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ABSTRACT 

The purpose of t h e  r e p o r t  i s  t o  formula te  t h e  
e q u a t i o n s  of t h e  r i g o r o u s  l e a s t  squa res  adjustment  of 
s a t e l l i t e  obse rva t ions  f o r  s imultaneous d i r e c t i o n s  or 
ranges .  These equa t ions  a r e  necessary  f o r  t h e  develop- 
ment of computer programs documented i n  a s e p a r a t e  
r e p o r t  [Krakiwsky e t  a l ,  i n  p r e s s ] .  
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1. INTRODUCTION 

1.1 Definition of Problem and Statement 
of Method 

The problem is to tie remote ground stations 

together in the same geodetic coordinate system by use 

of satellite observations. Two major methods are 

available [Mueller, 1964, p. 1451: the orbital (short 

and long arc) methods and the space triangulation 

(trilateration) method. The solution presented here is 

developed about the latter. 

In the space triangulation (trilateration) method 

satellites are observed simultaneously from groups of 

known and unknown ground stations, thus permitting a 

purely geometric solution. The main characteristic of 

this method is that orbital elements are not required. 

If the satellite positions are needed they can be computed 

from the preliminary coordinates of the ground stations 

and the observations themselves. 

The optical observations are assumed to be in the 

true topocentric celestial system as preprocessed by 

[Hotter, 19671, while the topocentric ranging data is 

freed of systematic errors as explained in [Gross, in 

- 1- 



p r e p . ] .  The t i m e  system i s  U T 1  as exp la ined  i n  [ P r e u s s ,  

19661 .  I t  should be noted  t h a t  o p t i c a l  and range d a t a  

are a d j u s t e d  s e p a r a t e l y  i n  t h i s  development. 

Th i s  p u b l i c a t i o n  c o n t a i n s  a l l  t h e  e q u a t i o n s  necessa ry  

for t he  computer programming i n  [Krakiwsky e t  a l . ,  i n  

p r e s s ] .  

1 . 2  D e f i n i t i o n  of Coordina te  Systems 

Two d i s t i n c t  t y p e s  of c o o r d i n a t e  systems have been 

used h e r e  : 

(a )  The te r res t r ia l  ( ave rage  o r  i n s t a n t a n e o u s )  

system. 

(b) The ce les t ia l  ( t r u e )  system. 

The fo l lowing  summary of t h e s e  systems assumes 

r ight-handed r e c t a n g u l a r  c o o r d i n a t e s  w i t h  axes  numbered 

accord ing  t o  F igu re  1-1. A f u r t h e r  s t i p u l a t i o n  i s  t h a t  

t h e  c e n t r e  of t h e  c o o r d i n a t e  sys tem c o i n c i d e s  wi th  t h e  

c e n t r e  of  g r a v i t y  of t h e  e a r t h .  

Average Te r re s t r i a l  (X) 

(a )  3-axis  d i r e c t e d  toward t h e  average  n o r t h  

t e r r e s t r i a l  p o l e  as de f ined  by t h e  I n t e r n a t i o n a l  

P o l a r  Motion S e r v i c e  (I .P.M.S.),  commonly 

known as  t h e  average  p o l e  of 1900-05 .  

-2- 



FIGURE 1 - 1 .  NUMBERING OF COORDINATE A X E S .  

- 3 -  



(b) 1-3 p l ane  p a r a l l e l  t o  t h e  mean Greenwich 

astronomic mer id ian  as  d e f i n e d  by t h e  

Bureau I n t e r n a t i o n a l  de 1 'Heure ( B . I . H . )  . 
This  system i s  t h e  u l t i m a t e  g o e d e t i c  c o o r d i n a t e  system. 

I n s t a n t a n e o u s  Ter res t r ia l  (Y) 

(a) 3-axis  d i r e c t e d  toward t h e  i n s t a n t a n e o u s  

r o t a t i o n  a x i s  of t h e  e a r t h  ( t r u e  ce les t ia l  

p o l e ) ,  t h e  c o o r d i n a t e s  of which are g i v e n  

by t h e  I.P.M.S. w i t h  r e s p e c t  t o  t h e  ave rage  

p o l e  of 1900-05 .  

(b) 1-3 p l ane  c o n t a i n s  t h e  p o i n t  where t h e  mean 

Greenwich as t ronomic  mer id ian  i n t e r s e c t s  t h e  

t r u e  e q u a t o r  of date .  

This  c o o r d i n a t e  system i s  used as t h e  i n t e r m e d i a t e  

connect ion between t h e  t e r res t r ia l  and ce les t ia l  coor-  

d i n a t e  systems. 

True Celes t ia l  ( Z )  

(a) 3-axis  e q u i v a l e n t  t o  3-axis  of in s t an taneous  

t e r r e s t r i a l  system ( t r u e  ce les t ia l  p o l e ) .  

(b) 1-ax i s  d i r e c t e d  toward t h e  t r u e  v e r n a l  

equinox of d a t e .  

These and s t i l l  o t h e r  c o o r d i n a t e  systems are d i scussed  

i n  d e t a i l  i n  [ V e i s ,  1 9 6 3 1  and [Muel le r ,  i n  p r e s s ] .  

-4-  



1 . 3  Transformation f r o m  the  True Celestial  

t o  t h e  Average Terrestrial  System 

Transformation between terrestr ia l  and celest ia l  

c o o r d i n a t e  systems becomes necessary  i n  the  case t h a t  

t o p o c e n t r i c  d i r e c t i o n s  t o  s a t e l l i t e s  are o b t a i n e d  by 

photographing the  s a t e l l i t e  a g a i n s t  a background of 

stars. A f t e r  corrections f o r  t h e  p h y s i c a l  e f f e c t s  

such as  d i f f e r e n t i a l  r e f r a c t i o n  and a b b e r a t i o n ,  shimmer, 

etc. [Mueller ,  1 9 6 4 ,  pp. 309-317; Hot te r ,  19671 have 

been a p p l i e d ,  t h e  r e s u l t i n g  t o p o c e n t r i c  r i g h t  ascens ion  

and d e c l i n a t i o n  form t h e  purely geometr ic  ground t o  

s a t e l l i t e  v e c t o r  

?i= 

cos6 cosa 

cos6 s i n a  

s i n 6  

1-1 

The above v e c t o r  i s  r o t a t e d  i n t o  the  average terrestr ia l  

c o o r d i n a t e  system s i n c e  i t  is  i n  t h i s  c o o r d i n a t e  system 

t h a t  t h e  adjustment  takes place. 

Transformation i s  f i r s t  made i n t o  t h e  i n s t a n t a n e o u s  

t e r r e s t r i a l  system (see Fig. 1 - 2 ) .  T h i s  t r ans fo rma t ion  

i s  a f u n c t i o n  o f  a s i n g l e  f i n i t e  r o t a t i o n  through t h e  

Greenwich apparent  s i d e r e a l  t i m e  ( G A S T )  (see S e c t i o n  

1 . 3 1 ) .  A v e c t o r ,  8, i n  t h e  t r u e  ce les t ia l  system i s  

-5- 



FIGURE 1-2. TRUE CELESTIAL AND INSTANTANEOUS 
TERRESTRIAL COORDINATE SYSTEMS. 
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rotated into the instantaneous terrestrial system by 

the following equation: 

R3 (GAST) = 

-P Y = R3 (GAST) 2 , 1-2 

cos (GAST) sin (GAST) 0 

-sin (GAST) cos (GAST) 0 

where 3 is the resulting vector in the instantaneous 

terrestrial system and R 3  (GAST) is a 3 x 3 matrix.that 

expresses a rotation about the 3 axis by the amount 

GAST, namely: 

1-3 

Next the vector Y' is rotated from the instantaneous 
terrestrial (Y) to the average terrestrial (X) system 

(see Figure 1-3). This transformation is a function of 

two rotations through the x and y coordinates of the 

instantaneous terrestrial pole (see Section 1.32). 

Mathematically, 

where T'x is the resulting vector in the average terrestrial 
coordinate system; R l ( - y )  and R~(-x) are l-axis and 2-axis 

rotations through -y and -x. Since the x and y values are 

computed on the assumption that they are differential 

-7 -  



Y ( W E S T )  

3 y 3  

Y 

( S O U T H )  GREENWICH 

FIGURE 1-3. INSTANTANEOUS AND AVERAGE TERRESTRIAL 
COORDINATE SYSTEMS. 
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[Preuss, 1966, p . 7 2 1 ,  the finite rotations are replaced 

by differential rotations and Equation 1-4 is reduced to 

1 0  X 
-+ x =  0 1 -y 

--x Y 1 

+ 
Y 1-5 

cos (GAST) ; sin(GAST); x 

s =  -sin (GAST) ; COS (GAST) ; -y 

-x cos (GAST) -y sin (GAST) ; -x sin(GAST) +y cos (GAST) ; 1 

by omitting products of xy. 

from the true celestial to the average terrestrial 

coordinate system is achieved by combining the rotations 

expressed in Equations 1-2 and 1-4, nanely: 

Thus the transformation 

. 

and after considering Equation 1-5, the matrix form is 

1-8 

-9- 



1.31 Computation of the Greenwich 
Apparent Sidereal Time 

The GAST is computed in four steps (Figure 1-4). 

(1) The Greenwich Mean Sidereal Time (GMST) at 
h 0 UT1 is computed by means of Newcomb's 

formula [Expl. Supp., 1961, p. 751 as 

GMST at Oh UT1 = gh 38m 45?836 + 

+ 864 0184?542 TU + 0?0929 Ti , 1-9 

where TU is the number of Julian centuries 

of 36525 days of universal time elapsed 

since January 0.5, 1900. 

is equal to the Julian date of the epoch of 

observation minus 2415020.0 (the Julian 

date of January 0.5, 1900.) divided by 

36525. 

The value of TU 

(2) The UT1 time (interval) is converted to a 

mean sidereal interval by multiplying the 

former by the factor of 1.0027379093. 

GMST = GMST at Oh UT1 + mean sidereal 

time interval. 

(3) 

1-10 

( 4 )  GMST is converted to GAST by adding the 

equation of the equinox, At [Expl. Supp., 

1961, pp. 43 and 751. 

-10- 
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FIGURE 1-4. CONVERSION FROM UTI  TO GAST. 
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GAST = GMST + At, 1-11 

where 

At = AI) cos E ,  1-12 

where A $  is the nutation in longitude and E is the 

obliquity of the ecliptic at the epoch of observatior,. 

Computation of the Obliquity ( E )  

The computation of E is made according to 

& = E  + m , 1-13 

where is the mean obliquity at the epoch of observation, 

and A E  is the nutation in obliquity. 

the following equation 

ern is computed by 

[ E x p l .  Supp., 1961, p. 9 8 1 :  

E = 23O 2 7 '  081126 - 4611845 T - m 
II II 

- 0 . 0 0 5 9  T2 + 0 . 0 0 1 8 1  T3, 1-14 

where T is the number of Julian Centuries from the 

fundamental epoch of 1900 January 0.5 ET. d 

The Computation of the Nutation in Obliquity ( A E )  

and Nutation in Longitude ( A $ )  

The values of A $  and A &  are computed according to 

the numerical series developed by E. W. woolard [Expl. 

-12- 



Supp., 1961, pp. 44-45]. The programming procedure used 

is as follows [Allen, 1966, p.  191 : 

(a) A vector with 5 elements is formed by solving 

Equations 1-15 to 1-19. 

1 = 296?10460 8 + 13?06499 24465d + 
+ o?ooo68 9 0 ~ ~  + o?ooooo 0295D3 1-15 

l'= 358?47583 3 + Of98560 02669d - 
- O?OOoOl 12D2 - O?OOOOO 0068D3 1-16 

F = ii?25088 9 + i3f22.935 04490d - 
- 0?00024 07D2 - O?OOOOO 0007D3 1-17 

D = 350?73748 6 + 12?19074 9191411 - 
- o ? o O O l O  7 6 ~ ~  + O?OOOOO 0 0 3 9 ~ ~  1-18 

R = 259?18327 5 - 0?05295 39222d + 
0?00015 57D2 + o?ooOOO 0046D3 1-19 

where 

d = 1000 D = 36525 T, 1-20 

and where T is the number of Julian Ephemeris 

Centuries of 36525 days from the fundamental 

epoch (1900 January 0.5 ET = J.E.D. 241 5020.0) 

to the epoch of the observation. 

d 

-13- 
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LONGITUDF: (A $ J OBLTQUTTY (A E) 

Fer i ocl Multiple of sine a g u m n t  11 c o s i n e  a rguwnt  
(days) 1 1' F D R U n i t  = 0.0001 

F.RGu'~rt3l!ST Cocf f ic ient  of Coefficicnt of 

- - 
6798 
3399 

1305 
1095 
6786 
1616 
3233 

183 
365 
122 
365 
178 

206 
113 
183 
3% 
91 

347 

347 
200 

212 
120 

412 

13.7 
27.6 
13.6 
9.1 

31.8 

27.1 
14.8 
27.7 
27.4 
9.6 

+1 
+2 

-2 +2 1-1 
t-2 -2 

-2 1-2 -2 +1 
-2 +2 +2 
+1. -1 -1 

+2 -2 -1-2 
+l 
+1 +2 -2 +2 
-1 +2 -2 t.2 

1-2 -2 +l 

+2 -2 
+2 -2 

+2 
+1 +1 
+2 i-2 -2 +2 

-1 +1 
-2 +2 4-1 

-1 +2 -2 +1 
+2 -2 +l 

1-1 t-2 -2 +1 

+l -2 

+2 +2 
+1 

+2 +1 
+1 +2 +2 
+1 -2 

Li. i.2 1-2 

+1 +1 
-1 +1 
-1 1-2 +2 3-2 

+2 

-172327 
+ 2088 

+ 45 
+ 10 - 4 

3 - 2 

- 12729 

- 

+ 1261 - 497 
+ 214 
i- 124 

+ 45 - 21 
+ 16 - 15 - 15 

- 10 
5 
5 

+ 4 
+ 3 

3 

- 2037 
i- 675 - 342 - 261 - 149 

-1- L14 
+ 60 
+ 58 
" 57 - 52 

0 - 

- 
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-173 7T i-92100 +g.m 
+ 0.2T - 904 +O.ltT 

+ 2  
i - 2  

- 1.3T + 5522 -2.9T - 3.1T 
+ 1.2T + 216 -9.6T - 0.5T - 93 +o.3T 
+ 0.1T - 66 

- 0.1T 
+ 8  

+ 0.1T + 7  

4- 5 
+ 3  
+ 3  - 2 - 2 

- 0.2T + 884 -0.5T 
+ 0.1T - O.4T + 183 

i- 113 -0.1" 

- 50 

- 31 
+ 30 + 22 



Table 1-1. (Coiit ' d )  

LOI\IGI9'UI)F: (A$ ) OBLIQUITY (A E )  

Period MuLtip1.e of sine azgimznt ,, cosine ar,nurnent 
(days) 1 1' F D Si Unit = 0.0001 

mcxrm m Coefficient of Coefficient of 

.I_- -- ---- 
9.1 
7.1 
13.8 
23.9 
6.9 

13.6 
27 eo 
32.0 
31.7 
9.5 

34.8 

9 3 6  

3.3.2 

14.8 
14.2 

5.6 
1.2 . 8 
14.7 

( 0 3 -  
23.9 
29.5 
15.4 
29.8 
26.9 
6.9 

9.1 
25.6 
9.4 
13.7 
32.6 

13.8 
9.8 
7.2 

27.8 
8.9 

5.5 

r 

3-1 +2 +l 
+2 -1-2 +2 

+2 
+1 +2 -2 +2 
+2 +2 +2 

+2 
-1 +2 +1 
-1 +2 +1 
+1 -2 +1 
-1 4-2 +2 +1 

+1 4 - 1  -2 

+1 +2 
+1 +2 4.2 

+2 -1-1 
-1 +2 +2 

+i +2 4.2 i-2 
+2 +2 -2 +2 

-2 +1 
+2 +2 +.l +1 +2 -2 +1 

*l. 
+1 -2 

+1 -1 
+1 -2 
+2 +2 +1 

+1 +2 
+1 +l 
+1 -1 t 2  i-2 
-2 +1 
-1 +2 -2 +1 

+2 +1 
-1 -1 +2 i-2 i-2 

-1 +2 4-2 +2 
+1 +2 
t.1 +l 4-2 i-2 

-1-3 42 4-2 

44 
32 
28 
26 
26 

25 
19 
14 
13 
9 

7 
7 
6 
6 
6 

6 
6 
5 
5 
5 
4 
4 
4 
4 
4 

3 
3 
3 
2 
2 

2 
2 
2 
2 

+ 2 

- 2 

- -  

23 
14 

ll 
11 

10 
7 
7 
5 

3 

3 
3 

3 
2 

3 

2 



A 69  by 5 matrix is formed from the elements 

of the argument portion of Table 1-1. 

The vector in (a) above is then multiplied 

by the matrix in (b) which results in a new 

vector with 69  elements. 

The sine and cosine is taken of each of the 

elements in (c) and then multiplied by their 

corresponding coefficient (Table 1-1) 

evaluated at T. 

The sine and cosine terms are separately summed 

to obtain values of A $  and A &  respectively. 

1.32 Polar Motion Determination 

coordinates x and y of the instantaneous pole 

to be used in Equation 1-8 are published annually by 

the central bureau of the International Polar Motion 

Service [Yumi, 1 9 6 5 1 .  The values for x and y at the 

epoch of observation are obtained by a second difference 

interpolation using Bessel's formula. 

1.4 Optical Data 

Agencies involved in the reduction of optical 

satellite observations have their own specifications; 

use formulas of varying accuracy; and use different 

methods and techriques. Therefore, the observations 
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sent to the NASA data bank may be inconsistent according 

to : 

(1) The coordinate system used, 

(2) The corrections applied, 

( 3 )  The time system employed. 

These inconsistencies are removed according to the 

procedure given in [Hotter, 19671. 

In order to exemplify the observational data used 

in the adjustment of simultaneous optical observations, 

three simultaneous events are tabulated in Table 1-2. 

Optical data is assumed to be in the form of topocentric 

right ascensions and declinations in the true celestial 

coordinate system and UT1 time system. 

1.5  Range Data 

Range data is treated as if only containing random' 

errors. This means that no error models are present 

in the adjustment which would absorb any systematic 

errors. Systematic errors are assumed to be removed by 

the observing and/or processing agencies. It is 

recognized that at present this is not necessarily the 

case, thus it is likely that the range adjustment pro- 

gram will need to be revised to accommodate suitable 

error models [Gross, in prep.]. 
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In order to exemplify the information used  in 

the case of simultaneous range observations, three 

events are tabulated in Table 1-3. 
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6 
0 

0 

cu 
I 

r-i 

w o  

e .  0 0 0 0 

% ? A  g 8 g  C V u ) a c u  
o o r t c u  
0 0 0 0  0 0  

d o o d  0 0  0 0 0  
I I .  I 

0 0  0 0 0  

0 0 0  
0 0 0  

0 0 0 0  

0 0 0 0  0 0  
8 0 0 0  0 0 0  0 0  0 0  0 0 0  

d d  0 0 0  
. d d d o '  
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Table I.-3. Sixultansous Range Data 

21 ll 0.0000 

21 11 0.0000 

21 11 0.0000 

21 ll 0.0000 

21 11 o.ooor3 

21 12 0.0000 

2 1  1 2  0.0000 

21 12 0.0000 

2 1  12 0.000G 

21 1.3 0.0000 

2 1  13 o.oooo 
21 13 o.oooo 

I 

Date 

4 Aug 63 

4 Aug 63 

4 A~ig 63 

4 Aug 63 

4 Aug 63 

4 Aug 53 

4 Aug 63 

14 Aug 63 

4 kag  63 

4Aug 63 

4 k d g  63 

4 Aug 63 

Std. 

Dev. 
(meters ) 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.3 

10.0 

10.0 

10.0 

10.0 

1.0.0 
- -.- 
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2. THE OPTICAL ADJUSTMENT 

2.1 The Mathematical Structure 

The adjustment method is by least squares, where 

the parameters are the three dimensional rectangular 

coordinates of the ground stations and satellite 

positions , while the observables are the topocentric 
range , and topocentric declination and right ascension 
of the satellite. 

* 
* 

The mathematical structure relating the parameters 

and the cbservables is a functior, of three vectors. The 

three vectors as depicted in Figure 2-1 are (the arrow 

over the symbol will be reserved for those vectors which 

have a finite magnitude as opposed to say vectors 

containing differential corrections): 

(1) the coordinate system origin to ground 

station vector, 

i t j ,  the coordinate system origin to satellite 
position vector. 

Xijl the ground station i to satellite 

position j vector. 

( 2 )  

+ 
( 3 )  

Thus 
- + -  + itj - xi - Xij 2-1 

* Needed in the algebraic derivation but in fact, in 
the numerical computation, they are either not need- 
ed, or obtained to a sufficient accuracy from the 
observed quantities. 

-21- 



W 

AVERAGE 
TERRESTRIAL 

MEAN / 
v (  +SOoEAST) - 

VERAGE TERRESTRIAL 
COORDINATE SYSTEM 

FIGURE 2-1. THE ADJUSTMENT COORDINATE SYSTEM. 
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o r  

2-2 

where 

2-3 

is a v e c t o r  composed of  t h e  r e c t a n g u l a r  c o o r d i n a t e s  of 

an a r b i t r a r y  s a t e l l i t e  p o s i t i o n ;  

2-3 ( a )  

i s  a v e c t o r  composed of t h e  

an a r b i t r a r y  ground s t a t i o n ;  

r i j ,  6 i j ,  a i j  be ing  

and r i g h t  a scens ion  

i s  t h e  ma t r ix  which 

r e c t a n g u l a r  c o o r d i n a t e s  of 

r cosai 1 i j  

2-4 

t h e  t o p o c e n t r i c  range ,  d e c l i n a t i o n  

from i t o  j, r e s p e c t i v e l y ,  w h i l e  S 

t ransforms t h e  v e c t o r  f r o m  t h e  t r u e  

c e l e s t i a l  t o  t h e  average t e r r e s t r i a l  c o o r d i n a t e  sys t em 

(Sec t ion  1 . 3 ) .  
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The point by point build-up of the network can be 

visualized in the following way. Given the components 
-+ of the vectors ti and ti j, X is computed. Then with 
j 

this position j as known and a known vector from an 

unknown station to j, the coordinates of the unknown 

station are computed. This is extended to include many 

unknown and known stations, along with many redundant 

observations thereby necessitating an adjustment. 

Strictly speaking, pure optical or range data does 

not permit such a procedure to be literally followed, 

however the adjustment framework (a form of colinearity) 

remains applicable. 

2.2 The Linearized Form of the 
Mathematical Structure 

The mathematical structure (Equation 2-2) is 

linearized by a Taylor series expansion about the pre- 

liminary values of the ground stations and satellite 

positions, and the observed topocentric values of the 

range, declination and right ascension. The result is 

(i and j designate ground and satellite points concerned 

and not dimensions of arrays) 

+ 'ij = O *  
Aij Xij + Bij Vij 2-5 
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- - 

2-6 

+ l o o - 1 0 0  

0 +1 0 0 -1 0 = [+II-Il ; 

0 0 4-1 0 0 -1 

where 

and 

- - 
xi j 

x =  
j 

- xi - 

j 
x' 
Zi 

j 

j 

j 

du 

dv 

dw 

dui 

dvi 

dwi 

2-7 

2-8 

2-9 

are c o r r e c t i o n s  t o  t h e  p re l imina ry  v a l u e s  of t h e  ground 

s t a t i o n  and s a t e l l i t e  p o s i t i o n ,  r e s p e c t i v e l y .  

where S i s  d e f i n e d  by Equation 1-8,  R3 and R2 a r e  r o t a t i o n  

matrices, and 
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c = 2-11 

1 0 0 

0 -cos6 0 

0 0 -1 

The matrix 

r ij 66ij 

ri j6ai cos 6ij 

0 1 

; 

is omitted from the expression f o r  B since it is 

multiplied into 
ij 

namely, 

6rij 

2-12 

these are the residuals of the adjustment in units of 

meters (66 and 6a are in radians). 
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, 

2-13 

is the evaluated mathematical structure where "0"  

designates "evaluated at preliminary values" and "b" 

designates "evaluated at observed values." 

th Up to now consideration has been given to the i 

and jth ground and satellite positions. 

basic idea to include a redundant number of satellite 

positions observed from a multitude of known and unknown 

ground stations, the following matrix equation is 

bui 1 t-up : 

Extending this 

A X + B V + W = O ,  2-14 

where the original quantities Aij, Bij, etc. are simply 

submatrices of their corresponding unsubscripted counter- 

parts. 

2.3 Weighting the Declinations 
and Right Ascensions 

The observed quantities in the optical case are 

considered as the topocentric declinations (6) and right 

ascensions ( a ) .  The corresponding precision estimates 

resulting from a photographic plate adjustment or some 

other apriori estimate are m2 and mi, the variances, 

while ma* = m 

seconds squared. 

6 
- is the covariance. All units are arc 6a 
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It is important to note that the weighting of the 

declinations and right ascensions is made on the basis 

of the estimates of variances of 6 and a obtained from 

the plate adjustments and that it is assumed that the 

variance of 6 and a do not vary according to the distance 

of the satellite from the particular observing ground 

station. 

On the other hand, the weighted sum of squares of 

the residuals (Section 6.11) is conveniently chosen to 

have units of arc seconds squared, thus, the weights 

are to have units of (arc sec.) m-' since the units of 

the residuals have been stipulated (Equation 2-12) to 

be meters. Therefore, it is necessary to transform mi, 
2 

m and m6a into 

formulas: 
a' linear units (meters) by the following 

2-16 

2-17 

2-18 

where r is the approximate topocentric range and 

II 1 
sin 1" 

P =  
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With the precision estimates in linear units the 

following variance-covariance matrix is formulated: 

6a mi m 

m m2 ad a 

m 6a dr ms 2 m  

0 

0 

- 1  

I 

ar m 2  m a - 
m 2  r 

I 

where the new quantities m2 m and m are the 

variance of the range, covariance between the declina- 

tion and range, and the covariance between the right 

ascension and range, respectively. If the correlation 

coefficients 

ar r 1  dr' 

m 
- -  UT = o  I - 

'ar mumr 

and 

m + a  r I 

the weight matrix for a single direction is 

2 

= 0 2-19 
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where mi is the apriori variance of unit weight in units 

of arc seconds squared. 

Corresponding to Pij, P denotes the weight matrix 

for the observed topocentric directions of the adjust- 

ment. P has the characteristic of containing non-zero 

3 x 3 matrices only along the diagonal since the 

individual directions are assumed to be statistically 

independent. 

The topocentric range is needed in Equations 2-16 

to 2-18 to convert the precision of the directions from 

arc units into linear (meters) units. Four significant 

figures are required in the topocentric range. Equation 

2-16 shows that the range need have no more significant 

figures than m6 or m . II I1 

a 

The topocentric range from an arbitrary ground 

station i in a given simultaneous event j is computed 

from 

= [ (uj-u.) O O + (vj-vi) 0 O + (wj-wi) 0 0  3 +i , 
ri j 1 

i = 1, 2, ..., m (number of stations in the eventj. 
vi, wo are the preliminary rectangular coordinates 0 

i 

2-20 

U0 i' 
of the 

ith ground station and are computed from 
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0 
U i 

i 

wi 

0 
V +o - xi - 

0 

(N+H) cos$ cos1  

(N+H) cos@ sinX 

[N(1-e2)+H] s i n @  

, 2-21  

$, A ,  H, N be ing  t h e  geodet ic  l a t i t u d e  and l o n g i t u d e ,  t h e  

e l l i p s o i d a l  h e i g h t ,  and prime v e r t i c a l  r a d i u s  of c u r v a t u r e  

a t  p o i n t  i ,  r e s p e c t i v e l y ,  w h i l e  e i s  t h e  e c c e n t r i c i t y  of 
t h e  r e f e r e n c e  e l l i p s o i d .  u 0 v 0 0  w a r e  t h e  p re l imina ry  

1' j f  j 
r e c t a n g u l a r  c o o r d i n a t e s  of the  j th s a t e l l i t e  p o s i t i o n  and 

a r e  computed ( n o t e  t h a t  t hese  a r e  needed on ly  f o r  t h e  

purpose of g e t t i n g  the  approximate t o p o c e n t r i c  range)  as 

fo l lows :  

-+ 
(1) The ground v e c t o r ,  X 1 2 ,  between t h e  f i r s t  t w o  

s t a t i o n s  l i s t ed  i n  t h e  p a r t i c u l a r  s imultaneous 

e v e n t ,  (see Table 1-2 and Figure  2-2) i s  

computed according t o  

-f 
x12 = 2-22 

( 2 )  T h e  ground s t a t i o n  1 t o  s a t e l l i t e  p o s i t i o n  j 

u n i t  v e c t o r  X l j ,  i s  computed from 
-t 
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j 
S A T E L L I T E  
POSIT1 O N  

GROUND S T A T I O N S  *\ 

F I G U R E  2 - 2 .  T H E  A P P R O X I M A T E  S A T E L L I T E  VECTOR. 
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-% 
X l j  = s 

cos6 cosa  

cos6 s i n a  

s i n 6  

2-24 

where S i s  t h e  t r ans fo rma t ion  ma t r ix  of t h e  

t r u e  c e l e s t i a l  t o  t h e  average terrestr ia l  

coord ina te  systems ( S e c t i o n  1 . 3 ) .  

The ground s t a t i o n  2 t o  s a t e l l i t e  p o s i t i o n  j 

u n i t  v e c t o r ,  

The ang le ,  A 2 ,  a t  ground s t a t i o n  2 i s  computed 

accord ing  

-f 
i s  computed a s  i n  ( 2 ) .  

' 2 j f  

t o  t h e  fo l lowing  d o t  product :  

2-25 

The ang le ,  A 

computed from t h e  fo l lowing  d o t  product :  

a t  t h e  s a t e l l i t e  p o s i t i o n  i s  
1' 

2-26 

F i n a l l y  t h e  s a t e l l i t e  p o s i t i o n  v e c t o r ,  go t o  

be used i n  Equation 2-20 i s  computed from t h e  

fo l lowing  v e c t o r  equat ion:  

j f  

2-27 
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where 

2-28 

2.4 Ground Stations as Constrained Quantities 

In performing the adjustment, ground stations are 

fixed by one of the following two procedures. The first 

is simply to delete those rows and columns of the normal 

equations which belong to the ground stations in question; 

the second procedure is to over weight those particular 

ground stations. 

Specifically, the quantities to be weighted are the 

rectangular coordinates u, v, w of the observing ground 

stations. The 3 x 3 weight matrix associated with the 

three dimensional rectangular coordinates of a particular 

ground station is denoted by Pk. 

ground station is achieved by specifying numerically 

large diagonal elements in Pk, thereby holding the 

coordinates of the ground station at its preliminary 

values. 

The fixing of any 

P 1  is used to denote the matrix of weights, Pk, of 

all the weighted ground stations. Note, for the deriva- 

tion to follow (Section 2.6)  consider the satellite 

positions as also weighted with a weight matrix PPI and 

further consider the matrix Px as containing both P1 and 
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P , namely 

- 
px - 

2.5 Spatial Chord Lengths 

For the purpose of introducing scale, the spatial 

chord length between any two observing ground stations 

may be constrained at the value computed from their prelimi- 

nary coordinates. Tnis is most conveniently acnievea ~y 

introducing the spatial chord length as a fictitious 

observation with a large weight [Uotila, 19671. This 

procedure allows spatial chords to be treated as either 

observed or fixed by simply varying the weight. 

The mathematical structure is 

2-29 

where the subscripts k and 1 refer to the two particular 

ground stations and not dimensions of arrays; Lkl is the 

numerical value at which the chord length is to be fixed. 

The above mathematical structure is linearized by a 

Taylor's series expansion about the preliminary values of 

the ground station coordinates. The result is 
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where 
- - aGkl 

'kl -au, or -av, or aw 

0 0 0  O-WO ' I U1-Uk 0 0  .;-vi 
+Uk 

I- 
l-vk I - 0  w1 k I I -  

LE1 Lkl LL Lil I 

while 

dwl 

d'k 

dvk 

dwk 

Vkl = 0 

0 0  
W1-Wk 

2-31 

I 

2-32 

2-33 

2-34 

2-35 

due to the large weight (see Equation 2-37); 

according to the first equation of the section. 
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The weight applied to the constrained chord is 

2-37 

2 
where m2 is the variance of unit weight and mkl is the 

variance of the chord. 

stipulating a small enough value for mil. 

0 

A large weight results by 

Thus far consideration has been given to one spatial 

chord. The equation 

C X - V  + D = O  
C 

applies when more than one chord is 

original quantities ckl, Dkl ,  etc., 

2-38 

constrained, thus the 

are submatrices of 

their unsubscripted counterparts. 

the diagonal weight matrix of all constrained chords. 

Pc is used to represent 

It will be convenient to defer a discussion of the 

contribution of the spatial chord constraint to the 

normal equations and to the sum of squares of weighted 

residuals to Sections 2.63 and 6.11, respectively. 

2.6 The Normal Equations 

2.61 Outline of Derivation 

The normal equations are derived by minimizing the 

quadratic form 
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V'PV + X ' P X X  

subject to the relation (Equation 2-14)  

A X + B V + W = O .  

Upon introduction of Lagrange multipliers K ,  the variation 

function is 

@ = V'PV + X ' P x X  - 2 K ' ( A X  + BV + W) , 2-39 

where 

V is the vector of residuals corresponding to the 

a's and 6 ' s ;  

X is the vector of corrections to the preliminary 

ground and satellite positions; 

P is the weight matrix for the a's and 6 I s ;  

is the weight matrix for the ground and satellite 

positions; 

A and B ,  and W are coefficient matricies and a 

constant vector, respectively, which were described in 

detail in Section 2 . 2 .  

Upon the differentiation of Equation 2-39 for the 

minimum condition [Uotila, 1967, p. 811, the expanded 

form of the normal equations becomes 
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-P 0 A’ 

0 -P B’ 

A B O  

X 

2-40 

X 0 

V + 0 = O  . 
K W 

By a row and column transformation, the residual 

vector V is eliminated and the normal equations become 

BP-~B’ A 

-P A ’  

K W 

X 0 
+ = o .  2-41 

Next the correlates are eliminated, thus resulting 

in 

[A’ (BP-~B’)’’ A + pXi x + A I  (BP-’B’)-’ w = o . 2-42 

The following summation form of the non-zero 3 x 3 sub- 

matrices of the above equation is found by replacing the 

A ,  B, and P matrices with their expanded forms in terms 

of 3 x 3 submatrices (Equations 2-6, 2-10, and 2-19): 
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= o ,  2-43 

where the non-zero 3 x 3 submatrices occur only on the 

diagonal and those ij 3 x 3 positions corresponding to 

indicates a a ground to satellite observation; 

summation over all ground stations observing satellite 

position j; indicates a summation over all satellite 

positions observed from ground station i. All summations 

contain only 3 x 3 and/or 3 x 1 matrices. 

i 

j 

Elimination of Xs, the corrections to the satellite 

positions, from the above yields the following reduced 

normal equations: 

N X  + U  = O ,  
9 9 

2-44 

where the X vector represents the unknown corrections 

to the preliminary rectangular coordinates of the ground 

stations; U is the constant vector; N is the coefficient 

matrix. 

g 

9 

The coefficient matrix N is made up of 3 x 3 

matrices. By letting 
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-’ = (B. .PT!B! . ) - ’  
Mi j 1 3  1 3  1 3  

2-45 

= (BY?)’ 1 3  PijBIi 2-46 

in Equation 2-43,  the expression for the 3 x 3 diagonal 

matrix corresponding to the kth ground station is given 

by 

2-47 

Note the weight, P 

been dropped in the second term of the above equation. 

The expression for the off diagonal 3 x 3 matrix 

corresponding to the kth and the lth ground stations is 

for the jth satellite position has 
j f  

2-48 

where the summation is performed over all satellite 

events observed simultaneously from both ground stations 

k and 1. 

j 

The constant vector of the normal equations (Equation 

2-44)  is made up of 3 x lvectors corresponding to each 

‘k‘ ground station. The vector, for the kth ground 

station is given by 
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where, accord ing  t o  Equation 2-13, 

o r  

2-50 

2-51 

A t  f irst  s i g h t  it seems t h a t  t h e  p re l imina ry  c o o r d i n a t e s  

of each s a t e l l i t e  p o s i t i o n  a r e  r e q u i r e d ,  however sub- 

s t i t u t i o n  of Equat ions 2-50 and 2-51 i n t o  Equat ion 2-49 

r e s u l t s  i n  t h e  c a n c e l a t i o n  o r  droppir,g o u t  of terms 

con ta in ing  3' and t h e  observed v e c t o r  itij b o r  2ij. 
S p e c i f i c a l l y ,  

j 

Uk = -; {%; (2; - it; - +b Xkj)} + 
3 

2-53 
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T e r m s  1 and 

= 

c o o r d i n a t e s  

0 

0 

-1 

I 

i n  t e r m  4 i 

4 i n  t h e  above cance l  ( i . e . ,  3' sa t e l l i t e  

drop o u t )  because 2' can be f a c t o r e d  o u t  of 

i .e.  , 

j f  

j 

2-54 

which has  an o p p o s i t e  s i g n  t o  t h a t  of t e r m  1. 

and 6 drop o u t  because t h e y  are i d e n t i c a l l y  zero .  

is because both  t e r m s  conta in  p roduc t s  l i k e  

T e r m s  3 

This  

where 

and 

and s i n c e ,  i n  t h e  o p t i c a l  adjustment  P has t h e  form; ij 
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* * o  

* o r  
- - *  

’i j 
0 0 0  

and using 2-46; 

The expression for the constant column becomes 

2-54a 

2-55 

In summary, the normal equations in the optical adjust- 

ment are formed by Equations 2-47, 2-48, and 2-55. 

2.62 Weighted Ground Stations Contribution 
to the Normal Equations 

In Section 2.4 the matter of fixing ground stations 

by weighting was discussed. Further, in Section 2.61 the 

normal equations pertaining to the ground stations were 

given. The weighting of ground stations is accomplished 

by the addition of Pk to Equation 2-47. 

It is not until the other summations are completed 

that any consideration need be given as to how the ground 

stations are to be treated, namely: 

(1) as parameters i.e., 
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(2) as fixed i.e., Pk having three numerically 

large diagonal elements. 

3 x 3 diagonal matrix of the kth ground 

station in the reduced normal equation at the 

time of solution. 

Pk is added to the 

X 

C 

2.63 Spatial Chord Length Contribution 
to the Normal Equations 

U 

D 
+ = o .  

The normal equations (Equation 2-44) pertaining to 

the ground stations were derived in Section 2.61. 

linearized spatial chord length equation (Equation 2-30) 

was derived in Section 2.5. The contribution of the 

latter to the normal equations may be found by first 

bordering the normal equations [Uotila, 1967, p. 74, 

Equation 1941, thusly 

The 

-P-' C 

C' N 

C 
D 

C 
-K 

+ = o .  
X U 

By transformation, the above is written as 

2-56 

2-57 
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The elinination of Kc from the above yields 

[N + C' PcC] X + U + C' PcD = 0 , 2-58  

which is the most convenient formula from a programming 

standpoint. Specifically, a constrained spatial chord 

length between any two stations say k and 1 results in 

the following expressions: 

TkPklTi I 2-59 

TIPklTi I 2-60 

TkPklTi I 2 - 6 1  

I 2-62 TiPklDkl 

T'PklDkl 7 2-63 

wheEe all matrices in the above are defined in Section 2.5. 

The first three expressions in the above are 3 x 3 

matrices and are added respectively to Nkkl Nll (Equation 

2-47) and Nkl (Equation 2 - 4 8 ) ;  the last two expressions 

are added respectively to the constant columns Uk and U1 

(Equation 2 - 5 5 ) .  

2-36, there is no contribution to the constant column of 

the normal equations if the spatial chord is being 

constrained at the value computed from the preliminary 

Since Dkl = 0, according to Equation 

-46-  



values of the ground station coordinates. 

2 . 7  Detection of Blunders in the Declinations and 
Right Ascensions, and/or Ground 

Station Coordinates 

Blunders in the observed declinations and right 

ascensions and/or observing ground station coordinates 

are detected during the formation of the normal equations. 

The procedure used is to test the variance of unit weight 

that would result from a preliminary least square adjust- 

ment of each simultaneous event. 

ground stations are held fixed. 

observed a, 6 pair from such a preliminary adjustment are 

the first two elements of the 3 x 1 vector 

In this adjustment the 

The residuals on the ijth 

(the third element is the range to the preliminary 

adjusted satellite position), and therefore; 

-f + o ‘  - 1  + +(-J 
3 3 

Vf.PT!V = (Xi-X.) Mij (Xi-X.) i ij 1 3  ij 

since the third element is dispensed within the product 

-f 30 BT’ (Xi-X.) 
’ij ij 3 

(see Equation 2-19). 
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Therefore; 

+o -to -to +o 
(Xi-X.) ' Mi! (Xi-x.) 3 2 - event 1 *_ - ? V 2m- 3 

where the numerator can be shown to be the sum square of 

the weighted residuals (arc seconds squared) of all the 

observed declinations and right ascensions in the event; 

m is the number of ground stations in the event. 

If a number of rejected simultaneous events repeatedly 

contain a particular ground station, it is probably due 

to a blunder in the coordinates of the particular ground 

station rather than in the observed quantities. In this 

case, the preliminary coordinates of that ground station 

should be verified. 
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3 .  THE RANGING CASE ADJUSTMENT 

3 . 1  The Mathematical Structure 

The mathematical structure is 

r = [ (uj-Uil2 + (V._Vi)2 + (wj-wi) 2 *  3 , ij 3 
3 -1  

Fi, = [(u~-u.)~ 1 + (vj-vi)2 + (wj-wi)2l’-rij= 0, 

3-2 

where the observable rij is the topocentric range from 

ground station i to satellite positon j; the parameters 

ui, vi, w and uj, vj, wj are the three dimensional rectangu- i 
lar coordinates of the ground station i and satellite 

position j ,  respectively. 

The basic mathematical structure above is extended 

to include simultaneous ranges from three or more ground 

stations. By increasing the number of simultaneous events 

along with the number of known and unknown ground stations, 

an adjustment is necessary. 

3 . 2  The Linearized Form of the 
Mathematical Structure 

The mathematical structure (Equation 3-2 )  is linear- 

ized by a Taylor series expansion about the preliminary 

values of the ground stations and satellites positions, 
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and the observed value of the topocentric range. The 

result is (i and j refer to ground and satellite points 

and not to dimensions of arrays) 

aFi. - - 
Ai j= au I av: aw 

Aij Xij - vij + Lij = 0 , 

0 0  v O -v O w - w  0 0  u -u j i I j i  j i  
r b ' b  

ij r r b 
ij ij 

where 

3 - 3  

0 0 0  WO-WO 
j i  j i  j i  

I - b  
I ij r r 'ij 

I 3-4 
v -v 0 0  

I 

u -u 
1 -  

b '  
ij 

b '  

I 

I I  
- - [ aij I -aij 3-5 

where the superscripts "0" and "b" indicate preliminary 

quantities and observed values, respectively; 

where 

j 
X 

xi 
I 

I 
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and 

v is the residual of the adjustment in meters ij 
corresponding to the observed range rij; b 

3-6 

is the difference between the preliminary range and the 

observed range. 

up to now consideration has been given to the i th 

and jth ground and satellite positions. 

to many positions, the following matrix equation is 

built-up: 

Extending this 

A X - V + L = O ,  3-7 

where the original quantities Aij, v etc., are subsets ijf 
of their unsubscripted counterparts. 

3 . 3  Weighting the Observed Ranges 

The weighting of the observed topocentric range from 

ground station i to satellite position j is achieved by 

the following: 
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3-8 

where m2 is the variance of unit weight ,n units of meters 

squared and similarly m? is the variance of the observed 

range in meters squared. 

0 

11 

P denotes the diagonal weight matrix containing all 

the independent weights pij to be considered in the adjust- 

ment. 

3.4 Weighting the Ground Stations 

Weighting allows the ground stations to be treated 

as pure parameters or as fixed quantities. These aspects 

were treated in the optical case adjustment (Section 2.4)  

and can equally as well be used in the ranging adjustment. 

3.5 Spatial Chord Lengths as 
Constrained Quantities 

Spatial chord lengths between ground stations in the 

case of range adjustments are treated in the same way as 

in the optical case adjustment (Section 2 . 5 ) .  In fact, 

note that in the range adjustment, the spatial chord 

contribution is identical with that of a range observation 

except that two ground stations are involved rather than 

one ground and one satellite point. 
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3.6 The Normal Equations 

3.61 Outline of Derivation 

The variation function for the range adjustment is 

similar to the optical case, namely, 

@ = V'PV + X'PxX - 2K'(AX - V + L) , 3-9 

where 

V is the vector of residuals corresponding to the 

range observations; 

X is the vector of corrections to the preliminary 

ground and satellite positions; 

P is the weight matrix for the ranges; 

Px is the weight matrix for the ground and satellite 
* 

positions ; 

K' is the vector of correlates; 

The coefficient matrix A and the constant vector L 

were described in Section 3.2. 

The differentiation 

condition results in the 

normal equations: 

-P 0 A' X 

0 -P -I 
A -I 0 

* As in the case of the 

of Equation 3-9 for the minimum 

following expanded form of the 

X 

V 
K 

= o .  3-10 

optical adjustment, satellite 
positions and their corresponding weights were 
included for derivational purposes only. 

-53 -  



After the elimination of the correlates and residuals, 

A'PAX .t A'PL = 0 , 3-11 

which is nothing else but the normal equations correspond- 

ing to the variation of parameters method of least squares 

adjustment [Uotila, 19671. As a result of replacing the 

A and P matrices with their expanded forms in terms of 

1 x 3 vectors and 1 x 1 terms, respectively (Equations 

3-5 and 3 - 8 ) ,  the following summation form results: 

Ea! .p a +P a' 13 ij ij jl ijPijaij 

Ca! .p a +Pi l j  1 3  ij ij 

where indicates a summatio 

X 
j 

-- 

xi 

+ 
Ca! 13 .p ij L. ij 
i 

-Ea' p L ij ij ij 
j 

= o ,  

3-13  

over all ground stations 

observing satellite position j; 

over a l l  satellite positions observed from ground station 

i. All summations are a function of scalars and three 

dimensional vectors; recall 

indicates a summation 
j 

0 0  O-UO vo-vo w -w 
uj i j i j i 1  

ij 
b 
ij r a = I  b b r ij r ij 

3-5 

Elimination of the corrections to the preliminary 

coordinates of the satellite position, namely X from j 
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Equation 3-13, results in the following three expressions: 

the 3 x 3 diagonal matrix corresponding to the kth ground 

station is given by 

the 3 x 3 off diagonal matrix corresponding to the k th 

and the lth ground stations is given by 

where the main summation is performed over all satellite 

positions observed simultaneously from both ground stations 

k and 1; the constant vector of the kth ground station is 

j 

3-16 

In the above expressions, the weight matrix P of each 

satellite position was set equal to zero as there is no 

independent external source from which to get apriori 

variance estimates which could be used to derive weights. 

j 

The equivalent expression for the constant column 

Uk can be shown to have the following form: 
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- - 
Uk - -Cat kj p kjVkj ' 

j 
3-17 

where v is the residual of the particular observed 

range r arising from a least squares adjustment of one 

simultaneous event with ground stations held fixed (see 

Section 3.7) . 

kj 

kj 

Computation of the components in Equations 3-14, 

3-15, and 3-17 are discussed in Section 3.71. 

3.62 Weighted Ground Station Contribution 
to the Normal Equations 

The weighting of the ground stations in the ranging 

case is analogous to that of the optical case (Section 

2.62). The weighting of the ground stations is accomp- 

lished by the addition of Pk to Equation 3-14. 

3.63 Spatial Chord Length Contribution 
to the Normal Equations 

As for the derivation in the optical adjustment, the 

range normal equations pertaining to the ground stations 

are bordered with the chord condition and then algeraically 

eliminated from the augmented system, thus determining 

their contribution to the normals (Section 2.63). 
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3.7  Detection of Blunders in the Observed Ranges 
and/or Ground Station Coordinates 

Blunders in the observed topocentric ranges and/or 

ground station coordinates are detected during the forma- 

tion of the normal equations. The procedure used is to 

test the variance of unit weight (Equation 3-26) arising 

from a preliminary least squares adjustment of each 

simultaneous event. 

The preliminary adjustment is basically an iterative 

1' 
adjustment for the u 

the satellite position 

applying the residuals 

vj, w rectangular coordinates of 

by fixing the ground stations and 

of the adjustment to the observed 

j 

ranges. The approximation to the parameters u v w 
j '  j '  j 

is obtained by converting the so-called approximate geo- 

detic coordinates of the satellite into rectangular 

coordinates by use of Equation 2-21. The approximate geo- 

detic coordinates of the satellite are obtained by meaning 

the latitudes and longitudes of the ground stations 

involved in the simultaneous event and assuming a value 

of 1.6 megameters for the ellipsoidal height of the 

satellite. The idea that the above is crude is immediately 

rejected upon the knowledge that at most four iterations 

(to a tolerance of 1 cm in u v w . )  are required and 

that the electronic computer IBM 7094  performs these 
j' 1' I 
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iterations somewhat m r e  quickly than the time necessary 

to solve the corresponding simultaneous, exact, second 

order equations. 

The equation giving the mathematical structure of 

this preliminary adjustment is identical to Equation 3-1, 

the mathematical structure for the main range adjustment. 

Since only three parameters are involved, the linearized 

form of the mathematical structure for m ground stations 

du 

dv 

dw 

1 .  

j 

j 

in one simultaneous event becomes 

A X - V + L = O ,  

where the coefficient matrix 

; 

A =  

0 0 u? - u'? vo - vy w - w1 

uo - up v - v': wo - w2 
3 j j 

j .  j .  j .  

j .  j .  k j .  

0 0 0 

0 -  
0 wo 1 w; u - u ;  v o - v  

uo I uo V O  : vo W0 : wo 
j m j m j m 

3-18 

I 3-19 

the correction vector for the satellite coordinates 

x =  3-20 
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t h e  r e s i d u a l  v e c t o r  f o r  t h e  ranges 

and t h e  c o n s t a n t  v e c t o r  

3-21 

3-22 

where r: and r: are p re l imina ry  and observed r a n g e s ,  

r e s p e c t i v e l y .  
j j 

The normal e q u a t i o n s  

N X + U = O ,  

where 

N = A ' P A  

3-23 

3-24 

and 

U = A ' P L  3-25 

are  s o l v e d  f o r  X by i t e r a t i o n  u n t i l  t h e  e l emen t s  of t h e  

v e c t o r  X are less t han  1 c m .  A t  t h i s  p o i n t ,  X i s  e n t e r e d  
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into Equation 3-18 and the vector of residuals v is 
determined; the variance of unit weight is then computed 

according to 

3 - 2 6  

The complete set of data for the simultaneous event is 

printed out for evaluation in the case that the particular 

m2 is greater than a chosen input value. 

time, no contribution is made to the normal equations by 

the rejected event. 

At the same 0 

3.71 Additional Benefits of the Preliminary 
Simultaneous Event Adjustment 

The quantities a and 7 needed in the formation 
kj kj 

of the normal equations (Equations 3-14, 3-15, and 3-17) 

are a side product of the preliminary adjustment of each 

simultaneous event. Specifically, a is contained in 

the A matrix given by Equation 3-19, and 7 is an 

element of the v vector of Equation 3-21. 

kj 

kj 
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4. A D D I T I O N  OF NORMAL EQUATIONS 

Independent sets of normal equa t ions  formed from 

t w o  o r  m o r e  ba t ches  of o p t i c a l  d a t a  can be added t o g e t h e r .  

The b a s i c  i d e a  of t h e  combination of t h e  normal equa t ions  

i s  simply t h e  a l g e b r a i c  a d d i t i o n  of t h e i r  cor responding  

t e r m s .  L e t t i n g  n sets of normal equa t ions  be r e p r e s e n t e d  

by 

N I X  + U 1  = 0 I 4-1 

N 2 X  + U 2  = 0 I 

NnX Un = 0 I 

4-2 

and t h e i r  corresponding va r i ances  of u n i t  weight a s  m:, 

, m k ;  t h e  a d d i t i o n  i s  m2 I 
2 ... 

4-3 

I n  t h e  above, t h e  weights  may be ob ta ined  as fo l lows:  

m ; 
mf 

p12 = - 4-4 

where m:, m $ ,  m2 must have t h e  same a p r i o r i  va r i ance  n 
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(see Sec t ions  2 . 3  and 3 . 3 )  of u n i t  weight.  

The advantage of t h e  above i s  obvious,  namely ,  

batches of observed data  may be a d j u s t e d  s e p a r a t e l y  or  

as a p a r t  of a combined adjustment .  

The  same ho lds  f o r  t h e  a d d i t i o n  of two o r  more 

independent sets of range normal equa t ions .  The p o s s i -  

b i l i t y  f o r  t h e  a d d i t i o n  of o p t i c a l  and range normal 

equat ions  t o  each o t h e r  i s  a l so  p o s s i b l e .  
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5. SOLUTION OF NORMAL EQUATIONS AND FORMATION 
OF THE INVERSE WEIGHT MATRIX 

5 . 1  Introduction 

The normal equations for the optical and range adjust- 

ments are given in Sections 2 and 3, respectively. The 

general form of the normal equations is 

N X + U = O ,  5-1 

where N is the coefficient matrix, X is the vector of 

unknowns, and U is the constant vector. 

The adjusted values of the three dimensional rectangu- 

lar coordinates of the observing ground stations are 

obtained by adding the corrections, X, to the preliminary 

values, xO, namely 

x a = x 0 + x .  5-2 

The precision estimate of Xa is obtained in the usual 

manner (Section 6) i.e., through the inverse weight matrix, 

N-’. For this reason the method of formation of N-’ will 

be shown in this section along with the method of solving 

for X. 

The procedure hsed here [Uotila, 1967, pp. 22-23 ]  to 

accomplish the above is a Gauss reduction (Section 5.2) 
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and back solution (Section 5.3) , and computation of the 
inverse by the method established by Banachiewich 

(Section 5.3) . 
Two features which are peculiar to the specific 

procedure used here are: 

(1) The coefficient matrix, N, is broken down 

into 3 x 3 submatrices, and similarly the U 

vector is treated as composed of 3 x 1 

vectors. 

(2) The coefficient matrix, N, is compacted so 

that 3 x 3 zero submatrices are neither 

stored nor used in the computation. 

The first feature is achieved rather naturally; it is 

because of the form of expressions Nkk, Nkl, and Uk 

(Equations 2-47, 2 - 4 8 ,  2-55, 3 - 1 4 ,  3-15, 3-17) which are 

used to build-up N and U. On the other hand, the second 

feature is achieved through programming logic. Specifically, 

a first matrix, L, is used to tag each 3 x 3 non-zero 

submatrix of N with a row and column number. A second 

matrix, F, with a one-to-one correspondence to the first, 

is then employed to tag the storage assigned to the 

particular 3 x 3 submatrix. The individual elements of 

the 3 x 3 submatrices are all stored in one large linear 

array, E. 
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For example consider 

( 3 )  

( 4  1 

( 5 )  
L =  

2 3  

3 5 7 9  

4 5 6 7 8  

7 8  

5 7 8  

7 8  

8 

5-3  

as depicting 8 ground stations (listed along the left- 

hand side of the matrix) involved in a series of 

simultaneous events. The information is read as follows: 

Ground station (1) has at some time been involved in 

simultaneous event(s) with ground stations 2 and 3 ;  

Ground station (2) has been involved with 3 ,  5 ,  7, and 9 ;  

and so on. So for L ( 3 , 5 )  = 8, the 9 elements beginning 

with cell E(F ( 3 , 5 )  ) are the elements of N38, the 

3 x 3 non-zero submatrix on row 3 column 8 of the coefficient 

matrix, N (Equation 5-1). 

The reduced elements of N are stored in the locations 

previously created for elements in N. 

additional 3 x 3 matrices arise in locations where there 

were none originally in N, thus "drag storage" must be 

assigned. In doing so, the guide matrix L ,  and the 

During reduction 
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storage tagging matrix F are updated to account for these 

additional matrices. Similar drag storage is also 

determined during the formation of the inverse N-l. 

Once the drag storage is determined, the reduction, 

back solution and inverse determinations are guided by L, 

the storage located by F, and the elements to be used in 

the computation found in E. 

5.2 Reduction 

The coefficient matrix of the normal equations is 

written as 

N = S R ,  5-4 

where S is a lower triangular matrix with 3 x 3 identity 

matrices along the diagonal, and R is an upper triangular 

matrix. All matrices and vectors presented in this 

discussion are stipulated to be composed of 3 x 3 sub- 

matrices and 3 x 1 submatrices, respectively. 

The reduction is accomplished by computing 

from 

or 

S = I - T  

N = R - T R ,  

R = N + T R ,  

5-5 

5-6 

5-7 
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where R and T (thus S )  are built-up simultaneously. 

The augmented matrix 

m,u1 = 

n12 n13 . . . nln u1 

u4 

U il-1 

n U nn n 

is first reduced according to the algorithms 

defining 

- 
n =  ij 

n11 

R =  

n12 - . .  
- - 
n22 n23 

5-8 

5 -9  
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and 

defining 

c =  5-10 

A second algorithim (performed as part of Equation 

5-9)  namely 

- - 
n = I  ij j = i, 5-11 

5-12 

5-13 

results in the following reduced matrices: 
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. 

R-' = 

I 

ii; 4 

zeros  

below 

0 

0 

I 

0 0 

5-14 

5-15 

(S' and D used t o  o b t a i n  s o l u t i o n  v e c t o r ,  X ,  - Sec t ion  

5 . 3 ) ;  

E: 3 

diagonal  

5-16 
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(used to obtain inverse - Section 5 . 4 ) .  

5.3 Back Solution 

The back solution involves the determination of the 

unknown vector X from elements of the reduced matrices S ’  

and D. Without derivation [Uotila, 1 9 6 7 ,  p .  2 8 1 ,  

X = T ’ X - D ,  

recall 

T = I - S ’ ,  

or in summation form 

- - n 
xi = c n ik x k + e i .  

k = i+l 

5-17  

5-18 

5.4 Formation of Inverse 

The inverse weight matrix, N-’, will be computed by 

the method associated with the name of Banachiewich 

[Uotila, 1 9 6 7 ,  p .  311. According to Equation 5-4,  N-’, 

can be computed from 

however, it turns out that N-’ can be formed without the 

aid of S-’ and further only the diagonal elements of R-’ 

are needed. The diagonal elements of R-’ are readily 

available since the inverse of an upper triangular matrix 
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. 

has as its diagonal elements the reciprocal of the 

diagonal elements of the triangular matrix itself and an 

exactly similar result holds if "elements is taken to 

mean 3 x 3 . "  The diagonal elements of R-' are computed 

by inverting the 3 x 3 diagonal matrices of R, and for 

computer space saving reasons are stored along the 

diagonal of S '  (Equation 5 - 1 4 ) .  

From Equation 5-19 

R-l  = N-1 S , 

and further substituting in for S from Equation 5-5, 

5-20 

5 - 2 1  

5 -22  

and finally 

The corresponding summation equation for computing any 

3 x 3 matrix of N-' is 

- 
5-24 = = nikn kj +dij nii - 1  , 

n 

k = i+l 

taking into account that 
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= 1  “ij 

f o r  i # j , 

fo r  i = j , 

and 

-7 2- 
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6 .  PRECISION OF GROUND STATIONS AFTER ADJUSTMENT 

6.1 Variance of Unit Weight 

The variance of unit weight for the total adjustment 

is given by the following expression: 

6-1 

where V' PV is the sum of the squares of the weighted 

residuals of all observed quantities and df is the number 

of degrees of freedom in the least squares adjustment. 

6.11 Optical Adjustment 

Equation 6-1 will now be considered for the optical 

adjustment. T h e  linearized mathematical structure accord- 

ing to Section 2.2, was shown to be of the form 

A X + B V + W = O  , 

and 

CX -Vc + D = 0 , 

6-2 

6-3 

resulted from the spatial chord constraint of Section 2.5. 

The corresponding expression for the computation of 

V' PV with a change in notation and the deletion of 

condition equations is [Uotila, 1967, p. 75, Equation 2001 
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6-4 

A B  

B '  C 

where the first term is the contribution from Equation 

6-2,  and the second term is the contribution from Equation 

6-3. Since D = 0 (Equation 2 - 3 6 ) ,  

X1 Ul 

x2 u2 

+ = o  

and by obtaining an expression for K from Equation 2-41,  

vi PV = wi (BP-~B')'~ (AX + W) 6-6 

or denoting 

M = BP" B' ; 

V' PV = W' M-' AX + W' M-' W , 

and since; 

6-7 

from Equation 2-42 

vi PV = W'M-~W - W'M-~A {A~M-~A+P~}-'A'M-'W . 6-8 

Note that A'M-'A+Px and A'M'lW are the coefficient matrix 

and constant column of Equations 2-42 and 2-43.  

Let the partitioning of Equation 2-43 be denoted as 
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then, using; 

A B  

B' C 

E = (C - B'A-'B)-l 

the second term of Equation 6-8 becomes; 

* E ( U ~ - B I A - ~ U ~ )  

but by the elimination that led to Equation 2-44 we see 

that E = N-' and U = U2-B'A''Ul 

therefore; 

Q = U:A-'U1+U'N-'U 
g 9 

or 

Q = U:A-'Ul-U'X 
g g  

and 

VI PV = W'M'lW - U:A-'U1+UIX . 
g g  

Denote Q2 = W'M-'W - U1A-'U1 

or, by considering Equation 2-43, this becomes; 

1 
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Now using Equations 2 - 5 0 ,  2 - 5 4 ,  and factorization and 

cancelation analogous to that in Equations 2-53 to 

2-54, this becomes: 

which is easily shown to be identically equal to 

S o  that finally; 

+o ' + V' PV = .c. (gi - Xj) Mi; (Xi - S'x?) + UIX 
1 3  7 g g  

Note that the first term in the above is the quadratic form 

of all the residuals arising from all simultaneous event 

adjustments with ground stations held fixed, and is 

computed and summed for each event by means of Equation 

2-64 for the purpose of blunder detection (Section 2 . 7 ) ;  

the second term is found from: 

U'X = D'C 
g g  

6-19 

where the vectors D' and C are defined by Equations 5-15 

and 5 - 1 0 ,  respectively. 

The total number of degrees of freedom, df, to be 

used in Equation 6-1 is 

df = number of equations - number unknowns, 
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df = (1 2m + c) - ( 3 s  + 3g) I 6-20 
j 

where 2m is the number of equations resulting from one 

simultaneous event (m = number of ground stations in a 

particular event j) and the summation is performed over 

all simultaneous events; c is the number of spatial chord 

constraint equations; 3 s  is the number of unknowns due to 

s number of satellite positions; 3 g  is the number of un- 

knowns due to g number of unknown ground stations. 

In conclusion, 
2 - V'PV m - -  
0 df 6-21 

has units of (arc sec.>2 since V has linear units-meters 

(Equation 2-12) and P has units of (arc sec.)2 m-' i.e., 

(arc sec.) 
m2 

(m) - (m) = (arc sec.)2 . 6-22 

6.12 Range Adjustment 

Equations 6-1 will now be discussed in the light of 

the range adjustment. Firstly, the expression for 

computing V'PV is, by an analogous argument to the optical 

case I 

V ' P V  = v ' rv  - X ' U  
g g  6-23 

where V'PV is the quadratic form of the residuals arising 
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from the adjustment of simultaneous events - holding the 

ground stations fixed; the second term 

X '  U = D ' C  
g g  

6-24  

is computed according to Equations 5-15 and 5-10,  

respectively. The spatial chord constraint does not 

contribute to V'PV as shown for theoptical case adjustment 

argument (Equation 6-5)  . 
The degrees of freedom, df, in the range adjustment 

is as usual 

df = number equations - number of unknowns, 
6-25  

= ( C  m + r) - (3s  + 3g) , 6-26 
j 

where m is the number of ground stations, thus observed 

ranges, in a particular simultaneous event and the 

summation is performed over all simultaneous events: r 

again is the number of spatial chord constraint equations; 

3s and 3g are the number of unknowns due to s number of 

satellite positions and g number of unknown ground stations, 

respectively. 

In summary, 

2 - V'PV m - -  0 df 6-27 
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has units of m2 since V has linear units-meters (Below 

Equation 2-9) and P is unitless (Equation 3-8). 

6.2 Variances and Covariances of 
Ground Stations 

6.21 Rectangular Coordinates 

The variance-covariance matrix giving the precision 

of the adjusted rectangular ground station coordinates is 

6-28 

where m2 is the variance of unit weight arising from the 

adjustment (Section 6.1) and N-’ is the weight coefficient 

matrix discussed in Section 5.4. 

0 

The logical and correct units for the variance- 

covariance matrix is meters2. To confirm this for the optical 

case, simply examine the units of m2 and N-’.  m2 accord- 

ing to Equation 6-21, has units of (arc sec.)2. On the 

other hand, the examination of Equation 2-42 yields units 

of m2 per (arc sec.I2 for N-’. Therefore units of 

0 0‘ 

= m2. 6-29 m2 = (arc sec.) - 
(arc sec.) cU V W 

A similar analysis for the range case adjustment reveals 

the same units for the variance-covariance matrix of the 
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adjusted rectangular ground station coordinates. 

V 
W 

The square root of the diagonal elements of 

I 

x 
H 

cU 
V 
W 

l:l 

6-30 

x 

yields the corresponding standard deviations in meters. 

6.22 Geodetic Curvilinear Coordinates 

The propagation of variances and covariances from 

curvilinear coordinates geodetic latitude, @ ,  and longi- 

tude, A, and ellipsoidal height, H I  all in meters to three 

dimensional rectangular coordinates, u, v, w is achieved 

by the following matrix equation 

where 

G =  

-sin@ cosX -cos@ sinX cos@ cosX 

-sin@ sinX cos4 cosx cos$ sin1 

cos@ 0 sin+ 

6 - 3 1  

6 - 3 2  

Reversing the transformation depicted by Equation 

6 - 3 1 ,  the 3 x 3 variance-covariance matrix corresponding 

to @ ,  A ,  H is 
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all in (meters) . 
In order to obtain the units 

m2 (arc sec.) 
$ 

m2 A 
II 

the elements of Equation 6-34 require the following 

modifications: 
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6-33 

6-34 

6-35 

6-36 

6-37 

6-38 

6-39 



- L m  - m = m  - HA AH R + H  HA 6-40 

where 

I 6 - 4 1  - 1 
sin 1" 

p I' = 

R = 6,370,000 m. 6-42 

(Note, R replaces the radius of curvature, N, in the prime 

vertical plane in the rigorous case - justification for 

simplification is given by the fact that only three 

significant figures are meaningful in propagation of variances 

whose magnitudes in m2 or (arc sec.)' are in the units 

place. ) 

6 .3  Correlation Between Ground Stations 

The amount of correlation between the adjusted ground 

station coordinates is described in terms of the correla- 

tion coefficient. The correlation coefficient is defined 

as [Hamilton, 1 9 6 4 ,  p. 311 

ij 
Pij m m i j  

XI1 
- - 

I 6-43  

where i and j represent any two quantities associated with 

a variance-covariance matrix such as that of Equation 6-28;  

m is the covariance, namely the off diagonal term of 

Equation 6-28;  mi and m' are the standard deviations 
ij 

j 
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or square root of the ith and jth variances (diagonal 

terms) , respectively. 

6.4 Error Ellipsoid Computation 

Error ellipsoid computation is made for each observing 

ground station considered as an unknown in the adjustment. 

The eigenvalues and eigenvectors [Hamilton, 1964, pp. 57 

to 601 are computed in a topocentric three dimensional 

rectangular coordinate system with its origin at the 

particular ground station and its axes parallel to the mean 

terrestrial coordinate system (Section 1.2). For each 

point, there corresponds one eigenvalue (A ) for each of 

the three mutually perpendicular axes of the ellipsoid; 
ii 

the direction of these three axes is given by their 
corresponding eigenvector (T i ) .  

The actual computation is as follows. The particular 

3 x 3 on diagonal variance-covariance matrix, C ,  of 

Equation 6-28 is subjected to an orthogonal transformation 

1 

T C T = h ,  6-44 

where A is a diagonal matrix and T is the orthogonal trans- 

formation matrix to be found which diagonalizes C. The 

transformation results in three homogeneous linear 

equations, namely 

[ C  - xii I] Ti = 0 , 6-45 
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which has a solution only if the determinant of the 

coefficient vanishes i.e., 

[ C  - xii I] = 0 

or 

m:l-hii m12 m13 

m2 1 n ~ $ ~ - X n z  m23 

m3 1 m 3  2 m;,-X33 

Once the eigenvalues are obtained from 

6-46 

6-47  = o .  

Equation 6-47,  

their corresponding eigenvectors are obtained from 

Equation 6-45 after substitution of Aii. 

The length of the axes of the error ellipsoid are 

the square-roots of the corresponding eigenvalues. The 

spherical coordinates (spherical latitude, 8, and longi- 

tude, A )  which give the direction of each ellipsoidal axis 

are obtained from the components of the eigenvector 

namely 

and 

t3 
tan 8 = 

Jt12 + t22 + t32 

t2 
tan A = - tl 

6-48 

6-49 

6-50  
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7.  SUMMARY AND FUTURE CHANGES T O  T H E  SYSTEM 

The ad jus tment  system, as p resen ted  i n  t h i s  r e p o r t  and programmed i n  

[Krakiwsky e t  a l ;  i n  p r e s s ]  has  the  f o l l o w i n g  c a p a b i l i t i e s :  

Normal equations can be formed for separate 

batches of optical or range data. 

Independent sets of normal equations can be 

added together. 

Normal equations can be solved giving adjusted 

rectangular and geodetic curvilinear coordinates. 

The weight coefficient matrix is obtained thus 

allowing the computation of error ellipsoids 

for all ground stations; further all correla- 

tion coefficients are computed for all stations. 

Scale may be introduced by a spatial chord 

constraint. 

The covariance between the right ascension and 

declination of one direction as well as their 

standard deviations can be utilized for 

rigorous weighting. 

The standard deviations of each range can be 

utilized for weighting. 

It is planned in the future to include the following 

features : 

-85- 



(1) The solution of the degrees of freedom 

problem when weighting the ground stations 

with values between zero and infinity. 

( 2 )  Incorporation of error models in the range 

adjustment to eliminate residual systematic 

errors. 

( 3 )  Sequential build-up of solution and precision 

estimates. 

(4) Direction constraints. 

( 5 )  Statistical tests. 

(6) Use of magnetic tape files to increase the 

maximum number of ground stations from 150 

to several thousand. 

- 8 6 -  



REFERENCES 

Allen, R. S., (1966), "A Computer Program for Use in 
Computing a First Order Latitude by the 
Horrebow-Talcott Method." M.S. Thesis, The 
Ohio State University, Columbus. 

Gross, J., (In prep.) , "Preprocessing Electronic 
Satellite Observations", Reports of the 
Department of Geodetic Science, No ..., The 
Ohio State University, Columbus. 

Hamilton, W. C., (1964), Statistics in Physical Science. 
The Ronald Press Company, New York. 

Hotter, F., (19671, "Preprocessing Optical Satellite 
Observationsn, Reports of the Department of 
Geodetic Science, No. 82 ,  The Ohio State- 
University, Columbus. 

Krakiwsky, Edward J., J. Ferrier, and G. Blaha (in 
press), "Least Squares Adjustment of Satellite 
Observations for Simultaneous Directions or 
Ranges, Part 2 of 3:  Computer Programs" 
Reports of the Department of Geodetic Science, 
No. 87, The Ohio .State University, Columbus. 

Mueller, Ivan I., (19641, Introduction to Satellite 
Geodesy, Ungar Publishing Company, New York. 

Mueller ,  Ivan I . ,  ( i n  p r e s s ) ,  Spher ica l  and Practical Astronomy Applied 
t o  Geodesy, Ungar Publ ishing Company, New York. 

Preuss, Hans D., (1966), "The Determination and Distri- 
bution of Precise Time." Reports of the 
Department of Geodetic Science, No. 70,  The 
Ohio State University, Columbus. 

Uotila, U. A., (19671, "Introduction to Adjustment 
Computations with Matrices." Class Notes, 
Department of Geodetic Science, The Ohio 
State University, Columbus. 

Veis, G., (19631, "Precise Aspects of Terrestrial and 
Celestial Reference Frames". Smithsonian 
Astrophysical Observatory Special Reports, 
No. 123, Cambridge, Mass. 

-87-  



Yumi, S., (1965), Annual Report of the International 
Polar Motion Service for the Year 1962. 
Central Bureau of the International Polar 
Motion Service, Mizusawa, Japan. 

(1961), Explanatory Supplement to the Astro- 
nomical Ephemeris and the American Ephemeris 
and Nautical Almanac., British Information 
Services, New York. 

-88-  



For the Department of Geodetic Science 

K2f: / t i? 
Project Supervisor Date 

For The Ohio State University Research Foundation 


