TOLIP - TRAJECTORY OPTIMIZATION AND

 LINEARIZED PITCH COMPUTER PROGRAM

 LINEARIZED PITCH COMPUTER PROGRAM}

By Robert E. Willwerth, Jr., and Richard C. Rosenbaum

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents rosides in the author or organization that prepared it.
Hard copy (HC)
Microfiche (MF)

Prepared under Contract No. NAS 1-5106 by LOCKHEED MISSILES \& SPACE COMPANY Sunnyvale, Calif. for Langley Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATIO

TOLIP - Trajectory Optinisation and

Linearized Pitch Computer Progren

Distribution of this report is provided in the interest of information exchange. Respoasibility for the contents resides in the arthor or organisation that prepared it.

FOREWORD

This report was prepared by the Advanced Flight Mechanics department of the Navigation Guidance and Control Division of the Lockheed Missiles and Space Company, Sunnyvale, California. It presents the final documentation for the Scout Oper tional Performance and Dispersion computer program developed by Lockheed for the Langley Research Center under NASA Contract NAS 1-5106. FORTRAN source listings, and symbolic decks in both FORTRAN II and IV, included with the master copy of this report complete the program documentation. Mr. R. E. Willwerth was responsible for program development. Optimization and pitch program linearization techniques were developed by R. C. Rosenbaum. Initial development of body dynamics simulation was done by C. W. Edwards, and the dispersion and range-safety modules were developed by R. L. Moll and John Slimick. The major portion of the programming was done by Miss Zoe Taulbee. The work was performed under the cognizance of R. L. Nelson and D. I. Kepler.

TABLE OF CONTENTS

Section Page
1 FOREWORD 1-1
2 ABSTRACT 2-1
3 INIRODUCTION $3-1$
PART I THEORY
4 POINT-MASS EQUATIONS OF MOTION
4.1 Definition of Symbols 4-1
4.2 Equations of Motion 4-4
4.3 Trajectory Coordinates 4-5
4.4 Derivation of Thrust Resolution Matrices 4-6 4-6
4.5 Trajectory Variables in Inertial Frame 4-16
4.6 Diagram and Equations of Terminal Orbit Elements 4-17
4.7 Oblate Earth Model 4-21
4.8 Range Equations 4-23
5 DERIVATION OF OPTIMIZATION EQUATIONS
5.1 Definition of Symbols 5-1
5.2 Derivation of Properties of Adjoint Variables 5-2
5.3 Linear Perturbation Equations 5-8
5.4 Adjoint Equations 5-9
5.5 Initial Conditions for Integration of. the Adjoint Equations 5-18
5.6 Derivation of Optimization Equations 5-24
5.7 Automatic Calculation of Initial Payoff Increment 5-30
6 PITCH PROGRAM LINEARIZATION EQUATIONS 6-1
7 BODY DYNAMICS SIMULATION $7-1$
8 PERFORMANCE EXCHANGE RATIOS
8.1 Derivation of Basic Equations 8-1
8.2 Evaluation of Sensitivity Coefficients and Deininition of Units for Each Parameter $8-6$
Section
PARTI II PROGRAMMING OF THE ERUATIONS
9 OPTTMIZATION MODULE
9.1 Definition of Symbols 9-1
9.2 Programming of Optimization Equations 9-2
9.3 Evaluation of S Matrix for Adjustable Parameters 9-7
9.4 Internediate Trajectory Constraints 9-10
9.5 Optimization Success Criterion 9-11
9.6 Optimization for Maximum Payload 9-13
9.7 Allocation of Variables of Integration 9-14
10 PITCH PROGRAM LINEARIZATION 10-1
11 PROGRAMMING OF BODY DYNAMICS FOR MOMINAL TRAJECTURY 11-1
12 PROGRAMAING OF THE EXCHANGE RATIO EQUATIONS 12-1
13 AERRODYNAMIC HFATING CONSTRAINT 13-1
14 PKOCESSTNG OF INPUT THRUST AND WEIGHT DATA
14.1 Modification of Thrust Table 14-1
14.2 Provision for Arbitrary Distribution of Data Points Among Stages 1.4-3
15 DISPERSED IRAJECTORY CAICULATIONS 15-1
16
FAILURE-MODE HARDOVER IURN CAICTLATIONS 16-1
17
NOMINAI, IMPAST IOCUS 17-1
18
RADAR TRACKING COORDINATES 18-1
19
SPECIAL SUBEDUTINES
19.1 Atmosphere 19-1
19.2 Integration 19-4
19.3 Matrix Inversion 19-5
PROGRAM ORGAIVIZATIION
20.1 Iist of Subroutine Functions 20-1
20.2 Flow Diagrams 20-5
Section Page
21 CODING NOMENCLAITRE
21.1 Optimization and Linearization 21-1
21.2 Dispersed Trajectories 21-21
21.3 Hardover Turns 21-23
21.4 Impact Locus 21-23
21.5 Radar Tracking Coordinates 21-26
PART III USER'S MANUAL
22 PROGRAM OPERATION
22.1 Sequence of Trajectory Computations 22-1
22.2 Data Input Format 22-4
22.3 Discussion of Computation Options and Required Data 22-6
22.4 Summary Definition of Data Blocks 22-18
22.5 Output Format 22-31

ABSTRACT

The Scout Trajectory Optinization and Linearized Pitch computer progran (TOLIP) obtained from the Lockheed Missiles and Space Compan under contract NAS 1-5106 is designed to perform the trajectory-related caleulations necessary in mission-planning and preflight analysis with a large reduction in compurter time. It uses a closed-loop steepest descent optimisation procedure to obtain flight trajectories that maximize payload, inertial or aerodynamic velocity, or altitude for up to five-stage vehicles. Following optimization, the pitch program is automatically innearized to enable its mehanization In the autopilot system. Control systen and body dynenics effects are included In the simulation. A large nuber of constreints on the trajectory and pitch progrem can be included in the optimization and linearigation solutions, so that a great deal of flexibility as well as recognition of velicle limitations are possible in the use of the program.

Following the solution for the optimu trejectory an pitch progrea, the cowputer program can proceed, by option, directir into calculating: (i) radar tracking coordinate histories for up to twenty stations; (2) the locus of nominal impect points of the spent steges; (3) nominal diepereion envelopes; and (4) failure-mode hardover turns. Finally, for planning purposes, firgtorder performance exchange ratios for severwl vehicle/notor characteristics are calculated.

Particular attention mas devoted during progra derelopment to compurting speed. The convergence ncheme, the genernl progrtangengmert, and the subroutines have been modified to provide simifleant incremeen in speed for special applications.

INTRODUCTION

During the past few years procedures have been developed for evaluating the launch vehicle tilt programs that result in maximum performance ascent trajectories. A variety of digital computer routines have been mechanized to perform these computations. The early versions of these routines were used primarily for applied research studies and to a limited extent for preliminary design studies. Typically, the derivation of tilt programs with - these routines required a sequence of trial computations for which the operator provided estimates of initial conditions for a number of mathematical parameters. The time required to achieve an acceptable result with these routines and the associated cost of the analysis were such that their application was very limited.

More recently significant advances have been achieved in both the analytical techniques applied to trajectory shaping problems and in the mechanization of these techniques in suitable computer routines. An example of these advances is the digital computer program PRESTO* which solves a complete trajectory shaping problem for multistage vehicles in a single pass at the computer With total computing times of the order of one minute. From further study of these techniques, it became apparent that with certain refinements similar methods could be applied to operational performance and trajectory dispersion problems. The advantage would be a substantial reduction in cost and reaction time (i.e., time from receipt of input data to transmittal of output).

[^0]The computer program documented herein brings application of the new technology to operational performance and dispersion problems for the Scout launch system. The report sections are sequenced into three groups. In the first part, a discussion of the theoretical methods used in the program is provided. All equations of motion, constraint parameters, optimization and pitch program linearization equations are fully documented. Part two is an extensive description of the programming, ranging from a discussion of the overall computation flow to the details of some of the more complicated subroutines. The third part of the report is a users' manual in which the data input and output formats are described and detailed instructions are given for using the various program options.

PART I

THEORY

SECTION 4

POINT-MASS EQUATIONS OF MOTION

Aerodynamic reference area, ft^{2}
A matrix (see page 4-11)
Net vehicle acceleration in iocel coordinate system Rocket engine nozzle exit area, ft^{2}

B matrix (see page 4-11)
C matrix conversion from P to L eystems
Drag coefficlent
Lift coefficient
Component of C matrix, x row and y colvom
Aerodynamic drag on vehicle, ib
Orbit energy per unit mass
$d V / d t$
Aerodynamic lift on vehicie, it
$d \gamma / d t$
μ / r^{2} gravitational acceleration on apherical Barth
$\mathrm{d} \phi / \mathrm{dt}$
Angular monentum
$d r / d t$
Inclination of geocentric orbit plane
Unit vectors for L (local) coordinate system
$d \lambda / d t$
Oblate Earth gravitational constant $=1.0827 \times 10^{-3}$
Unit vectors for platform (P) coordinate system
$d T_{I} / d t$

$\bar{k}_{x}, \bar{k}_{y}, \bar{k}_{z}$	Unit vectors for Earth-centered inertial (I) coordinate system
$\boldsymbol{I}_{x}, \boldsymbol{I}_{\mathbf{y}}, \boldsymbol{I}_{z}$	Unit vectors for G (launch geocentric) coordinate system
m	Instantaneous mass of vehicle, slugs
p	Atmospheric pressure, psia
r	Radial distance from Earth-center to vehicle, ft
$r_{\text {e }}$	Earth equatorial redius, ft
$r_{\text {p }}$	Perigee radus
T	Vehicle net thrust force, lb
T_{G}	Thrust vector in geocentric (G) system
t_{G}	Space Age Date = Julian Date - 2,436,934.5
T_{I}	Thrust vector in inertial (I) system
$\mathrm{T}_{\mathrm{I}_{x}}, \mathrm{~T}_{\mathrm{L}_{\mathrm{y}}}, \mathrm{T}_{\mathrm{L}_{z}}$	Components of thrust along axes of local system
$\mathrm{T}_{\mathrm{P}_{\mathrm{x}}}, \mathrm{T}_{\mathrm{P}_{\mathbf{y}},} \mathrm{T}_{\mathrm{P}_{z}}$	Components of thrust along axes of platform sytem
V	Velocity in local system, ft/sec
V_{I}	Velocity in inertial system, $\mathrm{ft} / \mathrm{sec}$
α_{e}	Right ascension
β	In-plane angle from ascending node
β_{p}	Argument of perigee
γ	Flight path angle of V in local system, rad
${ }^{\boldsymbol{\gamma}} \mathrm{I}$	Flight path angle of V_{I} in inertial systen, red
8λ	Angle between geocentric and geodetic rertical
6	True anomaly of position
θ	Vehicle pitch attitude in P aystem (soe Fig. 4-2)
λ	Geocentric latitude of rehicle position, rad
μ	Gravity constant, $\mathrm{ft}^{3} / \mathrm{sec}^{2}$
p	Atmospheric density, alugs/ft ${ }^{3}$

\uparrow	Earth longitude angle, red
${ }^{T}$ I	Inertial longitude angle, red
x	Vehicle yaw attitude in platform system (see Fig. 4-2)
-	Azimuth of V in local system, red
''	90° -
${ }^{\prime}$	Azimuth of V_{I} in inertial system, rad
ω	Earth rotation rate, red/sec
Ω_{e}	Longitude of ascending node

EqUATIONS OF MOTION

The equations of motion employed in the Scout computer program are based on the equations used in PRESTO (see reference, page 3-1). However, improved accuracy in the simulation has been achieved through an oblate Earth gravity model and representation of an inertially-oriented vehicle pitch plane. The trajectory variables of integration are the velocity relative to a spherical rotating Earth and position relative to the center of the Earth. These coordinates are show in Figure 4-1. The local (or L) system is made up of the \bar{I}_{x}, \bar{I}_{y} and \bar{I}_{z} vectors. The origin of the L system moves with the vehicle center of gravity. The \bar{I}_{y} axis lies along the aerodynamic velocity vector, and the \bar{I}_{x} axis is perpendicular to the instantaneous plane of motion. The \bar{I}_{z} vector points generally away from the Earth's center. The $\bar{k}_{x}-\bar{x}_{y}-\bar{x}_{z}$ system will be referred to as the inertial, or I system. Its origin is at the center of the Earth. The I system is fixed in space.

The point-mass acceleration, $\overline{\mathbf{a}}$, in the local system, is written (see reference, page 3-1) as follows:

$$
\begin{aligned}
& \bar{a}= \bar{I}_{x}\left[V \cos \gamma \dot{\gamma}-\frac{V^{2}}{r} \frac{\cos ^{2} \gamma \sin \psi \sin \lambda}{\cos \lambda}-2 V \cos \gamma \omega \sin \lambda\right. \\
&\left.-r \omega^{2} \sin \lambda \cos \lambda \sin \psi+2 V \omega \cos \lambda \cos \psi \sin \gamma\right] \\
&+\bar{I}_{y}\left[\dot{V}-r \omega^{2}\left(\cos ^{2} \lambda \sin \gamma-\sin \lambda \cos \lambda \cos \psi \cos \gamma\right]\right. \\
&+I_{z}\left[V \dot{\gamma}-\frac{V^{2}}{r} \cos \gamma-2 V \omega \cos \lambda \sin \psi\right. \\
&\left.-r \omega^{2} \quad\left(\cos ^{2} \lambda \cos \gamma+\sin \lambda \cos \lambda \cos \psi \sin \gamma\right)\right]
\end{aligned}
$$

Figure 4-1
TRAJECTORY VARIABLES ARD COORDIMATE SISIEMS

The forces acting on the body may be divided into three groups: aerodynamic, gravitational, and thrust. The components of these forces along the L axes are:

Aerodynamic
It will be assumed in evaluation of the point mass motion that the vehicle will be controlled in such a way that no significant aerodynamic side force will appear along the \bar{I}_{x} axis. Thus,

$$
\bar{F}_{A}=-\bar{I}_{y} D+\bar{I}_{z}(F L)
$$

where the drag (D) and lift (FL) are computed from input aerodymamic coefficients.

Gravitational

The gravity model used in the Scout program is derived from differentiating the Earth geopotential function*

$$
\begin{aligned}
& \bar{F}_{G}=g\left\{\bar{I}_{x}\left[J_{2}\left(\frac{r_{e}}{r}\right)^{2} 3 \sin \lambda \cos \lambda \sin \psi\right]-\bar{I}_{y}\left[\sin \gamma-\frac{J_{2}}{2}\left(\frac{r_{e}}{r}\right)^{2} \cdot\right.\right. \\
&\left.\cdot(3-9 \sin \lambda) \sin \gamma+J_{2}\left(\frac{r_{e}}{r}\right)^{2} 3 \sin \lambda \cos \lambda \cos \psi \cos \gamma\right] \\
&-\bar{I}_{z}\left[\cos \gamma+\frac{J_{2}}{2}\left(\frac{r_{e}}{r}\right)^{2}\left(3-9 \sin ^{2} \lambda\right) \cos \gamma-J_{2}\left(\frac{r_{e}}{r}\right)^{2} \cdot\right. \\
&\cdot 3 \sin \lambda \cos \lambda \cos \psi \sin \gamma]\}
\end{aligned}
$$

The Earth radius as a function of latitude is computed from relationships given on page 4-21.

[^1]Thrust
The thrust acts along the center line of the vehicle which is oriented With respect to an onboard inertial platform coordinate system aligned with the local vertical a few seconds before leunch. During flight, the vehicle pitches and yaws about the axes of this system in a pre-programaed manner. For simulation purposes, it is necessary to resolve the thrust into the trajec= tory coordinates of integration (local system). In the notation used here, T_{I} indicates the component of thrust long the x axis of the local system. Thus,

$$
\overline{\boldsymbol{F}}_{T}=\mathbf{I}_{x} T_{L_{x}}+\mathbf{I}_{y} T_{I_{y}}+I_{z} T_{L_{z}}
$$

and $T_{I_{x}}, T_{I_{y}}$ and $T_{I_{Z}}$ must be evaluated. $I t w i l l$ be necessary to make several coordinate transformations to go from the platform eystem to the local system. The remainder of this section will be concerned with these transformations.

The platform, or P coordinate system, is shown in Figure 4-2. The orientation of the P system is inertially fixed, and the origin moves with the vehicle center of gravity. At the start of the flight, the \bar{J}_{2} axis is along the geodetic vertical pointing away from the Earth's center. The \bar{J}_{y} axis lies In the desired trajectory plane. The orientation of the thrust rector vith respect to the platform system is shown here.

Figure 4-2
PLAIFORM (P) COORDITATE SYSIEM

The components of thrust along the platform axes are

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{P}_{\mathrm{X}}}=T \cos \theta \sin X \\
& \mathrm{~T}_{\mathrm{P}_{\mathrm{y}}}=T \cos \theta \cos X \\
& \mathrm{~T}_{\mathrm{p}_{\mathrm{z}}}=T \sin \theta
\end{aligned}
$$

It is necessary to introduce a geocentric coordinate system to be denoted by G. The G system is similar to the P system except that its Z axis is along the geocentric, rather than the geodetic vertical. The platform and geocentric systems are shown in Figures $4-3$ and $4-4$ on the following page.

To go from the platform system to the local system, the following sequence of transformations is required:

1. Platform \rightarrow Geocentric $\left[B^{\prime}\right]$
2. Geocentric \rightarrow Inertial [B]
3. Inertial \rightarrow Iocal [A]

The letters in brackets indicate the name of the matrix that will be used to represent the transformation.

Platform-Geocentric Transformation [B']

The following sequence of rotations is required (see Figure 4-4):
a. Rotate about \bar{J}_{z} by the angle ψ^{\prime} so that \bar{J}_{y} is pointing east.
b. Rotate about \bar{j}_{y} by the angle $\delta \lambda$ so that \bar{j}_{z} is along the geocentric vertical.
c. Rotate about \bar{j}_{z} by $-\phi$ ' so that \bar{j}_{y} is back in the desired trajectory plane.

Figure 4-3
ORIENTATION OF PLATFORM COORDINATE SYSTEM

Figure $4-4$
gEOCENTRIC AND PLATFORM COORDINATE SYSTEMS

This transformation is represented by the equation

$$
\overline{\mathrm{T}}_{\mathrm{G}}=\left[B^{\prime}\right] \overline{\mathrm{T}}_{\mathrm{p}}
$$

where $\left[B^{\prime}\right]$ is a 3×3 rotation matrix. Note that $\phi^{\prime}=90^{\circ}-\psi$.

Geocentric-Inertial Transformation [B]
(See Figures 4-3 and 4-4. G and P systems are nearly aligned.)
a. Rotate about \bar{l}_{z} by $-\phi$
b. Rotate about \bar{I}_{x} by $-\lambda$
c. Rotate about l_{y} by $-\tau_{I}$

This transformation is represented by the equation

$$
\overline{\mathrm{T}}_{\mathrm{I}}=[\mathrm{B}] \quad \overline{\mathrm{T}}_{\mathrm{G}}
$$

Inertial-Iocal Transformation [A]

(See Figure 4-1.)
a. Rotate about K_{z} by ${ }^{-T} I$
b. Rotate about \bar{k}_{y} by $90^{\circ}-\lambda$
c. Rotate about \bar{k}_{x} by $90^{\circ}-\phi$
d. Rotate about \bar{x}_{y} by $-\gamma$

This transformation is represented by the equation

$$
\bar{T}_{L}=[A] \bar{T}_{I}
$$

The three transformation matrices appear on the following page.

TERTUST DIRECTIOA MAIRICES

$$
\delta \lambda=\left(0.001638+\frac{\omega^{2} r}{2 g}\right) \text { sin } 2 \lambda \quad \begin{aligned}
& \text { MATRICES B AND B' ARE EVALUATED ONLY } \\
& \text { AT TIME }=0
\end{aligned}
$$

$$
\text { AT TIME }=0
$$

(See page 4-14)

$$
\begin{aligned}
& {[C]=[A][B]\left[B^{\prime}\right]} \\
& \text { Let } s \rightarrow \text { sine, } c \rightarrow \text { cosine }
\end{aligned}
$$

In terms of these matrices one may write

$$
\left.\bar{T}_{L}=[A][B][B]\right] \bar{T}_{p}=[C] \bar{T}_{p}
$$

This equation can be expanded to give the components of thrust in the local system. One obtains

$$
\begin{aligned}
& T_{I_{x}}=T\left[C_{11} \cos \theta \sin x+C_{12} \cos \theta \cos x+C_{13} \sin \theta\right] \\
& T_{I_{y}}=T\left[C_{21} \cos \theta \sin X+C_{22} \cos \theta \cos X+C_{23} \sin \theta\right] \\
& T_{I_{z}}=T\left[C_{31} \cos \theta \sin X+C_{32} \cos \theta \cos X+C_{33} \sin \theta\right]
\end{aligned}
$$

All of the forces acting on the body have now been obtained in the local coordinate system. The equations of motion can then be written and appear on the next page.

3-D Equations or motion

$$
\begin{aligned}
& F=\dot{\mathrm{V}}=\mathrm{rw}^{2}\left[\cos ^{2} \lambda \sin \gamma-\sin \lambda \cos \lambda \cos +\cos \gamma\right]-g\left[\sin \gamma-\frac{J_{2}}{2}\left(\frac{r_{e}}{r}\right)^{2} \cdot\right. \\
& \text { - (3. } \left.-9 \sin \lambda) \sin \gamma+J_{2}\left(\frac{r_{e}}{r}\right)^{2} 3 \sin \lambda \cos \lambda \cos \psi \cos \gamma\right] \\
& +\frac{T}{m}\left[C_{21} \cos \theta \sin x+C_{22} \cos \theta \cos x+C_{23} \sin \theta\right]-\frac{D}{m} \\
& G=\dot{\gamma}=2 \omega \cos \lambda \sin \psi+\frac{V}{r} \cos \gamma-\frac{g}{V}\left[\cos \gamma+\frac{J_{2}}{2}\left(\frac{r_{e}}{r}\right)^{2}\left(3 .-9 \sin ^{2} \lambda\right) \cos \gamma\right. \\
& \left.-J_{2}\left(\frac{r e}{r}\right)^{2} 3 \sin \lambda \cos \lambda \cos \psi \sin \gamma\right]+\frac{(F L)}{m V} \\
& +\frac{r \omega^{2}}{V}\left[\cos ^{2} \lambda \cos \gamma+\sin \lambda \cos \lambda \cos \psi \sin \gamma\right] \\
& +\frac{T}{m V}\left[C_{3 I} \cos \theta \sin X+C_{32} \cos \theta \cos X+C_{33} \sin \theta\right] \\
& H=\dot{\gamma}=\frac{V}{r} \frac{\cos \gamma \sin \phi \sin \lambda}{\cos \lambda}+\frac{r \omega^{2} \sin \lambda \cos \lambda \sin \psi}{V \cos \gamma} \\
& +2 \omega \sin \lambda-\frac{2 \omega \cos \lambda \cos +\sin \gamma}{\cos \gamma}+g J_{2}\left(\frac{r_{e}}{r}\right)^{2} . \\
& -\frac{3 \sin \lambda \cos \lambda \sin }{V \cos \gamma} \\
& +\frac{T}{m V \cos \gamma}\left[C_{11} \cos \theta \sin x+C_{12} \cos \theta \cos x+C_{13} \sin \theta\right] \\
& I=\dot{r}=\ddot{v} \sin \gamma \quad \text { where: } g=\mu / r^{2} \\
& J=\dot{\lambda}=\frac{V \cos \gamma \cos \psi}{r} \\
& K=\dot{T}=\frac{V \cos \gamma \sin \phi}{r \cos \lambda}+\omega \\
& T=T_{V}-p A_{e} \\
& D=\frac{1}{2} \rho V^{2} C_{D} A \\
& F L=\frac{1}{2} \rho V^{2} C_{L} A \\
& r_{e}=\text { Equatorial radius } \\
& J_{2}=1.0827 \times 10^{-3} \\
& \theta, x=\text { Control variables }
\end{aligned}
$$

COMPUTATION OF ANGLE BEIWEAN GEODETIC AND GEOCENTRIC VERTICALS

The angle between the two verticals can be found with the aid of the following diagram.

The geodetic vertical is the measured vertical, i.e., the direction of a plumb bob. The geocentric vertical goes through the center of the Earth. For the purpose of this calculation, it is assumed that the Farth is an oblate spheroid. $\delta \lambda$ will then be a function only of the latitude.

The measured gravitational acceleration is made up of two parts. One is the acceleration due to the oblate figure of the Earth and the other is the centrifugal acceleration. The radial and tangential composents of the acceleration due to the figure of the Barth can be written as*

$$
\begin{aligned}
& g_{r}=\frac{\mu}{r^{2}}-\frac{3 \sigma \mu r_{e}^{2}}{r^{4}}(1-3 \cos 2 \lambda) \\
& g_{\lambda}=\frac{6 \mu \sigma r_{e}^{2}}{r^{4}} \sin 2 \lambda
\end{aligned}
$$

*"3 Dimensional Orbits of Earth Satellites Including Effects of Earth Oblateness and Atmospheric Rotation." NASA Memo 12-4-58A. Melsen, Goodwin, Mersman.
where r_{e} is the equatorial radius
and $60=1.638 \times 10^{-3}$
The angle between g_{n} and g_{r} can be written as

$$
\frac{g_{\lambda}}{g_{r}}=60 \sin 2 \lambda=8 \lambda_{1}
$$

This expression neglects the second component of g_{r} and assumes r_{e} equal to r.
The tangential component of the centrifugal acceleration is

$$
\omega^{2} r \cos \lambda \sin \lambda
$$

The angle between g_{n} and the geodetic vertical is then

$$
\frac{\omega^{2} r \cos \lambda \sin \lambda}{g_{n}}=8 \lambda_{2}
$$

8λ is the sum of these two angles. Therefore,

$$
8 \lambda=\left(60+\frac{\omega^{2} r}{2 \varepsilon_{2}}\right) \ln 2 \lambda=8 \lambda_{1}+8 \lambda_{2}
$$

trajbciori variables in Inertial franc

The following equations are used in the subroutine INER to compute the magnitude and direction of the vehicle velocity vector relative to a nonrotating Earth. These variables are used in calculating the terminal orbit elements defined on the next page.

$$
\begin{aligned}
& v_{I}=\sqrt{V^{2}+2(V \cos \gamma \sin \phi)(u r \cos \lambda)+(u r \cos \lambda)^{2}} \\
& \gamma_{I}=\tan ^{-1}\left[V \sin \gamma / \sqrt{V_{I}^{2}-(V \sin \gamma)^{2}}\right] \\
& \phi_{I}=\tan ^{-1}[(V \cos \gamma \sin \psi+u r \cos \lambda) / V \cos \gamma \cos \psi]
\end{aligned}
$$

DIAGRAM AND EQUATIONS OF TERMINAL ORBIT ELEMENTS

In the Scout program, terminal constraints can be imposed on the trajectory variables explicitly, or they can be specified in terms of conventional orbit elements which are functions of the trajectory variables. The orbit elements are diagrammed in the figure on the following page. The equator constitutes the basic reference plane. The inertial "longitude" reference is in the direction of the vernal equinox, which is defined here to be the intersection of the plane of the ecliptic at 2950.0 and the equator of date. The form of the equations used for the orbit elements defined on the following pages is such that they are valid for elliptic, parabolic and hyperbolic orbits. A spherical Earth model is assumed for these relationships.

GEOMEIRY USED TO DEAFINE THE TERMMRAL ORBIT ETEMENTS

B Booster burnout
B_{1} Equatorial projection of B
P Perigee of orbit
$P_{1} \quad$ Equatorial projection of P
Y Vernal equinox
6 True anomaly
$\alpha_{e} \quad$ Right ascension

6 In-plane angle from ascending node
β_{p} Argument of perigee
i=EYE Inclination of geocentric orbit plane
v Inertial longitude angle from ascending node
Ω_{e} Longitude of W
W Ascending node of the orbit plane

ORBIT RHEMTMIS

Energy (xe)

$$
2 E=V_{I}^{2}-\frac{2 \mu}{T}
$$

Angular Momentum

$$
\overline{\mathrm{B}}=r V_{I} \cos \gamma_{I}
$$

Perigee Radius

$$
r_{p}=\frac{H}{\left(\frac{\mu}{H}\right)+\sqrt{2 E+\left(\frac{\mu}{B}\right)^{2}}}
$$

Inclination

$$
1=\cos ^{-1}\left(\cos \lambda \sin \nabla_{I}\right)
$$

Longitude of Ascending Node

$$
\Omega_{e}=\alpha_{e}-v
$$

where $\quad \alpha_{e}=$ right ascension of vehicle position

$$
v=\text { inertial longitude angle from ascending node }
$$

$$
\alpha_{e}=99^{\circ} .659967+0^{0} .98564743 t_{G}+T^{0}+360^{\circ}\left(t_{G}-\left[t_{G}\right]\right)^{*}
$$

$$
t_{G}=\text { Julian Date }-2,436,934.5
$$

$$
\left(t_{G}-\left[t_{G}\right]\right)=\text { Greenwich time of day }
$$

$$
0^{\circ} \leq \alpha_{e}<360^{\circ}
$$

and $\quad \nu=\tan ^{-1}\left(\frac{\sin \psi_{I} \sin \lambda}{\cos \hbar_{I}}\right) 0 \leq v \leq \pi$
and

$$
0 \leq \Omega_{e}<360^{\circ}
$$

[^2]
Argument of Perigee

$$
\begin{aligned}
\beta_{p}= & (\beta-\zeta) \\
\beta & =\text { in-plane range angle from ascending node } \\
\zeta & =\text { true anomaly }
\end{aligned}
$$

where

$$
\beta=\tan ^{-1}\left(\frac{\sin \lambda}{\cos \lambda \cos \hbar_{I}}\right) \quad 0 \leq \beta<2 \pi
$$

and $\quad \zeta=\tan ^{-1}\left[\frac{\tan Y_{I}}{1-\left(\frac{\mu}{H}\right)\left(\frac{Y}{H}\right)}\right] \quad 0 \leq 6<2 \pi$
and

$$
0 \leq \beta_{p}<360^{\circ}
$$

Additional Computed Orbit Elements
The following quantities are computed and output at the end of each trajectory but are not available as constraint parameters.

Semi-Major Axis

$$
r_{\alpha}=-\frac{\mu}{2 E}
$$

Orbital Period

$$
r_{p}=2 \pi r_{\alpha} \sqrt{\frac{r_{\alpha}}{\mu}}
$$

Eccentricity

$$
c=1-r_{p} / r_{\alpha}
$$

OBLATE EARTH MODEL

The Earth model used in the Scout program is that of an ellipsoid having a flattening factor of $1 . / 298.3$. The equations used to compute the radius of the Earth at a given geocentric latitude are

$$
\begin{aligned}
& \eta=\tan ^{-1}\left[\frac{f}{(1-1)} \tan \lambda_{c}\right] \\
& \text { where } P=298.3 \\
& \lambda_{c}=\text { geocentric latitude } \\
& Z=\frac{(f-1)}{I} \sin \eta \\
& X= \cos \eta \\
& R_{O B L}=R_{E Q} \cdot \sqrt{X^{2}+Z^{2}} \\
& \text { where } R_{E Q}=\text { Earth equatorial radius }
\end{aligned}
$$

The altitude is then computed from

$$
h=r-R_{O B L}
$$

where r is the geocentric radius to the vehicle, a variable of integration.
For output purposes, the geodetic latitude, λ_{d}, is computed from the geocentric latitude, λ_{c}, from

$$
\lambda_{\alpha}=\lambda_{c}+C_{1} \sin 2 \lambda_{c}+C_{2} \sin 4 \lambda_{c}^{* *}
$$

[^3]\[

where $$
\begin{aligned}
c_{1} & =3.372672 \times 10^{-3} \\
c_{2} & =-5.6873 \times 10^{-6}
\end{aligned}
$$
\]

Finally, the gravity model has already been defined on page $4-6$.

RANGE EQUATIONS

The downange distance from the launch site to the vehicle is computed and output at every integration step, and is available as a constraint parameter at stage points and final burnout. Downrange is defined as a greatcircle distance between the geocentric latitudes (λ) and the longitudes (τ) of the two points. Range is considered a central angle in the equations. (DR)

$$
\cos (\mathrm{DR})=\cos \left(90-\lambda_{0}\right) \cos (90-\lambda)+\sin \left(90-\lambda_{0}\right) \sin (90-\lambda) \cdot \cos \left(\tau-\tau_{0}\right)
$$

or

$$
\cos (D R)=\sin \lambda_{0} \sin \lambda+\cos \lambda_{0} \cos \lambda \cos \left(T-T_{0}\right) .
$$

Downrange is then converted to nautical miles by assuming $60 \mathrm{n} . \mathrm{m} . /$ degree of arc. It is calculated in the subroutine INER.

During computation of the dispersed trajectories (see option 21), the crossrange dispersion from the nominal trajectory is evaluated. Since the crossrange dispersions are generally small, computational accuracy is improved by using a small angle approximation in the solution. This is done with the following equations, where the azimuth angle at the nominal staging point determines the reference plane on which crossrange distance is zero.

$$
\begin{aligned}
& \tan Q=\left(\tau_{d}-\tau_{n}\right) /\left(\lambda_{d}-\lambda_{n}\right) \\
& \text { Slant range }=\left(\left(\lambda_{d}-\lambda_{n}\right)^{2}+\left(\tau_{d}-\tau_{n}\right)^{2}\right)^{\frac{1}{2}} \\
& \text { Crossrange }=-(s \text { lant range }) \cdot \sin (t-Q)
\end{aligned}
$$

where ranges are again considered as Farth-central angles and with subscripts
$\mathrm{n}=$ nominal, $\mathrm{d}=$ dispersed.
Crossrange is then converted to nautical miles by assuming 60 n.m. per degree of arc.

The sign convention assumed gives a crossrange dispersion to the right of the nominal trajectory (as viewed looking downrange) a positive value, left crosarange a negative value.

SECTION 5

DERIVATION OF OPTIMIZATION EQUATIONS

DEFINITION OF SYMBOLS

The equations of Section 5 are closely dependent on those of Section 4. Thus, if a symbol is not defined below, please refer to page 4. 1.
a
$d x$
d ψ
h
jc

M

S
Y
α
$\delta \tau$
δx
$\Lambda \quad$ Vector of sensitivity coefficients of θ or x
$\lambda_{V_{1}}, \lambda_{\gamma_{i}}, \lambda_{\psi_{1}}$ etc. Adjoint variables giving effect of V, γ, ψ, etc., on ith constraint

dERIVATION OF PROPERTIES OF ADJOINT VARIABLES

The steepest descent method of trajectory optimization depends on obtaining the effects of mall changes in the control and trajectory variables on the trajectory constraints. These effects are provided by solving a set of equations which are adjoint to the linear perturbation equations written about a nominal trajectory. As used here, "adjoint" means that the coefficients of the two sets of equations are the negative transpose of each other. A dervation of the properties of the solution of the adjoint equations is given here.

Assume a two-variable system which is described by the nonlinear differential equations

$$
\begin{align*}
& \dot{x}=f(x, y, t, u(t)) \tag{5-1}\\
& \dot{y}=g(x, y, t, u(t)) \tag{5-2}
\end{align*}
$$

where x and y are the dependent variables, t is the independent variable and u is the control variable. Assume that a solution to these equations is given by the solid line in the figure. One is interested in determining the effect of perturbations $\delta x_{i}, \delta y_{i}$ and δu on a function $z(x, y)$ at the terminal time t_{f}. δx_{1} and δy_{1} are known at a particular time t_{i} and δu is a function of time which is known from t_{i} to t_{f}.

The straightforward way to solve this problem is to obtain the solution to Eqs. (5-1) and (5-2) with initial conditions

$$
\begin{aligned}
& x_{1}=x_{n_{1}}+\delta x_{1} \\
& y_{1}=y_{n_{1}}+\delta y_{1}
\end{aligned}
$$

and a new control variable

$$
u=u_{n}+\delta u
$$

where the subscript n denotes the nominal value. The values of x and y at the terminal time are then substituted into Z to determine $\delta Z=Z(x, y)-Z_{n}$ $\left(x_{n}, y_{n}\right)$.

If the deviations from the nowinal trajectory are small, this process is equivalent to solving the set of linear perturbation equations

$$
\begin{align*}
& \delta \dot{x}=\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial u} \delta u \tag{5-3}\\
& \dot{y}=\frac{\partial g}{\partial x} \delta x+\frac{\partial g}{\partial y} \delta y+\frac{\partial g}{\partial u} \delta u \tag{5-4}
\end{align*}
$$

Note that if one wanted to change the time t_{1} at which the perturbations are known, it would be necessary to obtain a new solution to Eqs. (5-3) and (5-4) in order to find the terminal perturbations. Thus, it would be very tedious to determine the effects of perturbations at all times from t_{1} to t_{f}. However, by solving the equations which are adjoint to Eqs. (5-3) and (5-4), It is possible to obtain the desired information with just one solution of a set of differential equations.

To derive the adjoint differential equations, begin with the desired form of the adjoint variables, λ_{x} and λ_{y}, as Ifrst order sensitivity coefficients.

$$
\begin{equation*}
\left.\delta z\right|_{t_{f}}=\left[\lambda_{x} \delta x+\lambda_{y} \delta y\right]_{t}+P(\delta u, t) t_{1} \leq t \leq t_{f} \tag{5-5}
\end{equation*}
$$

λ_{x} and λ_{y} are functions of time which relate perturbations in x and y to the perturbation in Z at the final time, i.e., $\lambda_{x}(t)=\partial z_{t_{f}} / \partial x(t) . \quad P$ is an unknown function which represents the influence of δu on $\left.\delta Z\right|_{t_{f}}$.

Consider the perturbed trajectory represented by the dotted line in the figure. At time t_{1} all the quantities on the right-hand side of E_{1}. (5-5) will have same value. At t_{2} they will have, in general, a slightly different value. However, $\left.\delta 2\right|_{t_{f}}$ is always the same for a given perturbed trajectory. Therefore, the quantities on the right-hand side of Eq. (5-5) wust change in such a way that $\left.\delta Z\right|_{t_{f}}$ remains constant. The time derivative of $\left.\delta z\right|_{t_{f}}$ is zero.

$$
\begin{equation*}
\left.\delta \dot{z}\right|_{t_{f}}=0=\dot{\lambda}_{x} \delta x+\lambda_{x} \delta \dot{x}+\dot{\lambda} \delta_{y}+\lambda_{y} \dot{\delta}_{y}+\dot{P} \tag{5-6}
\end{equation*}
$$

Substituting Eqs. (5-3) and (5-4) into (5-6) gives

$$
\begin{align*}
0= & \delta x\left(\dot{\lambda}_{x}+\lambda_{x} \frac{\partial f}{\partial x}+\lambda_{y} \frac{\partial g}{\partial x}\right)+\delta y\left(\dot{\lambda}_{y}+\lambda_{x} \frac{\partial f}{\partial y}+\lambda_{y} \frac{\partial g}{\partial y}\right) \\
& +\left[\dot{P}+\delta u\left(\lambda_{x} \frac{\partial f}{\partial u}+\lambda_{y} \frac{\partial g}{\partial u}\right)\right] \tag{5-7}
\end{align*}
$$

$\lambda x, \lambda y$, and P depend only on the nominal trajectory. One is, therefore, free to pick any perturbed trajectory which will produce the desired results. In particular, assume that δu is zero (and therefore $\dot{P}=0$) and that at some arbitrary time, $\delta \mathrm{y}=0$.
δx is the only remaining perturbation. In order to satisfy Eq. (5-7), the coefficient of δx must equal zero. Similarly, if δx is assumed to be zero while by has some value, Eq. (5-7) is satisfied only if the coefficient of by is zero. One is, therefore, led to the differential equations

$$
\begin{equation*}
\dot{\lambda}_{x}=-\lambda_{x} \frac{\partial f}{\partial x}-\lambda_{y} \frac{\partial g}{\partial x} \tag{5-8}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{y}^{\bullet}=-\lambda_{x} \frac{\partial f}{\partial y}-\lambda_{y} \frac{\partial g}{\partial y} \tag{5-9}
\end{equation*}
$$

Eqs. 5-8) and (5-9) are adjoint to the linear perturbation equarions (Eqs. (5-3) and (5-4)) with the forcing function bu set to zero. λ_{x} and λ_{y} are referred to as adjoint variables. One solution of the adjoint equations provides the effect of perturbations at any time t on $\left.\delta Z\right|_{t_{f}}$.

To solve Eqs. (5-8) and (5-9), a set of initial conditions is required. These initial conditions are specified at the terminal time, because it is at this point that values are known for λ_{x} and λ_{y}. Referring to Eq. (5-5), it is seen that at t_{f}

$$
\lambda_{x}=\left.\frac{\partial z}{\partial x}\right|_{t_{f}}
$$

$$
\lambda_{y}=\left.\frac{\partial z}{\partial y}\right|_{t_{f}}
$$

For $Z=x$,

$$
\lambda_{x}=1 \quad \lambda_{y}=0
$$

Note that the adjoint equations do not depend on Z. Only the initial conditions depend on the form of the constraint parameter.

Now consider a perturbed trajectory for which δu is not zero. The terms in parenthesis in Eq. (5-7) have been shown to be zero. The term in square brackets must also be zero. Therefore,

$$
\begin{equation*}
\dot{P}=-\left(\lambda_{x} \frac{\partial f}{\partial u}+\lambda_{y} \frac{\partial g}{\partial u}\right) \delta u=\Lambda_{u} \tag{5-10}
\end{equation*}
$$

Integrating Eq. (5-10) from t_{f} to t

$$
P_{t}-P_{t_{f}}=-\int_{t_{f}}^{t} \operatorname{su}\left(\lambda_{x} \frac{\partial f}{\partial u}+\lambda_{y} \frac{\partial g}{\partial u}\right) d t
$$

At the final time t_{f} a change in the control, δu, can have no effect on the terminal constraint. $P_{t_{P}}$ is therefore zero and

$$
\begin{equation*}
P_{t}=-\int_{t_{f}}^{t} \delta u\left(\lambda_{x} \frac{\partial f}{\partial u}+\lambda_{y} \frac{\partial g}{\partial u}\right) d t \tag{5-11}
\end{equation*}
$$

Thus, to find the influence of changes in the control variable, one evaluates the integral of Eq. (5-11) where λ_{x} and λ_{y} are solutions of Eqs. (5-8) and (5-9), and the partial derivatives are evaluated along the nominal trajectory. One is often interested in finding the perturbation in Z at the time that another function $S(x, y)$ reaches a certain value. S is referred to as the stopping condition. Let T be the unknown time at which the desired value of S is reached. Assuming that T is close to t_{f}, one may write

$$
\begin{equation*}
\delta s_{T}=\delta s_{t_{p}}+\dot{s}_{t_{p}} \delta t \tag{5-12}
\end{equation*}
$$

where $\delta t=T-t_{f} . \quad \delta S_{T}$ must equal zero if the stopping condition is to be met. Therefore,

$$
\begin{equation*}
\delta t=-\left.\frac{6 S}{\dot{S}}\right|_{t_{f}} \tag{5-13}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\delta z_{T}=\delta Z_{t_{f}}+\dot{z}_{t_{f}} \delta t \tag{5-14}
\end{equation*}
$$

Substituting Eq. (5-13) into Eq. (5-14) gives

$$
\begin{equation*}
\delta Z_{T}=\delta z_{t_{f}}-\left.\frac{\dot{\mathbf{z}}}{\dot{S}}\right|_{t_{f}} \delta S_{t_{f}} \tag{5-15}
\end{equation*}
$$

δZ and δS at t_{f} are given by

$$
\begin{align*}
& \delta z_{t_{f}}=\left[\begin{array}{ll}
\frac{\partial Z}{\partial x} & \delta x+\frac{\partial z}{\partial y} \delta y
\end{array}\right]_{t_{f}} \tag{5-16}\\
& \delta S_{t_{f}}=\left[\begin{array}{ll}
\frac{\partial S}{\partial x} & \delta x+\frac{\partial S}{\partial y} \delta y
\end{array}\right]_{t_{f}} \tag{5-17}
\end{align*}
$$

Substituting (5-16) and (5-17) into (5-15) gives

$$
\begin{equation*}
\delta z_{T}=\left(\frac{\partial z}{\partial x}-\frac{\dot{z}}{\dot{s}} \frac{\partial S}{\partial x}\right)_{t_{f}} \delta x_{t_{f}}+\left(\frac{\partial z}{\partial y}-\frac{\dot{z}}{\dot{s}} \frac{\partial S}{\partial y}\right)_{t_{f}}{ }^{\delta y} t_{t_{f}} \tag{5-18}
\end{equation*}
$$

Referring to Eq. (5-5) with $t=t_{f}$, it is seen that λ_{x} and λ_{y} should be given the following values at t_{f}.

$$
\begin{aligned}
& \lambda_{x}=\left(\frac{\partial Z}{\partial x}-\frac{\dot{z}}{\dot{s}} \frac{\partial S}{\partial x}\right)_{t=t_{f}} \\
& \lambda_{y}=\left(\frac{\partial Z}{\partial y}-\frac{\dot{z}}{\dot{s}} \frac{\partial S}{\partial y}\right)_{t=t_{f}}
\end{aligned}
$$

With these initial conditions for backward integration, the solution of the adjoint equations will determine the effects of perturbations in x and y on Z at the unknown time when S reaches a desired value.

charar periurbaitos enfations

The ispear perturbation equations written about the equations of motion, defined in Section 4, are as follows.

$$
\begin{aligned}
& \frac{\partial \delta V}{d t}=\frac{\partial F}{\partial V} \delta V+\frac{\partial F}{\partial \gamma} \delta \gamma+\frac{\partial F}{\partial \phi} \delta \psi+\frac{\partial F}{\partial F} \delta r+\frac{\partial F}{\partial X} \delta \lambda+\frac{\partial F}{\partial m} \delta m+\frac{\partial F}{\partial T} \delta \tau+\frac{\partial F}{\partial \theta} \delta \theta+\frac{\partial F}{\partial X} \delta X \\
& \frac{\partial \delta y}{\partial t}=\frac{\partial G}{\partial v} \delta v+\frac{\partial G}{\partial y} \delta Y+\frac{\partial G}{\partial \gamma} \delta t+\frac{\partial G}{\partial r} \delta r+\frac{\partial G}{\partial \lambda} \delta \lambda+\frac{\partial G}{\partial m} \delta m+\frac{\partial G}{\partial T} \delta T+\frac{\partial G}{\partial \theta} \delta \theta+\frac{\partial G}{\partial X} \delta X \\
& \frac{d \delta \phi}{\partial t}=\frac{\partial H}{\partial V} \delta V+\frac{\partial H}{\partial Y} \delta Y+\frac{\partial H}{\partial \phi} \delta \phi+\frac{\partial H}{\partial r} \delta r+\frac{\partial B}{\partial \lambda} \delta \lambda+\frac{\partial H}{\partial m} 8 m+\frac{\partial H}{\partial T} \delta T+\frac{\partial H}{\partial \theta} 8 \theta+\frac{\partial H}{\partial X} \delta X \\
& \frac{d \delta r}{d t}=\frac{\partial I}{\partial V} \delta V+\frac{\partial I}{\partial Y} \delta \gamma \quad 0 \\
& \frac{d \delta \lambda}{\partial t}=\frac{\partial J}{\partial V} \delta V+\frac{\partial J}{\partial Y} \delta Y+\frac{\partial J}{\partial \psi} \delta \psi+\frac{\partial J}{\partial T} \delta r \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& \frac{\partial \delta T}{d t}=\frac{\partial K}{\partial V} \delta V+\frac{\partial K}{\partial Y} \delta Y+\frac{\partial K}{\partial \phi} \delta \phi+\frac{\partial K}{\partial r} \delta r+\frac{\partial K}{\partial \lambda} \delta \lambda \quad 0 \quad 0 \quad 0 \\
& \frac{d \delta m}{d t}=0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0
\end{aligned}
$$

ADJOINT EQUATIONS
The adjoint differential equations, of the form shown in Eqs. (5-8) throuch (5-10) and adjoint to the perturbation equations of the preceding page, are as follows:

$$
\begin{aligned}
& \frac{d \lambda_{V}}{\partial t}=-\lambda_{V} \frac{\partial F}{\partial V} \quad-\lambda_{\gamma} \frac{\partial G}{\partial V} \quad-\lambda_{\gamma} \frac{\partial H}{\partial V} \quad-\lambda_{r} \frac{\partial I}{\partial V} \quad-\lambda_{\lambda} \frac{\partial J}{\partial V} \quad-\lambda_{T} \frac{\partial K}{\partial V} \\
& \frac{d \lambda_{Y}}{\partial t}=-\lambda_{Y} \frac{\partial F}{\partial Y}-\lambda_{Y} \frac{\partial G}{\partial Y}-\lambda_{Y} \frac{\partial H}{\partial Y}-\lambda_{Y} \frac{\partial I}{\partial Y}-\lambda_{\lambda} \frac{\partial J}{\partial Y}-\lambda_{T} \frac{\partial K}{\partial Y} \\
& \frac{d \lambda_{r}}{\partial t}=-\lambda_{V} \frac{\partial F}{\partial r} \quad-\lambda_{Y} \frac{\partial G}{\partial r} \quad-\lambda_{\downarrow} \frac{\partial H}{\partial r} \quad-\lambda_{\lambda} \frac{\partial J}{\partial r} \quad-\lambda_{T} \frac{\partial K}{\partial r} \\
& \frac{d \lambda_{\psi}}{d t}=-\lambda_{V} \frac{\partial F}{\partial \phi}-\lambda_{V} \frac{\partial G}{\partial \psi}-\lambda_{\psi} \frac{\partial H}{\partial \psi} \quad-\lambda_{\lambda} \frac{\partial J}{\partial \phi}-\lambda_{T} \frac{\partial K}{\partial \psi} \\
& \frac{d \lambda_{\lambda}}{d t}=-\lambda_{V} \frac{\partial F}{\partial \lambda}-\lambda_{\gamma} \frac{\partial G}{\partial \lambda} \quad-\lambda_{\mathbf{\gamma}} \frac{\partial H}{\partial \lambda} \quad-\lambda_{\boldsymbol{T}} \frac{\partial K}{\partial \lambda} \\
& \frac{d \lambda_{T}}{d t}=-\lambda_{V} \frac{\partial F}{\partial T} \quad-\lambda_{Y} \frac{\partial G}{\partial \tau} \quad-\lambda_{V} \frac{\partial H}{\partial \tau} \\
& \frac{\partial \lambda_{m}}{\partial t}=-\lambda_{V} \frac{\partial F}{\partial m} \quad-\lambda_{\gamma} \frac{\partial G}{\partial m} \quad-\lambda_{i} \frac{\partial H}{\partial m} \\
& \Lambda_{\theta}=-\lambda_{V} \frac{\partial F}{\partial \theta} \quad-\lambda_{\gamma} \frac{\partial G}{\partial \theta} \quad-\lambda_{\gamma} \frac{\partial H}{\partial \theta} \\
& \Lambda_{X}=-\lambda_{V} \frac{\partial F}{\partial X} \quad-\lambda_{Y} \frac{\partial G}{\partial X} \quad-\lambda_{\gamma} \frac{\partial H}{\partial X}
\end{aligned}
$$

ADJOINT EQUATIONS

EVALUATION OF PARTIAL DERIVATIVES

$$
\begin{aligned}
& \frac{\partial F}{\partial V}=-\frac{1}{m} \rho V A\left[C_{D}+\frac{1}{2} \frac{V}{a} \frac{\partial C_{D}}{\partial M}\right] \\
& \frac{\partial F}{\partial \gamma}-r \omega^{2}\left[\cos ^{2} \lambda \cos \gamma+\sin \lambda \cos \lambda \cos \phi \sin \gamma\right]-g \cos \gamma^{*} \\
& +\frac{T}{m}\left[\frac{\partial A_{21}}{\partial Y} \frac{\partial A_{22}}{\partial Y} \frac{\partial A_{23}}{\partial Y}\right][B]\left[B^{\prime}\right] \\
& {\left[\begin{array}{lll}
\cos \theta & \sin \bar{X} \\
\cos & \theta \cos X \\
& \sin \theta
\end{array}\right]} \\
& \frac{\partial F}{\partial r}=\omega^{2}\left[\cos ^{2} \lambda \sin \gamma-\sin \lambda \cos \lambda \cos \psi \cos \gamma\right]+\frac{2 \mu}{r^{3}} \sin \gamma * \\
& -\frac{A_{e}}{m} \frac{d p}{d h}\left[C_{21} \cos \theta \sin x+C_{22} \cos \theta \cos x+C_{23} \sin \theta\right] \\
& +\frac{A V^{2}}{2 m}\left[\rho \frac{V}{a^{2}} \frac{d a}{d h} \frac{\partial C_{D}}{\partial M}-C_{D} \frac{d \rho}{d h}\right] \\
& \frac{\partial F}{\partial m}=-\frac{T}{m^{2}}\left[C_{21} \cos \theta \sin x+C_{22} \cos \theta \cos x+C_{23} \sin \theta\right]+\frac{D}{m^{2}} \\
& \frac{\partial F}{\partial \theta}=\frac{T}{m}\left[-C_{21} \sin \theta \sin x-C_{22} \sin \theta \cos x+C_{23} \cos \theta\right] \\
& \frac{\partial F}{\partial X}=\frac{T}{m}\left[C_{21} \cos \theta \cos x-c_{22} \cos \theta \sin x\right] \\
& \frac{\partial F}{\partial \psi}=r \omega^{2} \sin \lambda \cos \lambda \sin \psi \cos \gamma
\end{aligned}
$$

$$
+\frac{T}{m}\left[\begin{array}{lll}
\frac{\partial A_{21}}{\partial \psi} & \frac{\partial A_{22}}{\partial \psi} & \frac{\partial A_{23}}{\partial \psi}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{c}
\cos \theta \sin \bar{X} \\
\cos \theta \cos x \\
\sin \theta
\end{array}\right]
$$

[^4]\[

$$
\begin{aligned}
& \frac{\partial F}{\partial \lambda}=r \omega^{2}\left[-2 \cos \lambda \sin \lambda \sin \gamma-\cos ^{2} \lambda \cos \psi \cos \gamma+\sin ^{2} \lambda \cos \psi \cos \gamma\right] \\
& +\frac{T}{m}\left[\frac{\partial A_{21}}{\frac{\partial A_{22}}{\partial \lambda}} \frac{\partial A_{23}}{\partial \lambda} \frac{\partial}{\partial \lambda}\right][B]\left[B^{\prime}\right]\left[\begin{array}{cc}
\cos \theta & \sin x \\
\cos \theta \cos x \\
\sin \theta
\end{array}\right] \\
& \frac{\partial F}{\partial T}=\frac{T}{m}\left[\begin{array}{lll}
\frac{\partial A_{21}}{\partial T} & \frac{\partial A_{22}}{\partial T} & \frac{\partial A_{2 j}}{\partial T}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{c}
\cos \theta \sin X \\
\cos \theta \cos x \\
\sin \theta
\end{array}\right] \\
& \text { - } \frac{\partial G}{\partial V}=\frac{\cos \gamma}{r}-\frac{r \omega^{2}}{V^{2}}\left[\cos ^{2} \lambda \cos \gamma+\sin \lambda \cos \lambda \cos \gamma \sin \gamma\right]+\frac{g}{V^{2}} \cos \gamma \\
& -\frac{T}{m v^{2}}\left[C_{31} \cos \theta \sin x+C_{32} \cos \theta \cos x+C_{33} \sin \theta\right]+\frac{\rho A}{2 m}\left[C_{L}+\frac{V}{a} \frac{\partial C_{L}}{\partial M}\right] \\
& \frac{\partial G}{\partial \gamma}=-\frac{V}{r} \sin \gamma+\frac{r \omega^{2}}{V}\left[\sin \lambda \cos \lambda \cos \psi \cos \gamma-\cos ^{2} \lambda \sin \gamma\right] \\
& +\frac{g}{V} \sin \gamma+\frac{T}{m V}\left[\frac{\partial A_{31}}{\partial \gamma} \frac{\partial A_{32}}{\partial \gamma} \frac{\partial A_{33}}{\partial \gamma}\right][B]\left[B^{\prime}\right]\left[\begin{array}{cc}
\cos \theta \sin X \\
\cos \theta \cos X \\
\sin \theta
\end{array}\right] \\
& -\rho \frac{V A}{2 m}\left(\frac{\partial C_{L}}{\partial \alpha}\right) \\
& \frac{\partial G}{\partial r}=-\frac{V}{r^{2}} \cos \gamma+\frac{\omega^{2}}{\nabla}\left[\cos ^{2} \lambda \cos \gamma+\sin \lambda \cos \lambda \cos \psi \sin \gamma\right] \\
& +\frac{2 \mu}{r_{V}} \cos \gamma-\frac{A e}{\bar{u} V} \frac{d p}{d \hbar}\left[C_{31} \cos \theta \sin x+C_{32} \cos \theta \cos x+C_{33} \sin \theta\right] \\
& +\frac{V A}{2 m}\left[C_{L} \frac{d \rho}{d h}-\rho \frac{V}{a^{2}} \frac{d a}{d h} \frac{\partial C_{L}}{\partial M}\right]
\end{aligned}
$$
\]

$$
\begin{aligned}
& \frac{\partial g}{\partial m}=-\frac{T}{2}\left[+C_{31} \cos \theta \sin x+C_{32} \cos \theta \cos x+C_{33} \sin \theta\right]-\frac{(F L)}{m} \\
& \frac{\partial G}{\partial \theta}=\frac{T}{m V}\left[-C_{31} \sin \theta \sin x-C_{32} \sin \theta \cos x+C_{33} \cos \theta\right]+\frac{\rho V A}{2 m} \frac{\partial C_{L}}{\partial \alpha} \\
& \frac{\partial G}{\partial x}=\frac{T}{m V}\left[C_{31} \cos \theta \cos x-C_{32} \cos \theta \sin x\right] \\
& \left.\frac{\partial G}{\partial \phi}=2 \omega \cos \lambda \cos \psi-\frac{r \omega^{2}}{V} \sin \lambda \cos \lambda \sin \right\rvert\, \sin \gamma \\
& +\frac{T}{m V}\left[\begin{array}{lll}
\partial A_{31} & \partial A_{32} & \partial A_{33} \\
\partial i & \frac{1}{\partial}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{ccc}
\cos \theta & \theta \sin \bar{X} \\
\cos \theta & \cos x \\
\sin \theta
\end{array}\right] \\
& \frac{\partial g}{\partial \lambda}=\frac{r \omega^{2}}{V}\left[-2 \cos \lambda \sin \lambda \cos \gamma+\cos ^{2} \lambda \cos \psi \sin \gamma-\sin ^{2} \lambda \cos \psi \sin Y\right] \\
& +2 \omega \sin \lambda \sin \psi+\frac{T}{m \nabla}\left[\begin{array}{ccc}
\partial A_{31} & \frac{\partial A_{32}}{\partial \lambda} & \frac{\partial A_{33}}{\partial \lambda} \\
\frac{\partial \lambda}{}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{ccc}
\cos & \theta & \sin x \\
\cos \theta & \cos x \\
\sin \theta
\end{array}\right] \\
& \frac{\partial G}{\partial T}=\frac{T}{m V}\left[\begin{array}{lll}
\frac{\partial A_{31}}{\partial T} & \frac{\partial A_{32}}{\partial T} & \frac{\partial A_{33}}{\partial T}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{ccc}
\cos \theta & \sin x \\
\cos \theta & \cos x \\
\sin \theta
\end{array}\right] \\
& \frac{\partial H}{\partial V}=\frac{\cos Y \sin \phi \sin \lambda}{Y \cos \lambda}-\frac{r w^{2} \sin \lambda \cos \lambda \sin \psi}{V^{2} \cos Y} \\
& -\frac{T}{m v^{2} \cos y}\left[C_{11} \cos \theta \sin X+C_{12} \cos \theta \cos X+C_{13} \sin \theta\right]
\end{aligned}
$$

$$
\frac{\partial H}{\partial Y}=-\frac{V \sin \gamma \sin \psi \sin \lambda}{Y \cos \lambda}+\frac{r \omega^{2} \sin \lambda \cos \lambda \sin \psi \sin Y}{V \cos ^{2} Y}
$$

$$
-\frac{2 \omega \cos \lambda \cos \psi}{\cos ^{2} \gamma}+\frac{T \sin \gamma}{m V \cos ^{2} \gamma}\left[C_{11} \cos \theta \sin X+C_{12} \cos \theta \cos X+C_{13} \sin \theta\right]
$$

$$
+\frac{T}{m V \cos Y}\left[\begin{array}{lll}
\frac{\partial A_{11}}{\partial \gamma} & \frac{\partial A_{12}}{\partial \gamma} & \frac{\partial A_{13}}{\partial \gamma}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{c}
\cos \theta \\
\cos \sin X \\
\cos \theta \\
\sin \theta
\end{array}\right]
$$

$$
\frac{\partial H}{\partial r}=-\frac{V \cos \gamma \sin \psi \sin \lambda}{r^{2} \cos \lambda}+\frac{\omega^{2} \sin \lambda \cos \lambda \sin \psi}{V \cos \gamma}
$$

$$
-\frac{A_{e}(\mathrm{dp} / \mathrm{dh})}{m V \cos \gamma}\left[C_{11} \cos \theta \sin x+C_{12} \cos \theta \cos x+C_{13} \sin \theta\right]
$$

$$
\frac{\partial H}{\partial m}=-\frac{T}{m^{2} V \cos \gamma}\left[c_{11} \cos \theta \sin x+c_{12} \cos \theta \cos x+c_{13} \cdot \sin \theta\right]
$$

$$
\frac{\partial H}{\partial \theta}=\frac{T}{m V \cos \gamma}\left[-C_{11} \sin \theta \sin x-C_{12} \sin \theta \cos x+C_{13} \cos \theta\right]
$$

$$
\frac{\partial H}{\partial x}=\frac{T}{m V \cos Y}\left[C_{11} \cos \theta \cos X-C_{12} \cos \theta \sin x\right]
$$

$$
\frac{\partial H}{\partial \dot{\psi}}=\frac{V \cos \gamma \cos \psi \sin \lambda}{r \cos \lambda}+\frac{r \omega^{2} \sin \lambda \cos \lambda \cos \psi}{V \cos \gamma}+\frac{2 \omega \cos \lambda \sin \psi \sin \gamma}{\cos \gamma}
$$

$$
+\frac{T}{m V \cos \gamma}\left[\begin{array}{lll}
\frac{\partial A_{11}}{\partial \psi} & \frac{\partial A_{12}}{\partial \psi} & \frac{\partial A_{13}}{\partial \psi}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{c}
\cos \theta \sin \bar{x} \\
\cos \theta \cos x \\
\sin \theta
\end{array}\right]
$$

$$
\begin{aligned}
& \frac{\partial F}{\partial \lambda}=\frac{V \cos Y \sin \psi}{r \cos ^{2} \lambda}+\frac{r \omega^{2} \sin \psi}{V \cos \gamma}\left[\cos ^{2} \lambda-\sin ^{2} \lambda\right]+\frac{2 \omega \sin \lambda \cos \psi \sin \gamma}{\cos \gamma} \\
& +2 \omega \cos \lambda+\frac{T}{m V \cos \gamma}\left[\frac{\partial A_{11}}{\partial \lambda} \frac{\partial A_{12}}{\partial \lambda} \frac{\partial A_{13}}{\partial \lambda}\right][B]\left[B^{\prime}\right]\left[\begin{array}{ccc}
\cos & 0 & \sin \bar{x} \\
\cos \theta \cos x \\
\sin \theta
\end{array}\right] \\
& \frac{\partial H}{\partial \tau}=\frac{T}{m V \cos \gamma}\left[\begin{array}{lll}
\frac{\partial A_{11}}{\partial \tau} & \frac{\partial A_{12}}{\partial T} & \frac{\partial A_{13}}{\partial \tau}
\end{array}\right][B]\left[B^{\prime}\right]\left[\begin{array}{c}
\cos \theta \sin X \\
\cos \theta \cos X \\
\sin \theta
\end{array}\right] \\
& \frac{\partial I}{\partial V}=\sin \gamma \\
& \frac{\partial K}{\partial V}=\frac{\cos \gamma \sin \psi}{r \cos \lambda} \\
& \frac{\partial I}{\partial \gamma}=V \cos \gamma \\
& \frac{\partial J}{\partial V}=\frac{\cos Y \cos \phi}{r} \\
& \frac{\partial K}{\partial r}=-\frac{V \cos \gamma \sin \psi}{r^{2} \cos \lambda} \\
& \frac{\partial J}{\partial \gamma}=-\frac{V \sin \gamma \cos \psi}{r} \\
& \frac{\partial K}{\partial \psi}=\frac{V \cos \gamma \cos \psi}{r \cos \lambda} \\
& \frac{\partial J}{\partial r}=-\frac{V \cos \gamma \cos \psi}{r^{2}} \\
& \frac{\partial K}{\partial \lambda}=\frac{V \cos Y \sin \psi \sin \lambda}{r \cos ^{2} \lambda} \\
& \frac{\partial J}{\partial \psi}=-\frac{V \cos \gamma \sin \psi}{r}
\end{aligned}
$$

ADJOINT EQUATIONS

$$
\begin{aligned}
& \frac{\partial A_{11}}{\partial \gamma}=0 \\
& \frac{\partial A_{12}}{\partial \gamma}=0 \\
& \frac{\partial A_{13}}{\partial \gamma}=0 \\
& \frac{\partial A_{11}}{\partial \psi}=\sin \tau \sin \psi+\cos \tau \sin \lambda \cos \psi \\
& \frac{\partial A_{12}}{\partial \psi}=-\cos \tau \sin \psi+\sin \tau \sin \lambda \cos \psi \\
& \frac{\partial A_{13}}{\partial \psi}=-\cos \lambda \cos \psi \\
& \frac{\partial A_{11}}{\partial \lambda}=\cos \tau \cos \lambda \sin \psi \\
& \frac{\partial A_{12}}{\partial \lambda}=\sin \tau \cos \lambda \sin \psi \\
& \frac{\partial A_{13}}{\partial \lambda}=\sin \lambda \sin \psi \\
& \frac{\partial A_{12}}{\partial \tau}=-\sin \tau \cos \psi+\cos \tau \sin \lambda \sin \psi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial A_{13}}{\partial T}=0 \\
& \frac{\partial A_{21}}{\partial \gamma}=\cos \tau \sin \lambda \cos \psi \sin \gamma+\sin \tau \sin \psi \sin \gamma+\cos T \cos \lambda \cos \gamma \\
& \frac{\partial A_{22}}{\partial \gamma}=\sin \tau \sin \lambda \cos \psi \sin \gamma-\cos T \sin \psi \sin \gamma+\sin \tau \cos \lambda \cos \gamma \\
& \frac{\partial A_{23}}{\partial \gamma}=-\cos \lambda \cos \psi \sin \gamma+\sin \lambda \cos \gamma \\
& \frac{\partial A_{21}}{\partial \psi}=\cos \tau \sin \lambda \sin \psi \cos \gamma-\sin \tau \cos \psi \cos \gamma \\
& \frac{\partial A_{22}}{\partial \psi}=\sin \tau \sin \lambda \sin \psi \cos \gamma+\cos \tau \cos \psi \cos \gamma \\
& \frac{\partial A_{23}}{\partial \psi}=-\cos \lambda \sin \psi \cos \gamma \\
& \frac{\partial A_{21}}{\partial \lambda}=-\cos \tau \cos \lambda \cos \psi \cos \gamma-\cos \tau \sin \lambda \sin \gamma \\
& \frac{\partial A_{22}}{\partial \lambda}=-\sin \tau \cos \lambda \cos \psi \cos \gamma-\sin \tau \sin \lambda \sin \gamma \\
& \frac{\partial A_{23}}{\partial \lambda}=-\sin \lambda \cos \psi \cos \gamma+\cos \lambda \sin \gamma \\
& \frac{\partial A_{21}}{\partial \tau}=\sin \tau \sin \lambda \cos \psi \cos \gamma-\cos \tau \sin \psi \cos \gamma-\sin \tau \cos \lambda \sin \gamma \\
& \frac{\partial A_{22}}{\partial \tau}=-\cos \tau \sin \lambda \cos \psi \cos \gamma-\sin \tau \sin \psi \cos \gamma+\cos T \cos \lambda \sin \gamma
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial A_{23}}{\partial T}=0 \\
& \frac{\partial A_{31}}{\partial \gamma}=-\cos T \cos \lambda \sin \gamma+\cos T \sin \lambda \cos \phi \cos \gamma+\sin T \sin \psi \cos \gamma \\
& \frac{\partial A_{32}}{\partial \gamma}=-\sin \tau \cos \lambda \sin \gamma+\sin \tau \sin \lambda \cos \phi \cos \gamma-\cos \tau \sin \psi \cos \gamma \\
& \frac{\partial A_{33}}{\partial \gamma}=-\sin \lambda \sin \gamma-\cos \lambda \cos \psi \cos \gamma \\
& \frac{\partial A_{31}}{\partial \psi}=-\cos \tau \sin \lambda \sin \psi \sin \gamma+\sin \tau \cos \psi \sin \gamma \\
& \frac{\partial A_{32}}{\partial \psi}=-\sin \tau \sin \lambda \sin \psi \sin \gamma-\cos \tau \cos \psi \sin \gamma \\
& \frac{\partial A_{33}}{\partial \psi}=\cos \lambda \sin \psi \sin \gamma \\
& \frac{\partial A_{31}}{\partial \lambda}=-\cos \tau \sin \lambda \cos \gamma+\cos \tau \cos \lambda \cos \psi \sin \gamma \\
& \frac{\partial A_{32}}{\partial \lambda}=-\sin \tau \sin \lambda \cos \gamma+\sin \tau \cos \lambda \cos \psi \sin \gamma \\
& \frac{\partial A_{33}}{\partial \lambda}=\cos \lambda \cos \gamma+\sin \lambda \cos \psi \sin \gamma \\
& \frac{\partial A_{31}}{\partial T}=-\sin T \cos \lambda \cos \gamma-\sin \tau \sin \lambda \cos \psi \sin \gamma+\cos T \sin \psi \sin \gamma \\
& \frac{\partial A_{32}}{\partial \tau}=\cos \tau \cos \lambda \cos \gamma+\cos \tau \sin \lambda \cos \psi \sin \gamma+\sin \tau \sin \psi \sin \gamma \\
& \frac{\partial A_{33}}{\partial T}=0
\end{aligned}
$$

initlal comitions for imicantion of the adjoint equations

One set of adjoint equations, as defined in the preceding pages is solved for each constraint which the user wishes to impose on -the trajectory. As discussed earlier in Section 5.2, the initial conditions given each set of adjoint variables are functions of the constraint parameter. Since the constraints are applied at stage Ignition or burnout times, the initial conditions are simply the partial derivatives of the constraint with respect to the trajectory variables evaluated at the point on the trajectory at which the constraint is to be applied. This is the case for all constraints at stage points and for the terminal constraints.

On the next pages are given the various partial derivatives of all the constraint parameters used in the ICS subroutine, where the adjoint variables are initialized. The equations and nomenclature defining the constraint parameters are given in Section 4.

PARTIAL DERIVATIVES OF INERTIAL TRAJECTORY VARIABLES

$$
\begin{aligned}
& \frac{\partial V_{I}}{\partial V}=\frac{V+u r \cos \lambda \cos \gamma \sin \phi}{V_{I}} \\
& \frac{\partial V_{I}}{\partial r}=\frac{(V \cos \gamma \sin \psi)(u r \cos \lambda)+(\operatorname{ur} \cos \lambda)^{2}}{r V_{I}} \\
& \frac{\partial V_{I}}{\partial \gamma}=-(u r \cos \lambda)\left(\sin \gamma_{I}\right) \sin \psi \\
& \frac{\partial V_{I}}{\partial \psi}=\frac{(u r \cos \lambda) V \cos y \cos \phi}{V_{I}} \\
& \frac{\partial V_{I}}{\partial \lambda}=-\frac{\sin \lambda}{\cos \lambda}\left[\frac{(V \cos \gamma \sin \psi)(\sin \cos \lambda)+(u r \cos \lambda)^{2}}{V_{I}}\right] \\
& \frac{\partial \gamma_{I}}{\partial V}=\left(\frac{\tan \gamma_{I}}{V_{I}}\right)\left[\frac{V_{I}}{V}-\left(\frac{\partial V_{I}}{\partial V}\right)\right] \\
& \frac{\partial \gamma_{I}}{\partial r}=-\left(\frac{\tan \gamma_{I}}{V_{I}}\right)\left(\frac{\partial V_{I}}{\partial r}\right) \\
& \frac{\partial \gamma_{I}}{\partial \gamma}=\frac{V}{V_{I}} \frac{\cos \gamma}{\cos \gamma_{I}}-\left(\frac{\tan \gamma_{I}}{V_{I}}\right)\left(\frac{\partial V_{I}}{\partial \gamma}\right) \\
& \frac{\partial \gamma_{I}}{\partial \psi}=-\left(\frac{\tan \gamma_{I}}{V_{I}}\right)\left(\frac{\partial V_{I}}{\partial \psi}\right) \\
& \frac{\partial \gamma_{I}}{\partial \lambda}=-\left(\frac{\tan \gamma_{I}}{V_{I}}\right)\left(\frac{\partial V_{I}}{\partial \lambda}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \psi_{I}}{\partial V}=-\frac{(u r \cos \lambda)}{V}\left(\frac{\cos ^{2} \psi_{I}}{V \cos \gamma \cos \psi}\right) \\
& \frac{\partial \psi_{I}}{\partial r}=\frac{(u r \cos \lambda)}{r}\left(\frac{\cos ^{2} \psi_{I}}{V \cos \gamma \cos \psi}\right) \\
& \frac{\partial \psi_{I}}{\partial \gamma}=(u r \cos \lambda)(\tan \gamma)\left(\frac{\cos ^{2} \psi_{I}}{V \cos \gamma \cos \psi}\right) \\
& \frac{\partial \psi_{I}}{\partial \psi^{2}}=\frac{\cos ^{2} \psi_{I}}{\cos ^{2} \psi}+\frac{\sin \psi}{\cos \psi(u r \cos \lambda)\left(\frac{\cos ^{2} \psi_{I}}{V \cos ^{2} \gamma \cos }\right)} \\
& \frac{\partial \psi_{I}}{\partial \lambda}=-\omega r \sin \lambda\left(\frac{\cos ^{2} \psi_{I}}{V \cos \gamma \cos \psi}\right)
\end{aligned}
$$

PARTIAL DERIVATIVES OF ORBIT ELEMENTS

ENERGY

$$
\frac{\partial E}{\partial V_{I}}=V_{I} \quad \frac{\partial E}{\partial r}=\frac{\mu}{r^{2}}
$$

ANGULAR MOMENTUM

$$
\begin{aligned}
& \frac{\partial \bar{H}}{\partial V_{I}}=r \cos \gamma_{I} \\
& \frac{\partial \bar{H}}{\partial r}=V_{I} \cos \gamma_{I} \\
& \frac{\partial \bar{H}}{\partial \gamma_{I}}=-r V_{I} \sin \gamma_{I}
\end{aligned}
$$

PERIGEE RADIUS

$$
\begin{aligned}
& \frac{\partial r_{p}}{\partial V_{I}}=\frac{\left(\frac{\partial \bar{H}}{\partial V_{I}}\right)-\left(\frac{r_{p}^{2}}{H}\right)\left(\frac{\partial E}{\partial V_{I}}\right)}{\sqrt{2 E+\left(\frac{\mu}{\bar{H}}\right)^{2}}} \\
& \frac{\partial r_{p}}{\partial r}=\frac{\left(\frac{\partial \bar{H}}{\partial r}\right)-\left(\frac{r_{p}^{2}}{\bar{H}}\right)\left(\frac{\partial E}{\partial r}\right)}{\sqrt{2 E+\left(\frac{\mu}{\bar{H}}\right)^{2}}} \\
& \frac{\partial r_{p}}{\frac{\partial \gamma_{I}}{\partial}}=\frac{\left.\frac{\partial \bar{H}}{\partial \gamma_{I}}\right)}{\sqrt{2 E+\left(\frac{\mu}{\bar{H}}\right)^{2}}}
\end{aligned}
$$

INCLINATION

$$
\begin{aligned}
& \frac{\partial 1}{\partial \lambda}=\frac{\sin \lambda \sin \psi_{I}}{\sin 1} \\
& \frac{\partial I}{\partial \psi_{I}}=-\frac{\cos \lambda \cos \psi_{I}}{\sin 1}
\end{aligned}
$$

LONGITUDE OF ASCENDING NODE

$$
\begin{aligned}
& \frac{\partial \Omega_{e}}{\partial \lambda}=-\frac{\cos 1 \cos \eta_{I}}{\sin ^{2} 1} \\
& \frac{\alpha_{e}}{\partial \phi_{I}}=-\frac{\sin \lambda}{\sin ^{2} 1} \\
& \frac{\partial \Omega_{e}}{\partial \tau}=1 \\
& \frac{\partial \Omega_{e}}{\partial T_{G}}=4.1068643 \times 10^{-3} \mathrm{deg} / \mathrm{sec}
\end{aligned}
$$

ARGUMENT OF PERIGEE

$$
\begin{aligned}
& \frac{\partial \beta_{p}}{\partial V_{I}}=\frac{2\left(\sin ^{2} \zeta\right)\left(\frac{\mu}{\bar{H}}\right)\left(\frac{r}{\bar{H}}\right)}{V_{I} \tan \gamma_{I}} \\
& \frac{\partial \beta_{p}}{\partial r}=\frac{\sin ^{2} \zeta\left(\frac{\mu}{\bar{H}}\right)}{\bar{H} \tan \gamma_{I}} \\
& \frac{\partial \beta_{p}}{\partial \gamma}=-\left(\sin ^{2} \zeta\right)\left[\frac{1-\left(\frac{\mu}{\bar{H}}\right)\left(\frac{r}{H}\right)}{\sin ^{2} \gamma_{I}}+2\left(\frac{\mu}{H}\right)\left(\frac{r}{\bar{H}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \beta_{p}}{\partial \lambda}=\frac{\sin \beta \cos \beta}{\cos \lambda \cos \lambda} \\
& \frac{\partial \beta_{p}}{\partial \psi_{I}}=\frac{\sin \beta \cos \beta \sin \|_{I}}{\cos \$_{I}}
\end{aligned}
$$

LOCAL ORBITAL VELOCITY

$$
\begin{aligned}
& v_{O R B}=v_{I}-\sqrt{\frac{\mu}{r}} \\
& \frac{\partial v_{O R B}}{\partial v_{I}}=1 . \\
& \frac{\partial v_{O R B}}{\partial r}=\frac{\partial v_{I}}{\partial r}+\frac{1}{2 r} \sqrt{\frac{\mu}{r}}
\end{aligned}
$$

DOWNRANGE DISTANCE

$$
\begin{aligned}
& \frac{\partial R_{D}}{\partial \lambda}=\frac{1}{\sin R_{D}}\left[\cos \lambda_{0} \sin \lambda \cos \left(\tau-\tau_{0}\right)-\sin \lambda_{0} \cos \lambda\right] \\
& \frac{\partial R_{D}}{\partial \tau}=\frac{1}{\sin R_{D}}\left[\cos \lambda_{0} \cos \lambda \sin \left(\tau-\tau_{0}\right)\right]
\end{aligned}
$$

DYNAMIC PRESSURE

$$
\begin{aligned}
& \frac{\partial \bar{q}}{\partial v}=\rho v \\
& \frac{\partial \bar{q}}{\partial r}=\frac{v^{2}}{2} \frac{d \rho}{d h}
\end{aligned}
$$

DERIVATION OF OPTINIZATION EQUAIIONS

The initial type of computation performed by the Scout computer program is one of solving for the boost trajectory characteristics which maximize the desired payoff function (payload, velocity, or altitude) while satisfying various constraints on the trajectory. The technique applied to this optimization problem is known as the "method of steepest descent." It makes possible the optimization of a function of time (pitch program) and discrete trajectory paramaters such as coast durations. The trajectory optimization program known as PRESTO* employes the methods of steepest descent and constituted the basic builaing block upon which the Scout program was developed. The following pages show a derivation of the steepest descent control equations, including the use of the adjoint variables discussed in the first part of this section.

Define the following matrices:
\(d \psi=\left[\begin{array}{c}d \psi_{1}

d \psi_{2}

-

-

d \psi_{j c}\end{array}\right] \quad\)| where $d \psi_{1}$ is the desired change in payoff para- |
| :--- |
| meter at the end of the trajectory, and $d \psi_{1}$, |
| $1=2, j c$, are the desired changes in the constraints. |
| $j c$ is the mumber of constraints, including the |
| payoff. |

$\Lambda=\left[\begin{array}{c}\Lambda \theta_{1} \\ \Lambda \theta_{2} \\ \cdot \\ \cdot \\ \cdot \\ \Lambda \theta_{j c}\end{array}\right]$

$$
\text { where } \Lambda \theta_{1}=-\left[\lambda_{v_{1}} \frac{\partial F}{\partial \theta}+\lambda_{\gamma_{1}} \frac{\partial G}{\partial \theta}+\lambda_{\psi_{1}} \frac{\partial H}{\partial \theta}\right]
$$

$$
\Lambda_{x_{1}}=-\left[\lambda_{r_{1}} \frac{\partial F}{\partial_{x}}+\lambda_{\gamma_{1}} \frac{\partial G}{\partial_{x}}+\lambda_{\phi_{1}} \frac{\partial H}{\partial_{x}}\right]
$$

[^5]
where the $\left.\lambda_{(}\right)_{1}$'s are the solution of the 1th set of adjoint equations

$\delta \theta=$ the change in the pitch plane component of thrust attitude.

where $\mathrm{S}_{i_{k}}$ is the effect of the kith adjustable parameter on the fth constraint.

$\delta \tau=\left[\begin{array}{c}\delta \tau_{1} \\ \delta \tau_{2} \\ \cdot \\ \cdot \\ \delta \tau_{m}\end{array}\right]$
where $\delta \tau_{1}$ is the change in the fth adjustable parameter.

The effects of changes in the trajectory variables, control variables, and adjustable parameters on the terminal quantities are given by

$$
\begin{equation*}
d \eta=\lambda \delta x+\int_{t_{f}}^{t_{1}} \Lambda \delta \theta d t+S \delta \tau \tag{5-19}
\end{equation*}
$$

One desires to determine the value of $\delta \theta(t)$ and $\delta \tau$ that will permit (5-19) to be satisfied for a given d ϕ. There is an infinity of solutions to this problem. In order to determine a unique solution, one further requires that the solution to Eq. (5-19) maximize the following quantity, 1.e., make Q,
which is a negative number, as large as possible in absolute value.

$$
\begin{equation*}
Q=\int_{t_{f}}^{t_{1}}(\delta \theta)^{2} d t-\delta T^{T} Y \delta T \tag{5-20}
\end{equation*}
$$

The superscript I stands for transpose.
The problem, then, is to find 60 and δT which maximize Q, while satisfying the constraint on ap. Making use of ragrange multipliers μ, form the quantity

$$
\begin{equation*}
Z=Q+\mu^{T}\left(d \phi-\lambda \delta x-\int_{t_{f}}^{t_{1}} \Lambda \delta \theta d t-S \delta \tau\right) \tag{5-21}
\end{equation*}
$$

Combining terms gives

$$
\begin{equation*}
Z=\int_{t_{f}}^{t_{1}}\left[(\delta \theta)^{2}-\mu^{T} \Delta \delta \theta\right] d t+\mu^{T}(d \phi-\lambda \delta x)-\delta \tau^{T} Y \delta \tau-\mu^{T} S \delta \tau \tag{5-22}
\end{equation*}
$$

Note that Z is equal to Q. The 8θ and δT that maximize Z will also maximize Q. $\delta \mathrm{Z}$ must equal zero for arbitrary changes in $\delta \theta$ and 8τ.

$$
\begin{align*}
\delta Z=0= & \int_{t_{f}}^{t_{1}}\left[2 \delta \theta \delta(\delta \theta)-\mu^{T} \wedge \delta(\delta \theta)\right] d t \tag{5-23}\\
& \quad-\delta T^{T} Y \delta(\delta T)-\delta(\delta T)^{T} Y \delta \tau-\mu^{T} S \delta(\delta T)
\end{align*}
$$

or

$$
\delta Z=0=\int_{t_{f}}^{t_{1}}\left[2 \delta \theta-\mu^{T} \Lambda\right] \delta(\delta \theta) d t=\left(2 \delta T^{T} Y+\mu^{T} S\right) \delta(\delta T)(5-24)
$$

The coefficients of $\delta(\delta \theta)$ and $\delta(\delta T)$ must equal zero if $\delta 2$ is to be zero
for changes in $\delta \theta$ and δT. Therefore,

$$
\begin{equation*}
\delta \theta=0.5 \mu^{T} \Lambda \quad \text { or } \quad \delta \theta=0.5 \Lambda^{T} \mu \tag{5-25}
\end{equation*}
$$

and

$$
\delta T^{T}=-0.5 \mu^{T} \mathrm{~S} \mathrm{Y}^{-1} \quad \text { or } \quad \delta T=-0.5 \mathrm{Y}^{-1} \mathrm{~S}^{T} \mu(5-26)
$$

To solve for μ, substitute Eqs. (5-25) and (5-26) into (5-19).

$$
\begin{equation*}
d \phi=\lambda \delta x+\frac{1}{2}\left[\int_{t_{P}}^{t_{1}} \Lambda \Lambda^{T} d t\right] \mu-\frac{1}{2} s Y^{-1} s^{T} \mu \tag{5-27}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=2\left[\int_{t_{\rho}}^{t_{i}} \Lambda \Lambda^{T} d t-s Y^{-1} s^{T}\right]^{-1}[d \phi-\lambda \delta x] \tag{5-28}
\end{equation*}
$$

Substitute back into Eqs. (5-25) and (5-26) to give

$$
\begin{align*}
& \delta \theta=\Lambda^{T}\left[\int_{t_{f}}^{t_{1}} \Lambda \Lambda^{T} d t-s Y^{-1} s^{T}\right]^{-1}(d \psi-\lambda \delta x) \tag{5-29}\\
& \delta T=-Y^{-1} s^{T}\left[\int_{t_{\rho}}^{t} \Lambda \Lambda^{T} d t-s Y^{-1} s^{T}\right]^{-1}(d \psi-\lambda \delta x) \tag{5-30}
\end{align*}
$$

At this point it is userul to indicate the difference between the Scout optimization procedure and that of previous programs. ${ }^{1,2}$

In References 1 and 2, the matrix in the brackets in Eqs. (5-29) and (5-30) is inverted only once at the initial time t_{1}. The inverted matrix is then

[^6]multiplied by the vector $d \phi$ (δx is zero, assuming initial conditions to be fixed) to form a vector of constants. This constant vector is then multiplied by Λ^{T}, which is a function of time, to determine the entire $\delta \theta$ time bistory for the trajectory. $\delta \tau$ is evaluated in the seme manner with $\mathrm{Y}^{-1} \mathrm{~S}^{\mathrm{T}}$ used instead of Λ^{T}. Thus, the changes in the control and the adjustable parameters are fixed at the beginning of the forvard trajectory. In control systen terminology, this is an open-loop system.

In the Scout program, the first 20 points are all treated as the initial point. The time t_{1} becomes the running variable t and the bracketed matrix is inverted at each of these points of integration while running a backward trajectory. During forward trajectories, the change in the control to be used for the remainder of the trajectory is recorputed at each point, taking into account the deviation from the nominal trajectory at that point. The program operates in a closed-loop fashion because it continuously checks how it is doing in its attempt to satisfy terminal conditions.

The advantage of this closed-loop approach is that larger deviations from the nominal trajectory can be tolerated while still meeting terminal conditions. It is, therefore, possible to move more rapidly from the initial noninal trajectory to the optimum trajectory.

The closed-loop mode of operation can be used with convenience only up to the point at which the first constraint is to be applied. In the Scout program, stage 1 burnout defines that upper limit. For simplicity and core storage requirements, the number of closed loop points was fixed at 20. At this point in stage 1, the computation swituches to open-loop for the rest of the trajectory. The δT for launch azimuth and time of day are computed at the start of the trajectory using Eq. (5-30), and the remaining ot
are computed at the switch point.

Selection of Inftial Payoff Improvement
In general, one does not know how far from the optimum a given nominal trajectory will be. It is, therefore, difficult to guess how much payoff improvement to ask for. On the other hand, one can predict reasonable values for the expected changes in the control variable. The procedure to be used, then, is to guess the change in the control and let the computer determine the corresponaing change in payoff. The required calculations are given here.

Define $d P^{2}$ as

$$
\begin{equation*}
d P^{2}=\int_{t_{f}}^{t_{1}}(\delta \theta)^{2} d t-\delta \tau^{T} Y \delta \tau \tag{5-31}
\end{equation*}
$$

dp^{2} is a measure of the amount of control change. To obtain an estimate of $d p^{2}$, an average value of $\delta \theta$ is selected. This is squared and multiplied by the expected burn time to get an approximate value for the integral. Reasonable changes in the adjustable parameters are also selected and their squares, modified by the weighting functions, are added to the integral terms to determine dP^{2}.

Substitute Eqs. (5-29) and (5-30) with $\delta x=0$ into Eq. (5-31) to obtsin $d p^{2}$ in terms of the changes in the terminal constraints.

$$
\begin{equation*}
d P^{2}=d \psi^{T}\left[\int_{t_{f}}^{t_{1}} \Lambda \Lambda^{T} d t-S Y^{-1} S^{T}\right]^{-1} d \psi \tag{5-52}
\end{equation*}
$$

Let the inverted matrix be denoted as A with components $A_{i j}$. Split the $d y$ vector into two parts, bm_{d} and $\mathrm{d} p$.

where $\delta_{m_{d}}$ is the initial change in payoff and
$d \phi=\left[\begin{array}{c}d_{2} \\ \cdot \\ \cdot \\ \cdot \\ c \\ d \phi_{j c}\end{array}\right]$

The object now is to solve Eq. (5-32) for δm_{d} in terms of $d p^{2}$ and $d \phi$. Rewrite Eq. (5-32) as

$$
d P^{2}=\left[\delta m_{d} d \phi\right] \quad\left[\begin{array}{ccccccc}
A_{11} & A_{12} & \cdot & \cdots & \cdot & \cdot & \cdot \\
A_{21} & A_{22} & A_{23} & & & \\
\cdot & A_{32} & \cdot & & &
\end{array}\right]
$$

Let the minor of A_{11} be designated as

Then $d P^{2}=A_{11} \delta m_{d}^{2}+2 N^{T} d \phi \delta m_{d}+d \phi^{T}[M]$
where

Solving Eq. (5-33) for $\delta \mathrm{m}_{\mathrm{d}}$ gives

$$
\begin{equation*}
\delta m_{d}=\frac{-N^{T} d \phi}{A_{11}}+\sqrt{\frac{d F^{2}-d \phi^{T}\left([M]-\frac{M N^{T}}{A_{11}}\right) d \phi}{A_{11}}} \tag{5-34}
\end{equation*}
$$

The above derivation explains the type of calculation which the program makes. The actual details of computation which are used are explained more fully in Section 9.6.

SECTION 6
pITCH PROGRAM LINEARIZATION ERUATIONS

IINEARLZATION OF ASCENT TIIT PROGRAM

Theory
The objective of the Inearization subroutine is to convert the thrust attitude history obtained during the trajectory optimization into a pitch program composed of linear segments. The linear program must satisfy the specified trajectory constraints, and the loss in the payoff function due to linearization should be negligible.

The payoff loss will be small if the linear pitch program closely approximates the optimum program. It is mathematically convenient to obtain this proximity by minimizing the time integral of the square of the difference between the two pitch programs. In equation form, we want to minimize

subject to the constraint

$$
\begin{equation*}
d \psi=\int_{t_{f}}^{t_{i}} \Lambda_{\theta} \delta \theta d t \tag{6-2}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \theta=\theta_{\text {linear }}-\theta_{\text {optimum }} \tag{6-3}
\end{equation*}
$$

d) is a vector of trajectory constraint perturbations.
Λ_{θ} is a vector of influence Aunctions which gives the effect of a change in the control variable on the constraints.
Λ_{θ} is used direing the optimization procedure and is therefore available without any further computation. The dy are the errors in the constraints when the optimum pitch program is used.

The first problem is to write expression (6-1) and Eq. (6-2) in terms of the parameters that determine the linear pitch program. The most convenient set of parameters are the values of the pitch attitude at the break points where the slope cbanges. Consider the figure shown below.

$\theta_{\text {linear }}$ is described by a separate equation in each segment. One may write

$$
\theta_{\text {linear }}=\theta_{1}+\frac{\theta_{2}-\theta_{1}}{\Delta t_{1}}\left(t-t_{1}\right)=\theta_{1}\left(\frac{t_{2}-t}{\Delta t_{1}}\right)+\theta_{2}\left(\frac{t-t_{1}}{\Delta t_{1}}\right) ; t_{1} \leq t \leq t_{2}
$$

$$
\begin{align*}
& =\theta_{2}+\frac{\theta_{3}-\theta_{2}}{\Delta t_{2}}\left(t-t_{2}\right)=\theta_{2}\left(\frac{t_{3}-t_{1}}{\Delta t_{2}}\right)+\theta_{3}\left(\frac{t-t_{2}}{\Delta t_{2}}\right) ; t_{2} \leq t \leq t_{3} \\
& =\theta_{K}+\frac{\theta_{K+1}-\theta_{K}}{\Delta t_{K}}\left(t-t_{K}\right)=\theta_{K}\left(\frac{t_{K+1}-t_{K}}{\Delta t_{K}}\right)+\theta_{K+1}\left(\frac{t-t_{K}}{\Delta t_{K}}\right) ; t_{K} \leq t \leq t_{K+1} \tag{6-4}
\end{align*}
$$

$\delta \theta$ is found by substituting for $\theta_{\text {linear }}$ in Eq. (6-3).
Eq. (6-2) is written in terms of the θ_{1} by substituting for $\delta \theta$. One obtains t_{1}

$$
\begin{aligned}
& d \phi=-\int_{t_{K+1}}^{t_{1}} \theta_{O P T} \Lambda_{\theta} d t+\theta_{1}\left[\frac{1}{\Delta t_{1}} \int_{t_{2}}^{t_{1}}\left(t_{2}-t\right) \Lambda_{\theta} d t\right] \\
&+\theta_{2}\left[\frac{1}{\Delta t_{1}} \int_{t_{2}}^{t_{1}}\left(t-t_{1}\right) \Lambda_{\theta} d t+\frac{1}{\Delta t_{2}} \int_{t_{3}}^{t_{2}}\left(t_{3}-t\right) \Lambda_{\theta} d t\right]
\end{aligned}
$$

$$
\begin{align*}
+\ldots \ldots+\theta_{K}\left[\frac{1}{\Delta t_{K-1}}\right. & \left.\int_{t_{K}}^{t_{K-1}}\left(t-t_{K-1}\right) \Lambda_{\theta} d t+\frac{1}{\Delta t_{K}} \int_{t_{K+1}}^{t_{K}}\left(t_{K+1}-t\right) \Lambda_{\theta} d t\right] \\
& +\theta_{K+1}\left[\frac{1}{\Delta t_{K}} \int_{t_{K+1}}^{t_{K}}\left(t-t_{K}\right) \Lambda_{\theta} d t\right] \tag{6-5}
\end{align*}
$$

Eq. (6-5) can be written in a more compact form.

$$
d \phi=L+M \theta=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
\vdots \\
I_{J C}
\end{array}\right]+\left[\begin{array}{ll}
M_{11} M_{12} & M_{1(K+1)} \\
& \\
M_{J C 1} & M_{J C(K+1)}
\end{array}\right]\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\vdots \\
\theta_{K+1}
\end{array}\right]
$$

where

$$
\begin{aligned}
& L_{i}=-\int_{t_{K+1}}^{t_{1}}{ }_{o P T} \wedge \theta_{1} d t \quad 1=1, J C \\
& M_{11}=\frac{1}{\Delta t_{1}} \int_{t_{2}}^{t_{1}}\left(t_{2}-t\right) \Delta \theta_{1} d t \quad i=1, J C \\
& M_{i j}=\frac{1}{\Delta t_{j-1}} \int_{t_{j}}^{t_{j-1}}\left(t-t_{j-1}\right) \Lambda_{\theta_{1}} d t+\frac{1}{\Delta t_{j}} \int_{t_{j+1}}^{t_{j}}\left(t_{j+1}-t\right) \Delta \theta_{i} d t \\
& 1=1 \text {, Jj } \\
& j=2, x \\
& M_{1(K+1)}=\frac{1}{\Delta t_{K}} \int_{t_{K+1}}^{t_{X}}\left(t-t_{K}\right) \Lambda_{\theta_{1}} d t \\
& 1=1 \text {, Jj }
\end{aligned}
$$

Before evaluating expression (6-1), we will break it up into a sum of integrals and introduce a weighting function η_{1} for each segment. Thus, expression (6-1) is replaced by

$$
\begin{equation*}
\pi_{1} \int_{t_{1}}^{t_{2}} 8 \theta^{2} d t+\pi_{2} \int_{t_{2}}^{t_{3}} 8 \theta^{2} d t+\cdots \quad \pi_{K} \int_{t_{K}}^{t_{K+1}} 8 \theta^{2} d t \tag{6-6}
\end{equation*}
$$

The weighting functions are introduced so that the $\delta \theta$ in any segment can be more closely controlled. If Π_{1} were to be made much larger than the other η 's, for example, the result would be to decrease the $\delta \theta$ in the first segment.

Consider the first segment.

$$
\eta_{1} \int_{t_{1}}^{t_{2}} \delta \theta^{2} d t=\eta_{1} \int_{t_{1}}^{t_{2}} \frac{1}{\Delta t_{1}^{2}}\left[\theta_{1}\left(t_{2}-t\right)+\theta_{2}\left(t-t_{1}\right)-\theta_{O P T}\right]^{2} d t
$$

After integrating, one obtains

$$
\begin{equation*}
\eta_{1} \int_{t_{1}}^{t_{2}} \delta \theta^{2} d t=\eta_{1} \quad\left[A \theta_{1}^{2}+A \theta_{2}^{2}+2 B \theta_{1} \theta_{2}+D \theta_{1}+E \theta_{2}+F\right] \tag{6-7}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\frac{\Delta t_{1}}{3} \\
& B=\frac{1}{2} A \\
& D=\frac{2}{\Delta t_{1}} \int_{t_{2}}^{t_{1}} \theta_{O P T}\left(t_{2}-t\right) d t \\
& E=\frac{2}{\Delta t_{1}} \int_{t_{2}}^{t_{1}} \theta_{O P T}\left(t-t_{1}\right) d t \\
& F=-\int_{t_{2}}^{t_{1}} \theta_{O P T}^{2} d t
\end{aligned}
$$

The same expression can be written for each of the k linear segments. The integral over all segments can be written as

$$
\begin{align*}
\sum_{1=1}^{K} \eta_{1} \int_{t_{1}}^{t_{1+1}} s \theta^{2} d t= & \eta_{1}\left[A_{1} \theta_{1}^{2}+2 B_{1} \theta_{1} \theta_{2}+A_{1} \theta_{2}^{2}+D_{1} \theta_{1}+E_{1} \theta_{2}+F_{1}\right] \\
+ & \eta_{2}\left[A_{2} \theta_{2}^{2}+2 B_{2} \theta_{1} \theta_{2}+A_{2} \theta_{3}^{2}+D_{2} \theta_{2}+E_{2} \theta_{3}+F_{2}\right] \\
& \vdots \tag{6-8}\\
& \quad \eta_{K}\left[A_{K} \theta_{K}^{2}+2 B_{K} \theta_{K} \theta_{K+1}+A_{K} \theta_{K+1}^{2}+D_{K} \theta_{K}+E_{K} \theta_{K+1}+F_{K}\right]
\end{align*}
$$

After collecting terms, one obtains

$$
\begin{align*}
& \sum_{1=1}^{k} \eta_{1} \int_{t_{1}}^{t_{1+1}} 8 \theta^{2} d t=\eta_{1} A_{1} \theta_{1}{ }^{2}+\left(\eta_{1} A_{1}+\pi_{2} A_{2}\right) \theta_{2}{ }^{2}+\left(\eta_{2} A_{2}+\Pi_{3} A_{3}\right) \theta_{3}{ }^{2} \\
& +\ldots\left(\eta_{K-1} A_{K-1}+\eta_{K} A_{K}\right) \theta_{K}^{2} \\
& +\eta_{K} A_{K} \theta_{K+1}^{2}+2 \eta_{1} B_{1} \theta_{1} \theta_{2}+2 \eta_{2} B_{2} \theta_{2} \theta_{3}+\ldots 2 \eta_{K} B_{K} \theta_{K} \theta_{K+1}+\eta_{1} D_{1} \theta_{1} \\
& +\left(\pi_{1} E_{1}+\pi_{2} D_{2}\right) \theta_{2}+\left(\pi_{2} E_{2}+\pi_{3} D_{3}\right) \theta_{3}+\ldots\left(\eta_{K-1} E_{K-1}+\eta_{K} D_{K}\right) \theta_{K} \\
& +\pi_{K}{ }^{8} K^{\theta}{ }_{K+1} \\
& +\sum_{j=1}^{K} \eta_{j} F_{j} \tag{6-9}
\end{align*}
$$

This may be written as the sum of a quadratic and a linear expression plus a constant.

$$
\begin{equation*}
\sum_{1=1}^{K} \pi_{1} \int_{t_{1}}^{t_{1+1}} s \theta^{2} d t=\theta^{T} P \theta+N^{T} \theta+F \tag{6-10}
\end{equation*}
$$

where

P is symmetric with all terms equal to zero except for the middle three diagonals.

$$
\begin{aligned}
& N^{T}=\left[\begin{array}{llllll}
\eta_{1} D_{1} & \left(\eta_{1} E_{1}+\eta_{2} D_{2}\right) & \left(\eta_{2} E_{2}+\eta_{3} D_{3}\right) & \ldots & \left(\eta_{K-1} E_{K-1}+\eta_{K} D_{K}\right) & \eta_{K} E_{K}
\end{array}\right] \\
& F=\sum_{j=1}^{K} \eta_{1} F_{j}
\end{aligned}
$$

A representation has now been found for expression (6-1) and Eq. (6-2) in terms of the values of the linear pitch program at the break points. It is now possible to find the values, θ_{1}, which minimize ($6-1$), subject to constraint ($6-2$). This is done with the aid of Lagrange multipliers. One forms the quantity

$$
\begin{equation*}
V=\theta^{T} P \theta+N^{T} \theta+F+\mu(d \psi-L-M \theta) \tag{6-11}
\end{equation*}
$$

where μ is a vector of Lagrange multipliers. We want to minimize V with respect to θ. To do this, evaluate δV.

$$
\begin{equation*}
\delta V=\left(2 \theta^{T} P+N^{T}-\mu M\right) \delta \theta \tag{6-12}
\end{equation*}
$$

θ is determined by setting the coefficient of $\delta \theta$ equal to zero.

$$
\begin{equation*}
\theta=\frac{1}{2} P^{-1}\left(\mu M-N^{T}\right)^{T} \tag{6-13}
\end{equation*}
$$

To evaluate μ, substitute θ in the equation

$$
d \psi=L+M \theta
$$

One obtains

$$
\begin{equation*}
\mu=\left(2 d \psi^{T}+N^{T} P^{-1} M^{T}-2 L^{T}\right)\left(M P^{-1} M^{T}\right)^{-1} \tag{6-14}
\end{equation*}
$$

The final equation for θ is then found by substituting Eq. (6-14) into Eq. (6-13). The result is

$$
\theta=\frac{1}{2} P^{-1}\left[\left(2 d \psi^{T}+\mathbb{N}^{T} P^{-1} M^{T}-2 L^{T}\right)\left(M P^{-1} M^{T}\right)^{-1} M-N^{T}\right]^{T} \quad(6-15)
$$

THRUST ATTITUDE LINEARIZATION WITH SPECIFIED VALUES FOR SOME θ_{1}

Because of hardware considerations, it is necessary to take certain practical constraints into consideration when linearizing the thrust attitude history. These constraints are:

1. The pitch rate cannot be too large or too small.
2. The change in pitch rate from one segment to the next cannot be too large or too small.
3. There can be only one pitch rate segment with a sign different from the other segments.

If any pitch rate limit is violated, the thrust attitude at the beginning or end of the offending segment is'fixed at an acceptable value and the attitude history linearized once again.

The equation for θ (Eq. 6-15) must be modified to make provision for fixing certain θ_{1}. A derivation of this modified equation is given here.

Let the vector θ be made up of two components, $\bar{\theta}$ and θ_{f}, i.e., $\theta=\bar{\theta}+\theta_{f}$. $\bar{\theta}$ is composed of the adjustable parts of θ while θ_{f} contains the fixed parts. Both $\bar{\theta}$ and θ_{f} have ℓ components. If the ith component of θ is fixed, then $\bar{\theta}_{i}=0$ and $\theta_{f_{i}}$ is the fixed value of θ at that time point.

With θ in this form, the integral of $\delta \theta^{2}$ is written as (see Eq. 6-10):
$\bar{\theta}^{T} \bar{P} \bar{\theta}+\theta_{f} T_{P \bar{\theta}}+\bar{\theta}^{T} P_{f}+\theta_{f} T_{P \theta_{f}}+N^{T} \bar{\theta}+N^{T} \theta_{f}+F$
where the superscript T means transpose.
\bar{P} is equal to P with the rows and columns corresponding to the fixed θ 's set to zero except for the diagonal element which is set to one.

The constraint equation becomes

$$
\begin{equation*}
\mathrm{d} \psi=I+M \bar{\theta}+M \theta_{\rho} \tag{6-16}
\end{equation*}
$$

The derivation now follows that of the previous section, beginning with Eq. (6-ii). The quantity V becomes

$$
\begin{align*}
V=\bar{\theta}^{T} \bar{P} \bar{\theta} & +\theta_{f}^{T} P \bar{\theta}+\bar{\theta}^{T} P \theta_{f}+\theta_{f} T_{P \theta_{f}}+N^{T} \bar{\theta}+N^{T} \theta_{f}+F \\
& +\mu\left(L+M \bar{\theta}+M \theta_{f}\right) \tag{6-17}
\end{align*}
$$

The differential VV is

$$
\begin{equation*}
\delta V=\left(2 \bar{\theta}^{-T} \bar{P}+\mathbb{N}^{T}-\mu M+2 \theta_{P}^{T} P\right) \delta \bar{\theta} \tag{6-18}
\end{equation*}
$$

Setting the coefficient of $\delta \bar{\theta}$ equal to zero, ane obtains

$$
\begin{equation*}
\bar{\theta}^{-T}=\frac{1}{2}\left(\mu M-N^{T}-2 \theta_{f}^{T}\right) \bar{P}^{-1} \tag{6-19}
\end{equation*}
$$

It should be noted that the diagonal terms in \bar{P}^{-1} corresponding to the fixed θ 's are set to zero. Take the transpose of Eq. (6-19) to obtain

$$
\begin{equation*}
\bar{\theta}=\frac{1}{2} \bar{P}-1\left(\mu M-N^{T}-2 \theta_{P}{ }^{T} P\right)^{T} \tag{6-20}
\end{equation*}
$$

Substitute Eq. (6-20) into Eq. (6-16) to determine μ. The result is

$$
\mu=\left[2 d \psi^{T}+N^{T M} P^{-1} M^{T}-2 L^{T}-2 \theta_{P}^{T}\left(M^{T}-P \bar{P}^{-1} M^{T}\right)\right]\left(M P^{-1} M^{T}\right)^{-1}(6-21)
$$

Substitute μ into Eq. (6-20) to obtain the final result.

$$
\begin{array}{r}
\bar{\theta}=\frac{1}{2} \bar{P}^{-1}\left\{\left[2 \alpha \psi^{T}+N^{T} \bar{P}^{-1} M^{T}-2 L^{T}-2 \theta_{f}^{T}\left(M^{T}-P P^{-1} M^{T}\right)\right]\right. \\
\left.\left(M \bar{P}^{-1} M^{T}\right)^{-1} M-N^{T}-2 \theta_{f} P\right\}^{T} \tag{6-22}
\end{array}
$$

This result is identical to Eq. (6-1) when $\theta_{f}=0$. Eq. (6-22) is therefore used in place of Eq. ($6-15$) even when no constraints have been violated.

The complete θ history is then obtained from the equation

$$
\begin{equation*}
\theta=\bar{\theta}+\theta_{P} \tag{6-23}
\end{equation*}
$$

SECTION 7

BODY DYNAMICS SIMULATION

DERIVATION OF BODY DYNAMICS EQUATIONS

In developing the Scout program, one of the additions made to the basic PRESTO* point-mass trajectory optimization package was a technique for including body dynamics effects on the boost trajectory. This is necessary In design of the optimum command thrust-attitude history and in evaluation of probable dispersion eavelopes. An approximation to the body rotational motion is employed, which yields a suitable compromise between program execution time and overall accuracy. A brief derivation of this technique is given here.

The equations of rotational motion in one plane can be written, under the assumptions of linearization of the overall system and amission of actuator and sensor dynamics, as follows:

$$
\begin{equation*}
\ddot{\theta}=M_{\delta} \delta+M_{\alpha} \alpha \tag{7-1}
\end{equation*}
$$

where $\quad \theta=$ pitch attitude angle
$\delta=$ control system deflection
$\alpha=$ angle of attack

$$
\begin{equation*}
\alpha=\theta-\gamma \tag{7-2}
\end{equation*}
$$

where $\quad Y=$ flight path angle

$$
\begin{equation*}
\delta=K_{\theta}\left(\theta_{c}-\theta\right)-K_{q} \dot{\theta} \tag{7-3}
\end{equation*}
$$

where $\quad \theta_{c}=$ commanded θ
$K_{\theta}=$ autopilot position gain
$K_{q}=$ autopilot rate gain
*See reference, page 3-1.

$$
\begin{equation*}
\ddot{\theta}=K_{\theta} M_{\delta}\left(\theta_{c}-\theta\right)-K_{q} M_{\delta} \dot{\theta}+M_{\alpha} \theta-M_{\alpha} \gamma \tag{7-4}
\end{equation*}
$$

This equation can be represented by the following block diagram.

A full-dynamic simulation, then, would include two integrations of $\ddot{\theta}$. This is a very time-consuming computation since the integration frequency must be at least thirty times the motion frequency. On the other hand, it is known that the primary effect on the trajectory is determined by the steady-state solution to equation (7-4), rather than the transient response which requires the high integration frequency. The steady-state thrust antitude represents a moment-balance condition and can be evaluated by inspection of the above block diagram with the inner loop eliminated (or set = 1.). Thus,

$$
\dot{\theta}=\frac{K_{\theta}}{K_{q}}\left[\theta_{c}-\theta\left(1-\frac{M_{\alpha}}{K_{\theta} M_{\delta}}\right)-\frac{M_{\alpha} Y}{K_{\theta} M_{\delta}}\right]
$$

from which

$$
\begin{equation*}
\theta=\frac{K_{\theta} M_{\delta} \theta_{c}-K_{q} M_{\delta} \dot{\theta}_{c}-M_{\alpha} \gamma}{K_{\theta} M_{\delta}-M_{\alpha}} \tag{7-5}
\end{equation*}
$$

by assuming $\dot{\theta}=\dot{\theta}_{c}$ in steady state.
An equation of this form for θ, along with an analogous expression for the yaw angle x, is used in computation of the nominal trajectory. Additional terms to account for thrust misailgnments and winds are added for computation of dispersed trajectories.

The actual equations for θ and x require proper evaluation of the angle Y in Eq. (7-5), as follows.

Iet the inertially-fixed platform axes be the P-system of axes.

PLATFORM (P) AND MISSILE (m) COORDINATE SYSTEMS

The missile axes are the m-system. \bar{m}_{x} is always in the \bar{j}_{x}, \bar{J}_{y} plane. The thrust is directed along the \bar{m}_{y} axis, which is the center line of the vehicle.

To begin we find the components of $\overline{\mathrm{V}}$, the velocity with respect to the rotating Earth, along the F-system. The transformation from P to L is given by the C matrix defined in Section 4. To go from L to P we invert the C matrix. Thus,

$$
\left[\begin{array}{l}
v_{j_{x}} \\
v_{j_{y}} \\
v_{j_{z}}
\end{array}\right]=c^{-1}\left[\begin{array}{c}
v_{1_{x}} \\
v_{1_{y}} \\
v_{1_{z}}
\end{array}\right]
$$

$v_{i_{x}}$ and $v_{1_{z}}$ are 0 . Therefore,

$$
\left[\begin{array}{l}
v_{j x} \\
v_{j_{y}} \\
v_{j_{z}}
\end{array}\right]=\left[\begin{array}{c}
c_{12}^{-1} \\
c_{22}^{-1} \\
c_{32}^{-1}
\end{array}\right]
$$

$|\bar{v}|$

We now compute the angles y_{w} and $A_{z w}$ shown below.

$$
\begin{aligned}
& y_{w}=\tan ^{-1}\left(\frac{v_{g z}}{\sqrt{v_{j x}^{2}+v_{j y}^{2}}}\right) \\
& A_{z w}=\tan ^{-1}\left(\frac{v_{j x}}{v_{j y}}\right)
\end{aligned}
$$

The quantities θ and X that appear in the equations of motion are then replaced by

$$
\begin{align*}
& \theta=\frac{K_{\theta} M_{\delta} \theta_{c}-K_{q} M_{\delta} \dot{\theta}_{c}-M_{\alpha} Y_{w}}{K_{\theta} M_{\delta}-M_{\alpha}} \tag{7-6}\\
& x=\frac{K_{\theta} M_{\delta} X_{c}-K_{q} M_{\delta} \dot{X}_{c}-M_{\alpha} A_{z w}}{K_{\theta} M_{\delta}-M_{\alpha}} \tag{7-7}
\end{align*}
$$

where θ_{c} is the desired thrust attitude and $\dot{\theta}_{c}$ is the pitch rate. x_{c} is 0 for the first three stages. \dot{x}_{c} is always 0 .

SECTION 8

PERFORMANCE EXCHANGE RAIIOS

One of the optional computations available in the Scout program whenever a trajectory optimization is performed is the evaluation of performance exchange ratios. These quantities are first-order sensitivities of the payoff parameter (payload, velocity, or altitude) to changes in five vehicle characteristics in each of the powered stages, evaluated under the requirement that all trajectory constraints still be satisfied. To first order, they show the increase or decrease in performance that would result from a change in one of the variables, assuming a new optimum trajectory. The five stage variables are burn rate, propellant weight, specific impulse, aerodynamic drag, and inert jettison weight. The exchange ratios are computed analytically using the solution of the adjoint equations as the basis of the calculation. The compuiation is performed during the backward guldance run preceding the final guidance run at completion of optimization. With this approach, up to twenty-five performance partials are obtained with less than one minute of computation time. A derivation of the relationships yielding the exchange ratios is provided at this point.

In order that the analytical technique be best understood, the derivation of the exchange ratio equations will be performed for a simplified problem. Then the corresponding relationships for the complete problem will be written in matrix notation.

Consider a single-stage vehicle operating outside of the atmospinere. Exchange ratios for specific impulse and initial weight will be evaluated since they are representative of the two types of parameters to be treated. This formulation is developed for a two-dimensional trajectory which satisfies a constraint on radius at the end of the trajectory. The equations of motion
and mass flow rate can be written as

$$
\begin{align*}
& F=\dot{V}=\frac{T}{m} \cos \eta-g \sin \gamma \tag{8-1}\\
& G=\dot{\gamma}=\frac{T}{m \bar{V}} \sin \eta+\left(\frac{V}{r}-\frac{g}{V}\right) \cos \gamma \tag{8-2}\\
& H=\dot{r}=V \sin \gamma \tag{8-3}\\
& I=\dot{m}=-\frac{T}{B_{0} I_{s p}} \tag{8-4}
\end{align*}
$$

where η is the angle between the velocity and thrust vectors, and the definitions of the remaining variables are given on page 4-1.

Assume that a nominal trajectory meeting terminal conditions has been determined. One is interested in finding the influence of changes in the vehicle parameters on payload, assuming that the angle of attack is adjusted so that the terminal constraints are still satisfied.

The adjoint differential equations, with the partial derivatives evaluated along the nominal trajectory, are (analogous to Section 5.4)

$$
\begin{align*}
& \frac{d \lambda_{V}}{d t}=-\frac{\partial G}{\partial V} \lambda_{Y}-\frac{\partial H}{\partial V} \lambda_{r} \tag{8-5}\\
& \frac{d \lambda_{Y}}{d t}=-\frac{\partial F}{\partial \gamma} \lambda_{V}-\frac{\partial G}{\partial \gamma} \lambda_{Y}-\frac{\partial H}{\partial Y} \lambda_{r} \tag{8-6}\\
& \frac{\partial \lambda_{r}}{d t}=-\frac{\partial F}{\partial r} \lambda_{V}-\frac{\partial G}{\partial r} \lambda_{Y} \tag{8-7}\\
& \frac{\partial \lambda_{m}}{d t}=-\frac{\partial F}{\partial m} \lambda_{V}-\frac{\partial G}{\partial m} \lambda_{Y} \tag{8-8}
\end{align*}
$$

Their solution has the following property:

$$
\begin{align*}
& {\left[\lambda_{V} \delta V+\lambda_{Y} \delta_{Y}+\lambda_{r} \delta r+\lambda_{m} \delta m\right]_{t=t_{P}}=\left[\lambda_{V} \delta V+\lambda_{Y} \delta_{Y}+\lambda_{r} \delta r+\lambda_{m} \delta m\right]_{t=t_{0}}} \\
& -\int_{t_{P}}^{t_{0}}\left(\lambda_{V} \frac{\partial F}{\partial \eta}+\lambda_{Y} \frac{\partial G}{\partial \eta}\right) \delta_{\eta} d t-\int_{t_{f}}^{t_{0}} \lambda_{m} \frac{\partial I}{\partial I_{s p}} \delta I_{s p} d t \tag{8-9}
\end{align*}
$$

The initial conditions for these adjoint equations are specified at the time the stopping parameter is reached, $t_{f^{\prime}}$. They are functions only of the terminal constraints and the stopping parameter. One separate solution of the adjoint equations is required for each terminal constraint and one for the payoff function mass.

At the initial time, t_{0}, the perturbations $\delta V, \delta \gamma$, and δr are zero. Furthermore, $\delta I_{s p}$ is constant. Assume radius to be the only terminal constraint and let the second subscripts ϕ and ϕ indicate that the adjoint equations are solved using the initial conditions associated with mass and radius, respectively.

Using Eq. (8-9) the expressions for terminal deviations in mass and radius
are

$$
\begin{align*}
& \delta m_{f}=\lambda_{m \phi} \delta m_{0}+\int_{t_{f}}^{t_{0}} \Lambda_{\phi} \delta_{\eta} d t-R_{\phi} \delta I_{s p} \tag{8-10}\\
& \delta r_{f}=\lambda_{m \psi} \delta m_{0}+\int_{t_{f}}^{t_{0}} \Lambda_{\psi} \delta_{\eta} d t-R_{\psi} \delta I_{s p} \tag{8-11}
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda=-\lambda_{V} \frac{\partial F}{\partial \eta}-\lambda_{\gamma} \frac{\partial G}{\partial \eta} \tag{8-11a}
\end{equation*}
$$

and

$$
\begin{equation*}
R=\int_{t_{f}}^{t_{0}} \lambda_{m} \frac{\partial I}{\partial I_{s p}} d t \tag{8-11b}
\end{equation*}
$$

and $\lambda_{m f}=\lambda_{r f}=1.0$.
We have assumed a nominal trajectory that meets terminal conditions, 1.e.,
$\delta x_{f}=0$. In order to maintain this condition in the presence of perturbations in initial mass and specific impulse, it will be necessary to adjust the angle of attack, η. The minimum change in η that will enable the terminal conditions to be met is found be setting $\delta \Pi=C \Lambda_{r}$. Substituting $\delta \eta$ in Eq. $(8-10)$ and ($8-11$) gives

$$
\begin{align*}
& \delta m_{f}=\lambda_{m \phi} \cdot \delta m_{0}-{ }^{R} \phi \delta I_{s p}+C I_{\psi \phi} \tag{8-12}\\
& \delta r_{f}=\lambda_{m \psi} \delta m_{0}-R_{\psi} \cdot \delta I_{s p}+C I_{\psi \psi} \tag{8-13}
\end{align*}
$$

where

$$
I_{\psi \phi}=\int_{t_{\rho}}^{t_{0}} \Lambda_{\psi} \Lambda_{\phi} d t
$$

and $I_{\phi \phi}$, correspondingly. Solving for C, with the condition that $\delta r_{f}=0$, one obtains $\delta 7$

$$
\begin{equation*}
\delta \eta=\frac{-\lambda_{m \psi} \delta m_{0}+R_{\psi} \delta I_{s p}}{I_{\psi \psi}} \Lambda_{\psi} \tag{8-14}
\end{equation*}
$$

To determine the influence of these perturbations on final mass, substitute for $\delta \pi$ in Eq. ($8-12$)

$$
\begin{equation*}
\delta m_{f}=\left(\lambda_{m \phi}-U \lambda_{m \phi}\right) \delta m_{0}+\left(R_{\phi}-U R_{\psi}\right) \delta I_{s p} \tag{8-15}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\frac{I_{\psi \phi}}{I_{\psi \psi}} \tag{8-16}
\end{equation*}
$$

The coefficients of δm_{0} and $\delta I_{s p}$ in Eq. (8-15) give the influence of these perturbations on final mass, assuming the angle of attack is adjusted to meet terminal conditions.

As mentioned before, there are two types of parameters in the group of five to be considered. The first is one in which there is a unit change In mass over a portion (or all) of the trajectory. For this, the column of adjoint variables for mass provide the basic information. This is seen in the coefficient of $8 \mathrm{~m}_{0}$ in Eq. (8-15). Type-two parameters are those for which the basic sensitivity information must be generated. In the above example, the R array for specific impulse is this information. For the Scout program, the type one (mass only) stage variables are propellant weight and jettison weight. For the remaining three, the R array must be found.

The generalized form of Eq. $(8-15)$ is

$$
\delta \Phi=\left(I_{\phi}-U I_{\phi}\right)\binom{\delta m_{\text {prop. }}}{\delta m_{\text {get. }}}+\left(R_{\phi}-U R_{\phi}\right)\left(\begin{array}{l}
\delta B . R_{.} \tag{8-17}\\
\delta I_{s p} \\
\delta D
\end{array}\right)
$$

where (analogous to Eq. 8-16) U is found from

$$
\begin{equation*}
U=\left[\int_{t_{0}}^{t_{\rho}} \Lambda_{\phi} \Lambda_{\psi}^{T} d t+s_{\phi} Y^{-1} s_{\psi}^{T}\right]\left[\int_{t_{0}}^{t_{\rho}} \Lambda_{\psi} \Lambda_{\psi}^{T} d t+s_{\psi} Y^{-1} s_{\psi}^{T}\right]^{-1} \tag{8-18}
\end{equation*}
$$

It is to be understood that the elements of the arrays in Eq. (8-18) are evaluated for optimization. They have been discussed and defined in detail in Section 5.6. Evaluation of L and R is discussed on the next page.

EVAIUATION OF SENSITIVITY COEFFICIENTS

Jettison Weight

The L vector for jettison weight is formed by recognizing that an increment of one pound in jettison weight implies an increase in weight of the vehicle by one pound from launch to the point at which the stage is jettisoned, after which the vehicle weight returns to the nominal value (for a given payload). Thus,

$$
\begin{equation*}
I_{\text {jett. }}=\left[\lambda_{\text {im }}\right]_{\text {launch }}-\left[\lambda_{\text {im }}\right]_{\text {stage burnout }} \quad 1=1, J C \tag{8-19}
\end{equation*}
$$

Propellant Weight

The I vector for propellant weight again recognizes that an additional pound of propellant is carried from launch to the point of burning. It is assumed that the additional propellant is burned at ignition of the stage of interest and at the level of thrust and specific impulse that nominally exist there. Thus,

$$
\begin{equation*}
I_{\text {prop. }}=\left[\lambda_{\text {im }}\right]_{\text {launch }}+[\lambda] \tag{8-20}
\end{equation*}
$$

Burn Rate
Evaluation of the R array of sensitivities for burn rate reflects the fact that both thrust and mass ilow rate are affected by a change in burn rate. The unit of change selected for this parameter is "one percent."

Generalizing from Eq. (8-1lb), R is formed from

$$
R_{B . R .}=\int_{t_{f_{B}}}^{t_{O_{s}}}[\lambda][G] d t-\left.[\lambda][\dot{x}] \cdot \frac{g I_{s p}}{T_{V}}\right|_{\text {stage ignition }}(8-21)
$$

where the integral is evaluated over each stage and

$$
[G]=\frac{\partial[\dot{x}]}{\partial B \cdot R_{0}} \text { where }[\dot{x}]=\left[\begin{array}{c}
F \\
G \\
I \\
H \\
J \\
K \\
I
\end{array}\right]=\left[\begin{array}{c}
\dot{Y} \\
\dot{y} \\
\dot{Y} \\
\dot{\$} \\
\dot{X} \\
\dot{~} \\
\dot{m}
\end{array}\right] \quad \text { so that }
$$

[G] is evaluated by referring to the equations of motion in Section 4.2. For a one percent change in burn rate,

$$
\begin{aligned}
& \frac{\partial F}{\partial B \cdot R .}=\frac{.01 T_{V}}{m}\left[C_{21} \cos \theta \sin x+C_{22} \cos \theta \cos x+C_{23} \sin \theta\right] \\
& \frac{\partial G}{\partial B \cdot R .}=\frac{.01 T_{V}}{m V}\left[C_{31} \cos \theta \sin x+c_{32} \cos \theta \cos x+c_{33} \sin \theta\right] \\
& \frac{\partial I}{\partial B . R .}=0 \\
& \frac{\partial H}{\partial B \cdot R}=\frac{.01 T_{V}}{m V \cos \gamma}\left[C_{11} \cos \theta \sin x+C_{12} \cos \theta \cos x+C_{13} \sin \theta\right] \\
& \frac{\partial J}{\partial B \cdot R .}=\frac{\partial K}{\partial B . R .}=0 \\
& \frac{\partial L}{\partial B \cdot R .}=\frac{-.01 T_{V}}{G I_{s p}}
\end{aligned}
$$

The second term in Eq. (8-21) reflects a shortened burn time for an increased burn rate.

Specific Impulse

In this program it is assumed that an increase in specific inpulse manifests itself as an increase in thrust while maintaining the nominal mass flow rate. The unit of change is again "one percent." Therefore, the R array is formed with the same expressions as for specific impulse, except that $\frac{\partial L}{\partial I_{s p}}=0$ and there is no second term as in Eq. (8-21), since the naminal burn time is preserved.

Aerodynamic Drag
Aerodynamic drag is treated in essentially the same manner as the above two parameters. Here [G] has only one term, since drag appears only in the \dot{V} equation. The unit of change was established as "square foot of reference area." Thus,
$[G]=\left[\begin{array}{c}c_{D} \bar{q} \\ m \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

PART II

PROGRAMMING OF THE ERUATIONS

SECTION 9

OPTIMIZATION MODULE

DEFINLITION OF SYMBOLS

Most of the symbols used in Section 9 are matrices, many of which are best defined in the text of previous sections. Accordingly, for many of the symbols listed below, a page or equation number is given for reference.

A	Matrix - page 9-2
B	Matrix - page 9-2
C	Matrix - page 9-2
D	Matrix - page 9-2
d ψ	Vector of constraint corrections - page 5-24
E	Matrix - page 9-2
F	$\mathrm{dV} / \mathrm{d} t$
G	dY/dt
H	$d \psi / d t$
JC	Total number of trajectory constraints
K	Vector - page 9-2
p	Vector of time derivatives of trajectory variables
S	Matrix of sensitivity coefficients for adjustable parameters on constraints
Y	Weighting constants for adjustable parameters
$\delta \theta$	Change in pitch angle from previous trajectory
$\delta \mathbf{T}$	Change in adjustable parameters
\wedge	Vectors of sensitivity coefficients of θ and x - page 5-24
λ	Matrix of adjoint variables - page 5-25

PROGRAMMING OF THE OPTIMIZATION EQUATIONS

The programming of Eqs. (5-29) and (5-30) of Section 5.6 will be described here. The quantities that are to be stored differ depending on whether the computation is in the closed-loop or open-loop mode. To indicate the difference, Eqs. (5-29) and (5-30) are rewritten in the following manner.

Closed Loop

$$
\begin{align*}
& \delta \theta=B d \psi-D d x \tag{9-1}\\
& \delta \tau=C d \psi-E d x \tag{9-2}
\end{align*}
$$

where $\quad B=\Lambda^{T} A$
$A=\left[\int_{t_{f}}^{t_{i}} \Lambda \Lambda^{T} d t-S Y^{-1} S^{T}\right]^{-1}$
$D=B \lambda$
$C=-Y^{-1} S^{T} A$
$E=C \lambda$

Open Lop

$$
\begin{align*}
\delta \theta & =\Lambda^{T} K \tag{9-3}\\
\delta \tau & =-Y^{-1} S^{T} K \tag{9-4}
\end{align*}
$$

where $\quad K=A[d \psi-\lambda d x]$
Note that K is evaluated only once, at the point that the computation switches from closed to open loop operation.

Terminology

A forward yun goes forward in time. With the exception of the first forward run, all forward runs are either guidance or cptimization runs. On a forward guidance run, one attempts only to meet terminal conditions. On a forward optimization run, one attempts to ootain payoff improvement along with meeting terminal conditions. The first forward run (the initial trajectory) uses a control program that is read in.

A backward run goes backward in time. All backward runs are either guidance or optimization runs depending on whether the following forward run is to be a guidance or optimization run. The equations for the quantities which are to be stored on the backward run are different for guidance and optimization.

A count is made of the number of integration steps. KPOINL is the mumber of the integration step at which the computation switches from the closed-loop to the open-loop mode of operation. KPOINL is always 20 .

The number of constraints, including the payoff parameter, is given by JC. IC is one (1) for optimization runs and two (2) for guidance runs.

Computations to be made on Backward Runs

$$
\begin{align*}
& \Lambda_{\theta_{j}}=-\left[\lambda_{j} \frac{\partial F}{\partial \theta}+\lambda_{\gamma_{j}} \frac{\partial G}{\partial \theta}+\lambda_{\psi_{j}} \frac{\partial H}{\partial \theta}\right] . \tag{9-5}\\
& \Lambda_{x_{j}}=-\left[\gamma_{j} \frac{\partial F}{\partial x}+\lambda_{\gamma_{j}} \frac{\partial G}{\partial x}+\lambda_{\phi_{j}} \frac{\partial H}{\partial x}\right] \tag{9-6}
\end{align*}
$$

The Λ_{θ} 's are stored from the final point to KPOINL. They are placed in the DD storage area. The index MLI is the row location in storase for the Λ matrix being stored at the current integration step. MLi is initialized
to the number of integration steps in the trajectory and is reduced by one at each integration step until KPOINL is reached. Then MLI is set equal to 1. During the closed-loop portion of the trajectory, the current Λ matrix is stored in the first row of DD. Λ_{x} is used only in evaluating the 5 matrix.

$$
\begin{align*}
& I_{i j}=\int_{t_{f}}^{t}\left[\Lambda_{\theta_{i}} \Lambda_{\theta_{j}}\right] d t \tag{9-7}\\
& \text { for all } 1, j \text { from } 1 \text { to JC } \tag{9-8}\\
& J_{i j}=\sum \frac{S_{i_{k}} s_{j k}}{Y_{K}} \quad 1, j=1 \ldots . . \text { fc for } 1 \leq j
\end{align*}
$$

$J_{i j}$ is computed only for the values of k corresponding to adjustable parameters that are being optimized. Discussion of the evaluation of the S matrix is given in the following section.
$I_{i j}$ and $J_{i j}$ are added term by term. The matrix ($I_{i j}+J_{i j}$) is then inverted. On backward guidance runs, the first row and column of $\left(I_{i j}+J_{i j}\right)$ are not included in the matrix to be inverted. On backward optimization runs, the entire matrix is inverted.

Let the inverted matrix be represented by A. Store A when KPOINC $=$ KPOINL. It is known as Ag2 at that point.

$$
\begin{align*}
B_{11} & =\sum_{j=I C}^{J C} \Lambda_{\theta j} A_{i j} \quad 1=I C, \ldots \ldots . . J C \tag{9-9}\\
B_{12} & =\sum_{j=2}^{J C} B_{1 j} d \psi_{j} \tag{9-10}
\end{align*}
$$

Store B_{11} in the first column of B matrix and B_{12} in the second column.

One row of the B matrix is stored at each integration point. The index MBI gives the row Location of the matrix being stored at the current time. The B's are stored only during the closed-loop part of the trajectory.

$$
\begin{equation*}
c_{k 1}=-\sum_{j=I C}^{J C} \frac{S_{j k} A_{i j}}{y_{k}} \quad 1=I C, \ldots \ldots . J C \tag{9-11}
\end{equation*}
$$

The C's are computed and stored, at the launch time point only, for the launch azimuth and time of day adjustments.

$$
\begin{equation*}
D=B \lambda \tag{9-12}
\end{equation*}
$$

D is a 1×7 matrix. It is stored in the $D D$ storage area. The index MB1 gives the row location of the D matrix being stored at the current time. D is stored only during the closed-loop part of the trajectory.

$$
\begin{equation*}
E=C \lambda \tag{9-13}
\end{equation*}
$$

E is not needed since dx is zero at launch.

Computation to be Made on All Forward Runs After the First

For KPOINC < KPOINL (closed-loop)

$$
\begin{align*}
& \delta \theta=B_{11} d_{\psi_{1}}+B_{12}-\sum_{l=1}^{7} D_{1} \delta x_{l} \tag{9-14}\\
& \delta \tau_{k}=\sum_{j=I C}^{J C} c_{k j} d_{\psi j} \text { for } k=6,7 \tag{9-15}
\end{align*}
$$

For KPOINC $=$ KPOINL (transition to open-loop)

```
Compute K = A [d\psi - \lambda6x]
```

Where A and λ have been stored at this point on the last backward run.

$$
\begin{equation*}
\delta \tau_{k}=\frac{1}{y_{k}} \sum_{j=I C}^{J C} K_{j} S_{j k} \quad k=1,2,3,4,5 \tag{9-16}
\end{equation*}
$$

$$
\begin{aligned}
& \text { For KPOINC } \geq \text { KPOINL (open-100p) } \\
& \begin{aligned}
J= & \sum_{j}^{J C} \Lambda_{\theta j}
\end{aligned}
\end{aligned}
$$

$$
(9-17)
$$

EVALUATION OF S MATRIX FOR ADJUSTABLE PARAMETERS

Terms in the $S_{i k}$ matrix are the sensitivities of the 1 th constraint to the kth adjustable parameter. The correspondence between k and the eleven adjustable parameters is as follows.
k Adjustable Parameter
1 Stage 4 pitch angle, θ (when spun)
2 Stage 4 yaw angle, X
3 Length of coast after stage 3
4 Length of coast after stage 2
5 Length of coast after stage 1
6 Launch azimuth
$7 \quad$ Launch time of day
8 Stage 5 pitch angle, θ (when spun)
9 Stage 5 yaw angle, x
$10 \quad$ Length of coast after stage 4
11 Length of coast after stage 5
The methods of obtaining the eleven colums in the S matrix are described in this section.

Stages 4 and 5θ and x

When a stage is spin stabilized, θ is constant over that stage. Further, x is always constant over each stage. Recall that Λ is the sensitivity of the terminal constraints to a change in the control angles per unft time, from which

$$
d=\delta \theta \cdot \int_{t_{f}}^{t_{i}} \Lambda_{\theta} d t+\delta x \int_{t_{f}}^{t_{i}} \Lambda_{x} d t
$$

It is therefore apparent that

$$
s_{i 1}=\int_{t_{4_{i}}}^{t_{4 i}} \Lambda_{e} d t ; s_{i 2}=\int_{t_{4_{f}}}^{t_{41}} \Lambda_{x} d t
$$

and

$$
S_{i 8}=\int_{t_{5 f}}^{t_{5 i}} \Lambda_{\theta} d t, \quad S_{19}=\int_{t_{5 f}}^{t_{5 i}} \Lambda_{x} d t
$$

These integrals are evaluatea over the respective stages on backward integrations and then stored in the 5 array. When stages 4 and 5 are spun (together) the integrals are taken over both stages and stored as stage-four an.justable parameters to be applied to both stages.

Coaut Durations

The S terms for the coasts are senstitivities of the constraints to extensions of the coast tines. This is obtained ky the matrix product

$$
S_{i k}=\lambda P
$$

formed at the upper end of the coast, and where
$P=\left[\begin{array}{c}\dot{V} \\ \dot{\gamma} \\ \dot{I} \\ \dot{\boldsymbol{V}} \\ \dot{\lambda} \\ \dot{T} \\ \dot{\underline{m}}\end{array}\right]$
and λ is the aimay of adjoint variables at that time.

Irunch srimuth

The launcin azimuth is significant througn the orientation of the inertial platfom, as established at launch. The basis for evaluation of S_{16} is the fact tinat a change in amimuth direction of the platfom axes prodices the same efiect on the thrust diraction as does a change in yaw angle orer the entire boost. Thus, the $S_{i 6}$ is formed by integration of Λ_{x} cver all stozes.

Launch Time of Day

This adjustable parameter is of use only when the longitude of the ascending node is a specified constraint, since the node line is measured from the vernal equinox. The S_{17} is evaluated by

$$
S_{17}=\lambda P
$$

as for the coasts. Here, however, the $\lambda^{\prime} s$ at launch are used along with the P array of derivatives before launch. At that point i is the Earth's rotation rate, and all the remaining derivatives are zero.

INTERMEDIATE TRAJECTORY CONSTRAINIS

Constraints on the trajectory at stage points are handled nearly the same as are terminal constraints. They are always applied at the same time (relative to stage ignition). Thus, on backward trajectories, the adjoint variables for each constraint are initialized at the constraint time by setting them equal to the partial derivative of the constraint with respect to each trajectory variable. On forward trajectories, the achieved value of each constraint is stored for comparison with the desired value.

The method used to determine whether a forward optimization trajectory is successful takes into account the effect of errors in the trajectory constraints on the payoff parameter in judging whether or not a net increase In payoff has been accomplished.

In order to assess the relationship between payoff and errors in the constraints one starts by representing the changes in the control variable and adjustable parameters required to meet terminal conditions with no constraint on payoff. These are given by:

$$
\begin{align*}
& \delta \theta=\Lambda^{T}\left[\int_{t_{f}}^{t_{1}} \Lambda \Lambda^{T} d t-S Y^{-1} S^{T}\right]^{-1}[d \psi-\lambda \delta x] \tag{9-18}\\
& \delta \tau=-Y^{-1} S^{T}\left[\int_{t_{f}}^{t_{1}} \Lambda \Lambda^{T} d t-S Y^{-1} S^{T}\right]^{-1}[d \psi-\lambda \delta x] \tag{9-19}
\end{align*}
$$

The equations are identical to the basic control equetions with the exception that the first row and/or column of all matrices (for the payoff) are left out.

The change in payoff ($\delta \mathrm{m}_{\mathrm{f}}$) that will be produced by given changes in initial conditions, control variables and adjustable parameters is

$$
\begin{equation*}
\delta m_{f}=\lambda_{1} \delta x+\int_{t_{f}}^{t_{i}} \Lambda_{1} \delta \theta d t+S_{1} \delta \tau \tag{9-20}
\end{equation*}
$$

Where $\quad \lambda_{1}$ is the first row of the λ matrix
Λ_{1} is the first row of the Λ matrix
S_{1} is the first rov of the S matrix
δs and $\delta \tau$, required to meet terminal conditions, are given in Eq. . (9-18) and (9-19). Substitute these values into Eq. (9-20) with zero change in initial conditions ($s x$).

$$
\begin{equation*}
\delta m_{f}=\left[\int_{t_{f}}^{t_{i}} \Lambda_{1} \Lambda^{T} d t-S_{1} Y^{-1} S^{T}\right][A][d y] \tag{9-21}
\end{equation*}
$$

where $|A|$ is the inverted matrix appearing in the brackets in Eqs. (9-18) and (9-19). Eq. (9-21) gives the change in payoff associated with adjusting $\delta \theta$ and δT in order to remove errors in the trajectory constraints.

This calculation is made in the $M P$ subroutine at the end on every backward trajectory and is used to correct the magnitude of the payoff parameter indicated on the previous forward trajectory. Furthermore, the elements of the rove matrix

$$
\begin{equation*}
\left[\int_{t_{f}}^{t_{i}} \Lambda_{2} \Lambda^{T} d t-s_{I} Y^{-1} s^{T}\right][A] \tag{9-22}
\end{equation*}
$$

from Eq. (9-21) are partial derivatives of payoff with respect to changes in each constraint. These are printed out on each backward trajectory. They are also stored for use on succeeding forward optimization trajectories in oran to judge whether or not ar n iteration should be judea a success on the basis of payoff imporomont. That is, only if the corrected payoff on the present, iteration excepts the corrected payoff on the previous iteration will the min be jura a buncos.

OPTEMTZATION FOR MAXIMTM PAYLOAD

Optimization with payload as the payoff parameter, compared to velocity or altitude, has the add A complication of a varying mass history (payload) between iterations. Further, it is necessary to recognize that the final weight (payload) is determined solely by the payload chosen at the beginning of the trajectory iteration. This is true since each trajectory teminates at burnout of the final stage or the following coast. The 9 program or coast durations will not affect the terminal mass; however, they and the payload together affect the terminal trajectory variables. Thus, it is natural to consider the payload as a control variable since it affects both the payoff (one to one) and the trajectory constraints. Further, since the payload assumes one value for an entire iteration, it is the equivalent of an adjusteble parameter.

As with other adjustable parameters, it is necessary to develop partial derivatives of the payoff and constraints with respect to a charge in the parameter (payload or equivalently, launch weight). These are simply the column of adjoint variables on mass, taken at the launch point. In the tris subroutine at the end of stage 1 on each backsard trajectory, the λ_{m} are mul.tiplied by their transpose and a weighting factor and added directly into the FJ matrix which is otherwise comprised of $S Y^{-1} S^{T}$ terms of Eq. (9-8). By so doing we have added lauph weight as a control parameter.

The implications of this move are simply that now in computing the payoff correction for constraint errors, discussed in the preceding section, the equations have these additional terms included. On guidance iterations ule change in payload between iterations is set equal to the payoff correction which has bean computed. Similarly, on optimization iterations the change in peyload is set equal to the payofi correction plus the attempted payoff improvemert.

ALIOCATION OF VARIABLES OF INTEGRATION

There is a raximum of 294 variables of integration which are treated at various times by the progran. In order to minimize the computing time and core storage requirements for handling this large number of variables, the following prosraming techniques were employed.

First, all variables which are currently being integrated are grouped in the single-dimensioned $X($) array, with their corresponding time-derivetives in the $D 1($) array. This enables handing of all variables with "DO" statements.

Secondly, the variables oceur in groups whose size depends on the number of constraints selected. Also, some groups are never needed at the same time as others. Thus, by allowing each group to be relocatable in the X() array, variables can be stacked and can use the same positions as others do at other times. A definition of the storage allocation within the $X()$ array is given here.

Let I be the subscript of $X()$ and $T C$ be the number of consiraints. Then,
$I=1,6$ for the six trajectory variables
$I=7$, IIASi for the λ adjoint variables
where IIAST $=7 * J C+6$ on all backward trajectories.
$I=$ IlAST +1 , KKl3 for $\Lambda_{\theta} * \Lambda_{\theta}^{T}$
where $K K 13=8 * J C+(J C *(J C-1)) / 2+6$ on backwarl guddance ard optimisations durine all stages except son sunjulzoa stagos.
$I=\operatorname{IrASH}+1$, IRASN $+J C$ for Λ_{θ} on bsckward guidarce and opbirizetions only during spin stabilizod stagin.

```
I = ILAST + 1, ILAST + 2 + 3 * JC on backward linearization.
I = KKl3 + 1, KKl3 + JC for \LambdaX on backward guidance and optimiza-
tion, over stages 4 and 5 for }x\mathrm{ adjustments and over all time for
launch azimuth adjustment.
I = 202, 201 + 3* JC for exchange ratios only on backward guid-
    ance before final guidance.
```

In the program, I ranges from 1 to KK12, which is equal to the total number of variables being integrated on the present trajectory. KK12 is 6 on all forward and a maximum of 240 on backward trajectories.

PROGRAMMING OF THE LINEARTZATIOA EQUATIONS

INTRODUCTION

The implementation of the inearization of an ascent tilt program adds to the Scout program the option of converting the optimized θ history into a pitch program of up to fifteen Inear segments. A satisfactory innearized pitch program is one in which the trajectory constraints and certain pitch rate limitations are also satisfied. These rate limitations include a maximan pitch rate, minimum pitch rate, only one positive rate, and a minimum change in rate of two adjacent segments. There are several features used in establishing a satisfactory linearized pitch program. For example, it is desirable to have a smail difference between the linearized program and the optimized θ history over the maximum pitch rate area following vertical lift-off. It is also desirable to allow the largest change in θ over the coast segments. These two ends are aided by adjusting the (η) weighting function values (page 6-4) appropriately for these sections. The availability of fixing certain values of θ in the pitch program is used to good advantage when attempting to meet the pitch rate limitations.

GENERAL PROCESSING

The overall incorporation of the innearization processing into the optimization program is shown by the flow chart on page 20-4. After the Scout trajectory optimization is accomplished, the linearization processing begins. The first step is a backward run, evaluating the integrals needed for the inearization matrices. A ilnearized pitch program is then computed and used in running a forward trajectory. When terminal constraints are not
satisfied, or if there are violations of pitch rate limitations in the pitch program, a satisfactory linearization has not been achieved. Further attempts at linearization are made until one is satisfactory or until a maximum number of attempts has been made. If this occurs, a transfer is made winich ends all linearization processing. When a satisfactory linearization is accomplished, the option of running 6D trajectories is tested. When not indicated, a transfer is made which ends linearization processing. When the option is indicated, all succeeding attempts at linearization use the current linearized θ program as a command θ, and 6D computations are included in the trajectory. The attempts at linearization continue until a satisfactory program is again established or until the maximum number of attempts has been made.

INPUT DATA

There are several data inputs required for achieving a linearized pitch program. The basic option for linear processing is selected by inputting $\operatorname{PP}(7)=1$ in data block 4. Data block 18 is solely devoted to linearization and must be input as a complete unit every time it is read in initially or changed in subsequent cases. The first word indicates the total number of linear segments to be used, allowing one segment each for coasts 5 and 6 . The approximate times at which the pitch rate changes are then listed sequentially and are coded so as to indicate the powered stage number as well as the time from the beginning of the stage.

The values of the weighting functions (η from page 6-4) are initialized in the MAIN routine by setting values for all segments to one. Data block 26 allows for input of other values as discussed on page 22-11.

The permitted deviations in terminal constraints used during lineariza-

Abstract

tion are input in data block 29, beginning in DAl4(14). The specifications of the pitch rate limitations are input in data block 22 . The maximum number of forward linearization runs permitted in attempting to satisfy terminal constraints and pitch rate limitations, including those with 6 D computations added, is input as DAl3(4) in data block 28.

DETAILED FLOW OF PROCESSING

Initial Call of Linear
The first step in the linearization process occurs whenever data is - read into data block 18. The LINEAR routine is called immediately to establish approximate values of t_{j}, times from beginning of stage at which pitch rate changes. During both backward and forward linearization runs, an index is needed to indicate the current linear segment. The stage code digits in the input data are used in establishing KKI 4 and KKI 5 which serve this indexing purpose.

The trajectory optimization is then conducted through the final guidance run. When the linearization option is not chosen by input, the flow continues to statement number 10 in the MAIN program where a new case or further optional computations are begun.

Backward Linearization Trajectory

When the linearization option is chosen, the program now initializes and computes variables needed for all subsequent linearlzation runs. As the number of forward linearization muns to be made is limited by input, a counter of these runs is now initialized. The adjustable parameters are held fixed during linearization. Therefore, the flags indicating the use of
these parameters are set to zero.
The LINEAR routine now adjusts the TIIN array $\left(t_{j}\right)$ times so that, during the integration, pitch rates will change at integration step times. The option of fixing θ at any break point involves establishing the array THEIAX as θ_{f} and setting flags in IFPXED indicating which θ_{f} are fixed. At this point in the processing, both of these vectors are initialized to zero. As the θ at the end of lift-of must be 90 degrees, the program uses the option for fixing θ for this purpose. If a maximum pitch rate was encountered during the optimization, t_{2} is set to the stored time at the end of the maximm pitch rate period. A computation of the time duration of pitch rate segments Δt_{j} is made using the adjusted time points t_{j} of TLTN. The segments corresponding to coast stages use a Δt_{j} equal to the duration of coasts 5 and 6 estam blished on the final guided run. Matrices A and B from page 6-5 are computed, and the flow returas to the MAIN routine.

The linearization runs are processed in the main body of the program basically as guidance trajectories. The MAIN routine sets all variables necessary to perform a backward linearization run accordingly. The backward trajectory is begun and processed through powered stage 4 and coast stage 6. (Linearization is performed in stages 1 - 3.)

Processing in TRAJ and DEQ
At the entry to stage 3 special processing begins in both the TRA and DEQ routines. In the TRAJ routine, before beginning a backward integration over a new linear segment, values of the linear segment number and the times at beginning and end of the segment are established. Call these $1, t_{g}$, and t_{j+1}. In the $D E \alpha$ routine during integration over the segment, the integrais used for the inearization process are computed. These are used in establiabing
the matrices D, E, L and M on page 6-5. In programming these matrices, the two terms in M are treated separately, becoming

$$
\left.\begin{array}{rlrl}
M_{A_{1 j}} & =\frac{1}{\Delta t_{j}} \int_{t_{j+1}}^{t_{j}}\left(t-t_{j}\right) \Lambda_{\theta_{1}} d t & \begin{array}{l}
1=1, J C \\
j
\end{array}=1, K
\end{array}\right] \begin{array}{ll}
M_{B_{1 j}} & =\frac{1}{\Delta t_{j}} \int_{t_{j+1}}^{t_{j}}\left(t_{j+1}-t\right) \Lambda_{\theta_{1}} d t \\
& =\int_{t_{j}}^{t_{j}}\left(1-\frac{t-t_{j}}{\Delta t_{j}}\right) \Lambda_{\theta_{1}} d t
\end{array}
$$

so that

$$
\begin{array}{ll}
M_{i l}=M_{B_{i l}} & 1=1, J C \\
M_{i j}=M_{A_{i j-1}}+M_{B_{i j}} & 1=1, J C \\
M_{i K+1}=M_{A_{i K}} & j=2, K \\
& 1=1, J C
\end{array}
$$

The integrals programmed are based on the following equations.

For matrix D

$$
D I(n)=\frac{2 \theta}{\Delta t_{j}}\left(t_{j+1}-t\right)
$$

For matrix E

$$
D I(n)=\frac{2 \theta}{\Delta t_{j}}\left(t-t_{j}\right)
$$

For each constraint, column elements of L matrix

$$
D 1(n)=\theta \Lambda_{\theta_{1}}
$$

$$
1=1, \mathrm{JC}
$$

For each constraint, row element of M matrix

$$
\begin{array}{ll}
D 1(n)=\Lambda_{\theta_{1}} \frac{\left(t-t_{j}\right)}{\Delta t_{j}} & 1=1, J C \\
\operatorname{Dl}(n)=\Lambda_{\theta_{1}}-\Lambda_{\theta_{1}} \frac{\left(t-t_{j}\right)}{\Delta t_{j}} & 1=1, J C
\end{array}
$$

As the end of integration over each segment is reached, the TRAT routine stores the terms in X related to matrices D, E and M into the proper linear segment elements. These X terms are then zeroed, initializing them for integration over the next segment.

Computation of Linearized θ

When the backward run is completed, MAIN routine calls the IINEAR routine, with an inmediate transfer to statement 2000 in IINEAR. The region between statements 2000 and 3018 is used once per trajectory. The region beyond 3018 may be used several times, as repeated attempts are made to satisfy the various pitch rate limitations.

In the 2000 region, four operations are performed. The first is a test for constraint of $\alpha=0$ at stage 2 ignition. If it is selected, the θ_{f} at that point is established from a value stored on the previous trajectory, and the if for that segment is changed from 1. to .01 in order to minimize propagation of effects from fixing θ at that point. The second operation reflects this last consideration. As various θ_{f} values are later established in the process of satisfying the rate limitations, the η for adjacent segments are set to . O1. They are, however, returned to their nominal value for each trajectory iteration. Thus, the nominal values are stored at 2110 . Next, the I and M matrices are given values. During linearization, the constraint on the payoff parameter, orbit inclination and longitude of the node are not imposed. For this, the respective elements of [I] and [M] are set to 0 .
(The resultant matrix ($M \bar{P}^{-1} M^{T}$) will have the diagonal element of the respective row and column set to one before inversion for the same objective.) Finally, the mumber of times a new linearized θ program will be computed on the basis of the previous backward linearization run is limited to five. When a pitch program violates rate limitations, a correction is attempted using an adaltional value of θ_{f} and, in some instances, changing values of η. However, when five such attempts do not produce a linearized θ program satisfying limitations, the last pitch program is used on the following forward run. Even if this run satisfies terminal constraints, further linearization processing must be done to eliminate pitch rate violations. The counter for the number of θ programs computed, KOUNIV, is initialized to 0 in this section. The computations following statement number 3018 involve functions which are affected by adjustments in θ_{f} and η. Therefore, after additional values of θ_{f} are made in attempting to meet pitch rate limitations, the flow returns to this point and the following computations are repeated.

The matrix P on page $6-7, \bar{P}^{-1}$ on page $6-9$, and the computations resulting in the final linearized θ program are then processed. The diagram on page $10-8$ relates the programmed computational matrices to equation (6-22) on page 6-10. The final array THETAL has the fixed values of θ from θ_{f} array and computed values of θ from $\bar{\theta}$ computation.

The next step is determining if the linearized θ program satisfles the Imitations on pitch rate. These limitations include a maximum pitch rate; minimum pitch rate; minimum change in two adjacent pitch rates; and only one positive rate over all segments, and over the coast between stages 3 and 4 . It is assumed that a maximum pitch rate occurs only directiy after initial lift-off. The process of matching the duration of the first linear seement to the optimum time at maximum pitch rate, discussed on page $10-4$, is sufficient

PROGRAMMED COMPUTATION OF ERUATION (6-22) 党 (1) 10-8

for treatment of the maximum rate limitation.

Positive Rate Violations
Positive pitch rate limitation is violated when more than one occurs, including the rate over the coast between stages 3 and 4. When a violation occurs, when more attempts are allowed, and when a coast segment has a positive pitch rate, then the θ at the beginning of this coast is set to a value which satisfies the minimum (-) pitch rate over that segment. The η for the preceding segment is set to .01 , and the $f l o w$ then transfers to statement number 3018.

When the positive rate violation occurs and when only powered stage pitch rate segments are in violation, the θ_{f} at the end of the second positive rate segment is set to a value satisfying the minimum (-) pitch rate over the segment. The η for the segments adjacent to the fixed θ are set to .01 , and the plow then transfers to 3018 .

When violation occurs and there have been five computations of a Iinearized θ program, none of which satisfied rate limitations, the flow transfer to 7900 in the program, ending further attempts to compile a satisfactory program.

Minimum Rate Violations

When the positive rate limit is satisfied, flow proceeds to a test for minimum pitch rate violations. The limit is violated when the absolute value of any pitch rate is smaller than the input minimum value. When a violation occurs and more attempts are permissible, the θ_{f} at the beginning of the first segment in violation is set to a value satisfying the limit over that segment. Flow then transfers to 3018.

Acain, when a violation occurs and there have been five computations of a linearized θ program, the flow transfers to 7900.

Minimum Change in Rate

The next level of processing is for the limitation on minimum change in two adjacent pitch rates. This limit is violated when the absolute value of the change in rates of two adjacent segments is smaller than the input value. When violation occurs but there have been five computations of a linearized θ program, the flow transfers to 7900 . When a violation occurs and more attempts are permissible, the three θ_{f} quantities over the two rate segments in violation are set to produce a constant rate over the two segments. This, in effect, eliminates a segment. Flow then transfers to 3018.

When no violation occurs, a linearized θ program has been established which satisfies all limitations on pitch rates. Before leaving the IINEAR routine, the coast stage 7 pitch rate is tested for minimum rate violation and minimum change in rate violation. A message is printed to indicate such violations. The θ_{f} established in attempting to meet rate limitations is eliminated and the stored weighting function is reestablished.

Forward Linearization Trajectory

On returning to MAIN routine, initialization for a forward linearization run is made. Again this run is basically a forward guidance run, but the newly computed linearized θ program is used in computing the trajectory. The special linearization steps required include, in TRAJ, setting the change to be made in adjustable parameters DTAU to zero. PCAL, on a forward inearization run, computes current θ for stages 1 through 3 on the basis of the pitch rate over the current segment. These pitch rate segment variables are ectablished in IRAJ at the start of each linear segment.

When a forward inearization run is completed, the achieved values of the terminal constraints and their deviations from the desired values are computed in MADN.

When terminal constraints are not satisfied and more attempts at linearization are permissible, a new attempt is made. Nhen terminal constraints are not satisfied and no more attempts are allowed, flow transfers to statement mamer 10 in the MAIN routine, ending all inearization processing.

When terminal constraints are satisfied but there exists a violation of pitch rate limitations in the current linearized θ program, a new attempt at linearization is made. When no violation of pitch rate ilmitations exist and the option of computing a 6D trajectory after successful linearization is not indicated, flow transfers to statement muber 10.

When terminal constraints are satisfied, no rate violations exist and the 6D option is indicated, 811 succeeding backward and forward inearization runs are performed using the linearized θ program as a command θ and adding 6D considerations to trajectory computations. This 6D inearization process is continued until terminal constraints and pitch rate limitations are satisfied or until no more attempts are allowed.

SECTION 21

PROGRAMMING OF BODY DYNAMICS
FOR NOMINAL TRAJECTORY

PROGRAMMING OF BODY DYNAMIC EQUATIONS

Documentation of the programing performed for the body dynamics simulation is presented in this section. It uses the solution for the modified thrust attitude, shown in equations (7-6) and (7-7), in computeLion of the resultant steady-state forces acting on the point mass. All of the equations presented in this section are programed in the subroutine SID.

The unit pitching moments required in equations (7-6) and (7-7) are computed from input data as functions of Mach number and time, as follows:

$$
\begin{aligned}
& M_{\alpha}=\left[C_{M_{\alpha}(F S)} \cdot \varepsilon_{r e f}-C_{N_{\alpha}}\left(X_{F S}-X_{C G}\right)\right] \bar{q} S \\
& M_{\delta}=\left[-C_{M_{\delta}(F S)} \cdot \ell_{r e f}+C_{N_{\delta}}\left(X_{F S}-X_{C G}\right)\right] \bar{q} S \\
& +K_{T V_{\delta}} \cdot T_{V}\left(X_{\delta}-X_{C G}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{C}_{M_{\alpha}}, C_{M_{\delta}} & =\text { moment coefficients about a fixed body station } \\
C_{N_{\alpha}}, C_{\mathbb{N}_{\delta}} & =\text { normal force coefficients } \\
X_{\mathrm{FS}} & =\text { body station for moment coefficients }
\end{aligned}
$$

Now compute α and β, the in-plane and out-of-plane components of angle of attack, respectively, by calling subroutine CONIRL. When α is positive, the aerodynamic force is along $+\bar{m}_{z}$ axis (see diagram, page 7-3). When β is positive, the aerodymanic force is along $+\bar{m}_{x}$ axis.

Finally we compute the control and aerodynamic forces on the vehicle.

$$
\begin{aligned}
& F_{C N L X}=M_{\alpha} \cdot \beta /\left(X_{\delta}-X_{C G}\right) \\
& F_{C N L Z}=M_{\alpha} \cdot \alpha /\left(X_{\delta}-X_{C G}\right) \\
& F_{\alpha}=\bar{q}_{S C_{N_{\alpha}}}
\end{aligned}
$$

So that the total forces along the missile axes are

$$
\begin{aligned}
& F_{m_{x}}=F_{C N L X}+F_{\alpha} \cdot \beta \\
& F_{m_{2}}=F_{C N L Z}+F_{\alpha} \cdot \alpha
\end{aligned}
$$

The components of these two forces along the P-system axes (see diagram, page $7-3$) are then found.

$$
\begin{aligned}
F_{j x} & =F_{m_{x}} \cos x-F_{m_{z}} \sin \theta \sin x \\
F_{j y} & =-F_{m_{x}} \sin x-F_{m_{z}} \sin \theta \cos x \\
F_{j z} & =F_{m_{z}} \cos \theta
\end{aligned}
$$

Knowing the forces in the P-system, we transform them to the Insystem (Fig. 4-1) using the C matrix (page 4-10).

Then, $F_{i_{x}}$ is divided by $m V$ cos γ and added to the equation for in the $D E Q$ subroutine. Similarly, $F_{1_{y}}$ and $F_{1_{z}}$ are divided by m and $m V$, and added to , \dot{V} and $\dot{\gamma}$, respectively.

These calculations are performed only during stage 1 and the following coast, and only during forward 6D trajectories. In all other stages, it is assumed that the vehicle follows the command pitch program.

SECTION 12

PROGRAMMING OF THE EXCHANGE RATIO EQUATIONS

PROGRAMMING OF EXCHANGE RATIO EQUATIONS

As wes evident from the derivetions shown in Section 8, computation of the exchange ratios makes extensive use of quantities which are already available on backward guidance and optimization trajectories. Only the calculation of matrix R and Eq. (8-17) are new operations.

The evaluation of $[R]$ requires numerical integration of $3 * J C$ quantities over each stage. $X(202)$ through $X(240)$ are used for this integration. Thus, at the start of each stage, these locations in $X($) are zeroed, and at the end of each stage the values of $X()$ are stored in [R]. Diring each stage [λ] [G] from Eq. (8-21) is formed in the DEQ subroutine and integrated simultaneously with all the other variables of integration.

At the beginning and end of each stage, the proper elements of the [I] matrix are stored in subroutines INSTめ P and $M E Q$ by simply using the values of the adjoint variables at those times.

Finally, at the end of the trajectory, the exchange ratios are calculated from Eq. (8-17) in subroutine MEQ. The quantity U in Eq. (8-18) is available at that time, since it is used in the process of correcting the payoff parameter to a condition of zero constraint error. This has been described in Section 9.6.

The exchange ratios are output from the $M B Q$ subroutine after the units have been corrected, corresponding to the specified payoff parameter.

SECTION 13

ARODMANIC HRAMIN COMSLRALIS

By selection of data option 2 , the user of the Scout program can impose a constraint on the time-integral of aerodynamic heating rate over the duration of the trajectory. The formulation is that of an inequality constraint, in which the optimization is started without the constraint being applied. If during the iterative solution, the heating integral exceeds the input allowable maximum, the heating constraint is added to the list of constraint parameters automatically and then retained for the remainder of the case.

The equation which is used for the heating rate is

$$
\dot{Q}=\frac{20,800}{\sqrt{R}} \sqrt{\frac{p}{\rho_{S . L}}} \quad\left(\frac{v}{10,000}\right)^{3.25}
$$

where $\quad \dot{Q}=$ heating rate, $\mathrm{Btu} / \mathrm{ft}^{2} / \mathrm{sec}$
$R=$ nose radius of curvature, it
$p=$ atmospheric density, lug/ ft ${ }^{3}$
$\rho_{\text {S. I. }}=$ sea level density
$V=$ aerodynamic velocity
If the constraint is activated during the optimization, it is handled In the program nearly the same as the other constraints. The only difference lies in the set of adjoint equations which are solved for the heating constraint. An additional term is added to the λ_{V} and λ_{r} equations since the constraint is a time-integral function of velocity and altitude. The added terms are the partial derivatives of \dot{q} with respect to v and r, as follows.

[^7]\[

$$
\begin{aligned}
& \frac{\partial \dot{Q}}{\partial V}=\frac{3.25 * 20,800 \sqrt{\rho}}{\sqrt{R *(10,000)^{3.25} \sqrt{\rho} \text { S.L. }}} v^{2.25} \\
& \frac{\partial \dot{Q}}{\partial r}=\frac{.5 * 20,800(\mathrm{~V})^{3.25}}{\sqrt{R *(10,000)^{3.25} \sqrt{\rho_{\text {S.L. }} \sqrt{\rho}}} \cdot \frac{\partial \rho}{\partial \mathrm{h}}}
\end{aligned}
$$
\]

Data Input
To select this option, set $T P(2)=1$. The remaining data input is the same as for any constraint. In data block 8 , put constraint code 14 as the last constraint listed, but do not include it in the count of constraints. - In data block 17, word 7, input the nose radius. In data blocks 19 and 29, input the maximum allowable heating integral and the allowable deviations, treating heat as the last parameter listed.

SECTION 14

PROCESSING OF INPUT THRUST AND WEIGHT DATA

MODIFICATION OF INPUT THRUST TABLE

The scout program can accept an input thrust table in which the thrust is tabulated at arbitrary time points and varies with time in any manner other than a discontimuity. In order that computation accuracy be accomplished in the use of such a thrust history when the integration package uses a fixed time step, it is necessary to modify the thrust table such that the time entries are the same as the integration times. Further, typical solid propellant thrust histories have zero thrust at time-zero and then rise sharply into an initial pulse. This representation is very difficult to use accurately in mumerical solution of the equations of motion. This is especially true for stage one at lift-off. Thus, a modified thrust table is again suggested. The technique which is used to modify the input thrust data while maintaining an accurate simulation will now be discussed.

The most important similarity parameter in modification of thrust is the ideal velocity history for each stage. Therefore, the following sequence of operations is performed after the thrust is input but before the trajectory integration starts. Integrate the input thrust/weight history for each stage, using fourth order Runge-Kutta with variable time steps to match the input thrust entries. This produces an ideal velocity increment for each stage. Call it A. Next, evaluate the integration times which will be used In the trajectory computation. Eliminate the initial pulse by solving for a. new thrust at time-zero which will produce the same thrust-impulse over the first integration step as in the input data. Next, from the input thrust, interpolate a new thrust table at the trajectory integration times. Integrate this new thrust/weight history, and call the integral B. It is the
ideal velocity of the interpolated table. Finally, to make $\mathrm{B}=\mathrm{A}$, multiply $a l l$ interpolated thrust entries by A / B to produce the final modified thrust history.

This computation is programed in the REIN subroutine and is performed at the beginning of each case in which any data have been input which would change the ideal velocity of any stage. The ideal velocities and the final modified thrust tables are output whenever this calculation is performed.

The same calculation is made in computation of dispersed trajectories In which the ideal velocity of the vehicle is perturbed. Here, the programming is repeated in the DISPRS subroutine which serves the dispersion computations.

PROVISION FOR ARBITRARY DISTRIBUTION OF DATA POINTS AMONG STAGES

One of the contractual requirements for this computer program, as extracted from the work statement, is as follows.
"The thrust data inputs shall be written so that the thrust for any stage can be changed without changing the other stages. In order to eliminate the necessity of extensive changes in the input caused by a change in stageweight, the weight time history shall be input as an initial stepweight, consumable stageweight remaining, and payload weight when used as an input.. Storage will be provided to insure that at least 120 tabulated values of thrust and 120 values of weight as functions of stage time may be accomnodated. Provision shall be made to disperse these tabular values in different proportion among the four stages at the option of the user."

In order to be responsive to this requirement and also minimize the necessary core storage, the thrust and weight tables are first read into a temporary storege area. Columns $1-10$ of the DD array, which is not used until optimization starts, serve this purpose. Then, the thrust tables for the five stages are stacked in the "THRUST" array, which then must only be dimensioned 2 * 120. The weight tables are handled similarly. Finally, if data for a subsequent case includes a change in one of the thrust tables (or weight), the five original thrust tables are first unstacked into DD, the new table read in over the old one in DD , its (new) length noted, and then all five tables again stacked in THRUST with, in general, a new distribution of data points among the stages.

This logic is all coded in the REIN subroutine.
One small deviation from the wording of the contract is that the jettison weight, rather than step weight, is input for each stage in addition to the table of consumable weight remaining. The payload is represented, for this purpose, as a part of the finor stage jettison weight.

SECTION 15

DTBPERED Mmictory caiculations

DISPERSIOIVS

The dispersion module controls the dispersion analysis of the optinum trajectory and is called as an input option. Starting from a given payload weight on a ncminally performing vehicle, the dispersions in altitude, range, velocity, and flight path angle at stage two, three and four ignition and the final point on the trajectory, as well as the dispersions in the final orbital elements, are defined for each of the following parameters.

1. Variation in thrust, burn time, and consumed weight.
2. Variation in weight time history for any or all stages.
3. Variation or drag and pitching moment coefficients.
4. Thrust misalignment during first stage.
5. Control system deadbands.
6. Tipoff of spin stabilized stage(s).
7. Launch azimuth and attitude error.
8. Variation of wind velocity and direction as a function of altitude.

Output is provided so that the dispersions can be both individually examined and also grouped as three sigma variations of each condition (excluding orbital elements), both by summation and root sum square techniques. The maximum value of $\bar{q} \cdot \alpha$ encountered on the dispersed trajectory is also output. Since the SCOUS program was written originally for a four-stage vehicle and then modified to simulate up to five stages, the program contains logic in the dispersion module to squeeze five stages of data into four. This is described starting on page 15-10.

Programming - trajectory computation
The basic function of the dispersion module is to store the nominal vehicle/trajectory characteristics, load the dispersion date, and irtegrade
a dispersed trajectory using this data. After computing the dispersions in the trajectory variables and orbit elements, the nominai data is restored and the process repeated for the next desired dispersion.

Due to the large volume of data that potentially must be processed, several arrays from the standard Scout-Presto package are utilized in order to minimize computer storage requirements. The FWB array is used for storage of nominal characteristics, and the FWA array is renamed GIANT, SUM, and FWA, where the GIANT matrix primarily stores the dispersions in the trajectory variables and SUM is used for the three sigma computation. The AA matrix is used for temporary storage of the staging point trajectory variables and certain quantities from the nominal trajectory, the pitch program from data input goes into D', and the DD matrix used for thrust-weight manipulations as in the besic program. The instantaneous quantities in the new matrices are:

$A A(i, j)$	Staging point values of trajectory variables		
	for	$j=1$	stage 2 ignition
		$j=2$	stage 3 ignition
		$j=3$	stage 4 ignition
		$j=4$	finc.l stage burnout
	then for	$1=1$	altitude, feet
		$1=2$	velocity, ft/sec
		$1=3$	flight path angle, degrees
		$i=4$	downrange distance, n.m.
		$1=5$	crossrange distence; n.m.
	and for	$i=7$	nominal azimuth, radians
		$1=8$	sin (nominal downrange angle)
		$1=9$	\cos (nominal downrange angle)
		$1=10$	sin (nominal geocentric latitude)
		$1=11$	cos (nominal geocentric latitude)
		$1=12$.	nomirai. longitude, radians
		$1=13$	nominel latitude, redians

but for $\quad j=5$ orbital elements
then for $1=1$ TWOE, (ft/sec) ${ }^{2}$
$1=2$ EH, $\mathrm{ft} / \mathrm{sec}$
$1=3 \quad R P$, ft
$1=4 \quad$ EYE, degrees
$1=5$ BELAP, degrees
$1=6$ OMDGAE, degrees

D4

FWA

FWB

THH and Quil storage when dispersions are besed on a trajectory using linearized pitch program

The basic IWA array contains 1280 cells. In the DISPRS subroutine, the first 1200 cells became GIANT (6, 5, 40), the next 40 became $\operatorname{SUM}(5,4,2)$, the last unused 40 remain FWA.

Storage of nominal vehicle/trajectory characteristics FWB $(900,901)=\operatorname{DATE}(1,2)$
Storage dependent upon dispersion trajectory code

JILL Code	FWB Subscript	
	$1-260$	Value
	$261-580$	WEIGHT
	$581-710$	THRUST
	$711-870$	SLOPEW
	$871-884$	SLOPET
	$885-891$	DAI
	$892-895$	STGH
	1	WITOGO

19-20 1-42 CMAIPH
21-23 1-2 Data Block 49

33
1
STI (6)
34,35
Odd mumbers to 33
THH

```
GIAMT(i,j,JILL) Dispersions in steging point trajectory variables;
cells i=1,5,j=1,5 analogous to AA(i,j), and
JILL = current dispersion trajectory code, For
GIANT(6,j,JILL)
j=1,2 dispersion title from data block 46
j=3 maximum \overline{q}\cdot\alpha encountered
j}=4\quad\mathrm{ TINCT of }\overline{q}\cdot\mp@subsup{\alpha}{\mathrm{ max }}{
j = 5 OMEGAE
```

Visualize the three dimensional GIANT array as a stack of 40 horizontal planes where each plane contains the dispersion information from one dispersed tra.jectory, except No. 39, which is blank, and No. 40, which contains the corresponding unperturbed trajectory variables from the nominal trajectory. A dispersion is defined as (variable on dispersed trajectory) - (variable from nominal trajectory) and is computed with the equation

$$
\operatorname{GIANI}(i, j, \operatorname{JILL})=\operatorname{AA}(1, j)-\operatorname{GIANT}(i, j, 40)
$$

and the proper subscripts.

$$
\begin{aligned}
& \operatorname{Sum}(i, j, k) \quad \text { Storage for the three signa computation } \\
& i= \text { trajectory variable index } \\
& j= \text { staging point index } \\
& k= \text { type of three siema calculation } \\
& k=1 \text { for } \sum \text { (dispersions) } \\
& k=2 \text { for }[\Sigma \text { (dispersions) }]^{\frac{1}{2}}
\end{aligned}
$$

Other important varianles whose values are dependent upon the type of dispersion are:

CHANGE
JILT, Code
9-16
24-29
30-32.

33
34,35

Value
stage weight increment, lb control dcảband angle, radians
fourth and/or firtn stage tipore angle = effective attitude change, radians launch azimuth change, radians launch attitude chanee, radians

DATE Dispersion type title, from data block 46
$\operatorname{TPSP}(1) \quad-1$ yaw plane dispersion trajectory

- +1 pitch plane dispersion trajectory

otherwise IDSP = 0
$\operatorname{IP}(21)=1$ dispersion module will be called - 0 no dispersed trajectories are required - - 1 pitch plane dispersion is being computed = -2 yaw plane dispersion is being computed

JACK Storage for nominal trajectory values of ITSIAGE, NTHRST, and NWEIGH arrays

JILU Code for type of dispersion trajectory currently being computed, see data block 46

Programing - three sigma variations

Three sigma variations in each of the dispersed trajectory variables are formed in two fashions, both by summing the dispersions and by the root sum square method. The dispersed trajectories are divided into two groups for the three sigma analysis, high/low trajectories and yaw trajectories, as designated by data block 46.

The three sigma variations for the yaw trajectories are computed ifst. Since these yaw trajectories are processed with no distinction between right and left crossrange dispersions, if the input data results in both positive and negative dispersions, the three sigma worst-on-worst sumation will be less than a maximu crossrange variation (computed by suming absolute values).

The high/low trajectories reprecent pitch plape diaperaions. The progran cearches the hist/iow group, exciuding wind dispersions, and relocts thoee trajectories whoes final aititude diepersion is positive for the hish three sigma computation, and those trajectories wose final altitude dispersion is negative for the 10 w three sigma computation. If the altitude alspersion is sero, the velocity diepersion is exmined (positive diepersion for hich throe sigma). After these three sigma arraye are output, the hich/low wind diepersed trajectories are cumined and added to the appropelate three alan arrays and then output. This delay in adding the wind dispersions to the himp/isw three signe computation allows the user, on ose couputer pess, to see the vehicia/ zemeher three alge dispersions separated from the total three sieme varis tion that could be encountered.

Following the output of all the necescary dispersion information, the DISPRS subroutive then initiates the regencration of the nowinal trajeotory, with proper storage in the standard arrays. Specifically, the nominal trajectory's TINCT, x, y, z position history is loaded into the FWA array for RADAR and the standard trajectory variables are loaded into the FWB array for HRDOVR and DPRACT.

Programming - SDCD - Dispersion

Modifications were made to the SIXD-D subroutine to properily account for the first stage thrust misalignment and wind dispersed trajectories.

For first stage thrust misalignment, a term is added to the equation for the vaiciele's resultant thrust attitude theta (chi)", couparted from Eq. (7-6)-(7-7) in section 7, Body Dynamics Simulation. The modified equation is
\#hen the $J I f r$ code indicates a high/low (yaw) trajectory, the thruat aisaligam ment angle is assumed in the pitch (yaw) plane.

$$
\theta=\frac{K_{\theta} M_{\delta} \hat{\theta}_{c}-K_{q} M_{\delta} \dot{\theta}_{c}-M_{\sigma} \gamma_{w}+M_{\alpha_{T}} \cdot \alpha_{T}}{K_{\theta} M_{\delta}-M_{\alpha}}
$$

Where $M_{\alpha_{T}}=$ thrust misalignment unit pitching moment
$M_{\alpha_{T}}=T_{\bullet}$ (thrust application station - XCGI)
$T=$ net thrust
$\alpha_{T}=$ thrust misaligament angle, radians,
where positive angles give positive moments
See Section 7 for additional definitions.
The additional control force required to keep the missile in rotational equilibrium and the thrust misalignment force are added to the total force $F_{m_{z}}\left(F_{m_{x}}\right)$ in the missile axes system with the term

$$
-T \cdot \alpha_{T} \cdot\left\{1-\frac{\text { (thrust application station - XCGI) }}{\left(x_{\dot{o}}-X C G 1\right)}\right\} \text {. }
$$

The wind dispersion analysis requires modification of the integrated velocity term to an aerodynamic velocity vector for angle of attack computations, recalculation of the dynamic pressure and redefinition of the aerodymamic forces.

The wind velocity and azimuth at a given altitude are obtained from the input data, and subtracted from the integrated velocity to form the air mass relative velocity of the vehicle, as

$$
\begin{aligned}
& v_{i x}=-v_{W} \cdot \sin \left(\psi_{W}-\psi\right) \\
& v_{i y}=v-v_{w} \cdot \cos \left(\psi_{w}-\psi\right) \cdot \cos \psi \\
& V_{i z}=v_{w} \cdot \cos \left(\psi_{W}-\psi\right) \cdot \sin \gamma
\end{aligned}
$$

where $\quad V_{w}=$ magnitude of wind velocity

$$
\psi_{w}=\text { azimuth of wind's velocity vector }
$$

$$
\begin{aligned}
& v=x(1)=\text { integrated velocity } \\
& \gamma=x(2)=\text { integrated flight path angle } \\
& v=x(4)=\text { integrated azimuth }
\end{aligned}
$$

The aerodynamic velocity components in the inertially fixed platform axis, $\overline{\mathrm{V}}_{\mathrm{j}}$, are found from

$$
\left|\begin{array}{c}
v_{j x} \\
v_{j y} \\
v_{j z}
\end{array}\right| \quad=[c]^{-1} \quad\left|\begin{array}{l}
v_{i x} \\
v_{i y} \\
v_{i z}
\end{array}\right|
$$

The dynamic pressure and drag force are next redefined using the \bar{v}_{j} velocity.
Following the programming flow through Sections 7 and 11 , the solution for the angles X_{v} and $A_{\text {aw }}$ is unchanged. However, computation of α and β, the in-plane and out-of-plane angles of attack, requires the components of $\bar{\nabla}_{j}$ along the missile axes, $\overline{\mathrm{V}}_{\mathrm{m}}$.
$\left|\begin{array}{l}v_{m x} \\ v_{m y} \\ v_{m z}\end{array}\right|=\left|\begin{array}{lll}\cos x & -\sin x & 0 \\ \cos \theta \sin x & \cos \theta \cos x & \sin \theta \\ -\sin \theta \sin x & -\sin \theta \cos x & \cos \theta\end{array}\right| \cdot\left|\begin{array}{c}v_{j x} \\ v_{j y} \\ v_{j z}\end{array}\right|$

Then $\quad \tan \alpha=-V_{m z} / V_{m y}$
and $\quad \tan \beta=-V_{\operatorname{mx}} / V_{\text {m }}$
Finally, the new drag force is added to the other forces in the 1 axes system using direction cosines from
then $D=0$.

$$
\begin{aligned}
& F_{j x}(\text { increment })=-D \cdot\left(v_{j x} /\left|\bar{v}_{j}\right|\right) \\
& F_{j y}(\text { increment })=-D \cdot\left(v_{j y} /\left|\bar{v}_{j}\right|\right) \\
& F_{j z}(\text { incitement })=-D \cdot\left(v_{j z} /\left|\bar{v}_{y}\right|\right)
\end{aligned}
$$

The drag term D is zeroed so the $D E Q$ subroutine will not account for drag a second time, since \bar{F}_{j}, transformed to \bar{F}_{i}, is used as a corrective term in the equations of motion.

Although it is assumed that the dispersion analysis will always be generated including body dynamics effects, the thrust misalignment and wind dispersions are the only two that require the SIXD-D subroutine, and the other dispersion trajectories could be computed without body dynamics.

PROGRMAITHG- YOMINAL DATA TRA:SFORATION

Before dispersion calculations are begun, the subroutine Squent transiorms the madarity of optimization module data into the form used by the dispersion package routines. SQuEEA inftially tests for conditions which are unacceptable: these include a coast after final pcwered stage, a linearized pitch program of more than 13 linear segwents, and too many entries to frruc or Wilch array wen the modified histories are used on a five-stage venicle.

For vehicles having 4 or less powered stages, the transformation is done by fairly simple data manipulations. However, 5-stage vehicles require data not previoisly available to the dispersion package. Two additional areays wore cstablished, STGIW and NSTGIN, to transfer this information to DISFRS and TRAJJ. These arrays contain stage 4, 5 and 9 data on times, number of integration points, jettison weights, and THRUST and WEIGHT table indices relating to coast, 9 and powered stage 5. The THRUST and WEIGHT arre.js are modified so that the time entries for stage 4,9, 5 are continuous from a time of 0 at stage 4 ignition. To the THRUST array is added one segrent of thrust equal to zero over the coast. The WEIGHT array is modifien so that each of the staci 4 weights have added to them the sum of the propellant weight at stage 5 icnition and the jettison weight of stage 4. Table indices indicating the beginning of coast 9 and stage 5 in both TARUST and WIIGH? arrays ere sured in the Mririd array.

SQUEZid stores the Tri table as the nominal ∂ history for dispersions. When disprasjons are based on a linearized norinal trajectory, the linearized θ hintory is stored, followa by the spin stabilized stage 0 , if applicable.

PROGRAMPIITG- COAST STAGE 9 AND POWERED STAGE 5 DISPERSION CAICULATIONS

The integration procedure has been modified so that for a five-stage vehicle, an integration step size is set at the beginning of each stage. These Δ t's are determined using the current dispersed trajectory stage durations and the number of integration points specified for that stage on input to the optimization package. A critical time is also set to the value of the (dispersed) stage duration. The THRUST and WEIGHT table indices are also initialized to the correct value at the beginning of each stage. The stage is then integrated to the critical time established and whatever testing is required for control angle dispersion, etc., is done. This continues through stage 5.

Vacuum thrust variation in stages 4 and 5 require the inputs described on page 22-30. The dispersed stage durations for 4, 5, a computed value for coast 9 , and the computed stage Δt 's are stored. The input thrust/weight histories are first modified as described in the discussion of the SQUERZE routine on the previous page. The modifications discussed in section 14 are now calculated. This is done by integrating over stage 4 with the stage Δt, setting the coast segment values, and then integrating over stage 5 with its stage Δt. The indices of the THRUST end WEIGHT tables relating to the first points of coast stage 9 and stage 5 are stored. They are used in the stage initializing procedures mentioned above.

Fourth and/or fifth-stáge tipoff dispersions are included in the dispersion package. These are tested for and implemented at the staging points described above.

SECTION 16

FAIIURE-MODE FARDOVER TURR CAICULAIIONS

EARDOVER TURN MANEUVERS

Abstract

Sunmary As an input option，hardover turn maneuvers may be computed for the first three stages，starting from points in the optimm trajectory where a control malfunction is assumed to have occurred．These turns correspond to a hardover maneuver in pitch or yaw due to maximm deflection of the fins and jet vanes on the first stage，and control jets malfunctioning for the second and third stages．

Abstract

Programming The computational flow through $⿴ 囗 十 ⺝ ⿱ ⿴ 囗 十 ⺝ 丶 寸 D O V R, ~ a f t e r ~ s e t t i n g ~ i n p u t ~ c o n s t a n t s, ~$ first picks up initial conditions for the trajectory variables from a specified point along the nominal trajectory．Instantaneous forces and vehi－ cle characteristics are domputed，followed by evaluation of the over－turning moments and angular acceleration．If there is a thrust misalignment，the component of thrust along the body axis is correspondingly reduced．The equations of motion are evaluated and integrated using an Euler method technique．Checks are made for exceeding a dynamia pressure times angle of attack constraint，and for excessive tumbling or reaching the end of the stage．If these constraints are not violated，the hardover turn computation is contimued until ten seconds has elapsed，after which new initial cond－ tions are read in and the process repeated．

Equations

The equations of motion for the two dimensional problem of point mass motion over a Plat Earth（non－rotating reference system）are：

$$
\begin{aligned}
& \dot{V}=\frac{T}{m} \cos \alpha-\frac{D}{m}-g \sin \gamma \\
& \dot{\gamma}=\frac{T}{m V} \sin \alpha+\frac{L}{m V}-\frac{g \cos \gamma}{V} \\
& \dot{h}=\dot{r}=V \sin \gamma \quad g=\frac{\mu}{r^{2}}
\end{aligned}
$$

where $V=$ velocity
$\gamma=$ flight path angle of V from horizontal
h = altitude, distance above Earth's surface
r - distance from vehicle to Farth's "center"
T - net thrust
D = eerodynamic drag
$L=e e r o d y n a m i c ~ l i f t$
m = current mass
g = gravitational acceleration
$\alpha=$ angle of attack
$\mu=$ gravitational constant
For the special problem of hardover turn maneuvers, the maximm turning capability of the velocity vector is assumed identical in both pitch and yaw. Since this turning capability is computed only by integrating the $\dot{\gamma}$ equation, the g cos γ / V term is deleted as requested in Reference (a). ${ }^{*}$ Also, the gravitational acceleration g and, for the upper stages, sin γ are assumed constant during the maneuver.

The vehicle's attitude angle, measured fram horizontal to the vehicle's longitudinal axis, is defined as η, with $\alpha=\eta-\gamma$. When the over-turning forces acting normal to this axis are included, the equations of motion become:

Reference (a). COMPMR Instruction 5100.2C, Policy, Criteria and Procedures for Missile In-Filght Safety in the Pacific Missile Range PMR, 4 September 1963.

$$
\begin{aligned}
\dot{V} & =(T \cdot \cos \alpha-D-\text { FORCEN } \cdot \sin \alpha) / m-g_{0} \sin \gamma_{0} \\
\dot{\gamma} & =(T \cdot \sin \alpha+L+\text { FORCEN } \cdot \cos \alpha) / m V \\
\dot{r} & =V \sin \gamma_{0}
\end{aligned}
$$

where FORCEN for the first stage is defined as

```
FORCEN = \(-T \cdot \alpha_{T}-2 \cdot \delta\left(C N D E L T \cdot \bar{q} \cdot \mathrm{~S}+\mathrm{T}_{\mathrm{V}} \cdot \mathrm{K}_{\mathrm{TV} \delta}\right.\) )
\(\alpha_{T} \quad=\) thrust misalignment angle
万 \(\quad=\) jet vanes and fins deflection angle
\(K_{\text {TV }}\) - jet vane effectiveness
S \(\quad=\) aerodymamic reference area
```

Definitions for other terms may be found in Section 21, Coding Nomenclature.
And, for the upper stages,
FORCEN $=-T \cdot \alpha_{T}$ (mode 1) or
FORCEN $=-T_{C} \quad($ modes 2 and 3$)$
where $T_{C}=$ control jet thrust force
Note that positive angles and forces give positive moments (vehicle nose up). Hardover turn maneuvers are computed assuming the following combinations of over-turning moments.

Stage 1
Control fin and jet vane deflection, with simultaneous
additive thrust misalignment.
Stages 2 and 3
Mode 1. Thrust misalignment only
Mode 2. Single control jet operation
Mode 3. One pitch and one yaw control jet operation, with 45° roll angle assumed

Stage 1 simulation includes the atmospheric effects of a restoring moment due to angle of attack and pitch damping moment; all stages include jet damping effects.

The applicable moment equations are:

1. $M($ control deflection $)=6\left\{\overline{9} \cdot 5 \cdot\left(-\operatorname{CNDELT} \cdot b_{r e f}-\operatorname{CRDATT} \cdot\right.\right.$

$$
\left.\left.\left(x \operatorname{coc} 1-x_{T S}\right)\right)+K_{T V \delta} \cdot T_{V} \cdot\left(x_{8}-x \operatorname{coc}\right)\right\}
$$

where $l_{\text {ref }}=$ reference length for aero moment data $X_{0}=$ jet vane thrust application station
2. M (thrust misalignment) $=T \cdot \alpha_{T}$ ($\left.X_{T A}-X C G 1\right)$
where $X_{\text {TA }}=$ lith stage effective thrust application station XCGI = fth stage center of gravity station
3. M (angle of attack) $=\alpha\left\{\bar{q} \cdot S \cdot\left(\right.\right.$ CMALPH $\left.\left.\cdot \ell_{\text {ref }}+T L_{1}\left(X C G l-X_{F S}\right)\right)\right\}$
4. M (pitch damping) $=$ CNS $\cdot \dot{\eta} \cdot \ell_{\text {ref }} \cdot \bar{q} \cdot s \cdot \ell_{\text {ref }} / 2 V$
where CMR - pitch damping coefficient
5. $M($ jet damping $)=\dot{\eta} \cdot\left(\right.$ in $\left.\left(X C G I-X_{T A}\right)^{2}+I_{y y}^{r}\right)$ where $\dot{\text { m }}=$ instantaneous mass time derivative
$I_{\text {fy }}=$ pitch or yaw moment of inertia time derivative
6. $M($ control jets $)-T_{C} \cdot\left(X_{\text {PAC }}-X C G 1\right)$ where $X_{T A C}=$ control force application station

The vehicle's instantaneous attitude η is determined by integrating the angular acceleration $\ddot{\eta}$, where $\ddot{\Pi}=\Sigma$ (applicable moments) $/ I_{y y}$, with $\eta_{0}=Y_{0}$.

8BCTION 17

ROMMTAL DAPACT LOCUS

As an input option, impact points may be predicted for the booster, both assuming thrust failure during operation of the first three stages, and for the expended casings of the first three stages. The initial conditions for the impact trajectories are taken from the optimum trajectory at specified intervals, and aerodynamic drag force is included for all trajectories.

Programining

Coast stage 6 nomenclature is used for the integration of the impact trajectories, so the nominal stage 6 drag and quotient arrays are stored in the DD array. The current failure mode drag curve and corresponding quotient table are loaded into the respective stage 6 arrays. Initial conditions for the trajectory variables are taken from the FWB array, and program control is transferred to subroutine INIPIM (INsToP for IMpact). INTPIM sets the integration step size dependent upon the magnitude of the drag acceleration force. Four step sizes are used, corresponding to whether the vehicle is still in the atmosphere, has left the atmosphere, has reentered the atmosphere, or is at terminal velocity. Integration proceeds until impact occurs on a geodetic Earth model. Program control then returns to IMPACT, the impact location is output, and the process repeated for the next set of inftial conditions.

SECIION 18

RADAR IRACKIIC COORDINAITES

RADAR CONPUTATIONS

The radar subroutine couputes the look angles and slant ranges from Farth-Fixed locations to the optimm trajectory as an input option. The radar site locations are input in terms of geodetic latitude, longitude, and altitude, and up to twenty sites can be accommodated.

Programming

The input radar site identification and coordinates are stored in ISTATIN and STCORD. The time history of the booster's x, y, z geocentric rectengular cooriinates on the optimm trajectory have been stored in the FWA array. For each radar station, the geodetic location is comverted to geocentric rectangular coordinates and a transiormation matrix is computed. Then, starting at launch and continuing through stage-four burnout, the booster's position is taken from the FWA array at each timepoint and the look angles and slant range are computed and output. The process is then repeated for the next radar station input.

Equations
The following equations are for the computation of azimuth and elevation angles and slant range distance From a geodetic Earth-fixed location to a space vehicle:

1. Azimuth

$$
a=\operatorname{Tan}^{-1}\left(\frac{X_{g 1}}{X_{g 1}}\right)
$$

2. Elevation

$$
e=\operatorname{Tan}^{-1} \frac{-Z_{g 1}}{\left(x_{g 1}^{2}+Y_{g i}^{2}\right)^{1 / 2}}
$$

3. Slant Range

$$
S R=\left(X_{g 1}^{2}+Y_{g 1}^{2}+z_{g 1}^{2}\right)^{1 / 2}
$$

In equations $1,2,3$, the quantities $X_{G i}, Y_{g i}, Z_{g i}$ are topocentric goedetic coordinates of the vehicle relative to the ith tracking station with $X_{g i}$ directed along the local geodetic north and tangent to the spheroid; $Y_{g i}$ direct along the local east and $Z_{g i}$ is normal to the spheroid and positive towards the geocenter. They can be found from the following transformation:
$X_{g 1}$
$y_{g 1}$
$z_{g 1}$$\left|=\left|A\left(\lambda_{d}, u_{1}\right)\right| \begin{array}{l}x-x_{1} \\ y-y_{1} \\ z-z_{1}\end{array}\right|$

```
\(x_{i}=r_{i} \cos \lambda \cos u_{i}\)
\(y_{i}=r_{1} \cos \lambda \sin u_{1}\)
\(z_{i}=r_{i} \sin \lambda\)
\(u_{i}=\) Greenwich longitude, positive eastward, of the ith station
\(\lambda=\) Geocentric latitude
\(r_{1}=\) Geocentric radius
```

In this transformation x, y, z, and x_{1}, y_{i}, z_{i} are the geocentric coordinate locations of the vehicle and ith station, respectively, with the x, y coordinates lying in the equatorial plane and 2 along the polar axis positive north.

The transformation from the inertial geocentrelc to the inertial geodetic is the following.

$$
A\left(\lambda_{d}, u_{1}\right)=\left|\begin{array}{ccc}
-\cos u_{1} \sin \lambda_{1} & -\sin u_{1} \sin \lambda_{d} & \cos \lambda_{d} \\
-\sin u_{1} & 0 \\
-\cos u_{1} & 0 \cos u_{1} & -\cos \lambda_{d} \sin u_{1} \\
-\sin \lambda_{d}
\end{array}\right|
$$

In the above transicumation, λ_{d} is the geodetic Intitule.
The geocentric coordinates of the lith station $\left(x_{1}, y_{1}, z_{1}\right)$ are computed - from the input geodetic latitude, longitude, and altitude location of the station. The oblate Barth is represented by an ellipsoid of reference having an inverse flattening of 298.3. The equations for the geocentric rectangular coordinates are:

$$
\begin{aligned}
& \tan R A=\frac{(f-1)}{1} \tan \lambda_{d} \\
& \text { where } f=298.3 \\
& z_{1}=R_{e} \frac{(P-1)}{1} \sin R A+\operatorname{ALI} \sin \lambda_{d} \\
& \text { where } R_{e}=\text { equatorial radius, ALI }=\text { station's altitude } \\
& x_{1}=R_{e} \cos R A+A L T \cos \lambda_{d} \\
& x_{1}=x_{1} \cos u_{1} \\
& y_{1}=x_{1} \sin u_{1}
\end{aligned}
$$

[^8]
SECHION 19

SPDCIAL SUBROUTINES

SCOUT ATMOSPHERE SUBROUTINE

(1962 ARDC MODEL)

Required: Density, Pressure, Speed of Sound
(p)
(p)
(a)

Symbols
$h \quad$ geometric altitude in feet ($h=r-R_{e}$)
H* geopotential altitude in geopotential feet'
p density in slugs
p pressure in $1 \mathrm{~b} / \mathrm{ft}{ }^{2}$
a speed of sound
$\mathrm{T}_{\mathrm{M}} \quad$ molecular-scale temperature in ${ }^{\circ} \mathrm{R}$ at altitude H^{*}
$L_{M} \quad$ gradient of T in terms of H^{*}; i.e., $\frac{\partial T_{M}}{\partial H^{*}}$ in ${ }^{\circ} R / f t$,

Subscripts

- denotes property at sea level $h=H^{*}=0$
b denotes property at base of particular layer

Constants
$g_{0}=32.174 \mathrm{ft} / \mathrm{sec}^{2}$ (acceleration of gravity measured at sea level)
$R^{*}=1715.4827 \mathrm{ft}^{2} / \mathrm{O}^{\circ} \mathrm{sec}^{2}$, gas constant for air

Equations

$$
H^{*}=\frac{R_{e} \cdot h}{R_{e}+h}
$$

Type $I\left(L_{M}\right)_{b}=0$

$$
\begin{aligned}
T_{M} & =\left(T_{M}\right)_{b} \\
\rho & =\rho_{b} \exp \left[\frac{-g_{0}\left(R^{*}-H_{b}^{*}\right)}{R^{*}\left(T_{M}\right)_{b}}\right] \\
p & =\rho R^{*}\left(T_{M}\right)_{b} \\
a & =\sqrt{1.4 R^{*}\left(T_{M}\right)_{b}} \\
\text { Type II } & \left(L_{M}\right)_{b} \neq 0 \\
T_{M} & =\left(T_{M}\right)_{b}+\left(L_{M}\right)_{b}\left(R^{*}-H_{b}^{*}\right) \\
\rho & =\rho_{b}\left[1+\frac{\left(L_{M}\right)_{b}\left(H^{*}-H_{b}^{*}\right)}{\left(T_{M}\right)_{b}}-\left(1+\frac{g_{0}}{R^{*}\left(I_{M}\right)_{b}}\right)\right. \\
p & =\rho R^{*} T_{M} \\
a & =\sqrt{1.4 R^{*} T_{M}}
\end{aligned}
$$

TABIE OF CONSTANTS AT BASE AITTIUDES

DERIVATIVES OF (ρ, p, a) WITH RESPECT TO ALTITUDE

1. Assume $\frac{\partial()}{\partial h}=\frac{\partial()}{\partial H^{*}}$
2. For Type $I\left(I_{M}\right)_{b}=0$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial h}=-\frac{\rho g_{0}}{R^{*}\left(T_{M}\right)_{b}} \\
& \frac{\partial p}{\partial h}=R^{*}\left(T_{M}\right)_{b} \frac{\partial \rho}{\partial h} \\
& \frac{\partial a}{\partial h}=0
\end{aligned}
$$

3. For Type II $\left(I_{M}\right)_{b} \neq 0$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial h}=\frac{-\rho\left[1+\frac{g_{0}}{R^{*}\left(I_{M}\right)_{b}}\right]\left[\frac{\left(I_{M}\right)_{b}}{\left(T_{M}\right)_{b}}\right]}{\left[1+\frac{\left(I_{M}\right)_{b}\left(H^{*}-H_{b}^{*}\right)}{\left(T_{M}\right)_{b}}\right]} \\
& \frac{\partial p}{\partial h}=R^{*}\left(T_{M} \frac{\partial \rho}{\partial h}+\rho\left(I_{M}\right)_{b}\right) \\
& \frac{\partial a}{\partial h}=\frac{0.7 R^{*}\left(I_{M}\right)_{b}}{a}
\end{aligned}
$$

THE RKAD INTEGRATION SUBROUTINE

The numerical integration subroutine in the Scout program makes use of both the Runge-Kutta and the Adams methods of integration. The Adems method is faster than the Runge-Kutta but requires stored derivatives of the variable at three points prior to the current point. It, therefore, cannot be used to start the integration. The Runge-Kutta method does not require past information and can be used to start the integration.

An integration interval constant over each stage is used in the program, both for speed and bookkeeping ease in the optimization trajectories. In powered stages an interval one to two seconds is reasonable. However, since the thrust can vary rapidly with time, the Adams method is not sufficiently accurate with that large an integration step. Therefore, the Runge-Kutta method is used during the powered stages. However, during the coasts the integration starts in Runge-Kutta and switches to the Adams method after four steps.

The Runge-Kutta method used is standard fourth order. The Adams method computes the increment in any variable in terms of the current derivative and the derivatives at the three previous points. The increment oy is given by

$$
\delta y=\left(55 \dot{y}_{1}-59 \dot{y}_{2}+37 \dot{y}_{3}-9 \dot{y}_{4}\right) \frac{\delta t}{24}
$$

where st is the size of the integration step, \dot{y}_{1} is the current derivative, and \dot{y}_{2} is the derivative one point back, etc.

SUBROUTINE SYMNRT

Identification

FI*ML F HSIV SYMMEIRIC MATRIX INVERSION
Ira C. Hanson, Lockheed
November 1962

Purpose

This subroutine calculates the inverse of a symetric matrix.

Method
The algorithm of Cholesky is used to decompose the symmetric matrix A into a triangular matrix B such that $A=B B^{*}$. The asterisk denotes transpose. If the matrix A is not positive-definite, the matrix B will contain some imaginary elements. The trianguiar matrix B is then inverted by direct elimination. Since $\left(B^{-1}\right)^{*}=\left(B^{*}\right)^{-1}$, it is unnecessary to compute $\left(B^{*}\right)^{-1}$. The final inverse is then computed as follows. $A^{-1}=\left(B^{*}\right)^{-1} B^{-1}$. All imaginary elements drop out at this point. Only the upper triangular part of A is used in the computation.

For a complete description of the algorithr of Cholesky, see E. Rodewig, "Matrix Calculus," North Holland Publishing Company, Amsterdam, 1956, pages 110-114.

Usage

Entrance to the subroutine is made via the FOKiTRAN statement in the calling program.

CAIL SYMVRT (A, N, ISTIG)
where 1) A is the label of the matrix to be inverted. Only the upper triangular part of A is required. After the inversion is complete, the inverse is stored in the lower triangular part of A. The original matrix is destroyed.
2) N is the number of rows in the matrix.
3) ISING will be set to zero if the inversion was successiful. ISING will equal one if the matrix in A is singular.

The subroutine uses three temporary single subscripted arrays. These arrays must be dimensioned at least as large as the row entry of the A array. These arrays may be placed in comon to conserve storage if desired.

Restrictions

The Cholesky decomposition will fail if a zero appears during the computation of the diagonal elements and also if $A(1,1)=0$. This does not necessarily mean the matrix is singular, but it does mean the calculation of the inverse has failed. There is no practical fool-proof method of a priorily interchanging rows and columns to avoid this trouble. Interchanging after a zero is detected is not solution because the remaining elements may also be zero and the matrix still not be singular. Therefore, no pivot search is attempted in this subroutine and it should only be used in a physical appilcation where it is known that this restriction is not prohibitive. Otherwise, the Crout method subroutine FL*ML F HINI should be used which has a complete pivot search.

Space Required
620 cells are required.

Timing
Running time (T in seconds) is approximately $T=.00005 \mathrm{n}^{3}$, where n is the number of rows in the matrix. A 36×36 case took 3.6 seconds.

Accuracy
Accuracy depends on the particular case being run. E. Bodewig says, "A feature of the method is that it yields smaller rounding errors than the method of Gauss-Doolittle or other methods." Several rabion cases ware compared with the Crout inversion subroutine Fl*NK P HINT and in all cases the $A A^{-1}=I$ check was as good as, or better, using sMMVRT.

SECTION 20

PROGRAM ORGANIZATION

PROGRAM ORGANLZATION

In this section the computational flow of the Scout program is documented. The subroutine organization and interrelationships are described, along with lists of functions performed in each subroutine. Finaily, block flow diagrams of some of the individual, more complicated subroutines are provided.

Overall Computational Flow

In this program there are several different types of trajectories to be computed, dependent on the user selection of input options. The MAIN program sequences these trajectories, sets up initial values of various quantities needed for the trajectory, and then calls a subroutine to complete the calculation of the trajectory before a return to MAIN. Aside from these two levels of subroutine organization, there is a third level in which most of the program subroutines fall. These routines are called at least once per integration step and are generally concerned with evaluation of the time derivatives of the trajectory variables for numerical integration. Figure 20-I shows the calling relationships among the routines including the grouping for the optimization and pitch program linearization on the right side, the similar group for computation of dispersed trajectories on the left, and the radar, hardover turns and impact trajectories in the center. Also indicated are the page numbers for the flow diagrams of the respective subroutines. On the following page a listing of the grouping of the subroutines in overlay links is shown. Finally, the types of operations performed in each subroutine is indicated so that the reader can receive a basic familiarity with the computational organization.

- FLGURE 20-1
$20-2$

LINK ZARO	LINK ONE	LINK TWO	LTNK THREE	LITK FOUR.				
Always in Core	Case Setup	Optimization and Exchange Ratio	Dispersion Trajectories	Hardover, Impact, Radar				
Amios								
CMAT								
CONTRL		DEQ	DEDD	DEQIM				
			DISPRS					
			SDISPR					
				HRDOVR				
ICS			ICSD					
				IMPACT				
INER								
	RLTN	INSTOP	INSTPD	INIPIM				
		ITNEAR						
LOOK								
LOOETP								
MAIT:		MEQ	MAIND					
			MQQ					
MISCOR OBIATE OPCIT								
	OPTICN							
		PCAL	PCAID					
				RADAK				
	REIT			REIN+				
		RKAD	RKADD	RKADIM				
		SIXD	STXDD					
STMART								
		TRAJ	TRAJD					
WIC								
		SQUEFZE						

Read launch attitude change
Compute dispersed θ history GO 10700
Set Plags and IDSP
Read WINDAZ and WINDVL
GO T0 7000
dISPRS SUBROUTITE FLOW CHART

(Cont'd)
Statement
Number
7950
7970
7980
7990
12000
Note:

Flag to bypass 3 sigma

Restore neminal CMALPH

00 T0 1000
Restore 1 aunch azimuth
GO T0 1000

DISPRS SUBROUTINE FLOW
(includes SDISPR)

$$
\begin{aligned}
& \text { Error message exits } \\
& \text { Call DURP } \\
& \text { END }
\end{aligned}
$$

The following logic is found in the SDISPR subroutine.

(Cont'd)

DISPRS SUBROUTINE FLOW CHART
(includes SDISPR)

11690
11770

HRDOVR SUBROUTINE FLOW CHARI

IMPACT SUBROUTINE FLOW CEART

INIPIM SUBROUTINE FLOW CHART

RADAR SUBROUTINE FLOW CRART

SUB-PROGRAM NAMES AND FUICTIONS

1. MAIN Program
Set constants
Call REIN
Call OPTION
Compute integration intervals
Set up flags for adjustable parameters
Determine what type of trajectory is to be computed
Set up initial values for stage indices
Compute initial delt-mass desired
Increment launch and stage weights
Call ICS
Call TRAJ
Check on meeting terminal constraints
Add heating constraint
Check on success of optimization
Store characteristics of successful run
Call IINEAR
Call DISPRS
Call HRDOVR
Call IMPACT
Call RADAR
2. TRAJECTORY Subroutine
Initial entry
Set stage and bring in stage data
Compute vertical lift-off
Set output frequency (vs stage and type of trajectory)
Plck up first point on backward trajectory
Call ICS for intermediate constraints on backward trajectoriesStore achieved values of intermediate constraints
Loop entry
Adjust matrices row limits for storing and picking up:
trajectory variables
capita: lamocia's or B's or D's
Call PCAL
Call INSTOP
Determine initial integration step size
Compute S matrix
Calculations at start and end of each linear segment
Test for end of stage and/or trajectory
Call MEQ
Return to loop entry or initial entry
Call MISCON at end of trajectory
3. REIN Subroutine
Read input data
Modify input thrust data
Store THRUST and WEIGFT arrays
4. IINEAR Subroutine
Compute linearized theta program
5. OPTITON Subroutine
Interrogate input options and set switches accordingly
T. MISCON (Mission Constraints) SubroutineCoupute current value of stopping parameterCompute achieved values of terminal constraints
6. ICS Subroutine
Assign initial conditions to trajectory and adjoint variablea
Call DEQ
7. PCAL (Preliminary Calculations) Subroutine
Compute changes in pitch program
Compute changes in adjustable parameters
Check for switch between closed-100p and open-100p
Impose zero alpha constraint
8. ATMOS Subroutine
Compute atmospheric density, pressure and speed of sound
Cowpute partial derivatives re: atmosphere for adjoint equations
9. OBLATE Function
Computes surface radius on oblate Earth
10. INSTOP Subroutine
Call ICS
Call INER
Store first point when going forward
Call OPCNL
Call RKAD
Plck up stored trajectory variables when integrating backward
Stop integration when stopping parameter is reached
Call MISCON
Store T matrix for exchange ratios
13．RKAD Subroutine
Logic for integration using both Runge－Kutta and Adams integration
14．DEQ Subroutine
Calculate thrust and aerodynamic forces using AMMOS and TOOK
Check whether trajectory equations and／or adjoint equations are requiredCompute time derivatives
15．MDQ（M⿴囗十ix Equations）Subroutine
Store trajectory variables
Evaluate trajectory deviations
Generate lambda and I matrices
Store R and TT matrices for exchange ratios
Compute A matrix
Invert A matrix（call subroutine SMNRRT）
Compute and output exchange ratios
Compute B，D and C matrices
Compute payload change for fuel error adjustment
16．SYMVRT Subroutine
Invert symmetric matrix
17．LOOK Subroutine
Ininear interpolation table lookup using stored quotients
18．LOOKUP SubroutineIfnear interpolation table lookup without stored quotients
19．OPCNL（Output Control）Subroutine
Write output
20．INER Subroutine
Compute inertial trajectory variables and downrange distanceStore coordinates for RADAR
21．WIC Subroutine
Write out input data
22．CMAT Subroutine
Compute C matrix
23．CONIRL Subroutine
Compute angles of attack
24．SIXD Subroutine
Computes vehicles thrust attitude

SCOUT/PRESTO

Optional Computations - Subroutine Names and Functions

1. DEQD (Dispersion)

Calculate thrust and atmospheric forces using ATMOS and IOOK. Call SIXDD.
Compute time derivatives for trajectory equations.
2. DEQIM (Impact)

Calculate drag force using ATMOS and LOOK.
Compute time derivatives for trajectory equations.
3. DISPRS (Dispersion)

Store staging point trajectory variables from nominal trajectory for reference.
Read and load parameters for dispersed trajectory after storing nominal values.
Call MAIND.
Compute and store dispersions in staging point trajectory variables. Restore nominal values of dispersed parameters.
Compute three sigma variations.
4. HRDOVER (Hardover)

Call REIN4 and load first stage data.
Pick up initial conditions from nominal trajectory.
Evaluate thrust, atmospheric forces, and overturning moments.
Compute and integrate time derivatives of trajectory variables and attitude angle.
Write output and check for end of hardover turn. Repeat for all desired first stage points.

The above logic is repeated for all three failure modes in both the second and third stages, excluding atmospheric effects.
5. ICSD (Dispersion)

Initialize trajectory variables after lift-off. Calculate vertical coordinate matrices.
6. IMPACT (Impact)

Call REIN4.
Load failure mode drag curve.
Plck up initial conditions from nominal trajectory.
Call INTPIM.
Write impact output.
7. INTPIM (INSTOP for IMPACT)

Control integration step size.
Call DEQIM.
Call RCADIM.
Stop integration at zero altitude.
8. INSTPD (INSTOP for DISPRS)

Call ICS.
Call INER.
Store first trajectory point when regenerating nominal trajectory.
Call OPCNL.
Integrate forward using body dynamics; call RKAD, INER, DEQD, SIXDD.
9. MAIND (Dispersion)

Initialize indices and lift-off variables.
Call ICS.
Call INER.
Call OPCNL.
Call TRAJD.
10. MEQD (Dispersion)

Store nominal trajectory variables.
11. PCAID (Dispersion)

Control upper stage pitch control deadbands.
Call CMAT.
Call CONTRL.
Determine commanded theta.
Call DERD.
Call SIXDD.
12. RADAR

Call REIN4.
Determine station's geocentric position and transformation matrix. Compute look angles and slant range for nominal trajectory. Write radar output.
13. RETN4

Read Hardover, Impact, and Redar input data.
14. RKADD (Dispersion)

Logic for integration uaing both Runge-Kutta and Ademe integration. Call DEQD.
15. RKAADIM (Impact)

Logic for integration using both Runge-Kutta and Adame integration. Call DEQIM.
16. SIXDD (Dispersion)

Computes vehicle attitude from comanded attitude wen body dymaics are included.
Computes effects of wind dispersions.
Adds influence of first stage thrust misaligment disperaion.
17. TRAJD (Dispersion)

Initial Stage Entry
Set stage data and set integration to Runge-Kutta.
Set output frequency (use intermediate trajoctory frequency).
Stage One: lift-off calculation
Upper Stages: store dispersed trajectory variables at stage ignition
Stage Two: set dispersed yaw control deadband
Stage Three: set dispersed yaw control deadband
Stage Four set tip-off dispersions
Loop Stage Entry
Adjust matrix row limits for trajectory variable storage.
Call pCALD.
Call INSTPD.
Test for end of stage and/or trajectory.
Call MEQD.
Return to loop entry or initial entry of next stage.
Call MISCON at end of trajectory.
Store orbit elements for dispersed trajectories.
18.
scuerze
Output original optimization module affected values.
Test for unacceptable conditions.
For 5-stage vehicles: modify THRUST and WEIGHT arrays and indices. store stage 4, 5 and 9 values of times, weights and thrust/weight table indices.
For all affected data, transform to 'original' dispersion module format (4 powered stages maximum)
For linearized nominal trajectory, store linearized θ progrem and spun stage θ 's in TTH table. Output 'squeezed' values for dispersion package.

SECTION 21

CODING NOMENCLATURE

A3D	matrix of position and direction at present time
A92	A matrix at start of open loop computation
AA	A matrix
ACTN	answer from 4-quadrant arctan rcutine
ADD6D	terms added to $\dot{v}, \dot{\gamma}, \dot{\psi}$ from 5D simulation
ALIT	local speed of sound
AJPHA	resultant angle of attack from theta and chi
AIPIIAI	right ascension of present position
$A Z W$	force resolution angle in 6D
B	B matrix
$B(70,2)$	theta increment over integration step
BB3D	transformation of coordinates matrix BB'
BETA.	in-plane range angle from ascending node
BETA.́od	aerodynamic yaw angle of attack
BETAP	argument of perigee
BTU	total heating
5	C matrix
C3D	thrust resolution matrix C
CCHI	cosine of CHI
CD	total drag coefficient
CDLAM	cosine of DLAM
CGAM	cosine of flight path angle gamme $X(2)$
CGAM	cosine of inertial flight path angle GAuI
CGSP*	CGANSPSI
CHI	thrust yan angle
CIIN	transformation of coordinates matrix C^{-1}
CL	lift coefinicient
CLAM	cosine of goocontric latitute X(5)
CIAR:O	cosins of initial lemm geocentric latitude
CLA:3	$\left(C_{1} A A_{1}\right)^{2}$
CLEP	CLAM\%CPSI

CLSP	CLAM*SPSI
CMALPH	data block 35
CMDELT	data block 36
Civdele	data block 34
CPSI	cosine of azimuth X (4)
CPSII	cosine of instial azimuth PSII
CPSIIQ	$\left(\right.$ CPSII) ${ }^{2}$
CRTIM	time at end of stage (or during linearization of pitch program, time at end of linear segment)
CTl	data block 10
CT2	data block 11
Ci3	data block 12
C 14	data block 13
CT5	data block 14
CTAU	cosine of longitude $\mathrm{X}(6)$
CEAUO	cosine of initial launch longitude TAUO
CITESA	cosine of THETA
CTresidx	vector of function of transformation matrix C, THETA and CHI
CrCG	CTAU*CGAM
Cricx	CTHETA*CCHI
CISC	CTAU*SGAM
CISX	CTHELA*SCHI
D	drag
D1	first set of derivatives used.in integration
De	second set of derivatives used in integration
D3	third set of derivatives used in integration
D4	fourth set of derivatives used in inteeration
DAI	data block 16
DA?	data block 17
DA' 4	data block 19
DA5	data block 20
DAS	data block 21.
Dat	data block 2 ?
DA1?	data block 27
DA13	data block 23

DA14	data block 29
DAED	data block 33
DAT	derivative of local speed of sound/altitude
DALPY:A	change to be made in control variable THPTA
DATE	data block 3
DD	D matrix during optimization
DELTAY	increment in X 's from integration routine
DSIX	deviations from nominal trajectory
DETC	determinant of c3D matrix
DEILAM	geodetic latitude
DLAM	difference between geodetic and geocentric latitudes
DLAMO	geocentric latitude at launch
DLTN	matrix D in linearization process
DMASD	calculated initial payoff improvement
DMLIM	dump limit for floating point variables in common
DP2	estimate of integral of square of control deviations
DPDPSI	partial derivatives relating payoff to error in terminal constraints
DPH	derivative of pressure/altitude .
DFSI	negative of error in terminal constraints on latest nominal trajectory
DPSIS	negative of error in terminal constraints on latest trajectory
DRANGE	downrange distance in nautical miles
DPE	derivative of density/altitude
D'I'	current integration interval
DraU	changes to be made in adjustable parameters
DTOLD	integration interval from previous step
Dre	increment to be added to payload
DNPM ${ }^{\text {d }}$	maximum change in payload at any one time
E_{L}	angular momentum
EI	I matrix
EK	K vector
EL	L matrix in linearization of pitch program
ELIN	E matrix in linearization of pitch program
ELMYP	λ matrix at start of open loop computation
ELDDA	λ matrix

ETA
FJ J matrix

IRL
ALPHA component in vertical plane
data block 26
orbit inclination

J matrix
lift
gravity constant μ
$\mu / E H$
storage area of latest trajectory
local acceleration due to gravity
inertial flight path angle
force resolution angle in 6D coordinates exchange ratio matrix
altitude Mach nuriber
data block 1
data block 2
geopotential altitude
date block 6
data block 8
data block 9
matrix term of M matrix in linearization of ascent tilt program matrix term of M matrix in linearization of ascent tilt program mass at end of closed-form lift-off
longitude position from node angle v
storage area of latest nominal trajectory
matrix of geocentric vertical factors for transformation of
matrix of geodetic vertical factors for transformation of coordinates
factor for converting weight to mass
altitude above which aerodynamic computations are by-passed
altitude at 'end of closed-form liftoff
vector of indexes used in REIN subroutine
type of trajectory
$1=$ optimization
$2=$ guidance
INIC
RKAD integration package entry flag
... 1 = to start or restart integration using RUNG kura metrod
A. Initial entry - set by user
B. Subsequent entries - set by RKAD
... 2 = normal continuation of integration A. Set by RKAD

IS (n) SUBSCRIPTED INTGGER SIGNAL FLAGS

IS(1) ... Available
IS(2) ... Available
IS(3) $\quad . . . \quad 0=$ zero density (drag $=$ lift $=0$)
1 = non-zero density
IS(4) $\quad . . \quad 0=$ zero drag
$1=$ non-zero drag
IS (5) $\quad .$. 0 $=$ zero lift
1 = non-zero lift
IS(6) ... Available
IS(7) $\quad . . \quad 0=$ correct flag
1 = wrong flag
Is (8) ... Available
IS (9) $\quad \ldots-1=$ error exit from REIN
$0=$ proceed to case computations
$1=$ end of job
IS(10) $\quad . . . \quad 1=$ to bypass adjoint equations
$0=$ to compute
IS(Il) ... Available
IS(12) $\quad . .0 \quad 0=$ heating is not being constrainca
$1=$ heating is being constrained
IS(13) $\quad . .0=$ do not set $\alpha=0$ on this integration step
$1=$ this is the first integration step in stage 2 ; set $\alpha=0$
IS(14) $\quad . .0 \quad 0=$ skip all exchange ratio computations
$1=\mathrm{cnd}$ of a staga
2 - middle of a stage
3 = start of a stane
IS(15) $\quad . . \quad 0=$ unsuccessful fomard trajectory
$1=$ succossful fomard trajectory

IS(16)	... $0=$ DMASD has not been computed yet $1=$ DMASD has been computed
IS(17)	. . $0=$ more forward runs are allowed $1=$ no more forward runs allowed
IS(18)	. $0=$ program is in closed-loop mode $1=$ program is in open-loop mode
IS(19)	.. $0=$ time is not within $\alpha=0$ region $1=$ time is within $\alpha=0$ region
IS(20)	... upper limit for page line count
IS(21)	temporary value for KPOINL
IS(22)	... plus $=T 9$ point count is greater than or equal to input value (after storage) zero $=\mathrm{T} 9$ point count is less than input value negative $=T 9$ point count is greater than or equal to input value
IS(23)	current output frequency
IS(24)	... current output count
IS(25)	.. $0=$ continue trajectory $1=$ stop trajectory with non-success predicted
IS(26)	- storage for IS(10)
IS(27)	```... 0 = normal outputs l = bypass initial outputs on initial stage```
IS(28)	. $0=$ bypass zero aerodynamic computations 1 = compute zero aerodynanic terms
IS(29)	.. $0=$ exchange ratios are not being computed $1=$ exchange ratios are bej.ng computed
IS (30)	.. $\quad 0=$ do not store radar computations in FwA $1=$ store radar computations in FWA
IS(31)	.. $0=$ stopping conditions not yet reached $1=$ reached stopping condition
IS(32)	$0=$ failed to meet terminal conditions $\mathrm{l}=$ terminal conditions have been met
IS(33)	.. -l = call ICS from MAIN $0=$ call ICS from INSTOP $1=$ do not call ICS
IS (34)	.. $0=$ do not initialjze X 's for intermediate constraints in ICS $1=$ call. ICS to initialize X's for intermediate constraints
IS (35)	... $0=$ do not: store trajectory variables in FWB $1=$ store trajectory variables in FWB
IS(36)	$\ldots=\operatorname{IS}(5)$
IS(37)	.. storage cuantor for redar comptations

IS(38)	.. $0=$ call MISCON - compute only stopping parameter 1 = call MLSCOiv - compute all constraints
IS(39)	. $0=$ linearization times not adjusted yet 1 = linearization times adjusted to match integration times
IS(40)	... - 1 = backward linearization tiajectory $0=$ nonlinearization trajectory 1 = forward linearization trajectory
IS(41)	$-1=$ constant terms in LINEAR have been computed $0=$ new values of TLIN were read in for present case 1 = new values of TIIN not read in with present case
IS(42)	. $0=$ do not evaluate linearization integrals 1 = evaluate linearization integrals
IS(43)	.. $0=$ no α constraint over this time interval $1=\alpha$ constraint applied
IS (44)	$\begin{array}{ll} \cdots \quad & 0=\text { do not apply } \dot{\theta} \\ & 1=\text { do apply limit } \end{array}$
IS (45)	```... 0 = no violation of pitch program limitations occurred during linearization process l= violation of pitch program limitations occurred during linearization process```
IS(46)	.. -1 = backward trajectory including body dynamics $0=$ body dynamics not included 1 = forward trajectory including body dynamics
IS(47)	.. $0=$ do not include body dynamics in this stage $1=$ include body dynamics in this stage
IS(48)	... $0=$ MBZ is called from an intermediate point in a stage $1=\mathrm{MEQ}$ is called from the final point in a stage
IS (49)	... $0=$ KFOINL has not yet been computed $1=$ KPOINL has been computed
IS(50)	.. $0=$ nomnal integration in DEQ $1=$ intecration through lift-off for exchange ratios
IS(51)	.. $0=$ present stage uses continuous control θ $1=$ present stage uses fixed θ
IS(52)	... $0=$ present stage uses adjustable X l = present stage uses fixed X
IS(53)	available
IS(54)	... $0=$ stage 4 is spin stabilized $1=$ stage 4 uses continuous control
Is(55)	... $0=$ stage 5 is spin stabilized $1=$ stage, uses continuous control.

IS(56)	. $0=$ do not ignore constraints 1, 3, 5 and 9 during linearization $1=$ ignore constraints $1,3,5$ and 9 during linearization
IS(57)	```0 = do not consider pitch rate over coast following stares using continuous }0\mathrm{ during linearization l = consider pitch rate over coast following stages using continuous a during linearization 2 = stage 4 used continuous }\vartheta\mathrm{ and stage 5 is spin stabilized```
IS(58)	$0=$ stage 4 tipoff at stage 4 ignition on current case $1=$ stage 5 tipoff at stage 6 ignition on current case
IS(59)	. $0=$ present stage is not tipoff stage $l=$ present stage is tipoff stage
IS (60)	. $0=$ not currently in spin stabilized stage $1=$ currently in spin stablized stage

ISTATN
ISTGE
ITI
ITR
IT3
IT4
I'IAP

J
JC
JCl

TARLE IIDICES
JCFALF ... current linear segment index for tables CMALFH
JCIDLT ... current Jinear segment index for table CMDELT
JCNDLT ... current línear segment index for table CNDELT
J'iDl ... current linear segment index for table TDl
JTDR $\quad .$. current linear segment index for table TDR
JTD5 ... current linear segment index for table TD5

Table Indices, cont.

KK.5 $\quad \begin{aligned}-\quad .1 & =\text { backward trajectory } \\ +1 & =\text { forward trajectory }\end{aligned}$
KK5 ... number of stages in the trajectory
KK7 ... forward trajectory ... KK7 = KK6 backward trajectory ... KK7 = 1

KK8 current index for selecting aerodynamic constants
... storage index computed during initial forward run

KK11
... number of variables being interpreted
... last time segment in present stage of a linearization mun
... return code
KK2O ... last stage
KK21 ... available
KK22 ... index for adjustable parameters
KK23 $\quad . \quad 0 \quad$ C matrix must be computed in DEQ $1=C$ matrix is computed in FCAL before entering DEQ
KK24 ... point count at stage 2 ignition
KK25 \quad... KK25 $=5$ - KK3
KK26 ... integration frequency for current stage when including body dynamics (equal to STR (17))
$K K \cong 7 \quad . .$. counter for integration steps when including body dynamics
KK28 $\quad . \quad$ number of present case
KK29 ... nunber of derivatives needed for integration in linearization process

KK30	$\ldots 0=\text { evaluate derivatives in } D \exists 0$ $l \text { = evaluate forces only in } D E Q$
KK31	... subscript of first linearization derivative
KK32	... current time segment during linearization
KK33	... last powered stage in current case
KK34	... last powered stage in previous case
KK35	... first time segment in stage 4 in linearized pitch program
KK36	... first time segment in stage 5 in linearized pitch program
KK37	... last linearized stage
KK38	... last TLIN stage code
KK39	... available
KKONE	value of KKl at beginning of backward trajectory
KLIN	number of time segments used in linearization of pitch program
KPOINC	count of integration points from beginning of trajectory
KPOINL	integration point count to switch from closed to open loop
KPOINS	number of integration points on last successful forvard run
L	used as index locally
L1	used as index locally
12	used as index locally
L3	used as index locally
I4	used as index locally
LBD	limit on storage index for D matrix
LFWAB	limit on storage in FWA and FWB
LINE	current page output line count
M	used as index locally
NPI	upper index for storing in B matrix region
MB3	increment in $\mathbb{M B I}$ per integration step
MF1	upper index for storing or picking up in FWB
MF2	lower index for storing or picking up in FTWB
MLI	uppor index for storing Λ matrix
ML3	incroment in ML

N
NBl
NB3
NF 1
NF 2
NF3
NLI
NL3
NN.
NPRINI
NSTAGE
NIHRST
NWEIGH

OMEGA
earth rotation rate
OMEGAL
OMEGAE longitude of ascending node
OMEGAQ

P
PDA
PDI:
PF
PG
PH
PI
PJ
PK
PLA
PLM
PO
PSII
PSMETH
used as index locally
increment in NE1 per integration step
upper limit for picking up Λ matrix
increment in NLI
used as index locally
key for current type of printout in OPCNL

2 * OMEA
$(\text { ONEGA })^{2}$
local atmospheric pressure partial derivative of drag/ALPHA
partial derivative of drag/MACH
partial derivative of $\mathrm{DV} / \mathrm{dt}$
partial derivative of $d y / d t$ partial derivative of $d \psi / d t$ partial derivative of $\mathrm{dr} / \mathrm{dt}$ partial derivative of $d \lambda / d t$ partial derivative of $d \tau / d t$ partial derivative of lift/AIPHA
partial derivative of lift/MACH
sea level atmospheric pressure
azimuth of VI
upper index for picking up from B matrix region upper index for storing or picking up in FWA
lower index for storing or picking up in FWA increment in NFI and NF2 per integration step
vector with number of entries in tables of thrust and weight by stage vector of subscripts of first entry for each stage in THRUST table vector of subscripts of first entry for each stage in WEIGHI table

QBAR	dynamic pressure
Q3ARA	ALFHA.* QBAR
QDI	slopes of linear segments in table TDI
QDP	slopes of linear segments in table TDR
QD5	slopes of linear segments in table TD5
QLI	slopes of linear segments in table TLI
QTH	slopes of linear segnents in table TTH
R	exchange ratio matrix
RALPHA	orbit semi-major axis
Re	local radius of earth based on oblate earth computation
RHO	local atmospheric density
RP	orbit perigee radius
RS'R	gas constant for air
S	S matrix
SCHI	sine of CHI
SDIAM	sine of $\delta \lambda$
SETA	sine of ETA
Smiad	(SELA) ${ }^{2}$
SGl	data block 39
SG2	data block 39
SG3	data block 39
Sch	data block 39
SG5	data block 39
SG6	data block 39
SGAPS	sine of flight path angle γ
SGAMI.	sine of inertial flight path angle GAMI
SLAM	sine of latitude λ
SLAMO	sine of launch latitude DLAMO
SLCP	SLAM * CPSI
SLCLCP	SIAM * CLAM * CPSI
SLOPET	slopes of inear semments in THRUS'r table
SLOPEM	slopes of linear segments in WETGHi table

```
SLSP SLAM * SPSI
SPHI sine of roll angle PHI
SPSI sine of azimuth }
SPSII sine of inertial azimuth PSII
SSAM current mass
```


STI (n) CURRITVT STAGE DATA

$\operatorname{STl}(1) \quad . .$. jettison weight
STI (2) ... aerodynamic reference area
SII(3) ... nozzle exit area
ST2 (n) STORAGE
ST2 (1) ... -1 = backward trajectory
1 = forward trajectory
ST2(2) ... counter for the number of forward trajectories
STR(3) ... stored value of stopping parameter
ST2 (4) ...
ST2 (5) ... past DT
ST2 (6) ... current DT
spre(7) ... past time
ST2 (8) ... time at upper end of current linear segment during linearization
ST2(9) ... time at end of imposed maximum pitch rate
$\operatorname{ST2}(10) \quad . .$. value of A at end of imposed maximum pitch rate (at ST2 (9))
ST2(11) ... slope of θ program over current time interval (radians/sec)
ST2(12) ... time at beginning of current time segment in linearized pitch procram
$\operatorname{ST2}(13) \quad \cdots \quad \theta-\alpha$ at stage 2 ignition
STr2(14) ... pitch rate
ST2(15) ... flag for linearization with body dynamics
S'i2(16) ... DifUSL multiplicative factor
ST2(17) ... integratión frequency for current stege when including body dynamics
ST2(18) ... stored payoff derivative on stage $2 \bar{q}$
$\operatorname{ST2}(19) \quad . . .+1$ constrain staee $2 \bar{q} ;-1$ eliminate \bar{q} constraint
STR (21) ... pitch rate slope on backvard linsarization run
ST2(22) ... DIPMK

```
ST2(23) ... DAI2(3)
ST2(24) ... DAI2(4)
ST2(25) ... DA12(5)
ST2(26) ... payoff correction for constraint errors
ST2(27) ...
Sm2(28) ...
ST2(29) ...
STR(30) ... DA12(10)
ST2(31) ... DA12(11)
ST2(32) ... WBS(I)
ST2(33) ... WBS(2)
ST2(34) ... WBS(3)
ST2(35) ... WBS(4)
ST2(36) ... WBS(5)
ST2(37) ... Iinearization iteration number for output
ST2(38) ...
ST2(39) ...
ST2(40) ...
ST3(n) ... storage for terminal constraint computations containing
    achieved values of terminal constraints for n = 1,13
```

ST4 (n) STORAGE
ST4(1) ... heating constraint term
ST4 (2) $\quad .$. heating constraint term
ST_{4} (3) $\quad .$. heating constraint term
ST4 (4) ... heating constraint term
ST4 (5) ... DAI (II)
$\operatorname{ST4}(6) \quad \ldots \quad \operatorname{DAI}(13)$
ST4 (7) ... DAI(15)
ST4 (8) ... DA1 (17)
ST4 (9) ... $\operatorname{DAl}(19)$
$\operatorname{ST} 4(10) \quad . .$. available

STS	storage for adjustable parameters
STAU	sine of longitude τ
STALO	sine of launch longitude
STCG	STAU*CGAM
STHE	stage integration intervals
STHETA	sine of THETA
STSG	STAU*SGAM
T	thrust
TAIIAG	tangent of angle
TANiv	numerator of TANAG
TAUO	launch longitude
TAUI	inertial longitude
TDI	data block 31
TDS	data block 31
TDisLIN	vector of durations of time segments of linearized pitch program
TG	current time in Space Age Date
TG \varnothing	launch time in Space Age Date
THETA	thrust angle to horizontal θ
THETAC	commanded theta when including body dynamics
THETAL	linearized ascent tilt program values of θ
THRUST	table of thrusts for all stages
TIITBTU	heating rate
TIMCT	time from launch including coosts
Trients	saved value of TIMCT
TIME	time from beginning of present stage
TIME	CT1 (10)
TIMP	time from launch excluding coasts
TIMI'S	saved value of TIMT
TITLET	four word variable, page title for first line of output
TITLFP	six word variable, page title for second line of output
TITLES	21 words used for variable page titles TITLEl and TITLE2
TI,	time duration of closed form lift-off
TLI	data block 32
TLIN	data block 19

T \dagger TT	initial thrust for lift-off calculation matrix for exchange ratios
TTH	data block 40
TVL	thrust at end of lift-off calculations
TVб	initial vacurum thrust
TW $¢ \mathrm{E}$	twice the total energy of the orbit
VH	hyperbolic excess velocity
VI	inertial velocity
vi6	velocity components in trajectory integration coordinates
vj6	velocity components in platform coordinates
vL	velocity at end of closed form lift-off
W	weight as measured at sea level
WBS	total weight in remaining stages (jettison weight and consumable weight)
WEIGHT	data block 38
WINDAZ	data block 54
WINDVL	data block 53
WPR ϕ P	consumable weight for each stage
STTXG ϕ	total consumable weight in remaining stages
	$\underline{X}(\mathrm{n})$ VARIABILES OF IMPTBGRATION
$\mathrm{X}(1)$	= V aerodynamic velocity
$x(2)$	= Y aerodynomic flight-path angle
$x(3)$	= r radial distance from center of Earth to vehicle
$x(4)$	$=$ azimuth
$x(5)$	$=\lambda$ geocentric latitude
$x(6)$	$=\tau$ longitude
$x(1)$	adjoint variables ($1=7$, ILAST or KK12)
X(j)	integrals of functions of Λ for optinisation of $\theta(t)$, optimization of stage 4θ and X, optimization of leunch azimuth, or ilnearization of $\theta \quad\left(j=\right.$ ILAST $\left.+1, \mathrm{KKI}_{2}\right)$
$x(k)$	exchange ratio R integrals $\quad\left(k=202, \mathrm{KNCl}_{3}\right)$

STORAGE ORDER FOR D1, D2, D3, D4, X , and XI ARRAYS

TRAJECTORY VARIABLES
Subscript Value

1	\mathbf{V}	velocity
2	\mathbf{Y}	flight path angle
3	\mathbf{r}	radial distance
4	azimuth	
5	λ	geocentric latitude
6	τ	longitude

ADJOINT VARIABLES

Subscript	Value
7	λ_{vl}
8	λ
9	$\lambda_{r l}$
10	$\lambda_{\text {kl }}$
11	$\lambda_{\lambda 1}$
12	$\lambda_{\text {T1 }}$

$13 \quad \lambda_{\mathrm{nl}}$
$14 \quad \lambda_{\mathrm{v} 2}$ or for 1 constraint Λ_{11}^{2}
15
16
17
18
19
20
$21 \lambda_{V 3}$ or for 2 constraints Λ_{11}^{2}
$22 \quad \lambda_{Y 3}$ or " " " Λ_{21}^{2}
23
$\lambda_{r 3}$ or " "• " Λ_{22}^{2}
24
$\lambda_{\psi 3}$
25
$\lambda_{\lambda 3}$
26
$27 \quad \lambda_{\text {m3 }}$
$28 \lambda_{v 4}$ or for 3 constraints Λ_{11}^{2}
Subscript Value
29
$\lambda_{\gamma^{4}}$ or for 3 constraints Λ_{21}^{2}
$\lambda_{r} 4$ or for 3 constraints Λ_{2}^{2}
31
$\lambda_{\$ 4}$ or for 3 constraints Λ_{31}^{2}
32 $\lambda_{\lambda 4}$ or for 3 constraints Λ_{32}^{2}
$\lambda_{\tau 4}$ - or for 3 constraints Λ_{33}^{2}34

$$
\lambda_{\text {mi } 4}
$$

$$
35
$$$\lambda_{v 5}$or for 4 constraints$\Lambda_{11}^{2}$

36
λ_{V} or for 4 constraints Λ_{21}^{2}
37
$\lambda_{r 5}$ or for 4 constraints Λ_{22}^{2}
38$\lambda_{\$ 5}$ or for 4 constraints $\Lambda_{31}^{2}$$\lambda_{\lambda 5}$ or for 4 constraints Λ_{32}^{2}
$\lambda_{T 5}$ or for 4 constraints Λ_{33}^{2}
λ_{m} or for 4 constraints Λ_{41}^{2}42
$\lambda_{v 6}$ or for 4 constraints Λ_{42}^{2} or for 5 constraints Λ_{11}^{2}
$\lambda_{\gamma 6}$ or for 4 constraints Λ_{43}^{2} or for 5 constraints Λ_{21}^{2}44
$\lambda_{r 6}$ or for 4 constraints Λ_{44}^{2} or for 5 constraints Λ_{22}^{2}
45
$\lambda_{\psi 6}$ or for 5 constraints Λ_{31}^{2}
46
46
$\lambda_{\lambda 6}$ or for 5 constraints Λ_{32}^{2}

Subscript	Value
47	$\overline{\lambda_{\tau 6}}$ or for 5 constraints Λ_{33}^{2}
48	$\lambda_{\text {m6 }}$.or for 5 constraints Λ_{41}^{2}
49-188	Subscripts and values in same manner up to subscript 188 for all 13 possible constraints
XCGI	data block 37
XCG2	data block 37
XCG3	data block 37
Xcc4	data block 37
XI	temporary storage of $X(n)$ in RKAD
XISP	vacuum specific impulse for each stage
XR	matrix of values of exchange ratios by stage
Y	available locally for storage or temporary terms
YY	available locally for use
ZETA	true anomaly of position

DISPERSION CODING NOMENCLATURE

AA	Temporary storage of staging point and final burnout trajectory variables, orbit elements, and certain quantities from nominal trajectory
AEROVL	Velocity relative to air mass
CHANGE	Dispersed parameter variation
DATE	Dispersion title
D4 (20-74)	Nominal theta storage
FWA	Renamed GIANT, SUM, FWA
FWB	Temporary storage for nominal vehicle characteristics
GIANT	Storage for the dispersions in trajectory variables and orbit elements, trajectory titles, and nominal trajectory variables and orbit elements
$\operatorname{IDSP}(\mathrm{I})$	$I=1$ thrust misalignment dispersion
	$I=2$ stage 2 control system deadband dispersion
	$I=3$ stage 3 control system deadband dispersion
	$I=4$ stage 4 tipoff dispersion
	$I=5$ wind dispersed trajectory
	$\operatorname{IDSP}(\mathrm{I})=-\mathrm{yaw}$ dispersion
	0 no dispersion + pitch dispersion (high/low)
IP(21)	$=-1$ pitch plane dispersion
	$=-2$ yaw plane dispersion
ISto	Storage for nominal IS (40)
I4	Local variable
JACK	Storage for nominal NSTAGE, NTHRST, and NWEIGH
JIIJ	Code for type of dispersion trajectory being processed. See data block 46.
JILI20	JILL
JILI40	JILIF20
JWNDAZ	Wind azimuth table index
JWIVDVL	wink velucity table index
KLIN1	Number of entries in TITIN and THETAL arrays
MGOOSE	Sequential storage of JILL codes called and flag indicating pitch or yew dispersion

	$\begin{aligned} \text { MGOOSE (MGROW, 1) } & =\text { JILI. } \\ \text { MGOOSE (MGROW, 2) } & =0 \text { pitch dispersion } \\ & =-1 \text { yaw dispersion } \end{aligned}$
MGROW	Counter for total number of dispersed trajectories which have been requested at any time
MGROWK	Dispersion array output index
NPRNT	Index for output of input data
NSTGE	Stage in which dispersion parameter occurs
NSTORE	$=-1$ nominal parameters have not been stored in FWB for thrust dispersion trajectory $=0$ nominal paremeters have been stored
Nl	Local index
F2	Local index
STIME	Used in loading linear theta into theta array
SUM	Storage for three sigma computation
TWOE	AEROVL during trajectory computation
WCHANG	CHANGE in input units
WINDAZ	Wind azimuth table
WINDVL	Wind velocity table
JIL785	Flag for dispersion code 7 or 8, vacuum thrust dispersions, for a 5-stage vehicle $\begin{aligned} & =0 \text { NO } \\ & =1 \text { Yes } \end{aligned}$
NSTGIW(17)	Nominal first time point of coast 9 in WEIGHT table
(18)	Nominal first time point of stage 5 in WEIGHT table
(19)	Nominal first time point of coast 9 in THRUST table
(20)	Nominal first time point of stage 5 in TrIRUST table
(21)	Current first time point of coast 9 in Wiaghrt table
(22)	Current first time point of stage 5 in WEIGHT table
(23)	Current first time point of coast 9 in FHRUST table
(24)	Current first time point of stage 5 in THRUST table
STGTW(1)	Stage 4 duration nominal value
(2)	Coast 9 duration nominal value
(3)	Stage 5 duration nominal value
(4)	Number of integration points in stage 4
(5)	Number of integration points in coast 9
(6)	Number of intecration points in stage 5
(7)	Δt integration step size for stage 4
(8)	Δt integration step siza for coast 9
(9)	Δt integration step size for stage 5
(10)	Stiage 4 jettison weight nominal value
(13)	Stage 5 jettison weight nominal value
(17)	Δt of current stage 4_{4}
(18)	Δt of current coast 9
(19)	Δt of current stare 5
(20)	Current stage 4 duration
(21)	Current coast 9 duration
(22)	Current stage 5 duration

HARDOVER CODING NOMENTCLATURE

Variables in COMMON that have been redefined as well as new variables defined for $H R D O V R$.

ARMIV	Stage 1 thrust misalignment and pitch damping moment arm
CAIPHA	Cosine of angle of attack
CON	57.295... radian to degree conversion
D1	Hardover first derivatives for integration
D2	$I_{y y}=$ pitch axis moment of inertia
Dedot	Iyy time derivative
D3	Iyy quotient table
D4	See data block 45
DA6D	See data block 33
DELTAY	CMQ quotient table
DEMAX	Maximum allowable attitude angle step
DETA	$\delta \Pi=a t t i t u d e ~ a n g l e ~ s t e p ~$
DITMAX	Maximum allowable integration time step
DIMIN	Minimum allowable integration time step
EDOTDT	$\ddot{\eta}=$ angular acceleration about pitch axis
EDOT	η = angular velocity about pitch axis
EIA	$\eta=$ attitude angle
FORCEN	Force nomal to vehicle longitudinal axis
GAMOID	$Y_{0}=$ flight path angle at start of hardover turn
ICKY	Access frequency for initial conditions
INK	FWB subscript for first element of current point set
INX	Relative counter for FWB points
INXLIM	INX limit
IRISH	Maximum number of integration steps allowed per turn
IRK	IRISH
IXPTR	Index for current FWB point set
JTDP	CMQ segmen't index
JTD5	Iyy segment index
LTNECT	Output line counter
MODE	Stage 2 or 3 fallure mode index
OPFTAG	Output time counter

QBRAMX	Integration stops one second after $\bar{q} \cdot \alpha_{\text {max }}$
SATPEA	Sine of angle of atteck
SAMDOT	Mass time derivative
SGELD	Sine Y
SUMDN	$\Sigma \mathrm{DETA}$
SUMDT	$\Sigma \mathrm{DT}$, used as flag in evaluating forces
TIMEFTD	Time since hardover turn started
TLIMIT	Time remaining in hardover turn
$\mathrm{X}(9)$	Integrated change in flight path angle
XI	CMQ = pitch damping coefficient
XMACG	Moment due to angle of attack, per radian
XMCME	Moment due to pitch damping
XMDAMP	Total damping moment
XMDCG	Moment due to control surface deflection, per radian deflection
XMTM	Moment due to thrust misalignemtn or control jet
XITMCT	TMMCT at stage ignition
2	Local variable

IMPACT CODTHG NOMENCLATURE

RADAR CODING NOMENCLATURE

New variables defined for RADAR in addition to redefined variables.

ZBAR
 ZGI
 ZI Z

Geocentric coordinate difference
Topocentric geodetic coordinate Station's Z geocentric coordinate
Local variable

USER' MANJAL

SECTION 22

sCOUT PROGRAM OPIRATION

PROGRAM OPERAIIC.

In the scout progrem, several different types of trajectory calculations are available to the user at his option. This section provides instructions on data input and interpretation of the program output incinding, initialiy, a discussion of the sequence of trajectory computations.

Sequence of Trajectory Iterations During Optimization

Trajectory computations used in this program fall first into the categories of either "forwari" or "backward." On a forward trajectory, time proceeds positively and on backward trajectory, negatively. on a forward tram jectory only the equations of motion are integrated; on a beckward trajectory the adjoint differential equations are solved. The next major categories are "guidance" or "optimization." On a guidance trajectory one is concerned only with meeting terminal constraints on the trajectory variables; in optimization improvement of the payoff parameter is attempted as well.

Since solutions of the adjoint equations are used differrently for forward guidance versus optimization runs, a forward guidance run must be preceded by a backward guidance run. Similarly, a forward optimization run is preceded by a backward optimization run. Details of the differences between these are defined in Section 9.2. The remaining major categories are "successful" or "unsuccessful," as judged at the end of each forward trajectory. A successful forward guidance trajectory satisfies terminal constraints within acceptable limits, and a successful forward optimization achieves some increase in the payoff parameter as well.

The sequence of trajectory iterations starts with an initial nominal. This is simply an integration of the equations of motion using an input thrustdirection history. This nominal trafectory is then used as the basis for a backward guidance trajectory, wich is followed by a forvard guidance run. It is alvays assumed that a forwani gridance trafectory represents an furovement over the previcus nominal. Thus, each forward guidance trajectory becomes the
new nominal and the basis for a new solution of the adjoint equations. Backward and forvard guidance runs are contimued until one is judged "successful." At this point a backward optimization run is made and the magnitude of the initial payoff improvement attempt is computed (see Section 5.7). A forward optimization run is then made. If it is successful, it is used as the new nominal and backward and forward optimization trajectories are computed, etc. If it is unsuccessful, that trajectory is discarded and another forward optimization is computed with half of the previous attempt at payoff improvement specified, etc. Thus, a succession of successful and unsuccessful optimization runs are computed efther until the attempted payoff improvement is smaller than a specified magnitude or until the count of forward trajectories is within one of a specified limit. In either case, the sequence is then ended with a beckward and a final forward guidance trajectory which represents the optimum path under the assumption of point mass motion.

Linearization of Pitch Program Option

The next step is the automatic linearization of the optimum pitch program. This is accomplished as a sequence of backward and forward guidance trajectories wherein the θ history is linearized with minimum-integral-square change in θ subject to meeting all trajectory constraints and rate limitations on the pitch program. This is done first for point mass motion and will generally require one to three iterations. When all constraints are satisfied, the linearization will be repeated, by option, with the simulated body dynamics effects added to the equations of motion as a final check on the trajectory.

Dispersed Trajectories Option

The next computation in sequence is the evaluation of trajectory dispersions due to various vehicle and environmental anomalies. This is accomplished through a series of forward trajectories with each of the dispersion sources considered in turn. After the last of these a summary statement is output of all the individual dispersions; worst-on-worst summations of high, low, and side dispersions; and RSS combinations of these mumbers.

Hardover Turns Option

Failure mode turns are computed next, where failure is considered at specified intervals along the nominal trajectory.

DACA InTPOT PORMAT

Data Blocke

Data required for program execution are grouped and input in data blocks wich are identified by mumber. Each block contains a conmon type of informan tion such as the case title or a stage thrust table, and utilizes a specified FCRIRAI format for the entire data block. The contents of each data block are discussed and then summarizod on the next several pages.

Boeder Cands

Input data are punched on cards which are placed behind the program binary deck. Cards for each data block are preceded and identified by a "hoeder" card. The format of the header cards is 4I3, where the first field is the data block mumber and the second and third fields give the (inclusive) locations within the data block that the subsequent data words are to be placed. Thus, if the user wished to change constants 2,3 and 4 in data
 first three fields of the next card would contain the three constants. The fourth field of the header card is used to identify the vehicle stage mumber for the data, where necessary. The stage designation should be included only for the data blocks as specified on the following pages.

Card Sequencing

Cards within each data block must follow sequentially. Purther, groups of data blocks mast follow in correct order, as follows. All data for trajectory optimization and pitch program linearization (including 6 D simulation in stage one) appear in data blocks 1 through 40 and must be first in sequence. A blank card then follows. Next in sequence are the groups of cards for dispersion, hardover turns, impact locus, and radar, in that order. A blank card follows each group. Data must be input for a given group only if the respective option has been selected. With the exception of the data for the disparsed trajectories, the data blocks within each group may appear in any order.

Sominal Inpect Locus Option

Hext, a series of bellintic trajectories are computed from apecified time pointe along the final trajectory to impact in order to dafine the expected supect of the normally expended stages and the locus of poasible impect in cace of failuxe during burning ore failuwe to imite.

Fadar Tracking Date Option

The final type of celculatione perforsed is the history of redar trinking coordinated for up to twesty station treaking the flmal treajectory.

Successive Cases

Successive cases can be mun with a minime of adaitional dath imput. For optimization and linearization, onlr the changes in data fron the preceding case must be imput. For all other computations the dite must be repeated. A blank card met follow the data for each caee.

299 Card

A card with 999 punched in the Pirst three colvmensust end the data deck. It is to be placed behind the blank card which ends the date for the final case. When the RRAD routine encounters the 999 card, a normal top is indicated to the macinine oparator, so that the job can be terminated.

DISCUSSION OF THE DATA BLOCKS

This discussion is a suppiement to the detailed instructions beginning on pace 22-18.

Data Blocks 1, 2, 3

Alpha-mumeric comment cards that are output at the top of each page. Data block 1 is the first line; data blocks 2 and 3 appear on the second line.

Data Block 4

Basic computation options are as follows:
(1) Selection of payoff function influences the required sequence of consiraint parameters (data block 8) and the units of the performance exchanse ratios (see page 22-31).
(2) If beating constraint is to be imposed, see Section 13.
(3) If selected, performance exchange ratios are computed at end of optimization. See Section 8.
(4) Not used.
(5) Not used.
(6) Select 0 if running only to obtain an optimum trajectory with no requircment for exact definition of trajectory. Normal sequence of trajectory iterations would call for inclusion of body dynamics effects following optimization and point mass linearization, for which set $=1$. This option can be set $=2$ if crily one forward trajectory is specified in Data Block 28.
(7) Lincarization of the θ history at completion of optimization will be done if set $=1$. Requires input of times of beginning of each linear segmeat in Data Block 18. If $\operatorname{IP}(6)=1$, then $\operatorname{IP}(7)$ nust $=1$.
(8) Not used.
(9) Specification or spin/no..spin in stages 4 and. 5. Set $=3$ only wher there are five stages. otherwisc, 1 or 2.
(10) Yair engle in stages 4 and 5 coupled or independent. When 4 and 5 are spun, set $=1$.
(17) In onder to minimize the $\bar{q} \cdot a$ history over the final design trajec-
tory, the user can impose a zero-alphe constraint over and portion of stage 1 by this option. The time interval is input in Data Block 22 . In general, the beginning time should allow for the initial pitch over maneuver. Suggest start and stop times of approximately 15 . and 60. seconds. This constraint is applied only during optimization.
(12) By selection of this option, the pitch angle θ will be adjusted to produce a zero angle of attack at ignition of stage 2. This will be accomplished during linearization as well as optimization. No further input is required.
(13) Select type of \bar{q} constraint at stage 2 ignition.
(14) Not used.
(15) For convenience, primarily in checkout, the plonting-point numbers In common have been grouped and can be dumped in the floating-point format when requesting a dump at the end of the job.
(16) Not used.
(17) Selection of this option provides a three-page output of all the input data for each case. The data are identified by data block number and a few descriptive words.
(18) Not used.
(19) Not used.
(20) Not used.
(21) Data for running dispersed trajectories includes that normally required for running one forvard trajectory with 6D, plus data for stages 2 and 3 in Data Blocks 33 and 37, plus that described in the discussion of Data Blocks 46 through 54.
(22) See discussion for input to Data Blocks h4 and 45.
(23) Soe discussion for 1npat to Data Blocks 42 and 43.
(24) See discussion for input to Data Block 41.

Data Block 5

 the final zero after any powered ar coast stage. That in, the sequence must always begin with 1 , end with 0 , and have the stages appear in the above order.

For each adjustable parameter selected here, a weighting constant must be input in Data Block 27. If coasts are driven to zero during optimization, they will automatically be eliminated as adjustable parameters. When the sensitivity coefficients reveal a possible payoff improvement with any or all increased coasts, the coasts will autamatically be adjusted.

Data Block 8
Specification of trajectory constraint parameters. In listing the parameters, the sequence is important. The first word is the total number of trajectory constraints, including the payoff parameter but not including either the heating or α constraints in the count. The second word must be the payoff parameter. Next are listed the terminal constraint parameters, starting with altitude if it is to be constrained but is not the payoff. When mass is not being optimized it is not included as a constraint. Then, the constraints to be inposed at stage points are listed in reverse chronological sequence (starting from the end of the trajectory). Finally, the heating constraint code (14) is listed if the constraint is to be imposed. The constraints at stage points are coded by the number of the stage at the end of which the constraint is to be applied. Understand that a constraint can be imposed at the beginning of a powered stage by coding it for the end of the preceding coast stage.

Data Block 9

Frequence of output points. There is generally no need to output every computed point. In fact, from an economy standpoint, there is every need to minimize the output, since that operation is relatively slow. Output of nearly every computed point is often desirable on the final (optimm) trajectory, but can be almost entirely eliminated on the previous iterations. The user also has the ability to vary the output frequency between stages if, for example, a more frequent output is desired during the atwospheric phase of boost than is required for the upper stages. Regardless of the output frequency, the initial and final points of each stage are alvays output. There is no output of the trajectory variables on the backward runs. Linearizations are treated as final trajectories and dispersion runs as internadiate trajectories.

Data Block 10

Nominal constants. Of particular note is the quantity RANRO, the altitude above which all aerodymamic computations are bypassed regardless of the aerodynamics option selection. This logic is in the interest of computation speed. The nowinal altitude of 250,000 feet for this cutorf generally corresponds to a dynamic pressure of less than $1.0 \mathrm{lb} / \mathrm{ft}^{2}$. All the constants in this data block are a part of the progrem binary deck and must be input as data only if a change is desired.

Data Blocks 11, 12, 13, 14
Constants for ATMOSphere subroutine. The 1962 ARDC model constitutes the nominal atmosphere as described in detail in Section 19. The various constants used in each exponential segment can be changed here with data input.

Data Block 16
Control of stage times and maber of integration steps. In order to gain maximum speed in integration, a constant time increment is used in each stage. The user specifies this integration frequency by inputing the stage duration and the number of integration steps desired for the stage. This information must be input for stages 1 through 10 if they have been specified in the stage sequence. The total number of integration steps in stages 1, 2, 3, 4 and 5 mast not exceed 168. The total number of integration stepe in stages $1,2,3,4,5$ and 6 should not exceed 177. There must be at least 25 steps in stage 1 . Care should be taken to limit an integration step to cover no greeter than about $400 \mathrm{ft} / \mathrm{sec}$ for the powered stages and no greater than 10 to 15 seconds during the coasts on the final trajectory.

Data Block 17
Various imput data. Words 5,6 and 9,10 are the nowinal attitudes in stages 4 and 5. Word 7 is used in the heating couputation. Word 8 is the time before lift-off at which the control system gyros are uncaged. Word 15 is a weighting factor which should be set $=1.0$ for sCOUF payload maximization cases. When the total vehicle launch weight is much greater than SCOUP, at about 39,000 pounds, the weighting constant should be decreased wen optivizing mass. Wora 16 is a limit on the adjustment in conet time on any one iteration and must be input if any coast is used as an adjustable parameter. This number should not exceed 100 seconds.

Data Block 18

Times at which the pitch rate is changed. The lineariention routine requires times at the end of the vertical lift-off period, at stage 1 burnout, and at
ignition and burnout of all non-spun powered stages. Additional times may be specified in the middle of these stages. The first word input is the number of linear segments. This count must not exceed 15 , does not include the vertical lift-off nor any maneuver after burnout of the final non-spun stage, but does include one segnent each for intermediate coast stages. When proceeding into dispersion calculations the number of linear segments wust not exceed 13. Next follows the list of times, coded by powered stage number and seconds from stage ignition. The first digit is the stage number and the remaining decinal number the time. Thus, the list of times for stages $1,6,2$ would be 103.0 , 182.6, 200.0, 239.2 for one segment in each stage, a lift-off time of 3 seconds, and stage 1 and 2 burn times of 82.6 and 39.2 , respectively. The complete list of times must be re-input if any change is desired.

Data Block 19

Desired magnitudes of the trajectory constraint parameters that were specified in Data Block 8. Note that since the list of constraints can appear in any order the magnitudes must be in pure units; hence, all angies in radians. Range has units of nautical miles. Heating is in Btu/ft ${ }^{2}$.

Data Block 20
The second word in this data block is the launch date, expressed in decimal fractions of days since 0.0 hours, January 1960. Expressed another way, it is the Julian date minus $2,436,934.5$ days. It must be input whenever the terminal constraints involve an inertial longitude reference.

Deta Block 21

Initial conditions on the trajectory variables are input in the rotating frame. Velocity must be zero, longitude in degrees \pm from the prime meridian, latitude in geocentivic degrees \pm from the equator, azimuth degrees east of north, flight path angle must be 90 degrees.

Data Block 2 ?
Magnitudes for control variable constraints. Times to initiate and to release $\alpha=0$. constraint are measured in seconds from launch.

Data Block 26
These weighting constants affect the amount of change in θ over each segment during linearization. Nominal values are automatically set into the program. However, the user should input 5.0 on segment 1 and 2.5 on segment 2 to retain the optimum initial pitchover.

Data Block 27

Weighting constants for optimization parameters. For muerical reasons, it is necessary to use non-unity weighting constants for some of the adjustable parameters. The recommended weighting constant for spun stage θ and x is 10. For coast stages use 10^{-4}, and for launch azimuth and date use 2.0 and 10^{-6}. Smaller numbers will produce larger adjustments on any one iteration. The weighting constants must be input for all specified adjustable parameters.

Data Block 28
Convergence data. The first word is the initial payoff improvement to be used if the automatic computation of this number fails. Five percent of the expected inal value would be a reasonable number. The second word is the "epsilon" or allowable proximity to optimm for ceasing the optimization. When the attempted payoff improvement becomes less than this number, the final guidance runs are made. Due to the halving process that is used and the usual nonlinearities that are encountered, the user should input a number that is no bigger than one-third of the actual desired condition. For the third word, thirty iterations are generally more than sufficient. Four linearization attempts are usually adequate.

Data Block 29
Allowable deviations in trajectory constraint parameters. Since each forward run is judged successful or not partially on the basis of satisfying the terminal constraints, an acceptable "deadband" must be specified for each constraint parameter. This "deadband" is important primarily on the intermediate iterations and hardly affects the constraints miss on the final (optimized) trajectory. If too tight limits are imposed, the payoff improve-
ment will proceed with unnecessarily small steps. If the limits are too loose, some iterations will unwisely be judged "successful." Recommended limits are 20,000 feet on distances, one degree on angles, 20 feet per second on velocity, and 10 pounds per ft^{2} on $\overline{\mathrm{q}}$. Starting in DA14(14), corresponding numbers are needed for the linearization. Here, the user should put in his required tolerances.

Data Block 30

Vacuum thrust tables are input as functions of stage time for each powered stage specified. The total number of data points cannot exceed 120. If a change in data is necessary, the entire table for the given stage must be re-input.

Deta Block 31
Aerodynamic drag coefficients are input as functions of Mach number for stages $1,2,6$.

Data Block 32

One table of $C_{I_{\alpha}}$ versus Mach number is required. It is used for stages 1 and 6.

Data Blocks 33, 34, 35, 36, 37
Assorted data for 6D simulation. All body stations are in inches. Into DA6D(12) to (15) must be read integration frequency multipliers. They are normally 1.0 , but if a more frequent integration is desired during 6 D forward trajectories, the user should input 2. or 3. or whatever integer multiplier is desired. Center of gravity histories are expressed as body station in inches. Hardover turns and impact computations for stages 1, 2 and 3 also utilize these data blocks.

Data Blocks 38 and 39
Stage weight and area data. The total number of weight data points cannot exceed 120. Weight is input as consumable pounds remaining and jettison weight
for each stage. If a change in Data Block 38 is necessary, the entire table for the given stage must be re-input.

Data Block 40

Command pitch program for initial nominal trajectory only. When running dispersion analysis following initial nominal, the input theta table should be carried to the ignition time and theta of the spun stage(s) and the table then ended with 1.ElO.

dISCUSSION OF THE DATA BLOCKS

OPTIONAL COMPUTATIONS

The general organization when optional computations (dispersion analysis, hardover turns, fmpact, or radar) are desired will be to group together all the data necessary for that module and add it behind the blank card of the optimization data for which the computations are desired. Data must not appear for modules that will not be called. The sequence must be:

- Basic Scout optimization data, including setting proper options
- Blank card
- Dispersion analysis data

\#46 Header card
title
\#XX Header for required data Data
\#46 Header card Title
\#XX Header for required data Data

- Blank card
- Hardover turn data
\#44 Header cards Data
\# 45 Header card Data
\#33 Header card Words 7, 10, 11, 16
\#37 Header card All of data
- Blank card
- Impact prediction data
* 42 Header cards Data
\#43 Header cards Data
*33 Header card Words 17, 18, 19
- Blank card
- Radar angles and ranges

$$
\begin{array}{ll}
\text { \#41 Header card } \\
& \text { Data (one card per station) }
\end{array}
$$

- Blank card
- 999 card if end of job

Unlike the basic optimization data input capabilities, the optional computations data package does not have the ability to change an individual data word by manipulation of the second and third fields of the data header card. This means the data package must be correct and complete with no "patches." Further, successive cases are not allowed.

Data Block 41: RADAR
Header field 4 indicates the number of cards to be read, one radar station identification and location per card.

Data Block 42: IMPACT
Drag coefficient tables for failure mode impact predictions. Initial conditions are taken from the optimum trajectory at each integration point of the first three powered stages, and the equations of motion are integrated to impact assuming zero thrust using these drag tables which must start at Mach number zero.

Data Block 43: TMPACT

Drag coefficient tables for expended stage casings; must start at Mach number zero.

Data Block 44: HARDOVER
Loads both the pitch moment of inertia of the first three stages and the first stage pitch damping coefficient.

Data Block 45: HARDOVER
Assortment of various constants, test flags, and necessary data to generate hardover turns.

Data Block 46: DISPERSION
Header field 4 indicates the type of dispersed trajectory desired from
a list of 38 possibilities which must be specified in increasing order. Block 46 data is a title card that must include the dispersion code as listed on page 22-26. Data necessary to run each particular dispersed trajectory, preceded by the appropriate header card, must inmediately follow its block 46 cards. Available dispersion trajectories and necessary data are listed in the data input section. Dispersion data must include the correct signs. Only trajectories for which dispersion information is provided will be computed. When the fourth or fifth stage of a five-stage vehicle is investigated for effect of thrust on dispersion, both stages must be input along with data block 55. This special input is described on page 22-30.

Three Sigma Variation are computed by loading the last data block 46 card as trajectory type 40 with the title "nominal traj."

Data Block 47: DISPERSION
Constant jettison weight increment to be added to stage specified on header card.*

Data Block 48: DISPERSION
Percentage drag variation to be used for all stages."
Data Block 49: DISPERSION
Thrust misalignment angle for first stage, positive angle gives nose up/yau right moment.*

Data Block 50: DISPERSION
Magnitude of control system deadbands.*
Data Block 51: DISPERSION
Magnitude of effective angular'change in thrust attitude." This effective angular change is a precomputed input, since an analytical solution of the vehicle's instantaneous space attitude is beyond the scope of this program. See NASA TR R-110, "Analytical Method of Approximating the Motion of a Spinning Vehicle with Variable Mass and Inertia Properties Actod Upon by Several Disturbing Parameters," by J. J. Buglia, G. R. Young, J. D. Timmons, and H. S. Brinkworth, for a complete discussion.

[^9]Here it is assumed that if the spin stabilized fourth stage receives a tipoff rate at separation, as the stage spine about the totel angular momentum vector, the out-of-plane motion averagee to sero 00 that the effective result of the tiporf is an attitude angle offset in the plane of the tiporf. For exariple, if the total angular monentus vector $\mathbf{I}=\left|\begin{array}{cc}I_{2 x} & 0 \\ 0 & I_{y y}\end{array}\right| \cdot\left|\begin{array}{l}p \\ q\end{array}\right|$ were

$$
\begin{aligned}
& I_{x x}=\text { roll moment of inertia } \\
& I_{y y}=p i t c h \text { moment of inertia } \\
& p=\text { spin stabilization rate } \\
& q=\text { apin rate reculting frem tipoff }
\end{aligned}
$$

then the effective thrust attitude change is

$$
\tan t=\left(I_{y y} q\right) /\left(I_{x x} p\right)
$$

Data Block 52: DISPIERION
Incremental change in Ieumch asimurth or attitude."

Data Block 53: DISPRESIONS

Table of wind velocity as a function of altitude.

Data Block 54: DISPERSIONS

Table of azimath of wind volocity voctor (masured clockwise from north) as a function of altitude. Fach wind diapersed trajectory requires both wind tables. Yew winds mist incur croserange diapersions in the rame direction as other yew disperions.

Data Block 55: DISPERSIONS
When simulating five-stage scour in dispersions of thrust in stage 4 or 5 (Dispersion Code 7 or 8) it is necessary to input the time duration of the stages as used in the dispersion analysis. These must be the same as final entries in data blocks 30 and 38. Special input to data blocks 30 and 38 is described on page 22-30. Only when both fourth and fifth stages are considered nominal can this input be ignored.

[^10]DATA INHUT

TITLE

FORMAT
COMMENTS

4 Radius
5 Aerodynamic velocity
6 Aerodynamic path angle
7 Altitude
8 Downrange distance
$92 E=V_{I}{ }^{2}-2 \mu / r$
10 Orbit inclination
11 Perigee radius
12 Iongitude of ascending node
13 Argument of perigee
14 Total heating

* * Constraints at Stage Points **

X5 Aerodynamic velocity
X6 Aerodynamic path angle
X7 Altitude
X8 Downrange distance
X 9 Dynamic pressure
$X=$ The number of the stage at the end of which the constraint is to be applied. $X=1,9$

Output Frequency $40 I 3 \quad \mathrm{IB}_{4}(\mathrm{n})$
Frequency Defined As:
(number of computed points)
(number of output points)
IB4 (1) - Initial trajectory
IB4(2) - Intermediate
IB4 (3) - Final
IB4 (4) - Stage code
IB4(5) - Initial trajectory
IB4 (6) - Intermediate
IB4(7) - Final
IB4(8) - Stage code
IB4 (40)- etc., for all 10 stages
10
Nominal Constants
$15 \mathrm{E} 12.8 \mathrm{CTL}(\mathrm{n})$
Nominal values shown
Input only if changes are desired
CTI (1) - 7.29211E-5 rad/sec Omega
$\operatorname{CTL}(2)-1.407735 E 16 \mathrm{ft} 3 / \mathrm{sec}^{2}$ FMU
CT1 (3) - 20,925,696. ft RE at Equator
CT1(4) - 1716.4827 gas constant for atmosphere subroutine
$\operatorname{CTI}(5)-32.174 \mathrm{ft} / \mathrm{sec}^{2}$ measured sea level gravity; weight-to-mass conversion factor (GO)

11 Atmosphere

Time Duration and Mumber of Integration Steps Within Each Stage

FORMAT
COMMENTS

20E12.8 DA1(n)
Time in Seconds

DAI (1)	Stage 1 time duration
DA1 (2)	Stage 1 points
DA1 (3)	Stage 2 time
DAI (4)	Stage 2 points
DAI (5)	Stage 3 time
DA1 (6)	Stage 3 points
DAl 7	Stage 4 time duration
DA1 (8)	Stage 4 points
DAI(9)	Stage 5 time
DAI (10)	Stage 5 points
DA1 (11)	Stage 6 time
DA1 (12)	Stage 6 points
DA1 13)	Stage 7 time
DA1(14)	Stage 7 points
:	
DA.1(20)	Stage 10 points

DATA BLOCK NUMBER	TIT'L	FORMAT		COMMENIS
27	Weighting Constants for Optimization Parameters	11 E12. 8	$\begin{gathered} \mathrm{DA} 12(1) \\ \vdots \\ \mathrm{DA} 12(11) \end{gathered}$	For adjustable parameters identified by code number as listed for Data Block 6
28	Convergence Data	$6 \mathrm{E12.8}$	DAI3 (n)	
			DA13(1)	Initial payoff improvement to be used if (automatic) internal computation fails
			DAl3(2)	Magnitude for stopping attempted payoff improvement
			DA13(3)	Maximum number of forvard trajectories per case during optimization
			DA13(4)	Maximum number of linear trajectory iterations
29	Permitted Values of Trajectory Constraint Deviations During Optimization and During Linearization	26 E 12.8.	DA14 (n)	List in same order as in Data Block 8, excluding payoff parameter
			Dal4(1)	During optimization
			DAI4 (12)	
			$\begin{gathered} \text { DA14 (14) } \\ \vdots \\ \text { DA14(25) } \end{gathered}$	During linearization
30	Vacuum Thrust Tables	250E12.8	THRUST(n)	
			*Stage co Sequence	de required on header cards : time, thrust, time, thrust
31	Drag Coefficient 42/22/22E12.8 Trables (ALPHA $=0$)		$\begin{gathered} \text { TD1, TDR } \\ \text { *Stage co } \\ \text { Sequence } \end{gathered}$, TD 6 de required on header cards : blank, mach, C_{D}, mach, C_{D}, mach 1.0E10
32	Lift Coefficient per ATPHA Table	42E12.8	TLI	
			Sequence Units:	: blank, mach vs $C_{I_{\alpha}}$, 1.0E10 C_{L} per radian
33	Data for 6D Simulation	20E12. 8		K_{θ} Position Gain
			(4)	K_{q} Rate Gain ${ }_{8}$ Body station of jet
				X_{8} Body station of jet vanes and fins in stape 1
				Kivo jet vane effectiveness (lb/lbTV/deg/vane)
				$X_{F S}$ body station reference for moment coefficients
) 6D integration frequency
			(15)	

DATA BLOCK NUMBER	TITLE	FORMAT	COMMENTS
			DA6D(16) Reference length for aero moment data (ft) (17) n : where impact locations (18) are computed from every (19) nominal for stages $1,2,3$.
34	Fin Normal Force Coefficient per Delta	42E12.8	$\operatorname{CNDELT}(\mathrm{n})$
			Sequence: blank, mach vs $C_{\text {NJ }}$, 1.0 E10 Units: $\mathrm{C}_{\mathrm{N}} /$ radian/fin
35	Pitching Moment Coefficient per ALPHA	42E12.8	CMALPH (n)
			Sequence: Same Units: $\mathrm{C}_{\mathrm{M}} /$ radian
36	Fin Pitching Moment Coefficient per Delta	42E12.8	CMDELT(n)
			Sequence: Same Units: $C_{M} /$ radian/fin
37	Stage Center of Gravity Histories	$22 \mathrm{El2} .8$	$x_{\text {CG1 }}, x_{\text {CG2 }}, x_{\text {CG3 }}, x_{\text {CG4 }}$ $\text { each dimensioned } 22$
			*Stage code required on header cards Sequence: blank, stage time vs c.g. body station, l.OE10
38	Stage Consumable-Weight-Remaining Histories	250E12. 8	WEIGHT(n)
			*Stage code required on header cards Sequence: time, weight, time, weight
39	Stage Data	3E12.8	SG1, SG2, SG3, SG4, SG5 (each dimensioned 3), SG6 (2)
			*Stage code required on header cards SGX(1) Jettison weight (lb)
			SGX(2) Aerodynamic Reference Area. $\left(f t^{2}\right)$
			SGX(3) Total nozzle exit area (ft^{2})
40	Theta History for Nominal Trajectory	$32 \mathrm{El2} .8$	TITH(n)
			Sequence: blank, time vs theta, $1.0 \mathrm{E} 10$
			Units: degrees, seconds from launch

DATA INPUT

IP(1)	Payoff Function	Payload Aerodynamic or Inertial velocity Altitude
IP(2)	Heating Constraint	No constraint Impose inequality constraint
IP(3)	Exchange Ratios	Do not compute exchange ratios Do compute exchange ratios
IP(4)		
IP(5)		
IP(6)	60	No 6D at all 6D after successful linearization 6 D on initial nominal
IP(7)	Pitch Program Linearization	No linearization Linearization after optimization
IP(8)		0
IP(9)	Spin Stabilized or Continuous Control in Stages $4 \& 5$	Stages 4 \& 5 Spun: $\theta_{5}=\theta_{4} ; x_{5}=x_{4}$ Stage 4 continuous and Stage 5 spun Stages 4 and 5 continuous
IP(10)	Stage $5 \times$ stages	0 Fewer than 5 stages $1 x_{5}=x_{4}$ $2 x_{5}$ independent of x_{4}
IP(11)	Zero-Alpha Constraint in Stage 1	None 1 ALPHA $=0$. over specified time
IP(12)	Constraint on Alpha at Stage 2 Ignition	0 None 1 Do constrain $\alpha=0$
IP(13)	Constraint on \bar{q} at Stage 2 Ignition	0 None or equality constraint 1 Inequality ($\bar{q} \leq x$) constraint
IP(14)		0
PP(15)	Memory Durup	0 Do not dump memory 1 Dump memory at end of job (includes floating-point dump of floating-point numbers in common)
IP(16)		0
IP(17)	Output of Input Data	O Do not output data 1 Output data

IP(18)		0	
IP(19)		0	
$\boldsymbol{P}(20)$		0	
IP(21)	Moninal Disperaion	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Rone Compute apecified dispersions
P(22)	Fallurr-Mode Berdover Therse	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Nove Compute turne
IP(23)	Inpect Irco Thaninal Irajectory	0 1	2000 Compute impect locus
IP(24)	maine treckins cocralmater	0	Hove Comprte for specified stations

ADOLITCMAL DALA HIPUR POR OPTIOUNL COMPUTATIONS

BMNR, DPACY, HRDOVER

DATA BLOCK	TITTS	COMAEETITS
42	Redar 8tation Locations$\quad 206,3542.8$	4th field of header total mumber of stations. station identificetion, geodetic letitude, degrees, longitude, degrees, eltitude, feet
42	$\begin{aligned} & \text { Inpect Failume Mode } 22: 12.8 \\ & \text { Deag Coefficient rebles } \end{aligned}$	```CD1F, CD2F, CD3F *Stage code required on header cards Sequence: blank, Mach, CD, Mach, CD... 1.0E10```
43	```Impeot Irpended 22E12.8 Cusings Dreg coufficient Tmbles```	```CD18, CD2E, CD3E *Stage code required on header cards Sequence: blank, Mach, CD, Mach, CDO.. 1.OE10```
4h	Enedover Momert of 22512.8 Inertia about Pitch Avede, Iy	```IMY1, TYY2, IMY3 *Stage code required on header cards sequence: blank, time, Iyy, time, Units: slug`yta```
44	Pitch Deaping coof- 22 g 12.8 ficient for mardover stage 1	CNA(n) *Stage code 4 required Sequence: blank, Mach, CNA, - Mach, CMR ... 1.OE10 Units: CMR per radian about instantaneous CG
45	Inadover Date 22812.8	1. n : stage 1 hardover turns are computed every nth integration step. 2. $(\mathrm{q} \cdot \alpha)_{\text {max }}, \mathrm{lb}$ deg $/ f t^{2}$, hard- over integration stops one second arter $(\underline{q} \cdot \alpha)_{\text {max }}$. 3. (DEIA) max, degrees, maximum allowable change in pitch atti- tude per integration itep. 4. (DT) max, eeconds, maximum integration step size. 5. (DT) min, seconds, minimum integration step size. 6. muximum member of integration steps per turn.

Dape Brock mine	TITIT	Popmat	COMAEMTS
$\stackrel{45}{(\operatorname{cost} \cdot a)}$	Smelover Data	26512.8	7. lst stage thrust misaligrment angle, degrees. 8. 2nd stage thrust misalignment ang10, degrees. 9. 3rd stage thrust misalignment angle, degrees. 10. Stage 1 thrust application station, inches. 11. 1st stage control fin and vane deflection, degrees. 12. Mode B stage 2 control jet force, lb. 13. Mode B stage 3 control jet force, lb . 14. Mode C stage 2 control jet force, 1 b . 15. Mode C stage 3 control jet force, 1 lb . 16. stage 2 thrust application station, inches. 17. Stage 3 thrust application station, inches. 18. Stage 2 control jet appifcation station, inches. 19. Stage 3 control jet application station, inches. 20. Output frequency, seconds. 21. n: stage 2 hardover turns are computed every nth integration step. 22. n: stage 3 hardover turns are computed every nth integration step. 23. (DETA) max, degrees, maximum allorable change in pitch attitude per integration step, Upper Stages. 24. (DT) max seconds, maximum integration sttp size, Upper Stages. 25. (DT) min, seconds, minimum integration step size, Upper Stages. 26. Maximan number of integration steps per turn, Upper stages.
46	Disperaion Trejectory code and Title	246	Type of trajectory to be computed is indicated by the code in field 4 of header card 46. Codes of available dispersions are tabulated on the foilowing page, aiong witin tine type of data required for each dispersed trajectory.

ADDITIOMAL DATA IIPUT FOR OFPIOEAL CONPURATIONB DIEPPRESION TRAJECTORI CODES

	Dispersion Trajectory				Data Input	
Code		Type		D1sperse	8tage	
1	Vecura	Thrust	Variation	H1gh	1	* 30 thrust tables
2	"	"	"	Low	1	+38 veictet tables
3	"	"	"	H1gh	2	*55 etage 4 and 5 duretions for
4	"	"	"	Low	2	codes 7 and 8 on five-stage
5	"	"	"	High	3	vehicle. Also, see page 22-30.
6	"	"	"	Low	3	
7	n	"		High Low	4	*Stage code required on heeder carde
9	Weisent Increment			High	1	*/7\% stage veindt increment
10	"			Low	1	
11		"		H1gh	2	*stace code required on heeder
12	"	"		Low	2	
13	"			H1gh	3	carde
14	"	"		Low	3	
15		"		H1gn	4	
16	"			Low	4	
17	Drag Variation			H19 ${ }^{\text {d }}$	1,6,2	* 78 percentage change in dras
18				Low	1,6,2	
19	CYa Variation			Forvard	1	*35 Cyty table (complete)
20				Aft	1	
21	Thrust Misaligoment			H1gh	1	*) 9 Ifealigment angle in degrees, tinruat appilcation station, inches matage code required
2				Low	1	
23				Yaw	1	
24	Control	System	Doedbend	High	2	\#50 deadbayd angle in degrees
25	$\stackrel{\square}{ }$			Iow	2	
26	"	"	"	Yaw	2	-3tage code required
27	\cdots	"	"	H1发	3	
28	"	"	"	Low	3	
29	*	\cdots	"	Yaw	3	
30	4 th and/or	5th Btage Tlpoit		H1gh	4 or 5	*51 effoctive angular change in degrese wotage code required
31				Low	4 or 5	
32				Yaw	4 or 5	
33	Leunch Acimath			Yaw	1	*2e aggular change in degrees
34	Imanch Attitude			H1gh	1	
35				Low	1	
36	Minde			$\begin{aligned} & \text { High } \\ & \text { Iow } \\ & \text { Yaw } \end{aligned}$		*53 WINWN, sit. ve velocity table fry WINME, alt. ve asimath table
37						
38						

40 Compute throe sign variations. Loed "Moninal Iray" ae title. mo aditional conta racuipes.

ADDITIONAL DATA INPUT FOR OPTIONAI, CCMPUTATIONS DISFERSED TRAJECTORIES

DATA BLOCK	NUMBER TITTE	FORMAT	COMMENTS
47	Stage Weight Increment	E12. 8	Increment in pounds *Stege code required on header card
48	Percentage Drag Variation	E12.8	Input as 0.x0x
49	Stage 1 Thrust Misalignment	2E12. 8	Misalignment angle in degrees, thrust application station, inches *Stage code required
50	Control System Deadband Angle	E12. 8	Angle in degrees *Stage code required
51	Fourth Stage Tipoff	E12. 8	Effective angular change in attitude, degrees *Stage code required
52	Iaunch Dispersions	E12. 8	Iaunch azimuth or attitude change, degrees
53	Wind Velocity	32 El 12.8	WINDVL(n) $=$ wind velocity Sequence: blank, altitude, velocity, altitude, velocity ... l.OE10 Units: feet, ft/sec
54	Wind Azimuth	32E12.8	WINDAZ(n) $=$ azimath of wind vector measured from North Sequence: blank, altitude, azimuth, altitude, azimuth ... l.0El0 Units: feet, degrees
55	Stage 4 and 5 Durations	2E12.8	(1) $=$ Stage 4 duration $(2)=$ Stage 5 duration

SPECIAL INPUT FOR THRUST DISPERSION IN FIVE-STAGE SCOUT

When simulating a five-stage Scout, thrust dispersions in stage 4 and/or 5 require input to data blocks 30 and 38 in a special manner. This is necessitated by the change in program format, during development, from four-stage to five-stage. Input of the thrust and weight histories of both stages 4 and 5 must be done into the stage 4 tables. In order to facilitate input the user shall form the tables in the following manner.

That is, the thrust and weight are tabulated in stage time as during optimization but are stacked for the two stages in the stage 4 area. Note that the coast duration is input arbitrarily as two seconds in the above tables; the program automatically changes this to the optimized value.

OUTPUT FORMAT
OPTIMIZATION AND LINEARIZATION COMPUIATIONS

The program output consists primarily of the tabulated history of the trajectory variables for each forward iteration. There is also an output of all data which has been input (selected by option 17), output of the corrections to be made in the terminal constraints on each iteration, output of several mass improvement parameters, performance exchange ratios, and linearized cormand pitch program. A definition of all output quantities follows:

Column Headings for Trajectory Listings

TIME	Total time from launch
VEL	Velocity in rotating frame
GAMMA	Vertical-plane path angle of VEL from geocentric horizontal
PSI	Azimuth of VEL, degrees east of north
Alititude	Distance above local Earth surface
GEOC LAT	Geocentric latitude, degrees north of equator
TAU	Longitude in rotating frame, degrees east of prime meridian
QBAR	Dynamic pressure
THRUST	Net thrust
WEIGHT	Sea level weight
GEOD LAT	Geodetic latitude
RADIUS	Distance from vehicle to Earth center
heat rate	Stagnation point heating rate
THETA	Vehicle pitch attitude referenced to launch geodetic horizontal
DTHETA	Change in theta from current nominal trajectory
VI	Velocity in inertial frame
GAMI	Vertical-plane path angle of VI
PSII	Azimuth of VI
MACH	Mach number, VEL/local speed of sound
ALPHA	Vertical angle between THRUST and VEL
DRAG	Aerodynamic drag
LIFT	Aerodynamic lift
QALPHA	Product of QBAR and ALPHA
RANGE	Great circle arc between launch site and vehicle, converted to nautical miles by 1 n.mi. $=1$ minute of arc
BETA6D	Stdeslip angle of attack
CHI	Yaw angle between thrust and platform pitch plane
thetac	Commanded vehicle pitch attitude
Thetadot	Commanded pitch rate

Output of Terminal Conditions Orbit Elements

TWOE	$2 E=V_{I}^{2}-2 \mu / r$
EH	Angular momentum, $V_{I} \cdot r \cdot c o s Y_{I}$
$R D$	Perigee radius
EYE	Inclination, degrees
BETAP	Argument of perigee, degrees
ECCENIRICITY	Orbitsl eccentricity
RAIPHA	Semi-major axis, feet
PERIOD	Orbital period, minutes
OMCGAS	Longitude of ascending node, degrees

Output at Start of Each Iteration
Constraint These quantities, called dψ_{i} in the equations, are the Corrections negative of the errors in constraints on the current nominal. Units are the same as in data block 19.

Nominal Payoff Present attempted improvement in payoff function.
Increment
Initial Payoff
Automatically computed initial payoff.
Increment

Payload
When payload is payoff only.
Increment

Corrected Payoff

Payoff function corrected to condition of zero error in all constraints.

Performance Exchange Ratios
When option 3 is set $=1$, performance exchange ratios are computed and printed out during the backward guidance run preceding the "final guidance" trajectory at completion of trajectory optimization. These quantities are first order approximations to reoptimized trajectory solutions for the sensitivities of the payroff function to unit changes in each of five vehicle parameters. The units depend on the payoff and the vehicle parameters but are of the form X units of payoff change per unit of vehicle parameter change. Units are as follows:

Payoff
Payload - - pounds
Velocity - - feet/sec
Altitude - - Peet
Vehicle Parameter
Burn rate - - 1\%
Specific impulse - - 1\%

OUTPUT FORMAT
 DISPERSION ANALYSIS

The dispersion analysis of the optimum trajectory fram error sources listed on page 22-28 provides three different forms of output: (1) staging trajectory variables and their dispersions for each individual dispersion trajectory, (2) a sumary of corresponding individual dispersions, and (3) three sigma variations, if selected.*

The trajectory variables that are considered are:

ALITITDE	Distance above the Earth's surface
VELOCITY	Velocity in rotating frame
GAMMA	Vertical path angle of VELOCITY from horizontal
DOWNRANGE	Great circle distance between vehicle and launch site, assuming 60 n.m. per degree of arc
CROSSRANGE	Distance between vehicle and instantaneous plane of motion existing at nominal vehicle staging posi- tion, measured in great circle normal to this plane, assuming 60 n.m. per degree of arc

Note all definitions are identical to these for basic program, except CROSSRANGE, which appears only for yaw dispersed trajectories.

In addition, the orbit elements achieved on the dispersed trajectory, and their dispersions from those of the nominal trajectory, are output. The standard definitions are repeated here for completeness.

TWOE	$2 E=V_{I}^{2}-2 \mu / r$, twice the energy per unit mass
$E H$	$V_{I} \cdot R \cdot \cos \gamma_{I}$, angular momentum
RP	Radius of perigee
EYE	Inclination
BETAP	Argument of perigee
OMEGAE	Longitude of ascending node
ns are defined as (trajectory variable on the "dispersed" trajectory) -	
ory variable from nominal boost history).	

[^11]Aerodynamic drag - - $1 \mathrm{ft}^{2}$ of drag area
Jettison weight - - 1 pound Propellant weight - - 1 pound

Innearized Pitch Program

At the start of each forward linearization trajectory, the linearized pitch program is output as a series of points of pitch angle θ versus stage time. Then, during the trajectory, the pitch rates are output at the start of each IInear segment.

Three sigma variations are computed using two methods: (1) a sumation of the dispersed trajectory variables, and (2) root sum square. Trajectories are grouped according to the stage 4 burnout altitude dispersion, high or low. If there is no altitule dispersion, the stage 4 burnout velocity dispersion is used. Yaw dispersion trajectories, as specified by the input codes, are handled as a distinct and separate set for the three sigma variations.

IMPACT

Impact points on the geodetic Earth are predicted for the optimum trajectory assuming stage failure during boost of first three stages, and also for the expended stage casings. Output consists of the failure time from launch, predicted impact time from launch, and the impact location in geodetic latitude, longitude, downrange distance, and geocentric latitude, all standard definitions. Drag effects are included for all trajectories.

HARDOVER TURNS

Assuming a control system fallure, hardover turn maneuvers are computed for up to ten seconds duration for the first three stages at a frequency specified by the user. The first stage failure mode corresponds to a hardover maneuver in pitch or yaw due to maximum deflection of the fins and jet vanes on the first stage in conjunction with a thrust misalignment that will add to the angular rate produced. The second and third stage control malfunctions are:

Mode 1: Thrust misalignment with no jet control
Mode 2: Single jet control operation
Mode 3: One pitch and yaw jet operations, assuming the rehicle rolled 45 degrees

Output for each hardover turn indicates the time in the nominal trajectory that the failure occurred, and:

TIME	Fram start of hardover turn
CHG GAMENA	Change in direction of the nominal relative velocity vector
QBAR-A	Dynamic pressure times angles of attack (first stage only)

In addition to radar station identification and locstion, the slant range and look angles computed from the optimum trajectory are output as a function of time from launch for as many as twenty different tracking station locations that are input in terms of latitude, longitude and altitude.

RANGE Slant range from vehicle to tracking station
YDS Range in yards, decimal system
YDS (OCT) Range in yards, IRM Octal system
YDS-1165000 Range in yards - 1165000. yards, IBM Octal system

AZIMUTH Azimath of the vehicle with respect to the tracking station measured clockwise from north to the loal geodetic horizontal plane

DEG Azimuth in degrees, decimal system
DEG (OCT) Azimuth in degrees, IBM Octal system
DEG MIN Azimuth in degrees and minutes, decimal systen
KILS Azimuth in mils, decimal system

ELEVATION Elevation of the vehicle with respect to the tracking station geodetic horizontal plane

DEG Elevation in degrees, decimal system
DEG(OCT) Elevation in degrees, IBM Octal system
DEG MIN Elevation in degrees and minutes, decimal system
MIIS Elevation in mils, decimal system

ERRATA

NASA Contractor Report 66515

TOLIP - TRAJECTORY OPTIMIZATION AND LINEARIZED PITCH COMPUTER PROGRAM

By Robert E. Willwerth, Jr. and Richard C. Rosenbaum
LOCKHEED MISSILES AND SPACE COMPANY
Palo Alto, California

NASA Contract NAS1-5106

Issue date: 2-20-69

H4.1 ... DEFINITION OF SYMBOLS FOR HYPERBOLIC ASMPTOTE COMTRAIMS
B Booster burnout
E Direction of Outward Radial
H H_{1} Equatorial projection of H
$1=$ EYE Inclination of geocentric orbit plane
OUTWARD RADIAL = the vector direction of hyperbolic excess velocity vector translated to Earth center
P Perigee of orbit
$P_{1} \quad$ Equatorial projection of P
$V_{H} \ldots$ Magnitude of hyperbolic excess velocity
W. Ascending node of the orbit plane
${ }^{c_{\mathrm{e}}}$ Right ascension of Outward Radial.
$\beta_{\mathrm{H}} \quad$ In-plane angle from ascenaing node
$B_{\text {B }}$..... Argument of perigee
${ }^{8} \mathrm{e}_{\mathrm{E}} \quad$ Declination of Outward Radial
ζ True anomaly of booster burnout
ζ_{H} True anomaly of hyperbolic asymptote
ν Inertial longitude angle from ascending node
ne \quad Longitude of W
Pu: Vernal equinox

H4.6 DIAGRAM AND EQUATIONS FOR HYPERBOLIC EXCESS ASMPTOTE ORBIT ELEMENTS

The nature of the trajectory optimization process in SCOUT is virtually the same for all missions. The differences lie only in the form of the constraints imposed on the trajectory. For near Earth missions terminal constraints can be imposed on the trajectory variables explicitly, or they can be specified in terms of conventional orbit elements which are functions of the trajectory variables.

For the addition of the Earth escape missions, the terminal constraints have been formulated as parameters which are functions of Earth-referenced oroit elements. Thus, multiple use of the coding is made possible and the form of the constraints is conceptually similiar for all missions.

The unit sphere diagram and orbit equations for the hyperbolic excess velocity asymptote are documented on the following pages. The three terminal constraints that have been added to the program are (1) the magnitude of the hyperbolic excess velocity vector, (2) its right ascension angle (in radians), and (3) its declination angle (in radians). The direction of the vector is that of the asymptote to the departure hyperbola, and the desired values for these parameters are input with the other constraint information.

The analysis incorporates the following approximations, which allow a closed form solution of the Earth departure ballistic path. Since the direction of the asymptote is stated in terms of its right ascension and declination, an

Earth-centered origin of the asymptote is implied. The first approximation employed is to accept any hyperbola of the required energy whose asymptote is parallel to the required direction. Since typically the asymptote passes within one or two Earth-radii of Earth center, this approximation is relatively slight.

The second approximation is that of using the booster burnout conditions to define the hyperbolic ballistic path. Since the SCOUT program incorporates an oblate Earth model, the gravity model will perturb the ballistic coast path from that of a simple hyperbola after booster burnout. Although these perturbations should be small, their effect can be included by introducing an integrated coast following the final stage. In this way, the terminal conditions of the coast stage should provide a more realistic representation for injection onto the hyperbolic path when higher accuracy is required.

Again, it should be realized that with the above formulation the optimum injection conditions are automaticafly found as an implicit part of the trajectory optimization process.

GEONETRY USED TO DEFINE THE RYPEREOLIC EXCESS

VELOCITY VECTOR ORBIT ELEMENTS

HYPERBOLIC EXCESS VELOCITY VECTOR ORBIT ELEMENTS

1. Hyperbolic excess velocity (V_{H}).

$$
V_{E}=\sqrt{v_{I}^{2}-\frac{2 \mu}{I}}=\sqrt{2 E}
$$

2. Declination of the hyperbolic asymptote ($8{ }_{e_{H}}$)

$$
\delta_{e_{\mathrm{H}}}=\sin ^{-1}\left(\sin i \sin \beta_{\mathrm{H}}\right)-\frac{\pi}{2} \leq \delta_{\epsilon_{\mathrm{H}}} \leqslant \frac{\pi}{2}
$$

where: $1=$ inclination, $\hat{\beta}_{p}=$ argument of perigee
with $\beta_{\mathrm{H}}=\beta_{\mathrm{p}}+\zeta_{\mathrm{H}}$
and $\quad \zeta_{H}=$ limiting value of true anomaly of hyperbola

$$
\zeta_{H}=\pi-\tan ^{-1} \frac{H V_{H}}{\mu}, \quad H=\operatorname{angular} \text { momentum }
$$

3. Right Ascension of the hyperbolic asymptote ($a_{e_{H}}$)

$$
\begin{array}{ll}
\alpha_{e_{H}}=\Omega_{e}+\nu_{H} & \Omega_{e}=\text { Longitude of Ascending Node } \\
\nu_{H}=\tan ^{-1}\left(\frac{\cos 1 \sin \beta_{H}}{\cos \beta_{H}}\right) \quad \begin{array}{l}
0 \leq \nu<2 \pi \\
\text { use } 4 \text { quad } \tan ^{-1}
\end{array}
\end{array}
$$

The adjoint differential equations, show on page 5-9 of Section 5.2, are integrated backward along the trajectory to form the λ (JC, 7) matrix, which is a time function relating perturbations in the state variables to the perturbation in each constraint at the final time. Recall that the adjoint differential equations themselves do not depend upon the constraint parameter involved. Only the initial conditions for the adjoint equations depend upon the form of the constraint parameter, as discussed in Section 5.2.

Since the constraints of hyperbolic excess velocity, asymptotic right ascension, and asymptotic declination are applied at burnout of the last stage, the initial conditions for these terminal constraints are simply the partial derivatives of these constraints with respect to the trajectory variables evaluated at the final time. They are evaluated using a chain rule procedure of the form

$$
\frac{\partial(\text { constraint })}{\partial(\text { state variables })}=\frac{\partial \text { (constraint) }}{\partial \text { (inertial variables) }} \cdot \frac{\partial \text { (inertial variables) }}{\partial \text { (state variables) }}
$$

In Section $45.5-1$, the complete matrix of partial derivatives for initializing the adjoint variables is given for these three constraints. The partial derivatives of the inertial trajectory variables used in these equations have already been coded in SCOUT, and are deinned in Section 5.5. The new, additional
terms necessary to complete the adjoint variaile initialization are the partial derivatives of certain orbit elements as well as the partial derivatives of the three constraints with respect to the inertial trajectory variables, and these are defined in Sections H5.5-2. and H5.5-3. The nomenclature and equations describing and defining the constraint parameters themselves are given in Section $H_{4} .1$ and 14.6 .

H5.5-2a Inclination, 1

$$
\begin{aligned}
& \frac{\partial i}{\partial \lambda}=\frac{\sin \lambda \sin \psi_{I}}{\sin i} \\
& \frac{\partial i}{\partial \psi_{I}}=-\frac{\cos \lambda \cos \psi_{I}}{\sin i}
\end{aligned}
$$

H5.5-2b Longitude of Ascending Node, $?_{e}$

$$
\begin{aligned}
& \frac{\partial \Omega_{e}}{\partial \lambda}=-\frac{\cos i \cos \frac{1}{\sin ^{2} 1}}{\frac{\partial \Omega_{e}}{\partial I_{I}}=-\frac{\sin \lambda}{\sin ^{2} i}} \\
& \frac{\partial \Omega_{e}}{\partial T}=1
\end{aligned}
$$

H5.5-2c Argument of Perigee, β_{p}

$$
\begin{aligned}
& \frac{\partial \beta_{p}}{\partial V_{I}}=\frac{2\left(\sin ^{2} \zeta\right) \frac{\kappa}{H} \cdot \frac{r}{H}}{V_{I} \tan \gamma_{I}} \\
& \frac{\partial \beta_{p}}{\partial r}=\frac{\sin ^{2} \zeta \frac{\mu}{H}}{H \tan \gamma_{I}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \beta_{p}}{\partial \gamma}=-\left(\sin ^{2} \zeta\right)\left[\frac{1-\frac{\mu}{H} \cdot \frac{r}{H}}{\sin ^{2} \gamma_{I}}+2 \cdot \frac{\mu}{H} \cdot \frac{r}{H}\right] \\
& \frac{\partial \beta_{p}}{\partial \lambda}=\frac{\sin \beta \cos \beta}{\sin \lambda \cos \lambda} \\
& \frac{\partial \beta_{p}}{\partial \psi_{I}}=\frac{\sin \beta \cos \beta \sin \psi_{I}}{\cos \psi_{I}}
\end{aligned}
$$

H5.5-2d Hyperbola's Limiting True Anomaly

$$
\frac{\partial \zeta_{H}}{\partial r}=-\frac{\frac{H V_{H}}{\mu}\left[1+\frac{\mu}{r V_{H}^{2}}\right]}{r\left[1+\left(\frac{H V_{H}}{\mu}\right)^{2}\right]}
$$

$$
\begin{aligned}
& \frac{\partial \zeta_{H}}{\partial V_{I}}=-\frac{\frac{H \cdot V_{H}}{H}\left[1+\left(\frac{V_{I}}{V_{H}}\right)^{2}\right]}{V_{I}\left[1+\left(\frac{H V_{H}}{\mu}\right)^{2}\right]} \\
& \frac{\partial \zeta_{H}}{\partial \gamma_{I}}=\frac{\left(\frac{\square V_{F}}{\mu}\right) \tan \gamma_{I}}{1+\left(\frac{H V_{H}}{\mu}\right)^{2}}
\end{aligned}
$$

H5.5-2e Hyperbola's Limiting In-plane Angle, β_{H}

$$
\frac{\partial \beta_{H}}{\partial V_{I}}=\frac{\partial \beta_{p}}{\partial V_{I}}+\frac{\partial \zeta_{H}}{\partial V_{I}}
$$

$$
1
$$

$$
\frac{\partial \delta_{H}}{\partial \gamma_{I}}=\frac{\partial \beta_{P}}{\partial \gamma_{I}}+\frac{\partial \zeta_{H}}{\partial \gamma_{I}}
$$

$$
\frac{\partial \beta_{\mathrm{H}}}{\partial r}=\frac{\partial \xi_{\mathrm{p}}}{\partial r}+\frac{\partial \zeta_{H}}{\partial r}
$$

$$
\frac{\partial \beta_{H}}{\partial \dagger_{I}}=\frac{\partial \beta_{D}}{\partial \eta_{I}}
$$

$$
\frac{\partial \beta_{H}}{\partial \lambda}=\frac{\partial \beta_{p}}{\partial \lambda}
$$

H5.5-3
Partial Derivatives of Eyperbolic Asymptote

H5.5-3a Hyperbolic Excess Velocity

$$
\begin{gathered}
\frac{\partial V_{H}}{\partial V_{I}}=\frac{2 V_{I}}{2 V_{H}}=\frac{V_{I}}{V_{H}} \\
\frac{\partial V_{H}}{\partial r}=\frac{2 \frac{\mu}{2}}{2 V_{H}}=\frac{\mu / r^{2}}{V_{H}}
\end{gathered}
$$

H5.5-3b Declination of Hyperbolic Asymptote

$$
\begin{gathered}
\frac{\partial \delta_{e_{H}}}{\partial V_{I}}=\frac{\sin 1 \cos \beta_{H}}{1-\sin ^{2} \delta_{e_{H}}} \frac{\partial \beta_{H}}{\partial V_{I}} \\
\vdots \\
\frac{\partial \delta_{e_{H}}}{\partial \gamma_{I}}=\sqrt{\sin 1 \cos \beta_{H}} \frac{\partial \beta_{H}}{\partial \gamma_{I}} \\
\frac{\partial \delta_{e_{H}} \delta_{e_{H}}}{\sin 1 \cos \beta_{H}} \frac{\partial \beta_{H}}{\partial r} \sqrt{1-\sin ^{2} \delta_{e_{H}}} \partial r
\end{gathered}
$$

$$
\frac{\partial \delta_{H} e_{H}}{\partial \phi_{I}}=\frac{I}{\sqrt{1-\sin ^{2} \delta_{H}}}\left(\sin i \cos \beta_{H} \frac{\partial \beta_{H}}{\partial \phi_{I}}+\sin \beta_{H} \cos i \frac{\partial I}{\partial \phi_{I}}\right)
$$

$$
\frac{\partial{ }^{\delta} e_{H}}{\partial \lambda}=\frac{1}{\sqrt{1-\sin ^{2} \delta_{e_{H}}}}\left(\sin i \cos \beta_{H} \frac{\partial \beta_{H}}{\partial \lambda}+\sin \beta_{H} \cos 1 \frac{\partial i}{\partial \lambda}\right)
$$

H5.5-3c Right Ascension of Hyperbolic Asymptote

$$
\frac{\partial \alpha_{e_{H}}}{\partial V_{I}}=\frac{\cos 1 / \cos ^{2} \beta_{H}}{\left(1+\tan ^{2} \nu_{H}\right.} \cdot \frac{\partial \beta_{H}}{\partial V_{I}}
$$

$$
\begin{aligned}
& \frac{\partial \alpha_{e_{H}}}{\partial r}=\left(\frac{\cos i / \cos ^{2} \beta_{H}}{1+\tan ^{2} \nu_{H}}\right) \frac{\partial \beta_{H}}{\partial r}+\frac{\partial \Omega_{e}}{\partial \eta_{I}} \frac{\partial r}{\partial r} \\
& \frac{\partial \alpha_{e_{H}}}{\partial \gamma_{I}}=\left(\frac{\cos i / \cos ^{2} \beta_{H}}{1+\tan ^{2} V_{H}}\right) \frac{\partial \beta_{H}}{\partial \gamma_{I}} . \\
& \frac{\partial \alpha_{e_{H}}}{\partial \lambda}=\frac{\partial \Omega_{e}}{\partial \lambda}+\left(\frac{\cos 1 / \cos ^{2} \beta_{H}}{1+\tan ^{2} \nu_{H}}\right) \frac{\partial \beta_{H}}{\partial \lambda}-\frac{\tan \beta_{H}}{1+\tan ^{2} \nu_{H}} \sin i \frac{\partial i}{\partial \lambda} \\
& \frac{\partial \alpha_{e_{H}}}{\partial \phi_{I}}=\frac{\partial \Omega_{e}}{\partial \psi_{I}}+\left(\frac{\cos i / \cos ^{2} \beta_{H}}{1+\tan ^{2} \nu_{H}}\right) \frac{\partial \beta_{H}}{\partial \phi_{I}}-\frac{\tan \beta_{H}}{1+\tan ^{2} \nu_{H}} \sin 1 \frac{\partial 1}{\partial \psi_{I}} \\
& \frac{\partial \alpha_{e_{H}}}{\partial T}=\frac{\partial \Omega_{e}}{\partial T}=1 \quad \frac{\partial \alpha_{e_{H}}}{\partial T_{G}}=\frac{\partial \Omega_{e}}{\partial T_{G}}=\omega
\end{aligned}
$$

Definitions for new variables appearing in ICS, LINEAR, MAIN and MISCON subroutines for the hyperbolic asymptote constraints.

BH
CBEH
CENUH
CI
DECLIN. DECLINation of hyperbolic asymptote
ENUH $\Psi_{H}=$ inertial longitude angle of hyperbolic asymptote from ascending node

HHO1 flag for right ascension constraint
P AEH GI
P AEH L
P AEH R
P AEH SI
P AEH VI
in-plane angle between ascending node and hyperbolic asymptote
Cosine (BEta H) $=$ cosine (BH)
Cosine (ENUH)
Cosine (Inclination)
inertial gamma Latitude Radius inertial azimuth inertial velocity

PBH GI
PBH L
PBH R
PBH SI
PBH VI
partial derivatives of BH with respect to

${ }_{\lambda}^{Y I}$

inertial state variables
r
V_{I}
$=$

P BP	GI	
P BP	L	partial derivatives of PP (argument of perigee)
P BP	R	with respect to inertial state variables
P BP	SI	
P BP	VI	

P DEH GI		
P DEH L	partial derivatives of DEclination of the	λ_{I}
P DEH R	Byperbolic asymptote with respect to inertial	r
P DEH SI	state variables .	
P DEH VI	!	

| PI | I. | partial derivative of Inclination with |
| :--- | :--- | :--- | :--- |
| PI | SI | latitude |
| inertial azimuth | | |

P OME L partial-derivatives of Ω_{e} (ascending node.) | latitude |
| :--- |
| POME SI: with respect to: |\quad inertial azimuth

P. VH. : R partial derivatives of VH (hyperbolic excess $\quad \because \quad$ radius
P. VH VI velocity) with respect to:

P 7	GI	partial derivatives of zH (true anomaly of
P 2 H	R	hyperbolic asymptote) with respect to:
P ZH	VI	hyperbollc asymptote) with respect to.

Data Block 8

Three new parameters have been added to the list of terminal constraints; namely, hyperbolic excess velocity, right ascension of the hyperbolic asymptote, and declination of the hyperbolic asymptote. These are terminal constraints which must be specified before listing of intermediate stage . points. In general, the Earth-departure missions utilizing these three new constraints will also require imposing the perigee radius constraint for consistent optimization.

DEFINITION OF DATA INPUT

Data Block No.	Title	Format
8	Trajectory Constraint Parameters	1413
**	Terminal Constraint Parameter Codes	**
100	```Hyperbolic excess velocity (VH), ft/ sec```	
101	Right ascension of asymptote, radians	
102	Declination of asymptote, radians	

The three new constraint parameters have been added to the list of terminal condition orbit elements that are output, defined as:

1 HYPERBOLIC EXCESS VELOCITY ft/sec ASYMPIOTE DECLINATION degrees ASMMPIOTE RIGHT ASCENSION degrees

[^0]: *PRESTO - Program for Rapia Earth-to-Space Trajectory Optimization, NASA Contractor Report NASA CR-158, February 1965.

[^1]: *Solution of the Problem of Artificial Satellite Theory Without Drag. Dick Brouwer. American Astronomical Journal, November 1959.

[^2]: *Herget, P., Solar Coordinates 1800-2000. Vol. XIV. American Ephemeris and Nautical Almanac

[^3]: *"Physical Constants for Satellite Calculation," R. J. Mercer, Report No. TOR-469(5110-02)-2, Aerospace Corporation, January 1965.
 **"Relating Geodetic Latitude and Altitude to Geocentric Latitude and Radius Vector," E. W. Purcell and W. B. Gowan, ARS Journal, Vol. 31, \#7, pp 932-935, July 1961.

[^4]: *Neglect oblateness terms in adjoint equations

[^5]: *See reference on page 3-1.

[^6]: Kelley, H. J., "Gradient Theory of Optimal Flight Paths," ARS Journal, 30, 947-953 (1960).
 ${ }^{2}$ Bryson, A. E., and Denham, W. F., "A Steepest-Ascent Method for Solving Optimum Programing Problems," J. Applied Mechanics, 29, 247-257 (1962).

[^7]: "Feldman, S., "Hypersonic Gas Dynamic Charts of Equilibrium Air," Arvo Research Laboratory, Everett, Mass., Jamary 1957.

[^8]: *See reference on page 4-21.

[^9]: "Data must carry correct sign. Data for all yaw dispersions should cause resultant crossrange dispersions to be in the same direction to realize maximus worst-on-worst three sigma summation.

[^10]: "pata must carry correct sign. Data for all ymom disparaions abould cance reaultant croamrane diapersions to be in the ane direction to realize maximu woret-on-woret three sign mumation.

[^11]: *For wind dispersed trajectories, the vehicle's velocity relative to the air mass is output as AEROVL with the standard trajectory output.

