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4 APPENDIX A 

MODULATION AND CODING 

1. PCM VERSUS F M  MODULATION 

1 ~ I Introduction 

The results of comparing two most widely used modulation techniques, 

pulse code modulation ( P C M )  and freqbency modulation ( F M )  for transmis- 

sion of Voyager video data is presented in this section. 

were based on maximizing the picture -element transmission rate at the 

same picture quality, a s  represented by the output signal-to-noise ratio 

(SNR). 

bandwidth limited. 

Comparisons 

The communication link is assumed to be power limited but not 

1, 2 Picture Quality and Output Signal-to-Noise Ratio 

For a video signal, the cr i ter ia  for establishing an acceptable level 

of output SNR is  subjective. For  television pictures, experiments have 

shown that high frequency noise is less  objectionable to the viewer than low 

frequency noise (Ref. 1 and 2). 

quality is dependent on the spectral distribution of the video noise. 

eliminate this ambiguity, the concept of "weighted noise" was used. 

weighted noise is defined a s  video noise measured with a weighting network 

which represent the spectral perception of noise by an average viewer. 

The weighting characteristic is a function of the type of television system. 

For  example, the weighting characteristics of the American 525-line 

system is such that the video noise power is reduced by 6 db for AM, 10 db 

for F M  without pre-emphasis, and 12.4 db for F M  with pre-emphasis. 

Whereas, for 625-line European system, the noise power is reduced by 

8 . 5  db for AM and 16 db for F M .  

Hence, for a given SNR, the picture 

To 
The 

The weighting factor for the Voyager video system is yet to be deter- 

mined. As a take-off point, it is possible to analyze a tradeoff between 

picture quality as represented by the unweighted output SNR and picture 

element transmission rate. 

Before performing the analysis, the output SNR must be defined. 

In most studies of TV picture quality, it is generally taken a s  the ratio of 
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peak-to-peak signal power to RMS noise power. 

normal usage and provide an easy means of comparison, this same defini- 

tion will  be used. 

To conform with the 

1. 3 Frequency Modulation System 

For a F M  system operated above threshold, the output SNR is  related 

to the maximum video signal frequency f a s  follows: m 

where 

SNR = ratio of peak-to-peak signal power to RMS noise 

/3 = modulation index, which is  equal to the ratio of 
peak frequency deviation to the highest video 
signal frequency 

B = predetection bandwidth 

f = postdetection bandwidth and i s  taken to be equal m to the highest video signal frequency 

C = total input signal power 

Ni = RMS noise power in predetection bandwidth B 

In addition to Equation (A-1), two more relationships a re  needed to 

determine the highest video frequency. 

of the F M  system, Equation (A-1) will be valid only for a minimum C/Ni 

which is  termed F M  threshold, THY and is  related to the predetection 

bandwidth and receiver noise temperature. 

T 

follow s : 

Due to the threshold phenomena 

For  a given receiving system, 

uniquely determines the upper bound of the predetection bandwidth as H 

where #J is the predetection noise power spectral density. 

The second relationship is Carson's rule which defines the minimum 

predetection bandwidth required to keep the F M  distortion to a satisfactory 

level: 
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B = 2f ( 1  t p) (A-3) m 

Noting that picture element transmission rate is twice f,, then 

Equations (A- l ) ,  (A-2),  and (A-3) can be used to determine the picture element 

transmission rate for a given C/$, TH and SNR. 

equations can be obtained by noting that C/Ni and B should satisfy all three 

equations a t  threshold. The solution for fm can be obtained by f i rs t  deter-  

mining p by solving the three simultaneous Equations (A- l),  (A-Z), and (A-3). 

By this procedure, a cubic equation of p is obtained: 

The solution of these 

2 SNR 1 p ( l t P ) = -  - 24 
TH 

(A-4) 

Solution for  p can be obtained either by graphical method o r  by iteration. 

Then from Equations (A- 2) and (A- 3) predetection bandwidth B and picture 
elements transmission rate, 2fm can be obtained respectively. 

normalized value of 57 db for C/yj, the picture transmission rate a s  a func- 

tion of various SNR and TH a r e  shown in Figure A-1. 

Using a 

Figure A-1. Maximum Picture Element Transmission Rate 
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1.4 PCM/Phase Shift Keying 

For  a PCM system, the output SNR is related to the quantitization 

level m ( in  bits) and bit e r r o r  rate P 3 as follows: e 

3 
-(mt I) SNR = 

Pe (I - 4-m) t 4 
(A- 5) 

For  a given SNR and m,  the bit e r r o r  rate P 

from P the maximum bit ra te  bandwidth can be obtained. e’ 
for m equal to 5, the maximum bit e r r o r  rate can be determined as follows: 

can be calculated and then e 
For  example, 

Then for bit e r r o r  rate of 3.86 x IOm4, and using coherent PSK, the SNR 

in bit rate bandwidth Bo should be 7. 5 db o r  

= 5.6 
0 

B 0 =,a 
(A-7) 

The maximum picture element transmission rate i s  equal to bit rate 

divided by quantitization level. The results of such a calculation of the 

maximum picture element transmission rate a s  a function of SNR and 

quantitization level of m = 4, 5 ,  and 6 a r e  also plotted in Figure A-I. 

1.5 Voyager Design Considerations 

As indicated in  Figure A- 1, FM with threshold extension is better 

than PCM/PSK system. 

use coding to trade bandwidth for  power, as  in the case of FM. 
in Section 2, of this Appendix, the amount of improvement in data t rans-  

mission capability by coding is dependent on the e r r o r  ra te  probability and 

the coding scheme. 

cation, (32, 6)  biorthogonal coding, improves the transmission rate by 

4 db at an e r r o r  rate probability of loe3. 

However, i n  case of PCM, it is also possible to  

As shown 

The coding scheme recommended for Voyager appli- 

At this e r r o r  rate, SNR’s a re  

4 

c 
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b w 
f approximately 32, 34 and 35 db for quantitization level m = 4, 5, and 6. 

At these output SNR's, the transmission capability of the coded PCM is 

approximately equivalent to FM with threshold at  4 db. 

In addition to theoretical consideration, current hardware capability 

must also be weighted in chosing a modulation method for the Voyager 

application. 

possible, but achievement is difficult. A more reasonable threshold is 

6 db. 

system from realizing its full potential; the degradation is probably in the 

order of 2 db. Thus, F M  with threshold extension and P C M  with (32, 6) 
encoding essentially have the same picture element transmission capa- 

bilities. The P C M  case is  clearly superior, however, when data rate 

reduction by tape recorder is required as  i s  the present case. After play- 
back at  a reduced speed, the tape recorder can preserve the recorded data 

with high fidelity in the digital form much more easily than in analog form. 

This phenomena is much more pronounced at  high reduction ratios; such a 

At the present, an F M  demodulator with threshold of 4 db is 

For the PCM case, equipment imperfection will also prevent a 

reduction will be required in a failure mode where link capability is reduced 

considerably. For  these reasons, PCM with coding is recommended for  

the application to Voyager baseline system. 

2. CODING CONSIDERATIONS 

2. 1 Introduction 

The coding systems presented here a r e  designed to achieve a certain 

reliability in the transmission of telemetry data at a low cost in power. 

The cost that is involved is either in bandwidth or in information rate. 

There a re  several coding systems currently in various stages of design 

and implementation on projected space missions which achieve this 

purpose with varying degrees of complexity and expense. The decoders 

which a re  ground based a r e  not limited by size, and have basically only 

the realtime requirements for coding. 

the spacecraft must of course be simple and compact. 

a r e  discussed and alternate proposals a r e  presented. 

The encoders which are on board 

Two such systems 

A- 5 
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2.2 Self- Synchronizing Biorthogonal Code 

This coding system is currently being implemented on Mariner '69. 
It is, a s  far a s  coding systems go, a classical system, since prototypes 
have been engineered and its capabilities thoroughly analyzed. 
lar, all that is necessary to know of the coding system may be found in 

various portions of Reference 4. 

figures and computations. 

In particu- 

References to this text cite the necessary 

2.2.1 Encoding 

Six data bits a r e  encoded into a 32-bit code word of the biorthogonal 

code. A six stage shift register is used with the recursion rule. 

n + A  - 
An+6 - An+5t Ant3t  Ant2t  An+l 

n =  0, 1, 2, ... 25 

The 32nd bit A j l  is given by the rule 

A g l  = A. t A Z  t A5 

o r  alternately, 

30 

(A- 9 )  

(A- 10) 

(A- 11) 

Before transmission, a fixed 32-bit word C5 

c5 = (101010101 ... 011) (A- 12) 

is added mod 2 to the word for self-synchronizing capability. 

techniques here is not the one listed in Reference 4, page 147, but is an 

alternate mechanizable procedure, with analogous properties. Recently, 
D r .  Rumsey of JPL has announced the discovery of a comma-free vector 

C 5 

The encoding 

which gives a better sync capability. 

4 

, 
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2 . 2 . 2  Decoding 

The technique used here is maximum likelihood decoding. The 

received word is correlated with all possible code words, using an analog 

cross-correlator and the decoder chooses the word with maximum corre-  

lation (Section 7.2, Ref. 4). 
and minimizes the probability of e r ro r .  

2 .2 .3  Properties of the Code 

This is the optimal decoding procedure, 

The (32,6)  biorthogonal code has a minimum distance of 16 bits, 

giving it an e r r o r  correction capability of at least 7 bits. 

of decoding here, using the whole word (avoiding quantization e r r o r s  on 

the bits), is an optimal one. 

frames comes from adding the vector C 

a degree of comma-freedom equal to 6 bits; 

decoding from the wrong position, the word would appear to have at least 

6 e r rors .  In fact, by decoding 36 words at  all 32 possible positions, one 

can achieve the correct synchronous position with a probability of 0.999 
at the required signal power. 

The technique 

The self-synchronizing ability for word- 

(see above) to the code, achieving 5 
i .e.,  if we were to s ta r t  

From the Tables of Viterbi, coded transmission effects a 

saving of 2. 5 db in signal power to achieve the same probability of e r r o r  

a s  uncoded transmission. 

transmit at 2.5 db per information bit, and achieve a probability of bit 

e r r o r  - 5 x  10 . 

The proposed JPL system is designed to 

-3 

2. 3 Convolutional Coding 

A second system currently being implemented aboard the Pioneer 

missions is a rate 1 /2  convolutional code, using sequential decoding 

techniques. 

(Ref. 5), the basic ( 5 0 , 2 5 )  code gives a 4. 1-db gain over the 

parity check code scheme currently used. This system is more 

complicated than the biorthogonal code and requires the SDS computer on 

the ground for the decoding process. 

(complete cost estimate by Codex Corporation at 10 k) can be used. 
described in the referenced memo, the convolutional code actually works 

on fixed block length both to achieve synchronization and to facilitate 

As envisaged in the description of Lumb and Hoffman 

However, a special purpose computer 
A s  
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decoding. Each block is 224 bits long, and has 14 final bits of the Barker 
code type for frame synchronization and decoding. 

is slightly less  than 1/2. 
Thus, the actual rate 

2.3.1 Encoding 

Twenty-five information bits a r e  put into a shift register of the 

same length, and a parity check is generated. 

positions to the right, drop the right-most one, enter the next information 

bit, and generate another parity check. 

is of course known (perhaps all 0). 

Shift the information 

The initial stage of the register 

The bits to be transmitted a re  information, parity, information, 

parity, etc. ,  with each parity check acting on the preceding 25 bits. 

Thus, the encoding device is a simple one, with the sync modification 

mentioned above. 

2.3.2 Decoding 

Before going into the details of the decoding algorithm, note that 

the telemetry data is to be furnished in blocks of 6 bits, plus a seven 

parity check on these. Thus, there is an additional e r r o r  correcting aid. 

Each received bit a s  detected by the matched filter detector of the 

phased key signal is quantized to 3 bits, thus effectively furnishing an 

8-letter alphabet to be used in the code. 

the one described in Reference 6. Since sequential decoding is 

relatively unfamiliar to many, the basic techniques a re  outlined here.  

The decoding algorithm used is  

Assume that there is a correct message and the next information 

bit and parity check come in. 

(3 information, 3 check bits). For  the eight possible check symbols, a 

set of transition probability i s  assigned and stored in the table lookup. 

These a re  the probabilities that a symbol was received, given that a 0 or 

1 was transmitted. 

As quantized, there is a 6-bit pair 

This data is stored in memory for use by the decoding in a table 

lookup form. A s  each informatiodparity pair is selected for decoding, a 

table lookup operation i s  performed to determine two metric values for 

that pair, one assuming a 0 was input into the spacecraft encoder and the 

other assuming that a 1 was input into the encoder. The decoder computes 
. ,  
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the correct information/parity combination by using an encoder configura- 

tion identical to that of the spacecraft and the previous 24 decoder 

bit-decisions 
(Ref. 5) 

The metric used for the computation is: 

- bias 1 transition prob (info) transition prob (parity) 
prob of receiving (parity) X lo% [ prob of receiving (info) 

The most likely choice (the one with the highest metric value) is  

selected and the corresponding bit is inserted into the decoder's shift 

register. 

previous decisions for the frame being decoded. 

Its metric value is then added to the total of the metrics of the 

Because of noise on the channel, it is possible that one (or more) of 

the information/parity pairs will appear a s  an incorrect bit. 

decision will be made by the decoder, and a bit which i s  in e r ro r  will be 

An incorrect 

inserted into the shift register.  

shift register do not match those that were in the encoder, the succeeding 

sequence of parity bits generated by the decoder will not correspond to 

those sent by the encoder. 

of the channel symbols received will  closely match those generated by the 

decoder a s  possible choices. 

negative metric values, and the total metric will fall below a predeter- 

mined threshold. When this happens, the decoder recognizes a possible 

e r r o r  condition and enters a search mode. 

decoder is proceeding correctly, but that noise has caused the metric 

value to drop below the threshold.) 

However, since the bits in the decoder 

This discrepancy shows up quickly since few 

These bit choices will  have small or  

(It is also possible that the 

In the search mode, the decoder executes a systematic search 

through the tree of possible information/parity sequences in order to find 

a better fit to the received sequence, i f  one exists, before the decoding 

process is allowed to continue. The threshold value is lowered in fixed 

increments, and the t ree  is searched according to a set of rules in order 

to find a valid path whose total metric never falls below that threshold. 

In doing so, it may make decisions to select the second best choice for 

information/parity pairs  that might have been received in e r ro r .  

a s  the decoder decides on a new path (or arr ives  back at the old path with 

As soon 
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a lower threshold), the search mode is left and the decoding process 

continues a s  before. As the decoding proceeds successfully, the threshold 

value is raised in fixed increments (always remaining below the total 

value of the metric) so that possible e r r o r  conditions may be detected 

most quickly . 
The structure of the Pioneer format is such that much is known 

about the data a s  it is received from the spacecraft. 

arranged into groups of seven to form data words. 

tions, the 7th bit of each word is a parity check on bits 1, 3, and 5. Data 

words a re  organized into frames of 32 words where words 1 and 17 are 

always a fixed frame sync word (Barker word) and its complement and 

word 2 is a mode identification. 

Information bits a r e  

With certain excep- 

Use of this information i s  made by the sequential decoder subroutine 

module of the station program to: 

1) Provide frame synchronization for the entire program 

2) Locate the starting point to begin the decoding process 

3) Force the decoding process where the path is known in 
order to speed the computation and reduce the probability 

of undetected e r r o r s .  

Because sequential decoding has an inherently variable decoding 

rate, several restrictions have been imposed to determine the point at 

which decoding should be suspended and further attempts made at some 

subsequent time, off-line. 

Since code resynchronization occurs at  one frame intervals, 

decoding is done by the computer one frame at a time. 

input and buffered by the computer for processing via an interrupt system 

a s  each information/parity pair appears in the computer buffer. If one 

complete frame i s  input before the previous frame is  decoded, that frame 

i s  abandoned and the decoder proceeds immediately to the most recent 

f rame . 

Data is continually 

2 . 4  Concatenated Codes 

+ 

An alternate coding procedure to the ones previously mentioned is 

the concatenated coding scheme of Forney (Ref. 6), which is  a more 

A-10 



powerful e r r o r  correcting procedure than the ones mentioned, and gives 

additional burst e r r o r  protection. 

biorthogonal code with a Reed-Solomon code and two different decoding 

techniques a r e  applied. This class of codes is very efficient, and is a 

means of achieving the Shannon Bound. 

The coding consists of concatenating a 

One possible self-synchronizing concatenated code is a (31, 14) R-S 

code concatenated with a (16, 5) biorthogonal code which achieves a final 

probability of e r r o r  <5 

2.4. 1 Encoding 

for a signal-to-noise ratio of 2 db. 

The code is a code of rate 14/31. 5/16 of length 31. 16 binary sym- 

bols with 70 information bits. 

outer code. 

It is  composed of a n  inner code and an 

The basic encoding diagram is a s  follows. 

INFORMATION BITS - OUTER CODE -INNER CODE - 
2.4. 1. 1 Outer Code 

The 70 bits of information a r e  considesed a s  14 blocks of 5-bit 
5 4: 

symbols, each symbol representing an  element in GF(2 ) 

Encode 

via the recursion rule 

14 

f(x) = n(x t Xi) = x 14 t t.L13X 13 t p12x 12 t - * t Po ; 
(A- 15) 

i= 0 

5 2  A t h  t 1 = 0  

* 
GF( ) refers to a Galois field. 
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o r  

13 

'nt14 = 1 'i'nti 
i= 0 

(A- 16) 

1 Add the vector {xi5; x = A', A , A 2 - * -  ] to a full word as a sync comma- 

f ree  vector (Ref. 7) 

2.4. 1.2 Inner Code 

Each (ai) of the (31, 14) code is now considered a s  a 5-bit word, and 

i s  encoded into a 16-bit code word Ai of the (16, 5) biorthogonal code as 

in Section 2 . 2 .  

(A- 17) 

In  essence, a (16 * 31) binary word is sent. 

code i s  found by adding the vector C4 (Ref. 4, p. 47) to the (16, 5) 

biorthogonal code. 

Note, the (16, 5) comma-free 

2.4.2 Decoding 

The decoding techniques for  both these codes a r e  very simple. F i r s t  

decode the inner code, and then the outer one. 

2.4.2.1 Inner Code 

This is a (16, 5) biorthogonal code. Each A .  i s  fed into a correlation 
1 

detector where it is compared to all  32 possible code words. 

comma-freedom and maximum likelihood decoding, a decoding symbol is 

obtained for use in the outer code. There is also symbol synchronization 

a s  in Section 2.2. A set of symbols emerges after decoding, a. 0 1 2  ,U ,a * * * 
5 

which is a word of the (31, 14) code over GF(2 ). 

Using the 

u30 

2.4.2.2 Outer Code 

There is a self-synchronizing (31, 14) R-S code which may correct 

up to 9 e r rors .  

GF(Z5). The table for G F ( 2  ) is generated by the rule, A = A t 1. The 

decoding algorithm now follows. 

However, we shall correct up to 50 symbol e r r o r s  in 
5 5 2  
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1) Compute 

T2 = det 

30 

‘3’2‘1 

S4S3S2 

s5s4s3  

i 1 aih = S 1 
i= 0 

30 1 a i P  = s2 
i= 0 

30 

(A- 18) 

(A- 19) 

(A- 20) 

i= 0 

2) If S .  = 0 i =  1 , 2 , 3  0 10, the received word is pronounced 

correct. 
1 

3) If some S .  f 0, then w e  compute 
1 

T1 = S3SlS2 2 (A- 2 1 )  

If T 1  f 0, one e r r o r  has been made in the Ath position, where 
-3 

S2/S1 = A&. 
S t / S 2  to the Ath position. 

The e r r o r  committed is S ; / S  Add the value 2’ 

2 4) If T 1  f 0, we evaluate T 

(A-22) 

If T2 = 0, then 2 e r r o r s  have been made, and the e r r o r  
positions k are given by A A k  , A roots of x 2 t xrl t r2 = 0 

2 
- ‘3’2 ‘1‘4 - ‘3 “1‘4 

(‘1 - (‘2 - (A- 23) 

A- 13 
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A A  The e r r o r s  al ,a2 made in  the positions hl,  h 2 are given by 

A S l h i  t S2h2 
a l  = 

v1v2 

2 
A -  S 2 h l  + 

lU2 a2 - 

5) If T2 f 0, we assume three e r r o r s  have been made in 

hm, a r e  positions R, k, m, where h l  = A , X 2  = X , h 3  = 
roots of the cubic equation 

a k 

x 3 2  + x u  t x u 2 t v 3 = o  
1 

where the ui are solutions of the three linear equations 

= s u  t s u  t s u  s4 3 1  2 2  1 3  

s 5 =  s 0- t s  u t s 2 u 3  

so = s u t s 0- t S3U3 

4 1  3 2  

5 a  4 2  

A and the e r r o r s  a. are solutions to 
1 

A Ca.h .  = S1  
1 1  

2 &,hi = s2 

A 3  Cuihi = S3 

(A- 24) 

(A- 2 5 )  

(A- 26) 

(A- 27)  

4 

6 )  For  4 and 5 e r r o r s ,  the algebra becomes slightly more 

complicated, but the method is analogous; i. e., we must 

solve the quartic 

A- 14 



4 3 2 x t r x  tcrx t c r x t c r  - 0  whencr.are 1 2 3 4 -  1 

solutions of the four l inear equations 

s5 = S4r1 t s 0- t s 0- t S1r4 3 2  2 3  

S g = S r  tscr t s r  ts2cr4 5 1  4 2  3 3  
(A-28) 

s = s l T  t s r  tscr t S 3 r 4  7 6 1  5 2  4 3  

s - s 0- t s  0- t S 5 r 3  +s4u4 8 -  7 1  6 2  

Explicit formulas a r e  easily obtained by actual computation. Mecha- 

nization and computations of the algebra may be found in  Bartee and 

Schneider (Ref. 8). Synchronization is obtained by adding the comma-free 

vector and by decoding a finite number of words in each portion (Ref. 7). 

2 . 5  ALTERNATE CONCATENATED CODE 
6 

Note that by concatenating a ( 2 1 , 9 )  R-S code over GF(2  ) with the 

(32, 6) biorthogonal code in  Section 2 . 2 ,  one obtains a self-synchronizing 

code at  7 / 3  the bandwidth expansion, and lowers the signal-to-noise ratio 

requirements to less  than 2-db per information bit. 

The outer code is the R-S comma-free code generated by  

8 

f(x) = n ( x  t A i ) ,  A =  p3 /3 6 = p t 1 (A-29) 

with comma-free vector 

[x 9 -  ; x =  A i i = O ,  1 . . - 2 0 ]  (A- 3 0) 

Up to five e r r o r s  a r e  corrected, in a manner similar to the previous 

concatenated code. 

mentioned in Section 2.2 .  

The inner code is the biorthogonal comma-free code 
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APPENDIX B 

METRIC ANALYSIS 

1. INTRODUCTION 

In the case of ranging, the receiving and transmitting bandwidths 

a r e  defined by the spectrum occupancy of the pseudo-random noise 

ranging sequence. The primary tradeoff involved in handling the ranging 

signal is in selecting the best method of turning around the ranging code. 

The tradeoff between the two methods (code reconstruction and direct 

turnaround) is discussed in Section 2 below. 

Range rate requires coherent car r ie r  reception and retransmission. 

It also defines the receiver phase lock parameters required to track the 

Doppler frequency shift and rate of change of frequency shift. Section 3 

analyzes the spacecraft and ground receiver phase lock parameters 

required to track the Doppler perturbed car r ie r  frequency. 

2. RANGING DIRECT TURNAROUND VERSUS 
CODE RECONSTRUCTION 

The following assumptions have been made. In all  cases the 210 foot 

Also, ground antenna with 100 kilowatts of transmitter power is assumed. 

the TRW recommended vehicle is assumed. 
uplink i s  ranging, while on the downlink engineering telemetry (512 bits/ 

sec) is transmitted simultaneously with ranging. 

ca r r i e r  power-to-noise density i s  shown below in Table B-1. 

The only service on the 

The required sub - 

Table B-1. Required Subcarrier Power-to-Noise 
Density Ratios 

Subcarrier Power -to - 
Noise Density db x Hz 

21.0 
21.0 

Uplink 

Ranging 22 db in 2 B Lo = 0.8 Hz 

8 db in 2 B Lo = 20 Hz Carr ie r  

Downlink 

Engineering telemetry 5 12 bits/sec 30. 1 

21. 0 

16. 8 

22. 8 

Ranging 22 db in 2 B Lo = 0 .8  Hz 

6 db in 2 B Lo = 48 Hz 

Carr ie r  6 db in 2 B Lo = 12 Hz 
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The smaller ground loop bandwidth is assumed when the vehicle 

omni antenna is used, while the la rger  loop is assumed when either the 
vehicle medium-gain o r  high-gain antenna is used. 

The most up-to-date numbers for  received signal power-to-noise 

density ratio were used. 

ratio,  S / @ ,  can be written as 

The received signal power -to-noise density 

S 
a -  - -  C - 20 loglo R 

The constant C for  both the uplink and the downlink for  all three 

antennas is shown in Table B-2. 

Table B-2. Received Power-to-Noise Density 
Constants - C 

High 

Uplink 82.1 115.9 121.9 

Downlink 62. 6 95. 6 101.6 

- Omni Medium 

The ranging modulation index on the uplink is set at 0.78 radian. 

The downlink modulation indices were optimized and a r e  listed in  

Table B-3. 

Table B-3. Optimum Modulation Indices 

Omni 

B~~~ BTel 

Medium and 
High Gain 

B~~~ Tel 

Turn -around 0. 78 1.3 0. 58 1 . 3  

Reg e ne ration 0.47 1.45 0.47 1.45 

For  the vehicle regeneration case the calculations a r e  straight- 

forward. 

around ranging case,  the effects of turnaround noise must be evaluated. 

In all cases the downlink l imits the performance. F o r  the turn- 
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One of the important factors influencing the effect of ranging 

performance, with turn-around ranging, is  the degradation due to turn- 

around noise, 

Remodulation of the uplink spectrum onto the downlink car r ie r  by 

the turnaround ranging channel in the spacecraft transponder effects the 

performance of the downlink communications in two important ways. 

F i r s t ,  the available transmitter power for downlink communication se r -  

vices is  reduced by modulation of the down 

spectrum. Only the pseudo-random noise code is  desired downlink infor - 
mation, while the uplink subcarriers and thermal noise a r e  not and waste 

downlink power. Second, the uplink thermal noise appears in the down- 

link ca r r i e r  sidebands and is detected at  the ground receiver so that the 

effective ground receiver noise spectral density is increased. 

magnitudes of these two effects a r e  given by 

car r ie r  by the uplink 

The 

Downlink transmitter power reduction = .e -“nz [if: J:bbiP I ]  (B-1) 

1 -e 

C 

Effective noise spectral [ -qg 
V 

B density of ground receiver = @ t 
g 

where 

cr = r m s  noise modulating downlink ca r r i e r  

+i = effective downlink modulation index of uplink subcarriers 

n 

elDL = effective downlink modulation index of pseudo-random 
noise code 

M = ca r r i e r  modulation loss due to downlink communication 
C services 
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S = received signal strength at  ground receiver 

= ground station noise spectral density in absence of 
g 

turnaround noise 

B = effective bandwidth of uplink noise modulating downlink 
V car r ie r  (equal to turnaround ranging channel noise 

bandwidth). 

Values, in terms of uplink parameters for the r m s  noise and effec- 

tive subcarrier indices, u and (pi, are given in the following equations. 

The equations assumed that the downlink pseudo-random noise modulation 

index is  set  under strong signal conditions. 

n 

'DL 
N sin eUL 

i= 1 

where 

Pi = uplink modulation indices of subcarriers 

QUL = uplink pseudo-random noise modulation index 

ODL = strong signal downlink pseudo -random noise modulation 
index 

BL = bandwidth of limiter in receiver IF 

[SNRI i 
C Y -  2 -  (limiter signal suppression factor) 
S TT t [SNRIi 

2 -  - 1 
@n 1t2 {SNR] (limiter noise suppression factor) 

(B-4)  

[SNR] = signal-to-noise ratio at limiter input. 
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The effective downlink pseudo-random noise index is simply 

- 
e ' ~ ~  - CYS*DL (B -7) 

Using these equations, the losses due to the direct turnaround effect? 

can be calculated to permit a direct comparison with the regenerated code 

case. 

ume 4. 

case with the low-gain antenna and the performance margins at the end of 

a six-month orbital mission with the high- and medium-gain antennas. 

There is very little to choose between the approaches in terms of com- 

munication distance, thus justifying the use of direct turnaround on the 

basis of its relative simplicity. 

The results of these comparisons are given in Table 2.9 of Vol- 

The table shows the maximum communication distance for each 

3. PHASE LOCK PARAMETERS 

The following paragraphs develop the equations defining the phase 

locked loops and define the specific parameters for the spacecraft and 

ground receivers required to support the Voyager orbital mission. 

A block diagram of a basic phase lock loop is shown below in 

Figure B-1. 

X(t) = A/2 SIN (wet + ei(t) ) y(t) = AK, Km SIN ee(t) 
PHASE ' DETECTOR - 

V(t) = K , d  COS (wot + eo(t) 

1 

Figure B-1. Block Diagram of Basic Phase Lock Loop 
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The input to the loop is assumed to be a sinusoid of the form 

X(t) = Afi s in  (wet t ei(t) ) (B - 8 )  

where 

= power of x ( t )  

= frequency of VCO with input shorted w 
0 

e.(t) = the input signal phase process. 
1 

The input signal phase process normally consists of an information 

term due to modulation and a term due to doppler shift in the received 

signal. The incoming signal is multiplied by the VCO output. 

The term eo(t) is the loop estimate of ei(t), and K1 is the r m s  output of 

the VCO. The result of this multiplication, if perfect, would be 

The multiplication i s  generally accomplished, however, by a device 

unable to respond to the double frequency term. 

device has some gain, K 

Also, the multiplying 

and so the actual output of the phase detector is: m’ 

y(t) = AKIKm sin ee(t) (B-11) 

where 

(B-12) 

is called the .phase error.  
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As is 

in terms of 

often done, " 
phase variables in Figure B -2 below. 

the block diagram of Figure B - 1 is redrawn 

The additional a s  sump- 

tion is made that the phase e r r o r  is sufficiently small so that sin ee - ee 

I( = KnlKlKVCO 
Kvco IS  THE VCO GAIN CONSTANT IN 
UNITS OF RADIANS PER SEC PER VOLT. 

Figure B-2. Basic Phase Lock Loop in Terms of Phase 
Variables 

The output and e r r o r  transfer functions for the linearized loop 

above a r e  easily found and a r e  given below: 

- -  ee(S) S 
ei(S) - S t AKF(S) 

(B- 13) 

(B- 14) 

Many different types of loop filters have been used in phase-locked loops. 

One filter in particular has been widely used and is satisfactory for most 

applications. A s  the 

name implies, use of this filter gives r i se  to a second-order loop. The 

passive filter and its transfer characteristics are shown below in 

Figure B-3. 

This filter is  the second-order loop passive filter, 

'Robert C. Tausworthe, "Theory and Practical  Design of Phase -Locked 
Receivers, Volume 1, Technical Report No. 32-819, Jet  Propulsion 
Laboratory, 15 February 1966. 

'Floyd G. Gardner, and Steven S. Kent, "Theory of Phaselock Techniques 
a s  Applied to Aerospace Transponders, I t  George C. Marshall Space Flight 
Center, National Aeronautics and Space Administration. 
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Figure B- 3. Passive Filter e. In 

and Transfer 
Characteristics 

1 + T z S  
1 +T is  

TI = (R1 + R2) C 

Tz = R2C 

F16) = - 

The output and e r r o r  t ransfer  functions, for a passive filter second-order 

loop, can then be written as 

where 

o=fl n 

(B-15) 

(B-16) 

(B-17) 

(B-18) 

The three parameters,  AK, T1, and T2 completely characterize the loop. 

Alternately, the three parameters AK, 5, and w also characterize the 

loop. Cri ter ia  for chosing the three parameters,  AK, 6 ,  and on will now 

be discussed. The open loop gain, AK, is usually chosen to maintain the 

n 
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doppPer tracking e r r o r  to an acceptable level. 

input phase, Bi  ( t) ,  can be represented as 

With a doppler input, the 

$0 
t 

QOt 

Taking the Laplace transform 

QO t -  +O ei(s) = - 
s2 

By the final-value theorem of Laplace transform theory 

lim f(t) = l im SF(S) 
t - - w  s - 0  

so 

(B -20) 

(B-21) 

(B-22) 

t - - a ,  s - 0  
- 0 
- AK 

Since it i s  desired to maintain the doppler tracking e r r o r  to less  than 

approximately 0. 1 radian 

AK = 10Qo (B-23) 

The damping constant, 5, will be assumed equal to 112 fi. This is the 

most widely used value of 5 and, as is well known, gives the step phase 

response with the minimum mean square e r ro r .  

is determined by the loop noise bandwidth which i s  defined below. 

The last parameter,  

3Benn D. Martin, "The Pioneer IV Lunar Probe: A Minimum-Power 
F M / P M  System Design, I f  Technical Report No. 32-215, Je t  Propulsion 
Laboratory, 
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(B -24) 

4 For  the second-order loop with the passive fi1te.r 

1 
2BL = 1/2wn(25 4- zg) (B -25) 

with c =  1 / 2  d 2  

2BL = 1.06 wn (B -26)  

where 2BL has the dimensions of Hertz despite the fact that the dimensions 

of w 

input (frequency ramp) with a second-order loop is shown below. 
result  i s  true for the active case a s  well as the passive filter case. The 

only assumption is that the open loop gain, AK, is much greater than the 

loop natural frequency, w Only the 

significant terms in the expression for ee(t) a r e  shown below. 

a r e  in radians per second. The phase e r r o r  for a doppler rate step n 
The 

This condition is easily satisfied. 
5 no 

Awt t -  A w  
2 ee(t) = AK (B-27) 

where A w i s  the doppler rate in radians per second. 

the expression for ee(t)  is just the e r r o r  due to the doppler. 

because for a frequency ramp input Awt = A w .  

The f i rs t  t e rm in 

This is true 

So the first te rm in the expression for ee(t) is Aw/AK, which from 

Equation (B-22) is just the tracking e r r o r  due to doppler. 

t e rm in the expression for ee(t) will be denoted by +DR 
The second 

‘Floyd G. Gardner, and Steven S. Kent, op. cit . ,  page 4-4. 

’Ibid., page 5-8. 
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so 

(B -28) 

The loop noise bandwidth, 2BL, will be chosen so that the maximum 

tracking e r r o r  due to a doppler rate input will be about 0. 1 radian. 

The doppler on the uplink and downlink i s  given below. The doppler 

on the uplink is just given as 

V f = -f 
U c c  

while for the downlink (two -way doppler) 

2 y -  
C f  24 0 

fd  - 221 
- - -  

v c  1 tc 

where 

f = uplink doppler in Hz 

fd  = 
f = uplink transmitter frequency, 2115 mHz 

U 

downlink doppler in Hz 

C 

240/221 = frequency ratio between the coh rent downlink 
carrier and the uplink car r ie r .  c 

(B-30) 

6Phase lA, TaskB, Final Technical Report, Voyager Spacecraft, Vol- 
ume 2, Prefer red  Design: Subsystems; 17 January 1966. 

(B-31) 
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The doppler rate is just the time derivitive of the doppler, so 

(B-32) a f = -f 
U c c  

(B-33) 

The maximum vehicle acceleration, after injection into interp€anetary 

cruise,  for the 1973 launch was estimated to be no more than 2. 5 meters  

per second. The maximum doppler rates for the uplink and downlink a re  

therefore given as 

f = 17.6 Hz/sec (B-34) 
U 

f &  = 39.3 Hzfsec (B  -35) 

Using Equation (B-29) and setting +DR, the maximum tracking e r r o r  due 

a doppler rate,  equal to 0.12 radian, the required ca r r i e r  loop noise 

bandwidths a r e  found and presented below in Table B-4. 

Table B-4. Required Carr ier  Loop Noise Bandwidths for 0. 12 Radar 
Doppler Tracking Er ro r  

Required Loop Noise 
Bandwidths, Hz 

Uplink 32 

Downlink 48 

It will now be shown that a sufficiently large loop gain can be 
obtained to limit the tracking e r r o r  due to doppler to 0. 1 radian. 

Equation (B-23), the required open gain, AK, is given as AK = loao 
From 

where 

a. = doppler frequency. 
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The maximum expected vehicle velocity is about 20 kmlsec. 

uplink frequency is 2115 mHz, the doppler frequency i s  f DU 
The required open loop gain, AK, is  then 1.4 x 10 

obtainable 

Since the 
= 141 kHz. 

6 Hz, which is certainly 

One further point deserves discussion. As the open loop gain 

increases, the loop noise bandwidth also increases. 

the input signal-to-noise ratio reduces the effect of limiter signal suppres- 

sion, the open loop gain increases with increasing input signal-to-noise 

ratio. Therefore, the car r ie r  loop noise bandwidth increases with 

increasing signal-to -noise ratio. 

vehicle car r ie r  tracking loop is shown in Figure B-4. 

Since an increase in 

A simplified block diagram of the 

TO WIDEBAND 
PHASE DETECTOR 

fr, 10 M H z  

REFERENCE 

Figure B-4. Simplified Block Diagram of Vehicle Carr ier  
Tracking Loop 

The bandwidth, BE, of the IF filter should be made as narrow a s  

possible in order to minimize the effect of limiter suppression and for 

easier implementation of the loop lock indicator. 

wide enough, though, so that the loop transfer function is not influenced 

by the IF filter characteristics. Also, since it is planned to demodulate 

commands using the narrow band phase detector, the IF bandwidth must 

be wide enough to pass the command subcarriers. 

The bandwidth must be 

A s  a reasonable 
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compromise, then, the narrow-band IF filter will be assumed to be 2 kHz 
wide. The ca r r i e r  tracking loop will be designed so that with a loop noise 

bandwidth of 32 Hz (the minimum required to sufficiently reduce the 

tracking e r r o r  due to doppler rate),  the signal-to-noise ratio in a 32-Hz 

bandwidth will be 6 db. 

the above loop will now be calculated. 

two loop noise bandwidths. 

The threshold loop noise bandwidth, 2BL0, fo r  

The following formula relates the 
7 

2BL1 = 2BL2 :(2"2 "l -I- 1 ) (B-36) 

where 2BL1 and 2BL2 a r e  the two loop noise bandwidths and crl and cr 

the respective limiter signal suppression factors. 

only valid when the damping factor for the 2BL2 loop is 0. 707. 

signal suppression factor, CY, a s  is well known, is  given as 

a r e  2 
The above formula is 

The limiter 
8 

where 

(5) IF = signal-to-noise ratio in the IF bandwidth, 

Fo r  small signal-to-noise ratio in the IF bandwidth 

'Floyd M. Gardner, and Steven S. Kent, op cit. ,  page 6-3. 

'Ibid. , page 6-3. 

(€3-37) 

(B-38) 
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In the following equations, variables representing a 0-db loop parameter 

will be subscripted with a zero while variables representing a 6-db loop 

parameter will be subscripted with a 6. 

so 

= 4 -  2BL6 

BIF 

and 

2BL0 
(:)IFO = (2,: a)(-) 

Using Equation (B-38) 

112 
“0 1 2BL0 
- = - z  (5) @6 

Substituting in Equation (B -36) and simplifying, 

1 /2  
9 ( q )  2BL0 - 7(-) 2BL0 + l =  O 

Solving 

- -  - 0.59 2BL0 

2BL6 

(B -39) 

(B-40) 

(B-41) 

(B -42) 

(B -43) 

(B -44) 

(B-45) 
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= 1 9 H z  2: 20Hz 2BL0 (B -46) 

Since the ca r r i e r  power requirement is a signal-to-noise ratio of 6 db in 

32 Hz,  an equivalent requirement is 8 db in 20 Hz o r  8 db in 2BL0 = 20  Hz. 

The expanded ca r r i e r  loop noise bandwidths at  encounter and 

encounter plus six months will now be found. 

First the limiter signal suppression factor, "6, for the 6-db loop 

must be found. F rom Equation (B-40) 

= 4 -  2BL6 
BIF 

= 0.064 (-11.9 db) 

Since 

(B -47) 

(B-48) 

= 0.22 (B-50) "6 

It is assumed that the vehicle omnidirectional antenna and the ground 

210-foot antenna with the 100-kw transmitter a r e  used. The received 

power-to-noise density ratios a t  encounter and encounter plus s i x  months 

a r e  presented below in Table B-5. 
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Table B -5. Received Power -to-Noise 
Density Ratios 

Received Power -to-Noise 
Density db x Hz 6 R,  10 Km 

Encounter 190.7 36.5 

Encounter t 
six months 384 30. 5 

The loop noise bandwidth expansion will be calculated both for the 

cases  in which there is an uplink subcarr ier  and for the case in which 

there is no uplink subcarrier.  

the ca r r i e r  power, 

further reduction in the signal suppression factor. 

mand subcarr iers  will never be on simultaneously. 

power due to either the commands subcarr ier  or  ranging subcarr ier  being 

on is 3. 2 o r  3.0 db, respectively. 

3. 2-db c a r r i e r  modulation loss  which corresponds to an  additional signal 

voltage reduction of 1.45. From Equations (B-40), (B-43), and (B-45), 

the limiter suppression factors and loop noise bandwidths a r e  found. 

Table B-6 summarizes the results for the no subcarrier case while 

Table B-7 summarizes the results for the command mode case. 

The only effect of a subcarr ier  is to reduce 

This reduction in ca r r i e r  power effectively causes a 

The ranging and com- 

The loss in ca r r i e r  

The calculations will be done for a 

Table B-6. Vehicle Loop Noise Bandwidth 
Expansion with NO Subcarriers 

(s) IF' db 2BL, Hz 

Encounter 3.5 0. 80 2.75 88 

Encounter t 
six months -2.5 0. 55 2.0 64 
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Table B-7. Vehicle Loop Noise Bandwidth Expansion 
with Command Subcarrier 

Encounter 3. 5 0. 80 0. 55 2. 0 64 

Encounter + 
six months -2. 5 0. 55 0. 38 1 .  5 48 

J. 1- 

ML = 1.45 and is the signal suppression factor due to ca r r i e r  
modulation 10s s. 

DSIF Carr ie r  Tracking Loop Parameters .  The DSIF ca r r i e r  track- 

ing loop has the capability to operate with any of four different loop filters. 

Table B-8lists the strong signal and threshold loop noise bandwidths for 

the car r ie r  tracking loop, for each of the loop filters. 9 

Table B-8. DSIF Threshold Loop Noise Bandwidth 

Threshold Loop Noise Strong Signal 
Bandwidth (2 BLo), Hz Noise Bandwidth, Hz 

5 50 

12 120 

48 255 

152 500 

The threshold loop noise bandwidth is the bandwidth with a 0-db 

signal-to-noise ratio in  the loop bandwidth. 

width for the downlink is given as 48 Hz from Table B-4. 

use the loop filter that provides a 48-Hz loop bandwidth with the minimum 

signal power-to-noise density ratio. 

The required loop noise band- 
It is desired to 

The variation of loop noise 

'E. C. Gatz, and R. B. Hartley, "Planned Capabilities of the DSN for Voya- 
ger 1973, Engineering Planning Document No. 283, Revision 2, 1 January 
1967, page 13. 
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bandwidth with signal-to-noise ratio for the D S F  ca r r i e r  tracking loop is 

plotted in a DSIF specification. 10 

F rom the DSIF specification, a signal with 15 db more power than 

the threshold signal is required to increase the 2BL0 = 12 Hz bandwidth 

to 2BL = 48 Hz. 

though, requires 15-6 = 9 db less  signal-to-noise ratio than 15 db in 

A 0-db signal-to-noise ratio in the 2BL0 = 4 8  Hz loop, 

= 12 Hz. Even 6 db in 2BL0 = 48 db requires 3 db less  signal-to- 2BL0 
noise density ratio than 15 db in ZBLO in 12 Hz. 

power requirement will be a 6-db signal-to-noise ratio in 2B 

With 6 db in 2BL0 = 48 Hz, the loop noise bandwidth expands to 80 Hz. 

Therefore, the car r ie r  
- 48 Hz. LO - 

''Spacecraft/DSIF/GOE Interface Specification PC-2. 00 through PC-2.04, 
National Aeronautics and Space Administration, Ames Research Center, 
Moffett Field, California, Document No. PC-2.01. 



APPENDIX C 

ANTENNA DRIVE TRADEOFF STUDIES 

The major antenna drive elements which were considered in tradeoff 

studies were the gimbal system, the drive mechanism, and the prime mover. 

1. GIMBAL SCHEMES 

Two gimbal schemes were considered: 1) the standard cross  gimbal, 

and 2) the differential gimbal. 

tions for the two schemes. 

the differential gimbal has its applications (for example, concentric 

drives), its complexity and size make it less  attractive. On the other 

hand, the cross gimbal makes for a rugged, and compact package. 

2. DRIVE MECHANISM 

Figure C-1 gives the tradeoff considera- 

In this application, it is obvious that although 

Six drive mechanism schemes were considered 1) the wabble gear, 

NUMBER OF 
CRIlICAL P M T S  

BEMINGS 4 
GLMS 
STRUCTURAL 3 

2)  the harmonic drive, 3 )  the spur gear drive, 4) the linear ball screw drive, 
5) the worm gear, and 6) the direct drive. Table C -1 compares these schemes. 

An important requirement for the drive mechanism is that it be 

adaptable to a noncontacting rotary R F  joint. 

to maintain low transmission losses. 

can be maintained less  than 1.2: 1, with an insertion loss of 1.0 *O. 1 

decibel, including mismatch loss, in the antenna cable. 

ment is that the drive mechanism be compatible with the gimbal scheme. 

This is necessary in order 

With these rotary joints the VSWR 

Another require- 

The wabble gear drive mechanism has been used successfully for 
the OPEP and solar a r r ay  drives for the OGO spacecraft. Its major 

PERFORMANCE 
CH/\RACTERISTICS 

MOVEMENT ABOUT ANY ONE AXIS 
REQUIRES INPUT FROM ONE DRIVE 
ONLY. FAILURE OF ONE CRITICAL 
P M T  CAUSES FAILURE OF ONE 
Axts ONLY 

GIMBAL WNGEMENTS 

BEMINGS 10 

GEMS 
STRUCTURAL 3 

STANDMD GROSS GIMBAL 

MOVEMENT ABOUT ANY ONE AXIS 
REQUIRES THAT BOTH DRIVES 
OPERATE SIMULTANEOUSLY 
FAILURE OF ON€ CRITICAL P M T  
CAUSES FAILURE OF BOTH AXES 

DIFFERENTIAL GIMBAI 

Q 

TRADEOFFS 

RELIbBILITY 

COMPLEXITY 

MINIMUM COMPLEXITY. 
SIMPLE TO PACKAGE, 
MANUFACTURE, AND 
ASSEMBLE. 
MINIMUM WNUFACTURING 
COST 

HIGHLY COMPEX. 
DIFFICULT TO PACKAGE, 
MANUFACTURE, AND 
ASSEMBLE. 
HIGH MANUFACTURING 
COST 

Figure G -1. Gimbal Tradeoff Summary 
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YSTEMS 

Table C-1 .  Sealed Drive Tradeoff Summary* 

~- 

Performance 

No. of 
iears Based 

on 1OO:l 
Reduction 

Gears: 2 

Number of 
Rotating 

Seals 
Sealed Drive 
Candidates 

Size and 
Weight 

Small and 
light 

Small and 
light 

Small and 
light 

Packaging 

Internal design 
moderately 
simple, 
packages ex- 
tremely well 
with gimbal. 

I 
High efficiency, 
high torque 
transmission, 
good accuracy 

None 
Uses bellows 
and static "0" 
ring or hermetic 
seals 

Wabble Gear 
Calculated 
Reliability 
Single axis: 

0.9933 
Two axis: 

0.986 

High efficiency, 
Moderate 
torque trans- 
mission, good 
accuracy 

Gears: 2 Internal design 
moderately 
simple, very 
difficult to 
package with 
gimbal, r e -  
quires addi- 
tional gears 
and bearings. 

None 
Uses thin flexi- 
ble metal tube 
which is ex- 
posed to space. 
High speed 
elements a r e  
sealed. 

Harmonic 
Drive 

Spur Gear 
Drive 

Gears: 8 
(Based on 
4:l  reduc- 
tion per 
gear mesh) 

Moderate effi- 
ciency, high 
torque trans- 
mission, good 
accuracy 

Two sets of 
seals 

Internal design 
moderately 
simple, more 
parts required 
than the above, 
can be designed 
to package well 
with gimbal 

Gears: 2 
to 8 
plus ball 
screw 
assembly 

None 
Uses bellows 
and static "0" 
ring or 
hermetic seals 

Internal design 
could range 
from moderately 
simple to com- 
plex, will not 
package well 
with gimbal, r e -  
quires long 
stroke to achieve 
gimbal travel, not 
suited to  this 
application 

Linear Ball 
Screw Drive 

Worm Gear 

Moderate to 
high efficiency, 
depending on 
number of 
gears used. 
High load trans.  
mission, good 
accuracy. Some 
losses do occur 
due to  differen- 
t ial  gas pres-  
sure  acting on 
bellows 

Low to moder - 
ate efficiency, 
high torque 
transmission, 
good accuracy 

Large and 
heavy due 
to large 
stroke 
required 
to obtain 
gimbal 
travel 

Small and 
light 

Small size 
and weight 
for drive ; 
motor 
diameter 
prohibi- 
tive due 
to torque 
require- 
ments 

Gears: 2 
(gearshave 
large sliding 
surfaces) 

Two shaft seals Internal design 
moderately 
simple, can be 
designed to 
package well 
with gimbal 

No gears Two sets of 
seals 

Highest effi- 
ciency, high 
torque trans- 
mission, good 
accuracy 

Internal design 
may be simple, 
package can be 
designed for 
gimbal 

Direct 
Drive 

*Sealed Drive Tradeoff Summary shows that major advantages of the 
wabble gear drive are that fast  moving surfaces a re  sealed from the 
vacuum environment and it forms a compact gimbal package that can 
easily include a radio frequency joint. 
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, w 
advantages are that 1) fast moving surfaces are  

environment, and 2)  it makes a compact gimbal 

joint easily included. 

The harmonic drive, developed by United 

sealed from the vacuum 

package with the RF 

Shoe Machinery Co., also 

has its fast  moving surfaces sealed f rom the vacuum environment. 

However, the incorporation of the rotary R F  joint in  the gimbal scheme 

i s  not easily accomplished. 

The spur gear drive and the direct  drive need dynamic seals to 
protect the motor, bearing, and other moving parts f rom the environment. 

The direct  drive is usually used with a slow-speed, high-torque device, 

such as a DC motor. 

The linear ball screw is normally used when rotary motion is 

converted to  linear motion. 

tages, because of the long stroke which would be required and the l inear- 

to-rotary conversion mechanism needed. 

In this application, it offers no real advan- 

The worm gear  has low to moderate efficiency. This has the 

advantage that the worm gear  c a n  be designed so that it cannot be back- 

driven; this would be useful during engine firing. Its main disadvantage 

is  that its gears  have large sliding surfaces which cause rapid wear and 

it requires shaft seals to protect the moving par ts  f rom the space 

environment. 

loss of lubrication which will cause galling o r  welding the worm gears,  

and deposition of oil vapor on delicate par ts  and lenses of other space- 

craft components. 

3.  PRIME MOVER 

Failure of the seal due to wear o r  to breakdown will cause 

Three prime movers are considered i n  this application: I )  DC 

torque motor, 2) stepper motor, and 3)  AC servo  motor. High reliability, 

minimum weight, and low electromagnetic interference (RFI) are standard 

objectives i n  spacecraft design. An additional requirement of the Voyager 
spacecraft is that nonmagnetic material be used except when no other 

alternatives are available. 

Table C-2 presents the tradeoff analysis for  the prime movers. 

The DC torque motor has the disadvantage of a high permanent magnet 

ficld, high R F I  due to commutator sparking, brush wear with high 

currents, and moderate weight and size. 
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The stepper motor 
Also, the weight and the 

would require complex electronic circuitry. 

size penalty would negate its other advantages. 

The AC servo motor offers the best choice a s  prime mover for the 

antenna drive assemblies. Furthermore, it has been used in control 

systems for  a long time, and much engineering experience and back- 

ground has been accumulated so  as to make maximum use of its 
advantages. 

4. SHAFT POSITION TRANSDUCERS 

Shaft position transducers a re  required to serve two functions, 

f i r s t  to provide control system feedback and, second to provide tele- 
metering feedback. 

from each other. 

output shaft. 

These two functions should be electrically isolated 

Ideally, the transducers a r e  coupled directly to the 

Both analog and digital devices were considered for this application. 

While analog devices generally give anabsolute output for any given angular 

position, their inaccuracy results from the effective deviations of the 

straight line characteristic of the input-output curve due to various fac- 

tors including environmental conditions, inherent e r r  or s and loading 

effects. 

encoder presents a "step-like" input-output curve where, instead of a 

one-to-one correspondence between input and output, the output is con- 

stant for a small range of input values. 

smaller than the inaccuracy, displacement and nonlinearity shifts of the 

corresponding analog curve results in an  inherently more accurate sys- 

tem. The reason for this improvement lies in the binary representation 

of the input quantity. 

analog er rors ,  the incorporation of more than one binary digit to 

describe the input results in an exponential decrease of the otherwise 

overall analog error .  

On the other hand, the digital transducer or shaft position 

Making the digital increments 

Although each digit is in essence affected by 

Two types of analog devices, the potentiometer and the resolver, 

Although potentiometers may be were considered for possible use. 

obtained which will yield the required resolution and accuracy they 

depend on brushes for electrical contact between the stationary and 

rotating elements. Brushes a r e  susceptible to shock, vibration and 
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wear. Also, the requirements for  long life, high resolution, and 

continuous rotation dictate the use of a film type potentiometer, but this 

type nominally has an electrical travel of only 350 degrees. 

appears that a potentiometer would not fulfill all the requirements. 
Thus, it 

Resolvers eliminate the need for mechanical contact between the 

stationary and rotating members by depending on magnetic coupling 

instead. 

functions of the shaft angular position. 

to provide unambiguous position information. 

the resolver signals complex electronic conditioning circuitry is required 

to make the feedback information compatible with commanded position 

inputs (probably digital) and tracking e r r o r  signals (DC). 

The resolver produces two outputs which a re  sine and cosine 

Both outputs are needed however, 

Because of the form of 

Shaft position encoders are basically of four types. These include: 

1) brush in  which readout i s  effected conductively through brushes making 

contact with a segmented disc, 2) magnetic in which readout i s  effected 

magnetically, 3)  capacitive in  which readout is effected electrostatically, 

and 4) optical-photoelectric in which readout is effected by photoelectric 

means. 

successive increments of position a re  indistinguishable and must be 

counted, and devices in which successive positiQns a re  uniquely coded 
so that absolute position information can be determined directly. 

the resolution required is 0.01 degree o r  better, the direct reading 

encoders must produce 16 bits of information, i. e., 16 coded tracks a re  

required. 

relative positioning of multiple tracks, from optics, brushes o r  magnetic 

o r  capacitive pickoffs to read these multiple tracks, and from radial 

misalignment of an indexing assembly. Moreover, the brush devices 

have multiple brush problems, the photoelectric devices require light 

sources of questionable long life, the capacitive devices a re  very sensi- 

tive to noise, and the magnetic devices produce rotating permanent 

magnet fields. 

These types can be further divided into devices in which 

Since 

These encoders a re  subject to e r r o r s  that ar ise  from incorrect 

The incremental encoder represents the simplest type of encoder 

usually consisting of a rotating disk having a single track of equally spaced 
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segments and a suitable sensing member. 

ments and must be accumulated in  external circuitry to represent shaft 

The data is derived in inc re -  

position. 

of a second pickoff displaced in  phase 90 degrees f rom the pr imary 

output. 

of rotation can be determined. 

encoders for  position determination is that e r r o r s  generated by noise 

transients, power failure and other sources a r e  accumulated. 

addition of reference points and another pickoff to the encoder and care-  

ful design of the associated electronic circuitry these e r r o r s  may be 

minimized. 

generated is a function of shaft speed. High accuracy rate data can be 

obtained by counting the number of encoder output pulses as  a function 

of time. 

The direction of shaft rotation is obtained by using the output 

By operating logically on the outputs of the two pickoffs direction 

A disadvantage of using incremental 

With the 

R a t e  information may be obtained because the pulse rate 

In summary the magnetic incremental type position encoder is 

recommended for the following reasons: 

e There is  no mechanical contact between the 
rotating and stationary members 

e The use of two pickoffs on a single track 
eliminates the sources of e r r o r  inherent in  
multiple track encoders 

0 The external circuitry required is  quite 
simple even when compared to direct reading 
encoders. Although direct reading encoders 
provide a unique output for each discrete 
shaft position, the output is usually in a cyclic 
code which must be converted to another 
binary form to be compatible with other 
signals. 

e Physical configuration is readily adaptable 
to mounting on hollow shafts 

0 The required resolution may be obtained when 
the encoder is coupled directly to the output 
shaft 
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TRWSVSTEMS 

m The extremely simple construction and 
absence of mechanical contact means high 
reliability and long life 

R a t e  information is easily obtained i f  required 

The incremental encoder is readily adaptable 
to  control systems where the commanded input 
is representative of either absolute position o r  
an incremental change in  position. 

5. ROTARY JOINT 

The R F  transmission path is required to t raverse  two axes of 

rotation in  the high gain antenna assembly. Three methods of providing 

the required relative motion across  the axes were studied. These were 

1)  cable wrapup, 2 )  contacting rotary joints, and 3 )  noncontacting rotary 

joints. 

bulk and weight resulting f rom the number of turns required. 

tension exerted on the actuator mechanism and fatigue of the coaxial 

cable were also considered as  a reliability factor. 

The cable wrapup was considered the least desirable due to the 

Spring 

Flexible cable would be  used for this case, but consideration of its 
becoming a rigid element under low temperature conditions if the cable 

heater failed, necessitated a layout on the basis of its behavior as a 

rigid coil structure. 

turns per axis on approximately a 6-inch diameter with additional radial 

clearance for growth during rotary motions, causing unwinding of the 

coil. 

of the noncontacting rotary joint arrangement selected and would have 

the additional negative factors of noise during flexure, increased elec- 

tr ical  losses due to the additional cable lengths involved, and restriction 

of angular rotation in one axis. 

This would require a bobbin and minimum of six 

Such a n  arrangement would weigh approximately three times that 

The contacting type rotary joint was eliminated due to problems 

associated with providing reliable electrical continuity without contact 

welding in a space environment. The noncontacting type is recommended 

a s  being the simplest, most  reliable, and also the lightest in  weight. 

By utilizing the bearing structure integral with the actuator geometry, 
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and so  arranging the actuator shafting to accommodate the required 

hardware, it is possible to design the rotary joints into the actuator 

assembly so that they became an integral part of that assembly, using 

its bearing system for  joint alignment. 

ically correct  to discuss these joints as separate items, f rom the 
actuator. 

adds approximately 0.38 pound each to the overall weight of the actuator. 

For  this reason it is not rnechan- 
. 

Incorporation of the rotary joints into the actuator assembly 

6. MOTOR DRIVE POWER 

Tradeoffs were made in  the area of motor drive power generation. 

Primarily, two techniques were investigated to determine advantages of 

each approach from the standpoint of efficiency and parts count. 

ing external AC drive power and commutating the conversion efficiency 

of the output stages which to a great extent determines subsystem 

efficiency proved to be a better selection from- the standpoint of driver 

efficiency and total parts count. 

Employ- 
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APPENDIX D 

COMMAND BIT SYNCHRONIZER 

1. DETECTION 

A PCM bit s t ream that has been passed through a noisy communica- 
1 

tion channel may be represented as 

y(t) = fi(t - iT -k to) t n(t) 
i 

where 

y(t) = the received signal plus noise 

f . ( t )  = either one of two preselected bit waveforms 
S,(t) o r  S2(t) 

1 

T = the bit period 

to = an unknown time delay ( 0  5 to 5 T). 

The additive noise may usually be assumed to be Gaussian. The bit 

waveforms Sl( t )  and S2(t) a r e  preferably selected for optimum signal design 

performance' corresponding to a regular simplex code, for which 

Si(t) = -S2(t). This is the case for standard NRZ (C,  M, o r  S) and split- 

phase telemetry formats; however, this is not true for R Z  signals, which 

instead correspond to an  orthogonal code and thereby must yield 3 db 

degradation in theore tical performance . 
The function of a bit synchronizer is to coherently detect the received 

signal y(t), i. e., to reconstruct the original PCM data s t ream [ a ' ' O "  cor- 

responds to transmition of Sl(t)  waveform and a "1"  corresponds to the 

transmission of S2( t) waveform]. 
synchronizer may be considered to perform two operations: 

In performing this function, the bit 

1) 

2) 

Estimating ( o r  locking onto) the unknown time delay to 

Detecting ( o r  deciding) whether signal Si( t) o r  Sz( t) was 
transmitting each bit period. 



A 

Assuming that the f i r s t  operation can be ideally accomplished (i. e., with 

zero e r r o r  o r  with no phase jitter in the local bit rate time reference 

generated by the bit synchronizer system), the calculation of the resulting 

bit e r r o r  rate (BER) for the second function can be easily accomplished. 

When the additive noise has a flat spectral density (white noise), the e r r o r  
probability is given by 3 ( a s  a function of signal-to-noise ratio A). 

where 

q(x) = cumulative Gaussian distribution 

x -1/2x2 
dx I = J 

-a3 Jz. 
and 

where 

A2 = signal energy (per  bit) - E - -  
noise spectral density N 

0 
(D -4) 

X = the cross  correlation coefficient between 
the two possible bit waveforms Si(t) 
and S2( t). 

For  the case of either NRZ o r  split-phase (Manchester) signal codes, the 

correlation coefficient y = -1, so that 

However, for the case of an R Z  code, y = 0 and 

which indicates the inherent 3 db degradation of theoretical performance 

of an  R Z  code with respect to an NRZ code. 

are plotted in Figure D-1. 

These ideal e r r o r  rate curves 
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In actual practice, of course, a real bit synchronizer system can 

only approach these ideal performance curves due to imperfect knowledge 

of the time delay (i. e.,  a nonzero amount of phase jitter in the locally 

generated bit ra te  reference of the bit synchronizer loop) and due to the 

imperfections of the matched filter detection system (e. g., integrate and 

dump filter). For  example, phase j i t ter  of the VCO, DC offsets and time 

delays in the integrator and comparator circuits, and imperfect tracking 

of baseline variations of the input signal all degrade the achievable per-  

formance. In addition, the presence of bit rate jitter on the input signal 

represents an additional uncertainty ( o r  noise component) added to the 

signal and implies an additional performance degradation. 

buting cause of degradation may be appropriately analyzed by incorporation 

of i ts  corresponding random perturbation into the mathematical detection 

model of the bit synchronizer system. 

Each contri- 

The theoretical BER curves are unrealistic in that they assume no 

theoretical loss due to imperfect knowledge of the bit ra te  clock, which is 

equivalent to the assumption of a zero bandwidth phase lock tracking loop 

in the bit synchronizer. A more realistic model is one which the BER i s  

calculated for a given nonzero loop noise bandwidth Bo. This is equiva- 

lent to saying that the lock acquisition time (which depends on the loop 

noise bandwidth) should be kept as a parameter in the theoretical BER 

curves. When this i s  done, i t  can be shown that, for the case of NRZ 
input data at 50 percent transition density, the theoretical BER is given by 

2 where A is the signal-to-noise ratio and B is the bit rate. Hence, an 

e r r o r  rate curve can be plotted versus signal-to-noise ra te  (s imilar  to 

Figure D-1) with relative loop bandwidth Bo/Br as a parameter. 

actual performance of the bit synchronizer for the same relative loop 

bandwidth should then be compared with this theoretical limit, to deter-  

mine the true performance degradations. Note that when the relative loop 

bandwidth Bo/Br approach zero, the BER of Equation (D-7) reduces to the 

previous Equation (D-5) for the case of no assumed loop jitter due to noise. 

r 

The 
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2. SYSTEM APPROACH 

The PCM bit synchronizer must perform the functions of estimating 

the location of the bit-time period and detecting the binary data present in 

each bit period (as described in Section 1). 
for accomplishing the former function in the presence of noise i s  to employ 

methods of automatic phase-lock loop control. 

of phase-lock loop tracking of the bit rate clock relate to the inherent 

capability for noise rejection by utilizing narrow loop bandwidths. 

permits useful operation of the bit synchronizer at extremely small input 

signal-to-noise ratio if desired, i. e., the minimum threshold signal-to- 

noise ratio for useful operation may be reduced as desired. 

attractive techniques for bit-rate clock generation are certainly possible, 

but these techniques result in less noise suppression capability and tend 

to exhibit rapidly degrading performance a t  low signal- to-noise ratio. 

typical example is that of zero-crossing detection of a split-phase coded 

P C M  signal as a method of estimating the bit-rate clock. 

advantage of the phase-lock loop method i s  the rapid increase in acquisition 

time as the loop bandwidth is reduced to accommodate low signal-to-noise 

ratio operation; however, at  low signal-to-noise ratio, a larger  acquisition 

time i s  naturally expected because of the greater  uncertainty which exists 

concerning the true location of the bit time period (or  phase) and the true 

bit ra te  frequency. 

The most efficient technique 

The important advantages 

This 

Other less 

One 

A possible dis- 

Given some type of phase-lock loop to achieve bit-rate clock tracking, 

the optimum technique for bit data detection is easily determined. 

well known 49 5 y  ' that the optimum detector in the presence of additive 

Gaussian noise is  the matched filter having the frequency transfer function 

H(jw) given by 

It is 

where 

S(jw) = Fourier transform of the bit waveform 
to be detected 

Gn(f) = power spectral density of the independent 
additive noise. 
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This matched filter output maximizes the signal-to-noise ratio a t  time 

t i .  
the filter impulse response i s  a time-inverted replica of the signal bit 

waveform S(t), and furthermore, the filter signal plus noise output a t  the 

end of the bit time is proportionally equal to 

For  the important case where the noise spectrum is flat Gn(f) = No, 

T 
JT S2(t) dt t 1 S(t) n(t) dt (signal present) (D -9)  
0 0 

The matched filter in this case is called a correlation detector. 

PCM signal format is NRZ, the filter becomes the well-known integrate- 

and-dump circuit. 

filter consists of an integrate-and-dump circuit preceded by a square wave 

multiplier a t  the bit rate frequency. 

When the 

For  split-phase data (Manchester coding) the matched 

For  R Z  data the matched filter is  an 

integrate-and-dump circuit, except that the timing i s  arranged to allow the 

integration only over the f i r s t  half of the bit period. 

detection circuits a r e  illustrated in Figure D -2. 

These matched filter 

As a result of the above theoretical considerations, the general 

form of the bit synchronizer system which will be required to optimally 

reconstruct the P C M  data is now clearly indicated: phase-lock loop track- 

ing is  needed to generate the bit-rate clock plus some form of integrate- 

and-dump circuit to perform binary signal detection. 

complication arises: the bit synchronizer phase-lock loop cannot always 

track the bit rate when provided with modulated input data. 

there is only a reduced bit rate frequency component present in the input 

data s t ream when the transition density is near 50 percent. 
this difficulty the data must be demodulated (i. e., removed) in an appro- 

priate manner before being applied to the phase-lock loop. 

ment to restore the bit frequency component, a s  well as all previously 

mentioned requirements, is conveniently and effectively satisfied by the 

system TRW proposes, an I-Q bit synchronizer, or  a modified "Costas 

Synchrolock Demodulator. 

operation is presented in paragraph 2. 2. 

One important 

This is because 

To overcome 

This require- 

7 A description of the I-Q bit synchronizer 
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2. 1 PREFILTERED CASE 

It should be mentioned that the above discussion assumes that the 

input noise is white and the input signal is undistorted. 

there is  post transmission filtering of the signal plus noise before appli- 

cation to the bit synchronizer, the matched filter additionally consists of 

a whitening filter (the inverse of the prefilter).8 This conclusion is a 

direct consequence of Equation (0-8). 

simple one-pole low-pass filter, the whitening filter wil l  be as shown in 

Figure D -3a. This configuration, in combination with the integrate-and- 

dump circuit, represents the appropriate matched filter for the prefiltered 

case, as given by Equation (D-8). 

given by the curves of Figure D-1.  

In the case where 

For  example, i f  the prefilter is a 

Note that the theoretical BER is still 

Another possibility is  that the PCM data s t ream in prefiltered before 

transmission ( to  conserve link bandwidth). In this case an integrate-and- 

dump filter is  not optimum. For example, i f  a single-pole pretransmission 

filter is used having a 3-db bandwidth equal to 1. 5 times the bit rate for  

N R Z  data, then Equation (D-8) yields the optimum matched detector fi l ter ,  

(D-10) 

The f i rs t  expression in parenthesis is the transfer function for an integrate- 

and-dump circuit, and the second expression represents a time delay 

t i  - T and a filter having a pole in the right half plane. 

filter is physically unrealizable by conventional passive filtering techniques. 

One possibility is to permit the time delay t i  (a t  which the matched filter 
output is sampled) to exceed the bit time T, and to approximate the result- 

ing transfer function by physically realizable filters. This approach tends 

to be complex and has the disadvantage of increased time delay in the bit 

synchronizer loop which degrades the loop acquisition properties. ’ When 

the allowed delay t i  i s  constrained to be equal to the bit time, then i t  can 

be shown by Wiener filtering theory5 that the optimum realizable matched 

filter is  the integrate-and-dump filter (this i s  also true when any n-pole 

pretransmission filter is used). This approach i s  commonly used in the 

design of bit synchronizers. 

Of course, this 

10 
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Figure D-3. Case of Prefil tered NRZ Signals 
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Note also that the use of pretransmission filtering causes intersymbol 

interference in the detection process performed by the bit synchronizer, 

(due to the presence of data waveform "tails" extending over adjacent bit- 

time periods due to the pulse-stretching effect of the prefilter). 

illustrated in Figure D-3b. 

for the effect of intersymbol interference by adjusting the decision thresh- 

old of the comparator circuit (Figure D-3a) i f  a transition occurs in any 

given bit-period; however, the threshold adjustment requires an a priori  

knowledge of the signal power levels a t  the integrate-and-dump circuit 

output. 

noise ratio to the bit synchronizer, it  is therefore not considered feasible 

to perform this threshold adjustment to compensate for inter symbol 

interference . 

This i s  

It is possible to compensate approximately 

1 1  

Due to the wide dynamic range of the input signal and signal-to- 

The theoretical BER curve for the case of pretransmission filtering 

Let M be thr transition density of N R Z  data may be described a s  follows: 

and h(t) the unit step response function for the prefilter. 

interference compensation is  used for the integrate-and-dump detector, 

then the BER is  given by 

If no intersymbol 

(D- 11) 

where X and $(X) a r e  defined by Equations (D-3) and (D-4) for the unfiltered 

NRZ data, and 

f [2h(t) - 11 dt 
(D-12) 

For  example, if the pretransmission filter is a simple one-pole filter 

having a 3 db cutoff frequency equal to 1. 5 times the bit rate of the NRZ 
data, then h(t) = 1 - e -3.rrt'T and k = 0. 788. 

plotted in Figure D-1 for M = 0. 5 versus the average signal-to-noise ratio 

0.947A. 
curve, namely a perfect bit rate phase-lock loop is assumed in the bit 

synchronizer; a different theoretical curve applies similar to Equation (D-7) 
when nonzero loop bandwidth is taken into account. 

The BER for this case is 

Note that the same comment a s  before applies to this theoretical 
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In summary, the theoretical bit e r r o r  rate curves a r e  directly 

obtained by methods and mathematical relationships which have been 

described in this section of the proposal. 

the various types PCM signal waveforms which are used, the prefilter 

which is used as well as the loop phase jitter for the actual loop bandwidth 

used in the bit synchronizer. 

The curves can take into account 

2 , 2  I-Q BIT SYNCHRONIZER FUNCTIONAL DESCRIPTION 

A general block diagram of the proposed I-Q bit synchronizer is  

shown in Figure D-4. 

below, and a more detailed fu 

the logic and analog circuitry is presented in paragraph 2 . 3 .  

signal waveforms in the loop are sketched in Figure D-5, assuming a split- 

phase modulated input signal under the condition where the phase-lock loop 

has achieved bit-rate sync lock. 

A conceptual description of its operation is  given 

ional description of the mechanization and 
The major 

The buffer amplifier in Figure D-4 performs conditioning of the 

received signal plus noise waveform y(t). 

here, if necessary, for the prefiltered case. 

A whitening filter is provided 

Rejection of static and 

dynamic baseline offsets is accomplished by application of AC coupling 

and DC restoration techniques; for NRZ-C data, the DC component i s  also 

a function of the transition density and AC coupling alone is  insufficient. 
The use of a subcarrier avoids all of these baseline problems. 

automatic gain control (AGC) of the buffer amplifier may be provided to 

maintain its output signal component constant (this may be a requirement, 

since the loop gain K is proportional to applied signal level and the loop 

noise bandwidth is proportional to K'' '). 

Additionally, 

The conditioned signal plus noise is then applied to the I and Q 
channels of the bit synchronizer loop (Figures D-4 and D-5). 
functional elements in the I channel (switching multiplier, integrate-and- 

dump circuit, comparator and sample and hold circuit) constitute the 
exact matched filter detector for split-phase modulated PCM signal, as 

has been discussed in connection with Equation (D-8). 

i s  in a locked condition, the I channel output e i ( t )  provides the reconstructed 

data in NRZ form, 

The cascaded 

Thus, when the loop 
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Figure D-5. Signal Waveforms for  the I-Q Bit Synchronizer 
of the Phase-Lock Conditioner 

D- 13 



The function of the Q channel is directly associated with the lock 

acquisition of the phase lock loop. 

of the Q channel output ez(t) is zero (as shown in Figure D-5). However, 
when the VCO waveform is out of phase by an amount 9, then it is easily 

verified that product el( t), ez( t) wil l  have a nonzero DC component. This 

condition is shown by the waveform diagram of Figure D-6, in which it is  

seen that the voltage polarity of the product of the NRZ output e t) (from 
the I channel) and e2(t)(from the Q channel) i s  independent of the NRZ data 

itself. Hence, the proper polarity correction is applied to the VCO which 

drives the phase-lock loop in such a direction that the phase e r r o r  9 is 

reduced towards zero and phase lock is achieved. 

detector characteristic for the loop may be obtained by plotting e l  and ez 

versus 9, as shown in Figure D-7. 
exhibits stable nodes of true phase lock a s  well a s  stable nodes of false 

phase lock. The false lock conditions may be overcome by either taking 

advantage of the fact that the input signal split-phase waveform to the bit 

synchronizer always makes a transition at the middle of the bit period, o r  

by utilizing the lack of true frame sync in the PCM telemetry data. Note 

also that when the input data is split phase this bit synchronizer does not 

depend on the occurrence of binary transitions in the input data to acquire 

In the lock condition the DC component 

The equivalent phase 

The phase detector characteristic 

bit synchronization. 

Hence, the above discussion verifies that the proposed I-Q bit 

synchronizer configuration does offer a convenient and efficient technique 

for bit rate clock generation (by means of a phase-lock loop) and optimum 

binary data detection (by means of a matched filter). 

t e rms  of bit e r r o r  rate, can be expected to approach the theoretical limits 

imposed by the curves of Figure D-1. 

Performance, in 

In the acquisition process of the phase-lock loop, an automatic sweep 

of the VCO is utilized to force the loop into bit ra te  synchronism (Fig-  
u re  0-4). 
controls the enabling and disabling of the VCO sweep circuit. 

the loop noise bandwidth (controlled by the loop filter) can be reduced a s  

desired to improve steady state performance, i.e., to reduce the bit rate 
jitter of the VCO reference due to noise. 

operating at  low loop noise bandwidth a r e  the lowering of the maximum 

This is accomplished by means of a sync lock indicator which 

In this way, 

However, the penalities fo r  
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Figure D-6. Signal Waveforms for the I-Q Bit Synchronizer of 
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Figure D -7. Equivalent PLL Phase Detector Characteristic for 
the I-Q Bit Synchronizer System of Figure D-4  

rate of change of input bit rate that can be tracked by the loop (without 

losing lock), and the rapid increase in acquisition time. 

can be quite severe, since the average acquisition time when the VCO i s  

swept in frequency is inversely proportional to w 

bandwidth. 

width and acquisition time. 

This latter effect 

2 
n ’  where wn is the loop 

It is  possible to achieve a better tradeoff between loop band- 

At large signal-to-noise ratio, Figure D-8 shows an  equivalent 

model for  the phase lock loop of the bit synchronizer in Figure D-4. 

shown is  the small signal/equivalent linearized model for the in-lock condi- 

tion. When the loop bandwidth is much smaller than the bit rate ( a s  is 

usually the case to achieve good steady-state detection performance), the 

loop bandwidth and damping ratio a r e  indicated in the figure. 

Also 

The discussion of the I-Q bit synchronizer system has thus far been 

centered on the particular case where the input signal format is  that of 

split-phase modulation. 

The block diagram of Figure D-4 may still be applied with the modification 

of reference timing waveforms I(t) and Q(t) to be I(t) = ti, and Q(t) = bit 

rate square wave, as  shown in Figure D-9. 

W e  consider next the case of NRZ input data. 

Also shown is  the equivalent 
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Figure 0-9 .  Modifications to the I-Q Bit Synchronizer 
for the Case of NRZ Input Data 
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loop phase detector characteristic in the presence of data transitions 

every bit period. In contrast to the previous case of split-phase coding, 
the phase detector characteristic does not exhibit any conditions of false 

lock. However, loop acquisition does depend upon the transition density 

of the NRZ data. This dependency on information transitions is due to 

the following mechanism in the loop: when there a r e  no transitions the 
signal input to the Q switching multiplier (Figure 0 - 4 )  is constant so that 

e2 = 0, and no corrections for  loop phase e r r o r  9 can be applied to the 

VCO. 

approximately analyzed by deriving i ts  average effect on the equivalent 

phase detector characteristic. The result, when the loop bandwidth is 

small  compared to the bit rate,  i s  that the equivalent phase detector gain 

is proportional to transition density M. 
damping ratio (Figure D-8) in response to N R Z  input data a r e  each pro- 

portional to However, this argument cannot be applied to the loop 
response to noise (since in the absence of data transitions the input noise 

continues to excite the loop), and the loop equivalent noise bandwidth is 

proportional to M -3’2. 

the presence of low transition density has the tendency to enhance the loop 

noise power with respect to the signal power, so that the VCO reference 

phase jitter increases and/or the lock acquisition time increases. 

possible to realize a better tradeoff by attempting to inhibit the noise 
excitation of the phase lock loop in the absence of data transitions. Thus, 

referring to Figure D-4,  the data multiplier output (i. e., the loop correc-  

tion voltage) can be forced to zero when a transition does not occur, o r  

alternatively the sample and hold circuits can be maintained a t  their 

values corresponding to the last  best estimate of loop correction in the 
presence of a transition. 

ing system performance in the presence of low transition density of NRZ 

data will be finalized during the development program. 

The effect of data transition density on loop acquisition can be 

Hence, the loop bandwidth and 

Thus, for the NRZ case, as one may expect, 

It is 

The relative mer i t s  of this technique for optimiz- 

Another attractive approach which avoids the problem of low transi-  

tion densities (and i ts  deleterious effect on the loop acquisition properties) 

is to utilize in the communication system the technique of subcarrier 

modulation of the NRZ data. 

The operation of the proposed I-Q bit synchronizer to process R Z  
As has been input data is closely related to i ts  operation for NRZ data. 
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discussed in Section 1, the theoretical detection performance for  R Z  data 

is 3 db poorer than for NRZ (since the R Z  waveforms form an orthogonal 

code, or ,  equivalently, since the last  half of the R Z  bit waveform repre-  

sents 'In0 information"). Proper  operation for the R Z  format is obtained 

in the bit synchronizer by inhibiting the integrate and dump filters during 

the last  half of the bit period, and instead having the sample and hold 

circuits continue holding during this time interval. 

forms a r e  shown in Figure D - 10, and may be compared to waveforms for  

the NRZ case in Figure D-9. 

The appropriate wave- 

2 . 3  PERFORMANCE ANALYSIS 

To convey some preliminary technical information concerning the 

quantitative determination of acquisition and data detection performance 

of the proposed bit synchronizer system with respect to the theoretical 

o r  ideal performance, a brief description of the results to be expected i s  

outlined below. 

2 . 3 .  1 Detection DC Offset E r r o r s  

Consider first  the detection degradation in the I-channel (Figure D -4) 
caused by undesired DC offsets of the buffer amplifier, switching multiplier, 

integrate and dump filter and comparator circuits. 

worst case DC offset voltage refered to the comparator (decision circuit) 

input at the end of the bit time and let A be the true signal voltage (for  

a "1")  at this same point. Then, the bit e r r o r  rate (BER) or  bit e r r o r  
probability is easily shown to be given by 

Let AEDC be the total 

(D-13)  

2 where 6 = AEDC/A, h 

function defined by Equation (D -3) .  

due to a nonzero DC offset ratio 6 may be defined as the additional signal- 

to-noise ratio required to yield some specified e r r o r  rate PE. 
example, if 6 = 0.05 then the degradation is 0. 18 db, at  an e r r o r  rate of 

is the SNR defined by ( I -4 ) ,  and $( ) is the e r r o r  

The degradation in detection performance 

For  

Parametr ic  e r r o r  rate curves versus signal-to-noise ratio for  

various offset ratios 6 can easily be drawn (similar to Figure D-1) using 

Equation (n -13) ,  from which the degradation in db is directly obtained. It 
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Figure D-10. Modifications to I-Q Bit Synchronizer 
for the Case of RZ Input Data 

is estimated that in the worst case (over environmental and signal condi- 

tions) a maximum DC offset ratio of 0. 04 is expected for the proposed bit 

synchronizer. This results in a degradation of 0. 14 db. 

2.3.2 E r r o r  Due to Switch Time Delays - 
There is a BER degradation associated with nonzero reset  logic 

delays of the switching multiplier ( i f  used) and integrate and dump circuits 

in the I-channel (Figure D-4). If td is the total delay of these switches, 



then it is easily shown that the fractional 

ratio at  the integrate-and-dump output is 
degradation in signal-to-noise 

equal to the ratio td/T, where 
T is the bit-time. For  example, if the logic delays a r e  0. 1 psec, then 

the degradation is 0. 01 db at a bit rate of 10 
5 10 . 

proportional to bit rate, with a loss of 0. 25 db a t  250 kHz and 1 db a t  

1.0 megabits/ second. 

4 and 0. 1 db at a bit rate of 

The maximum degradation due to switch delays is approximately 

2.3. 3 Bit Rate Ji t ter  

Consider first the effect of bit rate phase jitter in the bit synchro- 

nizer loop due to input additive white Gaussian noise (and not due to the 

presence of bit rate j i t ter  on the input signal itself), 

the dump timing signal to the integrate-and-dump circuit is  obtained from 

the linearized system model of Figure D-8b. The resulting BER expres- 

sion was indicated in Equation (D-7) for a 50 percent transition density of 

N R Z  data. 

The phase jitter of 

If the transition density is  My then this becomes 

pE = ( 1 - M ) $ ( - X ) t 2 M  dy (D-14) 

For  example, i f  M = 20 percent, and the ratio of loop noise bandwidth to 

bit rate is Bo/BR = 0.04, then to achieve a BER of PE = 10 

to-noise ratio must be X2 = 8.35 db. 

case of no loop phase jitter (i. e., zero loop bandwidth). 

-4  , the signal- 

This is 0. 1 db worse than the ideal 

The normalized time jitter (relative to the bit time T)  of the dump 

time signal to the integrate-and-dump is given by 

1 
Q = RMS relative time jitter = (D-15) 

As discussed in Section 2, the theoretical BER for the bit synchro- 

nizer must take into account loop jitter due to input additive noise; there- 

fore this theoretical BER is given by Equation (D- 14). 

mance degradation of the bit synchronizer is the equivalent amount of 

additional signal-to-noise ratio to achieve a prescribed measured BER 

as  compared to the signal-to-noise ratio calculated from Equation (D-  14). 

The actual perfor - 



Once a f i n a l  selection of relative loop bandwidth Bo/BR is made 

during the development program, the theoretical BER shall be then 
specified by Equation (D-14). 

synchronizer model can then be compared with the theoretical BER at 

various transition densities. 

The measured BER on the breadboard bit 

2.3.4 Input Bit Rate J i t ter  

The analysis of loop response and degradation due to bit ra te  j i t ter  

present on the input signal itself to the bit synchronizer is very similar to 

the above analysis for loop j i t ter  due to additive noise on the input signal. 

However, in order for  the analysis to be completed, the exact nature of 

the input bit rate j i t ter  must be specified. 

t rum of the input j i t ter  as well a s  i ts  RMS value should be specified, since 

this has a direct  bearing on the resulting performance degradation of the 

bit synchronizer in response to input jitter. 

j i t ter  is actually a 25 percent peak-to-peak sinusoidal modulation of the 

bit period duration then at  a data transition density of 50 percent, the 

degradation in detection performance is approximately I. 0 db. 

assumes that the sine wave modulation is at  a frequency greater than the 

loop bandwidth; for sine wave modulation at  frequencies less than the loop 

bandwidth, the degradation shall be less  since the loop tends to track out 

the bit rate variation. 

e r r o r  can be calculated in response to FM modulation of the input signal 

a t  a given modulation frequency and frequency deviation (i. e., j i t ter  

amplitude). 
input bit rate jitter. A corresponding calculation will be made to deter-  

mine the maximum amplitude and rate of sinusoidal (FM) input jitter for  

which lock is maintained at  a given signal-to-noise ratio. 

In particular, the power spec- 

For  example, i f  the input 

This 

Using the model of Figure D-8, the loop phase 

This defines the calculated BER degradation due to the applied 

On the other hand, if the input bit rate jitter is due to a random 

effect and has a spectral  bandwidth much greater than the loop bandwidth, 

the degradation for *25 percent RMS input jitter is approximately 4. 0 db. 

However, for smaller spectral  bandwidths the degradation is less.  

2.3.5 Acquisition and Tracking 

The lock acquisition properties of the bit synchronizer include 

frequency capture range and average acquisition time (as a function of 



signal-to-noise ratio and transition density). 

include tracking range maximum tracking rate and mean time to loss of 

lock (all as a function of signal-to-noise ratio). 

all intimately associated with the dynamics of the loop, in particular, of 

the loop bandwidth. The frequency capture and tracking ranges of the bit 

synchronizer will be 10 and 20 percent, respectively, in compliance with 

NASAIMSC specifications. 

loop in the absence of noise is w 

width; in the presence of noise, this maximum tracking rate is  reduced by 

a factor which depends on the signal-to-noise ratio. 

The tracking properties 

These properties a r e  

The maximum tracking rate of a second order 

rad/sec2 where w is the loop band- n n 

The above dynamic loop characteristics of the bit synchronizer wil l  

be finalized at  the beginning of the program, once the necessary system 

tradeoffs a r e  completed concerning the choice of the loop bandwidth/bit 

rate ratio and the acquisition technique. 

Additionally, the maximum allowable rates for dynamic amplitude 

and baseline variations of the input signal to the bit synchronizer depends 

on the loop parameters chosen as well as  the dynamic characteristics of 

the buffer amplifier (Figure 0-4) ;  these rates wil l  be specified after the 

completion of the system design and tradeoff task. 

3. DETAILED SYSTEM DESCRIPTION 

3.1 GENERAL 

Figure D-11 is a block diagram of the basic I-Q bit synchronizer. 

Here, integrate and dump (I and D) filters a r e  assumed for ease of 

description of operation. Operation is essentially the same if additional 

blocks a re  cascaded with the I and D filters to optimize for nonsquare 

wave inputs. 

The input PCM bit s t ream in the presence of noise is  passed through 

a combination AGC amplifier and DC restorer  to remove baseline offset 

and correct for variations in the signal amplitude. 

amplifier drives two 4-quadrant switching multipliers. 

to the multipliers a r e  two functions, g l  and g2, which a r e  derived 
logically, in time synchronism with the VCO. 

depend on the input PCM codes to the bit synchronizer. 

The output of the 

The switch inputs 

The waveforms of g l  and g2 
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Figure D-11. I-Q Block Diagram Bit Synchronizer 

The circuits following the upper switching multiplier of Figure D-1 

(the I and D filter and the comparator) and the multiplier itself may be 

thought of a s  the "I" o r  in-phase channel. 

is to maximize the S/N ratio a t  the output of the filter over the input bit 

time T. 

form of g i  is identical in frequency to the input waveform over a bit time, 

and is kept in phase synchronism with the input, then the S/N ratio will be 

maximized at  the integrator output a t  the bit times. 

just prior to dump gives the best estimate of the information over the bit 

time. 

The province of the 'II" channel 

If we assume the integrator is reset  at  the bit times and the wave- 

Sampling the I and D 

Figure D-12 shows waveforms in the 'lItt channel for different input 

For  split phase (Manchester code), g l  is  a square wave at  the bit codes. 

rate. 

over the bit time) so for this code o r  any similar code the "If1 switching 

multiplier can be bypassed o r  removed from the circuit. Finally, for a 

code which is modulating a subcarrier of several cycles per bit, g l  is 

a square wave at  the subcarrier rate. 

For  NRZ-M, g l  is  a constant (since the input signal is a DC level 

These waveforms a r e  given to show 
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Figure D-12. Waveforms of I Channel with Various Input Codes 

the ease with which a large class of code formats can be implemented by 

simple logical change of function generators. It wil l  be seen later that 

the selection of g2, the synchronizing function, is equally simple. 

The remainder of the circuit of Figure D - 11 is the I t Q "  or  quadrature 

channel which drives the VCO. 

(depending on the input code), the output of the "Q" channel wil l  supply 

sense information to the VCO driving it in phase/ frequency synchronism 

with the input PCM. 

wil l  depend on the PCM pattern at  the input. 

If the proper function g2 is selected 

The polarity of the sense information to the VCO 

The sense polarity wil l  
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reverse due to the bit transitions at  the input, but similar reversals will 

occur in the "I" channel since it senses the same data. 

"M" is  generated in synchronism with the "1" channel data reversals and 

applied to a circuit called the data multiplier. 

remove the unwanted reversals in the sense polarity, making it independent 

A third function 

This function and multiplier 

of data transitions. 

section for an NRZ bit synchronizer. 

3 . 2  SYNCHRONIZING TO NRZ 

These concepts a r e  further explained in the next 

One requirement is for synchronization of NRZ data, This section 

describes an implementation of the synchronizer for this PCM code. 

Figure D-13 is a block diagram of the NRZ bit synchronizer. The 
"I" channel consists of an I and D filter, followed by a high resolution 

comparator and a flip-flop. 

time, g I is a constant so that an "1" channel multiplier is not required. 

Since the NRZ code is  a DC level over the bit 

I CHANNELYT 

NRZ -C 
DATA 

Q CHANNELYT SAMPLEA& 

DUMP SIGNAL 

Figure D-13. NRZ Bit Synchronizer 
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The integrating filter is reset  at the bit rate by a dump signal T derived 

from the locally generated reference (VCO). 

is driven by a function g2 which is 1/2 the bit rate in frequency and shifted 

90-degrees in phase (the transitions in g2 a r e  centered between the dump 

signals). 

of the reconstructed NRZ data from the trIrl channel and a locally generated 

signal at 1/2 the bit rate. 

dump signal. 

incoming bit information, the multiplier output is a square wave at  twice 

the data frequency. 

and, hence, no correction voltage i s  supplied to the VCO, thus indicating 

bit synchronism. Under these conditions the integrators are being reset  

exactly a t  the bit transitions and the data FF is being sampled just prior 

to dump, providing optimum detection. 

the multiplier output contains DC components which a r e  integrated, 

sampled, and held, and applied to the VCO after removal of polarity 

ambiguities by the data multiplier. 
the VCO drives it back in to phase synchronism with the input. Figure D-14 

shows the major waveforms of the N R Z  bit synchronizer drawn for  a 

phase e r r o r  a t  the input. 

but hold for NRZ-S o r  NRZ-C. 

converter. 

when phase-modulating a car r ie r ,  requires the receiver to supply the cor- 
rect  car r ie r  phase o r  the bit synchronizer output will be inverted. This 

can be resolved by using the frame sync signal from the decommutation 

equipment to reverse the data polarity of the bit sync when loss of frame 
sync occurs. 

The rrQrr channel multiplier 

The data multiplier is driven by M which is  the exclusive OR 

This 1/2 bit rate signal is in phase with the 

When function g2 is exactly 90 degrees out of phase with 

The sampled and held output of the integrator i s  zero 

For  phase e r r o r s  at  the input, 

The correction voltage applied to 

The waveforms a r e  drawn for NRZ-M input data, 

The only difference is the output code 

It is well understood that the NRZ-C code, being nondifferential, 

3 . 3  SYNCHRONIZING TO SPLIT PHASE 

The synchronizer discussed will handle the split phase code by 

making g i  a function of frequency equal to the bit rate and in phase with 

the dump signal and making g2 equal in frequency to g i  but shifted 

90 degrees in phase with respect to it. 
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Like the NRZ-C code, split phase is nondifferential ( i t  is basically 

a subcarrier with frequency equal to the bit rate, which is phase modulated 

by NRZ-C data), so the polarity of the output code depends on the absolute 

phase between the input and the reference functions. 

sync signal f rom the decommutation equipment can be used to automati- 

cally resolve this ambiguity since its occurrence is recognized by the 

presence of the complement of the frame sync code. 

resolving the phase a r e  available. 

transitions and compare them. 

every bit, and because the data transitions occur less  often, a logical 

function is generated to force the output data to assume the polarity 

corresponding to the proper transition tally. 

Again, the frame 

Other methods of 
One method is to count odd and even 

Because the mid bit transitions occur in 

3.4 SYNCHRONIZING TO PCM DATA ON A PHASE 
MODULATED SUBCARRIER 

The basic I-Q bit synchronizer can be used to synchronously 

demodulate PCM data phase modulated on a subcarrier of n cycles per 

bit. There a r e  phase ambiguities equal to the number n of subcarrier 

cycles per bit which, if a differential PCM code is used, can be resolved 

by the addition of a second quadrature loop. 

used, other information such as a frame sync signal is  necessary in 

addition to the second Q loop. 

phase code (one subcarrier cycle per bit with NRZ-C modulation). 

If a nondifferential code is  

An example of the latter case is the split 

Figure D-15 is a block diagram of the I-Q bit synchronizer modified 

to demodulate subcarr ier  modulated NRZ data. The diagram is broken 

into two parts o r  loops; the upper loop i s  called the subcarrier demodu- 
lator loop and the lower loop i s  called the bit synchronizer loop. Opera- 

tion of the subcarrier demodulator loop is as discussed previously for the 

NRZ bit synchronizer, except where g l  is a locally generated reference 

at the subcarrier frequency, and g2 is  a t  the same frequency but phase 

shifted in quadrature with g l .  When the integrators are being reset  a t  

the bit times (bit sync established), this loop will optimally detect the bit 

information even if  the subcarrier of interest is  frequency multiplexed 

with subcarriers at  adjacent frequencies. 

frequency multiplexed square wave subcarriers,  the loop will optimally 

If one wishes to transmit 
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detect them, the only requirement being that the dynamic range of the 

input circuits is large enough to handle the large noise levels f rom the 

receiver without excessive limiting. 

It is easy to verify, referring to Figure D-15, that a single design, 

utilizing plug-in o r  switching modules, will cover a large range of sub- 

carr iers .  The g functions are changed by logical switching, and circuit 

scale factors and loop parameters changed by switching discrete compo- 

nents in the analog circuits. 

The bit synchronization loop operates like the demodulator loop, 

since it shares the demodulator I loop for the derivation of the data' 

multiplier signal m, the difference being in the derivation of the multi- 

plier signal 83. 

1/2  bit rate shifted 90 degrees for NRZ-M data. 

This signal is the Exclusive OR of g l  and a signal of 

The signal g3 can be thought of a s  the "digital product" of g l  and 

1/2 bit rate L90 degrees where g l  demodulates the subcarrier producing 

NRZ data and 1/2 bit rate L90 degrees synchronizes to the NRZ.  The 

same result would be achieved by cascading two switching multipliers 

and driving each with the components of 83. 

in addition to circuit complexity, the second multiplier (receiving the 

demodulated NRZ)  would have to be DC coupled. 

This is  undesirable because, 

Several methods a r e  available for implementing the bit sync loop. 

The method shown in Figure D-15 is to include a phase-shift counter 

driven from the VCO. 

of cycles per bit, the bit rate is  available when the demodulator is in 

lock and the bit sync has only to resolve the phase. If subcarrier and 

bit rate a r e  noncoherent, a separate bit sync VCO is required. 

If the input code consists of an integral number 

In the bit synchronizer of Figure D-15 e r r o r  voltages out of the 

This loop filter are impressed on an analog-to-time gate converter. 

circuit is a simple ramp encoder, which converts the e r r o r  voltage to 

a gate pulse of width proportional to the e r r o r  and supplies the pulse as 

an output on one of two lines, depending on whether the e r r o r  was positive 

o r  negative. 

to the bit rate from the VCO rate. 

divide by 2, 4, or  stop for periods of time, depending on the width of the 

The pulses go to a phase-shift counter which counts down 

The input stages of the counter will 
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gate pulse and which line it is on. 

phase of the counter will be advanced. 

retard it. When no e r r o r  exists, the counter will hold i ts  phase. If a 

separate VCO is used, it is driven directly from the filter. 

For e r r o r  of one polarity the output 

An e r r o r  of the other polarity will 

The demodulator synchronizer designed by TRW for the Pioneer 

program uses a separate bit sync VCO. 

gram uses a separate bit sync VCO. 

uses the phase shifter technique described for Figure D-15. 

The TRW unit for  another pro- 

The TRW unit for another program 

3.5 SYSTEM DESIGN APPROACH 

Figure D - 16 is a detailed block diagram of the recommended PCM 

bit synchronizer. 

at  any 2 bit rates in binary multiples from 8 bits/sec to 1 Mb/sec. 

mediate bit rates a re  obtained by changing the VCO quiescent frequency. 

The PCM codes can be NRZ-M, NRZ-S, NRZ-Cy split-phase, o r  RZ.  

It is also capable o demodulating, on command, one of two telemetry sub- 
car r ie rs  which a re  biphase modulated by N R Z  PCM data. The modulating 

bit rate range is 8 bits/sec to 8 kbits/sec. 

chosen in binary multiples of the bit rates. 
can be demodulated from subcarriers of 32 cycles/sec, 64 cycles/ sec, 

2048 cycles/ sec, etc., depending on where in the frequency spectrum it 

i s  desired to place the subcarrier. 

The unit shown is capable of operating, on command, 
Inter- 

The subcarrier rates can be 

For  example, 8 bits/sec data 

The flexibility is obtained by preflight patching of logical functions 

to obtain the variety of functions ( g l ,  g2, g3, etc.) required to synchronize 
to the various code formats. Unused portions of the unit (logic modules 

o r  subassemblies) a r e  eliminated in the assembly, minimizing the hard- 

ware required in flight. 

Table D-1  is a format schedule which shows the required patching 

a s  a function of code format. 

show the major waveforms of the unit for the different input codes and 

selected functions of Table D-1. 

are over-simplified for ease of description. 

which are very small compared to a bit period. 

the high bit rates and tight performance requirements specified here; 

Figures D-14, D-17, D-18, D-19, and D-20 

The I and D sample and hold wave forms 

They show dump periods 
This is impossible a t  
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instead, time- shared fi l ters will  be used, with the appropriate timing 

being generated in dump signal generation logic. 

used in the lrI1l channel, each one integrating and being dumped on al ter-  

nate bit periods. Triple integrators a r e  used in the lfQ1l channels, each 

one integrating, holding the integrated quantity, and being dumped, on 

each third bit period. 

of the dump and hold functions. 

Dual integrators are 

This allows a minimum of 1 microsecond for each 

Table D -1. Format Schedule 

Functior 

g i  

g2 

83 

M 

T 

Clock 
out  

NRZ 

Constant - Remove 
"I" mult and associ- 
ated logic 

Patch 112 bit rate 
signals from bit 
rate counter to P 3  
and P4  

Eliminate bit sync 
loop subassembly 

Patch bit rate sig- 
nals from bit rate 
counter to P5  
and P 6  

Patch bit rate sig- 
nals from bit rate 
counter to P9 and 
P i o  

Patch 4 x bit rate 
signals from bit 
rate counter to 
P i 1  and P i 2  

Code Format 

BI $MOD 
Subcarrier 

Patch appropriate 
subcarrier freqs. 
to P i  and P 2  from 
subcarrier counter 
remove unused 
parts of counter 

Patch subcarrier 
freqs. from sub- 
car r ie r  counter 
to P 3  and P 4  

Patch bit rate sig- 
nals from phase 
shift counter to 
P 7  and P 8  

Patch bit rate sig- 
nals from phase 
shift counter to 
P5 and P6 

Patch bit rate sig- 
nals from subcar- 
r ie r  counter to 
P9 and P 10 

Patch 4 x bit rate 
signals from 
phase shifter to 
P i 1  and P i 2  

Split (b 

Patch appropriate 
bit rate signals to 
Pi  and P 2  from bit 
rate counter. Re- 
move unused parts 
of count e r 

Patch bit rate sig- 
nals from bit rate 
counter to P 3  
and P 4  

Same as  for NRZ 

Remove logic 
associated with M 
and drive data 
mult with output 
of data F/F 

Same as  NRZ 

Same as  NRZ 

RZ 

Constant - Remove 
"I" mult and associ- 
ated logic 

Patch bit rate 
signal from bit 
rate counter to P3 
and P 4  

Same as  for NRZ 

Same as  Split (b 

Patch 2 x bit rate 
signal from bit 
rate oounter to 
P9 and P10 

Same as NRZ 
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SI@ SYNC 

619 MOD DATA 
NRZ-M CODE 1 

1/2 BR L 90’ 

I 0 I 1 I 1 I 0 I 1 I 

1 I I I 1 

t - 1 IMULTOUT --+ - 

I INT OUT 

Q MULT OUT 
(DEMODU LATOR) 

Q INT OUT 
(DEMODULATOR) 

Q MULT OUT 
(BIT SYNC) 

Q INT OUT 
(BIT SYNC) 

Figure D-17. Waveforms of Bi-Phase Demod Sync Drawn 
for in Synchronism Condition. 
Cycles Per Bit Period NRZ-M Data 

Two Subcarrier 
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NRZ-C DATA 

DUMP 

92 

Q MULT OUT 

NRZ-C SYNC 

1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1  

L 
I I 1 I 

Q I AND D OUT - 

SANDHOUT :: 0 

I I AND D OUT 

NRZ DATA 
OUT 

1/2 BIT RATE 1 J 1 t 1 I L I 

M l 
-I- 

DATA MULT OUT O 1 1 I 1 I 1 .  

F i g u r e  D-18. Waveforms f o r  NRZ-C Code 
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S9 SYNC 

I 1 I 1 1 0 1  I 1  I 1 I O  
I I I I I I I 1 I I 1 1 

I I I I I I 1 

gl J 1 1 1 I I I I I I I 1 I 
92 1 I 1 I I I 1 I t I 1 I 

I MULT OUT I n  I U U U  i n  

SAMPLED COMP 
OUTPUT 1 I 

1 1 I 0 I 1 1 
I 

Q MULT OUT I I 1 

Q I AND D OUT 

I 1 S A N D  H OUT - i 
i 

M I 1 
I 

DATA MULT OUT - 

Figure D-19. Waveforms for S $  Code 
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RZ SYNC 

DUMP 
SIGNAL 

I I AND D OUT 

l l l l l 0 l l l O l l l  

I 1 I I I SAMPLED 1 1 0 1 0 
COMP OUT (NRZ-C) 

s2 1 I 1 I I 1 1 I I I 1 I I 

Q MULT OUT l u u l  

Q I AND D OUT 

SANDHOUT - - - -- - - 

M I 1 I I I 

Figure D-20. Waveforms fo r  R Z  Code 
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APPENDIX E 

COAST PHASE ATTITUDE 
CONTROL ANALYSIS 

This section describes the analytical studies and tradeoff investi- 

gations leading to the selection of the recommended guidance and control 

subsystem configuration and the various hardware components. 

1. CONTROL MODES 

For  the Voyager control system, two fundamental analog circuits 

and their combinations were considered for  supplying control system 

damping. 

rate increment (DRI) modulator design. 

with large control e r r o r s ,  and the DRI is optimum in the small. 
off studies were conducted to find the best  means of combining them fo r  

operation throughout the whole range of Voyager control modes. 

These were a lead-lag switching circuit design and a derived 

The lead-lag circuit is optimum 

Trade- 

The lead-lag circuit is shown i n  Figure E-1. Essentially, the 

In this study, jets are "on" outside the deadzone and "off" within it. 
the parameters were chosen fo r  rapid in-the-large convergence. The 

sensitivity of the lead-lag design to  je t  valve delays, vehicle dynamics 

uncertainties, and optical sensor anomalies makes it less  desirable for  

use during the cruise  mode. 

The DRI design shown i n  Figure E-2 consists of a switching circuit 

with a feedback lag filter. 

duce the desired minimum on-time pulsing of the attitude control jets 

for small attitude and rate e r r o r s .  

become longer i n  duration, eventually reaching a full-on state for 

extremely large e r ro r s .  

during the cruise mode where rate damping is needed with minimum 

on-time pulsing in  order t o  maintain low gas consumption. 

during cruise may be less  than 0 . 3  degree per hour, and rate informa- 

tion at  these low levels is  uncertain. The damping provided by the cir- 

cuit is proportional to the lag fi l ter  time constant; hence, large values 

are desired when rate information is not available and it is the only 

The circuit parameters a r e  selected to pro- 

For  larger  e r r o r s ,  the pulses 

U s e  of the DRI circuit is particularly attractive 

Vehicle rates 
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Figure E-1. Lead-Lag Switching Circuit Block Diagram 
Showing Deadband, D, and Hysteresis, H 

SIGNAL SIGNAL 

TO GAS * 

Figure E -2. Derived Rate Increment Modulator 

source of system damping. 

onds in  spacecraft designs. 

implement and maintain for long operating durations. Values smaller 

than this increase the possibility of inadvertent multiple pulsing due to 

extraneous system noise and disturbances and reduce system damping 

such that poorer convergence from initial conditions results. 

Typical values range between 50 to 80 sec- 

Values larger than this a r e  difficult to  

The designs investigated were selected such that, if a mode switch 

failed, backup rate compensation for system damping would be provided 

even though an associated performance degradation could ensue. 

this design goal, the circuits considered were the switched DRI feed- 

back, parallel DRI/lead-lag, switched DRI/lead-lag, and series DRI/ 

lead-lag designs shown respectively in  Figures E-3, E-4, E-5, and E-6. 
The phase plane switching lines for  the inertial hold mode are also indi- 

cated i n  these figures. 

Wi th  
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MANEUVER AND 
CWJlSE 

-2- ? - 
ALL OTHER 

MODES 

D = 0.5DEG 

h =0.1 DEG 

T 1  = 50 SEC 

T2 = 2 SEC 

Figure E-3. DR1 Feedback Design Block Diagram and Phase Plane 
Switching Lines 

TO GAS JETS 

SWITCHING LlNES 

DRI FILTER 
LIMIT *2 DEG 

D = 0.5 DEG 

T I  = 50 SEC 

a = 20 SEC 

b = 2 SEC 

Figure E-4. Paral le l  DRI/Lead- Lag Design Block Diagram and Phase 
Plane Switching Lines 
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br+l 

0 
ALL OTHER 
MODES 

-TO GAS JETS 

CRUISE 

~ 

I ~~ CRUISE 

TIS+l 

ALL OTHER 
MODES 

Figure E-5. Switched DRI/Lead-Lag Filter 

+TO GAS JETS 

SWITCHING LINES A I 

I ~~ l"i;t T1S+1 

D = 0.5 DEG 

T I  = 50 SEC 

FILTER DRI FILTER 
LIMIT 
LINE 

LIMIT *2 DEG 

a = 20 SEC 

b = 2 SEC 

Figure E-6. Series DRI/Lead-Lag Fi l ter  
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In the switched DRI feedback design, a two-second DRI time con- 

stant circuit is employed fo r  all modes in  which rate gyros are i n  use; 

otherwise, overdamped and sluggish responses occur during separation 

and acquisition operations. Rate damping is not required f rom the cir- 

cuit except as a backup damping measure. 

was arbitrarily selected for  investigation. 

The value of two seconds 

For  the cruise  mode and 

for  reorientation maneuvers where position gyros are used and where 

circuit rate damping is required, a large time constant of 50 seconds 

i s  employed. 

other designs since a single thruster failure during a maneuver could 

cause a large gyro e r r o r ,  sufficient to reach its limit. 

and time consumed during maneuvers were considerably greater  than 

with the other designs. 

The switched DRI design was not as desirable as the 

Also, the fuel 

The switched DRI/lead-lag design is straightforward with the 

lead-lag circuit employed in  all modes other than cruise. 

ability of the lead-lag filter, particularly during maneuvers, was 

clearly indicated in  simulation studies. 

made for  the cruise modes. 

The desir-  

A switch to the DRI circuit is 

The ser ies  DRI/lead-lag design employs a DRI circuit for  cruise 

mode operation with additional series lead-lag filtering to provide rate 

damping during maneuvers. 

employed. 

effect of the filter for  large e r r o r s  and improve the maneuver and 

acquisition response. 

large performance, the susceptibility of the system to extraneous noise 

and disturbances is increased due to the addition of the lead-lag fi l ter  

and is  of particular significance during the cruise mode since low gas 

consumption is desired. 

slosh forces was not investigated with this design. 

A DRI time constant of 50 seconds is  

A DRI filter limit of rt2 degrees was needed to suppress the 

Although this design has satisfactory in-the- 

The effect of disturbances such as low-g 

In the parallel DRI/lead-lag design, the lead-lag circuit deadzone 

is  larger  than for  the DRI circuit and provides a fast responding control 

system during acquisitions and maneuvers. 
to its steady-state condition, the DRI circuit provides fine pulsing con- 

t ro l  augmentation. During inertial hold and cruise  modes, the DRI 

When the system is close 
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circuit predominates in the limit cycle operation. 

the switched DRI/lead-lag, the ser ies  DRI/lead-lag, and the parallel 

DRI/lead-lag designs a r e  comparable. 

cuit is the preferred design since mode switching is eliminated altogether, 

redundancy is inherent in  its design, and it is not as sensitive to extrane- 
ous noise o r  disturbances as  the ser ies  design. 

2. PERFORMANCE 

The performance of 

The parallel DRI/Lead-lag c i r -  

2.1 Rigid Body Responses 

Switched DRI. The responses for two DRI  time constants ( T = 2 sec, 
T = 50 sec)  a r e  presented i n  Figure E-7. 
can be observed f rom this figure: 

The following characteristics 

Separation. The larger  time constant increases the 
time for nulling the rates as  the DRI  filter feedback 
prevents the gas jets f rom fir ing for a period pro- 
portional to the filter time constant. 

Sun acquisition. 
provides faster  response. 
ideal for either time constant. 

Canopus acquisition. 
convergence is provided by the smaller T.  

usage is nearly ideal for either t-ime constant. 

The use of the small  time constant 
The gas usage is almost 

Faster  response and better 
The gas 

Maneuvers. With small  T ,  large gas usage and 
oscillatory response due to decreased rate damping 
resulted. 
Fo r  T = 2 sec,  the gas consumption relative to the 
ideal usage was increased by approximately 400 per-  
cent; for T = 50 sec,  the increase was about 
40 percent. 

Large T produced large gyro e r r o r  angles. 

Cruise. Maximum attitude rates and excursions 
during the cruise mode are given in Table E-1. 
The values given a re  within prescribed mission 
requirements. T equals 50 sec. 
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Figure E-7. Switched DRI Design Responses 

Switched and Parallel DRI/Lead-Lag. The responses for the 

parallel DRI/lead-lag a r e  essentially the same. 

tions can be made from the parallel DRI/lead-lag responses shown in 

Figure E-8. 

The following observa- 

0 Separation. The rate nulling operation is accom- 
plished rapidly with nearly ideal fuel consumption. 

a Sun and Canopus acquisition. Responses were 
rapid and fuel usage almost ideal due to the 
absence of overshoots o r  oscillations in  the 
re s pons e. 

0 Maneuvers. Response was rapid with almost ideal 
Maximum gyro e r r o r  was 1.6 degrees fuel usage. 

during the maneuver. 
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SYSTEMS 

Table E-1. Cruise Mode R a t e  and Attitude E r r o r s  

Time of Flight 

Maximum Rates (deg/sec) 

R 011 - Pitch 

Trans Mars coast 2.75 2.55 4.2 

Mars orbit including 19.8 12.6 11.0 
planetary scan platform 
imaging 

Maximum Attitude E r r o r  (deg) 

Time of Flight Yaw Roll - Pitch 

All except planetary scan 0.5 0.5 0.5 
platform imaging 

Planetary scan platform 0.25 0.25 0.25 
imaging 

0 Cruise. Cruise mode operation is dominated by the 
DRI circuit. Maximum attitude rate  and excursions 
are given i n  Table E- 1. 

Ser ies  DRI/Lead-Lag. The following observations can be made 

f rom the ser ies  DRI/lead-lag responses shown i n  Figure E-9. 

0 Separation. The rate nulling operation is accomplished 
rapidly with the use of the two-degree limit on the 
DRI filter. 

0 Sun acquisition. The limit on the DRI filter enables 
a fast sun acquisition. 
no overshoot occurs. 

Gas usage is near ideal since 

0 Canopus acquisition. The DRI filter limit provides 
a near ideal response. 
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Figure E-8. Paral le l  DRI/Lead- Lag Design Responses 

0 Maneuvers. The lead-lag filter provides good 
damping and fast response for  the maneuvers. The 
limit on the DRI filter suppresses its effect. 
Without the limit, a sluggish response would occur. 

0 Cruise. The cruise mode limit cycle characteris-  
tics a r e  similar to  those for the other designs 
except that the gas jets switch on a few milli- 
degrees before the attitude deadband limits are 
reached due to the lead-lag filter. Sensitivity 
to  system noise and disturbances are increased, 
however, due to the lead-lag filter. 
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Figure E-9. Ser ies  DRI/Lead- Lag  Design Responses 

Time, Gas Consumption, and Maneuver Attitude Er ro r s .  

summary of the t ime and gas consumption for  the various mode and 

circuit designs given previously are presented in  Table E-2. 

gyro e r r o r  during maneuvers for nominal and a failed thrust  condition 

are also given. 

parameters for  the maneuvers. 

sation during maneuvers is clearly indicated and, hence, was included 

i n  the recommended design. 

A 

The peak 

The significant differences occur in  the performance 

The desirability of lead-lag compen- 
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Tab le  E-2. Compar i son  of Cont ro l  System P e r f o r m a n c e  Showing 
the Time and Gas  Expended i n  Execut ing Modes and 
the P e a k  Gyro  E r r o r  Dur ing  Reor ien ta t ion  
Maneuvers  

Mode Complet ion Time (sec) 
Series 
DRI / 

Parallel Lead-Lag  
DRI with DRI with DRI/  with DRI 

Mode T =  50 sec T =  2 sec Lead-Lag  L i m i t s  

Separation 450 44 200 120 
Sun acquisition 670 440 450 450 

Canopus acquis i t ion  510 460 430 480 

Maneuver  700 600 255 258 

G a s  Usage  ( lb)  
Series 

’ DRI/  
Parallel Lead-Lag  

DRI with DRI with DRI! with DRI 
Mode T =  50 sec T =  2 sec Lead-Lag  L i m i t s  

Separa t ion  0. 98 0. 98 0. 98 0. 98 
Sun acquis i t ion  0 .250  0.260 0.243 0.26 

Canopus acquis i t ion  0 .077  0. 077 0 .070  0.077 

Maneuver  0.37 1. 25 0.258 0. 31 

Peak Gyro  E r r o r  During Maneuver  (deg) 
Series 
DRI 1 

Parallel Lead-Lag 
DRI with DRI with DRI! with DRI 

Mode T =  50 sec T =  2 sec Lead-Lag  L i m i t s  

Nominal  T h r u s t  5.0 1 . 7  1 .6  0 .2  

One  thruster failed 9 .4  3.2 1.6 0 . 4  
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c 

2 . 2  L o w 4  Slosh Effects 

During the TRW Systems Task C studies, the effects of low-g 

(less than 

transition f rom powered flight to  cruise were investigated. 

investigation employed low-g propellant slosh models pertaining to  the 
LM propellant tanks which were determined i n  the propellant hydro- 

dynamic studies. 

such as large initial slosh mass displacements, zero  damping i n  the 
slosh model, and an increase i n  the slosh effects by a factor of 10 were 

imposed. Moreover, the slosh mode frequency was varied, both with 

and without the effects of solar  pressure  torques, i n  an  attempt to  

obtain a slosh instability. 

effects are not deleterious to  control system stability o r  performance 

and that additional gas would not be required to counteract these effects. 

It was also indicated in  these studies that a large D R I  time constant, 

such as 50 seconds, was desirable to reduce the possibility of inadvertent 

multiple gas j e t  pulsing. 

lead-lag circuits, however, was not included i n  these investigations. 

g) propellant slosh during the cruise modes and the 

This 

In the control system analysis, extreme conditions 

It was concluded that low-g propellant slosh 

The use of lead-lag circuits o r  se r ies  DRI/ 

Although the recommended propellant tank configuration differs 
f rom those for  the LM vehicle, the conclusions a re  still considered to  

be valid and pertinent since the differences a r e  small. 

frequency is determined primarily by the spring constant associated 

with the fluid-vapor interface membrane and the slosh mode mass, 

hence is not expected to differ appreciably. The spring constant is 

dependent primarily upon the surface tension and capillary forces  

corresponding to a given fluid and tank geometry. 

10 increase in slosh effects, made in  the previous propellant slosh 

studies, was found to  be of no consequence, it is considered safe to  

conclude that the recommended propellant tank configuration would 

also provide low-g slosh modes which a r e  not deleterious to the DRI 

circuit cruise  mode design. 

The slosh mode 

Since a factor of 
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2.3 Attitude Control Maneuver E r r o r s  

The three -sigma attitude control maneuver e r r o r s  are presented 

in Table E-3; these values are used in  the thrust vector control e r r o r  

budget under Section 2.2 and also in  the determination of the capsule 

separation attitude e r ro r s .  

sigma alignment e r r o r  of 0 . 4  degree and using the values in  the table, 

the three-sigma capsule separation e r r o r  is 0.48 degree. W i t h  a control 

deadband of &0.25 degree, the total capsule separation e r r o r  is less than 

0.73 degree, which is within the mission requirement. 

Assuming a capsule-to-spacecraft, three- 

The attitude e r r o r s  resulting from the coast phase limit cycle 

would be nulled out during the powered flight phases by the linear thrust 

vector control system operation. 

3 .  GAS REQUIREMENTS 

The gas requirements for  the recommended spacecraft design 

employing the parallel DRI/lead-lag circuit are shown i n  Table E-4. 

The total gas i s  contained in two supply systems. 

one-half of the control moment as illustrated in  Figure E-10. 

redundancy factor of three is employed to enable completion of the 

mission in  the event that one valve fails in the open position. 
jet fails "on, 

would turn on to combat the disturbance moment f rom je t  1 .  

would remain closed. 

the disturbance moment, valves 2 and 4 would be on at  a one-half duty 

cycle. The gas f rom system B will eventually deplete with two-thirds 

of the system B gas having been ported through valve 1 and one-third 

through valve 4. 
expended in  this failure operation. 

of the gas remaining in  one system must suffice for  the entire mission, 

hence, the redundancy factor of three. 

Each system supplies 

A 

If a gas 
such as is exemplified i n  the figure, je t  valves 2 and 4 

Valve  3 

Since the control moment is twice as large as  

One-third of the gas f rom system A would also be 

With this type of failure, two-thirds 
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Table E-3. Three-Sigma Attitude Control Maneuver E r r o r s  

Accuracy of optical sensors 

Gyro torquing e r r o r  

Gyro alignment e r r o r  

Gyro drift (0. 1 deg/hr) 

Attitude control limit 
cycle e r r o r s  

Root-Sum Square 

0.1 degree 

0.2 
0.1 

0.1 

0.05 

0.27 degree 

AT SYSTEM B GAS DEPLETION, THE 
FOLLOWING AMOUNTS OF GAS 
WAS PORTED: 

VALVE NUMBER I :  2/3 OF SYSTEM B 
VALVE NUMBER 2: 1/3 OF SYSTEM A 
VALVE NUMBER 3: NONE 
VALVE NUMBER 4: 1/3 OF SYSTEM B 

VALVE NUMBER 3 

FAliEF 
'ON 

Figure E-10. 

JET VALVE 
NUMBER 4 
PULSED 'ON'  TO 
CQUNTERACT TORQUE 

JET VALVE NUMBER 1 

SYSTEM 

Reaction Control System Operation in  the Case of 
Failure of One of the Solenoid Valves in  the 'lOnrl 
State 

The gas requirements for  the cruise mode include the use of 

thruster heaters to  double the gas specific impulse to 120 seconds. 

The gas requirements fo r  sun and Canopus acquisition and reorienta- 

tion maneuvers were based upon six operations during the trans-Mars 

coast phase and four operations during Mars orbit coast. 

The powered flight roll  gas requirements were based upon a 

two foot-pound roll  torque during the high-thrusting Mars orbit inser-  

tion phase and a 0.34 foot-pound roll  torque during the low-thrust 

main engine phases. 

i n  the past with vehicles employing a single main engine. 

These values were assumed f rom experience 
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T ab1 .e E-4. Voyager Reaction Control System Gas Requirements 
for  the Recommended Spacecraft Employing 
Parallel  DRI/Lead-Lag Circuit Designs 

Mode 

1. Initial ra te  nulling 

2. Cruise mode (with heaters)'' 

a. Mars transit  

b. Orbit 

3. Sun-Canopus acquisition (six times during 
Mars transit,  four times during Mars 
orbit)  

4. Inertial and maneuver mode (six t imes 
during Mars  transit ,  four times during 
Mars orbit) 

5. Capsule separation 

6. Powered flight roll  

With redundance factor 

With 10 percent for contingencies 

With ullage 

With leakage 

Total Gas Requirement 

G a s  
Consumption 

(1b) 

1 .  26 

1. 50 

1.  06 

5. 15 

5. 18 

0. 73 

2. 17 

17. 05 

x3 

51. 15 

t5.12 

56.27 

t2.60 

58.87 

t2.20 

61. 07 1b 

* 
RCS low thrust level,. these values a r e  reduced to a total of 1. 74 pounds. 
Without heaters,  these values are doubled. With heaters and a 0.1-lb 
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APPENDIX F 

POWERED FLIGHT CONTROL ANALYSIS 

1. THRUST VECTOR POINTING ACCURACY 

Thrust vector pointing accuracy is  attained with the use of elec- 

tronic integration of the control e r r o r  signal. 

the use of devices such a s  lateral  accelerometers would not be neces- 

sary o r  desirable for meeting accuracy requirements, particularly 

since the failure of these devices would further increase thrust vector 

point e r ro r s  o r  produce control system instability. 

It was concluded that 

Two types of feedback integration designs were considered, 

attitude feedback integration with and without engine angle feedback 

integration. 

reduces the pointing e r r o r  due to offsets between the center of gravity 

and thrust vector. 

pointing e r r o r  due to thrust vector angular misalignments. 

designs a re  shown by the block diagram given in Figure F-1. 

that the engine angle loop is a positive feedback loop which would 

cause the engine to drift into its limits prior to the powered flight 

phase. Engine angle feedback, if employed, must be opened during 

nonthrus ting engine pha s e s . 

The attitude plus engine angle integration feedback 

The attitude integration feedback reduces the 
These 

Note 

Large radial offsets of the center of gravity from the vehicle 

centerline result primarily from the weight and location of the planetary 

scan platform. 

the Mars orbit insertion phase. 

engine angle integration feedback to reduce the effect of these offsets, 

it is  feasible to bias the control system such that the effects of pre- 

determined o r  mean center of gravity offsets a r e  removed, 

These offsets range between 2 and 3 . 5  inches during 

Instead of employing attitude plus 

The 
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IF EMPLOYED. 
CLOSED ONLY 

DURING ENGINE FIRING 

INTEGRATOR 

Figure F-1. Thrust Vector Control System with 
Electronic Integrator 

diagrams shown in Figure F - 2  illustrate the result. The engine axis 

can be commanded so  that it passes through the vehicle mean center 

of gravity. The spacecraft can also be rotated, as  part of the coast 

phase reorientation maneuver, such that the thrust vector points in  the 

desired direction. 

and the large transients on the vehicle due to nominal offsets a r e  

reduced. 

considerations. 

With this implementation, the trajectory e r r o r s  

This technique i s  preferred as shown by the following 

The magnitudes of the mean center of gravity angle a re  shown 

in Table F-1. 

planetary scan platform. 

capsule separation. 

result from movement of the vehicle center of gravity in the longitudinal 

a s  well as  radial direction. 

These angles a re  large in the pitch axis due to the 

The Mars orbit trim angles shown a re  after 

The changes in the center of gravity offset angles 
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BEFORE BIASING: 

AFTER BIASING: 

VEHICLE 
CENTERLINE 

Figure F-2. U s e  of Spacecraft Rotation and Engine 
Bias Commands 

Table F-1. Mean Center of Gravity Offset Angles for  the Start and 
End of the Three Powered Flight Phases 

The angles defined by the ratio of the mean center of gravity 
offsets to  the thrust vector control moment arm are: 

Mean Yaw 
Center of Gravity 

Off set Angle 
(deg) 

Mean Pitch 
Center of Gravity 

Offset Angle 
(deg) 

Midcourse corrections, start 0.112 

Midcourse corrections, end 0.126 

Mars  orbit insertion, start 0.126 

Mars  orbit insertion, end 0.168 

Mars  orbit trim, start 0.585 

Mars  orbit trim, end 0.603 

1.77 

1.80 

1.80 

2.18 

5.3 

5.4 

F-3 



YSTEMS , 

The mean center of gravity offset pitch angles a r e  excessively 

large after capsule separation, with little engine deflection capability 

remaining. 

mended that the engine pitch axis be mechanically canted two degrees 

i n  the direction of the planetary scan platform as  shown in Figure F-3. 

This produces an engine pitch gimballing range of -4 and t8 degrees 

relative to the vehicle centerline; this range is within the *8 degree 

maximum engine gimballing space allotted i n  the spacecraft design. 

The engine excursions would be controlled through electronic limits i n  

the engine command signal and engine mechanical stops. 

engine deflection capability, which occurs at  the end of the Mars orbit 

trim firings, is 2 .6  degrees after compensation for mean center of 

gravity offsets. 

orbit, this deflection capability is considered sufficient for vehicle 

In order to increase the engine capability, it i s  recom- 

The minimum 

With the absence of significant disturbances in  Mars 

control. 

two-degree angle during the coast phase reorientation maneuver to aim 

The spacecraft attitude is also rotated i n  pitch through the 

the thrust vector in  the desired direction. 

a r e  required in the yaw axis. 

No mechanical bias angles 

The mechanical bias reduces the electrical bias needed to trim 

the nominal center of gravity offsets. 

angles to remove the mean center of gravity offset effects with and 
without the mechanical engine alignment a r e  shown in Table F-2. 
Since the changes i n  the mean center of gravity offset angles a re  small  

The desired electrical bias 

during a firing phase, constant biases within each phase a r e  suffi 

+2 DEGREES 
MECHANICAL 
ALIGNMENT 

ENGINE PITCH ANGLES RELATIVE TO SPACECRAFT 

CENTERLINE IS 2 t 6  DEGREES. 

.cient. 

Figure F-3. Desirable Mechanical Pitch Angle Alignment of the Engine 
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Table F-2. Desired Engine Electrical Bias Angles to Remove 
Mean Center of Gravity Offset Effects During the 
Three Powered Flight Phases 

Desired Without Me chani - With Mechanical 
Electrical cal Alignment, Alignment, De- 
Yaw Bias Desired Electrical sired Electrical 

Angle Pitch Bias Angle PitchBias Angle 
(deg) (deg) (deg) 

Midcourse corrections 0.12 1 1.79 -0.21 

Mars orbit insertion 0.154 2. 05 0. 05 

Mars orbit trim 0.597 5.37 3.37 

The total steady- state thrust vector pointing e r ro r s  resulting 

with the various compensations a r e  shown in Table F-3. The three- 

sigma e r r o r s  from the attitude reorientation maneuver (0.27 degree 

given in Volume 2 Appendix E, Table E-3) were included in these 

results. 

integration feedback with biases appears more desirable than attitude 

plus engine angle integration. 

The desirability of integrators is  apparent. The use of attitude 

2. THRUST VECTOR CONTROL SYSTEM STABILITY 

The thrust vector control system for the recommended vehicle 

configuration, with o r  without the capsule, has stable powered flight 

propellant slosh modes due to the inherently stable slosh geometry. 

This geometry is obtained for a spherical tank by maintaining the 

longitudinal center of gravity of the vehicle forward of the propellant 

tank center. 

An example of control system stability is  given by the gain-phase 

plot shown in Figure F-4, corresponding to the pitch plane at the 
start of Mars orbit insertion. 

with a lead at 1 rad/sec and a lag at 20 rad/sec.  

tion feedback loop is included and results in the low-frequency phase 

A lead-lag filter is included for damping 

An attitude integra- 

crossover at  0.4 rad/sec.  

quite acceptable and results i n  a low-frequency rigid body gain margin 

of 22 db. 

The selected integrator gain of 0. 125 is 

The rigid body phase margin is 38 degrees. The two bus 
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Figure F-4. Powered Flight Gain and Phase Stability Margins 
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slosh modes a r e  stable a t  3.65 and 3.25 rad/sec.  

modes a r e  negligible. 

at 9 rad/sec with a gain margin of 17 db. 

mode at 20.2 rad /sec  has a gain margin of 36 db. 

platform mode at 23.5 rad /sec  has a gain margin at 35 db. 

mode at 37.5 rad /sec  shows a 39.5-db gain margin. 

pr imary bending modes result  f rom the flexing of the large appendages. 

The bus body acts essentially as a rigid body in  these modes; hence, 

stability is independent of the location of the gyro package along the 

spacecraft body. 

The capsule slosh 

The high-frequency rigid body crossover occurs 

The high-gain antenna bending 

The planetary scan 

The capsule 

Note that the 
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APPENDIX G 

C-1 ENGINE CONTROL 

With the use of C-1 engines for  backup powered flight operations, 

the following three attitude control system designs for pitch and yaw 

control were considered: 

e Pulsing of the C-1 engines 

e Use of existing or  upgraded gas jets 

e Gimballing of the C - 1 engines. 

Roll Control is maintained with the gas je t  system. 

1. PULSED C-1 ENGINE ATTITUDE CONTROL 

The recommended attitude control is the pulsed C-1 engine design. 

The C-1 engines are mounted on axes 40 degrees from the pitch and yaw 

attitude control axes and in line with the engine actuators a s  shown in 

Figure G-1. 

be conveniently employed as commands to the C-1 engines. 

of "minimum off-time" switching circuits a r e  required to obtain the 

desirable pulsing operation with these engines. 

signal routing to the C-1 engines is  shown in Figure G-2. 
the minimum off-time switching circuits a r e  the command reversing 

logic required to pulse "off" the appropriate engine a s  represented by the 

inverted deadzone switching circuit. 

pulsing. 

a s  shown, the attitude control system would command engines 3 and 4 

"off. 

also shown in the figure. 

Because of this, the engine actuator command signals can 
The addition 

A block diagram of the 

Included in 

Figure G-3 illustrates the desired 

If the disturbance torque acts in a counterclockwise direction 

The duty cycle for engines 3 and 4 with a four inch c. g. offset is  

The spacecraft c. g. offsets a r e  large, and frequent pulsing "off" 

of the engines to counteract the associated disturbance torques i s  neces- 

sary.  

reduces the net axial acceleration and efficiency of the orbit insertion 

firing. 

velocity e r r o r s  may result f rom the frequent pulsing. 

This frequent pulsing of the engines is not desirable since it 

A longer thrusting duration would be required and increased 

The velocity 
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GAS JETS 
ALIGNED 

. COAST PHASE 

POSITION 
GYROS - 

LEAD-LAG 
CIRCUIT - 

-Y AXIS 2000 

FOW C-1 ENGINES 

MAIN ENGINE 
TVC ACTUATORS 

+PITCH AXIS  1 1 9  

2900 -XAXlS 

GAS 
JETS 29.5' -PITCH AXIS  

+x AXIS  1100 

AND GYROS ARE 
TO PITCH AND YAW AXES. 

'3350 

0' CANOPUS 
LINE OF SIGHT 

+Y AXIS 200 

PARALLEL 
DRI/LEAD-WG TO PITCH AND 

SWITCHING YAW GAS JETS 
. 

CIRCUIT 

THRUST VECTOR CONTROL TO LEM ENGINE * ACTUATORS 
TRANSFORMED 

ACTUATOR 
COMMANDS 

TO C-1 'OFF' TIME 

Figure G -1. Location of C -1 Engines Relative to Pitch and 
Yaw Control Axes 

OR 
GATE 

MINIMUM 
b 'OFF' TIME ' 

CIRCUIT 

. TOC-1 
ENGINES 

Figure G-2. Recommended Pulsed C -1 Engine for Pitch/Yaw Control 
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MIPIMUM' 
OFF' 

CONTROL 
PULSE 

DUTY CYCLE FOR ENGINE f3 AND '4 WITH A 4-INCH C-I ENGINES C-I ENGINES 
* I A N D # Z  $3 AND $4 CG OFFSET. 

ENGINES 13 AND f 4  PULSED 'OFF' TO OBTAIN 
RESTORING TORQUE FROM ENGINES * I  AND *2 

Figure G - 3 .  Desired Pulsing of the C-1  Engines 

e r r o r s  a r e  of particular importance during the Mars orbit insertion 

phase since only one firing for orbit insertion is  made. 

correction and Mars orbit t r im phases a r e  comprised of multiple firings 

so that velocity e r r o r s  accrued in one firing can be compensated in sub- 

sequent firings. 

mechanically canted approximately two degrees in order to  reduce the 
mean c. g. offset and engine pulsing effects during the Mars orbit inser- 

tion phase. 

expected to be greater than 99 percent ''on'' and less than one percent 

"off"; hence, its effect on axial acceleration and total firing time will be 

less than 0. 5 percent, an acceptable level. 

mechanical bias, the duty cycle would vary considerably (89 to 82 percent 

"on") during the orbit insertion phase and a reduction in axial acceleration 

by a s  much a s  9 percent may occur. 

The midcourse 

Therefore, it is  recommended that the C-1  engines be 

With this alignment, the duty cycle of the pulsing engines a re  

Without the two degrees of 
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The average duty cycle of the pulsing engine and the effective axial 

acceleration a r e  given in Table G-1  for the different mission phases. 

Since the C-1 engines a r e  aligned for Mars orbit insertion, the c. g. 
offset effects during the Mars orbit trim firings without capsule are 

appreciable with a duty cycle approximately 8 percent would be required 
for these firings. 

during these firings and since multiple firings a r e  contemplated, the 
velocity e r ro r s  a r e  expected to be acceptable. 

Since small changes in spacecraft velocity a r e  made 

During the Mars orbit t r im firings, if the minimum off-time circuit 

i s  set for a firing duration of 0.1 second, the frequency of the duty cycle 

would be 1.25 pulses per  second. 

pulse rate would be reduced to 0.63 pulse per  second. 

parameters a r e  listed in Table G-2. 

duration should be made in accordance with reliable engine pulsing operation. 

At a 0.2 second firing duration, this 

The limit cycle 

The selection of the minimum r'off" 

The pulsing of the C-1 engine will, to a certain extent, excite the 

Although this is appendage flexural modes and propellant slosh modes. 

not expected to cause control system stability problems, simulation 

studies and further investigation of this operation is  recommended. 

Table G-1. Duty Cycle of Pulsed C-1 Engines and Effective Axial 
Acceleration Due to Mean Center of Gravity Offsets 
After Incorporating a Two-Degree Mechanical 
Alignment 

Midcou r s e c or r e  ction 

Mars orbit insertion 

Mars orbit tr im, with 
capsule 
Mars orbit tr im, with- 
out capsule 

Duty Cycle of Pulsed 
C-1 Engines (percent) Acceleration 

Effective Axial 

From Nominal 
Off (percent) -- On - 

98.  8 1.2 9 9 . 4  

99 .32  0 . 6 8  99.7 

9 8 . 4  1.6 9 9 . 2  

84  16 92 
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Table G-2. Limit Cycle Parameters  During Pulsed C-1 Engine 
Operation Due to Mean Center of Gravity Offset 
Effects. Minimum Pulse Durations of 0. 1 and 
0. 2-Second Considered. *I* 

.*. 

Maximum Angular Number of Pulses 
R a t e s  P e r  Second 

T = 0 . 1  T = 0 . 2  T = 0 . 1  T = 0 . 2  
sec sec  sec  sec  

Midcourse correction 0.123 deg/sec 0.246 deg/sec 0. 12 0.06 

Mars orbit insertion 0.170 deg/sec 0.340 deg/sec 0.064 0.032 

Mars orbit trim, 
without capsule 0.510 deg/sec 1.02 deg/sec 1.25 0.63 

.I. -A* 

Angular excursions during limit cycle are within the *O. 5 degree 
deadzone. 

2.  GAS JET ATTITUDE CONTROL 

Use of the coast phase gas jets for attitude control during the C-1 

engine operation is not recommended due to excessive gas requirements 

and large control moment requirements. 

angle of two degrees is employed to reduce mean center of gravity offset 

effects, a gas requirement of 212 pounds would result f rom movement of 

the center of gravity. 

with this alignment angle would be 102 foot-pounds. 

required would be a minimum of twice this value o r  204 foot-pounds, 

which is considered too large for upgrading of the two-level gas jet  

design; therefore, an additional set of valves and jets would be required. 

If the bias angle is increased to 3.6 degrees,  the disturbance torque 

would be reduced to 54 foot-pounds; however, the corresponding gas 

requirement is increased to 1298 pounds, which is an intolerable level. 

Use of the gas jets,  therefore, does not appear to be appropriate. 

Even if  a mechanical alignment 

The center of gravity offset dirturbance torque 
The control moment 
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3. GIMBALLED C-1  ENGINE THRUST VECTOR CONTROL 

The use of gimballed C-1 engines for control of the vehicle is not 

recommended due to the complexity and additional hardware required for 

actuation of these engines. 

The additional electrical bias angles for  trajectory correction and 

the C-1 engine gimballing actuators required for this design a r e  not con- 

sidered justifiable in view of the satisfactory attitude control performance 

that most certainly can be achieved with the pulsed C-1 engine design. 
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APPENDIX H 

INERTIAL REFERENCE UNIT 
TRADEOFFS 

In the course of selecting the preferred design for the inertial 

reference unit, a number of alternate instruments and loop configurations 

were considered. 

reasons for selecting the recommended design. 

This section briefly describes these designs along the 

1. ALTERNATE GYROS 

Four gas-bearing gyros were considered for  Voyager. The l is t  was 

limited to units equipped with gas spin bearings because of the increasing 

evidence indicating that this type unit i s  more reliable than ball bearing 

designs. 

gyros exhibit performance compatible with the Voyager requirements. 

In addition, since some of the units are physically smaller and require 

less  spin motor power, savings in size, weight, and power could be 

realized by utilizing units other than the recommended GI-T2-D. 

The units considered a r e  listed in Table H-1. All of these 

As stated previously, the overriding consideration in selecting this 

gyro instead of one of the others was based on greater  confid.ence in the 

unit. The large production and field experience of the GI-T1-By which, 

except for  minor modifications, is identical to the GI-T2-D, and the 

large amount of gyro operating time support the argument that this gyro 

has the greatest  potential of being the most reliable unit. 

this gas bearing has operated successfully in a zero-g space environment, 

a condition to which the other candidate gyros have not yet been subjected. 

Future manufacturing and field experience may substantiate the relia- 

bility of a smaller gyro at which time such a unit could be considered in 

the design. 

In addition, 
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2. ALTERNATE GYRO LOOP CONFIGURATIONS 

Four additional loop configurations utilizing sing1 - -d gree- f -  
freedom gyros were considered. 

manner in which the angular position information is  obtained. 

These loops differ primarily in the 

Rate Loop With an Integrating Capacitor in Series with the Torquer. 
This loop has been utilized in some previous space missions. However, 

the integrating capac itor s exhibit hy s t e r e s is and leakage characteristic s 

that contribute to gyro dr i f t .  

Rate Loop Coupled to a Voltage to Frequency Converter and 

Accumulator, 

voltage-to-frequency converter output. 

guidance and control system is  analog, the accumulator output must be 

converted to an analog signal for processing. 

mechanization has a relatively high parts count and hence was discarded 

because of low reliability. 

This configuration integrates angular rate by counting the 

Since the recommended Voyager 

The result is that this 

Rate Loop With Operational Amplifier Integrator. This configura- 

tion utilizes an integrator consisting of an operational amplifier with a 

capacitor feedback circuit, 

parts count is  higher than that of the selected design and hence it is not as  

reliable, Another problem is that the long-term amplifier bias instability 

would result in drifts which a r e  inconsistent with Voyager requirements. 

The major difficulty with this loop is that the 

Pulse Torqued Gyro. This loop is similar to that of the proposed 

accelerometer design. 

figuration, the output of this loop is a pulse frequency proportional to 

input angular rate. 

accumulating and digital-to-analog converting a s  before. 

high parts count is again a problem which results in a less  reliable 

assembly. 

As with the voltage-to-frequency converter con- 

An analog angular position signal is obtained by 

The relatively 

This mechanization would undoubtedly be given further 
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-SYSTEMS 

consideration if the guidance and control system were controlled by 

means of a digital computer. 

and the accumulator and digital-to-analog converter are not required. 

Also, the VSA loop could also easily interface with a computer. 

In this case, the output is in digital form, 

3.  ALTERNATE ACCELEROMETERS 

The Bell Model VI1 and Honeywell GG177 flexure supported acceler- 

ometers were considered for this application. While their performance 

is comparable to the Kearfott 2401, their manufacturing and field 

experience is considerably less. Also, because of the longer availa- 

bility of the 2401, a great amount of long-term scale factor and bias 

stability data exists (some extending over a four-year period), which 

permits more confidence in the accelerometer performance over the 

Voyager flight time. 

4. ALTERNATE ACCELEROMETER LOOP 

An alternate configuration was considered which consists of an 

analog rebalance loop coupled to a voltage -to-frequency converter. 

design was discarded because it is less reliable, a conclusion which 

results from its increased circuit complexity. The voltage-to-frequency 

converter bias also tends to increase the overall bias uncertainty, which 

is undesirable because this effect is the dominant e r r o r  in the velocity 

measurement during the mid-course velocity correction maneuvers. 

accelerometer bias uncertainties associated with the preferred design 

presently cause this e r r o r  to be at its maximum practical limit for the 

Voyager application. 

This 

The 

5 .  ACCELEROMETER PACKAGES 

Three velocity measurement packages were investigated for possi- 

ble use on Voyager. Each is a single-axis package with self-contained 

electronics that produce an output pulse train with a frequency propor- 

tional to input acceleration. The three units are: 

0 BellDVMILA 

0 Honeywell GG386 

0 Arma D4e System 
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The first two a r e  conventional units utilizing the Bell Mod VI1 B 

and GG179 accelerometers, respectively. The Arma unit is  a vibrating 

string accelerometer which produces an output frequency proportional to 

input acceleration. However, its output is produced directly by the sen- 

sor  without the use of pulse rebalance loops o r  voltage-to-frequency 

converters. 

further investigation revealed the requirement for a bias correction cir-  

cuit which automatically compensates for the bias creep ( 2  micro g/day) 

and temperature sensitivity ( 2 0  micro g /  F). 

not materially different in overall complexity from the others. 

While this initially seemed a very simple mechanization, 

0 The resulting system is 

Ln the Voyager design, the weight and power advantages and align- 

ment simplification realized by combining the gyro and accelerometer 

functions in a single assembly were the deciding factors in not utilizing 

these packages. 

6. ADDITIONAL FAILURE DETECTION METHODS 

Failure of the inertial reference unit during either the reorientation 

o r  engine thrust periods could have very serious consequences in the 

Voyager mission. 

Of course, the particular inertial reference unit selected to serve as  

the guidance and control system reference during these maneuvers will 

be self-tested through the command and data telemetry channels prior to 

each maneuver. Having checked out positively immediately prior to use, 

the probability of failure during a (typical) two-hour maneuver i s  admit- 

tedly very small, but nonetheless not zero. 

a preliminary study was conducted to determine if the two inertial refer-  

ence units operated simultaneously and with interconnecting logic could 

be arranged so as to automatically switch from the controlling assembly 

to the alternate during these maneuvers in the event of a single failure in 

the first unit. 

here  since only two assemblies are planned for installation on the Voyager 

spacecraft. Therefore, the problem reduces to designing a system of 

logic which will switch from the controlling assembly to the redundant 

unit provided that the detected failure was really in the controlling 

This is especially true during Mars orbit insertion. 

Because of this situation 

A "voting" technique of failure detection is not feasible 
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assembly and not vice versa. 

during the gyro position operating modes. 

possibilities is  given in Table H-2. 

Note that this capability i s  only required 

A list of the major failure 

Table H-2. Major Failure Modes in Inertial Reference Unit 

Failure 

Wheel stops 

Temperature control fails 

C omm ent 

This would be detected by the 
spin motor rotation detector 
circuit which operates continu- 
ously when the assembly is 
energized. 

This would be monitored con- 
tinuously by housekeeping 
telemetry. 

Torquer circuit fails 

Torquer current too high o r  
present when not commanded 

Torquer current too low 

Pickoff circuit fails 
Pickoff output too high (typically 
a saturation value) 

Pickoff output too low (typically 
zero) 

Excessive gyro gimbal stiction 

Ac c ele r ome te r failure 

F i r s t  consider a single failure in the gyro portion of the assembly. 

A simple scheme can be implemented which will detect a failure that 

occurs in the controlling unit (the unit whose gyro outputs are being 

servoed to null by the remainder of the guidance and control subsystem). 

If both units, each having been self-checked immediately prior to use, 
a r e  operated and commanded simultaneously, they will track each other 

in output except for e r r o r s  caused by small differences in drift coefficients 

and torquing rates. 

being servoed to null, since it receives the same angular inputs as the 

controlling unit. 

voltage on the redundant output which exceeds a certain absolute value 

This i s  true even though the redundant unit is not 

Then, given that the above failure condition is met, a 
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could be utilized to indicate a failure in the controlling unit. 

decision value would be selected based on the three-sigma drift and 

torquing tolerances. Then by switching to the redundant package, the 

maneuver could be salvaged with very little degradation. 

The 

The difficulty with this scheme a r i se s ,  of course, when the failure 

occurs in the redundant unit. A number of the failures listed in 

Table H-2 can lead to a high redundant output voltage which would sub- 

vert  the intent of the above logic rule and cause the system to  switch to 
the failed unit. 

reduced by the addition of continuous self-test circuitry, similar to  the 

spin motor rotation detection system, which would operate during the 

maneuvers. 

some failures a r e  those which occur in the torquing circuit. 

if the redundant unit torques at the wrong angular rate o r  at the wrong 

time, a large output signal can occur. Therefore, a circuit designed to 

check the torquer current entering (and perhaps leaving) the gyro to 

determine that it is within some tolerance of the correct  value could be 

utilized to determine that the proper torquer current was applied during 

the correct  time interval. 

monitoring circuit need not be as small as the current source output 

specification, because current source and torquer failures a r e  most 

likely to be catastrophic, i. e . ,  either a large current determined by 

the current source supply o r  zero output. 

in the redundant unit, the signal switching logic would be disabled. 

The probability of the occurrence of this situation can be 

Examination of the failure list reveals that the most trouble- 

F o r  instance, 

The measurement tolerance on the current 

If such a failure is detected 

Also, 

if such a failure were detected in the controlling unit, this would be justi- 

fication f o r  an  immediate switch to the redundant unit. 

A high pickoff circuit failure would most likely be caused by a 

shorted output transistor.  

directly related to the supply voltage would appear on the output. 

can be avoided if the redundant output comparator circuit is designed to 

reject  the redundant output if it is higher than some preselected value 

as well as lower than the first limit, which was discussed previously. 

Note that these limits refer  to the absolute value of the output, i. e . ,  a r e  

applicable to both positive and negative position voltages. Note also that 

In this case,  a plus o r  minus output voltage 

This 
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a low pickoff failure would not be detected by the logic scheme and also 

that float stiction i s  not likely, to be a problem as this type of failure 

would not cause the redundant output to change. 

Failures in either of the accelerometer portions of the units can 

most readily be handled by means of a modified voting technique, where 

the third comparison is obtained by calculating the expected velocity 

change with time, based on estimates of engine thrust and spacecraft 

mass .  In operation, this system would accumulate both velocity outputs 

into separate registers.  

burn period, the two outputs would be individually compared with a pre- 

dicted value. The accelerometer whose output was closest to the pre- 

dicted value would be selected to determine engine shutdown. 

acceptable tolerance would be associated with this comparison and both 

accelerometer outputs could be rejected if both of their comparisons 

exceeded this tolerance. 

utilized instead. Thus, in the worst case, i. e. , two accelerometer 

failures, the velocity e r r o r  would not exceed that which could be deter- 

mined by the burn timing method. 

At a point in time near the end of the engine 

An 

In this case, a time burn period would be 

The implementation of the comparators and the logic circuitry has 

not been studied in this analysis. 

be made very reliable compared to the instruments and their loop 

electronics. 

be devoted to consideration of logic failures and their effect on system 

performance. 

It i s  expected that this circuitry can 

Once the implementation is  completed, further study must 

H-8 



APPENDIX J 

OPTICAL SENSORS TRADEOFF 

1. COARSE SUN SENSOR 

Three approaches were considered before arriving at the recom- 

mended configuration for  the coarse  sun sensor. 

design is suitable for  the upgraded spacecraft. 

Only the recommended 

The recommended coarse sun sensor for the Voyager Task B study 

used four immersed silicon photovoltaic cells. 

derived in the same manner a s  the recommended design. However, 

because of the new recommended spacecraft appendages, no mounting 

locations a r e  available with the required field of view for  all four cells. 

Although the required field of view could be theoretically obtained by 

using sun shades, shading would destroy the most important advantages 

of immersed cells, which is  their large field of view (greater than 2 7 ~  

ste radians). 

Its output signal was 

The second design considered employs five flat silicon photovoltaic 

cells (one is redundant with one of the remaining four) mounted in three 

locations on the periphery of the solar a r r ay  panel. The pitch and yaw 

signals a r e  obtained by adding and subtracting signals in the same manner 

recommended for the fine sun sensor. 

amplifiers than does the recommended coarse sun sensor. 

there is cross  coupling of cells, an e r r o r  in one axis also appears a s  an 

e r r o r  in the other axis, even if no e r r o r  in that axis exists. 

location of the five cells requires sun shades to prevent unwanted reflected 

light and to define the three fields of view. 

seven 2 x 4 inch shades would be needed - all different. 

make identical shades for  the two assemblies o$ the recommended des gn. 

This requires more complex 

Because 

The best 

Three 6 x 12 inch shades, and 

It i s  possible to 
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2. FINE SUN SENSOR 

Alternative sensors with the required null accuracy were obtained: 

the Bendix 1818823 and 1818874, and the Ball Brothers&S-lOO array.  

the basis of available information, these sensors have been discarded in 

favor of the recommended design. The Bendix 1818823 and 1818874 pro- 

vide nonlinear monotonic signals which do not satisfy the 10-degree linear 

field-of-view requirement which prevents confusion of the sensor by the 

Earth 's  albedo. 

eyes and provides a five-degree linear region in a nominal 15-degree 

field of view. 

cells, each with a lens. 

separate cells as well as the quadrants of a quad cell can be matched. 

In addition, the lens system al ters  the output characteristic from the 

On 

The Ball Brothers SS-100 a r r ay  utilizes four FE-SA fine 

This is basically a quad-cell system employing four separate 

It is difficult to match the response of four 

nominal quad cell function. 

from coarse to fine sensors with small signal discontinuities?. 
Thus, it would be more difficult to switch 

A quad cell fine sun sensor is being developed a t  TRW. Data 

obtained so  fa r  indicates that 0. 1-degree null accuracy is attainable. 

3 .  CANOPUS SENSOR 

Several makes of Canopus sensor are available: 

0 JP L/ Barnes 

0 Santa Barbara Research Center (Hughes) 

0 ITT Federal  Laboratories 

0 TRW Systems. 

The Santa Barbara Research Center is a mechanically scanned and 

mechanically gimballed tracker with a limited lifetime and therefore 
unsuitable for the Voyager mission. Table J-1 l ists  the physical and 

performance characterist ics of the remaining three sensors. 
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The ITT Federal  Laboratories t racker  was designed for a 45-day 

mission and needs mechanical adjustment for launch date. 

unsuitable for  the Voyager program, except with some redesign. 

This makes it 

The JPL/Barnes sensor  was designed for the Mariner C spacecraft 

However, the exclusion field and has been updated for the Mariner 1969. 
of view of 40 x 60-degrees greatly hinders its usefulness for Voyager. 

The TRW Canopus sensor was designed by the same personnel that 

designed the Lunar Orbiter Canopus Sensor and represents a significant 

advance in versatility and sophistication. 

3 .  1 Glare, Glint, and Mars Shine 

Any Canopus sensor is subject to sun glinting from spacecraft pro- 

In the ITT Federal  Laboratories and JPL/Barnes trusions in front of it. 

sensors,  the single-axis slit configuration gives a video signal f rom lit 

baffle edges which is indistinguishable f rom the video signal f rom Cano- 

pus. TRW, at the beginning of its design effort, se t  out to eliminate this 

problem. By making the sensor closed loop in both axes, a smaller  

instantaneous field of view is possible. 

reduces the video content f rom a baffle edge. 

content for a baffle edge is half that of the video signal f rom a star. 

Since the instantaneous field of view is smaller,  the amount of incident 

energy which provides video is much smaller to start with. 

not only the glint problem but also reduces the overall background 

irradiance and makes it more difficult for s t ray particles to cause the 

sensor to lose Canopus, such as has happened with Mariner 4. 

The cross  scan deflection pattern 

Thus, the video signal 

This reduces 

3 . 2  Other Advantages of TRW Sensor 

By providing closed-loop tracking of the star image on the photo- 

cathode in both axes, it is possible to use the sun-spacecraft-star angle 

for verification of Canopus recognition. 
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The JPL/Barnes sensor uses an electrostatic dissector,  and to 

provide the pitch electronic gimballing calls for  high-voltage circuits to 

the deflections electrodes. F o r  this purpose, a relay counter circuit 

is utilized. 

maintains contact automatically with Canopus and does not need mechani- 

cal relays. 

The TRW closed-loop approach with the magnetic dissector 

Also, the construction of the CBS tube as used in the JPL/Barnes 

sensor makes it impossible to align the two axes perfectly, and cross  

coupling has to be employed to cor rec t  this over a limited range. 

deflection coils of the F4012 used in the TRW design a r e  adjustable and 

provide accurate alignment of the roll and pitch axis. 

The 

4. LIMB AND TERMINATOR DETECTOR 

A performance summary of various candidate sensors is shown 

in Table J-2. 
in that two optical systems a r e  used to cover the *50 degree field of view. 

The brightness in the image plane for images near the 50 degrees edge 

of the field, for the Task B design, would be about 20 percent of the 

brightness that it would be at zero degree. 

lens to *25 degrees,  the cos 8 attenuation would be for  less. Significant 

variations in sensitivity over the field of view should be avoided due to 

the resulting e r r o r  spread. 

The recommended design differs from the Task B design 

By limiting the field of each 
4 

An alternate approach proposed by the KollsmanCo. uses seven 

small telescopes and seven detectors to cover a 75-degree field of view. 

The complexity of the processing circuitry is increased to handle all of 

these separate channels, but the need f o r  all this complication does not 

appear justified. 
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APPENDIX K 

REACTION CONTROL TRADEOFFS 

For  attitude control purposes, many reaction control systems 

can be considered. 

available: 

The following l i s t  indicates the variety of systems 

0 Solid propellant systems 

1) Subliming solid 

2) Subliming solid bipropellant 

3) Cap pistol 

e Liquid propellant systems 

1) Vaporizing liquid 

i. H20 

ii. NH3 

2) Vaporizing liquid bipropellants 

3) Monopropellants 

i. N2H4 

ii. H202 

4) Hydrazine - plenum 

5) Liquid bipropellants 

e Gaseous propellants 

1) Cold gas - nitrogen 

2) Resistance heated cold gas 

3)  Isotope heated cold gas 

4) Gaseous bipropellants 
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Elect r o - chem ical 

1) Water electrolysis 

2) Solid propellant electrical - detonation thrusters 
(SPET). 

Although the l is t  looks formidable, the task of selecting a system 
for the Voyager mission i s  simplified by the fact that some of these 

systems cannot meet the system requirements. Fo r  example, the 

subliming solid, the vaporizing liquid, and the SPET systems a r e  not 

capable of meeting the 3.0-pound thrust  requirements. Furthermore, 

the bipropellant systems (subliming solid, vaporizing liquid, liquid, 

and gaseous) a r e  not competitive because of the increased complexity 

required to control two fluids. 
of small solid propellant charges tape-fed to a combustion chamber, is  

attractive from the standpoint of high specific impulse but is  discarded 

from consideration for Voyager because of low reliability. 
mechanization which feeds the solid propellant charges is  complex and 

has demonstrated low reliability during development. 

peroxide monopropellant and the water electrolysis systems a r e  eliminated 

from consideration on the basis of safety. 

peroxide has gone unstable resulting in decomposition and storage 

pressure  increases.  

(namely, a stoichiometric mixture of hydrogen and oxygen) a r e  stored 
in a plenum. 

been demonstrated during developmental tests.  

The lfcap pistol" approach, which consists 

The 

The hydrogen- 

In several  systems, hydrogen 

In the water electrolysis system the products 

The explosive tendencies of this system have inadvertently 

The monopropellant hydrazine system is  eliminated from 

consideration because of the 0.2-pound thrust  requirement. 

engines have been flown with thrust levels down to 0.5 pound, but this is 

about the current state-of-the-art lower l imit  for pulse-mode thrusters.  

Even if a breakthrough is accomplished in the state of the a r t  and thrust  

levels of 0.2 pound were to become obtainable, the efficiency for  pulse 

mode operation i s  very low due to the catalyst bed cooling that occurs with 

extended periods between firing. It is doubtful that specific impulses of 

100 lb-sec/lb can be achieved for  0.020-second pulses that occur every 

Hydrazine 
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two o r  three hours in the typical RCS duty cycle; the specific impulse 

for the hydrazine-plenum system is of that same order  and can meet the 

thrust  requirements quite easily. 

From the original list, there a r e  basically three remaining systems 

which can be considered for Voyager which warrant further investigation. 

The three systems are: 

0 Cold gas - nitrogen 

0 Hydrazine - plenum 

0 Resistance-heated thrusters.  

The resistance-heated thrusters use electric energy to heat a metallic 

resistance element and transfer this heat t o  the working fluid prior to 

expansion through the nozzle. The resistance elements could be applied 

to  either the cold-gas nitrogen system o r  the hydrazine-plenum system. 

Since the weight advantage for the hydrazine-plenum system would be 

slight, the resistance heaters will only be considered for the cold-gas 

nitrogen system. 

using radio-isotope heated thrusters  such as  those currently under 

development at  TRW. 

advantages in weight in a s  much a s  electrical power is  not required for 

heating the gas, it has not yet been proven in an actual flight application. 

Because of lack of operating experience with this system it has not been 

seriously considered for this analysis. 

The heated cold gas concept can also be implemented 

Although this approach offers significant 

A discussion of the three types of systems selected for analysis 

follows . 
1. COLD GAS - NITROGEN 

Historically, the cold-gas nitrogen system has been used for reac- 

tion control systems more than any other system. 

high-pressure (3000 to 4000 psi) titanium vessels , pressure regulated 

to a low pressure  (30 to 50 psi), and then distributed to solenoid valves 

and converging-diverging nozzles. To protect against the failure of any 

single component, the concept for half systems each carrying 1.5 t imes 

the mission gas requirement has evolved and has been used successfully. 

The gas is stored in 
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W 8 Y S T E M S  

F o r  Voyager, the high and low thrust levels would be accomplished 

by using the same solenoid valves and thrusters and a high- and low- 

pressure regulator. When high thrust is desired, the high-pressure 

regulator is switched into the system. 

regulator is switched out. 

plex than a system involving one regulator and high-thrust valves and 

nozzles and low-thrust valves and nozzles. 

weight for the cold-gas nitrogen system for  a Voyager-type mission is 

155 pounds, and the calculated reliability for a half system is 0. 9891. 

F o r  low thrust, the high-pressure 

This approach is more reliable and less  com- 

The calculated total system 

The impulse carried by each half system can be reduced from 1 . 5  

to 1. 0 by the use of squib valves and a scheme for failure detection. 

inserting a normally open squib valve between the solenoid valves and 
By 

the regulator, a failed-open solenoid valve in one half system can be 

detected and the squib valve actuated. 

does not counteract the force of the open thruster, the amount of gas 

Since the remaining half system 

carried in each half system can be reduced to 1.0 times the mission 

requirement. 

The problem of failure detection is a difficult one. Observing the 

spacecraft limit cycles and the pressure vessel pressures from ground 

telemetry is probably the most straightforward way to determine if a 

valve has failed "open" and in which half system it is located. Ground 

command could then be utilized to  activate the appropriate squib valve. 

The major disadvantage to this approach is that there may be periods 

of time when the spacecraft is not in communication with earth. 

siderable amount of gas may be lost if a solenoid valve sticks open imme- 

diately after occultation of Mars and is  not discovered until the spacecraft 

exits the occultation zone and communication is re-established. The 

alternative is on-board logic which senses pressure decay rates a s  well 

as limits cycle data and compares these to preset levels. Exceeding the 

preset  levels results in an automatic closing of a squib valve. 

A con- 

Another approach which results in roughly the same systems weight 

a s  for the squib valve system is to place two solenoid valves in ser ies  for 

each thruster. 

depletion. 

If one valve sticks open, the ser ies  valve prevents gas 

The advantages to this approach a r e  that no failure detection 
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i s  required and the system can return to normal operation i f  the valve 

should "unstick"; this would be virtually impossible with a one-shot 

squib valve system. The major disadvantage with this type of system 

i s  that the probability of a particular thruster failing to produce thrust 

i s  increased since two valves in ser ies  must open. 

can be reduced by using quad-redundant valves with a weight increase. 

The failure probability 

The calculated reaction control system for the same Voyager-type 

mission reliability for a half  system with the quad-redundant valve con- 

figuration is 0. 9950, and the total system weight is 136 pounds. 

The possibility of reducing the cold-gas nitrogen system weight 

further is remote within the constraints of this study. Protecting against 

a leak o r  meteoritic impact on a pressure vessel, for example, requires 

two storage vessels and at least 1 . 0  times the mission-required impulse 

to  be stored in each vessel. 

2. HYDRAZINE-PLENUM 

The hydrazine- plenum system is basically a cold-gas system with 

the nitrogen storage tanks replaced by a hydrazine monopropellant gas  

generator and a plenum chamber. 

for Voyager, a s  shown in Figure K-1, the hydrazine is  stored in a 

bladdered tank under relatively low pressure (500 psi). 

open o r  close the solenoid valve which controls the flow of liquid hydra- 

zine to the catalyst bed. 

Two half systems would be employed 

P res su re  switches 

At the catalyst bed (Shell 405), the hydrazine is 

LOW PRESSURE SWITCH 

\ 
HIGH PRESSURE SWITC 

Figure K-1. Hydrazine - Plenum Half System 

K - 5  



YSTEMS 

decomposed into nitrogen, hydrogen, and ammonia in an' exothermic 
reaction. 

on demand by the solenoid valves and thrusters.  The pressure within the 

plenum is controlled within the deadband of the pressure switch; high and 

low thrust levels a r e  obtained by using both a high-pressure switch and a 

low-pres sure switch. 

would be approximately 350 psi  and the low-pressure switch would regu- 

The products of dissociation a r e  trapped in a plenum to be used 

With the high-pres sure  switch the plenum pres  sure  

I late the pressure at roughly 23 psi. 

Since the gases remain in the plenum chamber for some time before 

being expelled, the gas temperature would be reduced to near  ambient, 

resulting in a specific impulse of roughly 100 to 115 lb-sec/lb. 

combined with the low-pressure storage, results in a considerable savings 

in total system weight over the nitrogen-type system. 

This, 

As stated before, the dissociation of hydrazine is exothermic so that 

failure mode conditions must be looked at carefully. 

using three times the system impulse in two half systems to protect 

against the valve "open" failure is  not applicable to this system. If such 

a scheme were employed, the open valve would result in the gas genera- 

tor firing continually to meet the demand, and the heat generated would 

soon raise  the spacecraft temperature to catastrophic levels. 

The technique of 

It would appear that the only reasonable approach is  to use a squib 

valve activated by a temperature transducer as shown in Figure R-18. 

In the event of a valve open failure o r  a gross plenum leak (meteoritic 

impact), the hydrazine flows until the temperature reaches a preset level 

and activates the squib valve. 

stopped and the remaining half system merely must provide the impulse 

for the remainder of the mission without counteracting the force from the 

failed valve. Thus, a total of 1. 0 times the mission impulse requirement 

must be carried in each half system to protect against any single compo- 

nent failure. 

system is  40 pounds, and the calculated half system reliability for this 

approach is 0.9466. 

At this point, the flow of hydrazine is 

The calculated total system weight for the hydrazine-plenum 
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1. 

2. 

3. 

4. 

3.  

Table K- 1. Voyager Candidate Reaction Control Systems- 
The heated Nitrogen System is Preferred 
because a Significant Weight Advantage is 
Realizedwith Virtually the same Reliability 
as the Conventional Nitrogen System at a 
Higher but Acceptable Power Level 

System Approach 

Nitrogen system ( three 
times mis sion-required 
impulse) 

Nitrogen system (two 
times mission-required 
impulse quad -redundant 
valve s ) 

Heated nitrogen system 
(three times mission- 
require d impuls e ) 

Hydrazine -plenum sys tem 
(two times mission- 
required impulse) 

Weight Peak Power Reliability per Half 
(1b) (w) System 

155 202 0.9891 

136 652 0.9950 

143 

40 

250 

23 0 

0.9887 

0.9466 

RESISTANCE-HEATED NITROGEN 

Using a temperature of 1 500°F, the resistance-heated nitrogen sys- 

tem recommended for  Voyager would provide a nitrogen specific impulse 

of approximately 120 lb-sec/lb.  

gas would be too high for high-thrust mode, it is proposed that the heated 

thrusters  be used for only the low-thrust mode. 

Since the power required to heat the 

The calculated total system weight is 143 pounds, and the calcu- 

lated reliability for  a half system is 0. 9887. 

4. VOYAGER REACTION CONTROL SYSTEM SELECTION 

The weights, peak power, and reliability for the variations of the 

From this three basic types of systems a r e  summarized in Table K-1. 
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table, it is clear that some systems a r e  unacceptable for Voyager use. 

The nitrogen system with quad-redundant valves has a very high relia- 
bility with a reasonable weight, but the power required is unreasonable. 

In addition, the packaging problems associated with placing four valves 

in close proximity to the nozzle become ludicrous when one considers that 

up to four nozzles may be located in a single cluster, thus requiring 16 
solenoid valves in the package. 

over the conventional nitrogen system since a significant weight advantage 

is realized with virtually the same reliability as the conventional nitrogen 

system but at a higher but acceptable power level. 

The heated nitrogen system is preferred 

It would appear, therefore, that the ultimate selection is between 

the hydrazine-plenum system and the heated nitrogen system. Although 
both systems are acceptable for Voyager on the basis of weight, power, 

and reliability, the hydrazine -plenum system offers a significant reduction 

in weight but at a reduced reliability level. 

At  this point it is not clear whether the hydrazine system weight 

offsets the reduction in reliability. There a r e  several  points, however, 

which should be discussed. 

a catalyst bed has never been used in a spacecraft application. 

engines flown thus far use N 2 0 4  to start the decomposition with only a 

few restar ts  designed into the system; this clearly is unacceptable for the 

Voyager application. 

major problems have been uncovered in ground development testing of the 

hydrazine-plenum system. 

source of particulate contamination in the 1- to 20-micron range which 
would degrade the solenoid valve reliability almost catastrophically. 

alternative is to fi l ter  the gas before passing it through the valves. Fil- 

tering attempts thus far have proven to be rather futile in that such large 

F o r  one, a hydrazine propulsion system using 
Hydrazine 

The second point to be considered is that some 

The Shell 405 catalyst bed is a continual 

The 

quantities of contamination a r e  generated that even large a rea  fi l ters a r e  
subject to plugging in relatively short  periods of time. Another problem 

uncovered in developmental tests is the decomposition products of hydra- 

zine. Since the catalyst bed is used only once in a period of hours, the 
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bed cools and inefficient start-ups occur. 

being admitted to the plenum chamber and expelled through the valves. 

Making the solenoid valves and seals hydrazine -compatible has proven 

to be rather difficult. 

This results in raw hydrazine 

In short, there a r e  several  problems inherent with the hydrazine- 

plenum system that must be solved and demonstrated before the system 

can be considered for spacecraft use. Since the heated nitrogen system 

has been successfully flown on several  spacecraft and the weight is within 

acceptable levels and the reliability considerably better, its use on 

Voyager is recommended. 
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APPENDIX L 

ENGINE ACTUATOR TRADEOFFS 

Three alternate thrust vector control actuator systems we considered 

for application to Voyager: 

hydraulic blow-down system; and 3) a hydraulic pump system. 

presents the tradeoff analysis and compares the three systems with the 

proposed DC torque motor actuator. 

1) a magnetic particle clutch actuator; 2)  a 
Table L-1 

The magnetic particle clutch actuator uses counter-rotating clutches 

driven by DC motors. 

applies a proportional torque to a ball screw, which converts the torque 

to a linear force. An advantage of the magnetic particle clutch actuator 

i s  its fast response and its resistance to being back-driven while de- 

energized. 

manufacturer (Cadillac Gage) is extremely skeptical about whether the 

present Apollo Service Module actuator can be scaled down to Voyager 

thrust vector control requirements. Evidently, the state of the art for 

magnetic particle clutches has not advanced to the point where it can 

safely be considered for this application. Furthermore, there a r e  two 

modes of failure which can jeopardize the mission: the shifting of the 

particles, causing dynamic unbalance; and the migration of particles 

through the seal to the bearings, causing premature wear. 

A command current to  the appropriate clutch 

A major drawback is  the magnetic particle clutch itself. One 

The hydraulic blow-down system uses the energy of stored ‘gas to 

The gas is regulated create hydraulic pressure which moves a piston. 

to obtain a steady pressure.  

valve which regulates the flow of hydraulic oil. 

needed to collect the expended oil. The chief advantages of this system 

a r e  low electric power (5 watts) and also low power to hold the actuator 

in position, only hydraulic power to take care  of the leakage. 

disadvantages are:  the weight is  high because oil must be carried on 

board to provide for about 18 minutes of operation (the weight of the oil 

alone is about 33 pounds); and all hydraulic systems a r e  susceptible to 

external leakage and to other failures, such as oil gumming, drying out of 

seals, and fluid contamination. 

Command electric currents operate a servo 

Another reservoir is 

The major 
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The hydraulic pump system uses an accumulator to supply peak 

hydraulic power to the actuator. 

to provide for  internal leakage. 

considered. 

less  electric power because it does not have to handle peak loads (these 

a r e  smoothed out by the accumulator). 

is less  reliable since it needs an electric motor plus the other parts of a 
hydraulic system (accumulator, servo valve, relief valve, f i l ters,  etc. ) 

and any hydraulic system has certain modes of failure such as leakage 

contamination which a r e  difficult to protect against. 

systems for  long periods in space is still untried, although long-;term . 
storage of hydraulic systems is common practice in missile technolo'gy. 

A small  pump is used to supply power 

This system is the lowest weight system 

It has fast response and excellent holding capability. It uses 

Its chief disadvantages a r e  that it 

The use of hydraulic 

ib 

From the tradeoff study, it appears that either the DC motor/ball 

screw actuator o r  a hydraulic pump system (shown in Figure L-1) a r e  

the best choice for the thrust vector control actuators. The weight and 
power for the hydraulic system a r e  lower but at the expense of reliability. 

As mentioned before, the hydraulic system is basically untried in a 

spacecraft application and the reliability level is more of an unknown 

factor. Fo r  this reason, the DC motor/ball screw actuator, which has a 

significant amount of spacecraft experience, is selected for the thrust 

vector control actuators. The hydraulic pump system, however, does 

have some significant advantages; redundancy techniques and special 

attention to leakage could make this approach preferable. 

MOTOR 

I ACTUATOR 

~ 

Figure L- 1. Hydraulic Pump System 
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APPENDIX M 

DIGITAL CONTROL STUDY 

1. INTRODUCTION 

This appendix presents the results of an initial study performed to 

establish a digitized configuration for the Voyager guidance and control 

subsystem (Section 5). 
the study to the digitization of the present Voyager analog guidance and 

control subsystem. 

2. SUMMARY 

At the outset the decision was made to constrain 

The digitization of the present analog guidance and control subsystem 

functions offers several  advantages : 

0 

0 Acquisition without gyro backup 

0 Reduced acquisition fuel requirement 

Elimination of external mode switching 

0 Elimination of the drift problem in analog integrators 
and long-time constant networks. 

In the digital guidance and control system the mode switching, loop 

gain switching, and deadband changes will be implemented by means of 

internal computer logics, 

The performance of the digitized system will be essentially identical 

to the analog system. However, in the acquisition mode, the digital 

system uses the optimum deadbeat control law. 

will  converge into the desired position without overshoot. 

the system will converge without the need for ra te  gyro o r  lead-lag 

augmentation. 

Thus, the digital system 

In addition, 

-In the present analog thrust vector control, analog integrators 

provide e r r o r  integration feedback. 

tremely sensitive to unsymmetrical electrical noise and null shifts. 

digital implementation will eliminate both problems. 

digital thrust vector control loop will be similar to the analog thrust vector 

control loop with the addition of sensor interface units and the digital 

compensation networks. 

These analog integrators are ex- 
The 

Essentially the 
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. For  the digitized system it  appears advantageous to change the gyrd 

reference assembly unit into a digital system using pulse torquing, operat- 

ing the gyro loops in closed-loop, 

face of the gyro unit into the computer. 

This method will  provide direct inter- 

In the quantization of analog signal into digital data, it is highly 

desirable to res t r ic t  the signal spectrum of the analog device before sampl- 

ing. 

a t  less than one half the sampling frequency. 

3. 

The filter characteristic should be low pass with cutoff bandpass set  

DIGITIZED GUIDANCE AND CONTROL CONFIGURATION 

Functionally the digitized guidance and control configuration will  be 

identical to the present analog guidance and control configuration. 

a reas  of major distinction between the analog guidance and control subsystem 

and the digitized guidance and control subsystem are in the: 

The 

a Derived-rate modulator 

a Gain change operation 

a Deadband switching operation 

0 Digital lead-lag compensation 

Digital-to-analog and analog-to-digital interface. 

A general block diagram of the digitized guidance and control config- 

uration is given by Figure M-1. In the block diagram the assumption is  

made that the present computer and sequencer functions will be performed 

by the computer. 

Additionally, it appears desirable to redesign the gyro reference 

assembly to provide closed loop gyro operation, using pulsed torquing in 

conjunction with a digital counter to provide concurrent rate and position 

data. With this method the gyro will  be interfaced directly into the com- 

puter without a n  intermediate analog-to-digital converter, 

The closed loop gyro operation will permit maneuvering without the 

use of the precision current generators. Thus, to perform a maneuver, 

the computer first c lears  the gyro position counter and directs the gyro 

counter output into the attitude control loop. 

be done in a single step slew o r  by means of a ramp command (e. g., in 

The maneuver command may 
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0. 2 deg/ sec steps until the desired position is reached). 

is performed by loading the desired angle into the gyro counter and allow 

the gyro counter to count down to zero. 

A large maneuver 

DIGITAL COMPUTER 

GROUND COMMAND ENGINE 

Figure M- 1. Digitized Guidance and Control System 

3. 1 Digital Derived Rate Modulator 

Two methods of implementing the derived rate modulator have been 
considered. The first consists of direct digitization of the modulator 

using logic to establish the thrust commands. 

derived rate modulator is given by Figure M-2. The design parameters 

for the Voyager attitude control loop indicate the minimum thrust 

command pulse duration to be 0. 025 second. 

the thruster pulse duration to within a millisecond. 

will be required as input to the up-down derived rate counter. 

ulator loop must also operate a t  a minimum of 1 kc. 

A block diagram of the 

It is desirable to control 

A clock a t  least 1 kc 

The mod- 

The deadband logic diagram is given by Figure M-3. In this imple- 

mentation the complete logic is cycled each time a t  a 1 kc rate. In the 
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TRWSYSTEMS 

GYRO INPUT 

I 

LIMIT SET 

Figure M-2. Derived Rate Modulator 

diagram the thruster command gate which has state zero or  one is  used 

a s  a bookkeeping device. 

The derived-rate filter is implemented by an up-down counter using 

a linear approximation of the lowpass rate filter. 

rate filter output to a step input is  given as: 

In the time domain the 

Co(t) = *ToK( 1 - e -t/T 

where the input, Ci, is specified a s  

Ci = step = *To (proportional to control torque) 

The linear approximation i s  obtained by ser ies  expansion of: 

Co(t) = *T K r  t 
0 
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The up-down counter output i s  given as: 

n m 

where A is the granularity of the count steps in degree/count. Also 

m n 

n s tar ts  a t  thruster ON command 

m star ts  a t  thruster O F F  command 

m / n  do not occur simultaneously 

T clock rate Tn' m 

The analog derived rate modulator rate filter has a limit which 

In the digital system this is  limits the maximum output of the filter. 

done by fixing the maximum count of the counter register. 

The major disadvantage of this digitized derived rate modulator i s  

that the internal loop computation must be done to the desired thruster on 

time accuracy. Thus, in order to control the thruster on time to a milli- 

second accuracy, the computer must operate a t  a 1 kc solution rate. 

An alternative, preferred, implementation of the derived rate 

modulator is by direct computation of the attitude control impulse by the 

computer. 

operation is essentially a derived rate modulator. 

tion is by means of optimum switching technique. 

This modulator has two modes of operation. The small e r ro r  

The large e r r o r  opera- 

The computation cycle rate has been selected to be 100 milliseconds. 

For small rate and e r r o r  angle operation, the computer computes the 

thruster command ON time as: 
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where 

8. = attitude e r r o r  at sampled instance 
1 

Bh = hysteresis angle 

ed = semi-deadband angle 

Tentatively, the small  e r r o r  and rate boundary has been set  as: 

8 5 5 deg 

8 5 0.5 deg/ sec 

Using the parameter selected for the present analog configuration, 

calculate the minimum impulse bit for the digital system. 

Analog minimum impulse bit is given as: 

where 

T = 50 sec 

8 = 0. 1 deg h 

K = 52 deg/ft-lb 

T 0 = 0.2  lb (19.3 ft) = 3 . 8 6  lb-ft 

t = -50 (-0. 1/200) = 0.025 sec. 

The digital minimum impulse bit is given as 

0.5 t 0. 1 - 0.5 t =  T =  0.025 sec 

For  the arbi t rary selected boundary of the 5 degree attitude e r r o r  and 

0.5 deg/sec attitude rate, the control law equation is given by 

- 'd e. t eh 
1 - 

T K  
0 

tON - 
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This equation has not been analyzed in detail for convergence. 

some rough hand calculation has been made and the results show that i t  

does converge. 

cal to the derived rate modulator for small  e r r o r  rates. 

However, 

The operation of this pulsewidth modulator will be identi- 

The two units a r e  identical when the derived rate filter output at 

each thruster command is zero. 

For  large angle operation such a s  required for reorientation 

maneuver and initial acquisition, the control law is based upon switching 

the system at the optimum deadbeat response curve as defined in the 

phase-plane. 

a s  measured by sensors. 

If the spacecraft state vector does not coincide with the optimum switch 

line state, the computer issues commands to the thruster to reduce the 

initial rate while converging toward the optimum switching point. The 

thruster will stay on until it reaches the optimum switch line at which 

time the initial thruster is turned off and an opposite thruster is turned 

on €or a precomputed duration. The computation is based on the time 

required to null the initial rate established at the optimum switch line. 

A plot of the optimum switch line is given by Figure M-4. The 

parametric equation is very simple and i t  is stored in the computer. 

actual operation the computer estimates the spacecraft state from sensor 

or gyro information and tests whether the optimum switch line conditions 

a r e  satisfied. 

The Computer initially looks at  the spacecraft attitude e r ro r  

It also computes an estimate of the e r ro r  rate. 

In 

d 

PARAMETRIC EQUATION 
e 

8 2 - 2  e = o ,  h=If?? 
S I  

THRUSTER ON-TIME TO NULC 

*K - 
' O N = T - Y  

bK, eK CORRESPONDS TO VEHICLE STATE 
AT THE OPTIMUM SWITCH LINE 

Figure M-4. Optimum Switch Line 
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The advantage of this approach is threefold: 1) this method enables 

the computer to operate at  a relatively slow computation cycle rate of 
10 samples per second or  less ,  2) acquisition t ime will be shorter, and 

3) propellant utilization for acquisition will be less. 

3 . 2  DIGITAL F I L T E R  

The implementation of filter transfer functions by means of digital 

computer is simple and straightforward. 

obtain the z-transform of the filter transfer function. 

transform approach, the exponents of z denote the staleness of the input 

in terms of the sample period, 

te rm is the value of the function of the kth sampled time. 

The simplest approach is to 

Using the z- 

-k The coefficient associated with each z 

In the present Phase lA,  Task B, guidance and control design plan, 

lead-lag filter may be used as acquisition backup for the attitude control 

loops. 

report, neither lead-lag filter nor gyro are required for acquisition. 

However, digital compensation network will be required in the thrust 

vector control loops. 

toward digital implementation of a general transfer function. 

Under the digital attitude control loop design presented in this 

The discussion in the section will be directed 

Any transfer function may be converted into a z plane function by 

However, it may be table look up in numerous sampled data textbooks. 

easily computed by 

Gt a) 
cy - 1  G(z) = residues of 

k i - e T  z 

where 

cy is a pole a t  Sk 

T is the sampling period 
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In general, any transfer function may be represented as 

-2  -n a s  t a 3 z-3 t * n 

- 2  . . bnz-n 14- biz- '  t b2z t b3z-3 t . 
Eo( 2) - - a 0 t ai"-' t a2z 

G ( z )  = 

-k n 

- 0 
akz 

n 
1 t c bkz-k 

- 

0 

From a signal flow viewpoint the computer implementation of the G( z )  is 

shown by Figure M-5. As shown in Figure M-5, each z represents a 

storage of one sampling period. 

weighing factors for the respective signal lines. 

-1  

The transfer function coefficients a r e  

Figure M-5. Implementation of the Digital Transfer Function 
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Since the input signal to the computer is in  the time domain, it 
appears more reasonable to express the computation mode in time sequence. 

Since 

n 
1 t bkz-k 

0 

and 

e*(t) = z- '  [E(z)] 

take the cross  product of Eo(z)/E1(z) and perform an inverse z-transform 

operation gives the difference equation as  

n n 
b e*(t - kT) k o  e:F(t) = a e$ ( t  - kT) - 

k= 1 k i  k= 0 0 

where 

eF(t  - kT) input at the kth sampling time 
1 

eg( t  - kT) output at  the kth sampling time 

For  example given the lead-lag network transfer function a s  

- 1  
1 + a l z  
1 t biz- '  ' b l  

Eo(z) t blEo(z)z-'  = KEi(z) t KEi(z) a1z-' 

- 1  - 1  
Eo(z) = KEi(z) t KEi(z)'alz - EJz)  biz 

e*(t) 0 1 1  
= Kez(t) t Ka eF(t  - T) - bleg ( t  - T) 

The computer requirement for this simple lead-lag network consists of 

forming four products, performing three s u m s  and the storing of two 

past values. 
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3 . 3  Sampling Operation (A/D Conversion) 

In the digitized guidance and control system all of the sensor sub- 

systems must be sampled. 

simple rules must be observed. 

signal f( t) has a spectrum of fo, the sampling period (T)  must be T = 1/2fo. 

In the sampling of an analog signal a few 

The sampling theorem stated that i f  a 

The mean square quantization e r r o r  is given a s  

2 
E2 =;t- 

where q is the sampler bit size o r  resolution of the encoding process. 

The major problem area in the sampling operation i s  in the transla- 

tion of high frequency noise into the low frequency signal band. 

significance of this is that unless the analog signal has a filter which 

restr ic ts  the output noise spectrum, the sampling operation will  increase 

the noise content of the desired signal. 

The major 

The proof of the previous statement is found in the examination of 

the sampling process. 

Let e:x(t) = p(t) e(t)  where e’:<(t) denotes the sampler output, p(t) denotes 

the sampling modulator with fixed period and finite dwell time p. 
p(t) is  a periodic function it may be expanded into a Fourier se r ies  a s  

Since 

where as = 2n/T the sampling frequency. 

is given as 

The Fourier ser ies  coefficient 

-jno t A =  s dt 

n T  0 

Let Ip(t)l = 1 and since O < t < p  

- jmsp 
1 - jms t  = j . -  e 

A = -  J p e  j w  T n T  
0 S 
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-. 

or simply by trigonometric identities 

where 

therefore 

A = + T e  sin 8 -je 
n 

e = w s p / 2  

Since e(t) is  a continuous time function it may be converted into the f re -  

quency domain by means of the Fourier transform. 

therefore 

The magnitude of Ea(ju) is given as  

Take the ideal case where the dwell time p approaches zero since 

~ i m  sin e( ) 
P - 0  ---E&=' 

The E+(jw) magnitude is given as 

Assume that E(jo) has the following frequency spectrum and examine the 

spectrum plot about n = 0 and w > w 
s/ 2 
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The input frequency spectrum with respect to. the sampling frequency 

is given by Figure M-6. The sampler output spectrum is given by 

Figure M-7. 

, E*@)= *($a) 

Figure M-6. Input Frequency Spectrum 

Figure M-7. Output Spectrum 

Thus, assuming that the input spectrum greater  than us/ 2 contains 

mostly undesirable signal, the sampling process increases the unwanted 

signal content in the desired signal band. 

3 .4  The Thrust Vector Control (heration 

A preliminary block diagram of the digitized thrust vector control 
loop is given in Figure M-8. The major difference between this and the 

analog system is the addition of an analog-to-digital converter following 

the gyro and the addition of a digital-to-analog converter ahead of the 

input to the actuator control loop. 

the various compensation networks and feedback integrators a r e  imple- 

mented by digital technique. 

In the digital thrust vector control loop 
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Figure M-8. Thrust  Vector Control Loop 

A detailed study on the analog thrust vector control loop is contained 

in Section 3.0 of Volume IV of a report entitled 'Voyager Support Study, 
Report No. 04480-6087-R000, July 1967. 

The digital sampling for the thrust vector control has been tentatively 

chosen at  10 samples per second. If the sampling rate is selected such 

that the system dynamics are slow when compared to the sampling fre- 
quency, the digitized system will perform very nearly as the analog 

system. 

margin and the possibility of high frequency ripple occurring at  a multiple 

of the sampling frequency. 

The major undesirable effects will  be the reduction in phase 

In general the reduction in phase margin for a zero order type data 

reconstruction is given by 

0 

S 

$ = -180- w 

Fortunately, the spacecraft dynamics does not have an equivalent 

bandwidth to the actuator loop. 

s tar t  MOI ( M a r s  Orbit Insertion), the spacecraft response to a step thrust 
vector offset angle is given by Figure 115 of Volume IV of the Voyager 

Using the spacecraft parameters for the 
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study. Taking the slope of the vehicle attitude response curvey the maxi- 

mum dynamic response is approximately 

,= = 0 .5  deg/ sec 

Therefore w 0.0  1. 

The reduction in phase margin for the total thrust vector control loop 

is given as: 

9 = -180 Gb 0 . 0 1  s 0 . 0 3  deg 
2. 8 

The phase margin given by the analog thrust vector control study shows a 

minimum phase margin of 40 degrees for all thrust vector control modes. 

It appears that 10 samples per second will be entirely adequate for  the 

digital thrust vector control loop. 

The operating frequency at  the s ta r t  of the Mars orbit insertion 

phase is 3 . 7  rad/sec.  

would approximately be: 
The reduction in the rigid body phase margin 

3 . 7  
6 2 . 8  4 =  -180 (-) = 10.6 degrees 

The rigid body phase margin would be reduced from 38 degrees to 27 
degrees, which is still acceptable; however, an increase of the digital 

lead compensation to increase stability margins would still be desirable. 

The 10 samples per second rate is considered satisfactory for the 

digital thrust vector control loop. 

3 . 5  Sensor Interface Requirements 

The present guidance and control configuration consists entirely of 

analog sensors. 

mentation constraints, no changes will be made to the sensor subsystems. 

Under the present digital guidance and control imple- 
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3 w 
Digital-to-analog conversion devices will be required for all  the 

sensors. The quantization requirement for the sensors is given below. 

Quantization 
Sensor Rang e Resolution Digital E r r o r  

Type (deg) (deal Quantization 0-2 

2 Coarse sun 1 bit sign 
sensor *180 *o. 7 8 bit angle 0.04 deg 

Fine sun I bit sign 
sensor * 10 k0. 04 8 bit angle 1.3 x l o W 3  deg2 

Canopus 
tracker 

roll *2.0 *O. 03 1 bit sign 

pitch f 15 *O. 0 8  1 bit sign 5.3 x deg2 

6 bit angle 

8 bit angle 

Gyro 1 bit sign 
position * 15 *O. 03 9 bit angle 7.5 x deg2 

3.6 Simulation Requirement 

It should be noted that computation round off e r r o r  may cause 

undesirable parameter shifts in the digital networks. 

o r  may not cause undue changes in the response of the control loop depend- 

ing upon the sensitivity of the loop to system root parameter changes. 

any event, detailed bit-by-bit digital simulation is desirable to check out 

the design and also to confirm compatibility of the software. 

These shifts may 

In 
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APPENDIX N 

CENTRALIZED COMPUTER STUDY 

1. SUMMARY 

This is an initial study of the feasibility of carrying out all control 

and computing in the Voyager spacecraft by means of a central general- 

purpose computer. 

purpose computer to perform all of the controlling and computing func- 

tions of the present computer and sequencer subsystem was examined. 

This was found to reduce the amount of memory used for discrete 

commands (as a result of the decision capability of the programmed 

computer) and to provide a system that was easily modified fo r  later 

upgraded missions simply by programming changes. 

As a point of departure, the use of a central general- 

The study did not examine use  of the computer f o r  data compres- 

sion, fault isolation, complete centralization of all special-purpose logic, 

optimized digital control, o r  approach guidance. However, these a r e  

a reas  in which a central computer promises considerable advantage, to 
provide increased capability, greater flexibility (within a mission and 

f rom mission-to-mission), and economies in hardware. The additional 

capacity to  handle these functions is easily provided in a central computer 

of modest size. 

. 

In the Voyager configuration examined in this study, the computing 

and sequencing subsystem provides the event timing and sequencing of 

all the spacecraft functions and the on-board scientific experiments. 

computing and sequencing subsystem is fundamentally a special-purpose 

sequencer which scans its memory every 1-second cycle to issue com- 

mands or  data to the appropriate subsystem when the sequence identi- 

fication tag and time relative to that sequence a r e  coincident with 

sequence counter time. In addition, an accelerometer counter to control 

the duration of engine burn and a function generator to point the high 

gain antenna and the planetary scan platform a r e  included in the computing 

and sequencing subsystem. 

contained in Section 5 of this appendix. 

The 

A detailed description of the subsystem is 
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The study shows that not only is it feasible for the general-purpose 

computer to  perform all timing and sequencing tasks for the spacecraft 

and scientific experiments, but also it can perform all the computation 

and timing for all  the control loops in the guidance and control subsystem. 

Discrete commands which a r e  time referenced within a sequence of 

events can be programmed into routines by use of indexing and a time 

differential for successive discretes, 

do not f i t  into any particular sequence can be handled in a routine which 

is time differential dependent. The amount of memory utilized for dis- 

crete commands can be decreased as a result of the decision making 

capabilities of a programmed computer. 

Singular discrete commands which 

Control loop equations which a r e  presently handled in an analog 

fashion within the guidance and control subsystem a re  directly adaptable 

to solution by a central computer. Routines can be developed within the 

computer program such that the digital solution to  certain control loop 

equations can be calculated repetitively within a major program cycle. 

Examination of the present guidance and control sub system requirements 

indicates that a 13-bit computer word will  meet the accuracy requirements. 
The selected 18-bit word computer provides ample flexibility to meet 

additional accuracy requirements . P r e sent information indicate s that 

the two-axis thrust vector control loop and the three-axis attitude control 
loop require solution every 100 milliseconds. The remaining five control 

loops can be solved every second. Accordingly, a 1-second program 

major cycle with a 100-millisecond minor cycle has been selected. 

Changes to these requirements can be accommodated. In addition, solu- 

tion of the control loop equations by a digital computer can accommodate 

certain modifications by changing the computer program and/or constants 

which might result in a hardware modification in  an analog configuration. 

Programming, testing, and verification in program changes can be ac- 

complished with ease a s  compared with hardware changes. The problem 

of hardware changes necessitating development effort  enhances the al ter-  

native of the program change approach when applicable. 

At present it appears that less than 25 percent of the computer 

time will be utilized for  the above tasks. 

in either the above functions o r  additional servicing of other spacecraft 

subsystems which may impose computational requirements a t  a future date. 

This provides for ample growth 
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Any portion of the computation cycle which is not needed fo r  the flight 

program may be used for computer self-testing and status checking of 

other subsystems, 

flexibility for  additional requirements a s  they become known. 

Computer programming options would allow for 

This report consists of eight sections. A summary of the require- 

ments and constraints is given in Section 2. 

the computer subsystem is included in Section 3. 

the various subsystem functions within the computer is detailed in 

Section 4. 

Section 5. 
discussed in Section 6. 
Section 7. 
to perform additional tasks is briefly discussed in Section 8. 

A general description of 

The implementation of 

A design description of the computer subsystem is given in 

The system reconfiguration and fail- safe considerations a r e  

The system reliability estimate is given in 

Finally, the potential capability of a general-purpose computer 

2. REQUIREMENTS AND CONSTRAINTS 

The computer will perform all the timing, sequencing, and 

computing tasks which a re  to be performed by the computer and sequencer 

subsystem as  outlined in Section 5 of the main report. This includes 
mode of operation switching, event timing for the mission, for a maneuver, 

o r  for an orbit. 

formation to various subsystems including the science subsystem. The 

computer will accept inputs from the command subsystem, the guidance 

and control subsystem, and other subsystems and will  provide outputs to 
various subs y s tem s . 

The computer will provide timing and sequencing in- 

The digi ta l  computer is required to provide both timed discrete 

and ser ia l  data for  control of the spacecraft during the various mission 

phases, 

loops, two thrust vector control loops, two PSP control loop's, two high- 

gain antenna control loops and one low-gain antenna control loop. The 

computer will provide the necessary operational program and storage so 

that under nominal conditions, it is capable of executing all  functions, 

specified in Section 5, from launch to the end of the mission. If 
necessary, a number of midcourse trajectory corrections o r  Mars orbit 

trim can be initiated by a ground command. 

It will  perform all  the calculations fo r  the three reaction control 
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It will be possible to modify the computer program by ground 

commands via the command subsystem. 

read out over the telemetry link to  the ground by another ground command. 

The computer will provide redundant counters f o r  accumulation of ac- 

celerometer outputs and provide time referenced backup for thrust 

termination. The computer subsystem will be adapted and integrated 

into the present Voyager baseline configuration without major changes 

except for the guidance and control subsystem; will provide the necessary 

program and storage for  on-line confidence test  and diagnosis of the 

computer subsystem; and will provide necessary redundancy so that it 
will achieve suitable reliability under the constraints of weight and 

power consumption. 

The memory contents may be 

The information stored in the computer memory will  be nonvolatile 

in the event of power transient o r  power dropout. 

While the use of digital computers fo r  data compression, filtering, 

and prediction seems promising, it is assumed that these advanced 

requirements a r e  out of the scope of the present study. 

list of possible future applications will be briefly discus sed. 

However, a 

3. GENERAL DESCRIPTION 

The computer subsystem consists of a digital computer, a timing 

unit, and a monitor and control unit. 

units: the central processing unit, the memory unit, the input/output 

unit, and the power regulator. 

input module, the output command decoder, the accelerometer counter, 

and the telemetry register. The central processing unit consists of the 

arithmetic unit and the central control of the computer. 

provides all  the timing signals for the logic and the memory. 

monitor and control unit includes a comparator, a shift register, and 

some logic for generating control signals and timekeeping required for  

various tests. 

The computer is composed of four 

The input/output unit includes the command 

The timing unit 

The 

To achieve high reliability, a redundant computer is included; 

This redundant computer can be connected in parallel during maneuver 

o r  switched off-line during cruise. In addition, triple modular redundancy 

has been considered fo r  the timing unit and the monitor and control unit. 

N-4 



3. 1 Computer Characteristics 

Three different computer designs have been considered for the 

First, the possibility of using the existing LM Voyager application. 

Abort Electronic Assembly (AEA) computer has been examined. 

approach has the advantage of proven design and adaptable input/output 

units. 

Then a modification of this computer in which arithmetic operations 

a r e  executed in ser ia l  has been evaluated. 

This 

The block diagram of this computer is given in Figure N-1. 

This design affords low-cost 

and low-power consumption. 

to that in Figure N - 1. 

The computer block diagram is similar 

Finally, a study has been made of a design in which arithmetic 

registers and control counters a r e  stored in memory, and retrieved 

and restored as necessary to execute a given instruction. 

is relatively simple and low cost, yet quite fast and versatile. 

This design 

The 

block diagram of this computer is shown in Figure N-2. 

LM/AEA Computer 
I 
MEMORY 

Word length: 18 bits 
Cycle time: 2 microseconds 
Capacity: 2K (expandable to 4K) 
Type: Core 

CENTRAL PROCESSOR 
Data representation Binary 2's complement 
Number of instmction decoded: 26 
Order code field: 5 bits 
Addree field: 12 bit 
Add time: 5 microsecond for parallel, 

Multiply time: 66 microsecond for parallel, 
347 microsecond for serial 

Index register: 1 - three bit-- ~ 

22 microsecond for serial 

INPUT/OUTPUT 
Serial discrete w t p t  
Serial input ond output 

Physical Characteristics 

I Weight: 371b 
Volume: IOBO cu in. 
Power: 23 watts for parallel, 22 watts for rerial 

SENSE AMPLIFIER ADDRESS DECODER 

PROGRAM REGISTER 
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Word length: 18 b i k  
Cycle time: 2 microsecond 
Copcity: 2K (expandable to 4K) CORE STACK 

I 

4 
Type: COV? 

CENTRAL PROCESSOR 
Data presentation - Binary 2's complement 
Number of InStrUctioni Decoded - 21 
Order code field - 5 bik 
Address Field - 12 bits 
Add - 12 micmrecondr 
Multiply - 190 microseconds 
Index - 1 - 12 bit 

INFIJT/OUTPUT 
Serial discrete output, Serial input and output 

Physical Characteristics _. . - _ _ ~ _ _  
Weight . 37 pounds 
Volume IOBO cubic inches 
Power 33.6 watts ~l BUFFER REGISTER 

Figure N-2. 

Each of these machines is designed around an 18-bit word. The 

largest word required for  computation seems to  be 13 bits, but a single 

address instruction capable of selecting one of 4096 words must have 

12 bits for address alone. I€ five bits a r e  used for the instruction code, 

and one bit for index control, the total becomes 18 bits. 

data words'might be shorter than instruction words, they a r e  less  than 

one-fourth of the total words required, so it would not be practical to  
have a separate memory for data, 

Although the 

Since the baseline computer and sequencer subsystem has provisions 

for issuing up to 512 discretes, the computer must be similarly equipped. 

This requires 512 instructions, and 512 additional words to establish the 

t imes at which these discretes should be issued. 

counters, programs to manipulate them, and comparisons with other 

data. 
Thus, the computer should have about 2048 words of storage. 

for growth, the directly addressable memory can be expanded to 4096 

words. 

There a r e  also time 

The computer must also process altitude data, and control jets. 

To allow 

N-6 



The computer and sequencer subsystem study has a discrete 

command word that includes an enable (disable) bit which must be set  

(reset)  in order to transmit (inhibit) the command. 

subsystem does not utilize a bit to accomplish this function, 

vidual command is to be disabled, the output discrete command can be 

changed to a no-operation command via the ground link. 

able to the computer and sequencer receiving a ground command to dis- 

able the command. For a sequence of commands which may all have to 

be disabled, a single program instruction may be altered by ground 

command such that the program branches around these commands and 

they a re  not executed. The present computer and sequencer requires 

each command of the sequence to be disabled individually. In both the 

computer and sequencer approach or the general-purpose computer 

approach, all changes in memory may be validated via the telemetry. 

The digital computer 

If an indi- 

This is compar- 

The memory cycle time for the proposed machine is 2 microseconds. 

This choice was motivated by the fact that a 2-microsecond memory 

qualified for aerospace applications is being produced by TRW Systems. 

Typical instruction t imes in microseconds fo r  the three machines, 

based on a 2-microsecond memory, are: 

Serialized Parallel  Computer with 
LM/AEA LM Registers in Memory 

Add 5 22 

Multiply 64 191 

Divide 66 34 7 
Jump 4 4 

12 

190 

196 
6 

3.2 Physical Characteristics 

3.2. 1 Power 

The power required by the three nonredundant machines without 

the input/output unit and without the power regulator loss are: 

LMIAEA Serialized Registers in 
(watts) LM (watts) Memory (watts) 

Logic 2.8 2.2 1. 9 
Memory 5.25 5.25 11.4 

Total 8.0 7.45 13.3 
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From experience with the LMIAEA power supply, about 53 percent 

efficiency may be expected, so total power required will in each case be 

almost twice that given above. The LM power supply occupies about 

300 cubic inches and weighs 11.6 pounds. 

3 . 2 . 2  Weight and Volume 

Most of the space and weight required for these computers would 

be in the memory; therefore, the figures a r e  the same for all three 

machine designs. 

The input/output system for  each machine would require an 

additional 3 . 5 0  watts, and would occupy about 230 cubic inches. 

Totals for the three machines a r e  thus: 

Serialized Registers in 
Machine LM/AEA LM Memory 

Power 2 3 watts 2 2 watts 3 3 . 6  watts 

Weight 37 lb 37 lb 37 lb 

Volume 1080 in? 1080 in? 1080 in? 

3 . 3  Computer Capability 

The possibilities for effective use of computer flexibility a re  sharply 
limited by the constraints of the baseline system. 

offer some advantage in these cases: 

We can, however, 

0 Multiple counters 

0 More sophisticated antenna pointing 

0 Simplification of attitude control system 

0 Digitized servo systems for antennas and 
planetary scan platform 

0 On-board diagnosis and reconfiguration. 

Under the constraint that the computer subsystem must be adaptable 

to the present baseline configuration without major  redesign of other sub- 

systems, it is difficult to justify the use of a computer. 

subsystems are still in the process of design, we could get full advantage 

of a digital computer by suitable modification of subsystem specifications. 

Possible applications of digital computers to enhance system performance 

are discussed in Section 8 of this appendix. 

However, if the 

N-8 



4, IMPLEMENTATION 

4. 1 Computer and Sequencer Subsystem 

The computer subsystem provides several t imers  and counters 

which a r e  used in the present computer and sequencer subsystem: 

0 

0 

0 

0 

a 

Mission Timer- In the computer and sequencer 
subsystem, the mission t imer consists of 26 bits 
with 1 - second granularity giving a range exceeding 
two years. However, memory comparison is provided 
only with respect to the 14 most significant bits which 
yield a granularity of approximately 1. 1 hours. 
Using a programmable computer, two words in 
memory can be updated to hold up to 17 positive 
data bits each. This scheme can provide selectable 
combinations of greater range, finer granularity 
o r  variable granularity fo r  either the most or least 
significant portion of time. 

Maneuver Timer -The computer and sequencer 
maneuver t imer uses 14 bits with 1-second 
granularity. 
17 bits a r e  available to  provide greater range and 
finer granularity. 

Utilizing a digital computer word, 

Orbit Timer - Presently 14 bits with 4-second 
granularity. Again, greater range and finer 
granularity is available with a 17-bit data word. 

Science Timer - The science t imer will be comparable 
to the maneuver timer. 

Command Events Counter - The command events 
counter will count the number of stored commands 
issued by the computer subsystem to the other 
spacecraft subsystems. 
the ground can keep informed of the total number of 
commands issued during any period a s  determined by 
the contents of the counter at  the t imes the telemetry 
interrogates the computer. 

Via the telemetry subsystem, 

The above t imers and the counter a r e  located h t h e  memory. 

0 Function Generator- The function generator of the 
present computing and sequencing subsystem uses 
linear approximation to  point the high- gain antenna. 
The fixed change of the command angle for a pre- 
determined time increment is an open-loop process. 
The present scheme o r  a refined scheme using a non- 
linear approximation can easily be implemented with a 
digital computer program. In addition, should the 
requirement a r i se  to close the antenna pointing loop 
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with the digital computer, a higher degree of 
accuracy for positioning of the antenna can be 
achieved. 

0 Accelerometer Pulse Counter - The velocity 
correction for the vehicle ranges from 3.28 to 
6250 f t /sec with a maximum acceleration of 
approximately 75 f t /  sec2. 
0.015 f t /sec pulse yielding a pulse count range of 
219 to 417,000 and a maximum pulse rate of 
approximately 5000 pulses/ sec. 
scale factor of the accelerometer, a 19-bit counter 
is required. 
of the engine burn time by issuing a signal after the 
predetermined number of accelerometer pulses have 
been counted. By setting the counter initially to the 
complement of the number of pulses corresponding 
to the correct AV, the overflow of the counter will 
issue the pulse to  terminate the engine burn. The 
least significant 18 bits of the accelerometer counter 
a r e  set  by an output data instruction, and the most 
significant bit is simultaneously set  to a 1. If it is 
necessary that the most significant bit be zero, it 
may be reset  by an output discrete instruction. 

The quantization is 

To retain the 

The accelerometer controls the duration 

A 

In addition, the computer subsystem will perform all the timing 

and sequencing functions which a re  to be performed by the computer and 

sequencer subsystem a s  listed in Section 5 of the Task D Report. 

The computer program should be capable of utilizing its decision-making 

features to allow choices of performing or  not performing certain com- 

mands o r  sequences. 

repetitions a r e  also conveniently handled by computer programs. 

Those commands or  sequences which may be 

The computer program will have a major cycle time of 1 second 

and a minor cycle time of 100 milliseconds. A precision 10-cps pulse 

f rom the power supply subsystem will be used to define the s tar t  of the 

minor cycle, 

start point. 

Every tenth 10-cps pulse will return the program to the 

t 
START START 

During the 100-milliseconds, the guidance and control loop equa- 

tions which require solution at a rate of 10 times per second will be solved. 

The appropriate subroutine will be entered from the program at 10 equally 

spaced intervals to satisfy this requirement and then return to the 
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appropriate address in  the program. The remaining equations, service 

routines, diagnostics, etc. will  be spaced in  the remaining portions of 

the 100-millisecond intervals in such a manner that the total t ime f o r  
calculations does not exceed 50 milliseconds. The remaining 50 milli- 

seconds a r e  allotted to issue any discrete that may have to be activated 

during this cycle to other systems. 

of 10 discretes to  be issued per  second. 

This scheme allows for a maximum 

4.2 Guidance and Control Subsystem 

In the Voyager baseline configuration, all  guidance and control 

functions a r e  performed by means of analog circuits. Functionally, a 

digitized guidance and control subsystem would remain the same as the 

analog guidance and control subsystem. However, in the digitized 

system, the implementation of some of the control laws and components 

would be by a computer program. 

of the various control loops is briefly discussed below. 

block diagram is given in Figure N-3. 

The computer program implementation 

A functional 

In the attitude control loops, the implementation of the derived 

rate modulator, is by direct computation of the attitude control impulse 

by the computer. 

computer will calculate the time and duration of the thruster-on command. 

The computer program will have a major cycle t ime of 1 second and a 
minor cyc’ie of 100 milliseconds. 

minor cycle. Fo r  large angle operation, as in initial acquisition and re-  

orientation maneuvers, the control law is based on switching the system 

according to an optimum response curve in the phase-plane. 

computer samples the spacecraft attitude e r r o r  and computes an estimated 

e r r o r  rate. The computer issues commands to correct the e r r o r  rate 
by activating appropriate thrusters and will check the e r r o r  and e r r o r  

rate against the optimum response curve. The computer will turn off 
the thrusters when the spacecraft state vector reaches the optimum 

response curve. Then the computer will turn on an opposite pair of 

thrusters and will compute the duration required to  null the attitude 

e r r o r  and the attitude e r r o r  rate along the optimum response curve. 

When the attitude e r r o r  and attitude e r r o r  rate a r e  reduced below the set 

values, the computer switches the guidance and control subsystem into the 

small e r r o r  correction operation. 

In the small  attitude e r r o r  correction operation, the 

The computation will repeat every 

The 
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Figure N-3. Digital Computer Implementation of Guidance and Control 
Subsystem s 
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In the digital thrust  vector control loop, the various compensation 

networks and feedback integrators will be implemented by digital tech- 

niques in the computer program. An analog to digital converter following 

the gyro and a digital to analog converter preceding the input are required 

in each of the two thrust vector control loops. 

the data and perform the TVC computation in each minor cycle. 

The computes will sample 

The control of the antenna drives will remain functionally the same 

as  in the present configuration, except the function generator in the 

computer and sequencer subsystem will be implemented by a computer 

program, 

the previous subsection. 

The implementation of the function generator is described in 

The control of the planetary scan platform in the present configura- 

tion has a digital interface with the computer and sequencer subsystem. 

This interface can be directly adapted by the computer subsystem. The 

computer will compute the necessary angular displacements for the two 

axes and will provide the appropriate value for the input register of the 

PSP drive electronic assembly. 

control for mode selection. 

The computer will also provide necessary 

The control of the antenna drives and the planetary scan platform 

will be initiated once every major cycle by the computer. 

4.3 Command Subsvstem - 

The command subsystem consists of two major units: the demodulator 

and bit synchronizer, and the command subsystem decoder. The first 

unit performs the necessary demodulation and bit synchronization for an 

incoming message from communications subsystem and provides syn- 
chronization indication and acquisition control. 

also required to be performed for a digital computer. 

The above functions a r e  

Using the Voyager baseline configuration, the command subsystem 

decoder receives data bits, bit synchronization pulses and decoder lock 

signals from the bit synchronizer. 

in a cross-strapped configuration. 

decoder and an output decoder. 

the parity of the incoming messages. 

to the output decoder o r  to other systems. 

The decoder contains two channels 

Each channel consists of an input 

The input decoder checks the format and 

It transmits command words either 

The output decoder provides 
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discrete commands directly to other systems, including the computer and 

sequencer subsystem. 

transmit commands independent of the computer and sequencer subsystem. 

This capability enables the ground t o  control some of the spacecraft sub- 

systems when the computer and sequencer subsystem is inoperative 

(see Figure N-4).  

The comrnand decoder is required to process and 

In the general-purpose computer approach, the format and parity 

checking could be done by program in the computer. The saving gained 

by performing this function by the general-purpose computer, however, 

is outweighed by the loss of direct ground communication with the other 

subsystem in the event that the computer subsystem becomes inoperative. 

It is recommended that the functions which a r e  performed by the command 

decoder be separated f rom the computer subsystem. 

4.4 Telemetry Subsystem 

The computer and sequencer subsystem periodically transmits a 
time word to the telemetry subsystem via a single buffered channel. 

channel is also used t o  read out the computer and sequencer memory 

(see Figure N-5). 

This 

In the general-purpose computer approach, additional data such as 

the spacecraft attitude could be transferred from the computer subsystem 

I 
COMMAND I COMPUTER 

DECODER I 
1 

COMMAND 
AVAl LABLE 

COMMAND 
DATA 

TIMING 

I 
I 
! 

Figure N-4. Compute r Interface 
with Command Decoder 
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I I COMPUTER TELEMETRY 
I I 

LOAD NEXT WORD 

TIMING 

TELEMETRY DATA 

I I 

Figure N-5. Computer Containing a 
Telemetry Buffer 
Register and Control 

to the telemetry subsystem. A second possibility would be to  allow the 

computer to select the channel to be sampled, instead of using a single 

fixed format, or a relatively small  group of formats allowed by a fixed 

wired counter. One thousand memory words would be required for this 

function, and provisions should be made for independent access to the 

computer memory. 

100 microsecond. 

plex control in case both computers fail. 

The addresses must be outputted a t  a rate of one each 

Some provision must also be made for backup multi- 

Direct memory access would increase the computer equipment by 

50 modules, and increase the power required by 0 .4  watts. 

mended that a further study be performed to evaluate the tradeoff of the 

variable format's advantages versus the increased size of the computer 

memory. 

It i s  recom- 

4.5 Science Subsystem 

Presently, the computer and sequencer subsystem provides all 

the necessary timing and sequencing signals for  the science subsystem. 

The formatting and recording of the data for the science subsystem is 

performed by the telemetry subsystem. 

provide the same timing and sequencing data. 

data would remain the same because of the high data rate. 

The computer can and will 

The formatting of scientific 
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Additional use of the computer, such a s  data compression for the 

science subsystem is difficult to predict without a detailed knowledge 

of the experiments to be carried. 

5. DESIGN DESCRIPTION 

5. 1 Instruction and Data Format 

ORDER f: 
1 1 1 1 1  

The instruction and data words fo r  the digital computer a re  each 

18 bits in length. Data words a r e  binary, with negative numbers re-  

presented a s  the two's complement of their absolute values. 

significant bit in a word i s  thus the sign bit. 

order of decreasing significance, so that the value associated with bit n 

is 2-n. 

The most 

The bits a r e  numbered in 

Data word format is illustrated below: 

ADDRESS 
I l l  I I I l l  I l l  

0 1  2 3 4 5 6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5 1 6 1 7  
1 

The instruction word is divided into two parts,  an order and an addre s s. 

The least significant order bit (bit position 5) is used to indicate address 

modification o r  "indexing. I '  A typical order has the following format: 

In the computer with registers stored in memory, the whole address 

The effective address i s  the sum is affected by the address modification. 

of the twelve bits of the address and the contents of the index register. 

5 .2  Repertoire of Instructions 

A list of instructions and the associated execution time for the two 

LM/AEA computers a r e  given in Tables N-1 and N-2. 

structions and the execution time for the simple parallel computer is 

given in Table N-3.  

A list of in- 
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Table N-1. LM AEA Instruction Set 

ABS 

ADD, ADZ 

C W  
DVP 

MPR, M P Z  
M P Y  
SUB, SUZ 

ATX 

CLA 

LDQ 

STQ3 
STQ 

ALS 

LLS 
LRS 

TIX 
TMI 

TOV 

T U  

TSQ 

INP 
OUT 

DLY 

Arithmetic Instructions 

Absolute Value of Accumulator 

Add to  Accumulator 

Complement Accumulator 

Divide 

Multiply and Round 

Multiply 

Subtract f rom Accumulator 

Register Ope rations 

Address to  Index Register 

Load Accumulator 

Load Q Register 

Store Accumulator 

Store Q Register 

Shift Instructions 

Accumulator Left 
Long Left Shift 
Long Right Shift 

Shift 

Transfer Instructions 

Transfer and Decrement Index 

Transfer on Minus Accumulator 

Transfer on Overflow 

Unconditional Transfer 

Transfer and Set Q Register 

Other Instructions 

Input Data to Accumulator 

Output Data or Discrete 

Delay 

Microseconds 

16 
5 

16 
68 

65 

65 

5 

13 

5 

8 

8 

8 

3N t 13 

3N t 13 

3N t 13 

5 

5 

5 

5 

1 1  

16 o r  67 

13 
- 
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Table N-2. 

Instruction 

ABS 
ADD 

C@M 
DVP 
MPR, MPZ 

MPY 

SUB, SUZ 
AXT 

CLA 

LDQ 

STO 

STQ 

ALS 

LLS 

LRS 

T M  

TMI 

TDV 

T U  

TSQ 

n\Tp 

OUT 

DLY 

Comparison of Execution Time for Serial  
and Parallel Versions of LM/AEA Computer 

Serial 

22 

22 

22  

34 7 

209 

191 
22 

3 

22 

22 

22 

22 

39 - N 

3 t N  

39 - N 

3 

3 

3 

3 

22 

22 

22 

Parallel 

16 
5 

16 
68 
65 
65 

5 
13 

5 
8 

8 

8 

3 N t  13 
3N t 13 

3N t 13 

5 
5 

5 
5 

11 
16 or 67 
13 
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AD 

DV 

MU 

su 

CA 

SA 

SI 

SM 

FL 
F R  

CQ, 

IT 

NT 

cpT 
TA 

UT 

Table N-3. Parallel Computer with Registers in Memory 
Instruction Set 

Arithmetic Instructions Microseconds 

Add to Accumulator 

Divide 

Multiply 

Subtract 

Register Operations 

Load Accumulator 

Store Accumulator 

Load Index 

Store Counter 

Shift Instructions 

Full left Shift 

Full  Right Shift 

12 

196 
190 
12 

10 

10 

10 

10 

8 t 8Y 
8 t  8Y 

Test Instructions 
Compare Accumulator with Storage 19 

Transfer Instructions 

Index Transfer 

Negative Transfer 

Overflow Transfer 

Indirect Transfer 

Unconditional Transfer 

Other Instructions 

Full  Stop 
Input Data 

Input Discrete 

No Operation 

Output Data 

Output Disc ret e 

12 

8 
6 
8 
6 

24 

10 
10 

6 
50 
50 
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5. 3 Computer Implementation 

Two possible mechanizations of a computer have been considered 

for  this study. 

being developed fo r  a current TRW computer. 

which is being developed by TRW also has been considered. 

possibility i s  the use of an all-magnetic logic system presently being 

developed by a TRW research project. 

fully developed, but should be available for  a 1973 mission. 

advantage that it is highly resistant to radiation, which might be an ad- 

vantage f o r  some possible follow-on missions. Magnetic devices have a 
higher inherent reliability than semiconductors, so that a longer mission 

might be practical using this type of equipment. Alternatively, a single 

magnetic computer might replace two semiconductor machines with no 

sacrifice in system performance. 

The first is to use integrated circuits and a memory 

A plated wire memory 

An alternative 

This magnetic system is not yet 

It has the 

On the other hand, the uncertainties involved in any research effort 

increase the risk of a development program, so only semiconductors 

and core memories have been used in the conceptual design. 

will be in short supply, a family of low power circuits has been selected. 

These circuits include NAND gates and a master-slave flip-flop. 

computer is designed to use the selected circuits, and number of modules 

and power computed for each model. 

Since power 

Each 

All  designs covered by this study use approximately the same in- 

structions, differing only in power consumption and execution times for 

the various instructions, These a r e  listed in the foregoing section. 

The computer memory is a three-dimensional, coincident-current 

device capable of one complete memory cycle in two microseconds. 

word in the memory may be either a NDRO or  DRO word, depending on 

the wiring of the magnetic core stack. 

allows for up to 4096 words to be directly addressed. 

memory could be doubled from the present design value with no logic 

changes. 

Any 

The logic design of each machine 

Thus, the computer 
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5.4 Computer Input/ Output 

The computer subsystem input/output accepts ser ia l  messages via 

the command subsystem that have been transmitted from the ground. 

format for the computer subsystem input from the command subsystem 

is as indicated below. 

The 

Class Address Data 

Class Address Data De stination 

0 1 Accelerator Counter No. 1 

2 Accelerator Counter No. 2 

1 0-4095 Memory Storage 
(including t imers)  

The input/output unit of the computer subsystem includes an 18-bit 

buffer for use with the telemetry system. 

register from the computer's accumulator. 

to  indicate to  the computer that the contents of the register have been 

sampled. 

Data may be shifted into this 

A telemetry signal is used 

While the buffer register is being read by the telemetry system, its 
One complete computer word would be transmitted data a re  recirculated. 

a s  three successive telemetry words, with the remaining bits, if any, 

filled with zeros. Attitude control and time computation require about 

25 percent of each second, so the maximum data readout rate would be 

of the order of 1600 words/sec. 

When the telemetry buffer register is used to transfer elapsed 

mission time, it can be loaded from the computer once each second. 

When memory dump is being executed, the register must, of course, be 

loaded as fast as the data can be accepted (about one word each 465 micro- 

second), except while the computer is otherwise occupied. 

Since the computer must  work in a baseline spacecraft, the decode 

matrix and associated output amplifiers for the discrete input/output 

system a r e  the same as those used by the sequencer which the computer 
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would replace. 

computer address register when an "output discrete" order is given. 

This discrete input/output system will be driven by the 

Similar design philosophy is used in case of serial  data inputs and 

outputs. 

and a clock is transmitted to the input source or  output destination to 

control shifting of data, 

5.5 Software 

The discrete matr ix  is used to activate the selected data channel, 

Verification of computer programs can be substantiated by designing 

and effectively using interpretive computer simulations (ICs). 
a program that performs the simulation of one computer on another 

computer, 

simulation can be performed. Program verifications , computer and 

system test  programs , integration and calibration routines, prelaunch 

and postlaunch simulations and diagnostic programs among others may 

be simulated. Repeatability of results, ease in performing a multitude 

of tests and the capability to extract more data utilizing a simulation 

program a r e  advantageous over running tes ts  on the actual computer. 

The restriction of the actual computer hardware being available for  

program checkout is eliminated, providing more time for hardware de- 

sign and development. 

An ICs is 

Either a word-by-word, bit-by-bit or a hybrid technique of 

Diagnostic routines will be developed to  evaluate the status of the 

various computer subsystem units. The memory, central processor, 

and input/output will be exercised to detect any deviation from the nominal 

ope rating state. 

6. SUBSYSTEM RECONFIGURATION AND FAIL-SAFE CONSIDERATIONS 

The computer subsystem will consist of an operating computer and 

Each computer will have its own memory an identical backup computer. 

unit, input/output unit, central processing unit, and power regulator. 

The computer subsystem will also include a central timing unit and a 

monitor and control unit (MCU). 

During the maneuver operation, the two computers will be turned 

on at the same time and will execute the same program simultaneously. 

Furthermore,  they will operate in synchronism word for  word and bit 

for bit. The results from the arithmetic units of the two computers a r e  
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compared serially between the two computers. Also, the discrete 

command addresses and the ser ia l  output f rom both computers a r e  

compared before an output is sent. 

t 

If the computers have passed the comparison test, the discrete 

address and the ser ia l  output a r e  transferred to the command decoder. 

If the comparison test  has failed, the output will be temporarily withheld 

and the computers will  be notified to initiate diagnostic testing. 

results of the testing from both computers a r e  transferred to  the monitor 

and control unit (MCU) and a r e  compared with the correct known result 

generated by a shift register in the MCU (Figure N-6). Majority voting 

determines which one of the three units has failed. 

assume that only one of the three units wil l  fail at a time. 

two computers has failed, the MCU will set a discrete which can be 

sampled by the surviving computer. At the same time, the computers 

calculate the time to insure that the discrete will be received within a 
nominal period. 

keep the correct time. Upon sampling of the discrete, the surviving 

computer will send an acknowledge signal to the MCU. This acknowledge 

signal will initiate a reconfiguration sequence which will isolate the 

failed computer. 

real-time engineering data to the ground. 

with approval o r  with overriding reconfiguration commands. 

The 

It is reasonable to  

If one of the 

One must assume that only the surviving computer can 

The switching signal will be transmitted a s  a part  of 

The ground will acknowledge 

COMPUTER 1 H 
MONITOR AND CONTROL LOGIC 

COMPARATOR 

MODE CONTROL LOGIC F 

COMPUTER 2 n 
L 

- Figure N-6. The Monitor and 
Control Un i t  
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Since the computer that has failed the comparison test may not be 

able to successfully complete the diagnostic program, the MCU will keep 

track of the time required by the computer to complete the diagnostic 

program. 
within the set time, the MCU will assurne that it has failed and should be 

switched out of the system. 

the correct decision, the computers can communicate directly via their 

1/0 units. This direct l ink provides additional testing of each computer 

by the other computer. 

If a computer fails to send the results of the diagnostic program 

To further insure that the MCU is making 

So far, the possibility of a failure in the MCU has not been con- 

sidered, 

limited number of integrated circuits. 

nonredundant MCU is quite high. 

the reliability of this unit by introducing redundancy such as triple-modular- 

redundancy (TMR) or quadded redundancy. 

approach is that the fault correction is inherent and instantaneous and no 

switching is required. 

that of quadded logic. 

The MCU is a relatively simple device implemented with a 

Therefore, the reliability of a 

A preventative measure is to increase 

The advantage of the TMR 

The cost of TMR implementation is also lower than 

However, the power consumption and the weight of 

TMR, though very small, a r e  more than triple those of the nonredundant 

unit. 

When the MCU has failed, a corrective action can also be taken. 

Under the assumption that only one of the three units can fail at  a time, 

it is assumed that two computers a r e  working. 

communicate successfully via the intercomputer link to verify that both 

a re  in good condition. 

initiate a reconfiguration sequence to switch the MCU out and then inform 

the ground, or to inform ground first and let the ground initiate a re-  

configuration sequence. 

Therefore, they can 

The operating computers can either together 

If the MCU failed after successfully detecting a comparison failure, 

the ground can be used as a backup for the MCU. It is done by setting a 

flag which will be transmitted to the ground a t  the beginning of the diag- 

nostic program as a real-time engineering data. The ground will count 

the time and compare with the known successful completion time. If the 
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MCU has failed during this period and cannot set a flag in a nominal time 

to signal a successful completion, then the ground can assume that the 

MCU has failed. 

From a power consumption point of view, it is desirable in some 

phases of the space flight to  turn off the power to one computer and to 

operate in the sequential mode. 

until it has failed. 

MCU will remain operating until a failure has been detected. 

normal conditions, the operating computer will periodically exercise and 

test  the MCU by sending the diagnostic program result to MCU for testing. 

The MCU will acknowledge successful comparison within a set  time, o r  

indicate a diagnostic e r ror .  Lf the MCU fails to respond in this period, 

it is assumed that the MCU has failed. 

The pr imary computer will remain on 

The Then the second computer will be switched in. 

Under 

There a r e  several possible failure modes. If the MCU has not 

initiated any erroneous switching action, the pr imary input/output unit 

is working and the second computer remains off. 

can inform the ground to take necessary action. 

neously initiated some switching such that both the pr imary 1/0 unit and 

the second computer a re  on o r  off at the same time, o r  the pr imary I/O 

unit is off and the second computer is on, the ground can detect this 
abnormal condition by examining the engineering data and/ or interrogating 

both computers. 

The pr imary computer 

Lf the MCU has e r ro -  

The operating computer will also periodically execute the confidence 

test  and the diagnostic tes t  and compare the result with the known result. 

At  initiation, the computer will inform the MCU that testing has begun. 

It will also report to the MCU at the end of a successful test. 

computer fails to initiate the tes t  on time or fails to report the completion 
of the test  within a set time limit, the MCU will se t  a flag which wi l l  be 

transmitted to the ground a s  a real-time engineering data. 

can request a memory dump for further diagnosis, 

L.f the 

The ground 

In order to avoid erroneous output f rom a failed computer, the MCU, 

upon successful detection of a pr imary computer failure, will turn off 

the pr imary input/output unit. Also, in order to avoid the time delay due 

to propagation time between the spacecraft and the ground, the MCU will 
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turn on the power for the second computer. 

two units- will be transmitted to the ground as real-time engineering data. 

The ground can either approve o r  override this decision. 

assumption that the probability of simultaneous failures of the pr imary 

computer and the MCU is negligibly small, the MCU will successfully 

turn off the pr imary computer and turn on the second computer. 

the other three possible cases occur, that is, should both units be on, o r  
both off, o r  the pr imary  input/output on and the second computer off, the 

ground will be able to detect this inconsistency from the engineering data, 

and can initiate appropriate corrective action such as switching both the 

pr imary computer and the MCU off and starting up the second computer. 

The change of status of these 

Under the 

Should 

It is to be noted that cross-strapping of the input/output units to 

the two central processing units has been considered. 

ability analysis is given in the next section. 

remain the same with cross-  strapping. 

unit simply means the one which is operating with the pr imary central 

processing unit. 

A detailed reli-  

The foregoing considerations 

The te rm primary inputloutput 

7. RELIABILITY ANALYSIS 

The reliability estimate for the computer subsystem is based on the 

following assumptions: 

0 Mission duration is 6800 hours 

0 Time to failure i s  exponentially distributed 

0 Failure rate of nonoperating equipment is zero 

0 Parallel  equipment is operating a t  all times 

0 Reliability of the relatively simple cross-  strapping 
circuitry is high as compared with various functional 
units, and is assumed perfect in this study. 

Table N-4 lists the components, the failure rates and the computer 

reliability for the 6800-hour mission. 

Since no f i rm reliability requirement has been established for the 

computer subsystem, several subsystem configurations have been con- 

sidered to  give a reliability range of 0. 943 to 0. 980. 

system configurations and the corresponding reliabilities a r e  summarized 

The various sub- 
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Table N -4. Individual Component Reliabilities 

Fai lure  Rate  (h) Of Probabi l i ty  of 
Component Name 109) Success (R) F a i l u r e  Q = 1-R 

6800-hr Mission 

630 0.99572 0.00428 

Input/Output Unit 13,320 0.90942 0.09058 

Central  Timing 
unit 

Input Decoder  2,430 
Output Decoder  9,210 
Telemet ry  1,680 

0.08645 2048 Word Memory 12,875 0.91355 

0.93360 0.06640 Centra l  P r o c e s s i n g  llo 

Monitor and Control  450 0.99694 0.00306 

Unit 

Unit 

in Table N-5. 
Figures N-7 through N-15. As expected, the subsystem reliability in- 

creases  a s  more redundancy and cross-strapping is added. This does 

not mean that the optimum configuration is the one with the highest re-  

liability. Tradeoff analyses between reliability, cost, weight, power, 

and other parameters must be effected before an optimum configuration 

Detailed analyses for these configurations a r e  given in 

can be selected. 

Table N-5. Reliability Estimates for Various 
Computer Subsystem Configurations 

Configuration Calculated Reliability 

A. S e r i a l  System 0. 772 

B. Redundant Computers  

C. Redundant Computers ,  
C r o s s  - s t rapped  Memor ie s  

D. Redundant Computers ,  
Majori ty  Voting Clocks 

E. Redundant Computers ,  Cross-s t rapped  
Memories ,  Majori ty  Voting Clocks 

F. Redundant Computer st  C r o s  s - s t rapped  
Memory and 110, Majori ty  Voting Clocks 

G. Redundant Computers ,  Majori ty  
Voting Clocks and Compara tors  

H. Redundant Computers ,  C r o s s -  s t rapped 
Memories ,  Majori ty  Voting Clocks 
and Compara tors  

I. Redundant Computer 8 ,  C r o s s  - s t rapped  
Memor ie s  and 110, Majori ty  Voting 
Clocks and Compara tors  

On-line 0. 943 
Standby 0.963 

0.963 

0.947 

0.967 

0.977 

0.950 

0.970 

0.980 
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TR WSYSTEMS 

BASELINE CONFIGURATION-NO REDUNDANCY 

R, = R1 R2$R4 = 0.77232 

REDUNDANT COMPUTERS 

m 
I- 

Rl(ACTlVE) = R1 [%%R4(2 - %$Rq)] R5 = 0.94270 

RhSTANDBY) = R1 [R&R4 (1 + AT7)] = 0.96298 

Figure N-7. Serial  Configuration 

Figure N-8. Redundant Computers - 
Single Computer Consists 
of Arithmetic, I / O  and 
Memory Units 

A T  = 36,305 x T =  6800 

*COMPARATOR NOT REQUIRED IN STANDBY MODE. 

REDUNDANT COMPUTERS AND CROSS-STRAPPED MEMORIES 

Figure N-9. Redundant Computers and 
C r os s - Strapped Memo r ie s 

R, = R 1 - (Q ) R 2 - %R4 R5=0.96280 [ 1 321[%4( 11 

REDUNDANT COMPUTERS-MAJORITY VOTING CLOCKS 

Figure N- 10. Redundant Computers - 
Majority Voting Clocks 

R, = [R: + 3R:( - RI)I[R2%R4 (2 - R2%R4)]R5 = 0.94670 

REDUNDANT COMPUTERS, CROSS-STRAPPED 
MEMORIES, MAJORITY VOTING CLOCKS 

Figure N- 11. Redundant Computers, 
Cross- Strapped 
Memories, Majority 
Voting Clocks 

R, = [R: C 3R:(1 - R,)] [ 1 - (Q:)](%R4 [Z - %R4] )R, = 0.96688 
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REDUNDANT COMPUTERS, CROSS-STRAPPED MEMORIES 
AND VO, W O R l l Y  VOTING CLOCKS 

REDUNDANT COMPUTERS, MAJORITY 
VOTING CLOCKS AND COMPARATORS 

R, =[R; +3Rf(1 - R1)] R2R3R4{2 - R2R3R4 [ R: +3R; ( I  - R5)] = 0.94958 

REDUNDANT COMPUTERS, MAJORITY VOTING FOR CLOCK 
AND COMPARATOR, CROSS SWITCHED MEMORIES 

Figure N- 12, Redundant Cross-Strapped 
Computers, Majority 
Voting Clocks 

Figure N- 13. 

Figure N- 14. 

REDUNDANT COMPUTERS, MAJORITY VOTING FOR CLOCK 

AND COMPARATOR, CROSS SWITCHED MEMORY AND 1/0 

Redundant Computers, 
Majority Voting Clocks 
and Comparitors 

Redundant Computers, 
Cross- Strapped Memories, 
Majority Voting Clocks 
and Comparitor s 

Figure N- 15. Redundant, Cross-Strapped Computers, Majority 
Voting Clocks and Comparitor s 
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8. FUTURE APPLICATIONS 

This section of the study enumerates some potential functions which 

meri t  additional investigation for  future digital computer implementation. 

8. 1 Digital Control System 

The present control system is basically an analog system. 

integrated digital computer control system would close some additional 

control loops to provide for more precise control. 

dundant sensors can also be incorporated in the integrated digital control 

system. 

An 

Optimal use of re -  

8.2 Navigation 

Kalman filtering techniques could be used for smoothing and pre- 

dicting sampled data for solution of the guidance and navigation problems. 

Backup mode of navigation based upon valid information prior to  data 

dropout could be incorporated into the computer until restoration of valid 

input data or command from the ground. 

8.3 Data Compression 

The amount of raw data from the science experiments will pose a 

tremendous requirement on the data storage, telemetry and communica- 

tion systems. 
by use of a digital computer meri t  additional investigation. 

Various techniques for redundancy removal in the raw data 

8.4 On-Board Diagnosis and Switching 

A digital computer can provide fo r  status checking, diagnosis and 

switching of other subsystems. 

be handled by a computer decision. 

ground with the information for  a decision, 

still be able to override the on-board digital computer. 

The selection of an alternative path could 

The computer can also provide the 

Ground commands would 

Of course, these additional tasks require additional data processing 

capability. 

these functions a r e  to be implemented. 

of reliability and confidence in the digital computer. 

A new computer design may be required if portions or all of 

It also necessitates a high degree 
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APPENDIX P 

SCIENCE DATA AUTOMATION EQUIPMENT VERSUS 
INTEGRATED COMPUTER AND SEQUENCER UNIT 

The data automation sequencer (DAE), as a separate unit, was 

conceived as a means of providing control flexibility to a variety of 

scientific instruments which would be assigned to the spacecraft on a 

mission basis. 

timer) and increasing the command output capability (256 to 512) of the 

computer and sequencer unit proposed in  Voyager Task B of Phase l A ,  

sufficient command functions for  scientific instrument control could be 

provided while maintaining the desired flexibility. Further,  since many 

operations performed within the DAE sequencer duplicated those per-  

formed within the computer and sequencer, significant savings in  hard- 

ware a r e  realized by combining the functions into a single unit. 

A tradeoff study revealed that by adding a timer (Science 

In the recommended computer and sequencer unit, a block of 

stored program commands is provided for the science experiments. The 

sequence of execution of the commands is controlled by the science t imer  

a s  well as the orbit and maneuver timers. 

individual commands a r e  defined by the instruments to which they a re  

connected and the required timing of execution of the commands is 

accompli shed by programming . 

Functions performed by 

A section of the computer and sequencer command decode matr ix  

which produces commands for experiments is remotely located in the 

planetary scan platform. 

it were an integral par t  of the computer and sequencer. 

enables a fixed interface between the computer and sequencer and the 

planetary scan platform consisting of relatively few signals, while 

experiment control signals need only be patched into the RDU output. 

The remote decode unit (RDU) operates as  i f  

This technique 

F rom a hardware standpoint, by combining the DAE sequencer 

functions into the computer and sequencer, there is a net reduction of 

approximately 3 0  percent of the components under what would be 
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required if the units were implemented separately. In terms of effect 

on system reliability, a serial DAE would cause a reliability decrease 

of 0 .08  as compared with the single unit. 

capability in the computer and sequencer as  described is  recommended. 

Hence, the combined functional 
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APPENDIX Q 

BATTERY TRADEOFFS 

A study to determine the optimum battery to accomplish the mission 

w a s  undertaken, based on a representative se t  of requirements for  a 

Voyager-Mars mission consisting of an eight-month transit  phase and a 

six-month orbiting phase. 

charges with a maximum discharge requiring 1252 watt-hours. 

ing phase may consist of up to 300 charge/discharge cycles with a maxi- 

mum discharge requirement of 1205 watt-hours if the eclipse season does 

not exceed 120 cycles. 

mum of 11.2 hours for battery charging. 

Transit phase consists of up to s i x  battery dis- 
The orbit- 

The orbit period is 13.5 hours, providing a mini- 

The battery types considered are presently developed for space 

applications. These are silver-zinc, silver-cadmium, and nickel- 

cadmium. 

properties, life, energy density, and reliability. Various battery confi- 

gurations were compared and calculations performed for battery cell 

sizing and battery system reliability. 

These three types were compared with respect to magnetic 

1. ENERGY DENSITY 

An initial comparison of the three battery types w a s  made on the 

basis of energy density. 

for the three types are listed in Table Q-1. 
Partially achieved battery energy density values 

Table Q-1. Energy Densities of Three Types 
of Batteries 

Silver - zinc 

Silver-cadmium 

Nickel-cadmium 

30 to 50 w a t t  hours/pound 

20 to 30 w a t t  hours/pound 

12 to 16 wa t t  hours/pound 

These values include battery cell weight and an estimated packaging 

factor. 

100-percent depth of discharge. 

They represent the energy obtainable f rom full charge and 



2. USEFUL BATTERY LIFE 

The 14-month Voyager-Mars mission requires approximately 

65-percent charged- stand time and 35 percent charge/discharge cycling. 

Because of wearout characterist ics of battery cell  components, each 

type of battery has an inherent useful life limit. This limit wi l l  vary 

depending on the type of application and the relative amounts of cycling 

and charged stand. 

a r e  shown in Table Q-2. 

Estimated useful life limits for the Voyager mission 

Table 4 - 2 .  Useful Life Limits for Three Types of Batteries 

Silver-zinc 15 months 

Silve r - cadmium 18 months 

Nic ke 1 - cadmium Greater than 36 months 

3. CYCLE LIFE 

Within the limits of useful battery life, the number of charge/ 

discharge cycles of a given energy output that may be obtained is a 
function of the depth of discharge of the battery, i. e., the discharge 

energy as a percentage of nominal battery capacity. 

none of the three battery types is operated at 100-percent depth of dis- 

charge in applications requiring repeated cycling. 

discharge cycling causes degrading effects on capacity to different degrees 

on each of the three types. 

and silver-cadmium battery types causes loosening and migration of the 

active materials in the battery cells, resulting in reduced cycle life. 

Cycling of a nickel-cadmium battery gradually a l te rs  the structure of the 

battery cell electrodes, resulting in a reduction of available discharge 

energy. Table Q-3 shows the approximate number of cycles obtainable 

f rom each type of battery for several  values of depth of discharge. 

For  this reason, 

Repeated charge/ 

In general, deep cycling of the silver-zinc 

The values in the table represent the number of cycles to reach a 

prescribed under-voltage limit. 

lower than those usually found in the l i terature because they reflect opera- 

tion of a complete battery as opposed to a single cell o r  a cell  pack. F o r  

the silver-zinc and silver-cadmium batteries, the degradation in perfor- 

mance due to cycling i s  not recoverable. For  nickel-cadmium batteries, 

The cycle numbers shown are somewhat 



Depth 
Dis charge 

10 
20 
25 
33 

40 

50 
60 

Table Q-3. Number of Charge/Discharge Cycles 
Obtainable at Selected Depths of Discharge 

Nickel- Silver - Silver - 
zinc Cadmium Cadmium 

2000 10,000 
1000 5000 10,000 
500 2000 5,000 
200 1000 2,000 

500 1,000 

500 
200 

the degradation represents a loss in capacity which is largely recover- 

able by the process of battery "reconditioning. II Reconditioning is per-  

formed by subjecting the battery to a low-rate discharge through a fixed 
load to a selected voltage value and then recharging. This will return 

available battery capacity to its initial value. Reconditioning has been 

employed on earth satellite programs and will be used on the Voyager 

n icke 1 -cadmium b atte r y . 
To satisfy the cycling requirements of the basic 14-monthI 300-cycle 

Voyager mission, the recommended depth of discharge values given in 

Table Q-4 have been selected from Table Q-3. 

Table Q-4. Recommended Depth of Discharge for Each 
Battery Type 

Silver - zinc 25 percent 
Silver -cadmium 40 percent 

Nickel - cadmium 50 percent 

When the energy density values a r e  modified by the depths of dis- 

charge shown in  Table Q-4, the resultant battery weights may then be 

compared for relative merit.  
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To support upgraded Voyager missions of up to 30 months, the 

useful life limit rules out silver-zinc and silver-cadmium batteries. 

nickel-cadmium battery could be used at a 50-percent depth of discharge 

o r  deeper if the number of continuous cycles is low and if reco 

were provided. 

reduced to 4 0  percent to provide 900 cycles of charge and discharge 

associated with a longer mission. 

4. BATTERY WEIGHT COMPARISON 

A 

Without reconditioning, the depth of discharge should be 

To compare estimated battery weights for each type of battery, 

Table Q-5 was generated. It covers the ranges of energy density and 

depths of discharge used for the three battery types and may be used to 

select specific examples of battery weights. 

using a maximum energy requirement of 1205-watt hours, i. e., 524 watts 

for 2.3 hours during maximum eclipse. 

by use of the following formula: 

Calculations were made 

Weight values were calculated 

1205 
(depth of discharge) (energy density) - W =  

Table Q-5. Battery Weight for Selected Values of 
Energy Density and Depth of Discharge 

Depth of 
Dis charge 
(Percent) 

Watt-Hours /Pound of Packaged Battery 

12 14 16 20 25 30 40 50 

70 147 126 111 - -  - -  - -  -- - -  

50 207 177 155 124 99 83 
40 258 221 194 155 124 103 78 62 

-- - -  -- - -  60 172 148 129 - - -  

33-113 310 267 233 186 149 124 93 74 
25 413 354 310 248 198 165 124 99 

- -  - -  

-NiCd 

.c-------c AgCd ___)I - AgZn - 
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Using the selected depth of discharge values shown in  Table Q-4, 

and mid-values f o r  each energy-density range, the comparative battery 
weights given in Table Q-6 are obtained. 

Table Q-6. Comparative Battery Weights 

Depth of 
Disc ha rg e Energy Density 
(Pe rc  ent) (w- h/lb) 

Silver - zinc 25 40 

Silver - 40 
Cadmium 

Nickel - 60 
Cadmium 50 

40 

25 

14 
14 
14 

5. MAGNETIC CHARACTERISTICS O F  ALKALINE 

Battery Weight (lb) 

124 

124 

148 
177 
221 

BATTERIES 

Nickel-cadmium batteries consisting of 22 12AH cells and weighing 

32 pounds have an inherent, nonoperating magnetic field of the order of 

1 to 2K gamma. Proposed Voyager batteries, approximately 50 pounds 

each, may have fields one and one-half this value. 

(during charge and discharge) can be adjusted over wide limits by the 

method of routing of the wiring between cells, f rom cells to battery con- 

nector, and external to the battery. Essentially complete cancellation 

of induced fields may be approached in this manner. 

Operating fields 

The nonoperating fields f rom silver-cadmium and silver-zinc 

batteries that have been fabricated from nonmagnetic materials are very 

low. With no attempt to wire these batteries f o y  compensation, magnetic 

fields during charge and discharge can be of the same order of magnitude 

a s  for nickel-cadmium batteries (e. g., 1000 gamma at five amperes). 

With compensating wiring, reduction in field by a factor of 10 is feasible. 
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6 .  BATTERY SELECTION 

A nickel-cadmium battery system has been selected as the most 

suitable for  the Voyager-Mars mission. 

shown, it offers a growth potential in mission life and discharge capacity 

and the highest reliability. 

lost  capacity due to cycling is an added attractive feature leading to its 
selection. 

present, seem to represent a significant drawback. Should weight become 

a significant problem, a silver-cadmium battery with a reliability only 

slightly lower than the proposed nickel-cadmium battery, but without 

capability for mission life extension, could be developed for use on the 

Voyager spacecraft. 

Although the heaviest of those 

Its capability of being reconditioned to recover 

The slightly higher permanent magnetic field does not, a t  

The cycle life used for  the sizing calculations presented herein 

represents a combination of two worst cases-one is the longest eclipse 

and the other is the greatest number of successive cycles. 

analyses have indicated that 2.3-hour eclipses wil l  occur only in a short 

eclipse season where a maximum of 120 successive cycles between r e -  

conditionings would appear. 

excess of 60 percent is completely within the battery capability. 

longer eclipse season (300 cycles) is contemplated, the maximum eclipse 

duration would be considerably below two hours. 

for the highest power requirements presently known, the discharge would 

not exceed 50 percent of the battery capacity. 

Further 

For  such a mission a depth of discharge in 

If the 

In such a case, even 

, 



APPENDIX R 

SOLAR ARRAY AND BATTERY 
CONTROL TRADEOFFS 

In selecting methods for solar a r ray  and battery control, the basic 

criteria were to  achieve high reliability and to make maximum utiliza- 

tion of available power. The general approach towards arriving at the 

optimum system configuration was to  make maximum utilization of the 

available power from the power sources - solar a r r ay  and battery - 
without compromising reliability. 

primary weight contributors, minimizing the power -source requirements 

will  generally provide the minimum weight and volume design of the 

power subsystem. 

of figures available in  the early par t  of the study. 

1- CANDIDATE SYSTEMS 

Since the power sources a r e  the 

The power requirements used in the tradeoffs consist 

Bdsed on the analysis of the power conditioning equipment, load 

power requirements, solar array,  battery and controls, four baseline 

configurations were established (Figures R-1  through R-4) for  tradeoff 

comparisons. 

The scheme shown in Figure R-1 uses  a shunt limited t o  maintain 

the main bus at 50 VDC during sunlight. 

tains the bus a t  50 VDC during battery discharge. 

A battery boost regulator main- 

The maximum power tracker of Figure R-2 draws the maximum 

amount of power available f rom the solar array.  

varies with the discharge and charge voltage characteristics of the 

battery. 

The main bus voltage 

The buck-boost regulator approach of Figure R-3 is very similar 

to the maximum power tracking approach except that the solar a r r a y  

operating point is not controlled to the maximum power point of the array.  

The design of Figure R-4 brings in a boost regulator whenever the 

solar a r r ay  voltage is less  than the battery and shunts the a r r a y  voltage 

at the end- of - lif e conditions. 
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- 50VDCBUS 
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MAXIMUM - 37 -50VDC BUS - 
POWER I 

TRACKER 

CHARGE CONDITIONING 
EQUIPMENT 

LIMITER 

Figure R-1. Shunt Limiter Approach 

ARRAY 0 BATTERY c f l  
I POWER 

CONDITIONING I EQUIPMENT 

I 1 r 

Figure R-2. Maximum Power Tracker Approach 

BUCK-BOOST - 37-5OVDC BUS - 
1 

i 
BATTERY 

~ 

I I 1 

Figure R-3. Buck- Boost Regulator Approach 
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BOOST 
REGULATOR 

L c: BATTERY 

37 - 50 VDC BUS - - i 

POWER 
CONDITIONING 

EQUIPMENT 

Figure R-4. Boost-Shunt Regulator Approach 

2. POWER UTILIZATION COMPARISON 

Main bus power and solar a r r ay  power requirements a r e  tabulated 

in  Tables R - 1  through R-4 for Mars orbital operation and Mars encounter 

for  the candidate power subsystem. 

are a s  follows: 

The assumptions used in the study 

1) Power requirements obtained from Table R - 1  

2) The load requirements have been increased (t3 percent) for  
the unregulated bus configurations due to the additional losses 
to be incurred in the power conditioning equipment compared 
to the regulated bus approach. 

Battery charging power based on battery temperatures of 
90°F, parallel charging, nickel-cadmium battery 

Regulator efficiency data obtained from Third Quarterly 
Progress  Report, PSCR, Report No. E-7441.2-005. 

3) 

4) 
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Table R - 1, 

Load power* 

Battery energy 
(watt-hours ) 

Battery charging** 
power 

Main bus power 

Shunt limite r lo s s e s 

Solar a r r a y  require- 
ments at maximum 
power point*$<* 

\\ 'I\ 

Shunt Limiter Power Requirements (in wat ts)  

Orbital Operation Mars Encounter 

Eclipse Sunlight Insertion Ope ration 
Orbit P V  Orbit 

521 485 608 660 

1258 1275 

249 136 

734 

0 

878 

796 
0 

952 

* Power conditioning efficiency: 85 percent ** Boost regulator efficiency: 95 percent *** Power utilization: 38.6 percent 

Table R - 2 .  Maximum Power Tracker Power 
Requirements (in wat ts)  

Orbital Operation Mars Encounter 

Eclipse Sunlight Ins e r tion Ope ration 
rbit 

Load power* 537 500 626 680 

Battery energy 
(watt-hours ) 

1235 1252 

Battery charging 
power 

Main bus power 

Maximum power 
tracker losses 
(N = 0.88) 

Solar a r ray  require- 
ments at maximum 
power point 

215 110 

715 

86 
792 

95 

80 1 887 

*Power conditioning efficiency: 82 percent 
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Table R - 3 .  Buck Boost Power Requirements (in wat ts)  

Orbital Operation Mars Encounter 
Orbit P V  Orbital 

Eclipse Sunlight Insertion Operation 

Load power* 5 3  500 626 680 

Battery energy 1235 
(watt-hours) 

Battery charging 
power 

1252 

215 110 

Main bus power 715 790 

Buck boost regulator 
looses (N = 0.87) 

Solar a r r ay  require- 
ments at maximum 
power point 

93 

808 

103 

893 

*Power conditioning efficiency: 82 percent 

Table R -4. Boost-shunt Power Requirements (in watts) 

Load power* 

Battery energy 
(watt-hours) 

Battery charging 
power 

Main bus power 

Boost regula tor 
10s ses  

Shunt limiter losses 

Solar a r r ay  maximum 
power requirements** 

Orbital Operation Mars Encounter 

Eclipse Sunlight Insertion Operation 
Orbit P V  Orbital 

537 500 62 6 680 
1235 1252 

215 110 

715 790 
0 

0 0 

74 1 830 

* Power conditioning efficiency: 82 percent 
**Power utilization: 0.95 percent 
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Table R-5 summarizes the battery and solar  a r r ay  power require- 

ments for the four candidate systems. 

Table R-5. 

Candidate System 

Shunt l imiter 

Maximum power tracker 

Buck-boost 

Boost- shunt 

Summary of Power Requirements 

Solar Array Power 
Battery Energy (watt-hours) at 1.62 AU Mars 
Mars  Orbital Operation Encounter (watts)  

1258 

1235 

1235 

1235 

952 
887 

893 
83 0 

Comparing the four approaches, the boost-shunt approach is 

superior f rom the standpoint of both minimizing battery energy and solar 

a r r ay  power. 

3. WEIGHT COMPARISON 

Weight comparisons have been made for the candidate systems as 

tabulated i n  Table R-6. The 'following assumptions were made: 

Weight data based on Third Quarterly Report, PSCR, 
Report No. 137441.2-005 

Separate charge and discharge regulators for  each of 
the three batteries 

Dc/Dc converter weight based on eight individual con- 
ver ters ,  one for each major power user  subsystem 

Specific weight of solar array: 3.58 watts/pound at 
1.67 A U  

Specific energy of battery: 14 watt-hours/pound 

Weight differences a r e  depicted in this tradeoff. 
40 0 -Hz inverter, synchronizer supply, telemetry, 
functions (or weights) would be common to all candidate 
systems, as such, were not included. 

The 

Dc/Dc converters for the unregulated bus systems 
(37 to 50 VDC) a re  the regulated type. 

Electronic circuits a r e  nonredundant. 
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Table R -6. Weight Comparison - Nonredundant Electronics 

Item 
Shunt Maximum 
Limiter Power Tracker Buck- Boost Boost- Shunt 

Array Control 8 19 27 10 

Battery charge 10.5 3.6 
control 

Battery boost 8.1 0 
regulator 

3.6 3.6 

0 0 

DC/DC converter 13.6 24 24 24 

TOTAL 40.2 46.6 54.6 37.6 

Conversion t2 .6  t9 .0  t17.0 0 
equipment * 
weight difference * 
Battery energy 
(watt-hours) 

Battery weight t1 .4  
difference* 

Solar a r r a y  
power (watts) 

Solar a r r ay  t29.4 
weight difference* 

TOTAL t33.4 

1258 1235 1235 1235 

0 

952 .887 

4-11.2 

t20.2 

0 0 

893 

t12.6 

t29 .6  

83 0 

0 - 
0 

*Lowest weight system gest a zero (0) value. 
All unspecified units a r e  in pounds. 

Table R-7 is a similar weight comparison but based upon a subsystem 

utilizing fully redundant electronics. 

4. RECOMMENDED SYSTEM 

The shunt-boost system is recommended because it uses the least 

battery energy and solar a r r a y  power and also has  the least  weight. 
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Table R -7. Weight Comparison - Redundant Electronics 

Shunt Maximum 
Item Limiter Power Tracker Buck-boost Boost-Shunt 

Array control 12  

Battery charge 19.5 
control 

Battery boost 15.6 
regula tor 

DCIDC converter 25.4 

TOTAL 72.5 

Conversion t1 .5  
equipment 
weight 
diff e re rice:: 

(watt-hours) 

Battery weight t1 .4  
diff e r ence* 

Battery energy 994 

Solar a r r ay  
power 

Solar a r r ay  t29.4 
weight 
diff e r e  nc e $6 

TOTAL t32.3 

935 

38 

6 

0 

48 

92 

t 2 1  

0 

t 1 1 . 2  

t32.2 

975 

865 

"Lowest weight system gets a zero (0) value. 
All unspecified units in pounds. 

50 

6 

0 

48 

104 

t33  

- 

0 

17 

5 

0 

48 

71 

0 

975 975 

0 

872 79 2 

0 - t12.6 

t45.6 0 
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APPENDIX S 

AC -VERSUS-DC DISTRIBUTION 

A tradeoff study was made to determine the most effective means 

of distributing electric power within the recommended Voyager space- 

craft. The competing systems analyzed a r e  shown in Table s-1. 

Table S-1. Weight Comparison 

Subsystem Configuration 

Regulated AC square wave inverter 
with individual subsystem trans - 
former-rectifier units 

Regulated AC sinewave inverter 
with individual subsystem trans - 
f ormer -rectifier units 

Centralized converter supplying 
all subsystems with standardized 
voltages 

Unregulated DC main bus with 
individual sybsystem DC to DC 
converters 

Weight:"( lb) 

16.2 

15.2 

11.9 

13.4 

Efficiency 

78. 5 

75.5 

79.6 

80.0 

4. 

-"Excluding cable harness weights. 

As can be seen, no one system has a distinct advantage over the 

others. Thus flexibility, reliability, cable weight, EMC, and fault 

isolation become overriding considerations in the selection of the pre- 

ferred approach. 

ference fi l ters and cable shielding using a DC system opposed to square- 

wave AC was calculated to be 6. 9 pounds. In addition, our experience 

shows that use of the DC distribution configuration will result in much 

less  intrachassis interference than would the use of the square wave AC 

configuration. 

From an EMC standpoint, the weight savings for inter-  

+* 

For  the above reasons, the recommended power distribution system 

is an unregulated DC main bus with individual subsystem DC-DC converters. 
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APPENDIX T 

WIRING INTEGRATION DESIGN ENGINEERING 

The interconnection of spacecraft systems at  TRW has been made 
easier,  more exacting, and less costly by use of machine and computer 

handled wiring data. This concept has been termed wiring integration 

design engineering (WIDE). In using this concept, every wire and end 
connector comprising the cabling will be listed on a standard TRW form. 

This form, when filled out, documents wire type, input and output pin 

assignments, signal description, signal parameters,  and identification of 

the signal within a given subsystem. 

handling equipment, with subsequent procedures being performed semi- 

automatically. 

This form can be handled by data 

A few of the major advantages of this approach are:  

Accurate and rapid handling of the many individual small  
bits of data and information which go together to define 
electric a1 distribution hardwar e interface s . 
Automatic e r r o r  detection. 
because the machine can detect e r ro r s .  

E r r o r s  a r e  minimized 

Minimizing of schematics and typed wire lists. 

Speed. 
rapidly. 
by a keypunch operator fas ter  than by a draftsman. 

All functions a r e  initiated and completed more  
Tkie initial t ransferral  onto cards  can be done 

Ease of incorporating changes and maintaining document 
control. 

Providing a standard language for all internal inter-  
facing subsystems and subcontractors. 

In practice, WIDE uses a single, 80-column data handling card  to 

define the interface between two connected points in a system (point-to- 

point wiring). Standardized codes, abbreviations, and l i terals a r e  em- 

ployed in a given format to describe where a wire comes from, where it 

goes, i ts  type and size, and the type, characterist ics,  and designation of 

the signal on the wire. 

Thus, the basis for the WIDE system is that a single card, or  tape 

data word frame, represents a connection o r  potential connection for one 

end of a wire, such as a connector pin or terminal. If this connection is 
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not. to be used, it will  then be stated on the single card which wil l  remain 

in the system. However, if  the terminal is to be connected, the card 
represents one end of a wire, which is defined as a single, continuous, and 

unbroken length of an electrical  conductor having two, and only two, ends. 

The card format specifies this end in the "from" columns and the other 

end in the "to" columns. Since every termination, potential o r  otherwise, 

is specified in the "from" columns, and since all wires have two and only 

two ends, the completed data package will contain two cards for  every 

wire, one a mi r ro r  image of the other, called a "matched pair. This 

is the basis for several  important aspects of WIDE, particularly e r r o r  

checking. 

1. IMPLEMENTATION 

The general flow diagram for the sequence of WIDE operations is 

shown in Figure T-1. As a wire is defined and the ends a r e  verified as 

being correct,  an identifying number is assigned, the best description is 

chosen, and a pair of cards ,  each the exact mi r ro r  image of the other, is 

produced and collated into the master  tape or card  deck. 

then becomes continuing-each "wirell is verified, description is stan- 

dardized, code number is assigned, and then collated into the master in 

the proper sequence while automatically removing the old card  o r  frame. 

This process continues until all cards  either show %o connection" o r  have 

a code number assigned and constitute a matched pair. 

The process 

The process is  verified by producing two tab runs from the same 

tape o r  card deck. 

pin by sequence in every connector, or  every terminal by sequence on 

every terminal board, and will have either "no connection" o r  a valid 

code numbered wire. The second, o r  matched pair  listing uses the 

same data, sorted by the wire code number, which will then list sequen- 

tially two mi r ro r  image cards  for every wire, with the 'In0 connection" 

cards  following at the end. 

The f i r s t ,  o r  pin sequence tab run will  l i s t  every 

At any given time in the development, the above two listings can 

easily be made from the master tape o r  deck and all dxceptions spotted 

easily, thereby defining the work a rea  remaining to the electrical 

distribution engineer. 
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WIDE FINAL INPUTS REVIEW BY UNIT 
LOAD CHANGES, 
SHEETS e CORRECTIONS ENGINEERS 

AND SUBSYSTEM DESIGN APPROVAL 

I I I 
WiRE LISTS 

CABLE DRAWING 

FACT DATA 

Figure T-1. WIDE Sequence Flow Diagram 

2. FACT PRINTOUT 

The flexible automatic circuit tester (FACT) is a preprogrammed 
The WIDE data card controlled means of automatically testing cabling. 

data card format has been developed to be compatible with FACT require- 

ments. The capability for an automatic, computer-controlled transition 

from a WIDE data deck to a FACT data deck has been incorporated. 

the WIDE and FACT card formats employ identical data in approximately 

50 percent of the data fields; each format contains data peculiar to itself 

in the remaining 50 percent of the data fields. 

Both 

A FACT deck can be obtained a s  a computer output by providing a 
WIDE pin-sequence card deck and a FACT computer program. 

data fields not required by FACT a r e  rejected, and by operating on the 

balance of the data, the cards required to control the FACT machine a r e  

directly produced. 

is shown in Figure T-2. 

The WIDE 

The flow diagram for the FACT sequence of operations 
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APPENDIX U 
PYROTECHNIC TRADEOFFS 

1. SOLID STATE VERSUS RELAY CIRCUITRY FOR PYROTECHNIC 
CONTROL 

A preliminary reliability evaluation of two alternate ordnance firing 

circuits was  performed. 

Figure U-1. 
Figure U-2. 
circuit 1 employs a momentary relay to fire the ordnance while circuit 2 
employs a silicon controlled rectifier to perform the function. 

The relay firing circuit is illustrated in  

The solid state ordnance firing circuit is illustrated in 

These two circuits are essentially identical except that 

A comparison of characteristics of the two circuits is presented in 

Table U-1. 

is 170 per billion hours and the actuation failure rate is 12 failures per  

billion actuations. 

rate of 450 failures per billion hours. 

Available data provides an estimate that the relay failure rate 

This can be compared to a Voyager predicted failure 

The existing orbital data on silicon controlled rectifiers is limited 

to 1.76 million hours with no failure, resulting in a calculated failure rate 

of 520 failures per billion hours at 60 percent confidence. 

The predominant failure modes of the relay a r e  coil open and shorts, 

premature relay closing due to vibration and failure to close due to foreign 

particles on the contacts. 

Redundant relays o r  firing circuits could protect against shorts, 

opens and failures to close. 

be a serious problem since circuit arming occurs during cruise phases 

of the mission, when vibration levels should be minimized. Momentary 

contact closure during times when the circuit is not armed wi l l  not result 

in premature ordnance firing. 

Premature closing due to vibration should not 

The predominant failure modes of the silicon controlled rectifier 

are open circuits, shorts, and premature firing due to coupling the DC 

arming voltage from anode to gate during arming of the circuit or pre- 

mature firing due to noise spikes at the gate after arming the circuit. 

Parallel redundancy would protect against silicon controlled rectifier 

opens, but would increase the probability of premature firing in the event 
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Figure U- 1. Typical Relay Ordnance Firing Circuit 

BUS 
POWER 

I 
TO 

ORDNANCE 
DEVICE 

I 
BACKUP 

COMMAND 
BLOCK DIAGRAM 

BUS FROM S/A 
I 

SCHEMATIC 

Figure U-2. Typical Solid-state Ordnance Firing Circuit 
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Table U-1. Solid State Versus Relay Firing Circui? 

Size 

Weight 

Pwr Standby 
Pwr Diss On 

Vibration Sensitivity 

EM 8r I Susceptibility 

TRW Experience 

Procurement 

Relative cost for 
R1 Parts 

Thermal 

Mounting Limita- 
tions 

Safety 

Other 

Solid State 
(SCR t Driver) Relay t Driver 

0.5  - 0.7 

0.5 
Negligible 

5 watts for 50 msec 

Low 

Requires careful c i r -  
cuit design 

Low 

SCR Transistor 

$40 SCR cost 

125OC operation 

No ne 

No provision for short- 
ing ordnance 

1.0 

1.0 
Negligible 

2 watts for 50 msec 

High 

Relay - Low 
Relay driver same 
as SCR circuit 

All past space 
programs 

Relay 36 weeks 
transistors 

$40 relay cost 

125OC operation 

Relays have sensitive 
axis 
Provides shorting and 
grounding of ordnance 
before actuation 

Can handle repeated 
high cur rent loads 

Contacts degrade with 
high cur rent loads 

',. 
This table presents a comparison of various characteristics associated 

with solid state and relay firing circuits for spacecraft ordnance. The 
relay circuit has a large documented history, high reliability and high 
safety. The SCR circuit is physically smaller, has much less  history 
and does not have the inherent source open circuit and squib shorting 
features available with a relay. 

of shortsI voltage coupling and noise spikes. 

redundancy may be to increase the probability of circuit malfunction and 

premature ordnance firing. 

indicates that the reliability of the magnetic latching relay is quite good. 

The momentary relay does not introduce additional failure modes and a 

well de signed momentary relay should exhibit reliabilities similar to 
latching relays. The silicon controlled rectifier is not proven in this 

The overall effect of 

Existing orbital data on other TRW programs 
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application and examination of possible failure modes leads one to the 

conclusion that most silicon controlled rectifier failures wi l l  cause pre  - 
mature ordnance firing. Hence, a silicon controlled rectifier design i s  

not preferred for this application and it is planned that relay circuitry 

will be utilized. 

2. ENERGY STORAGE DEVICES 

In the hot bridge wire firing system, the firing currents required 

a r e  lower than that required by an exploding bridge wire (typical 3.5 
amperes versus 1300). The battery for the recommended Voyager space- 

craft is able to provide a peak current capability of 100 amperes. There- 

fore,  for hot bridge wire explosive devices, capacitors will not be 

necessary to augment the battery capacity. Some transients will be 

induced upon the battery bus due to electro-explosive device actuation, 

but this problem will be alleviated in the design of the cabling and inputs 

to other units on the bus. 

The condition of an electro-explosive device shorting and imposing 

a permanent load on the battery bus is prevented by safe-arm device, 

firing circuit opening, and ser ies  resistor protection. 

3. INITIATOR TRADEOFFS 

A study was made comparing the total system characteristics of 

hot bridge wire and exploding bridge wire electropyrotechnic cartridges 

(or initiators). Table U-2 l ists  the various characteristics of the two 

systems. 

The hot bridge wire type requires a much simpler, smaller and 

This is primarily because exploding bridge wire lighter total system. 

devices require complex electrical power supplies matched to each type 

of exploding bridge wire , bulky coaxial cables for transmission of 

electrical firing signals, and mechanical adapters at each load device. 

No exploding bridge w i r e  systems have been used in TRW spacecraft 

programs, 

ver ter  required to develop high voltages, from the very bulky cable 

required to transmit the high current to the initiator, from the large high- 

voltage capacitors required to store the energy for the firing current and 

from the complex high-voltage switching devices required for controlling 

The electrical complexity results from the bulky DC/DC con- 

P 
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Table U-2. 

Typical Energy 

Reliability 

Lead lengths 

Interconnect Cable 

Initiating circuit 
requirements 

Explosive Charge 

Pr e s sur e buildup 

Normal use 

Normally used for 
gas pressure gen- 
eration 

Adaptable to gas 
pressure operated 
systems 

Complexity for 
planned Voyager 
application 

Flight qualified 
components avail- 
able 

Can be tested 

Characteristics of Electro- explosive Device 
Hot Wire Versus Exploding Bridge Wire*  

Typic a1 
Hot W i r e  

0.2 watt seconds 

PT1-11 has a demon- 
strated reliability of 
0.9997 

Not critical 

Twisted pair shielded 
required 

Simple switch closure 

Uses sensitive and non- 
s ens it ive charge 

Slow 

Gas pressure generation 

Y e s  

Yes 

Low 

Yes 

Yes 

Typical Exploding 
Bridge Wire 

1.69 watt seconds 

Insufficient data 

Requires matched 
transmission line 

Bulky coaxial cable 
required 

High voltage supply 
high voltage switch 
matched power 
supplies 

Generally nonsen- 
sitive charge 

Rapid 

Detonation 

No 

Requires additional 
adaptation hardware 

Large (high) 

No 

No 

.I. -8- 

This table presents a comparison of features associated with hot bridge 
wire and exploding bridge wire pyrotechnic devices. 
wire device requires a much more complex control system. 

The exploding bridge 
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B 

-SYSTEMS 

the high-voltage firing current. 

protection against the effects of humidity and other preflight conditions. 

All the high voltage equipment would need 

’\ 

In addition, because of the added electrical circuitry and mechanical 

adapters, the reliability is reduced. Also most exploding bridge w i r e  

initiators contain a ser ies  break o r  gap, which makes preflight testing 

very difficult. 

It is concluded that a hot bridge w i r e  system is more desirable than 

an exploding bridge w i r e  system. 
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