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Comments on the Excitation of the Geocoronal Nightglow 

T. M. Donahue 

The University of  Pittsburgh 

Pittsburgh, Pennsylvania, U. S. A .  

ABSTRACT 

It i s  pointed out t ha t  t h e  excitation o f  geocoronal hydrogen a t  

night by multiply scattered solar  radiation occurs mainly a t  thousands of 

kilometers above the ear th ' s  surface. The nature of the  hydrogen distri- 

bution below about 400 km i s  of secondary importance i n  the transport  

mechanism and is  weakly excited. 

liyman f3 scat ter ing can be predicted without serious error  even i f  the 

large gradient in  hydrogen density near 100 Inn is  ignored. 

calculation involving plane parallel geometry shows that during so lar  

minimum the expected nightglow Balmer a brightness has approximately the 

For t h i s  reason Balmer (31 exci ta t ion by 

An approximate 

measured value of 2 Rayleighs. 



Tinsley has recently questioned the appl icabi l i ty  of my cal-  

culation Donahue, [ 19641 of the excitation of Balmer 01 by geocoronal hydrogen 

t o  the real atmosphere. H i s  objection was based on my use of  a model devised 

by Thomas [1962] f o r  Lyman a calculations i n  which the density of hydrogen 

varied as r-5. 

above 400 la when the exospheric temperature i s  1250°0 It f'ails, however, 

t o  reproduce the very rapid increase i n  hydrogen density expected a t  lower 

a l t i t udeso  In Thomas' model, for  example, i f  the opt ica l  depth i n  Lyman a 

Such a model f i ts  the expected hydrogen d is t r ibu t ion  w e l l  

i s  unity above I20 km the density at  I20 km is  only 2.3 x 10 4 atoms/cm3 

6 compared t o  be5 x 10 atoms/cm3 in a Kockarts and Nfcolet [ 19631 model with 

the same opt ica l  depth. A t  100 km t h e  discrepancy is  much worse - 2*3  x 10 4 

%tom/cm3 t o  be compared t o  about 1.9 x lo7 atoms/cm 3 . 
I n  the Lyman 01 problem Thomas was concerned with calculating 

brightnesses above I20 km and took i n t o  account the e f fec t  of the  mass of 

hydrogen below I20 km by imposing a boundary a t  120 km which ref lected 

Lyman a with the efficiency dictated by the  albedo of 42 per cent which had 

been observed experimentally. Tinsely argues that i n  t h e  case of Balmer a 

production a t  night by IJrman f3 transport there  may be a s ignif icant  number 

of Lyman f3 scat ter ings a t  low a l t i t u d e  (100 - I20 km) which contribute t o  

the Balmer a observed on the ear th 's  surface. Thus a calculation of the 

Balmer a brightness based on a model which terminates with a perfect ly  

absorbing Layer for  Lyman p a t  I20 km m i g h t  be seriously deficient.  

This is i n  fact  not l i k e l y  to  be the case. The reason is  that ,  

f o r  geometrical reasons, the hydrogen atmosphere below I20 km hardly 

par t ic ipa tes  i n  the radiative transport responsible fo r  the nightglow 

exci ta t ion.  The property of geocoronal hydrogen which is  essent ia l  f o r  

L 
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the efficacy of the mechanism of nightglow exci ta t ion by transport  of 

resonance radiation i s  i t s  great scale height. Above the ant i -solar  point, 

l80" from the sun, for  example, t h e  i n i t i a l  excitation of hydrogen by photons 

arr iving there d i r ec t ly  from the sunl i t  atmosphere has a mximum between 

1000 km and 2000 km. A t  200 lun t h e  excitation rate is reduced by a fac tor  

of 3 compared t o  the rate a t  U O O  lune A t  I20 bm it has gone down by another 

factor  of t h e e .  

rate a t  low a l t i t ude  the degree of excitation there  is always small compared 

t o  that above 50s lane There w i l l  Pndeed be an fmgressive maximum i n  the 

volume exc t ta t i sn  r a t e  below 200 km but  the integrated r a t e  i n  the column 

between PO0 and 200 km i s  very smll compared t o  the integrated rate i n  the 

long, allmost uniformly excited column of hydrogen between 200 km and 5000 bm. 

It i s  the  f ac t  t h a t  the i n i t i a l  exeitxation occups predominantly a t  very 

high a l t i t u d e  i n  the outermost th i rd  of the medium's t o t a l  op t i ca l  depth 

whteh i s  ultimately responsible for  t h i s  phenomenon, Far more photons - 
after several  scat9,erings - escape outward than penetrate i n to  the bottom 

ha l f  of the med%.m behw 150 km. 

in the case of m n  p than i n  that of 

Lyman f3 photons survive each scattering. 

of  the hydrogen for Lyman p scattering is constdembly higher than the 

base for  Lyman a. 

Only half of the diffuse Lyman p glow directed downward a t  I20 km penetrates 

below 110 km, 

While multiple scat ter ing does build up the excitation 

This s i tua t ion  is even more aggravated 

a because only 0.88 of the 

Furthemore, the effect ive base 

This is  because of the greater  opacity of O2 f o r  LyImn 

A s  an illustrative exiimple consider e. mdeL fn which the hydrogen 

dfstP-fbution f a  nom1iaed  t o  2.7 x LO7 atoms/cm3 a t  100 km and i n  which 

the  d is t r ibu t ion  is t h a t  appropriate t o  a X500" exospheric temperature i n  

the  daytime and a l000" temperature a t  night. 

depth is 3s above 100 km i n  the day and 6 a t  night. 

For Qman a! the  op t i ca l  

The night time density 
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profi le ,  p ( z ) ,  is plotted i n  Fig. 2 .  Above the a n t i  solar  point (solar  

zenith angle of 180") the volume r a t e  of excfta-bion has been calculated as 

a function of z per  uni t  effect ive s o l a r  flux rFoG AvD, where AvD is the  

Doppler l i n e  half width and mFo is the so l a r  flux i n  uni t s  of photons/cn? 

sec i n  uni t  frequency. 

hydrogen, including the region beyond the terminator and solving approxi- 

mately the radiat ive t ransfer  equation f o r  the  volume rate of excitation 

there. 

s o h r  point by photons orfginating i n  the sunlit region and reaching that 

c o L m  wf+,hout scat ter ing i s  then calculated. 

un%t eross section and uni t  effective solar  flux [rFo 6 AvD] is plotted 

a s  nSo in Ffg. 2. 

This has been done by considering first the sunlit 

The rate of excttation along the ve r t i ca l  column above the sub- 

This rate, normalized t o  

It is a lso  plotted per  uni t  op t ica l  depth i n  uni t s  of 

[vF0 AvD] as So i n  Fig. 1 as a function of op t ica l  depth and i n  Fig. 2 

as a function of z .  

of two e f fec t s  - the  Zarge opt ica l  depths along the  paths t o  the highly 

excfted s u n l i t  regions near the terminator and the small sol id  angle sub- 

tended by these regfons, At higher a l t i tudes  the transparency and the 

so l id  angLes increase while tihe hydrogen density s b w l y  decreases. 

e f fec t  of deereastrag density does not. become dominant u n t i l  an a l t i t ude  of 

l2QQ lan is reached. 

( i n  units of optsicah depth) fncreases all the  way t o  7 = 0 (Fig. 1). 

The &mU values of PSo a t  low a l t i t ude  are a r e su l t  

The 

Above that height PSo drops rapidly although SQ 

To compute the steady state excitation rate generated by multiple 

sca t te r ing  of these photons a plane pa??aLLe,l m o d e l  of the atrnoqhere is 

next assumed i n  which the i n i t i a l  Pate of excitation fs So. 

source function is calculated by solving the  in tegra l  equation 

The ultimate 

S(T) = So(T) + S ( T o )  H(T, T ' )  dT' 
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discussed, f o r  example, by Donahue and Meier (1967). 

is  the probabili ty that a photon originating somewhere i n  dT1 a t  the l eve l  

at is absorbed i n  a slab of width dT a t  the l eve l  7 .  

i s  plotted i n  Fig. -1, as a function of T. 

(per un i t  op t ica l  depth) and p(z)S(T)/(nFo & AvD) are plotted as functions 

of z. 

H ( 7 ,  7 ,  7 ' )  d7' dT 

S(7)/(nFo 6 AvD) 

In  Fig. 2 both S ( T ) / (  *FoGAv,) 

Multiplying t h i s  l a t t e r  quantity by the l i n e  center cross section 

and by the effect ive l i n e  center SOUP f lux  

gives the  ac tua l  l oca l  volume excitation rate. This product is simply 

gU, the  number of so la r  Tar photons scattered per hydrogen atom before 

at tenw%ion of the so lar  flux. 

The source Functions S ( 7 )  and S o ( 7 )  are volme excitation rates 

divided by 0,~. 

The low degree of excitation below 200 km is evident i n  Fig. 2. 

Hence they indicate the degree of excitation of the  medium. 

In  Fig. 1 there is also plotted the reciprocal of the probabili ty E 

t h a t  a photon w i l l  escape without scattering from a given a l t i tude .  This  

is esseratia3J.y the  mean number of scatterings a photon will suf fer  before 

escape. A good first approximation to  the f inal  source function S is the  

quant i ty  S,/Eo The average number of scat ter ings the or ig ina l  family of 

photons (So) undergoes is 5.1. Most of these occur i n  the upper half of 

the  medium. 
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The apparent integrated photon emission rate i n  a column whose 

axis  i s  a t  an angle cos'' p wi th  the v e r t i c a l  is given by 

where the upper l imi t  i s  the appropriate boundary a t  7'  = 0 o r  7' = T~ 

and T ( 7 ,  7') i s  the transmission f'unction, Since 

dT = a pdz 
0 

t h i s  in tegra l  may a l so  be writ ten as 

It can be seen from Fig. 2 tha t  when the transmission function i s  unity the  

column emission r a t e  i n  the zenith a t  T = 6 receives minor contributions 

from the lower half of the medium. The value of the in tegra l  i n  uni t s  of' 

(wFo) 6 AvD is 0.205, O f  this a fraction 0.95 comes from regions higher 

than 110 km and 0.88 from those above I20 km. In fac t  almost ha l f  of the 

photons originate i n  the first opt ica l  depth above 1500 km. An ac tua l  

comparison with the resu l t s  obtained by Thomas with his  power l a w  model 

and those resul t ing from the  present so r t  of calculation confirm the 

expectation that only a small error  r e su l t s  from the use of h i s  approximation 

t o  the  dis t r ibut ion.  

To adapt these resu l t s  t o  Lymsn f3 we note tha t  (lo f o r  Lyman a i s  

Hence i f  there were 6 times a f ac to r  of 6 h r g e r  than that for Lymm f3. 

as much hydrogen i n  the model (To = 36 fo r  Lyman a) the  present calculations 

of S/(nF0) AQ could be taken over fo r  the excitation of the 3p l eve l  
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i n  a medium whose opt ica l  depth i s  6 i n  Lyman p. 

times as Urge  but crops, the ac tua l  volume rate of exci ta t ion would remain 

the same, that i s  

O f  course p S  would be 6 

According t o  the NRL observations (Tousey e t  a l ,  1964) the quahtity 

*F 6 AVD 

Since each excftation of the t h i r d  leve l  r e su l t s  i n  Balmer a emission 12 

percent of the t i m e  the predicted W column emission rate observable on 

the surface of the ear th  i s  given by 

was 10 8 photons/cin2 sec i n  un i t  frequency for  I@ i n  1962. 0 

4 n I ( R x )  = 0.2 x 0.12 x lo8 = 2.4 Rayleighs (8 )  

Actually since the ID emission causes a loss of I@ photons a t  each scat ter-  

ing and about 5 scatterings occur before a I@ photon gets en t i re ly  out of 

the medium S ( T )  only builds up t o  about half i t s  analagous IG1 value and 

the  Ha column emissfon rate predicted is only about 1.2 Rayleighs. 

is t o  be compared with the 2 Raylefghs recently reported by Tfnsley (1967) 

and Amstrong (1967) 

This 

Although resu l t s  obtained by t h i s  method of ca l cub t ion  f o r  other 

s o l a r  zenith angles are available and although they a r e  appropriate t o  

so l a r  minimum when the night t i m e  hydrogen abundances may have been as 

large as those discussed nere it is prohbly not vorth vhi le  i;ublfshir;g 

them. 

fo r  hydrogen. 

global hydrogen dis t r ibut ion,  taking account of the  0.88 albedo on 

sca t te r ing  and absorption by 02 are now underway. 

The reason i s  that the plane parallel model is  a poor approximation 

Other calculations using proper geometry, a more r e a l i s t i c  

For a quantitative 
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comparison with experiment these a re  cer ta inly preferable. Their resu l t s ,  

however, do not al ter the  fundamental arguments presented here. 

It should be noted here that i n  my previous paper on lW excitation 

I used Thomas' (1962) liu source functions. These a r e  pS/(nF) &Av, rather 

than S ( 7 )  e When multiplied by u0 f o r  Lyman a they 

t ion  ra tes  (per uni t  nF0 & AvD). Thus from h i s  

-2 So(Icll) I PS d z = 3.1 x 10 

gives the integrated emission rate i n  uni t s  of TF0 

give the volume excita- 

Fig. 14 the  in tegra l  

(9 )  

AvD f o r  any hydrogen 

l i n e  f o r  which the medium has an opt ical  depth of unity. I n  the case of 

Qman B t h i s  leads t o  a predicted & h e r  a column emission rate of 0.24R 

a f t e r  allowance fo r  the albedo of 0.88. 

fortunately gives a misleading explanation of the method of calculation 

as Tinsely has pointed out,  

r e su l t s  as published are correct within the  l imitations of the model used. 

Hence, I s t f l l m a i n t a f n  that the  Urge Balmer 01 emissfon rates reported 

fo r  so la r  maximum do not appear t o  be consistent with the 1963 Lyoran f3 

solerr l i n e  prof i le  and the multiple scat ter ing model. 

on so la r  zenith angle is  consistent w i t h  the  model. 

meants, on the other hand, do not seem to present any serious d i f f i c u l t i e s  

of interpretation. 

Amstrong and Tinsley through the next f e w  years and some determinations 

of t h e  solar  w n  p l i n e  center fiux during t'nis period &re cer+&fnly ic 

order 

IQ paper (Donahue, 194) un- 

The method is t he  one set for th  here and the 

Their dependence 

The more recent measure 

Thus a continuation of the observational program of 

One f i n a l  word of comment may be i n  order concerning I@ nightglow 

These are  important as sources f o r  ionization of f luxes i n  the E region. 

O2 a t  night. It i s  not proper t o  in fe r  these by scaling the Balmer a 
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arr iving a t  the ground. 

excitation. 

For example, the Lyman 

120 km fo r  the case discussed here is not 6R but only about 3.3R. 

f o r  a so lar  zenith angle of 135" the present type of calculation would 

predict  a zenith emission rate of 5R f o r  Kz and only 1% of I@ a t  I20 km. 

This point has been properly handled i n  the approximste treatment of the 

night time E region by Qgawa and Tohmstsu (1967). 

The reason i s  again the great a l t i t u d e  of the 

Lyman p is seriously attenuated i n  reaching the I20 km region. 

apparent column emission rate i n  the  zenith a t  

Similarly 
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Figure Captions 

Fig. 1 Source functions ( i n i t i a l  and f ina l )  and most probable number 

of scatterings before escape as functions of op t ica l  depth 

i n  a Kochrts and Nicolet (1963) hydrogen model of op t ica l  

Depth 6, solar  zenith angle 180". 

Fig. 2 Hydrogen Density, I&nan a source functions (Degree of excitation) 

and volume exci ta t ion ra tes  normalized t o  uni t  cross section 

and effect ive so la r  f lux as functions of a l t i t ude ,  180" 

from the sun. 
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