, _* , satisfies

(IV-S).

The proof of (IV-IA) is straightforward when G(Az,T) is given

by (IV-2) and R is taken in the form shown in (IV-7), provided k is

independent of &z and all _z and T dependence is as shown explicitly.

In other words, (IV-3) holds for arbitrary dependence of k , u , v , and

w on x and y .

Before proceeding to exact, numerical evaluations of (IV-8) or

(IV-II), we remark that other forms of variation of the extinction coef-

ficient can be readily handled. For example, if the extinction coefficient

is equal to k everywhere except in a region (defined by beam intercepts

Xl ' x2 ' Yl ' Y2) where it is k+K , then

G(&z, T )

<11><12>

oo co

+ kK + .

-_ _ xl Yl

( v-15)
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2., Specific Examples_ Utilizing Numerical Integration

Equation (IV-8) (or, its equivalent, (IV-ll)) can be readily

evaluated by use of numerical integration procedures. An efficient method

is that of Gaussian Quadratures, which compute the integral as a weighted

sum of values of the integrand at selected, discrete locations in the

domain of integration.6_8_ Care must be taken of the possibility of a

derivative discontinuity in the integrand (for example, at E = _ = a = 0),

or near discontinuity which might occur.

Several situations were studied by means of numerical integration.

In all cases, the following values were selected:

L = 1,000 ft.

T = 300 sec.

w = 50 ft/sec

x2-x I = y2-y I = 3,000 ft.

Thus, a horizontal band of turbulence is depicted, whose thickness is

3,000_-2 feet, which has a component of convection speed along the beam

normal of 50 feet/second. The parameters which were varied were the loca-

tion of the turbulence band relative to the beam crossing and the u- and

v-components of convection speed.

As a first example, we consider the case where the turbulence

is centered around the beam normal (-x I = x2 = -Yl = Y2 = 1,500 feet),

and has a horizontal convection speed component perpendicular to the beam

normal. The numerical values chosen were u = -20 , v = 20 (Any other

sign combination such as u = -20 , v = -20 gives the same results for

_Az,T) .) Figure 39 shows curves for several values of beam separation,

AT , and the envelope to the family. As predicted, the velocity component

w can be readily obtained from the value, T* , at the tangency point.

Note the difference, however, between T* and the maximum, T' For ex-

ample, at Az = 5,000 , T* = lO0 and T' = 83 , a difference of 17%.

Figure 40 shows the effect of other components of convection speed

on the envelope for a centered band of turbulence. The decay of G with

T increases as the component of convection speed perpendicular to the beam

normal increases. The apparent eddy lifetime, given by T at G =

G(O,O)/e , is correctly T if the velocity vector is in the z-direction.

However, T is not obtainable if the direction of the convection speed is
unknown.
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Figure _9 - Co_ariance for Turbulence Patch Centered Around Beam Normal
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The autocorrelation is shownin Figure 61 for three velocity
vectors. The change in the autocorrelation is small, comparedwith changes
such as are shownin Figure 60, so are believed to be relatively unimportant.
Therefore, the power spectrum should be relatively uninfluenced by velocities
perpendicular to the beamnormal if the turbulence is centered about the

beam normal.

The integral scale of turbulence is obtained by examining

From (IV-8), we obtain

! •

2 2 2'9Li.C-(_z O) #Y2 _x2 - x +y +,_z j' = ' e , " ' dxdy (IV-16)

<I,><I2> / O
_y _ x I

which is obviously independent of convection speed.

Next, we consider the effect of the location of the turbulence

band with respect to the beam normal. Figure 62 shows results analogous

to those of Figure 39, but with the beams crossing below the turbulence,

so that Xl = Yl = 1,000 feet, x2 = Y2 = 6,000 feet. Here, we have again

chosen u = -20 , v = 20 (In this case, with the turbulence off center,

as opposed to being centered, the signs of the speed components are important

in determining the covariance, G .)

The normal velocity component, w , is again obtainable from the

tangency points. The envelope is of completely different character, here,

as compared to those shown in Figure 60. The phenomena of G increasing

with • before i1 decreases are as predicted in Section 5a.

Due to the changed shape of the envelope it is obvious that the

eddy lifetime cannot be ascertained unless u = v = 0 If the convection

velocity is directed alonc the beam normal, (IV-8) may be written

1

G(Az = w_,_) = e e _ _ dxdy

Z i

Thus, in this situation, the eddy lifetime may be found from

independently of the location of th_ turbulence band.

envelopes for several selected velocity vectors.

(IV-17)

G = G("r = O)/e

F i_nre 65 shows the

Also evident from FJ_re 62 is the changed shape of the auto-

corre_ation curve (Az = 0) The shade of this curve can be shown to bo

stroncly dependent on the transverse velocity componenis. An indication

of this is evident in the envelopes shown in Figure 65.
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Figure 41 - Effect of Cross Flaw on Autocorrelation for Turbulence

Patch Centered Around Beam Normal
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Thus, when the turbulence is not centered around the beamnormal, the •
observed power spectrum is influenced by other componentsof the convection
velocity.

Referring again to (IV-16), the determination of the integral
scale of turbulence, although independent of convection speed, can be in-
fluenced by the turbulence location. Figure 44 shows the covariance
plotted against Az for zero time lag, for the two turbulence band locations
considered. (Each curve is normalized to 1 at • = 0 ; they actually differ
by about and order of magnitude.) It is obvious that the integrals of the
curves are unequal. Apparent eddy size is thus dependent on the location
of the turbulence relative to the beamnormal.

The occurrence of nonuniform turbulence coupled with nonnormal
convection speed componentsappears to cause great difficulty in interpre-
tation of the turbulent flow properties from the beamsignal covariance.
However, it should be mentioned that the nonuniformity causes one useful
effect that does not occur in the ideal case. It is apparently possible to
determine the componentof convection speedperpendicular to the beam
normal. The procedure is outlined below, with the aid of Figure 45.

Curve 1 represents the envelope of the family of curves defined
when the beamnormal is centered in the turbulent region. The case shown
corresponds to Figure 59 where u = -20 , v = 20 . Curve 2 is the envelope
which would be obtained if u = v = 0 , with the beamnormal at the same
location. Curve 5 is obtained when the beamnormal is lewered a distance
r (2,500_ feet in this example). The peaking effect will be maximized,

--_%

in general, when the vector r is in the direction obtained by reflecting

the portion of the velocity vector which is perpendicular to the beam

normal about the x-axis. The tangency point between curves 5 and 2 defines

a time r** . That value represents the time required to transport the

turbulence a distance r in the x-y plane. (It is simultaneously convected

a distance wT** in the z-direction.) The component of convection speed

in the x-y plane is thus

Vxy : : 204 - . (Iv-18)

The actual tangency point cannot be located since curve 2 would

be unknown. In its place, the value T" corresponding to the maximum in

the envelope could be used, as is commonly done in determining w

Since the convection direction is not known a priori, it appears

that the above procedure is still applicable if the direction of r is
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varied until the highest peak is obtained. T" at the peak serves to esti-

mate the speed, Vxy , while the direction is obtained by reflecting r
about the x-axis.*

D. Effect of Wind Shears

The general form of the extinction coefficient,

- 2 2 2½
R(x,y, Az,T) = e-'l/T e-{!(x+uT) +(y-v'l-)+(AZ-WT) I /L) (zv-7)

is applied to problems involving variable wind speed by simply considering

u , v , and w to be functions of position. The exponent in (IV-7) is

proportional to the distance at time t = 0 , between a point on the x-beam

at that time and another point which arrives at the y-beam at the later

time t = T . Thus, the convection speeds are to be considered as functions

of y and Az rather than of x .

Two situations are considered. Both involve uniform turbulence

with intensity, k The first situation has no transverse convection

(u = v = O) but a w-component of 50 feet/second at y = 0 and varying

linearly with y (constant shear). The shear was varied from 0 to 0.025

sec-1 The second situation featured a uniform w-component of 50 feet/

second but a variable cross flow. The latter was oriented horizontally

(u = -v) and was defined by

Vxy= viv (Iv-19)

where the shear, V' . .xy ' was 0 025 sec -I Both situations utilized the values

L = 1,O00 ft.

T = 500 sec.

To evaluate the effect of the limits on the integrals in (IV-8), both

_,000 feet and i 8,000 feet were used with no significant differences found.

* It is recognized that this procedure is valid only for the extreme, but

well defined type of nonuniform turbulence considered here. No attempt

at generalization or extrapolation to operational situations is consid-

ered, although the concept, in general, seems valid.
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Let us consider the effect of the uniform shear in the z-direction
and no transverse velocity. First the value of w at the beamnormal
(50 feet/second) is correctly predicted. This was proven in Section 5a and
is shownin Figure 46 for the shear, w' = 0.g25 . Also shownin this figure
is the effect of w' on the envelope and hence, on the estimate of the eddy
lifetime. It is found that with this type of velocity variation the eddy
lifetime is underestimated.

Figure 47 shows the effect of w' on the autocorrelation.
Although there is an effect, it is considered small. Thus, the power
spectrum will also be affected, but not drastically. The integral scale
of turbulence is unaffected by wind speed since it is evaluated at T = O.

Turning now to the variable cross flow effects, with uniform w ,
the results shownin Figure 48 are obtained. The principal conclusions
are (a) w is correctly found; (b) eddy lifetime is incorrectly indicated;
(c) the autocorrelation and power spectrum is greatly affected, and
(d) integral scale of turbulence is unaffected (not shownin figure). The
peak in the curve occurs at

V' _ V_yxy

for the beamorientation used (45 degree inclination to the horizontal wind,

Vxy) and is due to the fact that, at this beamseparation and time lag, each
particle of fluid which passes the x-beam at t = 0 subsequently passes
through the y-beam at t = T Thus, except for the eddy decay with time,
the fluctuations along the entire lengths of the beamsare perfectly corre-
lated. This is an extreme case__ this strong peaking would not be expected
in real flows. Real shears occurring in the atmosphere could, however, be
expected to cause somepeaking_ depending on beamorientation.
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I_E_cED_I_ G pAGE I_LAblK NOT FIL&'_'D-

APPEI_IX V

EFFECT OF EDDY SIZE AND BEAM DIAMETER ON BEAM PURER

Consider an optical beam of width D measured in the direction

of fluid convection speed. We imagine idealized eddies which cause

sinusoidal fluctuations in the extinction coefficient, k . We desire the

effect on the fluctuation power of the eddy size and beam diameter.

Referring to Figure 49, assume, for simplicity, a beam of rectan-

gular cross section. The total intensity of the beam per unit beam width

relative to its average value, is

D

1 _o 2_i(t) = ; cos -- (x-Ut) _x ,L

or,

i(t) - L { Sin 2--_(D-Ut) + Sin 2-_Ut}2_D L L

The average power is then

_ lim i --_'T-- i2(t)dtP

I--'-->"" 2T J_T

or,

P : i - cos
L

This can be written, as well, in terms of the frequency, w ,

of the intensity fluctuations and the time, T , required for a point moving

with the fluid to traverse the beam. Thus,

D/L = _T .

Figure 50 shows the relative power in the beam versus 2ND/L (or

2wall) The power is, of course, zero when the eddy size is equal to the

beam diameter. It is obvious that eddies of smaller size than the beam

width contribute essentially no power to the beam. Thus, the higher frequency

fluctuations, relatively speaking, will not be readily observable.
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APPENDIX VI

DETECTOR TECHNOLOGY

It appears that the current state of the art of optical detectors

in the visible range of the spectrum is satisfactory for use in cross-beam

correlation measurements. That is, the noise that they contribute to the

total signal is much less than the atmosphere-generated noise so that the

noise limit is set by the atmosphere, not the detection system. In the

infrared range, the situation is not as good, with indications being that

infrared detectors are only marginal for cross-beam measurements. These

statements are based on using a set of fixed beams and with no limitation

placed on integration times.

In analyzing the usefulness of an optical detector, three sources

of noise must be considered.* These noise sources, discussed below, tend

to degrade the usefulness of any detection system and thus are undesirable.

For the cross-beam technique, each of two detectors measures the optical

power in a given frequency range as a function of time. This power con-

sists of a mean value, _ , and fluctuations about the mean. The signals

from the two beam_ are then cross-correlated. We denote by M the frac-

tion of the signal which is correlated, under the assumption that no ex-

traneous correlation arises from the detector system itself. That is, M

refers to the correlated signal arising from fluctuations in the atmospheric

extinction coefficient in the "correlated region" around the beam intersec-

tion or near-intersection.

One of the sources of noise, then, is the portion of the extinc-

tion coefficient fluctuation along the optical beam which is uncorrelated.**

The ratio of correlated to uncorrelated atmospheric or input signal to the

detector is denoted M/_ u . This ratio may be thought of as being related

* Much of this presentation is based on the excellent report by G. Johnson

and A.J. Montgomery. °-_/ Their notation and approach are followed

here.

** There is, of course, no sharp distinction between correlated and uncor-

related fluctuations, as might be implied in the above. Rather, the

amount of correlation generally decreases with the distance between

the small elements of length of each beam being considered. It is

helpful, however, to conceive of "correlated" and "uncorrelated" re-

gions_ recognizing that only integrated effects are actually avail-

able.
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to the numberof regions along the beamwhich are equivalent to the corre-
lated region. Thus_ if one assumeseach beamsees eleven regions which
each generate the sameamount of signal fluctuation_ but only one of these
regions is correlated_ then the ratio of uncorrelated to correlated power
is

: l0

This value seems to be of the order of magnitude that is currently being

observed in preliminary experiments.7-_/

A second source of noise is detector signal shot noise. It is

related to the signal intensity, being given by the relation

i_

Nss [hc(2Af)

where Nss = signal shot noise

S = signal ,

X = optical wavelength

QE = quantum efficiency ,

hc = 1.986 x 10 -19 micron-joules/photon ,

Af = bandwidth

and M and _ are as defined above.

Finally_ the detector dark noise_ Nd _ is that noise which the

detector causes in the absence of a signal. It may be expressed in the

form

S
- DAfM_

N d

188



where DAf is the wideband detectivity, in reciprocal watts. It, in turn,
is related to other commonmeasures used by detector manufacturers, by the
relations

: D*/(Aaf)

_l

D* = A2/NEP

where A is the detector cross-sectional area, D* is the detectivity in

1

cm(cps)2/watt for i cps bandwidth, and NEP is the noise-equivalent power
!

in rms watts/(cps)2

To illustrate the use of these relationships, two specific de-

tectors are considered for use in a fixed, ground-based detector system.

One detector is chosen to operate in the visible spectrum, one in the in-

frared. The following estimates of mean radiative power, based on a zenith

angle of A5 Q and excellent visibility, are used.*

Visible Infrared

Wavelength, microns

Wavelength band, microns

Background Radiance,

watts/(cm2-micron-steradian)

Mirror cross section, cm2

Field of view, degrees

Mean Power, watts

0.5 9.6

0.3 3.0

6 x 10 -3 2 x i0 -4_

i00 I00

0.25 0.25

2.7 x 10 -6 0.9 x 10 -6

For use in the visible spectrum, a type S-20 detector made by ITT

Industrial Labs is selected as an example. It is a multialkali (Cs-Na-K-Sb)

photomultiplier_ model FW-I43, with the following properties:

* See, for instance, F.R. Krau_e et al.8_ Other estimates, depending on

the application, may be used and a similar analysis carried out.
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_i
A 2 = 0.225 cm.

QE = 20 percent

NEP = i.i x I0 -IS watts/cps ½

A bandwidth of 1,000 cps and a ratio of correlated to mean signal,

M = 0.0001 (0.01 percent) are selected for this study.* This leads to the

following results :

i

= . 1014D* 2 04 x cm(cps)2/watt

DAf = 2.9 x 1013 watts -I

i

S/Nss = 1.6 x 103 _2

s/Nd : 2.9 x 109

The three separate signal-to-noise ratios are shown in Figure 51. It is

apparent from the figure that at the anticipated power level the detector

adds little noise to the system. It is limited by the atmospheric noise

under these conditions. Even if the mean power level decreases by a log,

the total noise given by

is relatively uninfluenced by detector noise. In that case, the ratio of

shot noise to atmospheric noise will be given by

_SS

- i/lO , approximately .

* These values are felt to be conservative but not unrealistic in light

of recent experimental work by lit Research Institute. I--_/
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In the infrared range the detector selected for study is a Ge:Cu

detector. The model number of one made by Raytheon is QKN-1009 and it has

the following properties:

1

A _ = 0.0AA cm.

QE = A0 percent

NEP = 2.1 x 10 -12 watts/cps ½

Again, assuming Af = i_000 cps and M = 0.0001, we have

D* = 2.1 x i0 I0

D&f = 1.5 x i0 I0

I

S/Nss: l.ox lO_ _

S/Nd: 1.sx lO6

S/_u =4o.1

Figure 52 shows these ratios and the nominal operating mean power. It

appears that, ideally_ the system is atmospheric-noise limited. However,

a one-half log decrease in either the mean power or the correlated signal

level will cause the system to be detector dark-noise limited. Thus, one

must consider the detector to be_ at best, marginal for this application.

There does not appear to be a significantly better infrared de-

tector on the open market. One should not consider the matter closed,

however_ even at the present time_ until the classified literature in this

area is referred to.

It might be expected that the shot noise will not be greatly re-

duced in future detectors since the quantum efficiency is the only detector

factor that might be improved and current detectors have reasonably high

effieieneies. Of course, one can lower the detector bandwidth, but then

integration time becomes of great concern. The dark noise, Nd , should be

expected to be reduced later as lower values of the NEP are attained.

Again, the classified literature should be studied in this regard.
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APPENDIXVII

INTEGRATION TIME REQUIREMENTS

The cross-correlation, R , between two functions, X I , and X2

is given by

:IoTR(T) = lira _ XI(t)X2 (t+T)dt
T---_

where T is the time lag introduced between the two.* In practice, one

cannot let T approach infinity, but must accept a finite value. Because

of this, the cross-correlation cannot be determined precisely; a certain

error will be present. It is the purpose of this discussion to estimate

that error as a function of the finite T , the time lag, and the assumed

characteristics of the functions.

First of all_ it will be assumed that the two functions each con-

tain a common signal, s(t) with the rms value, S , and that they also con-

tain distinct portions, nl(t ) and n2(t ) with rms values N I and N2

For simplicity it is assumed that N I = N2 = N .

The two functions X I and X 2 are each assumed to be normal

random processes with a flat spectrum over the range of frequencies passed

by a filter placed ahead of the correlator. The assumption of normality is

not expected to be too restrictive, but the shape of the spectrum is known

to be not flat. In fact, initial studies using a single optical beam indi-

cate that the power spectral density decays with frequency to the -5/3 to

-6/3 power._ The assumption of flatness thus leads to the inclusion

of more power at the higher frequencies, leading in turn to the expecta-

tion of more information per unit time, than truly exists. Thus, from this

standpoint, our estimates of integration time will be optimistic (low).

However, the general trends will be indicative of the true situation.

A final assumption is that the filter can be considered equiva-

lent (from a transfer function viewpoint) to a low pass RC filter with a

full bandwidth , B . (The low pass filter would have half-power points at

_B/2 cps.) The true bandpass filter would be expected to have a flatter

* Much of the basic theoretical development given here is taken from
J.S. Bendat.72-_/
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spectrum and sharper cut-off. This assumption compensates, to some extent,

for the lack of flatness in the input spectrum but, more importantly, allows

the analysis to be carried out with relatively little difficulty. It is

recommended, however, that a more detailed study be carried out to confirm

the findings given here and, perhaps, to shed more light on the effect of

bandwidth and power spectral density on the integration time.

Based on the above assumptions, the ratio of the cross-correla-

tion, R , to the standard error _n its estimate, a is

R

1

e-_N

where B = _BT ,

S/N = signal-to-noise ratio ,

k = i + e l+2ff + 2

and it has been assumed that _ >> i . It is noted that

lim k = i

so that R/a is influenced relatively little by k

Using the normality assumption_ the measured value of R lies

within a fraction_ P , of the true value of R 95 percent of the time if

PR is within +2a • Using this confidence level and the relation
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20 = PR

leads to

pe-_= 2_-½[k+2 (N/S)2+(N/S)A] ½ "

In making numerical estimates the values k = 2 and (N/S) 2 = i0

are used. The time lag, T , is to be interpreted, for cross-beam applica-

tions, as being measured relative to the peak in the correlation curve.

That is, the value T = 0 is used for that actual lag time which corre-

sponds to the translation of an eddy from beam I to beam 2. If the beams

are physically crossed, the true lag time would also be zero.

Let us first consider the peak in the curve where T = 0 , which

is used to determine one component of the convection speed.* For this

case, the curve in Figure $3 results. We see that to limit the error to

SO percent (with 9S percent confidence) requires a value of _ = 2 x 103

The correlations recently obtained by liT Research InstituteT__/ appear to

be in this range. The bandwidth used was i cps and the integration time

corresponded to i0-2/3 min. of data collection.**

To limit the error to l0 percent would require, at the same band-

width, 2S times as much data (about 4½ hr.). The alternative is to in-

crease the bandwidth. This, apparently, was not possible in the recent ex-

periments because the signal-to-noise ratio deteriorated at the higher fre-

quencies due to detector noise. Thus, it is clear that the required inte-

gration time, in practice, is a function of detector noise. That is, it is

possible to eliminate such noise by using a narrower bandpass filter (at the

lower frequencies) but a severe penalty is thereby paid in integration time

requirements.

When the time lag, T , is introduced, the situation is less

satisfactory. Again selecting (N/S) 2 = i0 and k = 2 , we obtain the

* We neglect here the possibility that the tangency point of an individ-

ual correlation curve to an envelope of such curves may be displaced

from the peak.

** In practice, the data tape was played back to the correlator at 32X

recorded speed. Thus, the correlator bandwidth was 32 cps and the

actual integration time was 20 sec.

197



l I J I I o

o
d

o

I
0

d
d

-<.

o

198

0

0

%
1

0

"o

No
0

d

o

._

r---t .r--I
a) E-4

O O
O .rl

4-_
m _

O h0

_ H
°rl

,--t m
G)

.r'-I

n [_)
0

4._

%
O m

%

O _
•_ .el

m O
% %

._
N

I

%

._
r_



families of curves shown in Figure 54. The major effect which is noted is

the large influence of the time lag on the required integration time to

maintain a fixed relative error. A second, less obvious effect is that for

a specified integration time and time lag there exists a bandpass which

will minimize the error, P .* This bandpass is

and, for the signal-to-noise values used here, the minimum relative error
is

Pin = 51._ qT/T

For the data presented in Ref. 75 the estimated relative error increases

from 50 percent to I00 percent at a time lag of about ¼ sec.

The rapid attenuation of precision with time lag, particularly

with larger bandwidth filters, leads to speculation that a different ap-

proach to locating the peak in the cross-correlation curve might be consid-

ered. The current procedure is to compute the correlation at several time

lags, with a specified accuracy, then locate the maximum in the resulting

curve. An alternative would be to compute the ratio, R/o , for a specified

integration time and for several time lags. The time lag which maximizes

R/o should then correspond to the minimum relative error and, hence, the

peak in the correlation vs. 7 curve.

In conclusion, it is clear that the problem of integration time

is not solved and, furthermore, cannot be considered separately. It is

highly dependent on such considerations as input power spectrum, bandwidth

selections and detector noise. A major complication is the relative un-

availability of data pertaining to input signal fluctuation level and power

spectral density. (The current work of llq]_l is a start in this direction. )

More work needs to be done in such fundamental areas as atmospheric noise

generation and random processes. Some light should be shed on the former

area by Midwest Research Institute's current studies on atmospheric models;

the latter area requires consideration of nonflat power spectra, current

filter designs, etc.

* For example, in Figure 54 at T : 5,000 sec. (50 min.) and T = 1/4 sec.,

the relative error is less for B = i cps than for B = 0. i or 10 cps.
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