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FOFEWORD 

An exploratory experimental and theo re t i ca l  inves t iga t ion  of gaseous nuclear 
rocket technology is  being conducted by the  United Aircraf t  Corporation Research 
Laboratories under Contract NMw-847 with the  jo in t  AEC-NASA Space Nuclear Propulsion 
Office. The Technical Supervisor o f  t he  Contract f o r  NASA is Captain W. A. Yingling 
(USAF). 
during t h e  per iod between September 15, 1965 and May 30, 1967 a re  described i n  t h e  
following four  repor t s  ( including the  present repor t )  which comprise t h e  required 
f i f t h  Inter im Summary Technical Report under the Contract: 

Results of t h e  f l u i d  mechanics port ion of t he  inves t iga t ion  conducted 

Travers, A. : 
Vortexes Using a Rotating-Peripheral-Wall Water Vortex Tube. 
Laboratories Report F-910@1-10, May 1967 (NASA CR-991, 1968). 

Experimental Invest igat ion of Flow Patterns  i n  Radial-Outflow 
UAC Research 

Johnson, B. V.: 
Wall-Jet Vortex Tube w i t h  Radial Outflow and Moderate Superimposed Axial Flows. 
UAC Research Laboratories Report F-910091-ll, 

Exploratory Flow and Containment Experiments i n  a Directed- 

1967 (NASA CR-992, 1968). 

Kendall, J. S., A. E. Mensing, and B. V. Johnson: Containment Experiments i n  
Vortex Tubes with Radial  Outflow and Large Superimposed Axial Flows. 
Laboratories Report F-910091-12, May 1967 (present repor t ,  NASA CR-993, 1968). 

UAC Research 

Clark, J. W., B. V. Johnson, J. S. Kendall, A. E. Mensing, and A. Wavers: 
Summary of Gaseous Nuclear Rocket Fluid Mechanics Research Conducted Under 
Contract Ww-847. 
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Containment ExDeriments i n  Vortex Tubes With 

Radial Outflow and Large Superimposed Axial Flows 
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Containment Experiments i n  Vortex Tubes With 

Radial  Outflow and Large Su;?erimposed Axial Flows 

An experimental inves t iga t ion  was conducted t o  determine the  heavy-gas contain- 
ment c h a r a c t e r i s t i c s  of radial-outflow vortexes f o r  po ten t i a l  appl ica t ion  t o  a 
vortex-stabi l ized,  open-cycle gaseous nuclear rocket engine. Tes ts  were conducted 
i n  a constant-temperature vortex with Reynolds numbers based on the  superimposed 
axial flow up t o  those expected i n  a fu l l - sca le  engine. 
u l a t e  t he  seeded hydrogen propellant and a heavy fluorocarbon was used i n  most tes ts  
t o  simulate t h e  gaseous nuclear fue l .  
changes i n  t h e  vortex tube length-to-diameter ra t io ,  the  l igh t -gas  in j ec t ion  geome- 
t r y  and area,  t h e  r a t i o  of average heavy-gas density t o  l igh t -gas  densi ty ,  and t h e  
dens i ty  of t h e  heavy gas at in j ec t ion  were studied. 

A i r  was employed t o  sim- 

The ef fec ts  on heavy-gas containment of 

The heavy-gas containment parameters obtained were one t o  two order  of magni- 
tude less than  a r e  present ly  estimated t o  be required f o r  an economically p r a c t i c a l  
open-cycle engine. The containment parameters varied s ign i f i can t ly  only with vortex 
tube length-to-diameter r a t i o  and the  r a t i o  of average heavy-gas dens i ty  t o  l i g h t -  
gas densi ty .  The r e s u l t s  of some tes ts  using helium in jec ted  near t h e  center l ine  of 
t h e  vortex indicated t h a t  t he  presence of a l i g h t  gas i n  the  c e n t r a l  region of t h e  
vortex has a s ign i f i can t  favorable e f f ec t  on containment cha rac t e r i s t i c s ;  these  re- 
s u l t s  have p o t e n t i a l  appl ica t ion  t o  t h e  nuclear l i g h t  bulb engine. 
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RESULTS 

1. Experimentally determined containment parameters ( t h e  r a t i o  of t h e  average 
heavy-gas dwell t i m e  t o  t h e  average l i gh t -gas  dwell t i m e  i n  t h e  vortex tube )  f o r  
vortexes with r a d i a l  outflow and large superimposed a x i a l  flows a r e  between one and 
two orders of magnitude lower than a r e  now estimated t o  be required f o r  an economi- 
c a l l y  p r a c t i c a i  , vortex-stabi l ized open-cycle gaseous nuclear rocket engine. 

2 .  The containment p a r m e t e r s  i n  t es t s  with a vortex tube length-to-diameter 
r a t i o  equal t o  1 .0  increased from approximately 3.5 t o  10 as t h e  r a t i o  of t h e  l i g h t -  
gas weight flow r a t e  t o  t h e  heavy-gas weight flow r a t e  w a s  increased from 7 t o  50. 
The corresponding rat  i o  of average heavy-gas densi ty  t o  l ight-gas  densi ty  decreased 
from 0 . 5  t o  0 .2 .  The containment parameter w a s  independent of axial-flow Reynolds 
number, tangent ia l  i n j ec t ion  Reynolds number, a x i a l  component of t h e  l ight-gas  in- 
j e c t i o n  velocity,  and l ight-gas  in j ec t ion  area and geometry. 

3. The containment parameters decreased as t h e  vortex tube length-to-diameter 
r a t i o  was increased. For example, with a r a t i o  of l ight-gas  weight flow rate t o  
heavy-gas weight flow r a t e  of 50, t h e  containment parameter decreased from approxi- 
mately 10 t o  5 and t h e  corresponding r a t i o  of average heavy-gas densi ty  t o  l ight-gas  
dens i ty  decreased from 0.2 t o  0 .1  when t h e  vortex tube length-to-diameter r a t i o  w a s  
increased from 1 . 0  t o  3.0. 

4. The presence of helium i n  the  c e n t r a l  region of vortexes with r a d i a l  out-  
flow and superimposed axial  flow re su l t ed  i n  a s t a b i l i z i n g  densi ty  gradient near t h e  
peripheral  w a l l  of t he  vortex tubc.  This r e s u l t  indicates  t h a t  t h e  presence of t h e  
r a d i a l  density gradient caused by t h e  temperature gradient i n  t h e  coolant Suf fer  
region of a nuclear l i g h t  bulb engine should s i g n i f i c a n t l y  reduce t h e  f u e l  concen- 
t r a t i o n  i n  t h i s  region by reducing o r  eliminating turbulent  d i f fus ion .  
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INTRODUCTION 

An experimental and t h e o r e t i c a l  invest igat ion of gaseous nuclear rocket tech- 
nology i s  being conducted by the  United Aircraf t  Research Laboratories under Con- 
t r a c t  NASw-847 administered by the  jo in t  AEC-NASA Space Nuclear Propulsion Office.  
The research performed under t h i s  contract  i s  applicable t o  two vor tex-s tab i l ized  
gaseous nuclear rocket concepts: t he  open-cycle engine concept and t h e  nuclear  
l i g h t  bulb concept. 

In  the  open-cycle concept (one engine design i s  shown schematically i n  Fig.  l), 
hydrogen propel lant  i s  in jec ted  from the  per ipheral  w a l l  of the  rocket chamber t o  
dr ive  t h e  vortex.  
per iphera l  w a l l  i n t o  an exhaust annulus a t  one end of t h e  chamber and through t h e  
exhaust nozzles.  Gaseous nuclear f u e l  i s  contained i n  the  cen t r a l  region of t h e  
vortex flow. Heat i s  t r ans fe r r ed  by thermal radiat ion from the  gaseous nuclear 
f u e l  t o  the  seeded hydrogen propellant passing over t he  f u e l  region. Deta i l s  of t h e  
engine concept -- including t h e  f l u i d  mechanics, heat t r ans fe r ,  nucleonics and s t ruc-  
t u r e  -- a re  described i n  Ref. 1. 

The propel lant  s p r i a l s  ax ia l ly  i n  an annular region near  t he  

In t h e  nuclear l i g h t  bulb concept, propellant i s  heated by thermal r ad ia t ion  
passing through an in t e rna l ly  cooled transparent w a l l  located between the  f u e l  and 
the  propel lant .  Coolant gas i s  in jec ted  tangent t o  the  inner surface of t he  t r ans -  
parent per iphera l  w a l l  t o  e s t ab l i sh  the  vortex flow which i s  u t i l i z e d  t o  contain 
gaseous nuclear f u e l  and t o  i s o l a t e  it from the t ransparent  w a l l .  

Two primary f ac to r s  which determine t h e  flow pa t te rns  i n  confined vortexes a r e  
(1) whether o r  not t he re  is  a superimposed ax ia l  flow near the  per iphera l  w a l l ,  and 
( 2 )  whether o r  not t he  net  flow of f l u i d  i s  rad ia l ly  inward o r  outward w i t h  respect 
t o  the  cen te r l ine  of t he  vortex.  In  a vortex with superimposed a x i a l  flow, f l u i d  
i s  in jec ted  a t  the  per iphera l  w a l l  t o  dr ive t h e  vortex and i s  withdrawn through an 
annulus located near t he  outer  edge of one end w a l l .  The radial-inflow vortex i s  
formed by removing a small amount of f l u i d  through por t s  at the  centers  of the end 
w a l l s .  
w a l l ,  but  i n  t h i s  case add i t iona l  f l u i d  i s  injected through the  po r t s  a t  t h e  centers  
of t h e  end w a l l s .  

The radial-outflow vortex a l s o  i s  driven by in j ec t ing  f l u i d  at t h e  per iphera l  

Flow v i sua l i za t ion  t e s t s  of radial-inflow vortexes (Refs. 2 and 3) have ind i -  
cated that t h e  flow i n  the  cen t r a l  region o f  the vortex i s  r e l a t i v e l y  laminar and, 
hence, may lead  t o  sa t i s f ac to ry  containment of gaseous nuclear f u e l .  However, two- 
component gas t es t s  with radial-inflow vortexes (Refs. 4, 5, and 6 )  have shown t h a t  
t h e  dens i ty  of t h e  heavy gas i n  the  simulated fuel-containment region of t he  vortex 
( i . e .  , t h e  r e l a t i v e l y  laminar cen t r a l  region)  cannot be subs t an t i a l ly  g rea t e r  than 
t h a t  of t h e  surrounding l i g h t  gas without creat ing i n s t a b i l i t i e s  and turbulence.  



Three d i f f e ren t  experimental invest igat ions were conducted concurrently t o  in-  
ves t iga te  the  cha rac t e r i s t i c s  of radial-outflow vortexes f o r  potent i a l  appl ica t ion  
t o  an open-cycle engine. This  report  presents  t he  r e s u l t s  of heavy-gas containment 
t e s t s  conducted at Reynolds numbers up t o  those t h a t  a r e  present ly  estimated t o  be 
required i n  a fu l l - s ca l e  engine. 
outflow vortexes (conducted a t  lower Reynolds numbers) a r e  reported i n  Ref. 8. 
That report describes flow v isua l iza t ion  t e s t s ,  f low-field ve loc i ty  measurements 
and heavy-gas containment t e s t s .  
toward obtaining fundamental information on the  s t a b i l i t y  and flow pa t te rns  i n  
radial-outflow vortexes a re  reported i n  Ref. 7. A summary of t he  p r inc ipa l  r e s u l t s  
of t h e  f lu id  mechanics research conducted under Contract NASw-847 and a comparison 
of the  observed flow cha rac t e r i s t i c s  w i t h  those t h a t  a r e  now estimated t o  be re-  
quired for  both open-cycle and nuclear l i g h t  bulb engines a r e  presented i n  Ref. g .  

The r e s u l t s  o f  a p a r a l l e l  inves t iga t ion  of r ad ia l -  

The r e s u l t s  of flow v isua l iza t ion  t e s t s  d i rec ted  

Background and Objectives of T h i s  Invest igat ion 

Previous two-component gas t e s t s  ( e .g . ,  Refs. 4, 5 ,  and 6)  were conducted a t  
Reynolds numbers one t o  two orders  of magnitude l e s s  than would be required f o r  a 
t y p i c a l  vortex-stabi l ized,  open-cycle engine. The vortex tubes used i n  previous 
t e s t s  employed a length-to-diameter r a t i o  of 3.0 and a low value of t h e  r a t i o  of 
t h e  average a x i a l  ve loc i ty  i n  the  vortex t o  the  l igh t -gas  in j ec t ion  ve loc i ty  ( less  
than 0 . 2 ) .  
ing 1 . 0  a re  an t ic ipa ted  i n  an open-cycle engine (Ref. 10). In  addi t ion,  no previous 
t e s t s  were conducted w i t h  geometries t ha t  provided l igh t -gas  In jec t ion  with both tan-  
g e n t i a l  and a x i a l  ve loc i ty  components. 

For comparison, ve loc i ty  r a t i o s  and length-to-diameter r a t i o s  approach- 
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In  an open-cycle engine the  dens i ty  of t h e  f u e l  must be considerably g rea t e r  than 
tha t  of the surrounding propel lan t ;  t he  fuel- to-propel lant  dens i ty  r a t i o s  a t t a i n -  
ab le  w i t h  a radial-inflow vortex a r e  not la rge  enough f o r  such an engine. However, 
s ince the nuclear l i g h t  bulb engine could u t i l i z e  a heavier gas, such as neon, 
between the f u e l  and the t ransparent  w a l l ,  radial-inflow vortex appear su i tab le  f o r  
t h e  nuclear l i g h t  bulb engine. 

I n i t i a l  flow v isua l iza t ion  t e s t s  of radial-outflow vortexes (Ref. 2 )  indicated 
t h a t  t h e  flow w a s  turbulent  i n  the  c e n t r a l  region of t he  vortex.  Two-component gas 
t e s t s  (Refs. 5 and 6) indicated t h a t  t h e  dens i ty  of t he  heavy gas in t he  simulated 
fuel-containment region could be increased t o  a value subs t an t i a l ly  g rea t e r  than the  
dens i ty  of t h e  surrounding l i g h t  gas. However, no measurements had been made of t he  
amount of heavy gas contained and the heavy-gas l o s s  r a t e s  f o r  flow conditions w i t h  
l a rge  amounts of superimposed axial flow. 
determine whether radial-outf  low vortexes with superimposed a x i a l  flow would be 
su i t ab le  f o r  appl icat ion t o  an open-cycle engine. 

Thus, fu r the r  research was required t o  

4 



Accordingly, t he  p r inc ipa l  object ives  of the inves t iga t ion  reported herein 
were t o  determine the  e f f e c t s  on heavy-gas containment i n  radial-outflow vortexes 
with superimposed a x i a l  flow of (1) increasing the  Reynolds numbers t o  values t h a t  
are estimated t o  be required f o r  the open-cycle engine, ( 2 )  varying t h e  l igh t -gas  
in j ec t ion  configurat ion and area, and (3)  changing the vortex tube len&h-to-dim- 
e t e r  r a t i o .  
suFerimposed axial flow) were a l s o  performed; r e s u l t s  of these inves t iga t ions  a r e  
discussed i n  APPENDIXES I and 11. 

In  addi t ion,  severa l  r e l a t ed  invest igat ions of basic  vortexes (no 
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TEST EQUIPMENT 

High Reynolds Number Test Fkc i l i t y  

The high Reynolds number t e s t  f a c i l i t y  cons i s t s  of four systems: t h e  l i gh t -gas  
(simulated-propellant ) supply system, t h e  heavy-gas (simulated-fuel)  supply system, 
t h e  t e s t  sect ion and exhaust system, and t h e  con t ro l  console and data  acquis i t ion  
system. 
t h e  t es t  f a c i l i t y  . 

Figure 2 i s  a schematic diagram of t h e  f irst  th ree  systems which comprise 

Light-Gas Supply System 

The l ight-gas  supply system provides a metered quant i ty  of simulated propel lant  
t o  t h e  t e s t  sect ion a t  t h e  pressure, temperature, and weight flow rate required f o r  
a p a r t i c u l a r  flow condition. A photograph o f  t h e  heater  and associated piping f o r  
t h e  l ight-gas  supply system i s  shown i n  Fig. 3. Light gas e n t e r s  t h i s  system from 
t h e  Research Laboratories 400 p s i  a i r  supply o r  from t h e  atmosphere. 
rates up to 5 lb/sec were avai lable  using t h e  400 p s i  a i r  supply. 
steam and e l e c t r i c  heater  was used t o  heat t h e  l i g h t  gas t o  t h e  desired temperature 
of 300 F. The weight flow r a t e  of l i g h t  gas i n t o  t h e  t e s t  sect ion w a s  measured 
using ASME long-radius flow nozzles. 

Light-gas flow 
A combination 

Heavy-Gas Supply System 

The heavy-gas (simulated-fuel)  supply system provides a metered quant i ty  of 
simulated f u e l  t o  t h e  t e s t  sect ion a t  t h e  pressure,  temperature, and weight flow 
r a t e  required f o r  a p a r t i c u l a r  flow condition. For most t e s t s  reported herein,  t he  
heavy gas consis ted of  a mixture of gaseous iodine and t h e  vapor of an i n e r t  f luoro- 
carbon, FC-77 (a  3 Company trademark). 
mately 400. 
b o i l e r .  Gaseous iodine was produced i n  a similar manner. A photograph o f  t h e  
b o i l e r  and associated piping f o r  t h e  heavy-gas supply system i s  presented i n  Fig.  4 .  
Valves i n  t h e  heavy-gas supply system allow a port ion of t h e  FC-77 t o  flow through 
t h e  iodine boi lder  t o  con t ro l  t h e  f r a c t i o n  of t h e  t o t a l  heavy gas which i s  iodine.  
Control o f  t h e  amount of iodine i n  t h e  heavy-gas mixture i s  e s s e n t i a l  t o  t h e  ac- 
curacy of t h e  data-acquisit ion system which measures t h e  amount of iodine vapor by 
t h e  f r ac t ion  of l i g h t  absorbed. The FC-77 weight flow r a t e  was measured using a 
tu rb ine  flow meter; t h e  iodine weight flow rate w a s  determined using a l i g h t  absorp- 
t i o n  technique. 

The molecular weight of FC-77 i s  approxi- 
FC-77 vapor w a s  produced from l i q u i d  FC-77 i n  a spec ia l ly  constructed 

Flow r a t e s  of FC-77 up t o  about 0.75 lb/sec could be used. 
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For a few t e s t s ,  t he  simulated f u e l  consisted of a mixture of iodine vapor and 
one of severa l  o ther  gases : helium, nitrogen, o r  sulphur hexafluoride.  These gases 
were heated i n  a heat exchanger (not shown i n  Fig. 2 )  located i n  t h e  heavy-gas sup- 
p ly  system. When gases o ther  than FC-77 were used, t h e i r  weight flow r a t e s  were 
measured using rotameters.  

Test Section and Exhaust System 

A photograph of t h e  t e s t  sect ion with a vortex tube i n s t a l l e d  i s  shown i n  
Fig. 5. 
cr ibed i n  a following sec t ion . )  
mounted cons i s t s  of a 2O-in.-ID by 30-in.-long cy l ind r i ca l  s h e l l  with end flanges.  
One of t he  end f langes i s  mounted on r o l l e r s ,  thus providing access t o  t h e  vortex 
tube within the  t e s t  sect ion.  The vortex tube i s  cant i levered from t h i s  f lange- 
r o l l e r  combination. The i n l e t  ducts connect t o  t h e  end flanges and lead  t o  t h e  in-  
j ec t ion  plenum, which cons is t s  of am annular space between the  vortex tube and t e s t  
sec t ion  outer  cy l ind r i ca l  she l l .  For the  basic  vortex tube configuration, the  ex- 
haust ducts  a l s o  connect t o  the  end flanges.  

(De ta i l s  of the  vortex tubes employed i n  t h i s  inves t iga t ion  w i l l  be des- 
The t e s t  section i n  which the  vortex tubes were 

The exhaust system cons is t s  of valves and associated piping necessary t o  connect 
t h e  t e s t  f a c i l i t y  t o  the  Research Laboratories '  vacuum system. A t h r o t t l i n g  valve 
i n s t a l l e d  i n  t h e  exhaust system provided pressure regulat ion f o r  t h e  t e s t  sect ion.  

Control Console and Data Acquisit ion System 

The cont ro l  console (shown i n  Fig.  6 )  i s  used f o r  remote operation of t he  high- 
Reynolds-number t e s t  f a c i l i t y .  Also shown i n  Fig. 6 a re  components of t he  da ta  ac- 
qu i s i t i on  system which record information from which the  heavy-gas weight flow rate, 
t he  r a d i a l  d i s t r i b u t i o n  of heavy-gas density,  and amount of heavy gas s tored within 
the  vortex tube can be determined. 

The amount of heavy gas s tored and the  rad ia l  d i s t r ibu t ion  of heavy-gas dens i ty  
within the  vortex tube were obtained using a collimated l i g h t  beam which passed 
a x i a l l y  through the  t e s t  sect ion.  The l i g h t  absorbed by iodine vapor was propor- 
t i o n a l  t o  t h e  average heavy-gas densi ty  a t  a given radius .  The beam w a s  t raversed  
along t h e  v e r t i c a l  diameter of t h e  vortex tube.  Fig.  7 i s  a schematic diagram of 
t h e  o p t i c a l  system used t o  obtain these measurements. Further d e t a i l s  and discus- 
s ion of t he  da ta  acquis i t ion  system a re  presented i n  APPENDIX 111. 

7 



Vortex Tubes 

A vortex configuration with a superimposed region of high a x i a l  ve loc i ty  near 
t h e  per ipheral  w a l l  was employed f o r  most t e s t s  reported herein.  
shetch of an axial-flow vortex tube mounted i n  t h e  t e s t  sect ion.  A t o t a l  of four  
vortex tubes , designated by t h e i r  l igh t -gas  in j ec t ion  configurations,  were used: 
t h ree  were multiple-fixed-port  vortex tubes and one was directed-wall - je t  vortex 
tube.  These a re  described below: The vortex tubes used f o r  t he  r e l a t ed  t e s t s  of 
bas ic  vortexes a re  described i n  APPENDIXES I and 11. 

Figure 8 i s  a 

Multiple -Fixed-Port Vortex Tubes 

A sketch of the  l igh t -gas  in j ec t ion  geometry of t he  multiple-fixed-port  tubes 
and a photograph of one tube a r e  presented i n  Fig.  9 .  
10-in.-ID by 30-in.-long s t e e l  cyl inders .  The t o t a l  i n j ec t ion  a reas  a r e  A .  = 13.1, 

J 
20.5, and 40.2 sq i n .  
angle of 19 deg w i t h  respect t o  the  l o c a l  tangent (see Fig. 9 and TABLE I ) .  There 
a r e  36 holes located a t  each of ll9 a x i a l  loca t ions  along the vortex tube length.  
The hole diameters f o r  the  th ree  vortex tubes having d i f f e ren t  i n j ec t ion  a reas  a r e  
0.062 i n .  , 0.078 i n .  , and 0.108 i n .  , respect ively.  
t angent ia l  d i r ec t ion  so t h a t  t he  l i g h t  gas does not have an a x i a l  component of 
ve loc i ty  a t  in jec t ion .  
was used with an end-wall i n s e r t  (see following sec t ion)  which provided a length- 
to-diameter r a t i o  of 1.0; t he  in jec t ion  a rea  f o r  t h i s  configuration was 13.3 
sq in .  

A l l  t h r ee  vortex tubes a r e  

These vortex tubes each have 4284 holes d r i l l e d  inward a t  an 

The holes a re  d r i l l e d  i n  t h e  

A s  noted i n  TABLE I, t h e  tube having 0.108-in.-dia holes 

Directed-Wall-Jet Vortes Tube 

A single directed-wall-  j e t  vortex tube , similar t o  t h a t  described i n  Ref. 8, 
was constructed for t h i s  invest igat ion.  This vortex tube i s  a l s o  an 10-in.-ID by 
30-in. -long s t e e l  cyl inder  and employs t h e  directed-wall-  j e t  i n j ec t ion  geometry 
shown i n  Fig. loa. The vortex tube has 900 individual ly  d i rec tab le  in j ec t ion  po r t s  
spaced uniformly on t h e  per ipheral  w a l l .  
loca ted  a t  each of 30 axial loca t ions  along the  vortex tube length.  In jec t ion  a reas  
up t o  45 sq i n .  were a t t a inab le  using i n s e r t s  having d i f f e ren t  s l o t  heights .  
i n s e r t s  were or iented t o  provide an a x i a l  component t o  the  l igh t -gas  in j ec t ion  
ve loc i ty .  
var ied from 0 deg t o  63.5 deg along the  length of the  vortex tube.  
t i o n  was chosen on the  bas i s  of r e s u l t s  reported i n  Ref. 8. 
graph of t h e  p a r t i a l l y  assembled directed-wall - je t  vortex tube i n  the  high Reynolds 
number t e s t  f a c i l i t y .  The volume outs ide of t he  vortex tube was divided i n t o  1 5  
separate plenums by plenum div iders  and i n f l a t a b l e  sea l s  located between t h e  vortex 
tube and t h e  t e s t  sec t ion  outer  cy l ind r i ca l  s h e l l  (see Fig. 11). 

There were 30 rows of i n s e r t s  (Fig.  l ob )  

The 

For the  t e s t s  conducted i n  t h i s  inves t iga t ion  the  in j ec t ion  angle, 0 ,  , 
This d i s t r ibu -  

Figure 11 i s  a photo- 

The pressure and 
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weight flow rate through each plenum were individual ly  control led.  
TAEU I, one s e r i e s  of t e s t s  was conducted with only 300 i n s e r t s  i n  the  L/D = 3.0 
tube.  
t e s t s  t o  reduce the  L/D t o  2.0 o r  1.0. 
s e r t s  within t h e  vortex tube was reduced t o  600 and 300, respect ively.  

A s  noted i n  

In  addi t ion,  a spec ia l  end w a l l  (see following sec t ion)  was employed i n  some 
For these configurations,  t h e  number of in- 

End Walls 

Flow was exhausted from the  vortex tubes a t  t h e  axial-flow end w a l l  (see 
Fig. 8).  
located i n  the  e x i t  plane of t he  vortex tube and a plenum downstream of the  d i sc .  
The space between the  edge of t he  disc  and t h e  vortex tube per ipheral  w a l l  formed 
an exhaust annulus which, f o r  most tests, extended from a radius  of 4.0 in .  t o  
5.0 in. A plenum div ider  (see Fig. 8) was ins t a l l ed  i n  t h e  axial-flow end-wall 
plenum. This d iv ider  provided an op t i ca l  path for  t he  ax ia l - l i gh t  beam through 

iodine vapor i n  the  plenum. The plenum was connected t o  the  axial-flow exhaust 
system ( see Fig. 11). 

The e s s e n t i a l  components of t he  axial-flow end w a l l  were a g l a s s  d i sc  

, t he  plenum which prevented absorption of t he  l i gh t  beam due t o  the  presence of 

Two types of nonaxial-flow end walls were employed, One was a p la in  10-in.-dia 
s t e e l  d i sc  which at tached t o  an end flange of the t e s t  section; t h e  o ther  was a p la in  
10-in.-dia s t e e l  d i sc  which could be posit ioned at any axial loca t ion  within the  
vortex tube t o  change the  vortex-tube length-to-diameter r a t i o .  These end w a l l s  had 
g la s s  windows along t h e i r  v e r t i c a l  diameter t o  allow t h e  l i g h t  beam t o  pass a x i a l l y  
through the  vortex tube (see Fig. 7) .  Both end walls had 1.0-in.-dia holes at t h e i r  
centers  f o r  heavy-gas in jec t ion .  For a l l  t e s t s  discussed i n  t h e  main t e x t  of t h i s  
repor t ,  heavy gas w a s  i n j ec t ed th rough  the  hole at the  center  of t h e  nonaxial-flow 
end w a l l .  

9 



c 

TEST AND DATA-REDUCTION PROCEDURES 

Test Procedures 

The flow condition f o r  a t y p i c a l  heavy-gas containment t e s t  was spec i f ied  by a 

Vortex tube geometry was specif ied by t h e  l i g h t -  
f ixed  vortex tube geometry operating with f ixed  Reynolds numbers , neavy-gas in jec-  
t i o n  configuration and flow r a t e .  
gas in jec t ion  geometry ( e i t h e r  multiple f ixed  port  o r  d i rec ted  w a l l  j e t )  and t 4 e  
t o t a l  l ight-gas  in jec t ion  a rea .  For these  employing directed-wall-  j e t  vortex tubes,  
t h e  a x i a l  d i s t r ibu t ion  of l ight-gas  in j ec t ion  angle was specif ied f o r  each flow con- 
d i t i o n .  The flow r a t e  of t h e  l i g h t  gas was specif ied i n  terms of an axial-flow 
Reynolds number and a tangent ia l  i n j ec t ion  Reynolds number. The former i s  defined as 

and ppl a re  the  densi ty  and v i scos i ty  of the  l i g h t  gas at in j ec t ion  
i s  equal t o  the  

- P P I  
where 
and r ,  i s  the  radius of the  vortex tube.  The ve loc i ty  Vzlw 
average veloci ty  which would e x i s t  a t  the  vortex tube e x i t  i f  a l l  the  l igh t -gas  flow 
were removed through an annular area extending from r = 0.75 r l  t o  r = r l  . This  
de f in i t i on  of axial-flow Reynolds number was developed i n  Refs. 1 and 11; it i s  use- 
f u l  i n  applying t h e  r e s u l t s  of containment t e s t s  t o  engine s tud ie s  such as those re -  
ported i n  Refs. 1 and 10. For t he  t e s t s  reported herein,  t h e  average axial  ve loc i ty  

where W, i s  t he  weight flow r a t e  of l i g h t  gas.  Therefore, t he  axial-flow Reynolds 
number, Rezlw , can be wr i t ten  as 
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The t angen t i a l  i n j ec t ion  Reynolds number, Re+, , i s  a measure of the  
angular momentum of t h e  l i g h t  gas at in j ec t ion  in to  the  vortex tube and i s  de- 
f ined  as 

pp, "+,j r~ W, r, COS B j  
Re, , ,  = - A j  PP, 

P P I  

(4) 

i s  the  t angen t i a l  component of  the average l ight-gas  in j ec t ion  veloc- 
w a s  equal  t o  "4, i where 

i t y .  
the  average l igh t -gas  in j ec t ion  ve loc i ty  since the in jec ted  l i g h t  gas had no axial 
ve loc i ty  component. For t e s t s  employing directed-wall-jet  vortex tubes,  the  l i g h t -  
gas weight flow per un i t  length and the  tangent ia l  component o f  average l igh t -gas  
in j ec t ion  ve loc i ty ,  , were constant along the  length of the  vortex tube.  

"9, j For tes ts  employing multiple-fixed-port  vortex tubes,  

V+,i 

For most t es t s  described herein,  t h e  temperature of t h e  l i g h t  gas at in j ec t ion  
w a s  approximately 300 F and t h e  l igh t -gas  stagnation pressure w a s  between 0.9 and 
1.0 a t m .  Since a i r  w a s  used as t h e  l i g h t  gas in  a l l  t e s t s ,  t h e  Reynolds numbers 
were var ied by changing the  l igh t -gas  weight flow r a t e  (see E q s .  ( 3 )  and ( 4 ) ) .  

Tests t o  determine the  amount of heavy gas t h a t  could be contained i n  a l i g h t -  
gas  vortex were conducted i n  the  following manner. For a given vortex tube geome- 
t r y ,  both the  l i g h t -  and heavy-gas flow rates were establ ished ( the  heavy-gas flow 
r a t e  w a s  monitored using an iodine absorptometer -- s imi la r  t o  t ha t  described i n  
Ref. 1: -- 
absorptometer (described i n  d e t a i l  i n  APPENDIX 111) was t raversed along a v e r t i c a l  
diameter of the vortex tube.  T h i s  provided information on both the  r a d i a l  d i s t r ibu -  
t i o n  and t h e  t o t a l  amount of heavy gas s tored within the  vortex tube.  The l i g h t  
beam t r ave r se  was repeated at  l e a s t  twice t o  ver i fy  t h a t  t he  t o t a l  mount  of heavy 
gas within the  vortex tube was constant ( i - e . ,  t h a t  a s teady-state  condition had 
been reached).  
approximately 3 seconds (many times the  average residence time f o r  t h e  heavy gas 
within the  vortex tube ) .  

located on the  heavy-gas in j ec t ion  duct) .  The l i g h t  beam of the  axial 

The time required f o r  a single t raverse  of t he  a x i a l  l i g h t  beam was 

Data Reduction Procedures 

One measure of t h e  containment cha rac t e r i s t i c s  of a confined vortex flow i s  the  
heavy-gas dens i ty  r a t io ,  PF, ,  / ,a I ( i  .e. ,  t h e  r a t i o  of the  volume-averaged 
heavy-gas dens i ty  t o  the  l igh t -gas  densi ty  a t  t he  in j ec t ion  condi t ions) .  The densi ty  - i s  given by 

P F  1 
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where WF is  t h e  amount of heavy gas s tored  and V 
vortex tube; V = TT r l  L . The amount of heavy gas s tored was determined by aver- 
aging the data  obtained from r a d i a l  t r ave r ses  both above and below t h e  vortex tube 
center l ine.  For most t e s t s  reported herein,  t h i s  average value of heavy gas s tored 
deffered from t h e  value determined from individual  upper and lower t r ave r ses  by less 
than  10 percent. A de t a i l ed  descr ip t ion  of t he  technique emplcyed t o  determine the 
amount of heavy gas stored, t h e  operation of the  a x i a l  absorptometer, and the  data 
acquis i t ion system is  given i n  APPENDIX 111. 

i s  t h e  t o t a l  volume of t h e  
2 

The heavy-gas time constant,  t , i s  a measure of t he  heavy-gas l o s s  r a t e  
cha rac t e r i s t i c s  of a confined vortex flow. It i s  defined as 

where W, i s  t h e  weight flow r a t e  of heavy gas.  
average residence time f o r  a l l  the  heavy-gas i n  the  vortex tube.  Heavy-gas time con- 
s t a n t s  were converted t o  dimensionless time constants  by dividing by ( pp ,  r l 2 / P p l  ), 
a scal ing parameter proport ional  t o  a cha rac t e r i s t i c  time f o r  similar flows ( t h i s  
parameter i s  derived and discussed i n  Ref. 1 2 ) .  Hence, 

The heavy-gas time constant i s  the  

t c  

= ( Pp, r ,2 /Pp , )  
(7)  

Results of t h e  containment t e s t s  reported herein a r e  discussed i n  terms of t h e  so- 
ca l l ed  "containment parameter" 
time constant which would r e s u l t  i f  t he  heavy and l i g h t  gases were uniformly mixed 
before inject ion i n t o  the  vortex tube: 

i s  the  dimensionless 
7 F I  MIN T F ,  / T I MIN , where 

In Eq 
"MIN 
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Equation (8) may be combined with E q s .  (3)  and (10) t o  y i e ld  

T h i s  i nd ica t e s  t h a t  T F ~  MIN i s  d i r e c t l y  proportional t o  t h e  length-to-diameter 
r a t i o  of t he  vortex tube and inversely proportional t o  t h e  axial-flow Reynolds number. 
By combining Eqs. (6)  and (lo), t he  expression f o r  t he  containment parameter can 
a l s o  be wr i t ten  as 

The ra t ic  Wp / W, i s  sometimes used as a parameter i n  discussing containment. A 
summary of o ther  containment parameters and equations f o r  converting from dimension- 
l e s s  t o  dimensional parameters i s  given i n  APPENDIX I V .  
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DISCUSSION OF RESULTS 

The heavy-gas containment experiments described i n  t h i s  report  a r e  divided i n t o  
th ree  categories:  (1) t e s t s  using multiple-fixed-port  vortex tubes;  ( 2 )  t e s t s  using 
directed-wall - je t  vortex tubes;  and (3 )  t e s t s  using d i f f e ren t  simulated f u e l s  (heavy 
gases) .  
of t h e  containment parameter, , w i t h  t he  heavy-gas densi ty  r a t i o ,  
p F  TABLE I presents  a summary of the  vortex tube geometries which were 
employed in t h e  t e s t s  discussed i n  the  main t e x t  of t h i s  repor t .  
t e s t s  conducted i n  vortex tubes having geometries d i f f e ren t  from those l i s t e d  i n  
TABLF, I (basic vortex configurations) a r e  discussed i n  APPENDIXES I and 11. 

Most of t he  heavy-gas containment da ta  w i l l  be presented as the  va r i a t ion  

r F  I / T ~ , ~ ~ ~  

/pp,  . 
Results of r e l a t ed  

Results of Tests  w i t h  Multiple-Fixed-Port Vortex Tubes 

The heavy-gas containment t e s t s  using the  multiple-fixed-port  vortex tubes were 
conducted t o  determine the  e f f ec t  on containment cha rac t e r i s t i c s  of (I) changes i n  
l igh t -gas  in j ec t ion  area and axial-flow Reynolds number, and ( 2 )  changes i n  the  
length-to-diameter r a t i o  of the  vortex tube.  

E f fec t s  of Light-gas In jec t ion  Area and Axial-flow Reynolds Number 

Heavy-gas containment data obtained from t e s t s  using the  L/D = 3.0 multiple- 
fixed-port v o r t e x t u b e s  having A = 13.1, 20.5 and 40.2 sq i n .  a r e  presented i n  
Figs .  12 ,  13 and 14, respect ively.  These data a re  summarized i n  Fig. 1 5  where a 
s ingle  curve is f a i r ed  through a l l  data  poin ts .  

1 

Examination of each s e t  of data  i n  Figs .  12  through 14 ind ica tes  t h a t  the  con- 
, f o r  each vortex tube w a s  independent of ax i a l -  

T~ i " ~ i  MiN 
t ainme n t  paramet e r , 
flow Reynolds number, .Re,,, . Since T~ i s  inversely proport ional  t o  R e  
(see Eq. (11)), the  dimensionless time constant 

f o r  each o f  gas residence time t, ) was a l s o  inversely proportional t o  
these  vortex tubes.  

z,w I MIN 

T~~ 
(and, hence, the  average heavy- 

Z l W  
Re 

The fa i red  curve from Fig.  1 5  f i t s  t h e  data  i n  Figs.  13 and 14, but t he  data on 
Fig. 12 deviate a small amount. T h i s  small deviat ion i s  not believed t o  ind ica te  
any  s ign i f icant  e f f e c t  of A on heavy-gas containment. Thus, the  r e s u l t s  ind ica te  
t h a t  heavy-gas containment i n  the  mult ip le - f  ixed-port vortex tubes w a s  independent 
of l ight-gas  in jec t ion  a rea .  

j 
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Since the  containment parameter was independent of l igh t -gas  in j ec t ion  a rea  
and axial-flow Reynolds number, it was a l s o  independent of the t angen t i a l  i n j ec t ion  
Reynolds number, Ret,, , and the  average axial- to- tangent ia l  ve loc i ty  r a t i o ,  
V z , w  1 " 9 ,  j . This i s  because the  parameters Re +, and VZ,,, / V +, 
can be expressed i n  terms of the l ight-gas  in jec t ion  area,  the axial-flow Reynolds 
number, and the  l igh t -gas  flow r a t e .  

- - 

The summary i n  Fig. 1 5  ind ica tes  t h a t  the  experimentally determined containment 
parameters f o r  multiple-fixed-port  vortex tubes ranged from a value of approximately 
6 at a heavy-gas densi ty  r a t i o  of 0.05 (corresponding t o  a light-to-heavy-gas flow 
r a t e  r a t i o  W,/W, of 120) t o  a value of approximately 1 . 5  a t  a heavy-gas dens i ty  
r a t i o  of 1.0 (corresponding t o  a light-to-heavy-gas flow r a t e  r a t i o  W,/W, = 1 . 5 ) .  
These values a r e  approximately one t o  two orders of magnitude l e s s  than the  values 
of t h e  containment parameter and fuel-to-propellant dens i ty  r a t i o  required for 
economical operation of a f i l l - s c a l e  open-cycle engine. 
numbers i n  the  t e s t s  were UP t o  481,000, which i s  close t o  the  value required for 
a t y p i c a l  open-cycle engine ( R e f .  10). A more de t a i l ed  comparison of t h e  r e s u l t s  
of t he  f l u i d  mechanics t e s t s  with the  requirements f o r  fu l l - s ca l e  engines is pre- 
sented i n  R e f .  9. 

The axial-flow Reynolds 

Typical r a d i a l  d i s t r ibu t ions  of heavy-gas densi ty  f o r  the  three  multiple-fixed- 
por t  vortex tubes a re  shown i n  Fig. 16. 
f o r  a vortex configuration having r a d i a l  outflow but without superimposed axial flow 
i s  a l s o  included i n  Fig. 16 ( d e t a i l s  of the t e s t s  of t h i s  configuration are presented 
i n  APPENDIX I). The r e s u l t s  f o r  t he  axial-flow vortex configuration ind ica te  t h a t  
l igh t -gas  in j ec t ion  a rea  and axial-flow Reynolds number had no la rge  e f f e c t  on t h e  
shape of t h e  dens i ty  d i s t r ibu t ions .  With superimposed a x i a l  flow , t h e  va r i a t ion  of 
heavy-gas dens i ty  with radius  w a s  small ( see  Fig. 16 ) .  Containment pa.rameters f o r  

T ~ i  I r ~ i  MiNw 
these  p a r t i c u l a r  configurations were very low ( 
t h a t  a very intense mixing process ex is ted .  The f a c t  t ha t  the  densi ty  d i s t r i b u t i o n  
f o r  t he  vortex configuration without superimposed a x i a l  flow i s  so d i f f e r e n t  i s  in-  
d i ca t ive  of a bas ic  difference i n  the  flow pat terns  with and without superimposed 
a x i a l  flow. The containment data provide fur ther  evidence of t h i s  difference;  f o r  
t h e  same light-to-heavy-gas flow r a t e  r a t i o ,  the containment parameter and the  heavy- 
gas dens i ty  r a t i o  were approximately one order of magnitude l a rge r  f o r  t he  configura- 
t i o n  without a x i a l  flow than f o r  t he  configuration with a x i a l  flow. 

A r ad ia l  d i s t r ibu t ion  of heavy-gas dens i ty  

2 .0  ) ind ica t ing  

Effec t  of Vortex Tube Length-to-Diameter Ratio 

Resul ts  of t e s t s  conducted t o  determine the e f f e c t  of vortex tube length-to- 
diameter r a t i o  on heavy-gas containment a re  presented on Fig.  17. The mult iple-  
f ixed-port  vortex tube with L/D = 1.0 was used in  these  t e s t s  (see TABLE I ) .  
shown on Fig. 17 i s  a f a i r ed  curve from Fig. 1 5  which represents  t h e  previously d i s -  

Also 
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cussed data f o r  t he  vortex tubes having L/D = 3.0. The r e s u l t s  of these  t e s t s  a r e  
similar t o  the r e s u l t s  f o r  L/D = 3.0; t he  containment parameter w a s  independent of 
axial-flow Reynolds number and decreased with increasing heavy-gas dens i ty  r a t i o .  
However, for  a given heavy-gas densi ty  r a t i o ,  t he  containment parameter was approxi- 
mately 2 t o  3 times l a r g e r  f o r  L/D = 1.0 than  f o r  L/D = 3.0 (Fig.  17).  
another way, fo r  a given r a t i o  of light-to-heavy-gas weight flow r a t e s  (shown by the  
l i n e s  of constant >, both the  containment parameter and the  heavy-gas den- 
s i t y  r a t i o  were approximately 2 t o  3 t imes l a r g e r  f o r  L/D E 1.0  than fo r  L/D = 3.0.  
Thus, the  containment i s  improved w i t h  decreasing length-to-diameter r a t i o .  

O r ,  s t a t e d  

W p / W ,  

The ef fec t  of length-to-diameter r a t i o  on the  r a d i a l  d i s t r i b u t i o n  of heavy-gas 
dens i ty  i s  presented i n  Fig. 18. The d i s t r ibu t ions  shown a r e  f o r  a light-to-heavy- 
gas flow rate r a t i o  o f  approximately 23 .  The shapes of t he  two d i s t r ibu t ions  a r e  
similar and ind ica te  t h a t ,  although t h e  containment parameter and heavy-gas dens i ty  
r a t i o  a re  l a rge r  f o r  L/D = 1.0  than f o r  L/D = 3.0 (see Fig. 17))  no well-defined 
f u e l  containment region ex is ted  i n  e i t h e r  case.  In  each d i s t r ibu t ion ,  t he  var ia t ion  
of heavy-gas densi ty  w i t h  radius  i s  small, ind ica t ing  tha t  subs t an t i a l  mixing between 
t h e  l i g h t  and heavy gases ex is ted  throughout t h e  vortex tube f o r  both L/D = 1 .0  and 
L/D = 3 .0 .  

Results of Tests  with Directed-Wall-Jet Vortex Tubes 

Results of containment t e s t s  reported i n  Ref. 8 indicated t h a t  subs t an t i a l  im- 
provements i n  heavy-gas containment were obtained with a directed-wall - je t  l igh t -gas  
in j ec t ion  configuration. For t h i s  configuration, the  l i g h t  gas i s  in j ec t ed  with an 
a x i a l  veloci ty  component t o  reduce the  axial pressure gradient required t o  acce lera te  
t h e  flow toward t h e  axial-flow end w a l l .  Tes t s  were conducted i n  t h e  high Reynolds 
number f a c i l i t y  t o  determine whether t he  increased containment parameters and heavy- 
gas density r a t i o s  reported i n  Ref. 8 can be maintained o r  improved when the  ax ia l -  
flow Reynolds number i s  increased and when the  vortex tube length-to-diameter r a t i o  
i s  changed. 

Ef fec ts  of Light-gas In jec t ion  Area and Axial-flow Reynolds Number 

Tests t o  determine the  e f f e c t s  of changes i n  l igh t -gas  in j ec t ion  a rea ,  A j  > 
and axial-flow Reynolds number , on heavy-gas containment were conducted 
using the directed-wall-  j e t  vortex tube having a length-to-diarnzter r a t i o  of 3.0.  
The l ight-gas  in jec t ion  angle, B j  , varied from 0 deg ( i . e . ,  no a x i a l  ve loc i ty  
component) at the  nonaxial-flow end w a l l  t o  63.5 deg a t  the axial-flow end w a l l .  
Th is  d i s t r ibu t ion  w a s  chosen based upon the  r e s u l t s  from Ref. 8. 
fu r the r  d e t a i l s  of the vortex tube geometry which was employed. 

R e Z , w  

TABLF, I presents  
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Heavy-gas containment da ta  obtained from t e s t s  using the  directed-wall-  j e t  
vortex tube having l igh t -gas  in j ec t ion  areas, , equal 11.0 and 32.2 sq i n .  a r e  
presented i n  Figs .  19 and 20, respect ively.  I n  Fig.  2 1 t h e  da ta  from Figs.  19 and 
20 a r e  summarized. The data  shown i n  Figs.  19 and 20 ind ica te  t h a t  t h e  containment 
parameter was e s s e n t i a l l y  independent of the  a x i a l  flow Reynolds number f o r  t he  two 
l igh t -gas  in j ec t ion  areas;  a r e s u l t  consis tent  with t h a t  obtained from t h e  multiple- 
f ixed-port  vo r t ex  tubes.  Further,  Fig.  21 shows t h a t  t he  conta iwent  parameter and 
heavy-gas dens i ty  r a t i o s  were a l s o  independent of t he  l igh t -gas  in j ec t ion  a rea .  The 
containment parameters ranged from a value of approximately 7 a t  a heavy-gas densi ty  
r a t i o  of 0.036 (corresponding t o  a light-to-heavy-gas flow r a t e  r a t io  of 194) t o  a 
value of approximately 1 . 5  a t  a heavy-gas density r a t i o  of 0.46 (corresponding t o  a 
light-t:,-heavy-gas flow rate r a t i o  of 3.3).  

A j  

Radial d i s t r ibu t ions  of heavy-gas aens i ty  within the  directed-wall-  j e t  vortex 
tubes were similar t o  those i n  t h e  multiple-fixed-port vortex tubes (see Fig. 16). 
The va r i a t ion  of heavy-gas dens i ty  w i t h  radius  was small. 

Effect  of Vortex Tube Length-to-Diameter Ratio 

Resul ts  of t e s t s  conducted t o  determine the e f f e c t  of vortex tube length-to- 
diameter r a t i o  on heavy-gas containment a r e  presented i n  Fig.  22. Data were ob- 
t a ined  f o r  vortex tubes having length-to-diameter r a t i o s  of 1.0 and 2.0 t o  compare 
with t h e  da t a  f o r  L/D = 3.0 from Fig.  21. The r e s u l t s  indicate  t h a t  the  contain- 
ment parameters increased as L/D w a s  decreased from 3.0 t o  1.0. 
parameter w a s  e s s e n t i a l l y  independent of axial-flow Reynolds number and decreased 
w i t h  increases  i n  heavy-gas densi ty  r a t i o  f o r  both the  L/D = 1.0 and L/D = 2.0 
vortex tube configurations.  

The containment 

Comparison of Results of Containment Tests  Employing 
Mult iple-Fixed-Port and Directed-Wall-Jet Vortex Tubes 

Figure 23 summarizes r e s u l t s  of t e s t s  with both multiple-fixed-port  and d i rec ted  
w a l l -  j e t  vortex tubes.  The curves ind ica te  tha t  f o r  a vortex tube length-to-diameter- 
r a t i o  equal  t o  1.0, t he  containment parameter increased from approximately 3.5 t o  10 
as t h e  r a t i o  of the  l igh t -gas  weight flow r a t e  t o  t h e  heavy-gas weight flow r a t e  w a s  
increased from 7 t o  50. The corresponding heavy-gas densi ty  r a t i o  decreased from 
0 .5  t o  0.2.  The containment parameter was found t o  be e s s e n t i a l l y  independent of 
t h e  axial-flow Reynolds number, t he  t angen t i a l  in jec t ion  Seynolds number, t h e  a x i a l  
component of t h e  l igh t -gas  in j ec t ion  veloci ty ,  and l igh t -gas  in j ec t ion  a r e a  and geo- 
metry. However, Fig. 23 a l s o  shows t h a t  the  containment parameter decreased as t h e  
vortex tube length-to-diameter r a t i o  w a s  increased. For example, wit4 a r a t i o  of 
l igh t -gas  weight flow rate t o  heavy-gas flow ra te  of 50, t he  containment parameter 
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decreased from approximately 10 t o  5 and the  heavy-gas dens i ty  r a t i o  decreased 
from 0.2 t o  0.1 as the  vortex tube length-to-diameter r a t i o  was increased from 
1.0 t o  3.0. 

Included i n  Fig.  23 i s  a l i n e  represent ing r e s u l t s  of t e s t s  of a vortex tube 
configuration without superimposed axial flow. 
t h i s  configuration a re  presented i n  APPENDIX I. ) 
dens i ty  r a t i o s  obtained from these t e s t s  were approximately 8 t o  10 times those 
obtained from t e s t s  of csmparable configurations with axial flow. The low values 
of containment parameter obtained from tes t s  of axial-flow configurations a r e  
believed t o  be due t o  mixing between the  f l u i d  near t he  outer  region of tk vortex 
tube and the  f l u i d  i n  the  cent ra l ,  o r  heavy-gas-containment, region. Such mixing 
r e s u l t s  from the  presence of the  large amounts of superimposed a x i a l  flow near t h e  
vortex tube per ipheral  w a l l .  
problem is contained i n  Ref. 8. 

(Further descr ipt ions of t es t s  with 
The containment parameters and 

Further ve r i f i ca t ion  and discussion of t h i s  mixing 

Results of heavy-gas containment t e s t s  discussed i n  t h e  preceding paragraphs 
ind ica te  that t h e  axial-flow vortex configuration w i l l  not provide t h e  values of 
containment parameter and heavy-gas densi ty  r a t i o  present ly  estimated t o  be required 
f o r  an economically p r a c t i c a l  open-cycle vortex-stabi l ized gaseous nuclear rocket 
engine. 
vortexes with r a d i a l  outflow and la rge  superimposed a x i a l  flows a r e  between one and 
two orders of magnitude lower than those which a r e  present ly  estimated f o r  such an 
engine. 

Experimentally determined containment parameters reported herein f o r  

Results of Tests  Employing Different  Simulated Fuels 

A se r i e s  of t e s t s  employing d i f f e ren t  dens i ty  gases was conducted i n  the  high 
To avoid confusion between the  terms heavy gas and Reynolds number tes t  f a c i l i t y .  

l i g h t  gas, t h e  gas in jec ted  at t h e  vortex center l ine  (previously ca l l ed  the  heavy 
gas)  w i l l  be re fer red  t o  as the simulated f u e l  and the  gas in jec ted  a t  t h e  vortex 
per ipheral  w a l l  (previously ca l led  t h e  l i g h t  gas)  w i l l  be re fer red  t o  as t h e  sim- 
ula ted  propellant i n  t h i s  sect ion of t he  repor t .  Simulated f u e l s  were used that  
had dens i t ies  a t  in j ec t ion  of l e s s  than, approximately equal t o ,  and g rea t e r  than  
t h e  simulated-propellant densi ty  a t  in j ec t ion .  The directed-wall-  j e t  vortex tube 
had a l ight-gas  in j ec t ion  a rea  of 11.0 sq i n .  and a length-to-diameter r a t i o  of 
1.0. The in j ec t ion  d i rec t ion  of t he  simulated propel lant  (a i r )  var ied from 0 deg 
a t  t h e  nonaxial-flow end w a l l  t o  63.5 deg at t h e  axial-flow end w a l l .  
fue ls ,  e i t h e r  helium, nitrogen, o r  sulphur hexafluoride, were in jec ted  a t  the  
center  of t he  nonaxial-flow end w a l l .  Small amounts of iodine vapor were added 
t o  each simulated f u e l  as a t r a c e r .  
approximately 6 ,  30, and 148, respect ively.  

Simulated 

The molecular weights of t he  mixture were 
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Figures 24, 25, and 26 present t he  r e s u l t s  of containment t es t s  with each of 
t he  th ree  simulated fuelq:  t he  da ta  a r e  summarized i n  Fig. 27. Data were obtained 
at three  axial-flow Reynolds numbers and several  simulated-fuel flow rates. No 
s igni f icant  e f f e c t  on the  containment parameter of va r i a t ions  i n  axial-flow Reynolds 
number can be seen except when helium was employed as the  simulated f u e l  a t  low 
axial-flow Reynolds numbers. Figure 27 shows t h a t  the  use of a simulated f u e l  
whose dens i ty  at in j ec t ion  was l e s s  than that of t he  simulated propel lant  (helium) 
r e su l t ed  i n  a subs t an t i a l  increase i n  t he  cwtainment parameter f o r  some cases .  
Use of simulated f u e l s  w i t h  dens i t i e s  equal t o  o r  g rea t e r  than the  simulated pro- 
pe l l an t  dens i ty  (ni t rogen o r  sulphur hexafluoride) resu l ted  i n  e s s e n t i a l l y  the  sane 
values of containment parameter as were previously noted (e.@;., compare Figs.  27 
and 23) .  
l a t e d  f u e l  i s  a l s o  apparent i n  bas ic  vortex tube t e s t s  described i n  APPENDIX 11. 
This  suggests that t h e  favorable densi ty  gradient that occurs when helium was used 
as t h e  simulated f u e l  may be suppressing some of t h e  turbulent  mixing that  normally 
occurs i n  a radial-outflow vortex.  

The increase i n  containment parameter when helium was used as t h e  simu- 

Figure 28 presents  t he  r a d i a l  d i s t r ibu t ion  of simulated-fuel dens i ty  (normalized 
by the  simulated-propellant densi ty  a t  in jec t ion)  f o r  th ree  of t h e  tes ts  whose re -  
s u l t s  a r e  presented i n  Fig. 27. 
and sulphur hexafluoride a re  i d e n t i c a l  but that obtained w i t h  helium i s  qui te  d i f -  
f e r en t .  The helium dens i ty  i s  approximately constant inside a radius  of 0.75 r ,  , 
whereas the  ni t rogen and sulphur hexafluoride d i s t r ibu t ions  continue t o  increase in-  
s ide  t h i s  rad ius .  

The dens i ty  d is t r ibu t ions  obtained with ni t rogen 

The da ta  of Fig. 28 a r e  rep lo t ted  i n  Fig. 29 t o  show the  r a d i a l  d i s t r i b u t i o n  
of t he  l o c a l  p a r t i a l  pressure of t he  simulated f’uel (it w a s  assumed f o r  t h i s  data 
t h a t  the s t a t i c  pressure i n  the  vortex w a s  constant and equal  t o  the simulated- 
propel lant  pressure a t  the  per ipheral  w a l l ) .  A simulated-fuel p a r t i a l  pressure 
equal t o  approximately 65 percent of the  simulated-propellant i n j ec t ion  pressure 
w a s  obtained over a subs t an t i a l  volume of t h e  vortex tube ( i . e . ,  ins ide a radius  
of 0.8 I, 
t i o n  that  w a s  less than t h a t  of t he  simulated propel lant .  The l o c a l  simulated-fuel 
p a r t i a l  pressure w a s  subs t an t i a l ly  lower whenever the  simulated-fuel dens i ty  at in-  
j ec t ion  w a s  equal t o  o r  g rea t e r  than that of the simulated propel lant .  

>. This occurred only when the  simulated f u e l  had a dens i ty  a t  in jec-  

Figure 30 shows t h e  r a d i a l  d i s t r ibu t ion  of l o c a l  densi ty  i n  the  vortex f o r  t he  
conditions of Figs.  28 and 29. 
helium as t h e  simulated f u e l  w a s  less than  50 percent of t h e  dens i ty  at t h e  peripher-1 
w a l l  and w a s  r e l a t i v e l y  constant over t h ree  quarters of the  radius .  
t h e  la rge  favorable dens i ty  gradient (i .e . ,  increasing densi ty  with increasing rad ius)  
on the  turbulence l e v e l  w a s  probably the  cause of t he  increased simulated-fie1 con- 
tainment t h a t  ex i s t ed  f o r  t h i s  case (see Fig. 27). 

The densi ty  in  t h e  c e n t r a l  region of t h e  vortex w i t h  

The e f f e c t  of 
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The r a d i a l  va r i a t ion  of dens i ty  within a vortex and i t s  e f f e c t  on t h e  f u e l  
containment i s  an important considerat ion i n  gaseous nuclear rockets .  A s  described 
i n  Ref. 9, t he  closed-cycle gaseous nuclear rocket engine ( i . e . ,  t he  nuclear l i g h t  
bulb engine) may have a dens i ty  d i s t r i b u t i o n  simular t o  t h a t  shown f o r  t he  helium 
simulated f u e l  i n  Fig. 30. The flow between the  t ransparent  w a l l  of t he  nuclear 
l i g h t  bulb engine and the nuclear f u e l  w i l l  cons is t  of a coolant gas, probably neon. 
Since neon i s  e s s e n t i a l l y  t ransparent  t o  thermal rad ia t ion ,  t he  densi ty  of t h e  neon 
coolant very near t h e  w a l l  w i l l  i n  a l l  probabi l i ty  be g rea t e r  than the  dens i ty  of 
t h e  gaseous nuclear fue l .  Thus, t he  dens i ty  gradient near t he  t ransparent  w a l l  
should be favorable ( i . e . ,  increasing dens i ty  wi th  increasing rad ius) .  It i s  an- 
t i c i p a t e d  t h a t  t h i s  favorable dens i ty  gradient w i l l  minimize the  turbulent  d i f fus ion  
of f u e l  t o  t h e  per iphera l  w a l l  of t he  vortex tube.  

I n  contrast ,  the  open-cycle engine w i l l  have hot hydrogen t h a t  i s  near ly  opaque 
t o  thermal rad ia t ion  surrounding the  nuclear fue l .  Thus, with the  exception of a 
very t h i n  region near t h e  per ipheral  w a l l ,  no favorable dens i ty  gradient e x i s t s  
within t h i s  vortex flow and, hence, no s imi la r  turbulence suppressing mechanism 
e x i s t s  i n  t he  open-cycle engine. 
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LIST OF S W L S  

Light-gas in j ec t ion  area a t  vo r t ex tube  periphery, sq f t  o r  sq i n .  A j  

D Diameter of vortex tube,  2 r ,  , f t  o r  i n .  

h s  Vortex tube l igh t -gas  in j ec t ion  s l o t  height (APPENDIX II), f t  o r  i n .  

I In t ens i ty  of l i g h t  t ransmit ted through tes t  sect ion during a tes t ,  
candles . 
In t ens i ty  of l i g h t  t ransmit ted through t e s t  sect ion immediately p r i o r  
t o  the  in j ec t ion  of iodine vapor in to  vortex tube, candles. 

IO 

L Length of vortex tube, f t  o r  in .  

LID Vortex tube length-to-diameter ra t io ,  dimensionless. 

P 

P 

P a r t i a l  pressure,  l b / f t 2  or  a t m .  

S t a t i c  pressure,  l b / f t 2  o r  a t m .  

Q Volumetric flow ra t e ,  f t3 / sec  

Volumetric flow r a t e  of l i g h t  gas a t  vortex tube per iphera l  w a l l ,  ft3/sec. 

Volumetric flow rate through axial-flow annulus, f't3/sec. Q Z  

Heavy-to-light-gas volume flow r a t e  r a t i o  a t  in jec t ion ,  dimensionless. (QF  'QP) 

r Radial dis tance from vortex tube center l ine,  ft o r  i n .  

r l  Radius of vortex tube,  ft o r  i n .  

Re, 

Ret,j 

Radial Reynolds number, W p T F / 2 ~ p p I  L dimensionless. 

Light-gas t angen t i a l  i n j ec t ion  Reynolds number, (PPI V + l j  II)/,up, 1 

dimensionless. 

Axial-flow Reynolds number o r  equivalent axial-flow Reynolds number, 
(PP, ~ z l w r l ) ' ~ P (  , dimensionless. 

R%,W 

t Time (APPENDIX 111), sec. 
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LIST OF SYMBOLS (Cont 'd) 

Iodine time constant (APPENDIX 111), sec.  

FC-77 time constant (APPENDIX 111), sec. 

Heavy-gas time constant ( i .e. , average heavy-gas dwell time ) , 
sec.  

t* 

'FC-77 

t F 

Heavy-gas time constant f o r  f i l l y  mixed flow minimum average 
FMIN heavy-gas dwell t ime) ,  V / [  QpI {I i- (0,  /Q, )INJ} 

t 

T Temperature, deg F o r  deg R.  

Temperature of l i g h t  gas at in j ec t ion  i n t o  vortex tube (APPENDIX I V ) ,  
deg F o r  deg R .  TPI 

Temperature of heavy gas a t  in j ec t ion  i n t o  vortex tube (APPENDIX I V ) ,  
deg F o r  deg R.  TFI 

V . Average t angen t i a l  component of l igh t -gas  in j ec t ion  veloci ty ,  
'IJ W, COS 0 .  /ppl A , f t / s e c .  

I 1 
2 - 

Average ve loc i ty  through equivalent axial-flow annulus, Q, /(7/16) T II 

f t / s e c .  
vz ,w 

V Volume of vortex tube, r r I 2  L f t 3 .  

W Weight flow ra t e ,  lb/sec.  

W,/WF Light-to-heavy-gas weight flow r a t e  r a t i o ,  dimensionless. 

W Weight of gas s tored i n  vortex tube,  l b .  

Angle between r-+ plane and center l ine  of directed-wall - je t  i n se r t  
( see  sketch TAEEE I) ,  deg. 

Bj 

Viscosity of l i g h t  gas o r  simulated propel lant  at  in jec t ion ,  
P P I  l b / (  s e c - f t ) .  

Density, lb/f% 3 . P 
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LIST OF SYMBOLS (Cont d )  

Maximum value of heavy gas dens i ty  r a t i o ,  dimensionless. 
(PF I I ),,, 

PFINJ 

STD 

FI 
T 

r 
MIN 

Density of heavy gas or  simulated f i e 1  at  in jec t ion ,  l b / f t 3  
(APPENDIX IV) . 
Density of iodine vapor at 273 K and 760 mm Hg, assuming iodine vapor 
i s  a per fec t  gas, (0.707 l b / f t 3 ) .  

Density of l i g h t  gas or  simulated propellant at in j ec t ion ,  l b / f t 3 .  

Average densi ty  of heavy gas w i t h i n  vortex tube, wF / T  r 

Heavy-gas o r  simulated-fuel density r a t i o ,  dimensionless. 

Tota l  time f o r  one v e r t i c a l  t raverse  of a x i a l  l i g h t  beam 
APPENDIX 111). 

L 

(see 

Dimensionless heavy-gas o r  simulated-fuel time constant,  t, ppl /ppl r l  2 , 
dimensionless. 

Dimensionless heavy-gas o r  simulated-fuel time constant f o r  f u l l y  
mixed flow, t, MIN ,up, /pp, rI2 , dimensionless. 

Heavy-gas containment parameter, dimensionless. 

Az imut ha1 angle, deg . 
Sta t ion  Subscr ipts  

I Outer radius  of vortex tube.  

6 Edge of fuel-containment region. 

IN J In jec t ion  locat ion.  

TF Thru-flow exhaust ducts.  
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LIST OF SXMBOLS (Cont'd) 

Other Subscripts 

F Heavy gas or simulated fuel .  

FC - 77 Fluorocarbon. 

I Iodine vapor. 

P Light gas or simulated propellant.  
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APPENDIX I 

SUMMARY OF TESTS OF BASIC VORTEX TUBES HAVING 
MULTIPLE-FIXED-PORT LIGHT-GAS INJECTION 

A descr ip t ion  of containment t e s t s  f o r  vortex flows having no superimposed 
ax ia l  flow i s  presented i n  t h i s  APPENDIX. 
outflow and radial-inflow vortex configurations.  

Results a re  presented f o r  both r ad ia l -  

Radial-Outflow Tests 

Containment tes ts  of vortexes w i t h  r a d i a l  outflow i n  a bas ic  vortex tube were 
conducted t o  provide a comparison w i t h  r e s u l t s  of similar t e s t s  i n  an axial-flow 
vortex tube.  

A multiple-fixed-port  vortex tube having 4284 holes of 0.078-in.-dia w a s  in-  
The s t a l l e d  i n  the high Reynolds number t e s t  f a c i l i t y  f o r  these  t e s t s  (Fig.  31). 

l i g h t  gas ( a i r )  was in jec ted  through two-thirds of the  holes and w a s  exhausted 
through the  remaining one-third i n t o  four  exhaust plenums spaced 90 deg apar t  
around t h e  per iphera l  w a l l  ( see  Fig. 31). 
FC-77 and iodine vapor and was in jec ted  i n t o  the vortex from a 1.0-in.-dia porous 
tube loca ted  on t h e  vortex tube center l ine .  

The heavy gas consis ted of a mixture of 

Tests  were conducted a t  t angen t i a l  inject ion Reynolds numbers of Re+, j  = 1.1 x 10 5 , 1.9 x 105 and 2 .8  x lo5 w i t h  corresponding equivalent axial-flow Reynolds 
4 4 4 numbers of ReZ,,,, = 4.0 x 10 , 7.6 x 10 and 11.0 x 10 . Resul ts  of heavy-gas 

containment t e s t s  a re  presented on Fig. 32 as the var ia t ion  of containment para- 
meter with heavy-gas dens i ty  r a t i o .  ) in -  
c reases  w i t h  increasing equivalent axial-flow Reynolds number, i . e . ,  wikh increas-  
ing  l igh t -gas  weight flow rate ( i s  d i r ec t ly  proport ional  t o  t h e  equivalent 
axial-flow Reynolds number). These r e s u l t s  are d i f f e ren t  from those reported i n  
the  main t e x t  of t h e  repor t  f o r  vortexes with radial outflow and l a rge  superimposed 
axial flow; r e s u l t s  of those t e s t s  showed tha t  the  containment parameter was in-  
dependent of axial-f low Reynolds number and, hence, independent of l igh t -gas  weight 
flow (e .g . ,  Figs .  12, 13  and 1 4 ) .  
f i gu ra t ion  with r a d i a l  outflow and no superimposed a x i a l  flow, but with s ing le-s lo t  
l igh t -gas  in j ec t ion  (Ref. 4 )  a r e  a l s o  presented i n  Fig.  32. 

The containment parameter ( T ~ ,  / T ~  
MlM 

W, 

Comparable r e s u l t s  from t e s t s  of a vortex con- 
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Radial-Inflow Tests  

Containment t e s t s  were a l s o  conducted using a vortex with r a d i a l  inflow and no 
superimposed a x i a l  flow. 
maximum amount of heavy gas t h a t  can be s t ab ly  contained i n  a vortex of t h i s  type.  
Results of previous t e s t s  (see Ref. 4) showed t h a t ,  f o r  some flow conditions,  an 
i n s t a b i l i t y  occurred which caused a complete breakdown of the  vortex flow pa t t e rn .  

The primary purpose of these  t e s t s  w a s  t o  determine t h e  

The high Reynolds number t e s t  f a c i l i t y  was used f o r  these  t e s t s ,  and t h e  
vortex tube employed was i d e n t i c a l  t o  t h a t  described i n  the  preceeding paragraphs. 
Figure 33 presents a sketch and a photograph of t he  vortex-tube geometry f o r  t h e  
radial-inflow t e s t s .  The radial-inflow configuration w a s  d i f fe ren t  from the  radial- 
outflow configuration i n  two respects :  (1) i n  t h e  radial-inflow configuration, a 
f r ac t ion  o f  the  t o t a l  in jec ted  flow w a s  withdrawn through por t s  located a t  t h e  
center  of one o r  both end walls, whereas i n  the  radial-outflow configuration, a l l  
of the  injected flow was withdrawn through the  per iphera l  w a l l ;  and ( 2 )  i n  the  
radial-inflow configuration, heavy gas was in jec ted  i n t o  the  vortex tube through 
twelve 1/2-in.-long x 0.096-in.-ID tubes which were located around the  periphery 
a t  the ax ia l  mid-plane of the  vortex tube (see Fig. 33), whereas f o r  t he  radial- 
outflow configuration, t he  heavy gas w a s  in jec ted  through a porous tube located 
along the  vortex tube center l ine .  

For tes ts  employing a radial-inflow vortex configuration, t he  l igh t -gas  flow 
condition i s  specif ied i n  terms of the  equivalent axial-flow Reynolds number R e Z , w  , 
t he  tangent ia l  in jec t ion  Reynolds number 

gas removed through the  thru-flow por t s  located at  t h e  centers  of the  end walls of 
t he  vortex tube (see Fig. 33). The r a d i a l  Reynolds number, Re, , i s  defined as 

R e + , j  
, and the  radial  Reynolds number 

R e ,  . The r a d i a l  Reynolds number i s  a measure of the  weight flow r a t e  of l i g h t  

w T F  

* * P P I  
R e ,  

where W,is t he  t o t a l  l ight-gas  weight flow through the  thru-flow por t s .  

Results of t e s t s  t o  determine t h e  e f f e c t  of radial Reynolds number on the  
heavy-gas containment cha rac t e r i s t i c s  of vortexes with thru-flow removal a t  one o r  
both ends of the  vortex tube a r e  presented i n  Fig.  34. For these  t e s t s ,  t he  tan-  
g e n t i a l  inject ion Reynolds number w a s  l70,OOO and the  heavy-gas flow rate w a s  ap- 
proximately constant a t  0.034 lb/sec.  The r e s u l t s  ind ica te  t ha t  t h e  d i f fe rences  
betwezn the data  f o r  thru-flow removal through one end w a l l  and through both end 
walls were small f o r  r a d i a l  Reynolds numbers l e s s  than approximately 100. 
r a d i a l  Reynolds numbers grea te r  than 150 and configurations having thru-flow re-  

For 
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moval at only one end of t h e  vortex tube,  t he  measured values of containment para- 
meter were approximately 1 5  percent g rea t e r  than those obtained from the  configura- 
t i o n  having two thru-flow por t s .  

The e f f e c t  of r a d i a l  Reynolds number on the radial d i s t r i b u t i o n  of heavy-gas 
dens i ty  i s  presented i n  Fig. 35 f o r  t e s t s  w i t h  Re, = 25, 50, 75 and 100. The 
dens i ty  d i s t r i b u t i o n s  shown were obtained from t h e  configuration w i t h  thru-flow re-  
moval through one end w a l l  (containment da ta  for  these t e s t s  were presented i n  
Fig. 34). For these  t e s t s ,  t he  heavy-gas flow r a t e  was held constant.  Different  
r a d i a l  d i s t r i b u t i o n s  of heavy gas obtained at d i f f e ren t  r a d i a l  Reynolds numbers can 
be a t t r i b u t e d  t o  changes i n  the  vortex convective flow pa t t e rns .  The data presented 
f o r  radial Reynolds numbers of 25 and 50 indicate t ha t  t h e  heavy gas was d i s t r ibu ted  
i n  an annular region between radius  r a t i o s  of approximately 0 .5  and 1.0. 
r a d i a l  Reynolds number w a s  increased t o  75, the heavy-gas annulus extended i n t o  the  
c e n t r a l  region of t h e  vortex tube; increasing the  r a d i a l  Reynolds number t o  a value 
of 100 resu l ted  i n  more heavy gas s tored near the  center  of t he  vortex tube and 
l e s s  s tored  near t he  per ipheral  w a l l .  
75 and 100 was approximately the  same. 

When t h e  

The t o t a l  heavy gas s tored  f o r  Re, equal t o  

Observations of a flow i n s t a b i l i t y  were reported i n  Ref. 4 f o r  some flow con- 
d i t i o n s  employing a radial-inflow vortex.  In the  present program, t e s t s  were con- 
ducted a t  Reynolds numbers which approximated those a t  which the  i n s t a b i l i t y  w a s  
observed ( i . e . ,  Re+, j  = l 7 0 , O O O  and Re, = 60). Visual observations of t he  
hesvy-gas annulus i n  t h e  vortex were made. 
i n  R e f .  4 w a s  not observed. However, t he  vortex tube geometry employed i n  these  
t e s t s  w a s  not i d e n t i c a l  t o  t h a t  employed i n  the study of Ref. 4; a multiple-fixed- 
port  vortex tube was used i n  t h e  present program and a s ingle-s lo t - in jec t ion  vortex 
tube w a s  used i n  Ref. 4. It i s  possible t h a t  the  occurrence of t h i s  i n s t a b i l i t y  
w a s  i n  some way r e l a t ed  t o  t h e  s ing le-s lo t  geometry which w a s  employed i n  Ref. 4. 

An i n s t a b i l i t y  s imilar  t o  that  reported 

Additional radial-inflow tes t s  were conducted w i t h  a r a d i a l  Reynolds number of 
100 and a t angen t i a l  i n j ec t ion  Reynolds number of l70,OOO. For these  tests,  t he  
primary var iable  was the  heavy-gas weight flow r a t e .  Results of these  t e s t s  are 
presented i n  Fig. 36 along w i t h  data  from Ref. 4. The data presented i n  Fig. 36 
indica te  that  t h e  dens i ty  r a t i o s  obtained w i t h  t he  vortex tube geometry used i n  the  
present  inves t iga t ion  were l a r g e r  than those reported i n  Ref. 4. 
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APPENDIX I1 

SUMMARY OF TESTS OF VORTEX TUBES HAVING SINGLE-SLOT 
LIGHT-GAS INJECTION 

Description of Tests  

The experiments described i n  t h i s  APENDIX were conducted w i t h  vor tex tubes 
having s ingle-s lot  l i g h t  gas in jec t ion .  Most of t he  vortex t e s t  equipment used i n  
these  tes ts  has been described i n  Refs. 4 and 5 .  
w a s  a radial-outflow vortex without superimposed a x i a l  flow. Five s e r i e s  of t e s t s  
were conducted and included i n  the  following: 

The flow configuration employed 

1. 

2 .  

3. 

4. 

5 -  

Tests  i n  the  bas ic  LO-in.-dia vortex tube t o  inves t iga te  the  e f f e c t  of the  
l ight-gas  ( i . e . ,  ,simulated propel lan t )  i n j ec t ion  s l o t  height on heavy-gas 
containment. 

Tests  i n  the  bas ic  10-in.-dia vortex tube t o  inves t iga te  the  e f f e c t s  of 
d i f f e ren t  densi ty  heavy gases ( i . e . ,  simulated f u e l )  on heavy-gas 
containment. 

Tests  i n  the  10-in.-dia vortex tube t o  inves t iga te  the  e f f e c t s  of heavy- 
gas in jec t ion  w i t h  and without a center l ine  porous tube on heavy-gas 
containment. 

Tests  i n  the  bas ic  8- in . -dia  vortex tube t o  inves t iga te  the  e f f e c t  of 
v e r t i c a l  and horizontal  posi t ioning of the  vortex tube ax i s  on heavy- 
gas containment. 

Tests  i n  a newly constructed 3O-in.-dia vortex tube t o  inves t iga te  the  
e f f e c t  of a la rge  change i n  tube length-to-diameter r a t i o  on heavy-gas 
containment . 

Tests  using t h e  10-in.-dia Vortex Tube 

This  vortex tube consisted of a cy l ind r i ca l  metal tube 30-in. long, t o  which 
end w a l l s  were attached. A sketch of t h e  vortex tube i s  presented i n  Fig.  37. The 
l i g h t  gas was in jec ted  through a t angen t i a l  i n j ec t ion  s l o t  extending the  e n t i r e  
length o f t h e  vortex tube; both l i g h t  and heavy gases were withdrawn through a 
screen on the peripheral. w a l l  j u s t  upstream of t h e  in j ec t ion  s l o t .  
of t h i s  configuration a r e  given i n  R e f .  4. 

Further d e t a i l s  
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Previous tes ts  (Refs. 4 and 5 )  i n  t h i s  vortex tube had been conducted with a 
l igh t -gas  in j ec t ion  s l o t  height of 0.182 i n .  
height has any appreciable e f f ec t  on the  heavy gas containment cha rac t e r i s t i c s  ad- 
d i t i o n a l  t e s t s  were conducted w i t h  s l o t  heights of 0.060 in .  and 0.440 i n .  For 
each of t he  new configurations,  lleavy-gas t h e  cnnstants w e r c  rletcrmined a t  several  
values of t angen t i a l  i n j ec t ion  Reynolds number; a t  each Reynolds number several  
values of i n j ec t ed  heavy-gas weight flow were used. 
was in jec ted  through a 1 1/4-in.-OD porous tube posit ioned concentric with t h e  
vortex tube (see Fig.  37) .  

To determine i f  t he  in j ec t ion  s l o t  

For these  t e s t s  the  heavy gas 

Heavy-gas containment data  from these t e s t s  along w i t h  data from Ref. 5 ob- 
t a ined  w i t h  a 0.182-in.-high in jec t ion  s l o t  a re  presented i n  Fig.  38. 
show the va r i a t ion  of t he  containment parameter w i t h  the equivalent axial-flow 
Reynolds number. 

These data 

The equivalent axial-flow Reynolds number i s  defined as tha t  value of Re t h a t  
,w 

would e x i s t  i f  a l l  the  in jec ted  l i g h t  gas were removed through an annulus extending 
from r = 0.75 r ,  t o  r = r ,  i n  one end w a l l .  The re la t ionship  between the  
equivalent axial-flow Reynolds number and t h e  tangent ia l  Reynolds number f o r  t he  
s ing le  in j ec t ion  s l o t  vortex tube is, 

(11-1) 

The da ta  presented i n  Fig. 38 were obtained f o r  two d i f f e ren t  heavy-gas weight 
flow r a t e s  and at  three  d i f f e ren t  i n j ec t ion  s l o t  heights .  It i s  evident fron; Fig. 38 
t h a t ,  f o r  a given equivalent axial-flow Reynolds number, t he  containment parameter 
increased as t h e  s l o t  height decreased. Moreover, data  obtained with t h e  smaller 
i n j ec t ion  s l o t  heights  showed an increase i n  heavy-gas containment w i t h  increasing 
Reynolds number. The reasons f o r  t h i s  a r e  not f u l l y  understood a t  present,  but may 
be associated w i t h  an increase i n  tangent ia l  veloci ty  (and hence c i r cu la t ion  and 
c i r cu la t ion  gradien t )  t h a t  occurs with decreasing s l o t  heights at a given equivalent 
axial-flow Reynolds number. 

A second s e r i e s  of t e s t s  w a s  conducted t o  determine t h e  containment character-  
i s t i c s  of a vortex having smll heavy-gas weight flows of d i f f e ren t  densi ty  heavy 
gases.  The vortex configuration employed i n  these t e s t s  had a s ingle ,  0.18-in.- 
high l igh t -gas  in j ec t ion  s l o t ;  t he  heavy gas ( i . e .  , simulated f u e l )  w a s  in jec ted  
through a 1 1/4-in. -dia  porous tube posit ioned on the  vortex tube center l ine .  
t e s t s  were similar t o  those discussed previously i n  t h i s  report  (subsection e n t i t l e d ;  

These 
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Results of Tests Ehploying Different  Simulated Fuels i n  DISCUSSION OF RESULTS) ex- 
cept  t h a t  the basic  vortex tube configurat ion w a s  used. 
presented i n  Fig. 39 as the  var ia t ion  of t h e  heavy-gas containment parameter with 
heavy-gas densi ty  r a t i o .  The simulated fuel employed i n  these  t e s t s  consis ted of a 
mixture of iodine vapor and one of four  o ther  gases: v iz . ,  FC-75 (molecular weight 
of 416), sulphur hexafluoride (molecular weight of 146), ni t rogen (molecular weight 
of 28), and helium (molecular weight of 4 ) .  

The r e s u l t s  of t h e  t e s t s  a r e  

The most s ign i f icant  r e s u l t  shown by Fig. 39 i s  t h a t ,  where overlapping oc- 
curred i n  t h e  weight flows of two d i f f e ren t  dens i ty  heavy gases, very l i t t l e  d i f -  
ference in  the  containment parameters was noted. Also, the  containment parameter 
increased as the  weight flow of the  heavy gases w a s  decreased. Values of t h e  con- 
tainment parameter of approximately 75 were achieved f o r  some t e s t  configurat ions.  
In  addition, v i sua l  observation of t he  vortex flow i n  the  t e s t s  employing helium 
as the  simulated f u e l  indicated a l a rge r  and less turbulent  heavy-gas containment 
region. 

I n  a t h i r d  s e r i e s  of t e s t s  conducted i n  the  10-in.-dia,  s ingle-s lot  vortex tube,  
t h e  heavy gas (FC-75 and iodine vapor) was in jec ted  d i r e c t l y  i n t o  t h e  vortex through 
1.0-in.-dia holes at t h e  centers  of both end w a l l s .  Again t h e  bas ic  vortex tube 
configuration w a s  used. 
gas density r a t i o  f o r  these t e s t s  i s  presented i n  Fig.  40, and f o r  comparison, some 
da ta  from Fig. 39 have been included. The da ta  presented i n  Fig.  40 ind ica te  t h a t  
f o r  t h i s  configuration (i  .e. ,  no superimposed a x i a l  flow) the  containment parameters 
obtained f r o m t e s t s  w i t h  heavy-gas in j ec t ion  through a center l ine  porous tube were 
20 t o  80 percent l a rge r  than those obtained with heavy-gas ln j ec t ion  through t h e  
end walls.  

The var ia t ion  of heavy-gas containment parameter w i t h  heavy- 

Tests  i n  the  8- in . -dia  Vortex Tube 

A se r i e s  of t e s t s  were conducted t o  inves t iga te  the  e f f e c t s  of vortex tube 
or ien ta t ion  on heavy-gas containment cha rac t e r i s t i c s .  
t h e  buoyancy force due t o  grav i ty  may have an adverse e f f e c t  on the  heavy-gas con- 
tainment cha rac t e r i s t i c s .  To inves t iga te  t h i s  poss ib i l i t y ,  t e s t s  using the  vortex 
tube shown i n  Fig. 41 were conducted with the  a x i s  of t he  vortex tube both v e r t i c a l  
and horizontal .  (Additional d e t a i l s  of the  vortex tube employed i n  these  t e s t s  a r e  
given i n  Ref. 12, t he  instrumentation techniques a r e  described i n  Ref. 4 . )  
heavy gas w a s  a mixture of FC-75 and iodine vapor and w a s  in jec ted  through a 
1 l/lc-in.-OD porous tube loca ted  on the  vortex tube center l ine .  

For radial-outflow vortexes, 

The 

Tests were made a t  several  heavy-gas flow r a t e s  and a t  several  l igh t -gas  in jec-  
t i o n  Reynolds numbers. 
within the s c a t t e r  of t he  data, no change i n  the  heavy-gas containment character-  

The results of these  t e s t s  a r e  presented i n  Fig. 42 and, 
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i s t i c s  due t o  t h e  o r i en ta t ion  of t he  vortex tube i s  evident.  T h i s  r e s u l t  i s  i n  
agreement w i t h  a s imi la r  r e s u l t  reported i n  Ref. 8 f o r  a directed-wall - je t  vortex 
tube w i t h  superimposed a x i a l  flow. 

Tes ts  using a 3O-in.-dia Vortcx Tube 

A s e r i e s  of t e s t s  were conducted i n  a special ly  constructed 3O-in.-dia vortex 
tube.  T h i s  vortex tube w a s  formed by separating t h e  10-in.-dia vortex tube from 
t h e  l igh t -gas  in j ec t ion  plenum and replacing it w i t h  a piece of sheet metal  r o l l e d  
i n t o  a 30-in.-dia tube.  
sheet metal  tube.  The l igh t -gas  in j ec t ion  and exhaust system used i n  t h e  10-in.-dia 
vortex tube were a l s o  employed w i t h  t h i s  vortex tube.  A photograph of t h e  30-in.-dia 
vortex tube i s  shown i n  Fig. 43. 

Plexiglass  end walls were clamped t o  t h e  end of t he  r o l l e d  

The primary object ive of using these  t e s t s  w a s  t o  determine the  e f f ec t  of vortex 
tube diameter on heavy-gas containment charac te r i s t ics .  The t e s t s  were conducted 
with a i r  as the  l i g h t  gas in jec ted  through a O.lgO-in.-high s l o t  a t  the  periphery 
and w i t h  t h e  heavy gas in jec ted  through a 1 l/lc-in.-OD porous tube posit ioned 
concentr ic  w i t h  the  vortex tube.  
r e s u l t i n g  i n  an in j ec t ion  Reynolds number of 530,000. 
t h i s  ve loc i ty  corresponded t o  an in jec t ion  Reynolds number of 180,000.) 
t i o n  of containment parameter w i t h  heavy-gas density r a t i o  f o r  these  t e s t s  i s  
presented i n  Fig.  44. 
However, t h e  containment parameters a r e  somewhat l e s s  than those from comparable 
tes ts  with the  10-in.dia vortex tube.  

The air  w a s  in jec ted  at  a veloc i ty  of  135 f t / s e c  
( I n  a 10-in.-dia vortex tube 

The var ia-  

The r e s u l t s  a r e  similar t o  those obtained from previous t e s t s .  

Based on v i sua l  observations of t he  heavy-gas cloud, t he  v e l o c i t i e s  near t h e  
cen te r  of the  vortex were extremely low f o r  t h e  30-in.-dia vortex, and hence buoy- 
ancy forces  caused by gravi ty  were adversly e f fec t ing  t h e  heavy-gas d i s t r i b u t i o n  
i n  t h e  c e n t r a l  region of t he  vortex.  Since t h i s  phenomena w a s  not observed i n  t h e  
10-in.-dia vortexes, it i s  possible  t h a t  t h e  lower values of t he  heavy-gas contain- 
ment parameter were caused by combined e f f e c t s  of low angular ve loc i ty  and gravi ty .  
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DETEfiMINATION OF THE AMOUNT OF HEAVY GAS S T O ~  WITHIN THE VORTEX TUBE 

The scanner consis ts  of an e l e c t r i c  motor with a gear reduction uni t  t h a t  dr ives  
a cam upon which t h e  se l ec to r  p l a t e  r ides .  The cam (shown i n  Fig. 45)  was designed 
such t h a t  a uniform angular displacement r e s u l t s  i n  v e r t i c a l  motion of t he  se l ec to r  
p l a t e  proportional t o  the  square of t h e  dis tance t rave led .  
v e r t i c a l  displacement of t h e  se l ec to r  p l a t e  as a funct ion of t he  angular displacement 
of t he  cam. 
t r ave r se  r ad ia l ly  with a speed proport ional  t o  t h e  square of t h e i r  r a d i a l  dis tance 
from t h e  vortex tube center l ine .  The scanner is adjusted so t h a t  one l i g h t  beam 
t raverses  along a v e r t i c a l  radius  above t h e  center l ine;  i t s  shu t t e r  is then closed, 
t h e  other  l i g h t  beam shu t t e r  opens, and t h i s  beam t raverses  along a v e r t i c a l  radius  
below t h e  center l ine.  The process is  then repeated. The l i g h t  beam shut te rs  a r e  
opened and closed automatically by a s i g n a l  from an aux i l i a ry  photomultiplier tube.  
The opt ica l  system was  aligned such the  narrow l i g h t  beams were p a r a l l e l  t o  t he  
vortex tube center l ine  a t  a l l  times. 

Figure 45 shows the  

In t h i s  way, t h e  two narrow l i g h t  beams passing through t h e  p l a t e  

i ~~ ~ ~~~ 

A data acquis i t ion  system based on t h e  pr inc ip le  of l i g h t  absorption by iodine 
vapor was  used t o  determine t h e  t o t a l  amount of heavy gas s tored  within t h e  vortex 
tube during containment t e s t s .  

Description of Axial Absorptometer I 
The pr incipal  components of the  a x i a l  absorptometer are shown schematically i n  

It consis ts  of a 100 w a t t  zirconium arc lamp located a t  the  foca l  plane of Fig. 7. 
two 6-in. -dia f/8 parabol ic  mirrors,  a beam se l ec to r  and scanner, plane mirrors on 
each of the,vortex-tube end w a l l s ,  a l5 - in .  -dia  f / l .  5 fgcusing lens ,  an in te r fe rence  
f i l t e r  (40 A half-width with peak transmission a t  5250 A ) ,  and an RCA 6655A photo- 
mul t ip l ie r  tube. 
form two 6-in.-dia p a r a l l e l  l i g h t  beams. 
a f l a t  p la te  on t h e  scanner which has two small (approximately 3/16-in.-dia) holes 
d r i l l e d  5$ i n .  apa r t .  
l i g h t  beams. 
p l a t e ,  and a s l i d i n g  shu t t e r  is used t o  a l t e r n a t e l y  block t h e  l i g h t  of each beam. 
The narrow l i g h t  beams pass a x i a l l y  through t h e  vortex tube and t h e  focusing lens  t o  
the  photomultiplier tube.  

Light from t h e  a rc  lamp r e f l e c t s  from t h e  parabolic mirrors t o  
The l i g h t  beams s t r i k e  the  beam se l ec to r ,  

Light passing through t h i s  p l a t e  i s  i n  two narrow collimated 
The diameter of each l i g h t  beam can be adjusted by an i r i s  on the  
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Analysis 

As t h e  l i g h t  beam passes through t h e  vortex tube, i t s  in t ens i ty  w i l l  be  reduced 
due t o  absorption by t h e  iodine vapor present i n  t h e  o p t i c a l  path. In  R e f .  12, t h e  
expression r e l a t i n g  the  dens i ty  of t he  iodine vapor t o  t h e  f r a c t i o n  of l i g h t  t r ans -  
mit ted is shown t o  be 

(111-1) 

where I i s  the  i n t e n s i t y  of l i g h t  transmitted through t h e  vortex tube during a 
tes t  and I, is  the  in t ens i ty  of l i g h t  transmitted immediately p r i o r  t o  t h e  injec-  
t i o n  of iodine vapor. The iodine densi ty  calculated from Eq. (111-1) is an average 
dens i ty  over t h e  length,  L . The iodine vapor does not have t o  be uniformly d i s -  
t r i bu ted  along t h e  o p t i c a l  path length because the  f r a c t i o n  of l i g h t  t ransmit ted is  
proport ional  only t o  t h e  t o t a l  number of absorbing iodine molecules i n  t h e  o p t i c a l  
path.  

The r a d i a l  va r i a t ion  of l i g h t  i n t ens i ty  was obtained by t ravers ing  t h e  l i g h t  
beam r a d i a l l y  and recording t h e  subsequent photomultiplier tube output (which was  
proport ional  t o  t h e  l i g h t  i n t ens i ty ) .  For the  da ta  reported herein t h e  va r i a t ion  
of 
tube without iodine present ,  but  with t h e  l ight-gas  flow establ ished ( s e e  sec t ion  
e n t i t l e d  TEST PROCEDURES). 
was  then obtained i n  t h e  same manner, with heavy gas flowing. Figure 46 presents 
t y p i c a l  photomultiplier output records as t h e  l i g h t  beams were t raversed r ad ia l ly .  
From t h e  known re la t ionship  between the  cam ro ta t ion  and r a d i a l  pos i t ion  of t h e  
l i g h t  beam ( i . e . ,  from Fig. 45) and the  t races  of I 
iodine dens i ty  as a funct ion of radius can be obtained using Eq. (111-1). 

I, with radius was  obtained by t ravers ing  the  l i g h t  beams across the  vortex 

The in t ens i ty  of the l i g h t  beam with iodine present,  I , 

and I, , t h e  a x i a l l y  averaged 

The amount of iodine vapor s tored within t h e  vortex,WI, i s  

and s i n c e  

(111-2) 
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Combining Eqs . ( 111-1) and ( 111-2), 

(111-4) 

Since uniform angular displacement of the  cam on t h e  scanner produces a displacement 
of t h e  l i g h t  beam proportional t o  the square of i t s  r a d i a l  locat ion,  and s ince t h e  
cam turns  a t  constant speed, then the  time of t r a v e l  as a function of r a d i a l  posi-  
t i o n  i s  

t = a r 2 +  b 

with  conditions t h a t  a t  t = 0,  r = r l  and a t  t = T ,  r = 0, where T i s  t h e  
t o t a l  time of t raverse .  Thus, 

+ = T  [ I -  ($'I 
2 

Then d ( r 2 )  =-% dt 

Subs t i tu t ing  Eq. (111-4) in to  Eq.  ( I I I -3) ,  

t=T 
(111-5) ,-q=- ml* ( %TO ) { i l y ( l n  Io)dt - 1 (In I)dt 1 

3660T I - @-553/" t:o 

The advantage of expressing w I i n  t h e  form given by Eq. (111-5) i s  tha t  the  
integrat ion can now be performed e l ec t ron ica l ly .  Signals from t h e  photomulti- 
p l i e r  tube ( i . e . ,  first Io , then I ) go i n t o  a log  ampl i f ie r .  The output 
s igna l  then goes i n t o  an e lec t ronic  in t eg ra to r  and the  in t eg ra to r  
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. 
output s igna l  i s  recorded. S t a r t ing  and stopping of t h e  in tegra tors  is  done by t h e  
aux i l i a ry  photomultiplier tube which is  a l s o  used t o  cont ro l  t h e  l i g h t  beam shu t t e r s .  
Thus, by knowing t h e  t i m e  of in tegra t ion  (which can be s e t  by cont ro l l ing  t h e  cam 
speed), t h e  amount of iodine vapor s tored  within the  vortex is  proportional t o  t h e  
d i f fe rence  of t h e  two in t eg ra l s  ( s ee  Eq . ( I I I -3 ) ) .  

To ca lcu la te  t h e  iodine time constant,  t, , both the  amount of iodine vapor 
s tored  within t h e  vortex and the  iodine vapor flow rate must  be determined. The 
former is obtained from Eq. (111-5), and t h e  iodine vapor flow r a t e  is  obtained from 
an iodine absorptometer posit ioned on t h e  heavy-gas in j ec t ion  duct just upstream of 
t h e  vortex t u b e .  The iodine absorptometer i s  similar t o  t h a t  described i n  APPENDIX 
I of Ref. 4, bu t  d i f f e r s  i n  t h a t  t h e  one employed i n  t h i s  study had an o p t i c a l  path 
length of l .125-in.  and the  gas flowing through t h e  duct was only heavy gas. For 
most t e s t s  t h e  heavy gas was a mixture of FC-77 and iodine vapor ( see  t e x t ) .  

The dens i ty  of iodine vapor passing through the  absorptometer i s  (from APPENDIX 
I of Ref. 4) 

-PI STD In I/I, 
= (,+-553/T)( 344 ) (111-6) 

where I/I, i s  the  f r ac t ion  of l i g h t  transmitted through t h e  iodine vapor. 

Since the  iodine vapor and FC-77 vapor were premixed ( see  t e x t ) ,  t he  volume flow 
rate  of each flowing through the  duct were equal. Thus, 

WI = 
PFC-77 

i s  t h e  weight flow r a t e  of t h e  FC-77 and i s  measured by a turb ine  flow meter FC-77 
p r i o r  t o  mixing with the  iodine vapor. p Fc-77 is the  densi ty  of FC-77 as it 
flows through t h e  absorptometer; and, s ince  the p a r t i a l  pressure of t he  iodine vapor 
i n  t h e  duct is  small, is calculated from t h e  measured pressure and tem-  
perature  i n  t h e  duct a t  t he  absorptometer . pFc-77 

The iodine vapor time constant is calculated from Eqs. (111-5) and (111-7). 
is assumed that t h e  heavy-gas time constant is  equal t o  t h e  iodine time constant 
( t h e r e  are no forces t o  cause any appreciable separat ion between t h e  iodine vapor 
and t h e  FC-77 once they a r e  mixed together) .  

It 

Then 

t, = 1, t 
FC-77 
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and 

o r  q = 3y; (It?) (111-8) 

Iw, is  obtained from Eq. (IIT-5), W I from Eq. (111-'I), and 
Eq. (111-8) ,gives the  t o t a l  amount of heavy gas s tored  within the  vortex tube 
during steady-state operation. 

w Fc-,77 is measured. 
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APPENDIX Iv 

The da ta  described i n  t h e  present report  were obtained i n  vortex tubes with a 
The length and constant peripheral-wall  radius  and with L/D r a t i o s  of 1, 2 and 3. 

volume f o r  t hese  vortex tubes are:  

L/D Radius, r, - 
1 0.416 f t  

Length, L Volume, V 

0.833 f t  0.45 f t 3  

2 0.416 f t  1.667 f t  0.91 f t 3  

3 0.416 f t  2.500 f t  1.36 f t 3  

The approximate propert ies  of t he  simulated-propellant and simulated-fuel gases a t  
in j ec t ion  i n t o  t h e  vortex tube are:  

Property S imulat ed-Propellant Simulated Fuel  

Gas A i r  Fluorocarbon, FC-77 

= 320 F 
T F  I 

= 300 F 
T P I  

PPI PFINJ 

Temperature 

Pressure p =  13 .5  p s i a  P = 13.5 ps i a  

Density 

V i s  cos i t y  = 1.57 x lb/sec f t  

= 0.048 lb / f t3  = 0.643 l b / f t 3  

To use these  model performance r e su l t s  i n  fu l l - s ca l e  engine performance 
s tud ie s  and t o  compare t h e  present  r e s u l t s  with previous and concurrent heavy-gas 
containment tests,  t h e  containment r e s u l t s  for  a given configuration are presented 
i n  terms of t h ree  dimensionless parameters. Typical values from tes t  data  f o r  a 
vortex tube with L/D = L . 0  are: 

Heavy-gas density r a t io ,  
Containment parameter, 
Axial-f low Reynolds number, 

pF /pp, = 0.2 
= 10 
= 330,000 

T F I  I ’TFIMIN 

Re ,w 

These dimens ionless  parameters a r e  converted t o  dimensional parameters i n  t h e  follow- 
ing t ab le .  
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FIG. 3 

PHOTOGRAPH OF L I GHT- GAS SUPPLY SYSTEM 
SEE FIG. 2 FOR SCHEMATIC DIAGRAM 

L IGHT-  GAS T E S T  SECTION 
HEATER SUPPLY 
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FIG. 4 
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FIG. 6 

PHOTOGRAPH OF HIGH REYNOLDS NUMBER 
TEST FACILITY CONTROL CONSOLE 

HEAVY-GAS SUPPLY 
SYSTEM CONTROLS 

DATA - A C 0 U I SIT  ION 
CONSOLE 

LIGHT-GAS SUPPLY 
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F I G .  9 

LIGHT-GAS INJECTION GEOMETRY FOR MULTIPLE-FIXED-PORT 
VORTEX TUBES 

a) SCHEMATIC OF INJECTION GEOMETRY 

SHELL 

36 
AT 

EQUALLY SPACED HOLES 
EACH OF 119 AXIAL STATIONS 

INNER WALL OF 

LOCAL TANGENT 

b )  PHOTOGRAPH OF TYPICAL MULTIPLE- FIXED-PORT VORTEX TUBE 

A, 

( . . .  

LENGTH, L = 30 IN. DIAMETER, D = IO IN 
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FIG. IO . 
LIGHT-GAS INJECTION GEOMETRY FOR DIRECTED-WALL- JET 

VORTEX TUBE 

0 )  SCHEMATIC OF INJECTION GEOMETRY 

INSERT 

,IN DR I CA L 

INSERT MAY BE ROTATED 
FULL 360 DEG 

b) DETAILS OF DIRECTED-WALL- JET INSERT 

SLOT HEIGHT = 0.045 TO 0.100 IN 

SHELL 

INSERT BASE 
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0 13,600 194,000 0.00018 
h 92.600 244.000 0.00015 

FIG. 12 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS 
DENSITY RATIO FOR THE MULTIPLE-FIXED-PORT VORTEX TUBE 

HAVING Aj = 13.1 SQ IN. AND L / D = 3 . 0  

[ 0 1 1 3 3 ~ 0  [ 350,0001 ‘ o . o o o ~ o ]  
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FIG. 13 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS 
DENSITY RATIO FOR THE MULTJPLE-FIXED-PORT VORTEX TUBE 

HAVING Aj = 20.5 SO IN. AND L I D =  3.0 
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FIG. 14 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS 
DENSITY RATIO FOR THE MULTIPLE-FIXED-PORT VORTEX TUBE 

HAVING Aj = 40.2 SQ IN. AND L I D =  3.0 

20 

48,600 

100,000 
194,000 

4 8  1,000 

IO 

5 

2 

I 
0.UZ 0.05 0. I 0 . 2  

HEAVY-GAS DENSITY RATIO, p / p  
F I T  

55 

0 .5  I 



FIG 15 

SYMBOL I A i  -SO IN 

SUMMARY OF DATA FOR MULTIPLE- FIXED-PORT VORTEX TUBES 
HAVING A j  =13.1,20.5 AND 40.2 SQ IN. AND L / D = 3 . 0  
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TYPICAL RADIAL DISTRIBUTIONS OF HEAVY-GAS DENSITY 
IN MULTIPLE-FIXED-PORT VORTEX TUBES 

WITH AND WITHOUT SUPERIMPOSED AXIAL  FLOW 
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FIG. 17 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS 
DENSITY RATIO FOR THE MULTIPLE-FIXED-PORT VORTEX TUBE 
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FIG. 18 

TYPICAL RADIAL DISTRIBUTIONS O F  HEAVY-GAS DENSITY 
IN MULTIPLE-FIXED-PORT VORTEX TUBES 

HAVING L/@ = 1.0 AND 3.0 

I O  

0 .5  

> 
W 
I 

a 

J 0.2 
U u 
0 
J 

0. I 

0.05 

59 



\ - 
LL 

I- 

LI 
W 
I- 
w 
E 
Q tr 
Q a 
I- 
;I 
w 
2 z a 
I- z 
0 
0 

.. 

20 

IO 

5 

2 

I 

FIG. 19 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY- GAS 
DENSITY RATIO FOR THE DIRECTED - WALL- JET VORTEX TUBE 

HAVING A = 11.0 SQ IN. AND L I D  = 3.0 
j 

0 02 

I 0 I 307,0001 698,OOOl - - -. __ __ 0 000044 - 1 
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HEAVY-GAS DENSITY RATIO, FF / p  
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FIG. 20 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY -GAS 
DENSITY RATIO FOR THE DIRECTED -WALL-JET VORTEX TUBE 

HAVING A .  ~32.2 SQ IN. AND L / D  =3.0 
1 

2 0  

I O  

5 

2 

I 
0 02 

' 0 90,500 I 69,100 0000150 1 

L 
0 2 0 5 , 0 0 0  ' 156,000 0 000067 1 

, a  3 2 5 , 0 0 0  248,000 ' 0 000042 j I 0 , 462,000 3 5 3 , 0 0 0  0 000030 

I 
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FIG. 21 

SUMMARY OF DATA FOR DIRECTED -WALL: JET VORTEX TUBES 
HAVING A z I 1 . 0  AND 32.2 SQ IN. AND L/D = 3.0 i 

1 SYMBOL 1 A i  - S O  IN I DATA FROM FIG I 

20 

z 
z 

IL- 

I- IO  \ 

l o  I 11.0 1 19 I 
0 I 32.2 20 1 

0.02 0.05 0. I 0.2 0.5 I 

HEAVY - GAS DENSITY RATIO, PF / pp 
I I 
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FIG 22 

A 

0 
D 
V 

SUMMARY OF DATA FOR DIRECTED-WALL-JET VORTEX TUBES 
HAVING Ai = 11.0 AND 21.5 SQ IN. A N D  L / D  = 1.0 AND 2.0 

I I  0 I 0  268,000 614,000 j 0 000017 

21 5 2 0 161,000 184,000' 0 000056 

21 5 2 0  224,000 287,000 0000040 

21 5 2 0  334,000 383,000 0000027 

1 1  0 

0.02 I 
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FIG 2 3  

MFP I O  17 

DWJ I O  22 

MFP 3 0  15 

DWJ 3.0 21 

COMPARISON OF RESULTS OF TESTS WITH MULTIPLE - FIXED-PORT 
AND DIRECTED -WALL- JET VORTEX TUBES 
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FIG 24 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS DENSITY 

I RATIO FOR TESTS USING HELIUM AS THE SIMULATED FUEL 

DIRECTED -WALL -JET VORTEX TUBE, A .  -11.0 SO IN AND L / D  = I O  
1 

SIMULATED FUEL 

HELIUM AND IODINE; 

HEAVY-GAS DENSITY RATIO,  p /p, 
I 
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FIG. 25 

SIMULATED FUEL SYMBOL R e Z , W  Ret, j TFl MIN 

0 60,000 14oPOo ~ ~ ~ ~ ~ 0 7 6  NITROGEN AND IODINE; 
0 148,000 344,000 0.000031 
A 319,000 742,000 Q,OOCO14 

(pF ''O . 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY -GAS DENSITY 
RATIO FOR TESTS USING NtTROGEN AS THE SIMULATED FUEL 

DIRECTED-WALL- JET VORTEX TUBE , A i :  11.0 SO IN. AND L /D  = 1.0 

IO0 

E 
I 

+- 50 

cLL 

\ - 

20 

IO 

5 
0.01 0.02 0 05 o t  0.2 

HEAVY-GAS DENSITY RATIO, pF / p  
I P I  

66 



FIG 26 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY- GAS 
DENSITY RATIO FOR TESTS USING SULPHUR HEXAFLUORIDE 

AS THE SIMULATED FUEL 

DIRECTED-WALL-JET VORTEX TUBE ,A.z11.0 SO IN. AND L /D  : 1.0 
1 

0 148,000 344,000 

A . 319,000 742,000 

I00 

20 

IO  

T 
FI MIN 

0.000076 
0.00003 I 
0.000014 

SIMULATED FUEL I 
SULPHUR HEXAFLUORIDE 

AND IODINE ; 
('F /pP)INJ ' 5 .0  

- 
0.0 I 0.02 0 05 0. I 
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FIG. 27 
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SUMMARY OF CONTAINMENT DATA FROM TESTS 
USING HELIUM, NITROGEN, OR SULPHUR HEXAFLUORIDE 

AS THE SIMULATED FUEL 

4 
NITROGEN AND IODINE 60,000 to 319,000 25 

SULPHUR HEXAFLUORIDE AND IODINE 60,000 t0319.000 26 

DIRECTED-WALL-JET VORTEX TUBE, A i  : 11.0 S O  IN. AND L /D:  1.0 

SYMBOL SIMULATED FUEL RQ2,W I DATA FROM FIG. 

HELIUM AND IODINE 
I 60,000 I 
I 148,000 to 3l9.000 I 2 4  I 
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50 

20 
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FIG. 28 

- SYMBOL ('F/'P) INJ w P / w F  'FI /~FIMIN 

0 0. I55 91 8 9  

0 1030 91 IO 8 

A 5 050 112 I 1  7 

EFFECT OF SIMULATED-FUEL DENSITY AT INJECTION ON THE RADIAL 
OISTRIBUTION OF SIMULATED-FUEL DENSITY IN THE VORTEX TUBE 

'F I ' 'FJ 1 
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0.104 SULPHUR HEXAFLUORIDE AND IODINE 
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DIRECTED-WALL-JET VORTEX T U E E , A . : I I O  SO IN AND L / D  1.0 
1 

Rez,, = 60,000 

0 
a 
I- 
U 

> 
L - 
cn z 
W 
0 

-J 
W 
3 
L L  

0 
W 
I- 
U 

0.5 

0.4 

0 3  

0.2 

o r  

n " 
I O  0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 10 

RADIUS RATIO,  r / r ,  
U P P E R  T R A V E R S E  LOWER T R A V E R S E  

69 



F I G . 2 9  

EFFECT OF SIMULATED-FUEL DENSITY AT INJECTION ON THE 
RADIAL DISTRIBUTION OF SIMULATED-FUEL PARTIAL PRESSURk 

IN THE VORTEX TUBE 

DIRECTED-WALL-JET VORTEX T U B E , A j : I I O  SO I N ,  AND L / D : I O  
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I I I I I 
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'EFFECT OF SIMULATED-FUEL DENSITY AT INJECTION ON THE RADIAL 
DISTRIBUTION OF LOCAL DENSITY IN THE VORTEX TUBE 

I 
OIRECTEO - WALL- JET VORTEX TUBE , A ,  I t  0 S O  IN AND L / D  I 0 

ReZ,,,= 60,000 

SYMBOL (pF lpP) INJ w'P I W F  'FI '51 MIN 

0 0. I55 91 8 9  

0 1.030 91 10.8 
h 5.050 I12 11.7 
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FIG. 32 

0 

0 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS 
DENSITY RATIO FOR VORTEXES WITH RADIAL OUTFLOW 

AND NO SUPERIMPOSED AXIAL FLOW 

40,000 I10,OOO 13.5 MULTIPLE - FIXED - PORT 

76,000 190,000 13.5 MULTIPLE-FIXED- PORT 

SEE FIG.31 FOR VORTEX TUBE GEOMETRY 
HEAVY-GAS INJECTION THROUGH CENTERLINE POROUS TUBE 

- - - 
- * - - -  
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50 
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t- 
t- 20 
\ 

27,000 180,000 5 . 5  SINGLE-SLOT (SEE REF. 5 )  

65,000 430.000 5 . 5  SINGLE-SLOT(SEE REF. 5 )  

I O  
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I 

I I - so IN, I LIGHT-GAS INJECTION 
GEOMETRY 

SYMBOL 
OR LINE 

I A ~110,000~280,000 I 13.5 I MULTIPLE-FIXED-PORT I 

0. I 0.2 0.5 I 2 5 IO 
HEAVY - GAS DENSITY RATIO, pF, /pp ,  
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FIG. 33 

GEOMETRY OF VORTEX TUBE FOR TESTS WITH RADIAL INFLOW 
AND NO SUPERIMPOSED AXIAL FLOW 

a) SKETCH OF VORTEX TUBE AND END WALLS 

S E C T I O N  A-A 
THRU-FLOW 

EXHAUST DUCT r (1.0 IN.  D I A )  
MU LT I PLE - F IX E D -PORT 7 VORTEX TUBE 

I I I I I 

I I I I 
BYPASS -FLOW PLENUM J 

-GAS INJECTION DUCTS 

b) PHOTOGRAPH OF VORTEX TUBE INSTALLED IN TEST SECTION 

HE AVY -G A S - 
INJECTION DUCTS 

- THRU-FLOW 
EXHAUST DUCT 
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FIG. 34 

SYMBOL 
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VARIATION OF CONTAINMENT PARAMETER WITH RADIAL REYNOLDS 
NUMBER FOR VORTEXES WITH RADIAL INFLOW AND NO 

SUPERIMPOSED AXIAL FLOW 

7 
A ,  -so IN. wp ' w ~  FI MIN THRU-FLOW REMOVAL 

13.6 16.5 0.00021 BOTH END WALLS 

13.6 18.0 0.00021 ONE END WALL 

SEE FIG.33 FOR VORTEX TUBE GEOMETRY 
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FIG. 35 ' 

2 5  7 . 2 4  0 . 3 9 5  

EFFECT OF RADIAL REYNOLDS NUMBER O N  THE RADIAL 
DISTRIBUTION O F  HEAVY-GAS DENSITY FOR VORTEXES 

WITH RADIAL INFLOW AND NO SUPERIMPOSED AXIAL FLOW 
VORTEX TUBE GEOMETRY SPECIFIED IN FIG. 3 3  

OTHER CONDITIONS SPECIFIED IN FIG.  3 4  
THRU-FLOW REMOVAL THROUGH ONE END WALL 
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FIG. 36 
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SYMBOL Aj-sQIN. Rez,w Ret,j r~~~~~ 

0 13 3 65,000 170,000 0.00021 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS DENSITY 
RATIO FOR VORTEXES WITH RADIAL INFLOW 

AND NO SUPERIMPOSED AXIAL FLOW 

LIGHT-GAS INJECTION HEAVY-GAS INJECTION 
CONFIGURATION CONFIGURATION 

- 

MULTIPLE- FIXED-PORT WITH I2 0.125-IN.-DIA DUCTS 
PERIPHERAL BYPASS I AT AXIAL MIDPLANE 

SEE FIG.33 FOR VORTEX TUBE GEOMETRY 

Re,  100 
THRU-FLOW REMOVED AT CENTERS OF EACH END WALL 

5.4 

i 
SINGLE-SLOT WITH PERIPHERAL 1 0.125-IN.-DIA DUCTS 

BYPASS - SEE REF. 4 AT AXIAL MIDPLANE 27,000 180,000 0.00050 
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FIG. 38 

EFFECT OF LIGHT -GAS INJECTION SLOT HEIGHT 
ON CONTAINMENT PARAMETER 

SEE FIG 37 FOR GEOMETRY O F  VORTEX T U B E  
RADIAL OlJTFLOW AND NO SUPERIMPOSED A X I A L  F L O W  
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FIG. 39 

SYMBOL 

0 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY - GAS 
DENSITY RATIO FOR A RADIAL- OUTFLOW VORTEX 

WITH CENTERLINE-POROUS -TUBE HEAVY -GAS INJECTION 
NO SUPERIMPOSED AXIAL FLOW 

SEE FIG. 37 FOR GEOMETRY OF VORTEX TUBE 
Ret , j  : 180,000 , Rez,w = 27,000 
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EFFECT OF HEAVY-GAS INJECTION CONFIGURATION 
ON CONTAINMENT PARAMETER FOR A RADIAL-OUTFLOW VORTEX 

WITH NO SUPERIMPOSED AXIAL FLOW 

SEE FIG. 37 FOR GEOMETRY OF VORTEX TUBE 
HEAVY-GAS COMPOSITION, FC - 75 AND IODINE 

Re,,j 180,000. Rezlw E 27.000 

SYMBOL HEAVY-GAS INJECTION CONFIGURATION 1 o, 1 I 0-IN.-DIA PO;;;;;;~;ERSOF BOT”] 
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FIG. 42 

~~~ 

SYMBOL %,w 

0 9,500 

COMPARISON OF DATA OBTAINED WITH VORTEX TUBE 

IN VERTICAL POSITION 
IN HORIZONTAL POSITION WITH DATA OBTAINED WITH VORTEX TUBE 

W , j  T ~ ~ ~ i ~  

100, 000 0.001 20 

SEE FIG.41 FOR GEOMETRY OF VORTEX TUBE 
RADIAL OUTFLOW AND NO SUPERIMPOSED AXIAL FLOW 

HEAVY-GAS INJECTION THROUGH CENTERLINE POROUS TUBE 

A 19,000 190,000 ~ 0.00060 

I 0 1 13,300 I 140,000 I 0.00086 I 
I 1 

OPEN SYMBOLS - VORTEX TUBE HORIZONTAL 
SOLID SYMBOLS - VORTEX TUBE VERTICAL 
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FIG. 43 

PHOTOGRAPH OF 30-IN.-DIA SINGLE -SLOT VORTEX TUBE 

VORTEX TUBE LENGTH = 30 IN. 

- HEAVY-GAS 
INJECTION DUCT 

PERIPHERAL BYPASS 
PLENUM 
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? FIG. 44 

VARIATION OF CONTAINMENT PARAMETER WITH HEAVY-GAS 
DENSITY RATIO FnR A RADIAL - OUTFLOW VORTEX 

IN THE 30-IN.-DIA VORTEX TUBE 

SEE FIG.43 FOR GEOMETRY OF VORTEX TUBE 
NO SUPERIMPOSED AXIAL FLOW 

R e t , ,  f 530.000 , R e z , W  5-8700 

I SYMBOL I HEAVY - GAS COMPOSITION I 
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AND IODINE 0 - 
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FIG. 45 
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FIG. 46 
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