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PREFACE

This report covers work done on the calculation of the

Bremsstrahlung cross section (both theoretical analysis and computer
programming) under Contracts NASw-906, NASw-1235, and NAS8-18007. The

theory given here is that which was finally applied to the development

of the computer program., Additional theoretical results, representing

alternative approaches as well as extensions of the analysis, will be

found in a previous report (UCC/DSSD-206). A derivation is also given of

the angular distribution of the scattered electrons; this is not included

in the computer program. The structure and operation of the program are

described. A comparison is given of the available computer results with

experiment.

The Appendix consists of the latest listing of the program,
adjusted for the Marshall Flight Space Center operating system. The
program has been extensively checked out, both analytically and numerically.
At the time of writing of this report, however, the authors feel that there
is still reason for further checks (on the basis of a comparison of test
runs). Results obtained with the program at 50 kev are in fair agreement

with experiment, but no higher energy runs are yet available.
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BREMSSTRAHLUNG THEORY

AND

DISCUSSION OF THE COMPUTER PROGRAM




I. INTRODUCTION

It is well known that the Bethe-Heitler expression for the electron
Bremsstrahlung Cross section(l), which was derived using the Born approximation,
yields inaccurate results in comparison with experiment.(g) In general at
energies below approximately 10 Mev the photon energy spectrum is under-
estimated over its complete range with the most serious discrepancy

occuring at the higher photon energies. As a result, it is estimated

that at 1 Mev incident electron energy the average energy release in a

radiative collision with Aluminum is underestimated by over 30% while

for Gold it is underestimated by as much as 55%.(2)

The reascon for the discrepancy can be attributed almost entirely
to the use of plane waves for the electron wavefunction in the matrix
element as prescribed by the Born approximation. The theoretical estimate
can be improved in accuracy by using Coulomb wavefunctions in the matrix
element. In this way the influence of the nuclear electrostatic field can

be taken into account in the most accurate way. Jaeger and Hulme(j’u’S)

were the first to use the more accurate wavefunctions in the closely
allied process of electron-positron pair procduction by photons. Their

(3,6)

results were in good agreement with experiment. Hence, very accurate
results for the theoretical estimate of the Bremsstrahlung cross section
can also be expected with the corresponding approach. The difficulty
with the improved method, and the reason it has not been used extensively
in the past, is that it does not yield a simple analytic formula, but
requires extensive numerical procedures to obtain results.

In the present study, the Bremsstrahlung cross section problem

is formulated with Dirac wavefunctions for the screened and unscreened

nuclear electrostatic field. The screened potential is obtained from



self-consistent-field calculations. This requires that the wavefunctions
be expanded in a series of angular momentum states. Hence, the formulation
is suitable for calculation only at relatively low incident energies.

The cross section for unpolarized incident electrons is obtained
for various polarization states of the photon, differential in the polar
angle and energy of the photon. With a simple change in input for the
incident particle's charge and/or mass, the program is equally applicable
to the calculation of Bremsstrahlung from positrons and positive and negative
muons .

The derivation starts in ChapterII with the presentation of the
eigenfunctions of the energy and angular momentum operator of the Dirac
equation. The eigenfunctions are used in the matrix element for the
production of Bremsstrahlung as described in Chapter III. The final
derivation of the cross section is given in Chapter IV. In Chapter V,

Racah algebra is used to perform the magnetic quantum number sums
explicitly, leading to some computational as well as formal simplifications.

For the computation of matrix elements, the procedure, as described
in Chapter VI, is to terminate the numerical integration at some moderate
radius, and to continue the integration out to infinity analytically by
means of an asymptotic evaluation. This involves integrating by parts at
the cut-off radius, to obtain an expansion in inverse powers of the radius
in terms of the values of the wavefunctions and their derivatives there.

Chapter VII clears up an ambiguity in the phase of the Coulomb
wavefunctions found in the literature (this was needed to establish the
sign of each partial wave in the starting conditions for integration).

In Chapter VIII, the analytic limit of the Coulomb wavefunctions as the
kinetic energy goes to zero is derived. These are the scattered-electron
wavefunctions in the end-point case (electron giving up its entire kinetic

energy to the photon).
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Initial values and equations for the radial integrals are
covered in Chapter IX. Phase shift determination by wave-matching at the
cut-off radius is described in Chapter X.

Chapter XI explains the procedure used for the computation of
normalization factors by matching to the W.K.B. approximation solution.

Chapter XII discusses the self-consistent-field caleculations
which are utilized to supply the program with the screened atomic potential.

A derivation of the angular distribution of the scattered electrons
is given in Chapter XIII. This distribution has not been incorporated into
the computer program.

The structure of the computer program is outlined in Chapter XIV.

Operational instructions for running the program are given in
Chapter XV.

Chapter XVI describes results obtained with the program and a
comparison of them with experiment.

The Appendix consists of the latest listing of the computer

program.



II. EIGENFUNCTIONS OF THE ENERGY AND ANGULAR
MOMENTUM OPERATORS
The continuum eigenfunctions of the positive energy operator of the

Dirac equation for an electron in a central electrostatic field have the

(7)

form
sirt g
nr (1)
= 1
®K’p_ _l
r FQ
Moo=M,H
i bispino Q is a spinor and G and F are radial functions.
where ®M,u is a bilsplnor, o P " "
The eigenfunctions ®n|4 are also eigenfunctions of the operators, J, L, S,
1] o’ -

and JZ which are the total, orbital and spin angular momentum operators and
the z component of the total angular momentum operator, respectively. The
eigenvalues belonging to these operators are j, 4, %, and p, respectively.

The non-zero parameter y, which can take on all positive and negative integral
(7)

values, is related to j and { by

o= -(3+3) = -(#+1), for u < O,

Il

(2)

W = j+5 =4, for n > O.

The parameter u is sufficient to designate both j and £ simultaneously since
J = nl —%—and L = j+én/lnl. To indicate the dependence of j and 4 on 4, the
eigenvalue j will be replaced with jK and ¢ will be replaced with z%.

*
The eigenfunctions ¢n " are normalized on the energy scale so that
H

* *
The notation ®+ indicates the complex conjugate transpose of ¢ while ¢
indicates only the complex conjugate of ¢.
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The angular functions Q, " that appear in (1 ) are given by
)

= 1. A

. .1 . . . . .
where n;_n is the spin<s spinor with z-axis projection quantum number n,
2

Yﬁ,u-n(?) is a spherical harmonic, and C(Ln%gn; p-n,n) is a Clebsch-Gordan
coefficient§8) These angular functions are orthonormal on the unit sphere so
that
fQ: Q, ,dv=26 , 6 (5)
Mo M Men MM

where d2 is a differential element of solid angle.

The electron function ¢n " satisfies the equation
2

E®, . = (-iQ- v+B+V) By e (6)

Consequently the radial functions satisfy

F'- ’% F+ (B-V-1) G =0
(7)
G'+ % G - (E-V+#1) F =0
and have the asymptotic forms
VEH g m
G ~ 5;% sin (kr- 2% + 5§ )
2 %
Jﬂk
e (8)
FoVEL  oos (ke- —%— + 5 )
dnk "
2 1
where k = (E°-1)2 and & is the phase shift.
" 2
In the case of a pure Coulomb field with V= - z%— , the radial

functions have the form



*
G =VE+1 (H + H))
Y n n (9)
*
= i -1 -
F,=1VE-1 (8 -H)
where
. 1 1 1
= a1z (yAE) oy ) 1o
H, = Aue (2kr) M-%—iv,y (2ikr) (10)
with
1 .
. STV in(x) .
A, Cy+iv)l e le (y+iv) (11)
2(mk)2 T(2y+1)
In the above M 1 . (2ikr) is a Whittaker function,(9)

2-1v,Y
Y = l(ng-Zee )%I , Vo= EZee/k, and exp [21 h(n)] = (-u+ivE-l)(Y+iv)-l.
In the subsequent development it is not advantageous to use the
complex conjugate form of HK shown in (10). 1Instead, the following
relation for the Whittaker function can be used:(g)

iem(S+u)

MK,M(Z) =e M_K’u(-z)

where e¢=1 if Im(z)>0 and e=-1 if Im(z)<O, to obtain the alternative and more

useful expression:

* *  -3d 1 -1
g ¥ o a1 VE) ey P (i), (12)
" " 5-iv,y

In the case of the Coulomb field, the asymptotic forms of (8 ) are replaced

with
VE+1 L
~ —— sin (kr+v ¢n (2kr)- — + & )
ik = (13)
L m
o VEL oo (kr+v fn (2kr)- -%— + 8 )
v "
Tk
where
— _ : 0 -0 -
8, = n(n) - arg I'ly +iv) 5 (y,z% 1) (14)
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I1I. THE MATRIX ELEMENT

The matrix element for the production of Bremsstrahlung is(’.l'O>
n = -efn (0 (5) g y() o (1)
where£1 is the Dirac matrix operator. Since we will not be interested in
angular or polarization details about the electron leaving the interaction,
the final state electron function Yf(E') can be normalized on
the energy scale according to the form given in Chapter II, Eq. 1:

Y. (E') = o , = . (2)
T F% ' Q’ 1 14 :
MU

The initial state electron function ﬁn(E) is normalized on the momentum scale

and has the asymptotic form

Ym(E)'w u(m) e BT 4+ ar L BT (3)

where u(m) and G are bispinors. The z component of the spin associated with
the plane wave in (3 ) is designated by m. It can be shown that if the axis
of quantization is taken along the direction of propagation of the incident

(7

electron, then Ym(E) is given by

1
_ -3
v (E) =3 2n(2Ek) C, om® (%)
"
with
Ay +1 = 1. i
Coom =i "I (20, +1)% (4, 35, som) et (5)
and B, m S defined in {1) of Chapter II.
b



The electromagnetic wave in (1) can be represented as a linear
combination of waves which are circularly polarized perpendicular to the
direction of propagation. If the wave was propagating along the.z axis it
would have the form

% ah (6)
=t]1

‘/—\

o]

with
Ay = VBT et -p%p\/fj;; (-)* Bm(ep)Fy, (B)g(ar) (1)

A
where ¢ and q are the photon energy and momentum, respectively, EP are the

spherical basi$82 jz(qr) are the spherical Bessel functions, and a g are

constants (to be discussed below). The wave é*l is l.h. circularly polarized

and’;ex__l is r.h. circularly polarized. Rotation of the coordinate system so
that the photon is propagated in an arbitrary direction with respect to the new

system yields the required expression

A

_ _p bn Z ZE (-1)%2a1)2 3,(ax)c(e 1150) Dy (9,84,0)T, 4rns (8)

b

g A m'=-)
where @q and eq are the azimuthal and polar angle, respectively, of the

propagation vector, D;,p is a rotation matri£8)and.ga£m, is given by(8)

(#) € (9)

— e m'_
It = > C(L 1n; m'-v,v) Yz,m'-v .

\Y

The constants a, in (6) can be shown to have the forms:

for a 1.h. circularly polarized photon, a =8
P p,+}
for a r.h. circularly polarized photon, a =5 L (10)
b -
L_.
for a linearly polarized photon, ap=2-2e o




. In the case of linear polarization the angles of interest are indicated in Fig.
In the subsequent development it is appropriate to consider the matrix
element with éq replaced with ép. The new mafrix element M(p) shows p as an

argument. Hence

M=) a, M(p). (11)

The matrix element M(p) is obtained with the use of (1) through (11)

hrge

VeER

2 Z p C(41n OpZ D ' (:p ,6 ,o) F(\fy v "mm") (12)

m'=-}

M(pmit'u') =

1
where F(\J&n'u'rmn'):(—i)l' (29+1)2 E C(Elx;m'-\),\))z C
Y] n

J.jz(qr) Yy om oy (#) oF, 0 &x (13)

7R VLR VLS TS |

n,m

A
and a =F *C.
v

|

The integral over the angles in (13) is readily found with the

result that (13) becomes
1 1 _ 5 1t
F(Agu'n'mm') = 6L1 tm,m’ \/-I% A g3 "0 "m) (1)

and, as a result, (12) becomes

Ene\lin A
M(pmu'u') = pc(41n0p) D, (w +8y »O)A(MLy'p'm). (15)
r“"qu )\Z:ZI: M -m,p

If we set u'-m= in (15) and eliminate p' we have
A\ gy 'u'm) = A(\gn'em) (1¢)

where

A(\gn'em) Z [Hl (u"um) BJD\ (', -uem) - i,y (n'm) BM (-n'nem)] , (37)
"




‘2 INCIDENT

ELECTRON

FIGURE1 GEOMETRY OF BREMSSTRAHLUNG INTERACTION INDICATING
THE CASE OF A LINEARLY POLARIZED PHOTON.
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with
L4k 41 16
H m1l/2 . 1/2 . 1 .
Bem) =3 ¢ (D™ (2p1) (s, e %ely, § 4 mm)
¢4y 2, 300) Kyn'x)
and
L+4 +1 16‘ 1
2 . 1/2 it X .
He(n'um) -1 (-l)m+l/ (22+l)(23n+l) / e cldy 5 4,5 m,m)
C(EZ_H|£nSOO) K, (un')
The B functions in (lT) can be determined from

AN

By, (Wsoem) = 32 Cla, B eom-b,0) Z‘: (-1 c(hdis,-s4p)x

C(a1nse-5+8,6-8)C(0_, 33 5m-B,B)C(4L_ L (36-6+B,m-B).

The K, functions in (18) and (19) can be determined from

©

K u'n) = / j(ar) 6 v (B',7) B, (B,r)ar
0

and

©

Ko0) = [ Gfen) o @) E, (Br0ar
0

- 12 -
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(19)

(20)

(21)
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‘ IV. DERIVATION OF THE CROSS SECTION

The cross section for production of Bremsstrahlung by unpolarized

incident electrons and without regard for the direction or polarization of the

(10)

scattered electron or the azimuthal angle of the photon is given by

2n
q dq du_dep
do = £X 2: LM (mept)|? ——o 1 (1)
v mn'u' 2 (211:)3
® =0

where the polarization states of the incident electron (designated by m) have been
averaged over, v is the incident velocity of the electron and pq = COo8 eq.

Using the matrix elements defined by (11) and (13) of Chapter IIT,

do = Z 3 Iapledc + a*a do (2)

p=il pp PP -D,DP

where 2 is defined in (10) of Chapter III and

o o

2
q dq du_dp
+ -~ a9 g
o, = 5 2: M (p'm'p') M (pmy'ut) 3 .(3)
mu u (2“)
=0
cpq
Hence, it follows that
do = doll for 1.h., circularly polarized photons
do = do_;_; for r.h. circularly polarized photons ()
do = = (do__ + e 21D do ) for linearly polarized
2 PP -P,P
P_—l 2
photons
dog = da for unpolarized photons.
p=t1 PP

en
I D "1 (o 6 0)D" (0 6 0) (5)
- . wt-m,p' P %t om,p %% ®q
‘ Actually the integrand of this integral is independent of ¢ and it is

*  See Fig. 1.
- 13 -
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easily shown that
l_m_ 1] . .
= em Z (-1)F TP COu M5 -psm,pt-m)C(A M35 -p',p)

[t ]

In (6), Pj n 8re the associated Legendre polynomials:
2

Py 1prpy (208 &) (6)

1

2, \m/2 J+m 2 J
P. = —— (l-cos™® -
J,m(eq) EJjI ( q) [;(35555] (cos“p-1) (7)
where m is positive definite. The fact that
'-
(-1)P P2 (8)

in all cases has been used.

With the use of (15) of Chapter III and of (6), the cross section

(3) becomes

3 J [(j-lp'-pl)'] 1/e (cos 8 )
o) = do 2 . P. cos
P'Pp Z p'p (3+1p"-pl)! J, tp'-pl q
J
. . 2 2
where, upon setting v = k/E and using k¥~ = E -1,
j  _ ;22 (B-1) . 6
dOp'p = 37 e m Bj(p p) ydyd (COS q> (lO)

with y = q(E-l)‘l. Also

B(pp)—B(pp)—B ZA(ppf&z), (11)

- 14 -

(9)



where

As(p'p 444) = p P’ oo 1 A 50p")c(£1250p)c (M A gs-p',p)x

A
1

V0 ). (12)

The function Vj in (12) is independent of p and p' and is given by

VM0 = 3 ()T o hgsee,6)0(h My ke ) (13)
€

where, in turn, the ¢ function is

P(h My de) = :E::z: A% (A bw'em) A(Mw'em). (14)
K' m
The A functions in (14) are given in (17) of Chapter III.

Since Bj(p'p) is symmetric with respect to the pairs (£,\)
and (Zl,Kl), both having been summed over in the same way, only the real
part of ¥ contributes.

The computer program calculates

Aj(l)(ﬂlz) - (-1)7 6(211+1)'1 (24+1) 7% A (11 £.4),
Aj(e)(f?'lfl) - (-—l)j 6(21,14.1)-1 (EIri-l)-l AJ-(]-; -1 1’11‘):
and then

Bj(i) - :E: (24+1) :E: (2—5£l£)(2£l+l)Aj(i)(ll£).
)

zlsz

- 15 -

(15a)

(15b)

(16)



V. ANGULAR MOMENTUM SUMS

The expressions given for the Bremsstrahlung cross section
contain several sums over angular momentum guantum numbers, the
summands consisting of products of Clebsch-Gordan coefficients.
These sums can be carried out formally, yielding Racah and X coefficients.
Going up thé hierarchy of magnetic gquantum number sums, there
is first

, 1. 5-.,1 . 1
BM(% ,-1€m) =Z C(Z%, 3 JK,;e+m-6,6)Z(-l) BC(-é- 1 5;6,-6+B)
5 B

C(s1re-6+B,5-B)C(4_ %jk;m-B,B)C(M_KLK,;e-6+6,m-6)-

"
After two recouplings (yielding two Racah coefficients) and an orthogonality
relation, the B sum reduces to

D - =(-1)

p

/2

1
4-J, —e-mt5+d 1/2 1
e [(2w1) (2, +1)(23,+1)] D (2f+1)
£

1. 1 1 . 1
W(ﬂﬂK' 5 J%;E_Mf)W(lxéf;zg)C(zn, JKf;-e—m+6,m)C(Afg;e,-e+6).

Similarly, the remaining &-sum yields
6+%
20D
&

. 1 1.
C(szKf;-e-m+6,m)C(xf§;e,-e+6)C(zK,§ 3 ,3e+m-5,8)

n

-16 -




X+f+jn, -}+e+m 1/2

~(-1) 27 lelers))T Wl 3 3R IC(IAT, sm e (3)

On splitting off the magnetic quantum number dependence by
Bm(u',-ne m)Eﬁm(%',-K)C(Unjnde m), (4)

there remains
1

g

- 12 LR 3
By, (') = (-1)7 [2(2a+1)(24, ,+1)(25,+1)] :E:(-l) (2f+1)
f

I 1., ,1 A c
w(ee, 53, 34 EWM(ISE5W (e, 3, 5 MsT 3,0)- (5)

The f sum is an X-coefficient (after rearrangement), so that

_ 1/2 11

By, (n'yn)=-[2(2+1)(2¢ +1)(25, +1)]  X(N3, 3, 1528 4, 131 5 3)- (5)

This X-coefficient can be expressed in a more elementary form.
Together with the matching parity Clebsch-Gordan coefficient, the result
(11,12)

reduces to

By, (n',n) = c(ag, 4, 300)B,, (')

- s 1 ,
= -3 l/EC(kJM,Jn;O, 5) Gy (ntsmn), (7)

where the dependence on the signs of # and #' is contained in

-1/2 -1/2

Gy, () =(n ' 1) [2(4+1) ] 8,01

5x,z+(n'+n+z)[z(2z+l)]

-1/2

+ (n-g-1) 1) (20+1) )77 %8, g

Equation 8 does not hold for A=0, but this value is eliminated
by the occurrence of a factor C({¢I\;0,*1) further upstream.

Separating the magnetic quantum number dependence of A\ g 'em),

- 17 -



sem)C(J lz 3-m,m) (9)

A peren) = (™2 T Fpew)c0, s \

® "

where, in turn,

%"

£ +4+1

8
W 1/2e

o) ® (2001)(25,+1) 26 *TB ) 1,0 )K 00 ) B ) (0 1)K Gun ) 1. (10)

In the next round of summations now,

@A M2 Le) :z: :E: Ax(h 21 em)A(A g "em)

nw' m

. 1
ZH*(X:LZ " nl)H An) Z c(r 3, JK,,EZm)C(J% -e-znl;-m,m)

n'un 1 1
1

. . .1
C(x3,3, 13em)C(J, 54, 5-m,m). (11)
Recoupling to separate the ¢ and m dependence,

C(hyd, J, +3em)C(N3, 3, sem)
1

A=3  4m
® = (-1) " (23,4.+1><2x+1)'l/2E(2s+1)1/2w(xlj%lxj%;j%.s)

S

C(j%ljns;m,—m)c(xlsx;eO). (12)

The next step is
V.(A A2, 4 :z: (=)™ car Ms-es€)p(hhd  ge)
gV M 3T€HE/PANA R RE S
€

The ¢ sum reduces to

2 T ol paime,e)eh s 3e0)=(-1)° M @) /(s ) 12 5 (13)

leaving

- 18 -



j+l . o ' T ] s s .2 s
Vj(xlulz)=(—1) E(QJKﬁl) ZH*(xlzln nq JH(A %)W(XlJanJ%:JwJ)
M,l

nHy
) “hetmo o o1 1 Y
('l) C(JK J%J:m)'m)C(JK —2-[’% :'m)m)C(JK'E'f/%:‘m)m)' (l )
m 1 1 1
The m sum consists of the two terms m=i:% which differ only in the sign

of the magnetic quantum numbers of the Clebsch-Gordan coefficients, hence by

a phase factor of (-1) to the power

N U oL 1 :
L+ (3, +3,-3)-(3, + 5 -4, )-(3,+ 5 -4, )=g,+8 -3

1 1 1 1 (15)
= (zn+z_%.+z)+(zul+z_u,+/z,l)-2(z_n,+z+zl)+(z+zl-3)-
This yields the selection rule that vj(xl}zlz) vanishes unless
4+41-3 = even integer. (16)

SubJject to this condition, the m sum is twice the m=-% term. On substituting

the explicit value

c(5,50,5%,-0) - 22, (17)
j jnv'l/2 .
Vi (hay0)=(-1) Z (-1) (23, +1)
n'nul
(18)

- - 11
: : R U
(L 497 g JE(A n)W(KJ%KlJMl:J%'J)C(JanlJ: 5%5) -

Equation (18) requires the computation of general Racah coefficients,
whose arguments are then summed over. It turns out to be more efficient
to revertto the magnetic gquantum number sums for e and m. Returning to
(11) and writing out explicitly the terms for m =+ 1/2 with the help of

(17),

- 19 -




_ 1 e ' T ! T S 1
PO PL2e)= 5D H (fyn'ng JHOm n){C(xlanlan.,e = 5)C(3 3 se - 5)

1
(19)
- -3 4
b Lnl n J”l 1 1
+(-1) C(xlaulan.;e 5103, 3, 3¢ 3)]-
On splitting the ¢ sum into positive and negative values,
V.02 2 0) =S (-1 (2o ) [Cvhds-ee oA A 4o )
;0057 e0 M e
€20 (20}

+C()\l)\j;e,-e)cp(?\l)\lllfl,-e)].
Reversing the sign of the magnetic quantum numbers in the C-coefficients of

(19) introduces for each a factor of (-1) to the power

(xl+3%l-3%. )-(+3 =3,4) = SRACHRER (21)

Tnterchanging the order of the two terms in (19), it is then found that
+
£K Eu +X+Xl

1

oA ALi85-e) = (-1) (AL Le). (22)

A charge of sign of the magnetic quantum numbers in the C-coefficient
multiplying ¢ in (20) results in a factor of (-1) to the power A =T

Thus, in view of (15), the two terms in (20) are equal and

Vg e)= 3 (—l)€+l(2-5eo)c(xlxj;—ee)cp(xlulze)- (23)
=0

On defining
t 3 3 1 t 1 1 1
HO e ') =C (5,13, 305) 16, O, )K (') Gy (n ' )K (o)1, (21)

there results

A+A

Re[ (A M2y 4¢)7=(-1) l(1/5)(22+l)(2£l+1)_<5()\l7\£l£€) - (25)

where
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B L -4 +4-1
\ } . ' nou 1
o lleﬂe) :E: (EJK,+1)H(K121M nl)H(in'n)i L cos(s -5 )
M 'un . "1
1
1 o 1 (26)
> [C()\lJK1J%l;€)‘€+§)c(>\j%tj%§€;'€+%')

EM-JK-L%1+JK1 , .
+(-1) C()\lan,anl;e,-e- 5)0()‘3%'3%56"6' )1,
making use of the fact that
b FA (£m+z+£-n)_(£nl+zl+£—n’) = even integer (27)

whence i to this power is real.
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VI. ASYMPTOTIC EVALUATION OF MATRIX EILEMENT TATLS

The radial integrals for the matrix elements (Chapter III, Eq. 21)
are infinite integrals. In practice, they obviously have to be truncated.
Asymptotically, F and G are sinusoidal while the spherical Bessel function
goes as 1/r times a sinusodial (all of different arguments). If the
value of the truncated integral is plotted against the cutoff radius, it
rises smoothly till around a third of a Bohr radius, then oscillates with
decreasing amplitude about the desired terminal value. Unfortunately,
the damping is too slow for the integration to be continued till 1t settles
(at least five Bohr radii, maybe ten). Instead, it is necessary to
truncate the integral earlier and estimate the contribution of the tail.
This is done most conveniently by performing integration-by-parts at the
cutoff radius, thus obtaining an asymptotic expansion in inverse powers of

(13)

r. Using

£+2 . _ +2 .
Sar 22 5 ) = (/) 5, ()
(1)
ar ™ (ar) = - (1/a) r™* 5 (ar)
z+1 yA
and the differential equations for the wavefunctions (Chapter II, Eq. 7),
there results

a [ 6 0en)E ()i (aar = <6, (CR)E, (203, (2R)
R

(T . _ .
(£'+1) -/:FK,F%32+1 ar + (B 1)‘/R‘ G, 16, 3,,10r (2)

o, -1 : f’”
(m=n 1,2)41' G, +F 3,47 + s V(F F -G, G)ijrl
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. - 1
q/mFM,Gngzdr_ -F, GJ£+1 f [ E+l)F F+(E )C- G]Jz+l

o . & (3)

(e o]

- '——— ® -l i
(n n;?,E)f r U G, 0T +AV(F F -G G)Jz_’_l

R

o]

. _ _— . _ .
qf FK,F%JZ+ldr = FK,F%Jz f [(E l)G%,F%+(E l)F%,Gn]szr
R R

(4)
T = "l . ® 1 3
SOl B IR R AR CRURERERE K
R R
. ) . , .
qf 6,183,417 = GG, 4, +f [ (8+1)G, ,F, +(E'+1)F, ,G 13, 6r

: . (5)

1 -1 . .
- - dr - + dr.
OREM) z)'/Rr G, 1G J,ar ] (G, . F, FK,G%)Jz T

The integration-by-parts can be continued to higher order.
If only the terms in lowest order in l/r are retained,

‘ Egs. 2-5 reduce to

- ' - 3
(E'+1)(E l)F%,GMJ

2+1

2 j dr = '- j
q/ G, F d,0r (EE l)GK,F%J 4+l

R

- E'(E-1)G ,G J

-~ ‘ il
E(E +l)FK,F%JL RIIPP

+ (EE' l)F G, J

et .
qu F .G J,dr = (E'-1) (E+1)G ,F ] il

A n'Tn 4+l
R

(7)

. ) . .
+ E (E+1)FK,F%J + E(E l)G%,G%J

2 L°
The convergence of the procedure of truncating the integral and
adding the asymptotic evaluation of the tail is tested by comparing results

obtained with different cutoff radii. The accuracy is tested by constructing

artificial problems for which the answer can be obtained in closed form.

- 2% -
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It turns out that a cutoff radius of about one and one-half Bohr radii (or
about 200 in limits of h/mc) is satisfactory, and that adding the next
order of terms beyond Egs. 6 and 7 has little effect, at least in the
energy range of prime interest.

At lower photon energies (say 25 kev), the form of the matrix
element tail correction is more critical, as it is essentially an asymptotic
expansion in inverse powers of gR, and inclusion of the next order
terms is desirable. Carrying the integration-by-parts to the next
order and solving the resulting simultaneous equations (and using the
differential equations to simplify the expressions ), Eqs. 6 and 7 are

replaced by

w
. = v ' 1 . ' 1
pa f g .ma,ar =3, [5G, B-8E 61,] + 3,00 (81 !
R

- - 1 - 1§ t_
(E l)Gan,+(E 1)(E +1)F%,G-M + (EE l)Gu.F%]

(8)

+ (qR)—ljz{[q?+2k2k'2-L(EE'-l)]qK,F%+(E—l)(E'+l)[z-2(EE'—l)]GRF%,}

2

+ (qR)_ljz+l[(E'+JX2E2E'-E-E')FM,F%+(E-1)(2EE' -E—E')Gh.Gh]

. . _ -
+ ng[(E +1)Ek,5%+(E l)Gk,Gk] \Y

[ F
g4 (BFETIG F

and

o0

s - 4 1 [ ' : '

qu/' F 16, J,dr = Jz[E F 2 GI-EG E] + 3, [(E+1)FKFk,
R

- (8'-1)6,,G, + (EE'-1)F ,G + (E+1)(E'-1)G ,F,]

+ (qR)-ljz {(E+l)(E'-l)[E-E(EE'-l)]Gk.F£+[q?+2k2k'2—L(EE‘-l)]GkF%,}
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i (qR)_l%l[ (E+1)(2EE'2-E-E')FWF% +(E'-1)(2E2E'—E-E')GM,Gn] (9)

. . . : .
- vl (E+1)E, ., +(E'-1)G .G ] Vi1 (BEVE, (G,
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VII. PHASE OF COULOMB WAVEFUNCTIONS

The continuum solution of the Dirac equation for a Coulomb field
contains an ambiguity of m in the phase shift. 1In computing matrix elements
for electromagnetic interactions, it is necessary to adhere to a consistent
convention for the phase. Since there is an established sign convention for
the free particle solution, it provides a suitable calibration.

The relative phase of the two radial functions is well-defined, so
it is sufficient to examine only the "large" component. The Coulomb function,

normalized on the energy scale, is

_ |1"(y+iv)|ew/2(E+l)l/2(2kr)Y -ikr+iT, . .
T o (2y+1) (k) /2 o MEGE R
2y+l;2ikr) + c.c.] (1)
with exp (2im) = - (u-iv/E)/(y+iv) (2)
and v = (E/k) oz , v = (ue-O?ZE)l/E- (3)
The corresponding free particle function is
G: = (E+1)l/2(nk)'l/2kr g0y () - (4)

It is desired to fix the choice of the square root of Eq. 2 to be used for
exp (iM) by requiring that Eq. 1 reduce to Eg. 4 in the limit as Z goes to
zero (causing the potential to vanish).

As 2 —> 0, v —> 0, and y —>|x|. With these, Eq. 2 reduces
(9)

to -u/|u| . By Kummer's transformation,

171 (nl+1,2)x|+1;-21kr) = exp(-2ikr) 1F1 (I} »2n| +152ikr). (5)

Factoring exp (-iT) out of Eq. 1 and letting exp (2i7) = -u/lnl
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1/2 7

C(nl)  (E+l -in-ikr .
G, —> hr(ZIKT) (=) (exr) e [_Iﬁl (Fyp (el +1,2 ] +1521kr)
+ .51 (1“1:2'%]+15 2ikr)]. (6)

(9)

For y < 0, the expression in brackets is

1Fq Ul +1,2 ] +1521kr) + (Fp (fn] 52]u} +1521kr) = 2 \Fy (x| ,200d 521ke)  (7)

while g(x) = 1| -1 and

L1/2 E -
kry ™ KR (|l 2 s2ikr). (8)

T I 0 = gy 2
(9)

Using the doubling formula

2| -1 _-1/2

r2lx)) = (e )T(uf + 1/2), (9)

duces to

@
'_-l
J
=]
N
ct
L]
(1]
¢

1/2 -1/2

G_, —> exp(-in) (E+1) (mk) kr jl%'_l(kr). (10)

-
Comparing with Eq. 4, the correct limit is exp(in) —> 1.
For » > 0, the expression in brackets is(9)

lFl(u+l,2u+l;2ikr) -F n,2n+1;2ikr) = QikrlFl(n+l,2n+2;2ikr)/(2v+l) (11)

1(
while g(x) =x. The limit then reduces to

Gy -i exp(-in)(E+1)l/2(nk)'l/2 kr %M(kr). (12)

The equivalence now yields exp (if) —> -i.

Splitting exp (2im) into real and imaginary parts,

cos 2N = (-ny+v2/E)(y2+v2) =2 cosgﬂ-l, (13)
sin 27 = V(u+y/E)/(y2+v2) =2 sin T cos 7. (14)
Thus, with ¢ = +1 or -1,
1/2
cos N = e[{(l+cos 21)/2] , (15)
sin M = sin 21/(2 cos 7). (16)
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If Egs. 15 and 16 are used to compute exp(iT), the phase convention is given
by specifying ¢. This choice is determined by the Z —=> O linmits obtained
above.

For » < 0, the limit is cos | —=> 1, so ¢ = 1. TFor u > 0O, the
limit yields cos | —=> O (which leaves the sign undetermined) and sin n—> -1.
Since |u} > |u| /E > y/E, the sign of sin 2T is unaffected by E; for electrons,
it is the same as that of u. For u > 0, then, sin 27 > O while sin T < O,
so cos <O, and € = -1. Positron wave functions are obtained by taking Z
negative, hence v negative. The sign of sin 27 then reverses, and ¢ = 1
for n > 0. Combining the results, the prescription for using Egs. 15 and 16 is:

"%/ln‘":

electrons: €

il

positrons: e = 1.

The relation between positron and electron phases is
in - - r (™1
(€™ Dpos =~ 4 (&7 Depe (17)
In the limit of small kinetic energy (k —> 0), v becomes infinite
and exp (2im) —> 1. For an electron, then, exp(im) = ﬁ%/'nl. The limit is

meaningless for a positron, as its wavefunction then tends to a delta function

at infinity.



VITITI. ZERO KINETIC ENERGY LIMIT OF COULOMB WAVEFUNCTION

The "small" component Coulomb wavefunction is

vrr/2 1/2

ro- ilr(y+iv)le (E-1)

(okr)Y remikr+iTy
" 2F(2y+l)(rrk) 1/2

y+iv)lFl(y+l+iv;2y+l;21kr)-c.c.]. (1)

Tn the limit of vanishing kinetic energy (k —> 0), v = E0Z/k goes to infinity

(through positive values for an electron, negative for a positron). Going

3\
to the limit on the various factors:(lij
. -1/2 . vin/2, ;1/2-
lim  (2n) / |F(y+1v)|e' In/ Ivi /2=y =1, (2)
|V|~—-> ©
lim .F.(a,b;-z/a)/r(b) =z(l/2)(l_b)J (2 zl/e) (3)
G i ! b-1
yields, with
a = y+1+iv, b = 2y+1,
z = -2ikr (y+l+iv) » 2 & Zr,
lim F, (y+l+iv,2y+1;2ikr) = I(2y+1)(2 o 22) 7 I, [2(2 @ 7r)1/27. (3)
vV —> o

Inasmuch as the source reference did not establish the validity of this result
when a increases through imaginary rather than real values, it was verified
by writing out the confluent hypergeometric series and going to the limit

term by term.

[E_l]l/e _ [(k2+l)l/2-l]l/2 . [(l+k2/2) _111/2 _ 2-1/2k (5)
(y+iv) - c.c. = 2iv o 2i(0 Z/k) (6)
exp (-ikr+i7) ~ -u/|n]for an electron. (7)

Combining these results, the electron wavefunction (v > 0) is

Fo= G/d) (@02, o @ an Y, (8)

N
For G , the analogous procedure becomes more complicated because
"

there occurs
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(y+iv) + c.c. = 2y, (9)
so that a term involving v times the second term in the limiting expression
for the confluent hypergeometric function must be included. It is simpler
to resort to the differential equation:

F! - (n/r)FK = -(E-V-l)c;M ~ -(a Z/r)G%- (10)

Fl = (u/fu] ) (@ 22 (a/ar) Tp [2(2 @ 7r)Y/2 (11)

= (u/1n) ) (@ Z)l/2(2(X Z/r)l/2 { Jey-1[2(2 :er)l/E]-v(eoch)'l/eJey[e(e a Zr)l/el .

¢ = -(u/ju M z)'l/2 {2 a Zr)l/EJEY_l[E(E a Zr)l/ej-(y-m)ng'[E(E % Zr)l/QW }. (12)

In the positron case (v < 0), the exponentials no longer cancel,
but lead instead to a factor exp (-|v|n) which tends to zero. Thus, the
positron wavefunction vanishes. Actually, the limits were attained while
holding r fixed and finite, and the wave function behaves as a delta function
at infinity. The physical explanation is that the positron is repelled by
the (positive charge) Coulomb center of force, and can only approach it to the
extent that its momentum can overcome the repulsion; as the kinetic energy
goes to zero, so does the probability of the positron being within a finite
distance of the center of force.

The matrix elements for Bremsstrahlung involve in the integrand a
product of initial and final Coulomb wave functions. For a positron, the
overlap vanishes as the kinetic energy of the positron after interaction goes
to zero. Thus, while an electron can give up essentially all its kinetic
energy to the photon in Bremsstrahlung, a positron cannot. On the other hand,

the positron can lose all of its energy (including rest energy) through annihilation

to photons,



IX. STARTING CONDITIONS FOR INTEGRATION

Near the origin the screened nuclear potential has the form
V‘C—Zee/r, where C is a constant contributed by the potential of the
electrons. If this relation is substituted into (Chapter II, Eq. 7)

the coupled equations become

2
48
F'o-ZF+ 5%— G+ (B,-1) G =0
(1)
2
' n Ze _ _
G'+-G-=—TF (Eo+l) F=0],

where EO = E + C. These equations, which are essentially radial equations
with a pure Coulomb potential, provide a means of obtaining the form of the
wavefunction and its derivative near the origin.
In (1) use will be made of the operator notation

n

n S = 8(8-1) +err (S-n+l). (2)
n
dr

This is done for convenience since it can be shown that
£(8)r" = £(n)r". (3)
Thus, when (1) is multiplied through by r and the operator notation is

used, the coupled equations become

8F - F + ZeeG + (Eo—l)rG =0
(&)
8G + nG - 7e°F —(Ed+l)rF =0
Now substitute
(=]
- 2ty
G —-:E: azr
£=0
(5)



into (4) and use (3) to get

® oy
[@+u)ao - ZeebojrY + :E: [(z+y)a£+naz—Zegbz-(Eo+l)bz_l]r
4=l

i
(@

o]
2 )+
l'(y—n)bo + Ze ao]rY +Z [(z+y)bz—ub Y -

2=1

2
+Ze az+(Eo-l)a

|
o

I g-17

When the coefficient of each power of r is set equal to zero in (6), then
the relationship between the coefficients of (5) is established. The

relationship between the first few coefficients is given by the following

equations:
2
ao = % bO’ (7)
2
by =22, (8)
. with
|2224 (9)
and
a, = -b_ [(%'Y'l)(Ed*i)++2§%‘Y)(Eofl)] , (10)
b, = -a [(%+Y+l)(Eo'i)++2§M+Y)(Eo+l)] . (11)

The positive square root in (9) is taken so the wavefunctions will be
finite at the origin.

For Z close to zero,the denominator in (7) is small for »<O
while the denominator of (8) is small for »x>0. Thus, in general, to make
the program applicable for all Z, the procedure adopted for selecting the
coefficients was to choose bO and use (7) to obtain a, when >0, and to

choose a_ and use (8)to obtain b_ when n<0.



Since the wavefunction and its first derivative are both zero

at the origin, as can be seen from (5) through (11), there is difficulty

with starting the numerical integration. This trouble can be circumvented

by making a transformation to the functions

¢ =r Yo
(12)
r_YF

FO

which satisfy the equations

1 ( —K)
Fl o+ —Yr— F, + (E-V-1)G,

Il
@)

(13)

G; + LX“;L) G, - (B-V+1)F_

It
(@)

Thus, at the origin,

GO =a, F =b

' Ir = O (lll-)
Gé =a, , F =D

The procedure is to integrate (13) out to some convenient radius (e.g. r

and then transform to (Chapter II, Eq. 7).

_33_
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X. PHASE SHIFTS (NON-COULOMB)

The free particle solution to (Chapter II, Eq. 7) is required to
determine the normalization and phase shift for the numerical solution of
the radial equation. These are obtained from (Chapter II, Eq. T7) with V=0 as

— 4T
B+1 . +1 ) n
Ce = Nk Ty ()~ [ e O - )

(1)
/ L
_ E-1 u . E-1 “
Feo= VAR m & Jz_n(kl“) ~ ‘}T?k_' cos (kr - T)l
where jg, is a spherical Bessel function. Also required are the two new

functions S(r) and C(r) which are definéd by the equations

4o 4o
n

_ fE+l ,E+1 . ” .
G = o1 S Ff +CGf = [sin 6% cos (kr - T)+cos 6% sin(kr - —2—)1
(2)

E-1 E-1 I’MTT ZKTT
- C - [2== ~ |22 - 2 Vg4 s - =\
F =C Ff ’E+l SGf ‘nk [cos 6;t cos (kr 5 )-sin 6% sin(kr 5 )1,
From the asymptotic forms given in Chapter IIT, Eqs.13 and 14 one can deduce

c(r) ~ cos 8,
(3)

s(r) ~ sinéu ,

c®(r) + 85(r) ~ 1. (1)

If GN and FN are the numerical solutions to the radial wave
equations, they will not be properly normalized because of the arbitrary
selection of one constant in the starting conditions. (The procedure

is to start with the normalization appropriate to a pure Coulomb potential.)

Thus they will differ from the correct solution by a normalization
constant N such that F=1\]FN and G=NGN. Substitution of these equations

into (2) yields
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A
(]
=
o]
|-
]
l"-lj
=
ICJ
Hy
N

4.1 -1 -1 +1
S(r) = N
2 2
. Gi)
-1 E+1
(5)
GG Fife
Frl BT
c(r) =N
2 2
('f_f__ - Ef_)
BT Bl

Upon completion of the numerical integration, Eqs. 4 and 5 are used

to determine the phase shifts.
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XI. W.K.B. APPROXTMATION AND NORMALIZATION

The radial equations can be combined into the second order equation

G: + (E-V+l)-lV'G%' + { (E—V)2~l-[;¢,{;4+l)/r2]+(;¢/r)(E—V+l)_lV' } G =0. (1)

To get a form appropriate for a W.K.B. treatment, the first derivative term

must be eliminated. This is achieved by the change of dependent variable

R (r) = (B-v+1)Y2 ¢ (2) (2)
U "
which results in
1" V" 3 V'2 U V' 2 ;«(,(;4+1)
R+ - sey " F Eoene * 7 5ovex *+ (B-V)T-1- 2 1R’ =0
This can now be assumed of the form
" 2
R + p (I‘) R =0 (L&)
" "

for r sufficiently large that the quantity in brackets is positive. The

(3)

formal analogy with the non-relativistic solution can be extended by writing

B (r) = K-u(r)-g, (5, +1)/2%, (5)

so that the known W.K.B. approximation of the more familiar case can be
taken over. using the "equivalent potential" U(r). For this purpose,
note that
+1) = +1 6
nGetl) = g (g +1), (6)

(E-V)2-1 = KC-2EV+V, (7)

so that

2

)-2'(u/r)V'(E-V+l)_l+2EV—V .

u(r) = (1/2)V"(E-v+1)'l+(5/h)v'Q(E-V+1
The W.K.B. solution is

R, = (mo)'l/2 sin (f pdr+5 ), (9)

with the normalization set by comparison with the asymptotic value of the

exact soclution for Gn'




The numerical solution of the exact radial equations yields
unnormalized wavefunctions. The normalization is obtained by proceeding
out to an r sufficiently large that the asymptotic form of the wavefunction
is attained, and setting the normalization by comparison with the known
normalized asymptotic wavefunction. This usually means that, for the
sake of ascertaining the normalization, the numerical integration has to
be carried well past the values of r necessary for the evaluation of the
matrix element integrals.,

For a well-behaved potential, the W.K.B. solution will
satisfactorily approximate the exact wavefunction long before the asymptotic
region is reached. This suggests the alternative approach of obtaining the
normalization by comparing the numerical unnormalized wavefunction with
the W.K.B. solution. The procedure then becomes that of carrying out the
numerical solution as far as it is needed for the evaluation of the matrix
elements. At the cut-off radius, the wave matching is then carried out
as described below. Note that the normalization must precede correction
of the matrix elements for the tail contribution (Chapter VI).

Denoting by ﬁ% the unnormalized numerical sclution of the exact
equations for Ru and by A the associated normalization constant, matching

R to the W.K.B. solution yields
n

ﬁu = A(np)'l/2 sin (f p dr + 5K). (10)

If the W.K.B. solution is a reasonable approximation at the value of r

being considered, the derivatives can also be matched:

= -(p'/2p) ﬁ% + A(np)_l/z p cos {/ﬁ pdr + 6n), (11)

ot
n

or more conveniently,

—)"Z -



A(rrp)'l/2 cos (f pdr +¢ ) = pt ﬁn' + (p'/2p°) R - (12)

Squaring and summing Egs. 10 and 12,

2
A% = | R, + (o™ R+ (p'/20°) §n]2} : (13)

For an r below the validity limit for the W.K.B. approximation,
the above expression for §% can still be used provided that A and 6%
are considered functions of r instead of constants. When both are allowed
to vary, the description is underdetermined. The resultant freedom permits
an arbitrary choice of a supplementary relation. A legitimate choice is
to require that ﬁll retain the form given above, i.e. that the additional

terms obtained on differentiating the expression for ﬁn cancel:

Avsin(f pdr+6n)+A5' cos(/pdr+5n)=0. (1)
n

The expression given for A:2 is then still valid, but the value obtained

may vary with r. The normalization constant has been attained, then, if

|dA/d(kr)1<<|A{ for all r above the value in question. To obtain A',

differentiate Eq. 12:

A' cos (/pdr+6%)—Apsin(./pdr+6”)—Aéésin(fpdr+5n)

- A2 /2 R! + (Trl/g/?) R [p"p'a/g-(B/E)p'Ep'S/gl- (15)
Substituting Eqs. 4 and 10,
nl/ep_l/Eﬁ;j = _nl/2p5/2-§% = -Ap sin ( [p dr + 5)4). (16)

Using also Eq. 14,

A' cos (f pdr+6)-A5;;sin (fpdr+5%)=A‘/cos (./pdr+a)
n n

- A sin (f p dr + 5%)[(1/2) p"p 2. (3/m)p %0 707. (17)



To eliminate the masking effect of oscillations of the sinusoidal factor,

note that

lsin {)(.p dr + 6%) cos Qj/‘p dar + 6%)’S 1/2. (18)

The relation k + |A'l << A then reduces to

(8kp?) L | 2p"p-3p'8 | << 1. (19)

It should be noted that the procedure outlined results in the
evaluation of the normalization factor while leaving the phase shift undetermined.
In principle, the W.K.B. approximation can also be used to compute the phase
shift. This requires, however, the evaluation of “/”p dr out to infinity

(or at least to the asymptotic region) and this has to be done numerically

because of the complicated expression for p.

The W.K.B. approximation as applied to the normalization of the
wavefunctions requires an expression involving the potential and its first
three derivatives. For a screened potential, which is known only numerically,
computation of these derivatives by differencing would be unreliable.

Instead, use is made of the fact that the screening factor (ratio of

screened to unscreened potential) is nearly exponential. The exponent
appropriate to the radius at which the numerical integration stops is obtained
by taking the logarithm of the ratio of the screening factor at that radius

to the screening factor at a slightly larger radius. The analytical form

of the screening factor thus arrived at is then used to calculate the
derivatives. This procedure has been used to obtain the normalization

of the wavefunctions in the screened case.
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XII. SCREENED POTENTTIAL

The electron wavefunctions are obtained by integrating the Dirac
radial equations numerically. When screening is invoked, the potential used
in these equations is the Coulomb potential multiplied by the ratio of
screened-to-unscreened potentials. This ratio is obtained by reading in a
tabulation from tape and interpolating (the ratio is used instead of the
potential itself because it is a smoother, more slowly varying function of r).
The tabulation came from the output of a relativistic Hartree-Fock-Slater self-

consistent-field calculation(lu) made available to us by Dr. James T. Waber.
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XIITI. ANGULAR DISTRIBUTION OF THE SCATTERED ELECTRONS

In the earlier chapters, the Bremsstrahlung cross section has been
considered under the constraint that the photon is observed but the scattered
electron is not. The final electron state is then represented by a spherical
wave @n',u" and the cross section calculation includes a sum over the
quantum numbers ' and u'.

The present chapter deals with the cross section under the converse
constraint: +the photon is not observed, but the scattered electron is.

The final state electron function.Yf(E’) must now be in a definite spin state
(z-component m") and be a wave which behaves asymptotically as a plane wave

(7)

plus convergent spherical wave. Explicitly, it is given by

1 _ 3/2 11,1 '1/2 ' £ A|
Ym”(E ) = )-H'T (2E k ) E' ' CM’,H‘ ’_mn CP%,’M’ Y,@ ',“,_mn(k ) (l)
n'u %
with

4 ,+1 =-i§_ ,
. l . 1" 1

'y TR =l% € " C(E v 5 J, 15 m'-m :m'))

n',u',m n' 2 “n (2)

differing from the form of the initial state electron function (Chapter IIT,
Egs. L4 and 5) by a complex conjugation (convergent instead of divergent
spherical wave) and by omission of the specialization to propagation along
the z-axis.
In the cross section itself, the density of final electron states
must now appear, leading to an additional multiplicative factor of
k'E'dQe/(Qn)B. On the other hand, since the photon is not observed there is
an integration over its direction mnq and a sum over its polarization p (in
fact, it is obvious that the angular integration will eliminate any polarization-

dependent terms).




The matrix element M(pmn'c) of Chapter III (with the change of variable
' e = u'-m used there) is now replaced by

~4 -1 16 ,
M' (pmm") = Lrn3/2(2}3'k')"l/2 Z i " e N oo
n'e

l . " 1
M'—é J%v5€+m'm > )

(3)
A
1 1
Y, ”Hm_m..(k ) M(pmi'e ).
"
Factoring out the dependence on the photon angles,
M (pmn") = . M (\epmm") D 5 ,0
(pra’) = D 31! Grepmn’) 3 (9,9,,0)
and the integration over photon angles is trivial(8)
DM ¢ GO)D)\J'*( 6 ,0) = =T 5 4
d.Qq e D qu) q: c'p’ (-Pq, q> = oh+l 6}\}\1 ee'épp" ( )
leading to
- 7 1" e
San, e ora)1? = e 3 (@) I (reom)] (5)
° -

where explicitly (see Chapter III, Eq. 15 and Chapter V, Eq. 9)

_ |6 -4 -1 is ,
M' (Aepmm") =Lh'r§ e WQEE 'kk' Z i " e M ,1

L ‘e +m_mn mn Y
M"z " 2:]%'9 2 ) II

/\|
1 5€ +m'm"(k )
n
S 1 (6)
pC(en30p) (<) & Hugn ' )C( 3, 3, 1sem)C(J 58, 3-mm).

n

Application of the addition theorem for spherical harmonics

A, % £y = (- €+'m—m" -1
Yy B xR = (DT )T e, 1) (2, 41)
n %l; 1

2 C(,e%izu,j;OO)C(zniln'J§-e -m+m" ,e +m-m")PJ. (cos 81 )

3

v

reduces the angular distribution to an expansion in Legendre polynomials

. of the cosine of the angle between incident and scattered electron.
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In the calculation of the cross section, there is an average over
m (the spin orientation of the incident electron is immaterial) and a sum
over m" and p (the Bremsstrahlung process will be observed regardless of the
spin orientation of the scatteréd electron or the polarization state of the

photon). Gathering all the factors,

aE K'E'qS . ' ./. 12
aw =T a—n—)%-dne(-dﬂ)z a, [w]”. (8)
ml!p
The polarization sum is

D TPC(a150p)C(2, 10 30p) = 2C(a22301)C (g, 20 500) (9)
1Y

provided that
4 + &) = even integer (10)
and vanishes otherwise.
The magnetic quantum number sums can be carried out explicitly.
For m", there results

+m-m" 1, "
D (-1 ey, &5 e menm)O(s,
.4 |

l . . 1" " . o 11 11
153, 136 +m-m’,m )C(LK,LK,J;-G-m+m e +m-m")
1

m

171

. 1
J/ 1'2K1+J%r’§ (ll)

"
1 , ; . S U
=(-1) 1(23+1) (23, +1) W(a, 13 & 13, 1353)C(3, 133, 13e+m,0).
1 1M1 1

Together with factors from Eq. 7, the Racah coefficient reduces to

. . : 1. N A 1
(24, +1) (ezniﬂ) C("ni‘n 1 ;OO)W(I'niJ%]’_z% 13, 13553)=C" (3, AL 355-3) (12)

provided that the left-hand side does not vanish, i.e.

4 ,th +J = even integer (13)
nloTng

and the three angular momenta in Eq. 13 satisfy a triangular inequality;
the prime will be carried along on the C as a reminder of the implied

constraint. Next, the ¢ sum is
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ze: 013,034,000 08, em)C0 g, 5, sem)
_ . (1k4)
e g — . o hars
23, 1Ny, +1)/ (23+1) W03 BurdsWC0, 3,35mmm).

- (1)

The m sum is the same as in Chapter V, Eq. 14 and again gives

1
mtz
3 s 1 1
z :(-l) (3, 3,d5m-m)C(3 38 3-mm)C(3 3¢, 5-m,m)
1" "17 M
(15)

n n
I N
= (-1) C(JuaulJ’E’ -5)

“though the argument for the equality of the two terms with m:i% is a bit
different, namely a change of sign in m introduces the factor (-1) to the

power

l+(j%l+j%-j)-(j l+"‘ "Z ) (J 'Z ) =2 l‘*‘l -J (16)

=2(3, +jM-J)'(E +4

+4_ )= j
. S Zq) <‘-%+£n'+£)+<£+£1>+(ﬂni+ﬂn'+J)

which is even since the second and third terms in the last expression must

be for non-vanishing matrix elements, the last two according to Egs. 10 and 13,

The differential cross section is
j -1
dc=_5ne2(q/k2)doedE' z :f-l)JPj(cos ek,) E (—1)X(2x+1)
J A

J '+j%' L%.-Jlk' 1(614. "'6 t)

: " 1,71 . C. L1 o

E (-1) i e (23 +1)(25, +1)c(d, 3, 355> 2) (3,09, 133

. 1 1 "1
%Kl% %l
1

E C(zlx;Ol)c(zllx;m)wunjnlj ' i,JX)H(Mu w)HE (L g ) (17)

24
1
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where the primes refer to the constraints of Egs. 13 and 10, respectively. To

eliminate complex numbers, make the variable change (see Chapter V, Egs. 7,

10, and 2L).

-4 z+1,%-1, oL 18

i HQaw ') = -1 Moe M (1) (23,#2)/3 HOuw'n).  (18)

The power of i is even

44, -8 o +L = (z+zn+z_%,)+l-(zu,+z_%.) = (e, 0 _ )+ (1-23 ) (19)
so that
L+ -4 ‘+l (£+z +Iz_ l)/2 1/2'j ]
N G ) A (-1) " (20)

The £ and zl sums can be done separately provided Eq. 10 is simultaneously
satisfied. This requires splitting the sum into an even ¢ and an odd ¢

part, namely

(2+8_+4_ ,)/2
L) =y (1) T e )o(amsonHG e ), (21)
4 even
(e, +4_, 1 )/2
Té(xn'u) = (-1) (24+1)C(g I\ ;0L)YH(AL n'n). (22)
g odd

The cross section then reads

1(6 +6 =6 =8 ,)

- ne? (@/)am' a0 Z( S EXEEIND DI

MM,KK

. : . . R T A
(23,.1#1) (23, 1) ‘E?J%H)(Eanfl) O3y 3357300 (3,08, 1335275 ) (23)

2

Z (-1 (2)\+1)-l(2)\+1) G .JK,,JX )Z T (' u)T ()\u )
A

KM. VL
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An interchange of the designation of the pairs of summation variables (n,nl)
and (n',ni) must leave the cross section unchanged., This interchange affects
only the appearance of the W and the two C coefficients, none of which change
value as a result, and changes the phase factor to its complex conjugate.

On averaging the results of the two equivalent conventions, the exponential

is replaced by the cosine of the phase. Then

2 2\ i z: yd e
do =me" (q/k")daE aQ, . (-1) Pj(cos ek,)z cos (6M+6%, 5, =8 ')
J " lg’n'

1 "M
1
. . . 1 1 e
. PR Tt __\ 1 N o= =
(23, ,+1) (25, ++1) \I(QJK‘FI)(?JK 1) (3,3, 355300 (4,43, 1 3555-5)
1 1 1 1
(2k)
z COM @)W 5, G -a‘x)z T (') T (wlu.)
nen,“u'on!l? n n¥1mt
1 1
A n
For the cross section integrated over all angles,
fdﬂe P, (cos 6y,) = b 644 (25)
With j=0, the W and C coefficients vanish unless j =] and J ,=) . But
Y e
in addition, from Egs. 16 and 13, 4 +4 = even and g ,+§ , = even, These
1 %l n M.l

together require ny and n’=%i. The coefficients then reduce to statistical

factors, and the cross section becomes

oy = et (a/k)am ) [(e3, 1)/ @+ ) [T Ow'))®. (26

Ann ' n
The Bremsstrahlung cross section integrated over all angles could
equally well have been obtained by starting from the photon angular
distribution and integrating it over the photon angles. This will now

be done as a check on the calculations. From Chapter IV, Egq. 9,

0
‘/(é(cos eq) (dop,p) =2 6pp' djpp' (27)



Using the fact that the two p values make equal contributions and the

relations among y, a, E, and k, Egs. 10 and 11 of Chapt. IV yield

o 2, 2 ’
W0,y = Aoy = 137 (0/x0) dq%“:Ao (114, 2) (28)

with the constraint of Chapt. V Eq. 16 on the double sum specializing to
Egq. 10. Substituting the value of the C-coeffiicient with j = O, Chapt. IV

Eq. 12 reduces to

Ay (114,4) =Z (-l)>‘+l(2>\+l)'l/2 C(,12;01)C(£1A;01)V (Ahe 2) (29)

A
and Chapt. IV Eq. 13 to
_ AL
Vo (Mg e) = (-1) ze:qs(xulze). (30)
From Chapt. V Egs. 25 and 26, the esum is now merely
20C003,00, 5 - <¥1/2) OO, 1d,5 s -e41/2) = 6 (51)
€ 1 Uon
1
and the parity condition expands this selection rule to NN . Substituting

Chapt. V Eq. 27 into Chapt. V Eq. 26, there remains

Ao(llzlz)=§l/5)(2z+1>(2zlf1>}§:(2x+l)'10(zllx;01) ¢(g1h; 01)

(zl+zn+ A )/2 (z+z%+¢_%, )/2

2 (23 ,+1)(-1) B () (1) (22)

H( gn'n).
Using Eqs. 21 and 22, this leads to Eq. 26 as expected (remembering that
dq = -dE').

Returning to the electron angular distribution (Eq. 23), there
is a computational advantage to the elimination of the Racah coefficient
at the cost of reintroducing a magnetic quantum number sum:

CNGFA e

(-1) W(J%J%lJK.J

c3dn) (33 35 /2, - 1/2)
%l K%l

@)L 1P O35 s - 12, Br1/2) (5. i - 1/2, Bel/2)
B nNn M.l %l

c(i .3 ,3; B¥1/2, -B-1/2). (33)
n %l
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The n and n, sums are now decoupled. Setting

Un(m's) szeif’% sz%ﬂ c(g d ks - 1/2, p+1/2) T, Omn'n),
(34)
i(é 1'6 v)
= ne2 (q/kz)dE' dQeZPJ.(cosek,)Z e ( o (ij+l)(2jw+l)
J %'ni ‘ 1
C' (3, 1d,, ; is 1/2, - 1/2) Z( 1)P (3, .3 iJ’ B+ 1/2, -B-1/2)
Z(zml) u_ (') UZ (an1B). (35)

Just as after Eq. 25, only the real part of Eq. 35 is needed.

A comparison of the electron and photon angular distributions
shows them to be of the same order of complexity. The calculations are
identical through the computation of the reduced matrix elements

H(Agn'n), but the subsequent angular momentum sums differ.



XIV. THE COMPUTER PROGRAM

The main routine (BREMS) sets up some numerical constants, reads
the input parameters and checks them, then calls subroutines to do the bulk
of the calculations, and finally computes the Legendre functions and puts
together the cross sections and writes them out. All ordinary input/output
is done in BREMS. Supplementary diagnostic and checkout output is
generated by some subroutines

The structure of subroutine calls is schematized in Fig. 2.

The first subroutine called is SELECT. It starts from the input
specification of the maximum orbital angular momenta to be considered,
runs through the selection rules to determine what matrix elements will
occur, and indexes these matrix elements and the corresponding quantum
numbers.

If screening is to be considered, SETAPE scans the tape bearing
the screening factors and finds the section of it containing the data for
the required element.

FINTEG is the control subroutine for the radial matrix elements.
It sets up the required arrays for the wavefunctions and matrix elements
and their derivatives, computes their initial values and the coefficients
of the differential equatioms, calls other subroutines to do the actual
integrating, computes the phase shifts, then calls subroutines to
normalize the matrix elements, asymptotically evaluate their tail, and form
reduced matrix elements including an X-coefficient.

The integration is performed by Gill's form of the Runge-Kutta

method(lS) in RKUTTA, which calls DIRAC to supply the derivatives from
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. the differential equations. If screening is taken into account, the
screening factor (ratio of screened potential to Coulomb potential) is

supplied by RATERP, which reads values from tape and interpolates.

Upon completion of the integration, normalization factors
are computed in CNORM by matching the wavefunctions to their W.K.B.
approximation (see Chapter XI) and the matrix elemeuts are then
normalized.

The asymptotic evaluation of the tail of the matrix elements
(see Chapter VI) is performed in ASYMP, and the correction is added on.

In HFUN, the calculation is carried forward to the reduced matrix
elements H(A £%'™), incorporating an implicit sum over a couple of
magnetic quantum numbers (see Chapter V, Eq. 24).

The remaining angular momentum sums are performed through the

. chain BSUM-ASUM-PHISUM. The sums over all ®'s are performed in PHISUM,

with appropriate phase shifts and Clebsch-Gordan coefficients, to yield
a(Klkllﬂe) (see Chapter V, Eq. 26). Further sums over ¢ and the A's
are carried out in ASUM, again with Clebsch-Gordan coefficients, to
yield Aj(i)(llﬂ) (see Chapter IV, Eq. 15). BSUM sums over the 4's
to yield Bj(i) (see Chapter IV, Eq. 16).

The remaining subroutines compute special functions. LOGGAM

@6)

is an NYU program to compute the logarithm of the gamma function for
complex argument (converted to FORTRAN IV at UCC), used for the Coulomb
wavefunctions and phase shifts. BESSEL computes spherical Bessel functions,
using the explicit expressions in terms of trigonometric functions for

£=0 and 1, and recursion relations for larger £. BESLIT is the same as

BESSEL except that if the argument is less than 1 the power series are

used for £ > 0. CCOEFS computes Clebsch-Gordan coefficients, using
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(7)

explicit formulas if the smallest j is 2 or less

(18)

, the general fozmula
(19)

otherwise , with a specialization for the parity C-ccefficients .
XFUN yields the factor denoted by sz(n',n) in the explicit expression
for the special X-coefficient arising from the magnetic quantum number
sums (see Chapter V, Eq. 8).

(@)

Following Koch and Motz '™ 7, the angular distribution is given

in units of (the photon energy /22) times the differential cross section
(per unit interval of photon energy per steradian) in millibarns/steradian.
This is the display favored by the experimenters, and hence deemed most

convenient for practical use. (On the other hand, the calculations are

performed in dimensionless nuclear units (A =m = ¢ = 1).

_52-




to run the

listed, al

XV. OPERATING INSTRUCTIONS

This chapter gives all the operational details needed in order
Bremsstrahlung program. The input variables and format are

ong with the program diagnostics. Test options and their uses

are described. Tape unit assignments are given. The output is outlined.

The strate

operation

single dat

KEY

NTAPE

NTEST

ITEST

INUM

IREP

gy of successive choices of input variables in production
is discussed.

Input Variables

The fixed point gquantities described below are read in on a

a card in format 10I5:
Equal zero for pure €oulomb run, one for screened run,
and minus one for program termination.
The highest Legendre coefficient in the angular distribution.
The highest orbital angular momentum coefficient for photon.
The highese orbital angular momentum coefficient for incident
electron.
The highest orbital angular momentum coefficient for scattered
electron.
The logical tape unit assigned for tape containing the screening
data. (This number need be assigned only for a screened run. )
Equal one for matrix reduction procedure, equal zero otherwise.
Equal one for radius increment procedure, equal zero otherwise.
The maximum number of times the cut-off radius will be incremented.
(This number need be assigned only if the ITEST option is
utilized.)
Equal one to pick up from tape of previous run and proceed to
the angular momentum sums, equal two to carry the radial integration

forward under the ITEST option without first summing, equal zero

otherwise.
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The quantities NTEST, ITEST, and IREP designate optional program
features described below.
The floating-point quantities described below are read in on a

single data card in format 8F10.0:

Z Nuclear charge (atomic number).
EO Kinetic energy of incident electron (in Mev).
X0 Ratio of photon energy to incident kinetic energy.

RATIO The ratio of particle mass to electron mass.

ZEL Ratio of particle charge to electron charge (1.0 for electron,
-1.0 for positron).

RCUT Radius at which numerical integration 1s terminated.

TOL The admissible fractional change specified for certain output
quantities. This quantity need be assigned only if either
of the program options (NTEST or ITEST) is used.

DRCUT The amount by which the terminal radius (RCUT) is incremented.
This quantity need be assigned only 1f the ITEST procedure
is utilized.

A complete set of data consists of two data cards. Upon
completion of a problem, the program recycles, reading in the next pair of
data cards. Termination of the entire program is obtained by setting KEY=-1
on a first card (no second card needed).

Input Testing

The program sifts the input data to insure that certain criteria
are not viclated. If any difficulty is observed, the specific violation

is printed and the run terminated.
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Listed below in abbreviated form are the criteria that must be

. satisfied and that the program tests for:

IM<(2*¥IM+2)

MIN(JM,IM,IM1, IM2) = O

MAX(IM, IM1, IM2) < 10

IM1 + IM2 = TM

|IML - Mels 1M

0<X0 <1

Z =0

ZEL % O

NEQ < 1500% where NEQ = number of matrix elements

plus wavefunctions.

* The number 1500 was chosen to insure that the entire program would not
. exceed the storage capacity of the IBM 709k.

Program Options

The program has two option procedures designated by NTEST and
JTEST. ZEither or both options may be used in the same run. If both are
desired, the priority goes to ITEST. The results thus obtained are then
used for NTEST.

NTEST (or matrix reduction procedure) examines the possibility
of reducing the original angular momentum quantities, JM, LM and IM2,
without influencing the output quantities more than a given fractional
amount (TOL). Since the running time of the program drastically
increases as these values are increased, the knowledge of a minimum set
can be of use for future runs. Another consideration for the use of
this option is, if no reduction is possible (i.e. any decrement results

in a "large" change of output), there exists a possibility that the
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original values were not sufficiently large.

Method: After a run is completed, including the printout,
the test initiates by decrementing JM by one and recomputing, then
comparing the new values with the original set. If the fractional change
is within the required tolerance (TOL) the procedure repeats. The first
time the comparison fails, JM is incremented by one (back to the previous
successful value). This value of JM is printed, then the program proceeds
to decrement IM in like manner, and the process continues until we
obtain a "minimum" set of values JM, IM, and IM2 (which may be the
original set) that does not change the output quantities by more than
the required amount.

ITEST (or radius increment procedure) investigates the radial
matrix element stability. This option allows us to examine the stability
of the output for different but progressively increasing cut-off radii
without re-running the entire integration from the beginning.

Method: This test initiates by temporarily storing on tape the
present cut-off radius along with the matrix elements computed at that
radius and other necessary data. After the run is completed, i.e. the
required output data is generated and stored but not printed, the tape
is read back in, the integration carried forward an additional increment,
DRCUT units of radius, and the matrix elements updated. Computation then
proceeds as required. The newly generated output is compared to the
previous set. If the fractional change is not within tolerance (TOL)
the procedure repeats until success is reached or the maximum number
of increments (INUM) is exceeded. After each increment, the matrix

elements and their sum squared are printed for visual comparison. The
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testing 1s always made to the previous set of values, i.e. the output
variables are constantly updated. The comparison of results is printed
after each computation. The entire output is printed either at the
successful cut-off radius or after INUM is exceeded.

IREP was inserted to permit the program to be run in install-
ments, whether by design or necessity. At the end of the radial integration,
the matrix elements and quantum numbers in indexed form are written out on
tape. The IREP option permits the program to read in the information from
this tape (saved from a previous run), bypass the radial integration and
proceed onward. This allows a run to be saved if it was cut off after
completion of the radial integration but before the angular momentum sums
were done. It also allows the test options to be applied to a run previously
done without them.

Systems Information

The program as run at the Marshall Space Flight Center utiligzes

the following tapes:

Logical tape unit 5 Read

Logical tape unit 6 Write

Logical tape units 8, 9 Temporary storage
Logical tape unit 10 Screening data.

The FORTRAN program, of course, refers only to symbolic input-
output unit designations. The actual physical unit corresponding to the
symbolic unit reference has been established at the initialization of IOCS.
Since symbolic unit references may differ from installation to installation,
care must be taken in attempting to execute the program in making the tape

unit assignments compatible with the installation in question.




The input tape unit to be mounted on logical tape unit 10 is a
pre-created save tape (screening factors). The system BCD input containing
the program and data cards is mounted on logical unit 5; the BCD output
for later off-line printing is stored on logical unit 6. Logical tape unit
8 is used by the program to store intermediate information for later recall.
In the ITEST option, this information is subsequently read back in and the
corresponding data for a larger radius is written out. In the restart

option (IREP), the tape saved from unit 8 of a previous run is mounted on

unit 9 and read in; it is not written on.
Output

The output starts with a restatement of the input data. Inter-
mediate output includes the number of matrix elements, the integration
step interval, the normalization factors, the wavefunctions and matrix
elements hefore applying the asymptotic correction for the tail of the
matrix elements, the matrix elements after this correction, and the Legendre
coefficients of the cross section. The cross section tabulations come last.
Cross section output is for the photon energy/Z2 times the differential
cross section (per unit interval of photon energy per steradian) in
millibarns steradian.

For the unpolarized photon, the differential cross section is
tabulated per unit interval of cos 6, where 6 is the angle between
the photon and the incident particle, for 6 values between O and 180 degrees
in steps of 2 degrees. Finally the cross section integrated over all
angles and values of cos 6 and cos2 9 averaged over the differential cross
section are listed. TFor the linearly polarized photon the differential
cross section is listed for six values of the polarization angle (0,30,
60,90,120, and 150 degrees).

If the radius increment option (ITEST) is used, the initial
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cut -off radius along with the computed values of the matrix elements
and their sum squared are printed. After each radius increment, the
recomputed matrix elements are printed along with the new Legendre
coefficients of cross section, and a comparison of designated values
of output to their newly computed counterparts. At the termination of
this process the cross section tabulations for the most recent cut-off
radii are listed.

If the matrix reduction option (NTEST) is utilized,we first
obtain a print-out of the output computed as a result of the initial
input data. As each of the angular momentum quantities JM, IM,and LM2
are consecutively decremented, their new value along with a comparison
of designated initial output to the newly computed counterparts are listed.
The listing continues until the test procedure is completed.

Strategy of Choice of Input

Invoking the test options obviously costs in running time.
Their purpose is twofold: +to ascertain that the integration cut-off
radius is sufficiently large and that enough terms are kept in the
partial wave expansions to achieve the desired accuracy, and also as a
guide to a more restrictive (hence more economical) set of input data
for subsequent runs.

The use of the ITEST option is straightforward. On the first
run, one would call this option with arbitrary values of RCUT (say 100)
and DRCUT (say 20); the outcome of the option is a value of RCUT
satisfying the imposed tolerance condition. This new value of RCUT
would then be used for the next run (it is assumed that input energy
values are varied slowly and systematically). After a few runs (the

energies now being appreciably different), one would again invoke ITEST,
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using an RCUT input value somewhat below the current value. The option
will then settle on a new acceptable RCUT value, which may lie above or
below the old one.

The number of terms required in a partial wave expansion
increases with the energy (more precisely, with the momentum). Hence,
if a certain number of terms suffice at one energy, fewer terms will be
needed at a lower energy. 1In a series of production runs, one would
start with the highest incident energy of interest and plan to run
through the spectrum of photon energies for that particular incident
energy. The NTEST option yields the minimum acceptable LM and LM2
for a particular run. The recommended procedure is to run first a case
with the smallest desired fraction of the energy going to the photon,
using large input values éf IM1 and IM2 with a reascnably low value of IM
and invoking NTEST. For this case, the incident and scattered electron
have comparable energies, and the output minimum tolerable IM2 is thus
also a proper value for LMl., In all subsequent runs at the same incident
energy, this same value is to be used for IMl. For larger photon energy,
a larger IM will be required, whereas a lower IM2 will do (lower energy
for scattered electron). The next run then will be for an appreciably
larger fraction of the energy going to the photon, with IMl and IM2
obtained from the previous run but IM set larger, and again invoking
NTEST. Upon iteration, sets of acceptable parameters are obtained at
intervals across the photon spectrum. At intermediate values, the runs
would then be made without NTEST, using the IMLl value previously determined
and the larger of the values of IM and IM2 from the bracketing points
(one from each side). For a lower incident energy, the same procedure

can be repeated, with the added knowledge that the minimum acceptable
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IM, IMl, and LM2 will have the corresponding values at the higher incident
energy as upper bounds. The required value of JM is also expected to
decreases as the incident energy decreases (angular distribution less
peaked). The number of matrix elements (hence the numerical integration
time) is roughly proportional to the product of IM, IMl, and IM2, so

that there is considerable machine time at stake in minimizing these
values. On the other hand, the angular distribution calculation ig

fast, so reducing JM is not crucial.
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XVI. RESULTS

A partial wave expansion (such as is used here) converges most
effectively at lower energies, and the angular momentum sums can then be
truncated relatively early with greater confidence. In view of the existence

of experimental data at 50 kev(eo)

s, 1t seemed reasonable to look at this energy
for an indication that the program was behaving properly.

Figure 3% presents the differential cross section for a 50 kev

electron, incident on an aluminum target, radiating a 25 kev photon (unpolarized).

The solid curve is the present computation. The dashed curve is the Born
approximation result (the Sauter differential cross section(gl) corresponding
to the integrated Bethe-Heitler result(l The experimental points of

Motz and Placious(go) are superimposed; they have an estimated accuracy of
10%. Figure U4 presents the corresponding results with a 50 kev electron

but a 4O kev photon. The computer output tends to fall above the experimental
points, though the discrepancy could be compatible with the experimental
error. The Born approximation falls below the experimental values, signifi-
cantly so for the higher energy photon (in fact, it goes to zero at the
spectrum end-point while the experimental cross section does not).

At the time of writing of this report, no higher energy results

were available.
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FIGURE3  PHOTON ANGULAR DISTRIBUTION

The solid curve is the calculation for a 50 keV electron, incident on
aluminum, radiating a 25 keV photon. The dashed curve is the
corresponding Born approximation. The circles are experimental
points from Motz and Placious.
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FIGURE 4 PHOTON ANGULAR DISTRIBUTION

The solid curve is the calculation for a 50 keV electron, incident on
aluminum, radiating a 40 keV photon. The dashed curve is the

corresponding Born approximation. The circles are experimental
points from Motz and Placious.
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APPENDIX

LISTING OF THE BREMSSTRALUNG PROGRAM

(FORTRAN IV, Huntsville Operating System)
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$IBFTC BREMS NOLIST»NODECK
C*kxx%x MAIN PROGRAM BREMSSTRAHLUNG FORTRAM IV VERSIOM

53
54

55

56

57

1

COMMON KEY» ZAr Qo
M1rM2)NEW»B(13)»GAM(L44L) +CF(44) »CG(UL) 'EF(4U4) rEG(LU) yNF oV

COMMON / BESL 7/ FL(13)» PC(13)r OF(13913)

COMMON /FAC/FACT(67)+RTFAC(95) »ROOT(50)

COMMON /FUNCT/S(1500) DF(1500)F(1500) +NEQr» XeH

COMMON /INDEX/LBES(1500)»KF(1500)sKG(1500) rNK'NFGeLVEC(11,22)

COMMON /KAP/LMK(44) oLPK(44) »ST(UL) »CR{44) FKAP(LY)

COMMON /KUT/RK1(4)  RK2(4) +sRK3I(4) RKY(Y)

COMMON /MAXL/JMy LMy LML1oLM2y IEND s JFLAG»ITEST» IREP

COMMON /SCF/NTAPE'NTOT/NSKIP¢NCOUNT

DIMENSION B1(23),B2(23)/SIGA(23)SIGB(23)9E(2)9B1P(23,11)

ODIMENSION TERM(22)+SIGBP(6)¢SIGAC(91)

FL(1) = 1.0

PC(l) = 1.0

DO 54 L = 2» 13

FLL) = 2 x | -1

LG 93 U = 1» 13

FLd = J x (2 % (L +J) ~-1)
OF(LeJ) = 1,0 / FLJ
PC(L) = PC(L-1) / FL(L)
ROOT(1) = 1.0

DO 55 1 = 2» 50

FAT = 1

ROOT(I) = SQRT (FAT)
FACT(1l) = 1.0

FACT(3) = 1.0

KTFAC(1) = 1,0

RTFAC(3) = 1.0

FAT = 1.0

LO 56 1 = £» 33

FI = 1

FAT = FAT * FI
FACT(2xI+1) = FAT

RTFAC(2xI+1) = SART(FAT)
FAT = 1.0

CO 57 I = 34, 47

F1 =1

FAT = FAT * FI

RTFAC(2*I+1) = SQRT(FAT) * RTFAC(67)
S@2 = 1.0 / ROOT(2)
RK1 (1) = 0.5

RK1 (2 ) = 1.0 - S@2
RK1 ( 3 ) = 1.0 + 562
RK1 ( & ) = 1.C / 6.0
RK2 (1 ) = 2,C

RK2 ( 2 ) = 1.C

RK2 ( 3 ) = 1.0

RKe ( 4 ) = 2.C

KK3 ( 1 ) = ¢.5

RK3 ( 2 ) = 1.0 = SG2
RK3 ( 3 ) = 1.C + S@2
RK3 (4 ) = 0.5

RK4 (1 ) = 0.5

RK& (2 ) = 0.0

RK4 ( 3 ) = 0.5

RK4 ( 4 ) = 0.0

CCM = 0.5110062

PI = 3.,14159265



OCTOPI

= 8,0 x PI

THOM = OCTOPI / 3.0

RAD = P1/180.0

ALFA = 1,0/137.0367

REL = 0.281777 ‘
o REL = CLASSICAL ELECTRON RADIUS IN CM *x (=12)

FIB8 = 500.0 * PI * ALFA * REL * REL
C UNITS ARE MILLIBARNS

05SQ@6 = 0.,4/R00T(6)

100 READ (5,1) KEY e JMoLM e LML oL M2+ NTAPE'NTEST» ITEST» INUMy IREP
1 FORMAT (1015)

JFLAG = 0

ITEST1 = 0
Cxkx%x KEY = 0 FOR PURE COULOMB
CHkk¥ KEY = 1 SCREENED CASE
CRERXx* KEY = =1 END OF RUN
Ckxkxxx JM IS THE HIGHEST LEGENDRE COEFF., (J) IN ANG. DIST.
Chxxxkxxx LM IS THE HIGHEST ORBITAL ANG. MOM. COEFF., (L) FOR PHOTON
Cxxx¥xkx M1 IS THE HIGHEST ORBITAL ANG, MOM. COEFF. FOR INCIDENT ELEC.
Chxxxkxkx LM2 IS THE HIGHEST ORBITAL ANG. MOM., COEFF., FOR SCATTERED ELEC
Cxxxkxxkk NTEST = 1 FOR MATRIX REDUCTION PROCEDURE» = 0 OTHERWISE
Cxxxkkxx JTEST = 1 FOR RADIUS INCREMENT @PROCEDUREr = 0 OTHERWISE
Cxxxkxkx INUM IS THE MAXIMUM NUMBER OF TIMES RADIUS WILL BE INCREMENTED
Cxxxxxxkx JREP = 1 TO RESTART RUN INTERRUPTED DURING SUMMING
CH*xxk*x*x%x JREP = 2 RESTARTS RUN FROM INTEGRATION WITHOUT FIRST SUMMING
Cxxxxxkkx JREP = 0 OTHERWISE

IF

READ ( 5» 2 )

(KEY.LT.0) CALL EXIT

Z» EO» X0» RATIO» ZEL» RCUT» TOLe DRCUT

2 FORMAT (8F10.0)

Chkkkkkk Z = NUCLEAR CHARGE
Chxkkkex E( = KesEo OF INCIDENT ELECTRON IN MEV
Ckxxakkkx X0 = RATIO OF PHOTON ENERGY TO EO
C*xxxxxkx RATIO = PARTICLE MASS T0O ELECTRON MASS
Chxkxkxxx ZEL - RATIO OF PART. CHARGE TO ELECTRON CHARGE
CHxkxkxkx RCUT - RADIUS TO ENC NUMERICAL INTEGRATION
Cxxxkxkx TOL IS ADMISSIBLE FRACTIONAL CHANGE OF SPECIFIED OUTPUT QUANTI
Cxxxxxxx DRCUT IS RADIUS INCREMENT
WRITE (6¢4)

4 FORMAT (1H1//2X41HINPUT DATA FOR BREMSSTRAHLUNG CALCULATICN )
IF (KEY.EQ.0) GO TO 102

101 WRITE (6¢5)
S5 FORMAT(1HO»2X¢31HTHIS PROBLEM INCLUDES SCREENING/)
GO TO 103
102 WRITE (6+6)
6 FORMAT(1HO»2X s 39HTHIS PROBLEM DOES NOT INCLUDE SCREENING/)
103 @ = EO * XO
WRITE ( 60 7 ) ZeEOrX0¢Q»RATIOPrZELIRCUTIUMeLMyLMLLM2
7 FORMAT(1HO»2XsF9.U4rl4Xe17H= NUCLEAR CHARGE?// ¢
1 3XrF9elho4Xo42H=  INCIDENT PARTICLE KINETIC ENERGY IN MEVe//»
2 IXoFOel4o4Xr42H= RATIO OF PHOTON ENERGY TO INCIDENT KeEo//»
3 3XeFO lrl4xXr22H= PHOTON ENERGY IN MEV ////0
4 13XsFOelr4X2130H= RATIO MASS TO ELECTRON MASSe//»
o) L3X1FO.U4rtX236H= RATIO PARTICLE TO ELECTRON CHARGE//»
6 13X FO.4r4X»29H= INTEGRATION CUT=0FF RADIUSe////»
7 22X0IS»10H = MAX Jr//022X015e21H = MAX L FOR PHOTON»//»
8 22Xe15¢32H = MAX L FOR INCIDENT PARTICLE+//»
9 22Xe15¢31H = MAX L FOR EXITING PARTICLE.//)
Chkk* DATA CHECKING LOGIC

IF (UM.GTe(2%LM$+2))

G0 TO 1104

MIL=MINO (JMoLMoLML,LM2)
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IF(MIL.LT.Q) GO TO 1104
MAL=MAXO (LM LM1LM2)
IF (MAL.GT.10) GO TO 1104

IF (LML + LM2 ) (LTe LM) GO TO 1104
IF ( IABS ( LMl - LM2 ) ,GT. LM ) GO TO 1104
GO TO 105

1104 WRITE(6¢19)

19 FORMAT (1HO/»42HANGULAR MOMENTUM INPUT VIOLATES CONDITIONS)
GO TO 100
105 IF (EO.LE.O.) GO TO 107
IF (X0.LT«0s0,0ReX0.6T+1.0) GO TO 110
IF (X0.EQ+0.0) GO TO 109
IF (Z.LT.0.0) GO0 T0 1001
IF (Z.£Q.0.0) 2=0.1E-08

Cexxx AVERTS NUMERICAL DIFFICULTIES AT OR TOO NEAR TO Z = 0

IF (ZEL+EQ.0.0) GO TO 108
IF (X0.LE+0.,99) GO TO 106
IF (ZEL.LE.0.0) GO TO 108
IEND = 1
KEY = 0
GO TO 104
107 WRITE(6,15)
15 FORMAT(1HOs2X+25H INPUT ENERGY IS NEGATIVE)
GO TO 100
110 WRITE(6r16)
16 FORMAT(1HO»2X+»39HFRACTION OF ENERGY TO PHOTON IMPOSSIBLE )
GO TO 100
108 WRITE (6+17)
17 FORMAT(1HO»2X+»3SHCROSS SECTION IS ZERO FOR THIS CASE)
G0 TO 100
109 WRITE (6:,18)
18 FORMAT(1H0»2X»27HNO SCATTERING FOR THIS CASE)
G0 TO 100

1001 WRITE (6.1002)

1002 FORMAT (1HO»2X»32HATOMIC NUMBELR CANNOT BE NEGATIVE )
GO TO 100
106 IEND = 2
104 CALL SELECT
IF ((NTEST+ITEST).LT.1) GO TO 349
WRITE (6:497)
L97 FORMAT (///50X9HOPTION(S)/)
REWIND 8
IF (ITEST.LT.1) GO TO 351
WRITE (6+352) DRCUT» INUM»TOL
352 FORMAT (/ 42X26HRADIUS INCREMENT PROCEDURE/
135X36HCUT=0FF RADIUS WILL BE INCREASED BY F4.le 1XSHUNITS /
235X17HFOR A MAXIMUM OF I2+1X SHTIMES/
335X32HADMISSIBLE FRACTIONAL CHANGE IS F5.,3//)
351 IF (NTEST.EQ.O) GO TO 349
WRITE (6,353) TOL
353 FORMAT (/ 42X26HMATRIX REDUCTION PROCEDURE/
135X32HADMISSIBLE FRACTIONAL CHANGE IS F5,3//)
349 NF = 2x(LM1+LM2+2)
NFG = 2%NF
NEQ = NK+NFG
WRITE(601105) NKyNEQ

1105 FORMAT (1H1//55X11HOUTPUT DATA////5X25HNUMBER OF MATRIX ELEMENTS/

16X5HNK = I4»5X6HNEQ = I&4///)
IF (NEQ.LE.1500) GO TO 1107
WRITE (6,1106)
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1106 FORMAT(1HO»2X»34HMATRIX ELEMENT DIMENSIONS EXCEEDED)
G0 TO 100
1107 IF(KEY.EQ.1) CALL SETAPE(2)
ZA = ALFA * ZEL * Z
T = EO/(RATIO*CCM)
E(1) = T + 1.0
Q@ = T*XO0
E(2) = E(1) = @
IF (IREP.GE.1) RCUT=DRCUT
223 CALL FINTEG (E»RCUT)
832 CALL BSUM (B1,B2,81P)
TER = FI3 * X0 * @ /7 ( ZA *x ( E(1)+1.0 ) * ZA )
JUMX = UM+
DO 1108 I=1»,JMX
SIGA(I) = Bl (I)*TER
SIGB(I) = 82 (I)XTER
1108 TER==TER
IF (ITEST.GE.1) GO TO 111
IF (NTEST.EQ.7777) GO TO &02
111 wWRITE(6:8)
8 FORMAT (///6X38BHLEGENDRE COEFFICIENTS OF CROSS SECTION/

1 / 6XelHJ»IX» 4HSIGA» 13X 4HSIGB/ /)
WRITE(609) SIGA(1)
9 FORMAT(5Xe2H 0»5XrE12.5 /)
IF (UM,EQ.Q) GO TO 354
WRITE(6010) SIGA(Z)
10 FORMAT (5Xr2H 1¢5X+Elc.5/)
IF (UMJ.EQ.1) GO TO 354
CO 11 J=2+JM
JP=J+1
WRITE(6s12) JrSIGA(JP) »SIGB(JP)

12 FORMAT(2X+I5»5XeE12.5¢5XeEL12.5H /)
11 CONTINUE
354 IF (ITEST.GE.1) G0 TO 80z
WRITE(69,13)
13 FORMAT(1H41»30X e 11HUNPOLARIZED »SX» 75HTHIS IS (Q/Z*%%2) *x D(SIGMA) /
1( D(Q) * D(OMEGA) ) IN MILLIBARNS / STERADIAN / SXeSHTHETA» 7X»9HCO
25 THETA / 30X»13HCROSS SECTIONeU4X e 78HWHERE Q=PHOTON ENERGY: Z=ATOM
2IC NUMBER: SIGMA=CROSS SECTION» OMEGA=SOLID ANGLE // )
802 ITHETA = 0
FMUQ=1.0
KkMuQ=1
200 PMI=1.0
SIGAC(KMUQ)=SIGA(1)+FMUGX*SIGA(2)
PN=FMUQ
J=2
210 IF(J=dM)21:21+220
21 FHN=J-1
PPL={PN¥FMUQ* (2. 0%FN+1+.0)/(FN + 1.0))=(PMI*FN)/(FN+1,.0)
PMI=PN
PN=PPL
SIGAC(KMUQ) =SIGAC(KMUG)+(PPL* SIGA{(J+1))
TMZFN* (FN+1e0) X (FN+2,0) % (FN+3.0)
TERM(J)I= 1.0/SQRT (TM™)

JEJ+1l
GO To 219
220 IF (ITESTeNE.O) GO TC 221
IF (NTEST.EQ.9999) GO TO &04
IF (INTEST.E£Q.8888) +CR.(NTEST.EQ.7777)) GO TO 814

221 SIP = 2.0*%5IGAC(KMUQ)
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GO TO 830
804 SA = 0.0
GO TO 816
B8i4 SA = ABS(SIGA(1)=SIG)/SIG
816 S1 = ABS(SIGAC(1)-SI1)/SIl
S46 = ABS(SIGAC(46)~-SIu6)/SIue
S91 = ABS(SIGAC(91)~SI91)/519]1
IF (ITEST.GT.1) GO TO 751
PS91 = 0.5%591
TEST = AMAX1 (SA»S1,S46,PS91)
IF (NTEST.EQ.9999) GO TO 880
GO TO 834
751 TEST = AMAX1 (SA»S1+,S46¢591)
WRITE (6+608) JMsLMILM29SIGrSIGA(1)»SA»SILrSIGAC(1)»S1+SIU6,
1SIGAC(46) rSUE69»SIFL»SIGAC(91)»S912U0PUrSA
608 FORMAT (///35X5HJM = 12»10XSHLM = I2,10X6HLM2 = I2//
122X14HPREVIOUS VALUE»21XOHNEW VALUE»20X10HFRACT DIFF //
25XTHSIGA(L1) »12XE12,5018XE12,5,18XE12,5/
35X8HSIGAC(1) »11XE12.5¢18XE12.5918XEL12.5/
4SXIHSIGAC(46) »10XE12.5/18XEL2.5018XE12.5/
S5XIHSIGAC(91) » 10XE12.5/18XE12.5¢18XEL1245/
65X15HUNPOLARIZED SIGr4XE12.59118XE12.5018XE12.5//)
IF (TEST.GT.TOL) GO TO 548
WRITE (60952)
952 FORMAT (/// 3S5XS4HFRACTIONAL CHANGE OF MATRIX ELEMENTS WITHIN TOLE
1RANCE.///)
ITEST1 = ITEST1+1
IF (ITEST1.LE.1) 60 TO 548
ITEST = ¢
GO TO 354
880 WRITE (6+806) JMsLMiLM2,SI1r»SIGAC(1)+S1¢SI469SIGACIUE) 1546
1SIGAC(46) rSUH6+SIF1»SIGAC(91)9S91+UOYUISA
806 FORMAT (///35X5HJM = I2+10X5HLM = I2,10X6HLM2 = I2//
123X13HINITIAL VALUE» 22X9HNEW VALUE»20X10HFRACT DIFF //
25X8HSIGAC(1)»11XE12.5018XE12.5018XE12.5/
35XIHSIGAC(46) 1 10XEL12.5+/18XE12,5¢18XEL12.5/
4USXIHSIGAC(91) v 10XE12.5¢18XEL12.5018XEL1245/
S5X15HUNPOLARIZED SIGe4XE12.59,18XE12.5018XEL12.5/7/)
IF (TEST.GT.TOL) GO TO 808
IF (UMJLE.O) GO TO 850
JM = JM=1
GO TO 802
808 UM = JM+1
850 WRITE (6¢810) UM
810 FORMAT (25X34HMINIMUM JM SATISFYING TOLERANCE = 12////
125X37HPROCEDURE CONTINUING» DECREMENTING LM ///)

818 IF ( LM ,SG. 0 ) GO TO 819
LM = LM=-1
JMX = UM+1

IF (TER.LT.0.) TER=~TER

DO 812 I=lrJMX

B1(I) = Bl(I)-B1P(I«LM)

SIGA(I) = Bl(I)=*TER
812 TER = -~TER

NTEST = 8888

G0 TO 802
834 LOX = LM2=JFLAG

U = OCTOPI *x SIGA(1)
824 WRITE (60826) JM/LMiLOX1SIGISIGA(L1)»SAPSILISIGAC(1)9S19SIUG,

1SIGAC(46) rSU6+SIFL1»SIGAC(91) »5919U0»UPSA
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826 FORMAT (///35X5HJM = I2+10XSHLM = I2/,10X6HLM2 = I2//
123X13HINITIAL VALUE» 22X9HNEW VALUE»20X10HFRACT DIFF //
25XTHSIGA (1) v 12XE12.5018XE1245018XE12,5/
3SXBHSIGAC(1)r11XE12.5+18XE12.5018XE12.5/

USXIHSIGAC(46) »10XE12.5¢18XE12.5+18XEL12.5/
SSX9HSIGAC(91) »10XE12.5918XE12.5/918XEL12.5/
65X15HUNPOLARIZED SIGe4XE12.5018XE12.5018XEL1245//)

IF (NTEST.EQ.7777) GO TO 846
IF (TEST.LE.TOL) G0 TO 818
LM = LM+1

819 WRITE (6,820) LM

820 FORMAT (25X34HMINIMUM LM SATISFYING TOLERANCE = 12//)
NTEST = 7777
JFLAG = 1
WRITE (6:844)

844 FORMAT (//20X48HCONTINUING REDUCTION PROCEDUREs DECREMENTING LM2/)

GO To 832
846 IF (TEST.GT.TOL) GO TO 838

JFLAG = JUFLAG+1

IF (JFLAG=LM2)832,100+,100
838 LM2 = LM2=JFLAG+1

WRITE (6,848) LM2
848 FORMAT (//20X3SHMINIMUM LM2 SATISFYING TOLERANCE = 11//////

145X29HREDUCTION PROCEDURE COMPLETED )

G0 TO 109
830 IF (ITEST.GE.1l) GO TO 798
WRITE (6r22) ITHETAYFMUQ,SIP

22 FORMAT ( I10» 5X» F9e5r 7X» E12.5 )
798 ITHETA = ITHETA+2
THE = RAD*FLOAT(ITHETA)
FMUQ=COS (THE)
KMUQ=KMUQ + 1
IF (ITHETA = 180 )200,2000300
300 IF (ITEST.GE.1l) GC To 797
WRITE (6+30)
30 FORMAT (/ 55X»23HPOLARIZED CROUSS SECTION //
163X THPHI LEG//
26X SHTHETA»SX»9HCOS THETA»12Xe2H 0913X22H30,13X»2H60+ 13X 2H90»
S11Xel4H 120011Xe4H 150//)
797 ITHETA = 0
FMuUQe=1.0
KMUQ=1
310 PMI=3.0%(1,0~(FMUQ*FMUQ))
PN = 5.0%FMUQ*PMI
SIGBC=TERM(2) *SIGB(3) *PMI+TERM(3) %xSIGB (4) *PN
J=4
311 IF(J=JM) 32003200331
320 FN=J-1
PPL= ((PN*FMUQ*(2.0%FN+140))/(FN=140))=PMI*(FN+2.0)/(Ffi=1.0)
PMI=PN
PNZ=PPL
SIGBC=SIGBC+PPLASIGE (J+1)*TERM(J)
JIJ+l
0 TO 311
331 SIGuP(1)=SI16GAC (KMUQ)+5I6EC
SIGBP(2)=SIGAC (KMUQ) +(0.5%SIGLC
SIGBP(3)=SI6AC(KMUQ) =L «5*S1IGLC
SIGBP(4)=SIGAC(AMUR) ~1.0%SIGHC
SIGBP ( %5 ) = SIGHP ( 3)
SIGBP(6)=SIGBP(R)
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330 IF (ITEST.GE.1) GO TO 796
WRITE (6,31) ITHETA»FMUQ, (SIGBP(I)rI=1v6)
31 FORMAT ( I10» SX» F9¢5¢ 7X» 6 ( E12.5¢ 3X ) )
796 ITHETA = ITHETA+2
THE=RAD*FLOAT(ITHETA)
FMUQ=COS (THE)
KMUQ=KMUQ+1
IF( ITHETA - 180 ) 310,310,400
400 U = OCTOPI =* SIGA(1)
AVMU = THOM * SIGA(2) / U
AVMS = THOM * ( SIGA(1l) + 1.2 * SIGA(3) ) / U
700 IF (ITEST.GE.1) GO TO 552
WRITE (6,71) UrAVMU»AVMS
71 FORMAT (///////7X60HUNPOLARIZED CROSS SECTION INTEGRATED OVER THE
1SOLID ANGLE = E12.5+11H MILLIBARNS//50X17HAVERAGE COSINE = E12.5//
2U42X25HAVERAGE COSINE SQUARED = E12.5/////7)
551 IF (NTEST.EQ.0) GO0 TO 100
SIG = SIGA(L)
SI1 = SIGAC(1)
SI46 = SIGAC(46)
SI91 = SIGAC(91)
uo = U
NTEST = 9999
IF (UM.EQ.0) GO TO 861
JM = JM-]
WRITE (6.800)
800 FORMAT (//S50X3S5HSTARTING MATRIX REDUCTION PROCEDURE /
150X15HDECREMENTING J //)
GO TO 802
552 IF (ITEST.GT,.1) GO TO 814
548 SIG = SIGA(1)
SI1 = SIGAC(1)
SI4e = SIGAC(46)
SI91 = SIGAC(91)
uo = U
IF (ITEST.GT.INUM) GO TO 228
RCUT = DRCUT
XR = FLOAT(ITEST)=*RCUT
WRITE (60951) XR
951 FORMAT (/////35X31HINCREMENTING INITIAL RADIUS BY FS.1 /////)
ITEST = ITEST+1
GO TO 223
228 WRITE (6¢953)
953 FORMAT (///30X45HRADIUS INCREMENT PROCEDURE TERMINATED WITHOUT /
130X44H OBTAINING DESIRED MATRIX ELEMENT STABILITY. ///)
ITEST = 0
GO TO 354
861 WRITE (6+799)
799 FORMAT (///50X35HSTARTING MATRIX REDUCTION PROCEDURE ///)
GO TO 850
END
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$SIBTTC ASUMP NOLISTsNODECK
C SUM OVER EPSILON AND LAMBDAS
SUBROUTINE ASUMI(LL1vAl1rA2)
COMMON /MAXL/JMyLMsLM12LM2sIENDrJFLAG»ITEST, IREP
CIMENSION A1(23)» A2(23)y PH(3r 3 12)
JMX=JIM+1
DO 1 Jz=1r»JMX
AL(U)=0.
1 A2(J)=0.
LMOD = MOD(L+L1,2)
IF ((UM.EQ,.0)+AND.(LMOD.NE.Q)) GO TO 9

NA = 1
IF(L.LT.2) NA = 3=-L
N =1

IF(L1.LT«.2) NB=3-L1
CALL PHISUM(L,L1,PH)
LL =2 x L
LLl = 2 » L1
IF (LMOD) 5¢2¢5
2 JA=1
IF(MOD(UMe2)) 49304
3 JB=JMX
60 TO 6
4 JBzJdM
GO TO o
5 JA=Z
IF(MOS(UMrZ)) 39403
6 DO 8 NLA=NA»3
00 8 NLB=Nd+3
LA =L - 2 + NLA
LAl = L1 - 2 + NLb
NEM = MINC ( LA, LAl ) + 1
LA = 2 x LA
LA1 = 2 * LAl
DO 8 J=JArJBr2

JUu=2* (J=-1)

IF((LA+LAL) LT eJJ) GO TO 8

IF(IABS(LA=LAL) «GTeJJ) GO TO 8

IF ( MOD ( LA + LAl + JJr» 4 ) +EQ. 0 ) GO To 15
VIJ = 0.0

G0 TO 16

15 CALL CCOEFS(LArLAL1+JJ10+0+C)
VIJ==PH(NLANLBr 1) *C
16 Fz2.0
DO 7 NE=2/NEM
LE=2% (NE~1)
CALL CCOEFS(LA/LALrJJrLEs=LErC)
VIJSVIJ+F*C*PH(NLA+NLB/NE)
7 F=-F
CALL CCOEFS(LALsLA»JJr=212+CJ)
CALL CCOEFS ( LL» 2¢ LA» Or 2+ C2 )
CALL CCOEFS ( LL1s 2+ LALs O» 2¢ C2P )
ALCJIZAL(J)+VIJXCIRC2%C2P
IF(JoLT.3) GO TO &
CALL CCOEFS(LALsLArJJr=21=2+Cu)
IF(NLAGNE.2)  C23-C2
A2 (J)ZA2 (J) +VIJRCUC2%C2P
CONTINUE
RETURN
END

Nolie



+IBFTC ASYMPP NOLIST/sNODECK
SUBROUTINE ASYMP (E)

c ASYMPTOTIC EVALUATION OF TAIL OF MATRIX ELEMENTS
COMMON KEY» ZAr Qo

‘ 1 M1/M2/NEW,B(13) 1 GAM(U44) 2 CF(44) 9CO(LY) yEF(UY) rEGI(L4L) »NFIV
COMMON /FUNCT/S(1500)0F (1500)+F(1500) 'NEQrX»H
COMMON /INDEX/LBES(1500) ¢KF(1500) rKG(1500) rNKeNFGrLVEC(11,22)
COMMON /MAXL/JUMyLMeLM1/LM2y IENDe JFLAGYITESTy IREP
CIMENSION E(2) vENP(2) +EWP(2) ¢ COF(5)¢CO0G(9y2)
M1=LM+]

M2 = M1 + 1

GR=Qx*xX

CALL BESSEL(QR)
0TR=0.5/Q

OQR=0TGQ/QR

EP=E(1)%xE(2)

EPMZEP=1.0

TEP=2.0%EP
ENP(L1)ZE(1)=1.0
ENP(2)==5(1)=1.0
ENP(L)ZE(2)+1.0
EwP(2)==E(2)+1.0

DO 1 IP=1.2
COG(5»IP)=OTG*EWP (IP)
CO0G(HvIP)==0OTQ*ENP(IP)
COG(1,IP)=VXRCOG(S5¢IP)
COG(292IP)=~=V%COG(6¢IP)
COG(3»IP)=OQR*ENP(IP)*EWP(IP)
COG(4yIP)==TEPXCOG(3,1P)

‘ COG(T+IP)=ENP(IP)*COG(5,IP)
COG(8rIP)=0QR*EWP(IP)*(E(L1)*(TEP=1.0)=E(2))
COG(9rIP)=0QR*ENP(IP)*(E(2)* (TEP~1.0)=E(1))

1 CONTINUE
COF(1)=0TaxE(2)
COF(2)==DTQ*E(1)
COF (3)=0QR* (TEP*EPM=Qx*0)
COF (4)==0QR*EPM
COF(5)=0TQ*EPM=COG{(1+,1)=C0G(2/,1)
DO 5 N=1sNK
MaN+NF G
LB=LBES (N)
LBP=LB+1
FLP = LBP
JF=KF (N)
JGZKG(N)
MF JF + NF
MG = JG + NF
IF(JF = JG)2+2¢3

2 1P =1
FA =F (JF)
FB = F(MF)
FAP = F(JG)
FBP = F(4G)
DFA = DF(JF)

DF8P = DF (MG)

1.. GO TO 4

3 IP =2
FA = F(MG)
FB = F(JG)
FAP = F(MF)
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FBP F(JF)

DFA DF (MG)

DFBP = DF (JF)

TB=COF (1) *FBP*DFA+COF (2) *FAXDFBP+COG(1+ IP) *FA*FAP+COG (29 IP) %*FB*FBP
TC=(COF (3) +COF (4) *FLP) *FAXFBP+(COG (3¢ IP) *FLP+COG (4 ¢ IP) ) xFBXFAP
TD = COG(S»IP)*FAP*DFA+C0G(6+IP) *FB*DFBP+COG(7¢ IP) *FAP*FB

TE= COF(5)*FA*FBP+COG(8+1IP) *FA*FAP+C0OG (9, IP) *FB*FBP

F(M) = F(M) + (TB+TC) * B(LB) + (TD+TE) * B(LBP)

CONTINUE

RETURN

END
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$IBFTC BESSE NOLIST »NODECK /M34

C

11

12
13

14

15
lé

SUBROUTINE BESSEL ( R )

SPHERICAL BESSEL FUNCTION

COMMON KEY» ZAr» Qv M1, M2» NEW» B(13)
COMMON / BESL / FL(13)» PC(13)r OF(13,13)
OR = 1,0 / R

B(1) = SIN(R) = OR

IF ( M1 .EQ. 1)

NR = R + 2.0

IF ( NR LT, 2 )

B(2) = ( B(1) = COS(R) ) * OR

IF ( M1 JEQ. 2 )

IF ( NR GT. M1 )

CO 11 L = 2» NR

B(L+1) = FL(L) * B(L) * OR = p(L=-1)

IF ( NR = M1 )

NR = 2

HAS = 0.5 * R * R

GO 15 L = NR» M2

J =0

SER = 1.0

TER = 1.9

J = J+ 1

TER = = TER * HAS x OF(L»J)
SER = SER + TER

IF ( ABS(TER) .GT. ( 0.0001 * ABS(SER) )
B(L) = SER % PC(L) * ( R*xx(L=1) )
RETURN

END
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GO TOo 16
GO To 12

GO TO 16
NR = M1

13, 16+ 16

GO TO 14



$I8FTC BSUMP NOLIST+»NODECK
SUBROUTINE BSUM (B1,B2/B1P)
C SUM OVER L VALUES
‘ COMMON /MAXL/JIMyLMyLM1LM2/» IEND»JFLAG» ITEST» IREP
DIMENSION A1(23),A2(23)/B1(23)B2(23)¢B1P(23,11)
JMX=JUM+1
CALL ASUM (0,0sA1sA2)
0O 1 J=1,JMX
Bl1(J) = Al1(J)
B2(J) = a2(J)
£O 1 L=1,LM
1 #1P(UWL) = 0,0
IF (LM.EQ.,0) G0 TO S
0O 4 L=1.LM
CALL ASUM (LeLeAlrA2)
LL = 2xL+1
FP = LLx*LL
£0 2 J=1,JMX
BIP(JrL) = 31P(JsL) + FP*AL1(J)
B1(J) = 31(J) + 31P(J.L)
e B2(J)=g2(J)+FP*A2(J)
0O & LP1=1,L
L1=LP1~-1
CALL ASUM(L/L1+A1sA2)
FP = 2xLL*x(L1+LP1)
DO 3 J=1lrJMX
B1P(JrL) = BIP(JrL) + FPxAL(J)
Bl1(J) = B1(J) + B1P(J,L)
Bz (J)=B2(J)+FP*A2(J)
CONTINUE
RETURN
END

v FEWN
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$I3FTC CCOEF NOLIST»NODECK

210

220

230

240
245

255
256
2»7

260
265
270
2480

2%3(

300
305
310
315
325

330

SUBROUTINE CCOEFS ( J1l» J2» J3» M1y M2y C )
COMMON /FAC/F(67))RT(95),R(50)

M3 = ML + M2

C = 0.0

SIGM = 1.0

JMIN = MINO (JlrJ2,J3)

IF ( JMIN .GT. 4 )

IF ( JMIN +EQ. J2 )
IF ( UMIN +EQ. J3 )
Ll = Je

Le = Jl

L3 = J3

LMl = =M2

LMz = =M1

LM3 = =M3

GO TO 240
L1 = Jl

L2 = J2

L3 = J3

LMl = Ml

LM2 = M2

LM3 = M3

o0 TO 244
L1 = Jl

L2 = J3

L3 = Je

LML = M1

LMz = =M3

LM3 = =-M2

SIGM = R(L2+1)/R(L3+1)
IF ( MOD ( J1 = M1 » 4 ) «NE. 0 )
IF ( LM2 ) 245, 250, 250

LMl = - M1
LM2 = - LM2
LM3 = -~ M3

IF ( MOD (L1 + L2 = L3 » 4 ) «NEs 0 )

i JMIN = JMIN+1

K = L1+LM3
L = Li-LM3
GO 7O (25592600300, 7000400)» JMIN

IF (L1-L3) 800+,256+800

IF (LM1-LLM3) 800,257,800

C = 5SIcM

GO TO 800

IF (L3-L1-LM2) 265:,280270
SIGM = =SIGM

K =L

KPl1 = K + 1

C= R(KP1)/R(24«L1+2)

C = SIGMx*C

GO TO 800
IF (L3-L1) 305¢310,315

1IF (LM2) 800,325,330

IF (LM2) 800,340,345

IF (LM2) 800,355+360

C = =R(L)*R(K)/(R(2*L1)*R(L1+1))

GO TO 380
C = RILI*R(L+2) /(2. 0xR(LL) *R(L1+1))
GO TO 380
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GO To 600
GO To 220
GO To 230

SIGM

- SIcMm

- SIGM



340 C = FLOAT(LM3)/(R(L1)*R(L1+2))
60 TO 380
345 LOX = L+2
C = =R(K)*R(LOX)/(R(2xL1)*R(L1+2))

GO0 TO 380
355 LOX = (+2

LAX = K+2

= RLOX)*xR(LAX)/(R(2%L1+2)*xRr(L1+2))

GO0 TO 380
360 C = R(K)*R(K+2)/(2.0%R(L1+1) xR (L1+2))
350 C = SIGMxC

GO TO 800
400 M = L LM2/2+1

J = (L3-L1)/2 +3

GO TO (480¢510+540) » M
480 GO TO (485r490,495¢500+505) ¢ J

485 C = R(3)*R(L)I*R(L=2)*R(K)*R(K=2)/(R(B8)*R(L1=-2)*R(L1-1)*R(L1)
1*R(L1+1))

GO TO 575
490 C = —~0.S*FLOAT(LM3)*R(6)*R(L)*R(K)/(R(L1)*R(L1-2)*%R(L1+1)%xR(L1+2))
GO TO 575
495 C = 0e5 *FLOAT(3*LM3*LM3=-L1x(L1+2))
1 Z(R(LL)*R(L1=1)*R(L1+2)*%R(L1+3))
GO TO 575
500 LOX = L+2
LAX = K+2
C = 0+5%FLOAT(LM3)
1 *R{6)*R(LOX) *R(LAX) Z/(R(L1)*R(L1+1)*R(L1+2)*R(L1+4))
GO0 TO 575
535 LOX = L+4
LAX = i+2
LLX =K+4
LXX = K+2

C = RE3)*R(LOX)*R(LAX) *R(LLX)*R(LXX)/(R(B8)*R(L1+1)*R(L142)*%R(L1+3)
1*R(L1+4))

GO TO 575

510 GO TO (515+520+525¢530+535) ¢ J

515 C = ~R{L+2)*R(L)*R(L=2)*R(K=2)/(2+s0%R(L1=2)*R(L1=1)*R(L1)*R(L1+1))
coO TO 575

520 C = 0.5%FLOAT(L1+2% . M3~2)
1 *R(L+2) *Rk (L) /(R(L1)*R(L1=-2)*R(L1+1)*R(L1+2))
GO TO 575

525 LOX = L+2
C = (1.0-FLOAT(LM3))*R(3)*R(LOX)*R(K)/(R(2*L1)*R(L1=-1)*R(L1+2)
I1*xR(L1+3))

GO TO 575

530 C=.5*FLOAT(2*LM3=L1-4)
1 *RIK+2) *R(K) /(R(LL)*R(L1+1)*R(L1+2)*R(L1+4))
GO TO 575

535 LOX = L+4
CERILCX) *¥R(K+4) %R (K+2) *R(K) /(2. 0%R(L1+1) *R(L1+2) *%R(L1+3)*R(L1+4))

GO TO 575

540 GO0 TO (545¢5500555¢560+565) J

S45 C = RIL=)*R(L)*R(L+2) *R(L+4) /(4. 0*%R(L1)*R(L1=2)*R(L1-1)*R(L1+1))
cOo TO 575

550 C= =R(K=2)*R(L)*R(L+2) *R(L+4) /(2. 0%R(L1)*R(L1=2)*%R(L1+2)*R(L1+1))
GO TO 575

555 LOX = L+2
LAX = L+4

C = RE3)*¥R (K= ) *¥R(K)*R (LOX) *¥R(LAX) /(R(B) *R(L1I*R(L1=1) %1 (L142)
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1+R(L1+3))
GO TO 575
560 LOX = L+u
C = =R(K=2)*R(K)*R(K+2)*R(LOX)/(20%R(L1)*R(L1+2)%R(L1+4)*R(L1+1))
GO TO 575
565 CZR(K=2)*R(K)*R(K+2) *R(K+4) /(4 0O¥R(L1+1)*R(L1+2)*R(L1+3)*R(L1+4))
575 C = SIGMxC
GO TO 800
700 M = (LM2+1)/2
J = (L3-L1+5)/2
GO TO ( 710, 740 ) o M
710 GO TO ( 720» 725, 730, 735 ) , J
720 C = R(3)*R(K=1)*R(L=1)*R(L+1)/(R(8)*R(L1)*R(L1~1)*R(L1+1))
GO TO 780
7¢5 C = =FLOAT((L1+3#%LM3=1)/2)*%R(L+1)/(R(2)*R(L1=1)*R(L1+1)*R(L1+2))
GO0 TO 780
730 KPL. = K + 1
C = =FLOAT((3=3%LM3+L1)/2)*R(KP1)/(R(2)*R(L1)*R(L1+1)%R(L1+3))
GO TO 780
735 LOX L+3
KP1 K+ 1
KP3 K+ 3
C = R(3)*R(KPL)*R(KP3)*R(LOX)/(R(8)*R(L1+1)*R(L1+2)*R(L1+3))
GO TO 780
740 GO TO ( 750» 755, 760s 765 ) J
750 C = =RIL=1)*R(L+1)*R(L+3)/(R(3)*R(L1)*R(L1-1)%R(L1+1))
GO TO 780
755 LOX = L+3
LAX = L+1
C = R(3)*R(K=1)*R(LAX)*R(LOX)/(R(8)*R(L1-1)*R(L1+1)*R(L1+2))
GO TO 780
760 LOX = L+3
C = =R(3)*R(K=1)*R(K+1)*R(LOX)/(R(8)*R(L1)*R(L1+1)*R(L1+3))
GO TO 780
765 C = RK=1)*R(K+1)*R(K+3)/(R(8)*R(L1+1)*R(L1+2)*R(L1+3))
780 C = CxSIGM
GO TO 800
THIS IS THE BEGINNING OF COMPUTATION OF C~COEFFICIENT
USING THE GENERAL EXPRESSION,
600 L1 = J14J2=J3+1

L2 = J1=-J2+J3+1
L3 = =Jdl1+4J2+J3+1
L10 = J1+J2+JU3+3
IF ( M3 EQe 0O ) GO TO 615
605 L4 = Jl+Mli+l
LS = Jl-M1+]
Le = J2+M2+1
L7 = J2=-M2+1
L8 = J3+M3+1
L9 = J3-M3+1
ST = RT(L10) 7 RT(LL)*RT(LU) *RT(LS) *RTILE)*RT(LT) )
ST = ST 7 ( ROJ3+1)*RT(L2)*RT(L3)*RT(L8)*RT(LY) )
N7 = L1-L7
N4 = Ll=-L4

MIN = MAXO (QGsN&4¢N7)
MAX = MINO (L1.L5eL6)

IF (MOD(MIN»4) «NE.O) SIGM==~1.0
MIN = MIN+1

N1 = L1+1

NS = L5+1
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N6 = L6+l

SUM = 0.0

DO 610 LZ=MIN,MAXe2
NibL = Ni-LZ

N5SL = N5-LZ

N6L = Né6=-LZ

NebL ==-N4+LZ

N7L ==N7+LZ

TERM = ST * F(LZ) * F(NIL) * F(NSL) * F(N6L) * F(N4L) * F(N7L)
C =C + SIGM / TERM
610 SIGM O -SIGM

G0 TO 800

615 IF ( M2 .EQ. 0 ) GO TO 620
IF ( TABS(M2) «NE. 2 ) GO0 TO 605
JMOD = MOD ( (L10 + 1 ) &4 )
IF ( JMOD «NE. 0 ) GO0 TO 605

ST = J3 % (U3 + 2) = Jl x (U1 +2) = J2 x (J2 + 2)

SIGM = 0.5 *x SIGM * ST / ( R(J1)*R(J1 + 2)*R(J2)*R(J2 + 2) )
620 JMOD = MOD ( (L1 -1 )r 8 )

IF ( JMOD «NE. 0 ) SIGM = ~ SIGM
Ldy = (L1 +1) 7 2
L5 = (L2 +1) 7/ 2
L6 = (L3 +1) 7/ 2
L7 = (L1I0-1) 7/ 2
C = SIGM *x R(J3 + 1) x F(L7) /7 ( FLW*F(LS)I*F(L6) )
C = C * RT(L1) * RT(LR2) * RT(L3) / RT(L1D)
800 RETURN
END
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$IBFTC CNORMP NOLIST+NODECK

SUBROUTINE CNORM ( RNORM )

COMMON KEY» ZAr» Qo
1 M1/M2/NEW/B(13)GAM(L44) »CF(U4) »CG(4YU) »EF(UL) »EG(4YL) yNF PV
COMMON /FUNCT/S(1500) +DF(1500) +F(1500) v NEQe XoH
OIMENSION RNORM(44)

PI = 3.14159265

OVERR = 1.0/X

OVRRSQ = OVERR * QVERR

DO 1 I=1,NF

IG = I+NF

EMVP1 = EG(I)=V

EMV = EMVP1-1.0

Y = =V/EMVPY

XSQ@ = YxY

FK = CF (1)

FKSQ@ = FK*(FK+1.9)

FKR = FK * OVERR

FOR = FKSQ@ * OVRRSQ

IF (KEY)724:¢5

4 EP = C.
GO TO &
5 RA B RATERP(X)
RB = RATERP(X+1.0)
EP = ALOG(RA/RB)
&6 V1 = EP + OVERR
V2 = V1 * V1 + OVRRSG@
V3 = V1 * V2 + 2,0 * OVRRSQ@ * (V1 + QOVERR)
V1IX = V1Y
V2xX = VaxY
VXSQ = ViIX x viX
FKVR = VI1X * FKR

PSQ@ = EMV * EMV = 1.0 + FKVR = 0.75 * VXSQ + 0.5 * V2X = FOR
PSQP = 2.0 % EMV * V * V1 + (FKR = 1.5%V1iX) * VXSQ + 2.0% V1iX* Vv2X
1 = 0e¢5 * V3 x Y = OVERR * (FKVR + FK*V2X = 2.0%FOQR)
TERM3 = FIG)*(0.5%V1X=FKR+0.,25%(PSQP/PSQ))+F (I)*EMVP]1
A = (PI/(SQRT (PSQ)*EMVP1))*(PSQ*F (IG)*F (IG)+TERM3*TERM3)
RNORM(I) = 1,0/SQRT (A)
1 CONTIMNUE
7 RETURN
END
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$IBFTC DIRECT NOLIST»NODECK
SUBROUTINE DIRAC
c COMPUTE DERIVATIVES
COMMON KEY» ZA» Qo
. 1 M1eM2rNEW,B(13) »GAM(44) »CF (44) »CG(44) yEF (44) »EG(44) yNF oV
COMMON /FUNCT/S(1500) +DF (1500) +F(1500) +NEG s XoH

COMMON /INDEX/LBES(1500),KF(1500)+KG(1500) +NK¢NFGsLVEC(11,22)
IF(X) 505,10

5 NEw = 1
GO TO 50
10 IF (NEW) 30,30,11
11 NEW = O
V = =ZA/X
IF (KEY.EQ.1) V=RATERP (X) %V
Z = Q%X
CALL BESSEL (2)
GO TO 31
30 NEW = 1
31 DO 35 N=1/,NF
NG = N+NF
DF(N) = CFIN)*F(N)/X = (EF(N)=V)xF(NG)
ODF (NG) = CGIN)*F(NG)/X + (EG(N)=V)*F(N)
35 CONTINUE

DO 40 N=1NK
I = KF(N)
M = KG(N)
J = M + NF
K = N + NFG
L = LBES(N)
('. DF(K) = 38(L) * F(I) * F(J)
IF ( X «GE. 1.0 ) GO TO 40

A = GAM(I) + GAM(M)
DF(K) = DF(K) * ( X**i )
40 CONTINUE
50 RETURN
END
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$IBFTC FINTE
SUBROUT
c
COMMON
1
COMMON
COMMON
COMMON
COMMON
DATA B
DIMENSI
1 Pl

NOLIST»NODECK

INE FINTEG ( E+» RCUT )
NUMERICAL INTEGRATION OF DIRAC EQUATIONS

KEY» ZAr» Qo
M1eM2)NEW»B(13)GAM(UL) »CF(U4Y4) o COILY) rEF(44) vEG(LUYU) yNFV
/FUNCT/S(1500) oDF(1500) »F(1500) +NEQe X+ H
/INDEX/LBES(1500) ¢ KF(1500) v KG(1500) r NKeNFG'LVEC(11+22)
/KAP/ZLMK (44) yLPK(44) »ST(44) »CR(44) »FKAP(44)
/MAXL/JMe LMo LML M2 IEND» JFLAG ITEST» IREP
00L/0777400000000/
ON E(2) ¢RK(2) »GNU(2) ¢ MIN(2) ¢+ MAX(2) LML (2) P AFT(2) 2 AGT(2)
K(2)rSQE(2) »SQEG(2) »SN(4L) »HP (UY) o HM(L4U) » XIM(UY) yRNORM(U4Y)

120 FORMAT (7F10.0)
501 FORMAT ( 7 E 14.5 )
502 FORMAT (25H1 NORMALIZATION FACTORS )
IF (ITEST.GE,2) GO TO 401
PI = 3.14159265
TWOPI = 2.0*P]l
HALFPI = 0.5 * P]
S@2 = SQRT (0.5)
ZAZA=ZA%ZA
140 MIN(1) = 1
MAX(1) = 2xLM1 + 2
MIN(2) = MAX(1) + 1
MAX(2) = MAX(1) + 2% M2 + 2
M1 = M1 + 1
M2 = M2 + 1
DO 155 N=1eM1
K = N =M1 -1
. LMK(N) = =K
LPK(N) = =K =1
FKAP(N) = K
155 SN(N) = ~=1.0
Mooz M1
DO 160 N=1»M1
M = M+ 1
LMK(M) = N =1
LPK(M) = N
FKAP(M) = N
160 SN(M) = 1.0
DO 165 N=1rM2
M = M+ 1
K = N =M2 =1
LMK(M) = =K
LPK(M) = =K =1
FKAP(M) = K
165 SN(M) = =1.0
Uo 170 N=1rM2
Moo= OM+ 1
LMK(M) = N =1
LPK(M) = N
FKAP(M) = N
170 SN(M) = 1,0
200 DO 300 N=1,IEND
N1 = MIN(N)
‘ N2 = MAX(N)
EFN = E(N)=1.,0
EGN = E(N)+1,0
RK(N) = SQRT (EFN*EGN)
SQEG(N) = SQRT (EGN)
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SQE (N) = RK(N)/SQEG(N)
GNU(N) = ZAxE(N)/RK(N)

AG = ABS (GNU(N))

G2=AG*AG

HZ = G2/E(N)

XNUPI2 = EXP (GNU(N)xHALFPI)
PIK(N) = 1.,0/SQRT (TWOPI*RK(N))
AFTIN)=SQE(N) *PIK (N)
AGT(N)=SQEG(N)*PIK(N)

TWORK = XNUPI2*PIK(N)

TRK = 2+0%RK(N)

DO 300 I=N1s,N2

IG = I+NF

GAM(1) = SQRT (FKAP(I)*FKAP(I)=ZAZA)
EF(I) = EFN

EG(I) = EGN

TUGAM = 2.,0%*GAM(I)+1.0

CALL LOGGAM (GAM(I)+GNU(N) ¢ XRE»XIM(I) )
ZK = TWORK*(TRK**GAM(I))*EXP (XRE)

IF (FKAP(I)) 264,264,268

264 CF(I) = FKAP(I)=GAM(I)
CG(I) = = ZAZA / CF(I)
HAM(I) = ZAZA * EFN /7 ( CF(I) x ( E(N) * FKAP(I) = GAM(I) ) )
HP(I) = 2.0 = HM(I)
HM(I) = SQRT ( HM(I) )
HP(1) = SQRT ( HPI(I) )
FUIG) = ZK*SQEG(N)*(GAM(I)*HP(I)+AGXxHM(I))
F(I) = ZAxF(IG)/CF(I)
GO TO 2790
268 CG(I) = =FKAP(I)=GAM(I)
CF(I) = = ZAZA / CoG(I)
HP(I) = =ZAZA*EGN*( E(N)*FKAP(I)+GAM(I) ) / ( CG(I)*(EFN*EGN
1 *FKAP (1) *FKAP(I1)+ZAZA) )
HM(I) = 2.0 = HP(I)
HM(I) = SQRT ( HM(I) )
HP(I) = SQRT ( HP(I) )

F(I) = ZK*SQE (N)*(GAM(I)*HM(I)+AG*xHP(I))
F(IG) = =ZAxF(I1)/CG(I)
270 DEN = 1.0/TUGAM
CF(IG) = F(I)*((1.,0=-CF(I))*EG(I)=CF(I)*EF(1))*DEN
DF(I) = =F(IG)*((1,0-~CG(I))*EF(I1)=~CG(I)*EG(I))*DEN
300 CONTINUE
301 IF(IEND=1) 3029302,309
401 NDON = RCUT/H + 0.1
K =8
IF ( IREP «GT. 0 ) K=29
REWIND K
READ(K) X» (S(I)sDF(I)F(I)oI=1/NEQ)» (LBES(I)¢KF(I)sKG(I)sI=1sNK)
REWIND K
IF (IREP.GE.1) GO TO 362
GO TO 402
302 N1 MIN(2)
N2 MAX (2)
HAZ = SQRT (ZA)
TUAZ = 2.0%2A
00 366 I=N1lrN2
GAM(I) = SQRT (FKAP(I)*FKAP(1)=ZAZA)

EF(I) = 0.0
EG(I) = 2.0
IG = I+NF
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TUGAM = 2,0*GAM(I)+1.,0

F(I) = HAZ*(TUAZ**GAM(]))

IF(FKAP(I))303+303,304
303 F(I) = =F(1)

CF(I) = FKAP(I)=3AM(I)
Ce(I) = = ZAZA 7/ CF(I)
AZKAP = CF(I)/2A
GO TO 305

304 Co(I) = =FKAP(I1)=GAM(I)
CF(I) = = 2AZA /7 CG(I)
AZKAP = =ZA/CG(I)

305 F(IG) = AZKAPx*F (1)
DF(I) = =F(I)*TUAZ/TUGAM

DF(IG) = 2.0%F(I)*(1.0=CF(I))/TUGAM
306 CONTINUE

309 X = 0.0
M1 = LM+1
M2 = LM+2
H1 = 0.0078125
H2 = 0.0625 /7 RK(1)
H2 = AND ( Hz» BOOL )

H H1
N = 1.0/H + 0.5
WRITE (6.886) Hl,H2
886 FORMAT (//9X41HINTEGRATION INCREMENT UP TO X EQUAL 1 IS F8.6/
14X46HINTEGRATION INCREMENT FOR X GREATER THAN 1 IS FB8.6//)
Do 310 L =1, 13
310 B(L) = 0.0
DO 315 NO = 1+ NFG
315 S(NO) = 0.0
DO 320 NN = 1, NK
NNN = NN + NFG

F(NNN) = 0.0
DF(NNN) = 0.0
320 S (NNN) = 0.0
IF (IREP,GE.1) 60 TO 360
uo 350 IZ1»N

CALL RKUTTA
350 CONTINUE
360 H = H2
DO 365 I=1eNF
CF(I) = FKAP(I)
CG(I) = =FKAP(I)
365 CONTINUE
IF (IREP.GE.1) GO TO 366
DO 406 I =1, NF
I6 = 1 + NF
TUGAM = 2.,0*%GAM(I)+1.0
CALL LOGGAM (TUGAM /»0.+XRE2¢UG)
RNORM(I) = EXP ( = XREZ2 )

S(I ) = S(I ) = RNORM(I)
S(IG) = S(IG) * RNORM(I)
LF(I ) = DF(I ) * RNORM(I)
DF{IG) = DF(IG) * RNORM(I)

F(I ) = F(I ) * RNORMI(I)
406 F(IG) = F(IG) * RNORM(I)
DO 407 K=1¢NK
N = NFG+K
I = KF(K)
J = KG(K)
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S(N) = S(N) * RNORM(I) * RNORM(J)
DF(N) = DF(N) * RNORM(I) * RNORM(J)
407 F(N) = F(N)*RNORM(I)*RNORM(J)
366 NEW = 1
CALL DIRAC
IF (IREP.GE.1) GO TO 401
NDON = (RCUT=-1.0)/H + 0.1
402 DO 370 NDO = 1, NDON
370 CALL RKUTTA
403 REWIND 8
WRITE(8)X» (S(I)sDF(I)sF(I)2I=1+NEQ)» (LBES(I)sKF(I)eKG(I)sI=10NK)
REWIND 8
4o4 IF (KEY) 430,430,410
362 IREP = IREP=1
V==2A7X
IF ( KEY «EQ. 1) V = RATERP(X) * V
IF (IREP.EQ.0) GO TO 403
IREP = 0
GO TO 366
430 00 440 N=1,2
N1 = MIN(N)
N2 = MAX(N)
DO 440 I=N1»,N2
COSETA = =SQ2%SN(I)*HP(I)
SINETA = =SQ2*HM(I)
XXL1 = LPK(I)+1
ALPHA = <=XIM(I) + HALFPI*(XXL1=GAM(I))
CSALPH = COS (ALPHA)
SNALPH = SIN (ALPHA)
SI(I) = SINETA*CSALPH+COSETA*SNALPH
CR(I) = COSETA*CSALPH=SINETA*SNALPH
440 CONTINUE
GO TO 518
410 WRITE(6,502)
WRITE ( 6¢ 120 ) X

LML(1) = LML
LML(2) = LM2
0O 420 N=1r2
M1 = LML(N)+1
M2 = M1 + 1
T < X*RK (N)
CALL BESSEL ( T )
AF = AFT(N)/SQ2
AG = AGT(N)/SQ2
Nl = MIN(N)
Ne = MAX (N)
0O 420 I=N1,N2
IG = 1 + NF
L1 = LPK(I) + 1
L2 = LMK(I) + 1
FZ = SN(I)*AFxTxB(L2)
GZ = AGxT*B (L1)
COMPUTE PHASE FACTORS.,
RN = FZX*FZ/EF(1) + 6GZ*xGZ2/EG(T)
kD = FOL)xF{I)/EF (1) + F(IG)*F(IG)/EG(I)

RNORM(I) = ‘SQRT (RN/RD)

SI(I) =((FZ2#*F (16)/RK(N) = GZ*F (I)/RK(N))/RN)*RNORM(I)

CRII) = ((FZ#F(I)/EF(I) +6Z*F (IG)/EG(I))/RN)*RNORM(I)

WRITE (6+501) FZsF(I)»GZ+F(IG)»RNORM(I)»SI(I),CR(T)
420 CONTINUE
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518

789

400

CALL CNORM ( RNORM )
WRITE(6,502)

DO 789 I=1,NF
I6 = I + NF

OF (I ) = DF(I )
OF(IG) = DF(1G)
F(I ) = F(1 ) =
FCIG) = F(IG) %
WRITE(6,501)
CONTINUE

DO 400 K=1/,NK

N NFG+X

1 KF(K)

J KG(K)

F(N) = F(N)*RNORM(I)*RNORM(J)
NX = NFG+1
WRITE (6+500)
CALL ASYMP (E)
SUM = 0.0

DO 585 I=NXsNEQ
SUM = SUM+F (1) *%x2

WRITE (6¢500) Xo(F(I)sI=NX»NEQ)

* RNORM(I)

* RNORM(1I)

RNORM(I)

RNORMI(I)
RNORM(1I)

Xe (F(I)2I=1 »NEQ)

FORMAT (///50X15HMATRIX ELEMENTS//S4X4HX =

WRITE (6,498) SUM

FORMAT (//32X26HSUM OF ELEMENTS SQUARED =

CALL HFUN
RETURN
END
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$IBFTC HFUNP NOLIST»NODECK
SUBROUTINE HFUN

C REDUCED MATRIX ELEMENTS H
COMMON /FUNCT/S(1500) »DF(1500) rF(1500) ¢NEQeXrH
COMMON /INDEX/LBES(1500),KF (1500)+KG(1500) rNKeNFGeLVEC(11,22)
COMMON /KAP/LMK (44) »LPK(44) »ST(44) CR(UY) +FKAP(LY)
DIMENSION HF(1500/,3)
EQUIVALENCE (S(1)sHF(1,1))
GO 23 N=1¢NK
M = N + NFG
IF(KF(N)=KGI(N)) 1r,1s2

1 MF = KF(N)
K1 = =FKAP(MF)
NG = KG(N)
K2 = FKAP(NG)
GO T0 3

2 F(M) = - F(M)
MF = KG(N)
K1 = FKAP(MF)
NG = KF (N)
K2==FKAP (NG)
KF(N) = MF
KG(N)=NG

3 JKI=LPK (MF) +LMK (MF)
JK2 = LPK(ING)+LMK(NG)
L = LBES(N)~-1
IF ( L «£Q. 0 ) ¢ TO 8
L2=2x%L
JPL=UK1+ JK2=L2
JMLZIABS (JK1=UK2)=L2
IF (JPL=2) 9¢ 4» 4

4 IF ( L +£Q. 1) 30 TO 6
IF(JML+2) 51516

5 LBES(N) =1
NA = 1
NB = 3
G0 TO 14

6 IF(JML) 7¢7+8

7 LBES(N)=2
NA = 2
NB = 3
GO TO 14

8 LBES(N) =3
NA = 3
NB = 3
GO TO 14

9 IF ( L +EQ. 1) GO TO 13
IF(JPL) 10,111,111

10 LBES(N) = 4

NA = 1
kg = 1
GO TO 14

11 IF(JUML+2) 12,12013
12 LBES(N) = %

NA = 1
NB = 2
GO TO 14
13 LBES(N) = o
NB = &
NA = 2
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14

22
23

DO 22 NLA = NA/NB

LA = 2%(L+NLA=2)

CALL XFUN(L/K1rK2/NLA»GEL)
CALL CCOEFS(LAPJK2¢JK110r1+C)
HF (NeNLA) = F(M)=*GEL*C
CONTINUE

CONTINUE

RETURN

END
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$IBFTC LOGGA NOLIST»NODECK
SUBROUTINE LOGGAM(X»YUrV)
C THIS SUBROUTINE COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTION FOR
C COMPLEX ARGUMENTS. THE ROUTINE IS ENTERED BY THE STATEMENT
C CALL LOGGAM(X»YrU»rV)
C WHERE X IS THE REAL PART OF THE ARGUMENT
Y IS THE IMAGINARY PART Of THE ARGUMENT
U IS THE REAL PART OF THE RESULT
V IS THE IMAGINARY PART OF THE RESULT
DIMENSION H(7)
H(1)=2.269488974
H(2)=1.517473649
H{3)=1.,011523068
H(4)=.5256064690
H(5)=.2523809524
H(6)=0.,0333333333
H(7)=0.0833333333
E2=1.57079632679
£8=3.,14159265359
51=0.0
82=0,0
Jz=2
X2z=X
4 IF(X)1,2¢3
3 BezATAN (Y/X)
T=X%X
L B7EYRY+T
C REAL PART OF LOG
T1=0.5%AL0OG(B7)
IF(X=2.0)797¢6
7 B1=B1+B6
BE2=B2+T1
X=X+1,0
J=1
GO T¢C 4
6 T3==Y*B6+(T1*(X=e5)=X+.9189385332 )
T2=B6X(X=eH)+Y%T1=Y
TgzX
TS==Y
Ti=B7
DO 8 I=1.7
T=H(I)/T1
TU4=TxT4H+X
TO=S=(T*T5+Y)
8 TI1=T4x%x2+TH*x%2
T3=TU4=X+T3
T2==TH=Y+Te2
GO TO (9,10),J
9 T3=T3-B2
T2=T2=-51
10 IF(X2)11.12012
12 U=T3
V=Te
X=x2
ReTURH
11 UST3=-i24
V=T2=t5
X=Xz
RETUR!
C X IS ZERO

OO0
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2 T=0.0
IF(Y)13,14/,15
13 Be6=~E2
GO TO S
15 B6=E2
GO TO 5
X IS NEGATIVE
1 Eu=0.0
£E5=0.0
IE£6=0
16 E4TE4+.5*x(ALOG(X®X +YxY ))
ES=ES+ATAN (Y/X)
IE6=IE6+1
X=X+1.0
IF(X)16+17,17
17 IF( MOD (1E6,2))1804,18
18 ES=ES+ES8
GO0 TO &
14 WRITE(6019) X2 Y
19 FORMAT(29H ATTEMPTED TO TAKE LOGGAM OF 2HX=F6.0¢1X2HY=F6.0)
CALL EXIT
RETURN
END




$IBFTC PHISUP NOLIST»NODECK
SUBROUTINE PHISUM ( Le Llr PH )
c SUM OVER KAPPAS
COMMON /FUNCT/HF (1500+3) »NEQ» X+ H
‘ COMMON /INDEX/LBES(1500) sKF(1500) »KG(1500) +NK»NFGrLVEC(11,22)
COMMON /KAP/LMK (44) sLPK (44) »ST(44) »CR(44G) FKAP (44)
COMMON /MAXL/JMsLMsLM1sLM2 s IEND» JFLAGs ITEST ¢ IREP
DIMENSION  P(3» 3+ 12) » PH(3r 3» 12)

NEM = L1 + 2
DO 1 NLA = 1, 3
DO 1 NLB = 1, 3

DO 1 NE = 1» NEM
PH ( NLA» NLB» NE ) = 0.
1 CONTINUE
IF (JUFLAG.NE,0) 60 TO 29
KA = 1
MAK = 2%LM2+2
KB = MAK
Ko = 1
IF ( L .GTe. 0 ) G0 TO 3
Lae = 0
GO TO b
LG = LVEC ( L» MAK )
IF ( L1 ) 5 5» 6
LQQ1 = 0
GO TO 28
LeQl = LVEC ( L1, MAK )
IF ( LAG +EQ. LVEC(L+1,1) ) KQ
IF ( LGQ1 +EQe. LVEC(LI1+1.1) ) KQ
. LONE = L@@ + 1
LONE1l = LQQl + 1
GO TO 7
29 LONE = LVEC(L+1,JFLAG)+L
LONE1l = LVEC(L1+1,JFLAG)+1
KA = JFLAG+1
KB = MAK-~JFLAG
7 DO 27 K=KA(KB
LAST = LVEC (L + 1» K )
LAST1 = LVEC (L1 + 1» K )
IF { K +FEQs 1) G0 TO 22
IF ( LVEC(L+1/,K) +EQs LVEC(L+1¢K=1) ) G0 TO 30
IF ( LVEC(L1+1/K) +EQe LVEC(LI+1,K=1) ) GO TO 30
GO TO 23
22 IF ( K@ .EQ. 2 ) 60 TO 30
23 M6 = K6 ( LONE )
JK2 = LMK ( MG ) + LPK ( MG )
XJK2 = JK2+1
DO 101 NLA = 1, 3
DO 101 NLB = 1» 3
DO 101 NE = 1, NEM
P( NLA» NLBe NE) = 0.
161 CONTINUE
PO 29 N = LONEe» LAST
LB = LLES ( N )
GO ToO ( 8y 99 10 11v 12y 13 ) o LE

O F &

™
& o

‘l' b NA =1
N = 3
GO TO 14
9 NA = 2
NB = 3
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10

11

12

13

14

15

le

17

18

19

20
21

GO TO 14

NA = 3

NB = 3

GO TO 14

NA =1

NB =1

GO TO 14

NA = 1

NB = 2

GO TO 14

NA = 2

NB = 2

MF = KF ( N )

JK = LPK ( MF ) + LMK ( MF )
DO 25 NLA = NA» NB

LA =2 (L +NA=-2)

DO 25 N1 = LONE1l, LAST!

LB1 = LBES ( N1 )

GO TO ( 15¢ 16¢ 17 18¢ 199 2G ) LBl
NAL = 1

Ngl = 3

GO TO 21

NAL = 2

NBl = 3

GO TO 21

NAL = 3

N3BL = 3

GO TO 21

NAl = 1

NBl = )

60 TO 21

NAL = 1

NBl = 2

G0 TO 21

NAlL = 2

Bl = 2

MF1 = KF ( N1 )

JK1 = LPK ( MF1 ) + LMK ( MF1L )
DO 25 NLAl = NAl, NB1

LAl = 2 * ( L1 + NLA1l - 2)

MIL = MINO (LA'LAL1rJK2+1)

NIM = MIL 7 2 + 1

DO 24 NE = 1 NIM

LE =2 x ( NE - 1)

IF ( UK2 +LT. LE ) GO TO 32

CALL CCOEFS ( LA » JK2¢r JK » LE » =LE=1» CA )

CALL CCOEFS ( LAL1 » JK2» JUK1 » LE » =LE-1l» CB )

SUMEM - - CA *x CB

IF ( ( LPK(MF)=LMK(MF)+LPK(MF1)=LMK(MF1) ) .EQe 0 ) SUMEM=-SUMEM
GO TO 33

SUMEM = 0.0

CALL CCOEFS ( LA » JK2¢» JK + LE » =LE+1» CA )

CALL CCOEFS ( LAl » JK2¢» JK1 » LE » <=LE+1» CB )

SUMEM = SUMEM = CA * (B

LMOD = MOD( (LPK(MF)=LPK(MF1)+L=L1)» 4 )

IF (LMOD.EQ.0) SUMEM = ~SUMEM

SUMEM = SUMEM*( CR(MF)*CR(MF1l) + SI(MF)*SI(MF1l) ) * 0.5
P(NLA*NLAL/NE) = P(NLA/NLALINE) + SUMEMxHF (N/NLA)*HF (N1/,NLA1)

24
25

CONTIN
CONTIN

UE
UE
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26
30

27

DO 26 NLA = 1» 3

DO 26 NLAl = 1» 3

DO 26 NE = 1. NEM

PH(NLA/NLAL1/NE) = PH(NLA/NLA1/NE) + P(NLA/NLAL/NE)*XJUK2
CONTINUE

LONE = LAST + 1

LONE1 = LAST1 + 1

CONTINUE

RETURN

END
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$IBFTC RATER NOLIST»NODECK

C

KX

11
* Kk

10
kK
12
>k
k%

* kK

30

X ok

%k k

% X%k

XKk

%k X

* %k Xk

99

1000

FUNCTION RATERP(X)

OBTAIN VALUES FROM SCF TAPE AND INTERPOLATE

COMMON /SCF/NTAPENTOT/NSKIPyNCOUNT

DIMENSION TABR(101)»TABRAT(101)

IF (NCOUNT) 99¢192
CONTINUE

NCOUNT.EQe0 == FIRST TIME INTO RATERP FOR THIS ELEMENT
NCOUNT = NCOUNT + 1

IF (NCOUNT=NSKIP) 110,10,99
CONTINUE
DIFFERENCE.GT.0 == HAVE NOT REACHED LAST BINARY
RECORD OF TABLE.
ISTOP = 101
GO TO 12
CONTINUE
DIFFERENCE.EQ.0 == HAVE REACHED LAST BINARY RECORD
OF TABLE.
ISTOP = MOD (NTOT»100) + 1
CONTINUE
READ IN NEW BINARY RECORD.

READ (NTAPE) (TABR(I)/TABRAT(I)I=2,ISTOP)
ISTART = 2
CONTINUE
NCOUNT«GT+0 == RE=ENTRY INTO RATERP FOR ELEMENT.
po 3 I=ISTART»ISTOP
LOOK FOR TABLE INTERVAL FOR X,
IF (X-TABR(I)) 300493
IF (ABS (X=TABR(I)) - .0001) GokeS
CONTINUE
X TOO LARGE == CARRY OVER LAST VALUES AND READ
IN NEW BINARY RECORD.
TABR(1) = TABR(101)
TABRAT(1) = TABRAT(101)
GO TO 1
CONTINUE
EXACT MATCH == NO INTERPOLATION NECESSARY,
VAL = TABRAT(I)
ISTART = ISTART + 1
GO TO )
CONTINUE
COMPUTE RATIO NEEDED FOR INTERPOLATION,
TERM = (X=TABR(I-1)) / (TABR(I)=TABR(I~-1))
IF (NTOT=-100) Te7+8
CONTINUE
LINEAR INTERPOLATION.
VAL = TABRAT(I=-1) + (TABRAT(I)=TABRAT(I-1)) * TERM
GO TO 9
CONTINUE
SEMI-LOG INTERPOLATION,
VAL = TABRAT(I-1) * (TABRAT(I)/TABRAT(I=1)) =** TERM
CONTINUE
ISTART = 1
CONTINUE
STORE VALUE IN FUNCTION.
RATERP = VAL
RETURN
PRINT 1000,NCOUNT
WRITE (601000) NCOUNT
FORMAT (10X»9HNCOUNT = I6¢10X,28HREADING SCF TAPE INCORRECTLY )
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CALL EXIT
RETURN
END
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$IBFTC RKUTT NOLIST»NODECK

c

120
130

SUBROUTINE RKUTTA

RUNGE-KUTTA INTEGRATION

COMMON /FUNCT/S(1500)DY{(1500)»Y(1500) yNEQ»XsH
COMMON /KUT/D(4)»E(4) 1F(4) G (4)

DO 130 JZ104
CALL DIRAC
Do 120 I=1/NEG

Z = DU *(DY(I)=E(J)%S(I))
Y(I) = Y(I) + Hx2

S(I) = S(I) + 3.0%2 = F(J)*DY(I)
X = X + G(J)*H

RETURN

END
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$IBFTC SELEC NOLIST»NODECK

C

20

30

40

41
42
43
50
60
70

RO

90
100
110
115
120

130
140
150
160

165
170

150
190

191
200
210
220
230
240

SUBROUTINE SELECT

MATRIX ELEMENT SELECTION RULES AND INDEXING

COMMON /INDEX/LBES(1500)/KF(1500)+KG(1500) rNKsNFGrLVEC(11,22)
COMMON /MAXL/JMoLM»LM1sLM2y IEND»JFLAGYITEST,IREP

SQL LM x ( LM+ 1) + LML x ( LML + 1 ) + (M2 % (M2 + 1)
RTL SQRT ( SQL )

LTP RTL + 2.0

K1 2*%LM1l + 2

NK = 0

L =
K =
KAPZ2 LM2 + 1

KSN2 1

Ne = LM2 + 1

LKAP2 = IABS (KAP2) + (KSN2=1)/2

LMKAP2 = [LKAP2 = KSN2

L@ = 1IABS (L = LMKAP2)

LR = 1IABS (L = LKAP2)

LMKAP1 = MINO (LG/LR)

IF  (LMKAP1~LQ) 50042/,50

IF  (LMKAP1) 43950043

LMKAP1 = LMKAP1 - 1

IF ( MOD (L+LMKAPL+LKAP2:» 2)) 60070060

LMKAP1 = LMKAPL + 1

LK = MINO (LKAP2+LLM1)

LP = MINO (LMKAP2+LLM1)

KAPl1 = LMKAPL + 1

KSN1 = 1

NI = M1l + 1

IF (LKAP2 = LM2) 100.,1000130

IF  (LR=-LMKAP1) 110+1100130

IF ( LMKAP1 - LK ) 115, 115, 130
IF ( LMKAP1 + LKAP2 + L - LTP ) 120, 120+ 130
NK = NK + 1

LBES(NK) = L + 1

KF (NK) KAP1 + N1

KG{NK) KAP2 + N2 + K1

IF  (LMKAPz =LM2) 140,140,180

LKAP1 = LMKAP1l + KSNI1

IF (LG - LKAP1) 1600160180

IF ( LKAP1 = LP ) 165» 165» 180

oo

IF ( LKAP1 + LMKAP2 + L = LTP ) 170, 170, 180
NK = NK +1

LBESINK) = L + 1

KF(NK) = KAP2 + N2 + K1

KG(NK) = KAPl + N1

IF  (K53N1) 20002000190

KAP1 = =LMKAP1

KSN1 = =1

N1 = LML + 2

IF  (KAP1) 900200090

LMKAP1 = LMKAP1 +2

IF  (LMKAPL = LK) 800800220
IF  (LMKAPl=1-LP) 80,800,230
IF (LMKAP2 = LM2) 2400240260
KAP2 = KAP2 = 1

K = K +1
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250

260

270
300
310

320

LVEC(L+1,K) = NK

IF  (KAP2)

KAP2 = =}

KSN2 = =1

Ne = LM2 + 2
GO0 TO

K = K +1
LVEC(L+1,K) = NK
L =L +1

K =0

IF (L = LM)

MAK = 2 * LM2 + 2

IF ( LVEC ( LM+1,
LM = LM -1

GO TO 310

RETURN

END

MAK )

30,250+ 30

30

20,200,300
+6Te LVEC ( LMs» MAK ) )

- 100 -

G0 TO 320




$IBFT

C *xx

402

C *k%

403
C *%xx

404
405

C *%%

5003

C SETAP NOLIST»NODECK
SUBROUTINE SETAPE(2)
POSITION SCF TABLE TAPE
COMMON /SCF/NTAPE/NTOT»NSKIP»NCOUNT
REWIND NTAFE
CONTINUE
READ (NTAPL) ZTRY!NTOT
NSKIP = NTOT/100 + 1
MATCH CURRENT Z TO TAPE RECORD.

IF (Z-ZTRY) 403,405,403
CONTINUE

: NO MATCH == SKIP UNWANTED TABLES.
DO 404 I=1,NSKIP

READ (NTAPE) DUMMY

GO TO 402
CONTINUE

MATCH == TAPE POSITIONED AT START OF DESIRED TABLES.,
NCOUNT = 0

WRITE (6,5003) Z/NTOT

FORMAT (49HOUSING SCF POTENTIAL. LIBRARY TABLE FOR ELEMENT » F4,0
A» SH HAS » IS, 9H ENTRIES. )

RETURN

END
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$IBFTC XFUNP NOLIST»NODECK

c

SUBROUTINE XFUN(LeK1eK2/NLA»GEL)
REDUCED X=COEFFICIENT
G0 TO (19293) oNLA
FNUM = K1+K2+L

DEN = L*(2%L+1)

GO TO 4

FNUM=K2=K 1

DEN = Lx(L+1)

GO TO 4
FNUM=K1+K2=L=1

DEN = (L+1l)x(2=L+1)
GEL = FNUM/SQRT({DEN)
RETURN

ENO
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