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I. rnP.Er_rCTIOE 

The quasi-l inear theory o f t h e  s t a b i l i z a t i o n  of the garden-hose 

instabi i i i j i '  w&S first devehpec! within n_ kine t ic  (Vlasov) framework by 

2 Shapiro and Shevchenko and more recent ly  by Sagdeev and G a l e e 2  and a l s o  

Kennel and Sagdeev. Since the garden-hose i n s t a b i l i t y  serves as one of the 

simplest examples i n  which the  pr inciple  d i f fus ion  mechanism is the  adiabat ic  

( ra ther  than resonant ) i n t e rac t  ion  between waves and p a r t i c l e s  , 

4 

it is  of 

i n t e re s t  t o  ascer ta in  whether or not an adequate descr ipt ion of 

s t a b i l i z a t i o n  i s  contained within the  framework of a f l u i d  model. 

expected t o  be the case since the  i n s t a b i l i t y  i s  hydrodynamic i n  nature with 

the  growth r a t e  depending only on gross plasma propert ies  and not on the  

de t a i l ed  s t ruc tures  02 ihe &,ectroc G? fcn 2!fctr i51t icn fi-cnct-i ons. An example 

where such a theory sl:ould be of pa r t i cu la r  i n t e re s t ,  i s  the  well-known hydro- 

magnetic theory of t he  solar wind,5 which disregmds the  possible pressure 

anisotropy al together ,  altkough with increasing dis tance from the  sun, a 

p a r t i c l e  should acquire an ever larger  r a t i o  of v /v w i t h  respect t o  the  

so l a r  magnetic f i e l d  direction. As a fu r the r  example i n  which resonant wave- 

p e r t i c l e  interact ions a re  unimportant and the  primary d i f fus ion  mechanism is  

t h e  adiabat ic  interact ion between waves and p a r t i c l e s ,  V'ilk 6 has recent ly  

developed a macroscopic quasi-l inear theory of t he  symmetric two-stream 

i n s t a b i l i t y .  In  t h i s  a r t i c l e  we follow a similar procedure f o r  a garden-hose- 

unstable plasma and i n  f a c t  demonstrate t h a t  t l e  r e s u l t s  of t he  k ine t i c  theory 

of Shapiro and Shevchenko are recovered i n  a f l u i d  description. 

Such may be 

ll  1 

The physical s i t u a t i o n  under consideration i s  the  propagation of lav 

frequency waves p a r a l l e l  t o  a uniform, ex terna l  magnetic f i e l d ,  %, i n  circwn- 

stances where the  perturbing e l ec t r i c  f i e l d ,  magnetic f i e l d ,  and f l u i d  



, 

. 
3 

v e l o c i t i e s  l i e  iil the ?la?iz pdqezE.crC!ar t o  R.. It is wel l  lrnmn t h a t  f o r  

t he  case of isotrcrpic ? a r t i c l e  pressures t h i s  gives r i s e  t o  pure osc i l l a to ry  
a 

Aifvbn waves; howe vei-, f o r  s ' f l f lc iez t ly  l a r g e  ave_ra.g:~! p a r t i c l e  pressure 

p a r a l l e l  t o  Eo, ( P l l ) ~ ,  compared t o  average p a r t i c l e  pressure perpendicular t o  

(p  ) , t h e  wave per turbat ions axe purely growing. The conventional growth Eo> 1 c 
0 r a t e  f o r  wave-number k, y (IC), i s  given by 

VA 1 + .- 2 
C 

2 where v i s  the  Alfven speed (3 / 4 1 1 { p ) ) " ~ ~  (p) t h e  average mass densi ty ,  and A 0 
( ~ I I  )- a.nd (P. )- denote t h e  summation over species of t h e  p a r a l l e l  and perpen- 

1 . L  
\l m 

II'L - - ~  

dicular  pressures , i. e. L (PI/ ) and L (Plj ) respectively.  

and consider i n  Section I1 t he  time evolution of a uniformly turbulent  ensemble 

of such garden-hose-unstable plasmas within t h e  framework of a multi-  species 

f l u i d  model. Closure of the  moment equat ims  i s  obtained by neglecting t h e  

e f f ec t s  of heat flow. The small parameters of t h e  analysis  a r e  the  r a t i o s  o f  

growth r a t e  t o  Larmor frequency, and Larmor redius  t o  p a r a l l e l  wavelength, Le., 

kv I 

(1.3) 

I n  addition, it i s  assumed t h a t  t h e  wave disturbances grow a negl igible  amount 

i n  the  time it takes f o r  a thermal p a r t i c l e  t o  t ransverse a wavelength, 



~ 

a 

Under these conditions 02 i)Iesk ix tab5l i t .y  a quasi- l inear  analysis  i s  appl i -  

cable i n  determining t h e  react ion of the  plasna t o  t h e  unstable electromagnetic 

f i e l d  f luctuat ions.  

t h e  s l m  reac t ion  of the  average p a r t i c l e  s t r e s ses  (P ) 

considerable in te res t .  

I n  par i icu lar ,  f o r  pm3oses of describing s t ab i l i za t ion ,  

and (P,)c i s  of II 
Tc, t h i s  end a coupled system of equations i s  obtained 

describing the  time evolutioil of (P )2, (P,)c and t h e  spec t r a l  energy density,  II 
6 B  @ ( k , t ) ,  i n  t h e  magnetic f i e l d  f luc tua t ions ,  srhere 

6 B  (E( kl t ) %( k2, t ) ) E $ ( kl, t )S ( kl+k2 ) 

f o r  unif orml:? turbulent  s i tuat ions.  

brhere averages a r e  denc,ted by ( ) )  i s  with respect  t o  a s p a t i a l l y  uniforni 

ensemble and has been described i n  d e t a i l  elsewhere. 7r8 

The averaging procedure used throughout 

It should be noted, 

however, t h a t  insofar  as the  calculat ions presented i n  t h i s  a r t i c l e  include 

only the  in te rac t ion  of modes with themselves and not t h e  e f f ec t s  of three-  

(o r  higher ) wave couyling or nonlinear wave-?art i c l e  interact ions,  these 

ensemble averages may a l s o  be viewed as s p a t i a l   average^.^ The coupled system 

(given by Eqs. (2.32)-(2.3!4-)) which describes t h e  time evolution correct  t o  

O(l/Sb, 2 ) of the  quant i t ies  ( P j l ) ~ ,  (P,)c and p B j  i s  i n  agreement with t h e  
n J 

corresponding r e s u l t s  of Shapiro and ShevchedtoL based on a k ine t ic  model. 

The r e a c t i m  of the  p a r t i c l e  s t r e s ses  t o  t h e  unstable electromagnetic f i e l d  

f luc tua t ions  is  such t h a t  the  p a r a l l e l  (perpendicular) pressure decreases 

( increases)  i n  time u n t i l  

and the  system passes t g  a marginally s t a b l e  s ta te .  I n  addition, it should be 

noted t h a t  t h e  r e s u l t s  of the k ine t i c  theory a r e  recovered i n  a f l u i d  model i n  

srhich closure i s  achieved by the  neglect of heat flow. This i s  i n  contra- 
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d i s t i n c t i s n  t o  t h e  macroscQyic theory of the  syrmetric two-stream i n s t a b i l i t y  6 

where t h e  closure a s s u q t i o n s  have an appreciable influence on the  t i ne -  

There is  an addi t iona l  point of mathemat i c a i  i n t e r e s t  

which arises with regard t o  t h i s  i n s t ab i l i t y .  

garden-hose problem with growth rate given by Eq. (1.1) i s  i l l -posed mathe- 

We remind t h e  reader t h a t  t h e  

matically?jl* The divergent behavior of y 0 (IC) as llcl --3 03 i n  general precludes 

t h e  existence of t he  inverse s p a t i a l  Fourier transforms of t h e  f luc tua t ions  

fo r  t > 0. 

t h e  ana lys i s  of Section 11. 

f o r  Iki - lkol where k i s  given by Eq. (2.20),  thus  keeping the  problem w e l l -  

p ~ ~ b e d  1116tbeiis.tleall~~. 

Shevchenko i n  the  k ine t i c  theory or" t h e  garden-hose i n s t a b i l i t y  we hasten t o  

0 To t h i s  end we r e t a i n  f i n i t e  Larmor radius  correct ions t o  r (1:) i n  

This leads t o  a na tura l  cut-off i n  the  grar th- ra te  

0 

Althxgh t h i s  p i n t  vas overlooked by Shapiro and 

2 

add t h a t  t h e i r  analysis  i s  readi ly  amended t o  give the  same modified growth 

r a t e  and cut-off k It i s  assumed t h a t  such correct ions have been made when 

comparing t h e  macroscDpic and k ine t ic  theor ies  of s t ab i l i za t ion .  
0' 

11. THEORY 

( A )  The Fluid Model 

An exact consequence of taking ve loc i ty  moments of t h e  Vlasov equation 

f o r  t h e  j ' t h  species d is t r ibu t ion  function f .  is t h e  chain of equations 
J 

advancing the  densi ty  n and pai-t icle s t r e s ses  P. ,. . . mean ve loc i ty  zj i. e., 
j' ZJ 

d n .  + V*(n.v.)  = o 
J - 5-3 



. 

= &  (P.><B-BXP.) , 
,,Ij L - -.7 

nd” 

(2.3) 

. 
?:here q 

species;  P and the  heat flow tensor Q .  a r e  defined r e l a t i v e  t o  t h e  mean 

ve loc i ty  of the  j ’ t h  species,  f o r  example 

and m .  a r e  t he  charge and mass resgect ively associated with the  j ’ t h  
j J 

3 zj N 

m 

I n  E?. (2.3) t h e  notation ( )’ denotes diadic  transpose. 

magnetic f i e l d s  E and B i n  Eqs. (2.l)-(2.3) evolve s e l f  cons is ten t ly  through 

The e l e c t r i c  and 

a cv 

1,iaxweU: s e-jccki-mc U I l V ,  

(2.4) 

with  i n i t i a l  conditions 

V’B = 0 and V*E = IC;.( n .q .  . 
J J  “ r u  r y r y  

J 

I n  r e l a t i o n  t o  Eqs. (2.1)-(2.3) we consider a uiiformly turbulent  ensemble of 

garden-hose-unstable plasmas and wri te  each of t h e  quant i t ies  v , P .  and n 

as an ensemble average (denoted by ( } )  plus a f luctuat ion.  7,8,11 For example 
-J ZJ 3 

n i s  wr i t t en  as 
j 

n = (n . )  + 6n 
j J 3 

where (sn.}  = 0 and (n .  } is  independent of posit ion.  

of the  equation of continuity,  Eq. (2.1), it Bollrws from t h e  s p a t i a l  unifomi-ty 

Upon taking t h e  average 
J J 
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-0 *L -.-.-c.mhf ,,lle c,,oF;,,,u-Lc that  the  average densi ty  of t h e  j ' t h  

species i s  

L 2 - - -  ~ . , ~ ~ ~ ~ s .  

0 i n i t i a l l y  it remains s o  f o r  a l l  

I n  i-elatic:: tc t h e  s t sb i l t za t i  on of the  garden-hose in s t ab i l i t y ,  t he  

evolution of the  p a r t i c l e  s t resses ,  (G), w i l l  be of considerable in t e re s t .  

By taking t h e  average of Eq. (2.3) t h i s  i s  seen t o  be given by 

where the  divergence term on Eq. (2.3) is absent i n  Eq. (2.6) because of' 

-1 be a rapid var ia t ion of t h e  s t resses  (P.)  on t h e  time scale  (where 
29 j 

Q q . B  /m.c) unless 
j J O  J 

Assuming r e l a t i o n  (2.7) holds, it then follows t h a t  t he  form of ( P . )  i s  given& 
SI 

where I i s  the  uni t  diadic  and n a uni t  vector i n  t h e  d i rec t ion  of t he  unifcxm 

external  magnetic f i e l d  

92 isotrgpic  p re s swe  i n  t h e  plane perpendicular t o  B 

(2.7) t he  (slow) react ion of' ( P . ) ,  and hence (P 

f r  31il 

N N cu 

= (2). Equation (2.8) i s  j u s t  t h e  usual statement 

From Eqs. (2.6) and 4' 

) and (P .), i s  determined 
-J ry lj IIJ 

a 
29 -J 
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Insofar  as three- (or higher- ) wave processes and the  nonlinear in te rac t ion  

between waves and p a r t i c l e s  a r e  negligible,  t he  f luctuat ions 8F’jF’) &vj and 6B 

appearing i n  Eq. (2 .9)  are  t o  be obtained frgm t h e  l inear ized versions of 

rvsl 

Eqs. (2.l)-(2.5). To t h i s  end we subtract  from each equation i t s  average 

giving a dynamical system of equations describing the  time evolution of the  

f luctuat ions.  Truncation i s  obtained by omitting the  heat flow tensor 8 f rm 
9 

t h e  analysis.  

if t h e  average veloci ty  ( v . )  and e l e c t r i c  f i e l d  (E)  are i n i t i a l l y  zero they “J - 
remain s o  for  a l l  l a t e r  times. Furthermore one can show tha t  Eq. (2.7) i s  

It may be readi ly  demonstrated 2rom Eqs. (2.2) and (2.5) t h a t  

preserved i n  time i f  it is f u l f i l l e d  i n i t i a l l y  and i f  t h e  excited wave-spectrum 

i s  ax ia l ly  symmetric with regard t o  t h e  d i rec t ion  of B For t h e  case of a 
4‘ 

Eon-axial ly  symmetric sgectrum we r e f e r  t o  t h e  arguments given elsewhere 12 

which readi ly  apply i n  t h i s  case, because of our assumptions (1 .3 ) .  In  the  

following we s h a l l  assume these i n i t i a l  symmetry propert ies  t o  hold. Upon 

taking the  s p a t i a l  Fourier transform of the  l inear ized  equations f o r  t he  

f luc tua t ions  and assuming t h a t  the time var ia t ion  of 6n. (k , t ) ,  6v. ( k , t ) ,  

Y Z J  

s ( l r , t )  = -iw(k,t)+y(k,t) ,  it follows t h a t  

J -J 
GP.(k,t), GE(k,t) and GB(k,t) i s  given by e q ( J  t s (k , t ’ )d t ’ ) ,13  where i n  general  

rvv rvv 

6n = 0 ,  3 

s6P. + i ( ( P . ) - k  “-J 6v.  + -J 6v.  N k * ( P . ) )  pJ 
% 

n 
Y .  

= (6P. X B - I& 5 m.c -J - -0 
J 

(2. lo) 

(2.11) 

(2.12) 

v 
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and 

(2.14) 

For s implici ty  of notat ion the  argument ( k , t )  of t h e  f luc tua t ions  and s ( k , t )  

has been suppressed i n  wri t ing Eqs.  (2.10)-(2.1b-). 

fo ra  given by Eq. (2.8). 

sis t h e  perturbations G v j ,  63 and 6 B  have been taken t o  l i e  i n  the  plane 

perpendicular t o  B with wave-vector k p a r a l l e l  t o  E&. 

Eq. (2.10), there  i s  no charge separation associated with the  per turbat ions 

and t h e  f i e l d  f luc tua t ions  a r e  t o t a l l y  electromagnetic i n  nature. 

convenient t o  define t h e  quant i ty  6P. by "J 

I n  addi t ion,  (P.) has t h e  
%.I 

We a l s o  remind t h e  reader t h a t  i n  the  present analy- 

- r*ru 

Thus, as s t a t e d  by 4 ry 

It is  

and introduce the  nchation 6A+ - 

2 6A, E 6A k i6A 1 

where EA = 6 A  e +6A e 

and may represent any of t h e  f luc tua t ions  6E, E, 6v 
straightforward algebra 6v 

Eqs. (2.11)-(2.14) as 

(with ~ ~ 0 %  = 0) l i e s  i n  t h e  plane perpendicular t o  B - 1-1 2-2 -0 
or 6P . After some 

may be wr i t t en  i n  terms of 6E+ from 
rc.v 4 -3 

and 6P j+ j+ - 

and 
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- i l c (  9, /m 

I n  addition, from Eqs, (2,11)-(2.14) t h e  dispersion r e l a t i o n  determining 

s ( k , t )  ad iaba t ica l ly  i n  time (through the  slow time var ia t ions of (P .> and 
IlJ 

, (2.13) 

J J  
where wi2 = 4n(n,)qi 2 /mi. 

U u u  u 

Relations (2.16) and (2.17) may nmr be expanded i n  terms of t he  s m a l l  

parameters of t he  problem, Is/Q. 

t h e  p a r t i c l e  s t r e s ses  (given by Eq. (2.9)) determined i n  terms of the f i e l d  

f luc tua t ions  or more spec i f ica l ly  i n  terms of the spec t r a l  energy densi ty  . 

associated with the  f i e l d  fluctuations.  

and Ikv /Q. 1, and the  slow react ion of 
J W J  

Let us  first however d i r e c t  our 

a t t en t ion  t o  the  d i spe r s im re l a t ion  given by Eq. (2.18). 

(B) The Dispersion Relation 

The upper (lower) s ign in  Eq. (2.18) corres7onds t o  waves with l e f t -  

( r igh t - )  hand polarization. If Eq. (2.18) i s  expanded i n  the small parameters 

Is/Sa.l and Ikv /Q I and only terms t o  0(1/62. 2 ) a re  retained, the dispersion 
J TKj '3 J 

2 r e l a t ion  reduces t o  s 2 where the  growth r a t e  yo  i s  given i n  Eq. (1.1). 

As discussed i n  the introduction t h e  use of s t o  t h i s  accuracy cons t i tu tes  an 

i l l - p s e d  mathematical problem since yo + +CO f o r  la rge  lkl If however, we 
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r e t a in  o(l/n. 3 ) i n  t he  disTersion r e l a t i o n  t h i s  d i f f i c u l t y  i s  overcome since 
J 

t he  f i n i t e  Larmor radius corrections give a growth r a t e  which goes t o  zero f o r  

large lkl. In  pa r t i cu la r ,  Eq. (2.18) may be m i t t e n  approximately as 

where 

4 With the neglect of O ( l / Q .  ) terms Eq. (2.19) predic t s  a growth r a t e  y and 
J 

r e a l  component w t o  t h e  frequency (where s = -iw+y) given by 

and 

w = +yo(k/lco), 

Consequently, y reduces t o  yo f o r  Ik/ <C 

lkl = *,&72 1 kolI and goes t o  zero f o r  Ik/ 

14 5 lk*l (2.22) 

l s o I ,  passes through a maximum a t  

= I koi. I n  an mder of magnitude 

0 ion mi i' estimate from Eq. (2.20) k may be scaled t o  t h e  ion larmor p - v / a  
For vA << c we obtain 

- 2  

which i s  small compared t o  uni ty  i n  l i g h t  of t h e  assumption of small growth 

rate, Eq. (lob). Thus the  m a x i m u m  garden-hose unstable wavenumber is cons ide r  
- 4 ably less  than t h e  inverse ion larmor radius  p lo Insofar as o(~/Q. 

ion J 
terms are  negligible Eq. (2.19) gives a pure osc i l l a t ion  and zero growth rate 



-1 f o r  Ik/ 2 lk I p  t h a t  is  t o  say, y g 0 f o r  Ik,l <, j lr l << pion 0 - --- 
proceed t o  describe the  long wave-length s t ab i l i za t ion  process within the  

. We may now 

context of t he  modified p m t h  r a t e  given by Eq. (2.21). The consequence of 

re ta in ing  f i n i t e  Larmor radius corrections t o  t h e  usual dispersion r e l a t i o n  

has been t o  introduce a cut-off k 

well-posed mathematically. 

that  any argument whereby 7 (k , t )  + 0 asymptotically i n  time involves a 

i n  t h e  grovth r a t e  and make t h e  problem 
0 

In view of Expression (2.20) it should be noted 

0 

corresponding decrease t o  zero of t h e  maxjmun garden-hose-unstable wave-number 

Ira, t h a t  i s  t o  say a shrinking t o  zero volume vr” t h e  unstable domain i n  k-gate, 

(C)  The S tab i l iza t ion  Process 

In  determining f rm Eq. (2.9) the  reac t ion  of t h e  p a r t i c l e  s t r e s ses  

(P.> t o  t n e  unstable f luctuat ions we expand SPjk and 6v i n  the  small para- 
3J jr 

meters Is/n. I and llm / a .  I . This r ead i ly  gives 
J W J  

Taking the  double outer product of Eq. (2.9) with nn gives the  time rate 

change of (P .). 

t h i s  simply yields  

of 
w 

After some straightforward algebra making use of Eq. (2.13) 
llJ 

i ( kl+k2 ) z 

==$ (Pilj> = +, >? 4Jdkldk2 m.c e 

P J  



where 

The quant i t ies  6P 

by means of Expression (2.23), i.e. 

denotes summation over right- and left-hand modes of polarization. 
P 

appearing i n  Eq, (2.25) nay be rewri t ten i n  terms of 6E+ 
j k  - 

2 i ( kl+ls2 ) z 
at a (p llJ ) =c %Jdkldk2 e 

The average i n  Eq. (2.26) i s  simply r e l a t ed  t a  the  spec t ra l  energy density,  

Y 
6 E  

(k , t ) ,  i n  the  e l e c t r i c  f i e l d  f luc tua t ions  through 

t h e  6(kl+k2) f ac to r  i n  Eq. (2.27) being a manifestation of t h e  s p a t i a l  uniform- 

ity of t h e  ensemble. Upon using the  Maxwell equation (2.13) and the  symmetry 

property s ( -k , t )  = s 3c (k , t ) ,  the  spec t r a l  energy densi ty  Y 6E (k , t )  may be 

r e l a t ed  t o  t h e  energy densi ty  i n  the  magnetic f i e l d  f luc tua t ions  through 

lsI2 @B 6E 
c k  

= Y  2 2  
(2.28) 

Neglecting O(l/Sa.  3 ) terms i n  Eq. (2.26) and noting t h a t  t he  first term vanishes 

Y 6B (k , t )  (= Y"B(-k,t)) as 

J 
i n  t h e  summation over polar izat ions,  Eq. (2.26) nay be wr i t ten  i n  terms of 

Similarly,  by taking the  double outer  product ~f Eq. (2.9) with - 1 (I-nn), t he  
2 z -  

evolution of (P .)  nay be shcwn t o  be given by 
1J 



and 

,t)SP-(k2,t)+GE- . (2.30) 

3 Neglecting O(l!Ca ) terms as before Eq. (2.30) readi ly  reduces t o  
'j 

DO 
In  writ ing (2.29) and (2.31) we have dropped t h e  summation over polar iza t ion  

notation since y (k , t )  i s  t h e  same f o r  b9th r igh t -  and left-hand waves. 

spec t r a l  densi ty  Y 

The 
6B (k,t  ) includes both polar izat ions.  

I n  view of t h e  expression f o r  t h e  growth r a t e ,  Eq. (Ll), or t he  more 

accurate version, Eq. (2.21), the  evolution of the  t o t a l  p a r a l l e l  and perpen- 

dicular  pressures, (Pi1)C and (PI)c' i s  of spec ia l  in te res t .  

accuracy of Eqs. (2.29) and (2.31) we have t h a t  

Within the  

(2 .32)  

U 

V 

These must be solved i n  conjunction with 

describing the  volution of t h e  spec t r a l  energy density i n  t h e  magnet ic-f ie ld  

f luctuat ions.  

The s t ab i l i za t ion  process may be s-imply summarized a s  folluws. By 

h n o t h e s i s  7 is  i n i t i a l l y  pos i t i ve  f o r  t h e  range of wave-number uncer 



consideration, as i s  the  energy dens i ty  P B ( k , t ) .  

ldk y(k,t)Y 

Thus, as long as 
6B (k , t )  i s  noli-zero, it folluws from Eqs. (2.32) and (2.33) t h a t  

and 

> o ,  at 1 c  
That i s  t o  say, t he  reac t ion  of the  p a r t i c l e  s t r e s ses  t o  t h e  unstable e lec t ro-  

magnetic f i e l d  f luc tua t ions  is  such as t o  cause t h e  p a r a l l e l  (perpendicular) 

yressure t o  decrease ( increase)  monotonicall j  with increasing time. 

of t h e  def in i t ion  of grnr th  ra te  given by Eqs. (2.21) and (Ll), t h i s  i s  i n  

the  d i rec t ion  of s t ab i l i za t ion .  The time-asymptotic s t a t e  predicted by Eqs. 

(2.32)-(2.34) is  thus m e  f o r  which 

I n  light 

and 
R 2  

A s  previously indicated t h i s  s t a b i l i z a t i o n  process involves a concurrent 

shrinking of the  unstable domain of k-space t 3  zero  volume, i.e. ko(t  -> CO) 3 a 
From Eq. (2.34) the enei-gy density Y6B begins t o  grow (from non-zero i n i t i a l  

value) i n  t h e  i n i t i a l l y  unstable region of k-space. 

growth rate decreases and t h e  unstable region shrinks i n  volume; f i n a l l y  as 

t 3 UJ we a r e  l e f t  with a s ta t ionary  spectrum 5: magnetic f i e l d  f luc tua t ions ,  

As time proceeds, t h e  

Such a re  the  qua l t t a t ive  fea tures  of t he  time development and time- 

asymptotic s t a t e .  Wit11 c e r t a i n  approximation methods, 2'3'4 and energy conser- 

2 vation re la t ions  associated with Eqs. (2.32)- (2.34), a more de ta i led  
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quant i ta t ive  descr ipt ion may a lso  be given. A s  s ta ted  i n  the  introduction, i n  

obtaining the  mupled system (2.32)- (2.34) we have recovered t h e  corresponding 

r e s u l t s  of Shapiro and Shevchenlto 2 based on a k lne t ic  model. Moreover t h i s  

has been done within a f l u i d  framework which achieves closure by omitting the  

heat flow tensor Q f rm t h e  analysis. 

t h a t  i n  the  analysis  presented here mode coupling e f f ec t s  have been assumed 

negl igible  on the  time-scale i n  which l i n e a r  s t a b i l i z a t i o n  takes place. 

y (k , t )  

I n  conclusion, we remind the  reader 
% 

Once 

0 however, such higher nonlinear e f f ec t s  w i l l  become important and 

cause fur ther  change i n  t he  spec t ra l  energy densi ty  1 GB . 

ACIUWWLEDGEMENTS 

It i s  a pleasure t o  acknowledge t h e  benef i t  of discussions with T. 

i3irmingham, A. Kaufman, and T. Northrop. 



1. This i n s t a b i l i t y  vas first found by M. N, Rosenbluth, Los Alamos Sci. L+ab. 

The Physics of Plasmas, Akad. Nauk. SSR - 3 ,  278 (1958). 

V. D. Shapiro and V. I. Shevchenko, Soviet Physics JETP - 18, 1109 (1564). 2, 

3. R, Z. Sagdeev and A. A. Galeev, Lectures on the  Monlinear Theory of Plasma, 

( Internat ional  Centre for Theoretical Physics, Tr ies te )  Report IC/66/@:, 

83 (1966). 

4. 

5 .  

C. F. Kennel and R. Z. Sagdeev, J. Geophys. Res. 72, 3303 (1967). 

E. N. Parker, space Science Reviews k, 666 (1365); P. A. Sturrock and 

R. E. Hartle,  Phys. Rev. Letters,  - 16, 628 (1966), and references therein.  

- 

/- .-.-v--> .I- I 
0 -  5. j. \CiA.kj ~ i y b .  P A U L U ~ ,  ~u ;e PliIjlished. 

7. 

8. 

9. 

10. 

R. C. Davidson, Phys. Fluids 10, 1707 (1967). 

R. C. Davidson, J. Plasma Phys. - 1, 341 (1967). 

H. Grad, Phys. Fluids  - 9, 225 (1966). 

A. Kadish, Phys. Fluids - 9, 514 (1965). 

- 

11. This procedure shmld  be  used with some caution, In  general, t he  energy 

conservation la17 i s  not f u l f i l l e d  exactly,  iQ t h e  f luc tua t ions  a re  t r ea t ed  

adiabat ical ly .  

t o t a l  k ine t ic  energy, and density, 

The correct procedure is  t o  define averages of momentum, 

instead of those of veloci ty ,  pressure 6 

and density as is  done here. Under our assumptions (1.3) and (1.4), how- 

ever, t he  difference i n  t h e  expressions f o r  t he  t o t a l  energy i s  of higher 

order f o r  t he  two decomposition schemes. Thus, we have adopted t h e  second, 

simpler, procedure here. 

C. F. Kennel and F. Engelmann, Phys. Fluids  - 9, 2377 (1966). 
The quantity s(k,t) i s  allowed t o  vary ad iaba t ica l ly  i n  time through t h e  

slow time var ia t ion  of (P.) given by Eq. (2.9). 

12. 

13. 

ZJ 


