

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-326

Shock-Spectrum Analysis Program

D. C. Snyder D. B. Wiksten

	GPO PRICE \$		
	CFSTI PRICE(S) \$		
	Hard copy (HC)		S 1910212223242525
	Microfiche (MF)		A WAR DO
FACILITY FORM 602	(NASA CR OR TMX OR AD NUMBER)	(THRU) (CODE) 23 (CATEGORY)	A RECEIVEDUNT

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

March 1, 1967

RQ7-30179

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-326

Shock-Spectrum Analysis Program

D. C. Snyder D. B. Wiksten

Approved by:

W. S. Shipley, Manager Environmental Requirements Section

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

March 1, 1967

Technical Memorandum 33-326

Copyright © 1967 Jet Propulsion Laboratory California Institute of Technology

Prepared Under Contract No. NAS 7-100 National Aeronautics & Space Administration

FOREWORD

This Report and the program described herein were prepared at the request of Section 294, Environmental Requirements; however, the programming and much of the report writing were done by Section 314, Scientific Programming.

CONTENTS

I.	Gen	eral Problem Description	1
II.	Des	cription of Input	3
	А.	Data Tapes	3
		 Header record	3 3
	в.	Control Cards	5
III.	Equ	ations	7
	А.	Preliminary Calculations Used for Program Control	7
	в.	Data Conversion	9
	с.	Data Integration (if requested by user)	9
	D.	Filter Coefficients	10
	E.	Filter Equation	11
	F.	Peak Value of Response	11
	G.	Residual Shock	13
IV.	Des	scription of Output	13
	A.	Printout	14
	в.	SC 4020 Plots	14
	C.	Punched Cards	14
	D.	Punched Data Cards	14
Refe	renco	e	22
FIGU	RES		
	,		h

1.	Simple oscillator model for s	shoo	ck s	spe	ct:	rur	n	•	•	•,•	•	•	.•	•	•	•	•	•	•	•	•	2
2.	Sample of header record	• •	• •	•	•	• •	•	•	•	٠	•	•		.•	•	•	•	•	•	•	•	4
3.	Sample of input control data	• .•	• •	•	.•	• •	.•	•	.•	•	•	•	.•		•	•	•	•	٠	•	•	6
4.	Sample of acceleration plot	••	• •	.•	•	• •	•	•	•	•	•	•	.0	÷	•	.•	•			.•		15

CONTENTS (contd)

FIGURES (contd)

5.	Sample of velocity plot	16
6.	Sample of displacement plot	17
7.	Sample of shock-spectrum plot, Q = 10	18
8.	Sample of shock-spectrum plot, Q = 20	19
9.	Sample of shock-spectrum plot, Q = 1,000,000	20
10.	Sample of card output	21

ABSTRACT

The Shock-Spectrum Analysis Program for the 7094 computer computes the primary and residual shock spectra of a digital signal by the recursive filtering method. The program also automatically plots selected output on the SC-4020 plotter and punches the data on cards for additional analysis. The program is written in FORTRAN IV and MAP language.

SHOCK-SPECTRUM ANALYSIS PROGRAM

I. GENERAL PROBLEM DESCRIPTION

The program described in this Memorandum computes the shock spectrum of a signal that has been digitized and formatted on digital magnetic tape. The output data formats are oriented toward applications to acceleration signals, i.e., mechanical shocks as measured with accelerometers.

The shock-spectrum method of analyzing a transient signal is often employed by dynamicists to the analysis of mechanical shocks. The spectrum values represent the peak acceleration response of a simple mechanical oscillator to an acceleration transient $\ddot{x}(t)$ applied as a ground or base acceleration (Fig. 1).

The peak acceleration response [maximum $\ddot{y}(t)$] is presented as a function of oscillator natural frequency $(1/2\pi)(k/m)^{1/2}$. Any value of the damping coefficient may be selected.

In this program two different shock spectra are derived: the "primary" and the "residual." The primary shock spectrum consists of those values of peak acceleration response selected from the $\ddot{y}(t)$ time history over the portion of time for which $\ddot{x}(t)$ is defined. The residual spectrum consists of those values of peak acceleration response occurring in time <u>after</u> that t for which $\ddot{x}(t)$ is defined [i.e., the forcing function $\ddot{x}(t)$ is assumed to be zero outside the range for which it is defined]. Even though the forcing function has ceased, the response may continue, leading to nonzero residual spectra. Of academic interest, and sometimes of practical value, is the fact that the magnitude of the Fourier transform of $\ddot{x}(t)$ is expressed as

$$\left| F(f) \right| = \frac{\ddot{y}(f)}{2\pi f}$$

Fig. 1. Simple oscillator model for shock spectrum

where

- $F(f) = Fourier transform of \ddot{x}(t)$
- $\ddot{y}(f) = \text{zero-damping residual shock spectrum of } \ddot{x}(t)$

f = frequency in cps

The computation technique used in this program is a recursive filtering operation, which has proved very efficient in solving the differential equation of motion. A complete description of the technique and computational accuracies is given in Ref. 1.

II. DESCRIPTION OF INPUT

A. Data Tapes

Data tapes are prepared by the Data Analysis Lab with the following restrictions:

- (1) One file of data represents the total data sample for one channel.
- (2) A record of data contains 250 IBM words.
- (3) Each IBM word contains two data points.
- (4) The first record of each file is a 60-word header record.
- (5) Data tapes are written with a density of 556 bits/in.

1. <u>Header record</u>

Figure 2 shows the header record in detail.

2. Word format

bits	0	1 2	2 3	4 5	56	78	8.	•	•	•			.•	16	17
	S	SS	5 S	sх	x	ХУ	ζ.	•			•	•	•	Х	X
bits	18	19	20	21	22	23	24	•	•	•	•		•	34	35
	s	S	s	S	S	х	Х	.•	•	•	•	•	•	Х	Х

X bits represent the integer magnitude (counts). S bits are the sign bits.

0 0 0 0 0 = plus data
1 1 1 1 1 = negative data
If the number is negative the magnitude must be complemented.

HEADER RE	COKD								
TEST.I	DENTIT	Υ	XXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX
DATE	XXXXXX	XXXXXXX	TAPE.	bXXXXX	SAMPLE	bRATE.	XXXXXX	SAMPLE	bPERIO
D	XXXXXXX	SKEWbb	XXXXXT	ENGR.	XXXXXXX	OPER	XXXXXX	LOC. bb	XXXXXXX
XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	XXXXXXX	DNA. CLI	ბბბბბ	XXXXXX	FILE.	XXXXXXX
CALIBR	ATION.	XXXXXXX	XXXXXXX	XXXXXXX	RMKS	XXXXXX	XXXXXX	XXXXXXX	XXXXXXX
XXXXXXX	XXXXXXX	XXXXXXX	STARTD	TIMEDD	bbXXX:	XX:XX:	XX:XXX	OOOAAA	BBBCCC
X = INPUT	BCD CHARACTER								
b = BLANK									
AAA = SAMPLE	PERIOD (In b	inary with l	eading zeros	~					
BBB = SAMPLE	RATE (In bin	ary)							
CCC = NUMBER	OF WORDS IN	PARTIAL RECC)RD (binary)						

All fields are left adjusted with trailing blanks except where noted.

Sample of header record Fig. 2.

- 4 -

B. Control Cards

The shock-spectrum analysis program uses the NAMELIST feature of FORTRAN IV. Data may be punched in columns 2 through 80. All data must be separated by commas. A sample input card is shown in Fig. 3.

The following input symbols must be used:

Symbol	Type	Explanation
\$ INPUT		Start of data for one case.
NFILE	Fixed point	The largest file number on data tape to be used in run.
IFL	Fixed point	Program options
		0 = no, 1 = yes
		IFL(1) = Rewind data tape between cases.
		IFL(2) = Read card data.
		IFL(3) = Plot data.
		IFL(4) = Punch input data.
		IFL(5) = Integrate and plot data.
		IFL(6) = Compute residual shock spectra.
		IF L(7) = Compute and plot shock spectra.
		IFL(8) = Printout shock spectra.
CID		Tape ID number (right adjusted).
		Input format is as follows:
		CID = $6H$ <u>7 1 2 5</u> , where 7125 is the ID number on tape.
тѕ		Starting time in seconds.
TT		Total number of seconds to analyze.
NPS	Fixed point	Number of points to skip.

JPL Technical Memorandum 33-326

SHOCK SPECTRA PROG. - 5628

EN	IGINEER:	WORK ORDER NO.: TAPE NO.:	
		NO. OF FILED:	
1	2		
b	\$INPUT		
b	CID=6H <u>6243</u>	,	
b	NFILE= <u><u></u></u>	, $ $ IFL = Program Options (Fixed Point) 0 = No. 1 = Yes	
b	TS=	IFL(1) = Rewind data tape between cases	
b	TT=09	, IFL(2) = Read card data	1
b	NPS=	IFL(3) = Plot data IFL(4) = Punch input data	
Ъ	SR=0	IFL(5) = Integrate and plot data	
b	CALIB=_ <i>0</i>	IFL(6) = Compute residual shock spectraIFL(7) = Compute and plot shock spectra	
b	FMIN= <u>/0</u> .	IFL(8) = Printout shock spectra	
b	ND=_ 3	,	
b	N=	, , ·	
b	NQ=	,	
b	QQ= <u>0.</u> , 10., 20.	, ,]]	
ь	IF L= <i>Q</i> , <i>Q</i> , <i>1</i> , <i>Q</i> , <i>1</i> , <i>1</i> , <i>1</i> , <i>1</i> ,	<u>o</u> ,	
b	\$		
ъ	\$INPUTCID=6H		\$
b	\pm INPUTACID=6H		- ↓ \$
ь	\pm INPUTLCID=6H		\$
ĥ	\$ INPUTACID=6H		- \$
ĥ	\$INPUTACID=6H		\$
h	\$ INPUTACID=6H		- ¥ \$
ь Ъ	\$INPUTACID=6H	,	\$
~ Ъ	\$INPUTbCID=6H		\$
b	\$INPUTbCID=6H	,	_ \$
ь Ъ	\$ INPUTLCID=6H	· · · · · · · · · · · · · · · · · · ·	\$
ъ Ъ	\$INPUTbCID=6H	· · · · · · · · · · · · · · · · · · ·	\$
h	\$INPUTbCID=6H	,	_ \$
ъ Ъ	\$INPUTbCID=6H	,	\$
ь 5	\$ INPUTACID=6H	, , , , , , , , , , , , , , , , , , ,	- * \$
ь Б	\$ INPUTACID=6H	······································	- •
ь г		- ,	- ¥
ט ג		•• • • • • • • • • • • • • • • • • • •	- Ψ •
ມ ະ		<u></u>	- 4 c
D L	φ INDUTE CID-44	پ - بر بینیونی بینیونی بینیونی بینیونی	- ¥
a		- روي يې مېرې د د د د د د د د د د د د د د د د د د	- ⊅

Fig. 3. Sample of input control data

Symbol	Type	Explanation
SR		Sample rate of data on tape. If SR = 0, program will use header record. SR is set = 0 between cases, so user must input SR for each case of data unless he wants to use the header record. (Program uses SR/NPS + 1.)
CALIB		Calibration value. If CALIB = 0, program uses header record. CALIB is set = 0 between cases, so user must input CALIB for each case unless the header record is used.
FMIN		Starting frequency.
ND	Fixed point	Number of decades (MAXIMUM = 5).
N	Fixed point	Number of frequencies per decade.
NQ	Fixed point	Number of Q values (MAXIMUM = 10).
QQ		Q values. If $QQ = 0$, program uses 1. E6.
\$		END OF CASE

NAMELIST input permits the user to input only changes to the preceding case. The exception to this rule is CALIB and SR.

If IFL(2) = 1, the program expects raw data to be on cards. The following data must be added to input deck:

- The first card following the \$ on the previous input data is a comment card. Any information desired by the user may be punched in card columns 1 through 72.
- (2) Following the comment card, data must be punched with a 6E12.5 format. The last data point should be a large number, i.e., l.E25, to indicate end of data. A maximum of 6000 data points may be read in.
- (3) Calibration value is set = 1., and mean is set = 0 for card data. User must supply all other required input.
- III. EQUATIONS

A. Preliminary Calculations Used for Program Control

The effective sample rate is defined as

$$S_{R} = \frac{S_{RT}}{S_{RF}}$$

where

- S_{RT} = true sample rate of data (May be input on control card or set = 0. If S_{RT} = 0, the sample rate on header record is used.)
- $S_{RF} = NPS + 1$, where NPS is the number of points to skip (input)

The first and last data points used for the analysis are defined as

$$N_{i} = t_{i} S_{R}$$
$$N_{t} = N_{i} + \Delta t S_{R}$$

where

 $t_i = start time (input)$ $\Delta t = number of seconds to analyze (input)$

The frequencies at which the spectra are computed are defined as

$$f_1 = f_{min}$$

 $f_i = f_{i-1} 10^{1/n}$, $i = 2, 3, \dots, n$

where

f_{min} = initial frequency (input)

n = number of frequencies per decade (input)

B. Data Conversion

The sample mean is computed for the data from the record of data preceding the record that contains t_i . If $t_i = 0$, the first data record is used. The sample mean is defined as

$$\overline{u} = \frac{1}{500} \sum_{i=1}^{500} u_i$$

where

u; = data values in one record of data

The raw data are then transformed to have a zero mean value by the following relation:

$$\ddot{x}_{i} = (u_{i} - \overline{u})K, \qquad i = 1, 2, \cdots, N$$

where

N = total number of data pointsK = calibration constant for data used

C. Data Integration (if requested by the user)

Velocity is defined by

$$\dot{x}_{i} = \Delta t \sum_{j=1}^{i-1} \ddot{x}_{j} + \frac{\Delta t \ddot{x}_{i}}{2}, \quad i = 1, 2, \cdots, N$$

where

$$\Delta t = \frac{1}{S_R}$$

- $\ddot{\mathbf{x}}$ = acceleration data
- N = total number of data points

Displacement is defined by

$$x_i = \Delta t \sum_{j=1}^{i-1} \dot{x}_j + \frac{\Delta t \dot{x}_i}{2}, \quad i = 1, 2, \dots, N$$

D. Filter Coefficients

$$A = \frac{2\pi f_i \Delta t}{\Omega_j}$$

$$B = Ae^{-A/2} \left[\sqrt{\frac{2\Omega_j^2 - 1}{\sqrt{4\Omega_j^2 - 1}}} \right] sin \left[\frac{A}{2} \sqrt{4\Omega_j^2 - 1} \right] - cos \left[\frac{A}{2} \sqrt{4\Omega_j^2 - 1} \right]$$

$$C = Ae^{-A/2} cos \left[\frac{A}{2} \sqrt{4\Omega_j^2 - 1} \right]$$

$$D = e^{-A}$$

where

E. Filter Equation

The acceleration data are then filtered using the following transformation:

$$Y_1 = AX_1$$

 $Y_2 = AX_2 + BX_1 + CY_1$
 $Y_k = AX_k + BX_{k-1} + CY_{k-1} + DY_{k-2}$

where

$$k = 3, 4, 5, \cdots, NW$$

NW = total number of data points used

F. Peak Value of Response

The peak value of the response is determined as follows:

$$Y_{m} = [\Delta t \ 0.\ 00764(Y_{i} + Y_{i+5}) - 0.\ 06458(Y_{i+1} + Y_{i+4}) + 0.\ 55694(Y_{i+2} + Y_{i+3})]$$

where

 $i = 1, 2, 3, \cdots, N$

N = number of acceleration data points

Then, using the value of m where \boldsymbol{Y}_{m} occurs, compute the following coefficients:

 $d = Y_{m-3} - Y_{m-4}$ $d_2 = (Y_{m-2} - 2Y_{m-3} + Y_{m-4})/2$ $d_3 = (Y_{m-1} - 3Y_{m-2} + 3Y_{m-3} - Y_{m-4})/6$ $d_4 = (Y_m - 4Y_{m-1} + 6Y_{m-2} - 4Y_{m-3} + Y_{m-4})/24$

$$d_{5} = (Y_{m+1} - 5Y_{m} + 10Y_{m-1} - 10_{m-2} + 5Y_{m-3} - Y_{m-4})/120$$

$$d_{6} = (Y_{m+2} - 6Y_{m+1} + 15Y_{m} - 20Y_{m-1} + 15Y_{m-2} - 6Y_{m-3} + Y_{m-4})/720$$

$$d_{7} = (Y_{m+3} - 7Y_{m+2} + 21Y_{m+1} - 35Y_{m} + 35Y_{m-1} - 21Y_{m-2} + 7Y_{m-3} - Y_{m-4})/5040$$

$$c_{1} = (720d_{7} - 120d_{6} + 24d_{5} - 6d_{4} + 2d_{3} - d_{2} + d)/\Delta t$$

$$c_{2} = (-1764d_{7} + 274d_{6} - 50d_{5} + 11d_{4} - 3d_{3} + d_{2})/\Delta t^{2}$$

$$c_{3} = (1624d_{7} - 225d_{6} + 35d_{5} - 6d_{4} + d_{3})/\Delta t^{3}$$

$$c_{4} = (-735d_{7} + 85d_{6} - 10d_{5} + d_{4})/\Delta t^{4}$$

$$c_{5} = (175d_{7} - 15d_{6} + d_{5})/\Delta t^{5}$$

$$c_{6} = (-21d_{7} + d_{6})/\Delta t^{6}$$

$$c_{7} = d_{7}/\Delta t^{7}$$

where

$$\Delta t = \frac{1}{S_R}$$

Using the coefficients, compute the maximum area:

$$Y_{A} = Y_{m-4} + A(C_{1} + A(C_{2} + A(C_{3} + A(C_{4} + A(C_{5} + A(C_{6} + AC_{7}))))))$$

where

 $A = 3\Delta t$

Then recompute Y_A using $A = A + 0.01\Delta t$ and continue until Y_{AMAX} is found; Y_{AMAX} is the value plotted for shock spectra using \ddot{X}_i data from i = N, $N + 1, \dots, NW$, and is computed for each value of Q_i , f_j where

$$i = 1, 2, \dots, NQ$$
 (MAXIMUM = 10)
 $j = 1, 2, \dots, NF$ (MAXIMUM = 500)

G. Residual Shock

The residual shock is computed as follows:

$$bt = \frac{1}{\sqrt{4Q_{j}^{2} - 1}} \tan^{-1} \left[\frac{\sqrt{4Q_{j}^{2} - 1}}{1 + 2Q_{j}\omega_{0}\frac{Y_{0}}{\dot{Y}_{0}}} \right]$$
$$R = e^{-bt} \left[Y_{0}^{2} + \left(\frac{\dot{Y}_{0} + \frac{\omega_{0}Y_{0}}{2Q_{j}}}{\frac{\omega_{0}}{2Q_{j}}\sqrt{4Q_{j}^{2} - 1}} \right)^{2} \right]^{1/2}$$

where

 $\omega_0 = 2\pi f_i$ $Y_0 = \text{last value of primary data}$ $\dot{Y}_0 = 2\text{-point slope using the last two filtered values of the primary data}$ $j = 1, 2, \dots, NQ$ $i = 1, 2, \dots, NF$

IV. DESCRIPTION OF OUTPUT

The following quantities are available to the user. Some quantities are optional, and may be requested on the input form.

A. <u>Printout</u>

- 1. Input data.
- 2. Header record.
- 3. ID, mean, number of data points, maximum data point, mean.
- 4. Primary/residual shock spectra (optional).

B. SC 4020 Plots

<u>Plot label</u>	Units	Independent variable
ACCELERATION	g	time
VELOCITY	g.sec	time
DISPLACEMENT	g sec ²	time
SHOCK SPECTRUM		
(Acceleration response peak)	g	frequency

Samples of output plots are shown in Fig. 4-9.

C. Punched Cards

One set of primary and residual shock spectra for each Q value is punched with appropriate identification. Figure 10 is a sample of the punched card output.

D. Punched Data Cards

If requested by the user, the raw data may be punched on cards. The first punched card is a header card, followed by the data punched with a 7E10.3 format.

Fig. 4. Sample of acceleration plot

Fig. 5. Sample of velocity plot

TEST NUM 9 CH 10 RL 2 10.00 3 20 0.395E 01 0.424E 01 0.475E 01 0.510E 01 0.515E 01 0.512E 01 0.574E 0.672E 01 0.801E 01 0.921E 01 0.103E 02 0.117E 02 0.151E 02 0.169E 0.134E 02 0.101E 02 0.961E 01 0.933E 01 0.981E 01 0.999E 01 0.104E 0.133E 02 0.167E 02 0.127E 02 0.116E 02 0.916E 01 0.115E 02 0.148E 0.230E 02 0.287E 02 0.275E 02 0.309E 02 0.516E 02 0.552E 02 0.680E 0.102E 03 0.108E 03 0.100E 03 0.967E 02 0.681E 02 0.668E 02 0.869E 0.114E 03 0.111E 03 0.170E 03 0.156E 03 0.134E 03 0.177E 03 0.148E	E 01 6 E 02 6 E 02 6 E 02 6 E 02 6	5243A01 5243A 2 5243A 3 5243A 4 5243A 5
0.395E 01 0.424E 01 0.475E 01 0.510E 01 0.515E 01 0.512E 01 0.574E 0.672E 01 0.801E 01 0.921E 01 0.103E 02 0.117E 02 0.151E 02 0.169E 0.134E 02 0.101E 02 0.961E 01 0.933E 01 0.981E 01 0.999E 01 0.104E 0.133E 02 0.167E 02 0.127E 02 0.116E 02 0.916E 01 0.115E 02 0.148E 0.230E 02 0.287E 02 0.275E 02 0.309E 02 0.516E 02 0.552E 02 0.680E 0.102E 03 0.108E 03 0.100E 03 0.967E 02 0.681E 02 0.668E 02 0.869E 0.114E 03 0.111E 03 0.170E 03 0.156E 03 0.134E 03 0.177E 03 0.148E	E 01 6 E 02 6 E 02 6 E 02 6 E 02 6	5243A 2 5243A 3 5243A 4 5243A 5
0.672E 01 0.801E 01 0.921E 01 0.103E 02 0.117E 02 0.151E 02 0.169E 0.134E 02 0.101E 02 0.961E 01 0.933E 01 0.981E 01 0.999E 01 0.104E 0.133E 02 0.167E 02 0.127E 02 0.116E 02 0.916E 01 0.115E 02 0.148E 0.230E 02 0.287E 02 0.275E 02 0.309E 02 0.516E 02 0.552E 02 0.680E 0.102E 03 0.108E 03 0.100E 03 0.967E 02 0.681E 02 0.668E 02 0.869E 0.114E 03 0.111E 03 0.170E 03 0.156E 03 0.134E 03 0.177E 03 0.148E	E 02 6 E 02 6 E 02 6 E 02 6	5243A 3 5243A 4 5243A 5
0.134E 02 0.101E 02 0.961E 01 0.933E 01 0.981E 01 0.999E 01 0.104E 0.133E 02 0.167E 02 0.127E 02 0.116E 02 0.916E 01 0.115E 02 0.148E 0.230E 02 0.287E 02 0.275E 02 0.309E 02 0.516E 02 0.552E 02 0.680E 0.102E 03 0.108E 03 0.100E 03 0.967E 02 0.681E 02 0.668E 02 0.869E 0.114E 03 0.111E 03 0.170E 03 0.156E 03 0.134E 03 0.177E 03 0.148E	E 02 6 E 02 6 E 02 6	5243A 4 5243A 5
0.133E 02 0.167E 02 0.127E 02 0.116E 02 0.916E 01 0.115E 02 0.148E 0.230E 02 0.287E 02 0.275E 02 0.309E 02 0.516E 02 0.552E 02 0.680E 0.102E 03 0.108E 03 0.100E 03 0.967E 02 0.681E 02 0.668E 02 0.869E 0.114E 03 0.111E 03 0.170E 03 0.156E 03 0.134E 03 0.177E 03 0.148E	E 02 6	5243A 5
0.230E 02 0.287E 02 0.275E 02 0.309E 02 0.516E 02 0.552E 02 0.680E 0.102E 03 0.108E 03 0.100E 03 0.967E 02 0.681E 02 0.668E 02 0.869E 0.114E 03 0.111E 03 0.170E 03 0.156E 03 0.134E 03 0.177E 03 0.148E	= 02 6	
0.102E 03 0.108E 03 0.100E 03 0.967E 02 0.681E 02 0.668E 02 0.869E 0.114E 03 0.111E 03 0.170E 03 0.156E 03 0.134E 03 0.177E 03 0.148E	~ ~ ~ ~	5243A 6
0.114F 03 0.111F 03 0.170F 03 0.156F 03 0.134F 03 0.177F 03 0.148F	E 02 6	5243A 7
- 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	E 03 6	5243A 8
0.165E 03 0.126E 03 0.116E 03 0.938E 02 0.854E 02 0.749E 02 0.744E	E 02 6	5243A 9
0.572E 02 0.448E 02 0.334E 02 0.231E 02 0.113E 02 0.278E 01 0.239E	E 01 6	5243A10
0.186E 01 0.162E 01 0.212E 01 0.320E 01 0.392E 01 0.332E 01 0.304E	E 01 6	5243A11
0.288F 01 0.231E 01 0.500F 01 0.115E 02 0.152F 02 0.946F 01 0.387F	= 01 e	5243A12
0.421F 01 0.367E 01 0.277F 01 0.375F 01 0.528F 01 0.530F 01 0.708F	= 01 <i>e</i>	5243A13
0.737E 01 0.277E 01 0.192E 01 0.630E 01 0.129E 02 0.957E 01 0.135E	E 02 6	5243A14
0.953F 01 0.321F 01 0.908F 01 0.124F 02 0.221E 02 0.973F 01 0.456F	F 01 6	5243A15
0.117F 02 0.812F 01 0.674F 01 0.767F 01 0.693F 01 0.760F 01 0.758F	F 01 6	5243A16
0.684F 01 0.622E 01 0.627F 01 0.687E 01 0.793F 01 0.744E 01 0.710E		5243A17
0.759F 01 0.739F 01 0.611F 01 0.499F 01 0.645F 01 0.598F 01 0.584F	- 01 6	5243A18
0.716F 01 0.633E 01 0.755F 00-0.000E-19-0.000E-19-0.000E-19-0.000E	E-19 6	5243A19
		•
• • • • • •		
• • • • • •		•
		•
• • • • • •		• •
· · · · · · · ·		• • •
TEST IDENTITY MAR R S/P PYROS AIR-VAC TEST 6D-025	e	• • • • •
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20	é	• • • • • • • • • • • • • • • • • • •
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E	e e E 01 e	• • • 5243C00 5243C01 5243C 2
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E	E 01 6 E 02 6	5243C00 5243C01 5243C 2 5243C 3
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E	E 01 6 E 02 6 E 02 6	• 5243C00 5243C01 5243C 2 5243C 3 5243C 4
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E	E 01 6 E 02 6 E 02 6 E 02 6	• 5243C00 5243C01 5243C 2 5243C 3 5243C 4 5243C 5
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E	E 01 6 E 02 6 E 02 6 E 02 6 E 02 6 E 03 6	• 6243C00 5243C01 5243C 2 5243C 3 5243C 4 5243C 5 5243C 5 5243C 6
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E	E 01 6 E 02 6 E 02 6 E 02 6 E 03 6 E 03 6	• 6243C00 6243C01 5243C 2 5243C 3 5243C 4 5243C 5 5243C 6 5243C 7
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.270E 03 0.335E 03 0.654E 03 0.441E 03 0.228E 03 0.514E 03 0.308E	E 01 6 E 02 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6	• 6243C00 6243C01 5243C 2 5243C 3 5243C 4 5243C 5 5243C 6 5243C 7 5243C 8
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.270E 03 0.335E 03 0.654E 03 0.441E 03 0.228E 03 0.514E 03 0.308E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.106E 03 0.774E 02 0.868E	E 01 6 E 02 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 03 6	• 6243C00 6243C2 5243C3 5243C4 5243C5 5243C6 6243C7 5243C8 5243C8 5243C9
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.270E 03 0.335E 03 0.654E 03 0.441E 03 0.228E 03 0.514E 03 0.308E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.106E 03 0.774E 02 0.868E 0.946E 02 0.573E 02 0.430E 02 0.428E 02 0.149E-03 0.373E 01 0.335E	E 01 6 E 02 6 E 02 6 E 02 6 E 03 6 E 02 6 E 02 6	• • • • • • • • • • • • • •
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.270E 03 0.335E 03 0.654E 03 0.441E 03 0.228E 03 0.514E 03 0.308E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.106E 03 0.774E 02 0.868E 0.946E 02 0.573E 02 0.430E 02 0.428E 02 0.149E-03 0.373E 01 0.335E 0.287E 01 0.278E 01 0.360E 01 0.492E 01 0.596E 01 0.625E 01 0.621E	E 01 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6	• • • • • • • • • • • • • •
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.23E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.270E 03 0.335E 03 0.654E 03 0.441E 03 0.228E 03 0.514E 03 0.308E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.106E 03 0.774E 02 0.868E 0.946E 02 0.573E 02 0.430E 02 0.428E 02 0.149E-03 0.373E 01 0.335E 0.287E 01 0.278E 01 0.360E 01 0.492E 01 0.596E 01 0.625E 01 0.621E 0.287E 01 0.278E 01 0.360E 01 0.492E 02 0.290E 02 0.158E 02 0.406E	E 01 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6 E 01 6	• • • 6243C01 6243C2 6243C3 6243C4 5243C5 5243C6 6243C7 6243C7 6243C9 5243C9 5243C1 5243C11 5243C12
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.270E 03 0.335E 03 0.654E 03 0.441E 03 0.228E 03 0.514E 03 0.308E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.106E 03 0.774E 02 0.868E 0.946E 02 0.573E 02 0.430E 02 0.428E 02 0.149E-03 0.373E 01 0.335E 0.287E 01 0.278E 01 0.360E 01 0.492E 01 0.596E 01 0.625E 01 0.621E 0.287E 01 0.278E 01 0.360E 01 0.492E 01 0.596E 01 0.625E 01 0.621E 0.660E 01 0.676E 01 0.120E 02 0.240E 02 0.290E 02 0.158E 02 0.406E 0.660E 01 0.676E 01 0.120E 02 0.240E 02 0.290E 02 0.158E 02 0.406E 0.6622E 01 0.571E 01 0.176E 01 0.547E 01 0.106E 02 0.216E 02 0.312E	E 01 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6 E 01 6 E 01 6 E 01 6 E 01 6	• • • • 6243C01 6243C2 6243C3 6243C4 6243C5 5243C6 6243C7 6243C7 6243C9 5243C9 5243C10 5243C11 5243C12 5243C12
	E 01 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6 E 01 6 E 01 6 E 01 6 E 02 6 E 02 6	• • • • • • • • • • • • • • • • • • •
TEST IDENTITY MAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.270E 03 0.335E 03 0.654E 03 0.441E 03 0.228E 03 0.514E 03 0.308E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.106E 03 0.774E 02 0.868E 0.946E 02 0.573E 02 0.430E 02 0.428E 02 0.149E-03 0.373E 01 0.335E 0.287E 01 0.278E 01 0.360E 01 0.4292E 01 0.596E 01 0.625E 01 0.621E 0.660E 01 0.676E 01 0.120E 02 0.240E 02 0.290E 02 0.158E 02 0.406E 0.660E 01 0.676E 01 0.120E 02 0.240E 02 0.290E 02 0.158E 02 0.406E 0.622E 01 0.571E 01 0.176E 01 0.547E 01 0.106E 02 0.216E 02 0.312E 0.814E 01 0.761E 01 0.843E 01 0.121E 02 0.242E 02 0.173E 02 0.750E 0.440E 02 0.162E 02 0.651E 02 0.384E 02 0.911E 02 0.180E 03 0.901E	E 01 6 E 02 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6 E 01 6 E 01 6 E 02 6 E 00 6 E 00 6 E 000 6 E	• • • • • • • • • • • • • •
. .	E 01 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6 E 01 6 E 01 6 E 02 6 E 03 6 E	• • • • • • • • • • • • • •
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.119E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.190E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.223E 03 0.228E 03 0.170E 03 0.30E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.133E 03 0.514E 03 0.30E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.149E-03 0.373E 01 0.33E 0.247E 01 0.278E 01 0.4492E 01 0.596E 01 0.625E 01 0.621E 0.248E 03 0.214E 03 0.106E 02 0.216E 02 0.438E 02 0.428E 02 0.438E 02 0.438E 02 0.438E 02 0.438E 02 0.438E 0	E 01 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6 E 01 6 E 02 6 E 01 6 E 02 6 E 03 6 E 02 6 E 03 6 E 03 6 E 02 6 E 03 6 E	• • • • • • • • • • • • • •
TEST IDENTITYMAR R S/P PYROS AIR-VAC TEST 6D-025 TEST NUM 9 CH 10 RL 2 10.00 3 20 0.441E 01 0.471E 01 0.526E 01 0.571E 01 0.586E 01 0.588E 01 0.657E 0.770E 01 0.911E 01 0.105E 02 0.117E 02 0.161E 02 0.241E 02 0.260E 0.185E 02 0.124E 02 0.994E 01 0.974E 01 0.106E 02 0.112E 02 0.199E 0.223E 02 0.327E 02 0.177E 02 0.139E 02 0.128E 02 0.160E 02 0.199E 0.336E 02 0.746E 02 0.434E 02 0.401E 02 0.982E 02 0.144E 03 0.162E 0.295E 03 0.199E 03 0.223E 03 0.295E 03 0.133E 03 0.170E 03 0.165E 0.244E 03 0.248E 03 0.201E 03 0.214E 03 0.106E 03 0.774E 02 0.868E 0.946E 02 0.573E 02 0.430E 02 0.428E 02 0.149E-03 0.373E 01 0.335E 0.287E 01 0.278E 01 0.360E 01 0.492E 01 0.596E 01 0.625E 01 0.621E 0.660E 01 0.676E 01 0.120E 02 0.240E 02 0.290E 02 0.158E 02 0.406E 0.660E 01 0.676E 01 0.176E 01 0.547E 01 0.106E 02 0.216E 02 0.312E 0.622E 01 0.571E 01 0.176E 01 0.547E 01 0.106E 02 0.216E 02 0.312E 0.814E 01 0.761E 01 0.843E 01 0.212E 02 0.242E 02 0.173E 02 0.406E 0.622E 01 0.571E 03 0.852E 02 0.147E 03 0.233E 02 0.240E 03 0.331E 0.440E 02 0.162E 02 0.651E 02 0.384E 02 0.911E 02 0.180E 03 0.901E 0.440E 02 0.162E 02 0.651E 02 0.384E 02 0.911E 02 0.180E 03 0.901E 0.455E 03 0.341E 03 0.765E 02 0.361E 03 0.211E 03 0.127E 03 0.331E 0.455E 03 0.341E 03 0.765E 02 0.361E 03 0.211E 03 0.127E 03 0.775E	E 01 6 E 02 6 E 02 6 E 03 6 E 03 6 E 03 6 E 03 6 E 01 6 E 02 6 E 01 6 E 02 6 E 02 6 E 02 6 E 02 6 E 03 6 E 02 6 E 02 6 E 02 6 E 03 6 E 02 6 E 03 6 E	• • • • • • • • • • • • • •

Fig. 10. Sample of card output

REFERENCE

 Lane, D. W., <u>Digital Shock Spectrum Analysis by Recursive Filtering</u>, Shock and Vibration Bulletin No. 33, Part II, February 1964, Department of Defense, The Pentagon, Washington, D. C.