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Office of Space Science and Applications, NASA Head-
quarters, Washington, D. C.

The report was written by Edward J. Krakiwsky,
Graduate Research Associate. The equations presented
herein were developed chiefly by Allen J. Pope while

pursuing graduate studies at the Department of Geodetic
Science.
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The Ohio State University.
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Department of Geodetic Science, The Ohio State
University.
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ABSTRACT

The purpose of the report is to formulate the
equations of the rigorous least squares adjustment of
satellite observations for simultaneous directions or
ranges. These equations are necessary for the develop-
ment of computer programs documented in a separate
report [Krakiwsky et al, in press].
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1. INTRODUCTION

1.1 Definition of Problem and Statement
of Method

The problem is to tie remote ground stations
together in the same geodetic coordinate system by use
of satellite observations. Two major methods are
available [Mueller, 1964, p. 145]: the orbital (short
and long arc) methods and the space triangulation
(trilateration) method. The solution presented here is

developed about the latter.

In the space triangulation (trilateration) method
satellites are observed simultaneously from groups of
known and unknown ground stations, thus permitting a
purely geometric solution. The main characteristic of
this method is that orbital elements are not required.

If the satellite positions are needed they can be computed
from the preliminary coordinates of the ground stations

and the observations themselves.

The optical observations are assumed to be in the
true topocentric celestial system as preprocessed by
[Hotter, 1967), while the topocentric ranging data is

freed of systematic errors as explained in ([Gross, in
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prep.l. The time system is UT1l as explained in [Preuss,
1966]. It should be noted that optical and range data

are adjusted separately in this development.

This publication contains all the equations necessary
for the computer programming in [Krakiwsky et al., in

pressl].
1.2 Definition of Coordinate Systems

Two distinct types of coordinate systems have been

used here:

(a) The terrestrial (average or instantaneous)
system.

(b) The celestial (true) system.

The following summary of these systems assumes
right-handed rectangular coordinates with axes numbered
according to Figure 1-1. A further stipulation is that
the centre of the coordinate system coincides with the

centre of gravity of the earth.

Average Terrestrial (X)

(a) 3-axis directed toward the average north
terrestrial pole as defined by the International
Polar Motion Service (I.P.M.S.), commonly

known as the average pole of 1900-05.




(3)

(2)

(1

FIGURE I-1. NUMBERING OF COORDINATE AXES.
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(b) 1-3 plane parallel to the mean Greenwich
astronomic meridian as defined by the

Bureau International de l'Heure (B.I.H.).
This system is the ultimate goedetic coordinate system.

Instantaneous Terrestrial (Y)

(a) 3-axis directed toward the instantaneous
rotation axis of the earth (true celestial
pole), the coordinates of which are given
by the I.P.M.S. with respect to the average
pole of 1900-05.

(b) 1-3 plane contains the point where the mean
Greenwich astronomic meridian intersects the

true equator of date.

This coordinate system is used as the intermediate
connection between the terrestrial and celestial coor-

dinate systems.

True Celestial (2)

(a) 3-axis equivalent to 3-axis of instantaneous
terrestrial system (true celestial pole).
(b) 1l-axis directed toward the true vernal

equinox of date.

These and still other coordinate systems are discussed

in detail in [Veis, 1963] and [Mueller, in press].



1.3 Transformation from the True Celestial

to the Average Terrestrial System

Transformation between terrestrial and celestial
coordinate systems becomes necessary in the case that
topocentric directions to satellites are obtained by
photographing the satellite against a background of
stars. After corrections for the physical effects
such as differential refraction and abberation, shimmer,
etc. [Mueller, 1964, pp. 309-317; Hotter, 1967] have
been applied, the resulting topocentric right ascension
and declination form the purely geometric ground to

satellite vector

cosd cosa
Z = |cos$§ sina . 1-1

sind

The above vector is rotated into the average terrestrial
coordinate system since it is in this coordinate system

that the adjustment takes place.

Transformation is first made into the instantaneous
terrestrial system (see Fig. 1-2). This transformation
is a function of a single finite rotation through the
Greenwich apparent sidereal time (GAST) (see Section

1.31). A vector, %, in the true celestial system is




23EY3

z,” GasT

FIGURE 1-2. TRUE CELESTIAL AND INSTANTANEOUS
TERRESTRIAL COORDINATE SYSTEMS.
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rotated into the instantaneous terrestrial system by

the following equation:
Y = Ry (GAST) Z , 1-2

where Y is the resulting vector in the instantaneous
terrestrial system and R; (GAST) is a 3 x 3 matrix.that
expresses a rotation about the 3 axis by the amount

GAST, namely:

cos (GAST) sin (GAST) O

R; (GAST) = -sin (GAST) cos (GAST) O

0 0 1
1-3
Next the vector Y is rotated from the instantaneous
terrestrial (Y) to the average terrestrial (X) system
(see Figure 1-3). This transformation is a function of
two rotations through the x and y coordinates of the
instantaneous terrestrial pole (see Section 1.32).

Mathematically,

<t

=R, (-x) R, (-y) ¥ , 1-4

where X is the resulting vector in the average terrestrial
coordinate system; R, (-y) and R, (-xX) are l-axis and 2-axis
rotations through -y and -x. Since the x and y values are

computed on the assumption that they are differential



y (WEST)
}

. ]
X3

X
(SOUTH) GREENWICH

FIGURE 1-3. INSTANTANEOUS AND AVERAGE TERRESTRIAL
COORDINATE SYSTEMS.
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[Preuss, 1966, p.72], the finite rotations are replaced

by differential rotations and Equation 1-4 is reduced to

1 0 X
X=]0 1 -y|¥ 1-5
-X Yy 1

by ommitting products of xy. Thus the transformation
from the true celestial to the average terrestrial
coordinate system is achieved by combining the rotations

expressed in Equations 1-2 and 1-4, namely:

X = Rp(-x) R;(-y) R;(GAST) Y, 1-6

and after considering Equation 1-5, the matrix form is

X =s¥Y, 1-7
where

cos (GAST) ; sin (GAST) ;
S = -sin (GAST) ; cos (GAST) ;

-X cos(GAST)-y sin(GAST); -x sin(GAST)+y cos (GAST) ;

1-8

X

4
1



1.31 Computation of the Greenwich

Apparent Sidereal Time

The GAST is computed in four steps (Figure 1-4).

(1)

(2)

(3)

(4)

The Greenwich Mean Sidereal Time (GMST) at
0h UT1l is computed by means of Newcomb's

formula [Expl. Supp., 1961, p. 75] as

eMsT at o url = ¢ 38™ 455836 +

+ 864 01845542 T+ 050929 T2, 1-9

where Ty is the number of Julian centuries
of 36525 days of universal time elapsed
since January 0.5, 1900. The value of Tu
is equal to the Julian date of the epoch of
observation minus 2415020.0 (the Julian
date of January 0.5, 1900.) divided by
36525,

The UT1 time (interval) is converted to a
mean sidereal interval by multiplying the
former by the factor of 1.0027379093.

h

GMST = GMST at 0 UTl1 + mean sidereal

time interval.

—
I

10
GMST is converted to GAST by adding the
equation of the equinox, At [Expl. Supp.,

1961, pp. 43 and 75].
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ohuTI

UTI! (GIVEN)

(2)

(1)6MST AT ohuTi

GIVEN UNIVERSAL TIME
————— —

SIDEREAL TIME

(3)GMST

FIGURE 1-4. CONVERSION FROM UTI TO GAST.
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GAST

GMST + At, 1-11
where

At

Ay cos €, 1-12

where Ay is the nutation in longitude and € is the

obliquity of the ecliptic at the epoch of observation.

Computation of the Obliquity (g)

The computation of € is made according to

e = e€_ + Ag, 1-13
m

where € is the mean obliquity at the epoch of observation,
and Ae is the nutation in obliquity. €m is computed by

the following equation

[Expl. Supp., 1961, p. 98]:

le) ]

e = 237 27 08.26 - 46.845 T -

m

- 0.0059 T2 + 0.00181 T3, 1-14

where T is the number of Julian Centuries from the

fundamental epoch of 1900 January 0?5 ET.

The Computation of the Nutation in Obliquity (Ag)

and Nutation in Longitude (AY)

The values of Ay and Ae are computed according to

the numerical series developed by E. W. Woolard [Expl.

-12-




Supp., 1961, pp. 44-45]. The programming procedure used
is as follows ([Allen, 1966, p. 19]:

(a) A vector with 5 elements is formed by solving

Equations 1-15 to 1-19.

1 = 296910460 8 + 13206499 24465d +

+ 0900068 90D2 + 0200000 0295D3 1-15

1 = 358947583 3 + 0998560 026694 -

- 0200001 12D2% - 0900000 0068D? 1-16

F = 11925088 9 + 13922935 044904 -

- 0900024 0702 - 0200000 0007D°% 1-17

D = 350973748 6 + 12919074 919144 -

- 0200010 76D% + 0200000 0039D?3 1-18

Q = 259918327 5 - 0905295 392224 +

0200015 57D2 + 0200000 0046D° 1-19

where

d = 1000 D = 36525 T, 1-20
and where T is the number of Julian Ephemeris
Centuries of 36525 days from the fundamental
epoch (1900 January 095 ET = J.E.D. 241 5020.0)

to the epoch of the observation.
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Table 1-1, Seriesvfor the Mutation

LONGITUDE (A ¥y OBLIQUITY (A €)
ARGUMENT Coefficient of Coefficient of
Period Multiple of sine argument " cosine argument
(days) 1 1*'F D @ Unit = 0.0001
6798 +1 172327 -173.7T 492100  +9.1T
3399 +2 + 2088 + 0,27 - 904  +0.hT
1305 -2 +2 +1. + 45 ' - 24
1095 12 -2 + 10
6786 -2 42 -2 41 - L + 2
1616 -2 +2 +2 - 3 + 2
233 + -1 -1 - 2
183 2 -2 42 - 12729 - 1.3T + 5522 2,97
365 +1 + 1261 - 3.1T
122 +1 42 -2 +2 - Loy + 1.27 + 216 =0.,6T
365 -1 +2 -2 42 + 214 - 0.57 - 93 4+0.3T
178 42 -2 41 + 12 + 0.,1T - 66
206 42 -2 + 45
173 2 -2 - 21
183 +2 + 16 - 0.1T
386 +1 +1 - 15 + 8
g1 +2 42 -2 +2 - 15 + 0,17 + 7
347 -1 1 - 10 4 5
200 -2 42 41 - 5 + 3
347 =1 42 -2 +1 - 5 + 3
212 +2 -2 +1 + 4 - 2
120 +1 42 -2 +1 + 3 - 2
k32 +1 -2 - 3
13.7 +2 +2 - 2037 - 0,27 + 884 -0.5T
27.6 +1 + 675 + 0.1T
13.6 +2 +1 - 342 - 04T + 183
9.1 +1 +2 +2 - 261 + 113 ~0.17%
31.8 +1 -2 - 1o
27.1 <3 42 42 + 11k - 50
k4.8 42 + 60
27.7 +1 +1 + 5 - 31
274 -1 +1 - 5 + 30
9.6 -1 +2 42 42 -

52 + 22
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Table 1-1, (Cont'd)

LONGIIUDE {(AY ) OBLIQUITY (A €)
ARGUMENT Coefficient of Coefficient of
Period Multiple of sine argument cosine argument
(days) 1 1* P D @ Unit = 0,0001
9.1 +1 42 +1 - LY + 23
7.1 +2 42 42 - 32 + 14
13.8 +2 + 28
23.9 1 2 -2 42 + 26 - 1
6.9 +2 +2 +2 - 26 + 11
13.6 +2 + 25
27.0 -1 42 +1 + 19 -~ 10
32.0 -1 +2 41 + 1k - 7
31.7 +1 -2 41 - 13 + 7
9.5 -1 2 42 41 - 9 + 5
24.8 + 41 -2 - 7
13.2 +1 42 42 + 7 - 3
9,6 +1 42 + 6
14.8 +2 41 - 6 + 3
1k,2 -1 42 +2 - 6 + 3
5.6 +1 +2 42 42 - 6 + 3
12,3 +2 2 -2 +2 + 6 - 2
1,7 2 +1 - 5 + 3
Sl . BBB g t3
29.5 1 - [
15.4 +1 -2 - L
29.8 +1 -1 + Y
26.9 +1 -2 + it
6.9 +2 +2 +1 - L + p)
9.1 +1 42 + 3
25.6 1 4L - 3
9.4 1 -1 42 2 - 3
13,7 -2 +1 - 2
- 32.6 -1 +2 -2 ¥ - 2
13.8 +2 +1 2
9.8 «1 -1 42 42 42 - 2
7.2 -1 42 42 42 - 2
27.8 +1 t2 - 2
8.9 41 +1 42 42 + 2
5.5 + 42 +2 - 2

!
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(b) A 69 by 5 matrix is formed from the elements
of the argument portion of Table 1l-1.

(c) The vector in (a) above is then multiplied
by the matrix in (b) which results in a new
vector with 69 elements.

(d) The sine and cosine is taken of each of the
elements in (c) and then multiplied by their
corresponding coefficient (Table 1-1)
evaluated at T.

(e) The sine and cosine terms are separately summed

to obtain values of Ay and Ae respectively.

1.32 Polar Motion Determination

The coordinates x and y of the instantaneous pole
to be used in Equation 1-8 are published annually by
the central bureau of the International Polar Motion
Service [Yumi, 1965]. The values for x and y at the
epoch of observation are obtained by a second difference

interpolation using Bessel's formula.
1.4 Optical Data

Agencies involved in the reduction of optical
satellite observations have their own specifications;
use formulas of varying accuracy; and use different

methods and techniques. Therefore, the observations

-16-



sent to the NASA data bank may be inconsistent according
to:

(1) The coordinate system used,

(2) The corrections applied,

(3) The time system employed.

These inconsistencies are removed according to the

procedure given in [Hotter, 1967]}.

In order to exemplify the observational data used
in the adjustment of simultaneous optical observations,
three simultaneous events are tabulated in Table 1-2.
Optical data is assumed to be in the form of topocentric
right ascensions and declinations in the true celestial

coordinate system and UT1l time system.
1.5 Range Data

Range data is treated as if only containing random
errors. This means that no error models are present
in the adjustment which would absorb any systematic
errors. Systematic errors are assumed to be removed by
the observing and/or processing agencies. It is
recognized that at present this is not necessarily the
case, thus it is likely that the range adjustment pro-
gram will need to be revised to accommodate suitable

error models [Gross, in prep.].
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In order to exemplify the information used in
the case of simultaneous range observations, three

events are tabulated in Table 1-3.
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Table 1~3.

Simultancous Range Data

§ , Universal Topocentric Std.

5.2 g § Time Range (r) Dev.

5 :% g § (UT 1) Date (meters) (meters)
1 1 21 11 0.0000 | k4 Aug 63 | 1473865.0485 10.0
1 2 21 11 0.0000 4 Aug 63 1754116.2758 10.0
1 3 21 11 0.0000 L Aug 63 1196&51.8892 10.0
1 Y 21 11 0.0000 4 Aug 63 1393289.7925 10.0
1 5 21 11 0.0000 4 Aug 63 1261431.61k2 10.0
2 3 21 12 0.0000 4 Aug 63 12317604490 10.0
2 4 21 12 0.0000 4 Aug 63 12Lk5522,1957 10,0
2 5 21 12 0.0000 4 Aug 63 1175798.3971 10.0
2 6 21 12 0,0000 4 Aug 63 1443743,8L83 10.0
3 1 2L 13 0.0000 YAug 63 1454k35,2321 10,0
3 3 21 13 0,0000 4 Aug 63 1382387.7661 10.0
3 L 21 13 0.0000 4 Aug 63 1206081.1251 10.0
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2. THE OPTICAL ADJUSTMENT
2.1 The Mathematical Structure

The adjustment method is by least squares, where
the parameters are the three dimensional rectangular
coordinates of the ground stations and satellite
positions*, while the observables are the topocentric
range*, and topocentric declination and right ascension

of the satellite.

The mathematical structure relating the parameters
and the ocbservables is a function of three vectors. The
three vectors as depicted in Figure 2-1 are (the arrow
over the symbol will be reserved for those vectors which
have a finite magnitude as opposed to say vectors

containing differential corrections):

(1) ﬁi’ the coordinate system origin to ground

station vector,

(2) ﬁj' the coordinate system origin to satellite

position vector.

-

(3) X the ground station i to satellite

ij”

position j vector.

Thus

* Needed in the algebraic derivation but in fact, in
the numerical computation, they are either not need-
ed, or obtained to a sufficient accuracy from the
observed quantities.

-21-~




AVERAGE
TERRESTRIAL
POLE

GROUND i
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e

AVERAGE TERRESTRIAL
COORDINATE SYSTEM

FIGURE 2-1. THE ADJUSTMENT COORDINATE SYSTEM.
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or

=X. -X, -%X.=0 2-2
17 J 1 1]
where a.
]
X. = |v. 2-3
J J
wW.
J

is a vector composed of the rectangular coordinates of

an arbitrary satellite position;

X, = |v. 2-3(a)

is a vector composed of the rectangular coordinates of

an arbitrary ground station;

rij cosdij cosaij
3 .
Xij =S rij cos6ij 51naij ’ 2-4
r.. siné..
1] 1)
rij’ 6ij’ aij being the topocentric range, declination

and right ascension from i to j, respectively, while S
is the matrix which transforms the vector from the true
celestial to the average terrestrial coordinate system

(Section 1.3).
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The point by point build-up of the network can be
visualized in the following way. Given the components
of the vectors ii and iij’ ij is computed. Then with
this position j as known and a known vector from an
unknown station to j, the coordinates of the unknown
station are computed. This is extended to include many
unknown and known stations, along with many redundant

observations thereby necessitating an adjustment.

Strictly speaking, pure optical or range data does
not permit such a procedure to be literally followed,
however the adjustment framework (a form of colinearity)

remains applicable.

2.2 The Linearized Form of the

Mathematical Structure

The mathematical structure (Equation 2-2) is
linearized by a Taylor series expansion about the pre-
liminary values of the ground stations and satellite
positions, and the observed topocentric values of the
range, declination and right ascension. The result is
(i and j designate ground and satellite points concerned

and not dimensions of arrays)

Biy %5 i3 Yi3 ij

-24-




JF. .
=—=L = 0o +1 0 | 0 -1 0| = [+1|-1] ;
1] > 4
BX.,Xi
J 0 0 +1 0 0 -1
2-6
X
- Jj -
57 05| =
i
where du.
]
X. = dv. 2-8
3 J
dw .,
]
and
du,
i
Xi = dvi 2-9
dw.
i

are corrections to the preliminary values of the ground

station and satellite position, respectively.

BFi.

Bij YPELIF3 S Ry (-a) R, (-907+ §) cC, 2 lq

where S is defined by Equation 1-8, R; and R, are rotation

matrices, and

g5




C = 0 -cos§ O . 2-11
0 0 -1
The matrix
r.. O 0
1]
0 r.. O
1]
0 0 1

is omitted from the expression for Bi' since it is

multiplied into

§9.
L .o= Sa. . cos 6. .
ij ij i

Sr.

namely,

V.. = r..8a.. cos §.. H 2-12
1] 1] 1] 1]

these are the residuals of the adjustment in units of

meters (88§ and 8o are in radians).
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w,. = %90 - %0 - #°, 2-13
13 J 1 1]

is the evaluated mathematical structure where "o"
designates "evaluated at preliminary values" and "b"

designates "evaluated at observed values."

Up to now consideration has been given to the ith

and jth ground and satellite positions. Extending this
basic idea to include a redundant number of satellite
positions observed from a multitude of known and unknown
ground stations, the following matrix equation is

built-up:

AX + BV + W=0 , 2-14

where the original quantities Ay Bij' etc. are simply
submatrices of their corresponding unsubscripted counter-

parts.

2.3 Weighting the Declinations

and Right Ascensions

The observed quantities in the optical case are
considered as the topocentric declinations (§) and right
ascensions (o). The corresponding precision estimates
resulting from a photographic plate adjustment or some
other apriori estimate are mé and mé, the variances,
while ms = Mo is the covariance. All units are arc

seconds squared.
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It is important to note that the weighting of the
declinations and right ascensions is made on the basis
of the.estimates of variances of § and a obtained from
the plate adjustments and that it is assumed that the
variance of § and a do not vary according to the distance

of the satellite from the particular observing ground

station.

On the other hand, the weighted sum of squares of
the residuals (Section 6.11) is conveniently chosen to
have units of arc seconds squared, thus, the weights
are to have units of (arc sec.)? m~2 since the units of
the residuals have been stipulated (Equation 2-12) to
be meters. Therefore, it is necessary to transform mg,

2
m, s and Mo into linear units (meters) by the following

formulas:
g 2
(ma)2 = |r N ' 2-16
mll 2
(ma)2 = |r S% , 2-17
nwy 2
n(")
mg, = I’ ; ?.‘)2 , 2-18
p

where r is the approximate topocentric range and

sin 1"
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With the precision estimates in linear units the

following variance-covariance matrix is formulated:

2
m m m
8 Sa Sr
pX = m? m
§,a,r o or '
m 2
r

where the new quantities m;, ms,.r and m _ are the
variance of the range, covariance between the declina-

tion and range, and the covariance between the right

ascension and range, respectively. If the correlation
coefficients
0 _ Msr = 0
- - ’
Sr mem
0 _ Tar = 0
- - ’
or m,m.
and
mr—*°° v

the weight matrix for a single direction is

2 -1
mg mda 0
—~ 2 2 _
Pij = mg mos My 0 , 2-19
0 0 0
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where mé is the apriori variance of unit weight in units

of arc seconds squared.

Corresponding to Pij’ P denotes the weight matrix
for the observed topocentric directions of the adjust-
ment. P has the characteristic of containing non-zero
3 x 3 matrices only along the diagonal since the
individual directions are assumed to be statistically

independent.

The topocentric range is needed in Equations 2-16
to 2-18 to convert the precision of the directions from
arc units into linear (meters) units. Four significant
figures are required in the topocentric range. Equation
2-16 shows that the range need have no more significant

figures than mg or m. .

The topocentric range from an arbitrary ground
station i in a given simultaneous event j is computed

from
_ 0_..0y2 0__0,y2 o_.0 X -
r.. = | (uj ui) + (Vj Vi) + (Wj Wi) 1%, 2-20

o]

i=1, 2, ..., m (number of stations in the eveny. usy

it wz are the preliminary rectangular coordinates of the

ith ground station and are computed from
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(N+H) ces¢ cosA

= (N+H) cos$ sini ’ 2-21

+
O
F-O MO

[N(l-e?)+H] sin¢

K0

¢, A, H, N being the geodetic latitude and longitude, the
ellipsoidal height, and prime vertical radius of curvature

at point i, respectively, while e is the eccentricity of

g, v?, w§ are the preliminary

rectangular coordinates of the jth satellite position and

the reference ellipsoid. u

are computed (note that these are needed only for the

purpose of getting the approximate topocentric range) as

follows:

(1) The ground vector, ilz, between the first two
stations listed in the particular simultaneous
event, (see Table 1-2 and Figure 2-2) is

computed according to

U2 - U3

>

X120 = Va2 - V1 . 2-22
W2 = Wj

(2) The ground station 1 to satellite position j

unit vector §1j’ is computed from

-3]1-




SATELLITE
POSITION

GROUND STATIONS

FIGURE 2-2. THE APPROXIMATE SATELLITE VECTOR.
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(3)

(4)

(5)

(6)

cos§ coso
X;. =S cos$§ sing 2-24

siné

where S is the transformation matrix of the
true celestial to the average terrestrial
coordinate systems (Section 1.3).
The ground station 2 to satellite position j
unit vector, izj’ is computed as in (2).
The angle, A,, at ground station 2 is computed
according to the following dot product:
-> >
X21 hd XZ'
cos A, = —:——————; 2-25
|X21] (1)
The angle, Aj’ at the satellite position is

computed from the following dot product:

> >
X1. ® Xa.
cos Aj SR I X . 2-26

Finally the satellite position vector, ig, to

be used in Equation 2-20 is computed from the

following vector equation:

(o]

u.

3

20 >0 > 0
XY = Xy + ¢ X = V. 2-27

3 ! 13 713 3 ’
wo
3
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where

sinA,

ry. = l§21| . 2-28

Jj SinA.

2.4 Ground Stations as Constrained Quantities

In performing the adjustment, ground stations are
fixed by one of the following two procedures. The first
is simply to delete those rows and columns of the normal
equations which belong to the ground stations in question;
the second procedure is to over weight those particular

ground stations.

Specifically, the quantities to be weighted are the
rectangular coordinates u, v, w of the observing ground
stations. The 3 x 3 weight matrix associated with the
three dimensional rectangular coordinates of a particular
ground station is denoted by Py . The fixing of any
ground station is achieved by specifying numerically

large diagonal elements in P

K’ thereby holding the
coordinates of the ground station at its preliminary

values.

P, is used to denote the matrix of weights, Pk’ of
all the weighted ground stations. ©Note, for the deriva-
tion to follow (Section 2.6) consider the satellite
positions as also weighted with a weight matrix P,, and

fuirther consider the matrix Px as containing both P, and
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P , namely

2.5 Spatial Chord Lengths

For the purpose of introducing scale, the spatial
chord length between any two observing ground stations
may be constrained at the value computed from their prelimi-
nary coordinates. 7This is most conveniently achievea by
introducing the spatial chord length as a fictitious
observation with a large weight [Uotila, 1967]. This
procedure allows spatial chords to be treated as either

observed or fixed by simply varying the weight.

The mathematical structure is

le = [ (ul_uk)2 + (vl—vk)z + (Wl—wk)2 ]l.i - Lkl,

2-29

where the subscripts k and 1 refer to the two particular
ground stations and not dimensions of arrays; Lkl is the

numerical value at which the chord length is to be fixed.

The above mathematical structure is linearized by a
Taylor's series expansion about the preliminary values of

the ground station coordinates. The result is

Ckl Xkl - vkl + Dkl =0 , 2-30
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where Ble
C =
kl ‘du, or ov, Oor ow '

2©-u® 0=y 0_0 | 1%4°  v%ev®  wO-w®
_ Mm% 17V Y1k . MY VitV M1TYk
B 0 ! 0 ! 0 " 0 "o T o
Ly Le1 Lyr 0 D Ly1 Ly
= [Ty | T 1
dul
dvl
dwl
X = —
k1l du,
dvk
dwk
while
Vkl = 0
due to the large weight (see Equation 2-37);
_ 0_..0y2 0__0,y2 0__0y2:% _ 0 _

according to the first equation of the section.
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The weight applied to the constrained chord is

2
0

M1

m

Pri

2
where mg is the variance of unit weight and m 1 is the
variance of the chord. A large weight results by

stipulating a small enough value for mil.
Thus far consideration has been given to one spatial
chord. The equation

CX—VC+D=0 2-38

applies when more than one chord is constrained, thus the
original quantities Ckl’ Dkl’ etc., are submatrices of
their unsubscripted counterparts. P, is used to represent

the diagonal weight matrix of all constrained chords.

It will be convenient to defer a discussion of the
contribution of the spatial chord constraint to the
normal equations and to the sum of squares of weighted

residuals to Sections 2.63 and 6.11, respectively.
2.6 The Normal Equations
2.61 Outline of Derivation

The normal equations are derived by minimizing the

qguadratic form
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V'PV + X'P_X
p 4
subject to the relation (Equation 2-14)
AX + BV + W= 0 .

Upon introduction of Lagrange multipliers K, the variation

function is
d = V'PV + X'PXX - 2K'(AX + BV + W) , 2-39

where
V is the vector of residuals corresponding to the
o's and §'s;
X is the vector of corrections to the preliminary
ground and satellite positions;
P is the weight matrix for the a's and §'s;
P_ is the weight matrix for the ground and satellite

positions;

A and B, and W are coefficient matricies and a
constant vector, respectively, which were described in

detail in Section 2.2.

Upon the differentiation of Equation 2-39 for the
minimum condition [Uotila, 1967, p. 81], the expanded

form of the normal equations becomes
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By a row and column transformation, the residual

vector V is eliminated and the normal equations become

Bp~!B! A K

' -
A Px

X

Next the correlates are eliminated, thus resulting

in
(A" (BP~!B')"! A + Pl X + A (BP™!B")"! w=0 . 2-42

The following summation form of the non-zero 3 x 3 sub-
matrices of the above equation is found by replacing the
A, B, and P matrices with their expanded forms in terms

of 3 x 3 submatrices (Equations 2-6, 2-10, and 2-19):

|
T (B..PT!B!.)"! + p. | - (B,.PT'B!.)! X.
i (B; 5P13Bi5) s (Bi 571 3B15) j
____________________________________________ . +
|
- -1l -1 -1l 1
( l]PijBlj) i § (BleljBij) + Pl xl
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U. =
3T
I (B..PTIB!' )7 w,.
; i3TiiTij ij
+ |- = 0 , 2-43
U. =
1
- Ll T | -1
P BigPiiBiy) o Vi

where the non-zero 3 x 3 submatrices occur only on the
diagonal and those ij 3 x 3 positions corresponding to
a ground to satellite observation; E indicates a
summation over all ground stations observing satellite
position j; g indicates a summation over all satellite
positions observed from ground station i. All summations

contain only 3 x 3 and/or 3 x 1 matrices.

Elimination of Xs’ the corrections to the satellite
positions, from the above yields the following reduced

normal equations:

NX +U =0 2-44
g g !

where the xg vector represents the unknown corrections
to the preliminary rectangular coordinates of the ground
stations; Ug is the constant vector; N is the coefficient

matrix.

The coefficient matrix N is made up of 3 x 3

matrices. By letting
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-1 _ 1o -1 -
Mij (Bl]PljBlj) 2-45

]

-1 ! -
(Bij) PljBlj 2-46

in Equation 2-43, the expression for the 3 x 3 diagonal
matrix corresponding to the kth ground station is given

by

- - 1y -1 . -
? Mk. Z{Mk (z M ) Mkj} + Pp 2-47

th satellite position has

Note the weight, Pj’ for the j
been dropped in the second term of the above equation.
The expression for the off diagonal 3 x 3 matrix

corresponding to the kth and the lth ground stations is

- _ -1 =1y-1 p—1 -
Neq = § {Mkj (i Mij) Mlj} , 2-48

where the summation g is performed over all satellite

events observed simultaneously from both ground stations

k and 1.

The constant vector of the normal equations (Equation

2-44) is made up of 3 x 1 vectors corresponding to each
th

ground station. The vector, Uk’ for the k ground
station is given by
- _ -1, -! 1
Uy (z Mk wk ) + § {MkJ (E Mij) (i Mljwlj)} , 2-49
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where, according to Equation 2-13,

30 20 _ b
X X{ iij ,

.

W. .
1]
or

Wei

o o) b _
ij - ik - ikj ] 2-51

At first sight it seems that the preliminary coordinates
of each satellite position are required, however sub-
stitution of Equations 2-50 and 2-51 into Equation 2-49

results in the cancelation or dropping out of terms

containing §§ and the observed vector ib or ﬁb .

ij kj
Specifically,

-1 1y -1 -1,%0 _ - b _
+ g {Mkj (i M7 J) [i Mij(xj X; xij)} 2-52

- - -1.b
-3 1%° + (z M7Y) X° + 3 MTXPL) +
: (M 1%9) LESR RS 0}

Mi (z M7 1)‘1 (zr MT1X9) -

i ilJJ

’-z{Mk (;Ml)l(;M‘ DY -

ij%i

-z -l oz MTHYTY (2 MTIX . 2-53
: {Mk] ( 1J) I i3 lJ)}
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Terms 1 and 4 in the above cancel (i.e., ig, satellite

coordinates drop out) because §§ can be factored out of

E in term 4 i.e.,

gl oMiHT @ oMpd) §° = (z Mk1§° 2-54
i i
which has an opposite sign to that of term 1. Terms 3

and 6 drop out because they are identically zero. This

is because both terms contain products like

B! ib. or B ib

lJ i)
where
B;; =C"! R,(90° - §) Ry(a) S'
and
S' ib = r}
ij 3

where r; is the last row of the orthogonal matrix

R2(90O - §) R3(a); thus, taking into account the presence

of C7};
0
BIIRP. = | o ,
iji®ij
-1

and since, in the optical adjustment Pij has the form;
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P.. = * * 0 ’
1]
0 0 0
and using 2-46;
-1 3P =0 2-54a
1] 1]

The expression for the constant column becomes

= -1 (30 _ —-1)71 -1 $O -
Up = My 1% = (M) 7 (2 M5 X)) 2-55
j i i
In summary, the normal equations in the optical adjust-

ment are formed by Equations 2-47, 2-48, and 2-55.

2,62 Weighted Ground Stations Contribution

to the Normal Equations

In Section 2.4 the matter of fixing ground stations
by weighting was discussed. Further, in Section 2.61 the
normal equations pertaining to the ground stations were
given. The weighting of ground stations is accomplished

by the addition of P, to Equation 2-47.

It is not until the other summations are completed
that any consideration need be given as to how the ground

stations are to be treated, namely:

(1) as parameters i.e.,
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(2) as fixed i.e., Py having three numerically
large diagonal elements. Pk is added to the
3 x 3 diagonal matrix of the kth ground

station in the reduced normal equation at the

time of solution.

2.63 Spatial Chord Length Contribution
to the Normal Equations

The normal equations (Equation 2-44) pertaining to
the ground stations were derived in Section 2.61. The
linearized spatial.chord length equation (Equation 2-30)
was derived in Section 2.5. The contribution of the
latter to the normal equations may be found by first
bordering the normal equations [Uotila, 1967, p. 74,

Equation 194], thusly

N c' X

C -Pc —Kc

By transformation, the above is written as




The elinination of Kc from the above yields

[N+cC'PCl X+U+C'PD=0, 2-58

which is the most convenient formula from a programming
standpoint. Specifically, a constrained spatial chord
length between any two stations say k and 1 results in

the following expressions:

Tkplei ’ 2-59
Tlplei ’ 2-60
T, Py, T] , 2-61
TxPx1Px1 ‘ - 2762
T'plekl , 2-63

where all matrices in the above are defined in Section 2.5.
The first three expressions in the above are 3 x 3

matrices and are added respectively to Newr Nig (Equation
2-47) and Nkl (Equation 2-48); the last two expressions

are added respectively to the constant columns Uk and Ul
(Equation 2-55). Since Dy = 0, according to Equation
2-36, there is no contribution to the constant column of
the normal equations if the spatial chord is being

constrained at the value computed from the preliminary
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values of the ground station coordinates.

2.7 Detection of Blunders in the Declinations and
Right Ascensions, and/or Ground

Station Coordinates

Blunders in the observed declinations and right
ascensions and/or observing ground station coordinates
are detected during the formation of the normal equations.
The procedure used is to test the variance of unit weight
that would result from a preliminary least square adjust-
ment of each simultaneous event. 1In this adjustment the
ground stations are held fixed. The residuals on the ijth
observed o, § pair from such a preliminary adjustment are
the first two elements of the 3 x 1 vector
o

)y X0 = (g M i)z MT1X. }
1

BT! (X. - X
i j j i i3 1§71

ij
(the third element is the range to the preliminary

adjusted satellite position), and therefore;

4 -1 > _+O
) M., (Xi Xj)

Zylpllv,. = I (%X.-%°
i i) ij

i ij ij ij

since the third element is dispensed within the product

(see Equation 2-19).
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Therefore;

20 20 -1 ;30 2O
% (X.-X2)'" M7: (X:7-X2)
n% - event "1 77 1] 1 3 , 2-64
2m-3

where the numerator can be shown to be the sum square of
the weighted residuals (arc seconds squared) of all the
observed declinations and right ascensions in the event;

m is the number of ground stations in the event.

If a number of rejected simultaneous events repeatedly
contain a particular ground station, it is probably due
to a blunder in the coordinates of the particular ground
station rather than in the observed quantities. 1In this

case, the preliminary coordinates of that ground station

should be verified.
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3. THE RANGING CASE ADJUSTMENT

3.1 The Mathematical Structure

The mathematical structure is

’

—w. )21k -
rij [ (uj—ui)2 + (Vj—vi)2 + (wj wi) ] 3-1

Fij [(uj—ui)2 + (vj-vi)2 + (wj—wi)Z]%—rij= 0,

3-2

where the observable rij is the topocentric range from

ground station i to satellite positon j; the parameters

u v w, and u., v

it Yy 3 3 wj are the three dimensional rectangu-

lar coordinates of the ground station i and satellite

il

position j, respectively.

The basic mathematical structure above is extended
to include simultaneous ranges from three or more ground
stations. By increasing the number of simultaneous events

along with the number of known and unknown ground stations,

an adjustment is necessary.

3.2 The Linearized Form of the
Mathematical Structure

The mathematical structure (Equation 3-2) is linear-
ized by a Taylor series expansion about the preliminary

values of the ground stations and satellites positions,
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and the observed value of the topocentric range. The

result is (i and j refer to ground and satellite points

and not to dimensions of arrays)
A.. X., -v.. +L.. =20, 3-3
1] 1] 1) 1]
where
oF . . u’-u vo-v wc.)-wO
A. .= ij _ 3 i
ij  du,dv,ow b ! b ! rb
ij ij ij
! uo—uO v =y wl-w?
S N S M S H 3 3-4
' b ! b ! b r
\ r.. r.. r;.
i] 1] 1]
i
= [ alj ‘ —aij | 3-5

where the superscripts "o" and "b" indicate preliminary

quantities and observed values, respectively;

J
Xij = « ’
i
where
du.
]
X. = dV ’
J
dw. }
J
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and

du.
i

dw

vij is the residual of the adjustment in meters
b

corresponding to the observed range ry

-
s

J

is the difference between the preliminary range and the

observed range.

Up to now consideration has been given to the ith

and jth ground and satellite positions. Extending this
to many positions, the following matrix equation is

built-up:
AX - V+L=20, 3-7

where the original gquantities Ai" v.., etc., are subsets

ij
of their unsubscripted counterparts.

3.3 Weighting the Observed Ranges

The weighting of the observed topocentric range from
ground station i to satellite position j is achieved by

the following:
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pij

3

where mé is the variance of unit weight in units of meters
squared and similarly m;j is the variance of the observed

range in meters squared.

P denotes the diagonal weight matrix containing all
the independent weights pij to be considered in the adjust-

ment.
3.4 Weighting the Ground Stations

Weighting allows the ground stations to be treated
as pure parameters or as fixed quantities. These aspects
were treated in the optical case adjustment (Section 2.4)
and can equally as well be used in the ranging adjustment.

3.5 Spatial Chord Lengths as
Constrained Quantities

Spatial chord lengths between ground stations in the
case of range adjustments are treated in the same way as
in the optical case adjustment (Section 2.5). In fact,
note that in the range adjustment, the spatial chord
contribution is identical with that of a range observation
except that two ground stations are involved rather than

one ground and one satellite point.
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3.6 The Normal Equations
3.61 Outline of Derivation

The variation function for the range adjustment is

similar to the optical case, namely,
$ = V'PV + X'PXX - 2K'(AX -V + L) , 3-9

where
V is the vector of residuals corresponding to the
range observations;
X is the vector of corrections to the preliminary
ground and satellite positions;
P is the weight matrix for the ranges;

PX is the weight matrix for the ground and satellite

*
positions ;

K' is the vector of correlates;

The coefficient matrix A and the constant vector L

were described in Section 3.2.

The differentiation of Equation 3-9 for the minimum
condition results in the following expanded form of the

normal equations:

-P 0o A X 0

X

0 -P -I v 0y =0 . 3-10
A -I O K L

* As in the case of the optical adjustment, satellite

positions and their corresponding weights were
included for derivational purposes only.
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After the elimination of the correlates and residuals,
A'PAX 4+ A'PL = 0 , 3-11

which is nothing else but the normal equations correspond-
ing to the variation of parameters method of least squares
adjustment [Uotila, 1967]. As a result of replacing the

A and P matrices with their expanded forms in terms of

1l x 3 vectors and 1 x 1 terms, respectively (Equations

3-5 and 3-8), the following summation form results:

Zal.p..a | N < TR S X. : p?T
5 137135437731 Ti3F13%43 j i3¥ij™i;
——————————————————————————— == + |-=—-g-z=---| =0,
ai.p:.a;. IZ N PR D N D & —Za!.;..L..
ij¥iji~ij3 E ij¥ijTij i i 5 13 ij7ij
3-13
where I

i indicates a summation over all ground stations
observing satellite position j; L indicates a summation
over all satellite positions observed from ground station

i. All summations are a function of scalars and three

dimensional vectors; recall

0 .0 0 _0 0 0
uj—ui ViV Wi-wo
a.. = | ] . 3-5
1] L. P, P,
1) 1] 13

Elimination of the corrections to the preliminary

coordinates of the satellite position, namely X. from
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Equation 3-13, results in the following three expressions:
the 3 x 3 diagonal matrix corresponding to the kth ground

station is given by

Npg = (gakjpkj 34 - § {ay jPyx5 kj(z i3Pi3%19

the 3 x 3 off diagonal matrix corresponding to the kth

and the lth ground stations is given by

N, . =-%

k1 =2 La
j

' bl P | -

where the main summation g is performed over all satellite
positions observed simultaneously from both ground stations

k and 1l; the constant vector of the kth ground station is

=1 '

U= (Zakjpkj Lyey) - Z{akjpkj %3 (I2i5Pi 324 5) IajsPisliy) -

3-16

In the above expressions, the weight matrix Pj of each
satellite position was set equal to zero as there is no
independent external source from which to get apriori

variance estimates which could be used to derive weights.

The equivalent expression for the constant column

U, can be shown to have the following form:
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= - ' V. . -
Uk ?akjpkjvkj ’ 3-17
where ij is the residual of the particular observed
range rkj arising from a least squares adjustment of one
simultaneous event with ground stations held fixed (see

Section 3.7).

Computation of the components in Equations 3-14,

3-15, and 3-17 are discussed in Section 3.71l.

3.62 Weighted Ground Station Contribution
to the Normal Equations
The weighting of the ground stations in the ranging
case is analogous to that of the optical case (Section
2.62). The weighting of the ground stations is accomp-

lished by the addition of Pk to Equation 3-14.

3.63 Spatial Chord Length Contribution
to the Normal Equations
As for the derivation in the optical adjustment, the
range normal equations pertaining to the ground stations
are bordered with the chord condition and then algeraically
eliminated from the augmented system, thus determining

their contribution to the normals (Section 2.63).
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3.7 Detection of Blunders in the Observed Ranges
and/or Ground Station Coordinates
Blunders in the observed topocentric ranges and/or
ground station coordinates are detected during the forma-
tion of the normal equations. The procedure used is to
test the variance of unit weight (Equation 3-26) arising

from a preliminary least squares adjustment of each

simultaneous event.

The preliminary adjustment is basically an iterative
adjustment for the uj, V., wj rectangular coordinates of
the satellite position by fixing the ground stations and
applying the residuals of the adjustment to the observed
ranges. The approximation to the parameters u., Vj’ wj
is obtained by converting the so-called approximate geo-
detic coordinates of the satellite into rectangular
coordinates by use of Equation 2-21. The approximate geo-
detic coordinates of the satellite are obtained by meaning
the latitudes and longitudes of the ground stations
involved in the simultaneous event and assuming a value
of 1.6 megameters for the ellipsoidal height of the
satellite. The idea that the above is crude is immediately
rejected upon the knowledge that at most four iterations
(to a tolerance of 1 cm in u., v., wj) are required and

J
that the electronic computer IBM 7094 performs these
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iterations somewhat more quickly than the time necessary
to solve the corresponding simultaneous, exact, second

order equations.

The equation giving the mathematical structure of
this preliminary adjustment is identical to Equation 3-1,
the mathematical structure for the main range adjustment.
Since only three parameters are involved, the linearized
form of the mathematical structure for m ground stations

in one simultaneous event becomes

AX~-V+L=0, 3-18

where the coefficient matrix

u? - u? vo - v? wo - w1
J J J
o) o) 0 o) o)
u: - u v, -V W, - W
i, j . 2 i oL 2
A = 0 : o) o} . o} o} : ol 7 3-19
i I I I
u® - W° v© - e wl - w°
J m J m ] m
the correction vector for the satellite coordinates
du.
J
X = |dv. : 3-20
J
dw .
B
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the residual vector for the ranges

<I
[
w
i
N
o

and the constant vector

b _
where r?j and rlj are preliminary and observed ranges,

respectively.

The normal equations

NX + U=0, 3-23
where
N =A'PA 3-24
and
U = A'PL 3-25

are solved for X by iteration until the elements of the

vector X are less than 1 cm. At this point, X is entered
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into Equation 3-18 and the vector of residuals V is
determined; the variance of unit weight is then computed

according to

N
<
e}
<l

=
o
I
3
|
w
w
I
N
o

The complete set of data for the simultaneous event is

printed out for evaluation in the case that the particular

mg is greater than a chosen input value. At the same

time, no contribution is made to the normal equations by

the rejected event.

3.71 Additional Benefits of the Preliminary

Simultaneous Event Adjustment

The gquantities akj and ij needed in the formation

of the normal equations (Equations 3-14, 3-15, and 3-17)
are a side product of the preliminary adjustment of each

simultaneous event. Specifically, a is contained in

kj
the A matrix given by Equation 3-19, and ij is an

element of the V vector of Equation 3-21.
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4. ADDITION OF NORMAL EQUATIONS

Independent sets of normal equations formed from
two or more batches of optical data can be added together.
The basic idea of the combination of the normal equations
is simply the algebraic addition of their corresponding

terms. Letting n sets of normal equations be represented

by
N;X + U; =0, 4-1
N2X + U, = 0, 4-2
N_X i u, =0,

In the above, the weights may be obtained as follows:

m?

Piz2 = — 4-4
m}
m$
p = —

n
m?
n
2 2 o o @ 2 h h . . .
where mf, mj5, m’ must have the same apriori variance
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(see Sections 2.3 and 3.3) of unit weight.

The advantage of the above is obvious, namely,
batches of observed data may be adjusted separately or

as a part of a combined adjustment.

The same holds for the addition of two or more
independent sets of range normal equations. The possi-
bility for the addition of optical and range normal

equations to each other is also possible.

-62-~



5. SOLUTION OF NORMAL EQUATIONS AND FORMATION |
OF THE INVERSE WEIGHT MATRIX 1

5.1 Introduction

The normal equations for the optical and range adjust-
ments are given in Sections 2 and 3, respectively. The

general form of the normal equations is

NX + U =0, 5-1

where N is the coefficient matrix, X is the vector of

unknowns, and U is the constant vector.

The adjusted values of the three dimensional rectangu-
lar coordinates of the observing ground stations are
obtained by adding the corrections, X, to the preliminary

values, XO, namely

X" =X+ X . 5-2

The precision estimate of X% is obtained in the usual
manner (Section 6) i.e., through the inverse weight matrix,
N~ !. For this reason the method of formation of N~! will

be shown in this section along with the method of solving

for X.

The procedure ysed here [Uotila, 1967, pp. 22-23] to

accomplish the above is a Gauss reduction (Section 5.2)
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and back solution (Section 5.3), and computation of the

inverse by the method established by Banachiewich

(Section 5.3).

Two features which are peculiar to the specific

procedure used here are:

(1) The coefficient matrix, N, is broken down
into 3 x 3 submatrices, and similarly the U
vector is treated as composed of 3 x 1
vectors.

(2) The coefficient matrix, N, is compacted so
that 3 x 3 zero submatrices are neither

stored nor used in the computation.

The first feature is achieved rather naturally; it is

because of the form of expressions N and U

kk’ Nk1’ k
(Equations 2-47, 2-48, 2-55, 3-14, 3-15, 3-17) which are

used to build-up N and U. On the other hand, the second
feature is achieved through programming logic. Specifically,
a first matrix, L, is used to tag each 3 x 3 non-zero
submatrix of N with a row and column number. A second
matrix, F, with a one-to-one correspondence to the first,

is then employed to tag the storage assigned to the
particular 3 x 3 submatrix. The individual elements of

the 3 x 3 submatrices are all stored in one large linear

array, E.
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For example consider

(1) 2 3
(2) 3 5 7 9

(3) 4 5 6 7 8

(4) 7 8
L = 5-3
(5) 5 7 8
(6) 7 8
(7) |8
(8)

as depicting 8 ground stations (listed along the left-

hand side of the matrix) involved in a series of

simultaneous events. The information is read as follows:
Ground station (1) has at some time been involved in
simultaneous event(s) with ground stations 2 and 3;

Ground station (2) has been involved with 3, 5, 7, and 9;

and so on. So for L(3,5) = 8, the 9 elements beginning

with cell E(F (3,5) ) are the elements of Njg, the

3 x 3 non-zero submatrix on row 3 column 8 of the coefficient

matrix, N (Equation 5-1).

The reduced elements of N are stored in the locations
previously created for elements in N. During reduction
additional 3 x 3 matrices arise in locations where there
were none originally in N, thus "drag storage" must be

assigned. In doing so, the guide matrix L, and the
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storage tagging matrix F are updated to account for these
additional matrices. Similar drag storage is also

determined during the formation of the inverse NT!,

once the drag storage is determined, the reduction,
back solution and inverse determinations are guided by L,
the storage located by F, and the elements to be used in

the computation found in E.

5.2 Reduction

The coefficient matrix of the normal equations is

written as
N = SR , 5-4

where S is a lower triangular matrix with 3 x 3 identity
matrices along the diagonal, and R is an upper triangular
matrix. All matrices and vectors presented in this
discussion are stipulated to be composed of 3 x 3 sub-

matrices and 3 x 1 submatrices, respectively.

The reduction is accomplished by computing

S=1-T 5-5
from

N=R-TR, 5-6
oxr

R=N+ TR , 5-7
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where R and T (thus S)

The augmented matrix

[NIU] = |nl.

ni

are built-up simultaneously.

ni; e e nln u,
Nzg nzn Y]
Ni3g e o e n3n U3
. Uy 5~8
u
n-1
n u
nn n

is first reduced according to the algorithms

n.. =

ij ij

1i=k+1,x+2,"",n
j=41i, 1 +1,""",n
defining
n;: n;, . . . n1n
sz H23 . . rTzn
R = .
Hnn
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and

T = _ -1 =1 T - c e
u, ug nps Ny Uy k 1,2, ,n
i=k+l,...,n
defining
u,
Uy
Us
cC = . 5-10
u
n

A second algorithim (performed as part of Equation

5-9) namely

n,. =1 j =i, 5-11
ij

=, - _ . ... _
nij = njj nij j=1+1, i + 2, 1, 5-12
ﬁl = n7; u, i=1,2,""",n, 5-13

results in the following reduced matrices:
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o

Sl
N
S
Sl

In
0 I n23 nzn
0 O I
S' = H 5-14
0 0 0 0 I
u,
U,
u;
_D = ’ 5_15
T
n
(' and D used to obtain solution vector, X, - Section
5.3);
n7} elements above
— diagonal
nz% g
nis
R™! = |zeros 5-16
below
diagonal
n-l
nn

-69-



(used to obtain inverse - Section 5.4).

5.3 Back Solution

The back solution involves the determination of the
unknown vector X from elements of the reduced matrices S'
and D. Without derivation [Uotila, 1967, p. 28],

X =T'X-D, 5-17

recall

nika + ui . 5-18

b
i
I~mB

i+l

5.4 Formation of Inverse

The inverse weight matrix, N7!, will be computed by
the method associated with the name of Banachiewich
[Uotila, 1967, p. 31]. According to Equation 5-4, N !,

can be computed from
NT! = RT! g7, 5-19

however, it turns out that N~! can be formed without the
aid of S~™! and further only the diagonal elements of R™!
are needed. The diagonal elements of R™! are readily

available since the inverse of an upper triangular matrix
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has as its diagonal elements the reciprocal of the
diagonal elements of the triangular matrix itself and an
exactly similar result holds if "elements is taken to
mean 3 x 3." The diagonal elements of R™! are computed
by inverting the 3 x 3 diagonal matrices of R, and for
computer space saving reasons are stored along the

diagonal of S' (Equation 5-14).
From Equation 5-19

R"! = N8, 5-20

and further substituting in for S from Equation 5-5,

R! =N! (I -1T) , 5-21
=N'!-N!T, 5-22

and finally
N!=R!'!4+N!T, 5-23

The corresponding summation equation for computing any

3 x 3 matrix of N7 ! is

3= = k 3 —
ij _ ] -1 _
n = N, n +6ij nyi o 5-24

k

N~

i+l

taking into account that
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§.. =0 for i # 3§ , 5-25
ij

§.. =1 for i = j
1]

and

ij _

(ndt)
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6. PRECISION OF GROUND STATIONS AFTER ADJUSTMENT
6.1 Variance of Unit Weight

The variance of unit weight for the total adjustment

is given by the following expression:

0 at ' 6-1

where V' PV is the sum of the squares of the weighted
residuals of all observed quantities and df is the number

of degrees of freedom in the least squares adjustment.
6.11 Optical Adjustment

Equation 6~1 will now be considered for the optical
adjustment. The linearized mathematical structure accord-

ing to Section 2.2, was shown to be of the form

AX + BV + W

I
o
-
(<))

I
N

and
CX"VC+D=0, 6-3
resulted from the spatial chord constraint of Section 2.5.

The corresponding expression for the computation of
V' PV with a change in notation and the deletion of

condition equations is {Uotila, 1967, p. 75, Equation 200]
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V' PV = -W'K - D'Kc ' 6-4

where the first term is the contribution from Equation
6-2, and the second term is the contribution from Equation
6-3. Since D = 0 (Equation 2-36),
V' PV = -W'K , 6-5
and by obtaining an expression for K from Equation 2-41,
V' PV = W' (BP-!B')~! (AX + W) , 6-6
or denoting

M = BP™! B' ;

V' PV = W' M! AX + W' M ! w , 6-7
and since;

X=-{A'"M1!A +px}“A'M“w
from Equation 2-42
V' PV = WM W - W'M™!A {A'M"1A+Px}‘1A'M‘1w . 6-8

Note that A'M'1A+PX and A'M~!W are the coefficient matrix

and constant column of Equations 2-42 and 2-43.
Let the partitioning of Equation 2-43 be denoted as

A B X, U,

B' C X, U,
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then, using;

A B|~! A-1+A~!BEB'A"! -AT!BE

B' C

-EB'A™! E

E = (C - B'A"!B)7!

the second term of Equation 6-8 becomes;

Q, = W'M‘1A{A'M'1A+PX}‘1A'M‘1w = U;A'1U1+(02—B'A-1UI)' *
* E(U,-B'A7'U,)

but by the elimination that led to Equation 2-44 we see

that E = N”! and U_ = U,-B'A"!U,
g

therefore;
Q = U;A'1U1+UéN"1U
or
Q= U;A_IUI-UéXg
and
V' PV = W'M™!w - U! A ly,+u'x .

g9
Denote Q, = W'M™!W - U;A‘IU1

or, by considering Equation 2-43, this becomes;

= L 1 _
Q, = .. W..M7: W, §{§

M-l =-1yiM—
&y WMl M gty )

13 ij i7ij i7i§7413
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Now using Equations 2-50, 2-54, and factorization and
cancelation analogous to that in Equations 2-53 to

2-54, this becomes;

= .7, MTLIX. - % (EMTIX YMT 11Tl Em L
Q2 = ¢ XlMlel J {1M13 i) {1M13} {1M13§1}

which is easily shown to be identically equal to

~ = Z —> _ +O ] -1 - _ ')O
SPE U RICIIES SO (Xi x2)

(-]

: 30 = [IM—1iy-1 13
with xj {1Mlj} {ZMlJ 1}

So that finally;

VPV = I (X, - X9 M7 (X - X9 +u'x
iy i j iy i j g9

Note that the first term in the above is the quadratic form
of all the residuals arising from all simultaneous event
adjustments with ground stations held fixed, and is
computed and summed for each event by means of Equation
2-64 for the purpose of blunder detection (Section 2.7);

the second term is found from;

Uéxg = D'C 6-19

where the vectors D' and C are defined by Equations 5-15

and 5-10, respectively.

The total number of degrees of freedom, df, to be

used in Equation 6-1 is

df = number of equations - number unknowns,
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df = (L 2m + c) - (3s + 3g) , 6-20
B

where 2m is the number of equations resulting from one
simultaneous event (m = number of ground stations in a
particular event j) and the summation is performed over
all simultaneous events; c¢ is the number of spatial chord

constraint equations; 3s is the number of unknowns due to

s number of satellite positions; 3g is the number of un-

knowns due to g number of unknown ground stations.

In conclusion,

o - “df 6-21

has units of (arc sec.)? since V has linear units-meters

(Equation 2-12) and P has units of (arc sec.)? * m~2? i.e.

2
(m) (arc iec.)

(m) = (arc sec.)? . 6-22
m

6.12 Range Adjustment

Equations 6-1 will now be discussed in the light of

the range adjustment. Firstly, the expression for

computing V'PV is, by an analogous argument to the optical

case,

V'PV = V'PV - XéUg 6-23

where V'PV is the quadratic form of the residuals arising
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from the adjustment of simultaneous events - holding the

ground stations fixed; the second term

X' U_=D'C 6-24
g g

is computed according to Eguations 5-15 and 5-10,
respectively. The spatial chord constraint does not

contribute to V'PV as shown for the optical case adjustment

argument (Equation 6-5).

The degrees of freedom, df, in the range adjustment

is as usual

df = number equations - number of unknowns,

6-25

(Zm+ xr) - (3s + 3g9) , 6-26
j

where m is the number of ground stations, thus observed
ranges, in a particular simultaneous event and the
summation is performed over all simultaneous events; r
again is the number of spatial chord constraint equations;
3s and 3g are the number of unknowns due to s number of

satellite positions and g number of unknown ground stations,

respectively.
In summary,

» _ V'PV
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has units of m? since V has linear units-meters (Below

Equation 2-9) and P is unitless (Equation 3-8).

6.2 Variances and Covariances of

Ground Stations

6.21 Rectangular Coordinates

The variance-covariance matrix giving the precision

of the adjusted rectangular ground station coordinates is

[ng]

= mg NTD o, 6-28

i<

where mg is the variance of unit weight arising from the
adjustment (Section 6.1) and N™! is the weight coefficient

matrix discussed in Section 5.4.

The logical and correct units for the variance-
covariance matrix is meters?’. To confirm this for the optical
case, simply examine the units of mg and N™1'. mé, accord-

ing to Equation 6-21, has units of (arc sec.)2?. On the

other hand, the examination of Equation 2-42 yields units

of m? per (arc sec.)? for N*!'. Therefore units of
2 m?
L, = (arc sec.) =m2. 6-29
¥ (arc sec.)?

A similar analysis for the range case adjustment reveals

the same units for the variance-covariance matrix of the
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adjusted rectangular ground station coordinates.

The square root of the diagonal elements of

z

u
v
w

(o)}
I

30

yields the corresponding standard deviations in meters.
6.22 Geodetic Curvilinear Coordinates

The propagation of variances and covariances from
curvilinear coordinates geodetic latitude, ¢, and longi-
tude, ) and ellipsoidal height, H, all in meters to three
dimensional rectangular coordinates, u, v, w is achieved

by the following matrix equation

Zu—GZ¢G ' 6-31
v A
w H
where
-sin¢ cos)l -cos¢ sind cos¢ cos]
G = -sin¢ sinA cos$ coshr cos¢ sinA| . 6-32
cos¢ 0 sing

Reversing the transformation depicted by Equation
6-31, the 3 x 3 variance-covariance matrix corresponding

to ¢, A, H is
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z¢ G™! 2y (G*)™!
A v
H w
m? m m
¢ oA ¢oH
Mo ™ My
Me My My

all in (meters)

In order to_obtain the units

mé (arc sec.)?
2 1

E5Y

m¢x mx¢

s n

arc sec. x meter

M¢H = MH¢’ M T Mmoo

the elements of Equation 6-34 require the following

modifications:

m, = (57 m¢)2
;2 = (g : g m)°
Mex =~ Mg " (ﬁgg_ﬁ)z oA
My - Mon " ﬁ—%:ﬁ'mH¢
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My S M T RS E MHA 6-40
where
ot = 1 , 6-41
sin 1"
R = 6,370,000 m. 6-42

(Note, R replaces the radius of curvature, N, in the prime
vertical plane in the rigorous case - justification for
simplification is given by the fact that only three
significant ﬁigures are meaningful in propagation of variances
whose magnitudes in m? or (arc sec.)? are in the units

place.)
6.3 Correlation Between Ground Stations

The amount of correlation between the adjusted ground
station coordinates is described in terms of the correla-
tion coefficient. The correlation coefficient is defined

as [Hamilton, 1964, p. 31]

where i and j represent any two quantities associated with
a variance-covariance matrix such as that of Equation 6-28;
mij is the covariance, namely the off diagonal term of

Equation 6-28; mi and m% are the standard deviations
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or square root of the ith and jth variances (diagonal

terms), respectively.
6.4 Error Ellipsoid Computation

Error ellipsoid computation is made for each observing
ground station considered as an unknown in the adjustment.
The eigenvalues and eigenvectors [Hamilton, 1964, pp. 57
to 60] are computed in a topocentric three dimensional
rectangular coordinate system with its origin at the
particular ground station and its axes parallel to the mean
terrestrial coordinate system (Section 1.2). For each
point, there corresponds one eigenvalue (Aii) for each of
the three mutually perpendicular axes of the ellipsoid;
the direction of these three axes is given by their

corresponding eigenvector (Th) .

The actual computation is as follows. The particular
3 X 3 on diagonal variance-covariance matrix, I, of

Equation 6-28 is subjected to an orthogonal transformation
T £ T =47, 6-44

where A is a diagonal matrix and T is the orthogonal trans-
formation matrix to be found which diagonalizes I. The |
transformation results in three homogeneous linear
equations, namely

[z - Ay I ™ =0 , 6-45
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which has a solution only if the determinant of the

coefficient vanishes i.e.,

[z - Xii I1 =0 6-46
or
mi;~A1 m; 2 m; 3
m,, mZ,~X22 m,, =0 . 6-47
ms3, mjy, m$-Ass

Once the eigenvalues are obtained from Equation 6-47,
their corresponding eigenvectors are obtained from

Equation 6-45 after substitution of xii.

The length of the axes of the error ellipsoid are
the square-roots of the corresponding eigenvalues. The
spherical coordinates (spherical latitude, 6, and longi-
tude, )A) which give the direction of each ellipsoidal axis

are obtained from the components of the eigenvector

t
= | ¢, |, 6-48
t;
namely
ts
tan 0 = 6-49
Y12 4 £,2 4 t,2
and
to
tan A = -{:—1 . 6-50
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7. SUMMARY AND FUTURE CHANGES TO THE SYSTEM

The adjustment system, as presented in this report and programmed in

[Krakiwsky et al; in press] has the following capabilities:

(1) Normal equations can be formed for separate
batches of optical or range data.

(2) Independent sets of normal equations can be
added together.

(3) Normal equations can be solved giving adjusted
rectangular and geodetic curvilinear coordinates.

(4) The weight coefficient matrix is obtained thus
allowing the computation of error ellipsoids
for all ground stations; further all correla-
tion coefficients are computed for all stations.

(5) Scale may be introduced by a spatial chord
constraint.

(6) The covariance between the right ascension and
declination of one direction as well as their
standard deviations can be utilized for
rigorous weighting.

(7) The standard deviations of each range can be

utilized for weighting.

It is planned in the future to include the following

features:
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(1)

(2)

(3)

(4)
(5)
(6)

The solution of the degrees of freedom
problem when weighting the ground stations
with values between zero and infinity.
Incorporation of error models in the range
adjustment to eliminate residual systematic
errors.

Sequential build-up of solution and precision
estimates.

Direction constraints.

Statistical tests.

Use of magnetic tape files to increase the
maximum number of ground stations from 150

to several thousand.
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