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PLANE-STRESS ANALYSIS OF AN EDGE-STIFFENED RECTANCULAR
PLATE, TAKING INTO ACCOUNT BENDING AND SHEAR
STIFFNESS OF THE STIFFENERS
By Yu-wen Hsu and Charles Libove

Syracuse University

SUMMARY

A plane-stress analysis, by means of Fourier series, is presented
for an isotropic or orthotropic elastic rectangular plate bounded by
four uniform edge stiffeners and subjected to any prescribed tempera-
ture distribution and boundary loads.

This analysis is related to an earlier one, in which the flexural
stiffness of the edge stiffeners was assumed to be negligible and the
plate was assumed to be attached to the stiffeners along the latter's
centroidal axes. In the present analysis, both the extensional and
flexural (including transverse shear) stiffnesses of the stiffeners are
considered, and the possibility is included that the plate is attached
to the stiffeners along lines which are offset from their centroidal
axes. At each corner the junction between the two meeting stiffeners
is assumed to consist of a hinge and a coil spring. By varying the
stiffness of the coil spring, any degree of joint rigidity, from that
of a pure hinge to a perfectly rigid joint, can be simulated.

Using this analysis, numerical results were obtained for a number
of specific cases involving prescribed force loading or prescribed

temperature distributions.



As a check on the validity of the method, stresses were measured
on a doubly symmetric edge-stiffened square plate subjected to stiffener-
end loads. Good agreement was obtained between the measured and com—

puted values of the plate and stiffener stresses.
INTRODUCTION

The rectangular plate with four edge-stiffeners is one of the
basic elements in aircraft structures. The wing skin and spars, for
example, are usually composed of such elements, with the stiffeners
provided by spar caps, rib caps, and shear-web uprights. A ring- and
stringer-stiffened cylindrical shell used for the interstage structure
of a launch vehicle may also be considered to be made up of a number
of edge-stiffened rectangular plates. Although the plate is usually
curved in this case, the curvature effect may be negligible if the dis-
tance between two neighboring stiffeners is sufficiently small compared
to the radius of curvature.

In the present paper, an glastic plane-stress analysis of this
basic unit, the rectangular plate with four edge stiffeners, is carried
out by means of Fourier series, for the case of any prescribed tempera-
ture distribution, constant through thickness, and any equilibrium
system of ptrescribed loads applied to the outer periphery of the stiffeners.
The loads may include shear flows, running tensions, and stiffener end-

tensions. This structure and loading are shown schematically in figure 1.



The present analysis is an extension of an earlier one (ref.l),
in which the flexural stiffness of the edge stiffeners was assumed to
be negligible, the plate was assumed to be integrally attached to the
stiffeners along the latter's centroidal axes, and the applied shear
flow loadings were assumed to be acting along the stiffenef centroidal
axes. In the present analysis, both the extensional and flexural
(including transverse shear) stiffnesses of the stiffeners are consid-
ered, and (as shown in fig. 1) the possibility is included that the
line of attachment between stiffener and plate and the line of action
of the external applied shear flows are offset from the stiffener
centroidal axis.

The plate may be isotropic or orthotropic, with elastic constants
that are independent of position and, if orthotropic, with axes of
elastic symmetry parallel to the edges. The four edge stiffeners
are integrally attached to the plate and are uniform. At each corner,
the junction between the two meeting stiffeners is assumed to consist
of a hinge and a coil spring, as shown in figure 2. By varying the
stiffness of the coil spring any degree of joint rigidity, from that
of a pure hinge to a perfectly rigid joint, can be simulated.

The analysis starts with the most general case, in which no
symmetry is assumed in either the structure, the loading, or the tem-
perature distribution. A number of special cases with various
symmetries and several limiting cases with zero or infinite flexural

stiffness for the stiffeners are then obtained by reduction of the



general case. Some of the limiting cases are physically equivalent

to problems considered in earlier papers (refs. 1 and 2), and the
equations for these cases are found to be equivalent to those obtained
in the earlier papers.

Using the present analysis, computations were made for a number
of specific cases involving prescribed forces or prescribed tempera-
ture distribution. Curves of plate and stiffener stresses are presented
showing the influence of flexural and transverse shear stiffness of
the stiffeners, eccentricity (with respect to stiffener axis) of the
line of attachment between plate and stiffener, and type of joint
(hinged or rigid) at the corner where the stiffeners meet.

As a check on the validity of the theoretical results, an experi-
ment was conducted on an edge-stiffened square plate under stiffener
end loads, and a comparison, showing generally good agreement, is
presented of the measured and computed plate stresses, stiffener
tensions and stiffener bending moments.

More detailed descriptions of the structure and loading will be
given in the following sections of this report, along with the results
of the analysis, the results of calculations, the details of the
experiment, discussion and concluding remarks.

The symbols are defined when they are first used, and the more
important ones are compilled for ease of reference in appendix A.

The details of the analysis are given in appendices B and C.

A detailed reading of these appendices is not required for the



understanding and use of the results presented in the main body of
this paper.
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DETAILED DESCRIPTION OF STRUCTURE

Dimensions and Coordinate System. The plate and stiffener

combination is shown schematically in figure 1. The plate has a
length of a and a width of b, measured from lines of attachment
to the stiffeners. Any point in the plate is identified by its
coordinates x and y in a Cartesian reference frame whose origin
is.-at one corner of the plate and whose axes coincide with two
adjacent edges, as shown in tﬁe figure.

Stiffeners. The stiffeners are assumed to be uniform and will
be treated as beams with shearing deformations permitted. That is,
plane sections will be assumed to remain plane, but not necessarily
perpendicular to the stiffener axis. The cross-sectional areas are

denoted by A A3, and A, for the stiffeners located at x = 0,

17 B2 4
x =a, y=0, and y = b respectively. Similarly, El’ E2, E3, E4

will denote the Young's moduli of the stiffeners; Gis Gy G3, G,

their shear moduli; Il’ 12, 13, 14 their cross—-sectional moments of



inertia about centroidal axes perpendicular to the plane of the plate;

1° AsZ’ ASB’ As4 their effective cross-sectional areas for com-

puting transverse shear stiffness in bending parallel to the plate.

and A
s

Thus, Elll, EZIZ’ E313, E4I4 will denote the bending stiffenesses of

the stiffeners located at x = 0, x = a, y = 0, and y = b respectively;

and GlAsl’ GZASZ’ G3As3’ G4As4 will denote the corresponding transverse

shear stiffnesses.

The offset distance between the centroidal axis of a stiffener.
and its line of attachment to the plate is denoted by ti, t;, t§ or
tZ, as shown in figure 1. Similarly the offset distance to the line
of action of an external shear-flow loading is denoted by ti, to, tg
or tZ in figure 1. If a stiffener is joined to the plate along
several lines (e.g., two rows of rivets), the inner line will be
regarded as the line of atachment for purposes of the present analysis.

Any portion of the plate outside this line can be regarded as part of

the stiffener.

Stiffener junctions. As shown in figure 2, two stiffeners meeting

at a corner are assumed to be joined by a hinge and a coil spring, the
hinge coinciding with the corner of the plate and therefore offset
from the stiffener axes. The coil spring stiffnesses are denoted by

k k (moment per radian) for the corners located at

1’ 72 4

(0,0), (a,0), (a,b), and (o,b), respectively. The ends of a coil

k3, and k

spring at any corner are assumed to be attached to the cross-sections,

rather than the axes, of the two stiffeners meeting at the corner.



In view of the fact that shearing deformations are being considered
for the stiffeners, the relative rotation of the end cross-sections
of two meeting stiffeners is not necessarily the same as the relative
rotation of their axes. By setting the coil-spring stiffness equal
to zero or infinity, one can simulate a hinge or a rigid junction,
respectively.

Loading. The assumed loading is shown in figure 1. It consists

of forces P', P;

, etc. applied to the centroids of the end cross
sections of the stiffeners, and distributed tensions Nl(y), Nz(y),
N3(x), N4(x) and shear flows ql(y), q2(y), q3(x), q4(x) applied
externally along the stiffeners. The distributed tensions and shear
flows have dimensions of force per unit length. The loading as a whole

is assumed to constitute an equilibrium system.

Thermal strains. The temperature distribution, and hence the

thermal deformations corresponding to unrestrained thermal expansion
of each infinitesimal plate element or each infinitely thin stiffener
slice, are assumed to be known. The notation for these thermal
deformations is indicated partially in figure 3. It is as follows:
In the plate the thermal strains are ex(x,y) and ey(x,y) in the x-
and y- directions, respectively. There is no thermal shear strain
in the plate relative to the x and y axes, because these axes are
parallel to the directions of elastic symmetry of the plate. If the
stiffeners were cut into infinitely thin slices by means of sections

perpendicular to their axes, then, in view of the assumption that



plane cross sections remain plane, the thermal deformation of each
slice could be described by means of two quantities: the strain and
the curvature of the centroidal fiber of the slice. The former will
be denoted by el(y), ez(y), e3(x), and e4(x) for the stiffeners located
at x = 0, x=a, y=0, y=>», respectively., The latter (the thermal
curvatures, not shown in figure 3) will be denoted by Kl(y), Kz(y),
K3(x), K4(x), respectively and will be considered positive if they
correspond to elongation of the inner fibers. If there is no variation
of temperature through the depth of the stiffeners, these K's will
be zero.

The thermal deformations are assumed to be measured relative to
some datum temperature distribution for which the plate is stress-free
and the stiffener cross sections free of resultant thrust and bending

moment .

Notation for total strains. The total strains (thermal plus

elastic) at the stiffener axes are denoted by 61(y), 52(y), 63(x)

and gn(X) for the stiffeners located at x = 0, x = a, vy = 0 and

vy = b respectively. The total normal strains in the plate are represented
by ax(x,y) in the x-direction and Ey(x,y) in the y-direction. The

Plate shear strain is symbolized by ny(x,y)°

Notation for internal forces. Figure 4 indicates the notation

employed for the internal forces in the stiffeners and plate.
Pl(y), Pz(y), P3(x), P4(x) denote the cross-sectional tensions in

the stiffeners located at x = 0, x = a, y = 0, y = b, respectively.



The corresponding stiffener bending moments (about centroidal axes)
are denoted by Ml(y), Mz(y), M3(£), M4(x), and the transverse shears
by Vl(y), Vz(y), V3(x), V4(x). The plate normal-stress resultants
(force per unit length) are represented by Nx(x,y) and Ny(x,y) and
the shear-stress resultant by ny(x,y)°

The corner moments produced by the coil springs at stiffener

junctions are denoted by ﬁl, ﬁé, ﬁg and 4 (see fig. 4) for the plate
corners (0,0), (a,0), (a,b) and (0O,b), respectively. As implied in
figure 4, a corner moment is considered to be positive if it corresponds
to a reduction of the angle between the two neighboring stiffener end
cross sections on which it acts. Because of the possible eccentric
mutual reactions, Vl(O), Vl(b), etc., at the stiffener ends (see fig. 4)
the corner moments ﬁi,
limiting values of the stiffener bending moments Ml(O), M3(0), MZ(O)’

ﬁé, etc. are in general not identical to the

M3(a), etc. as the stiffener ends are approached. Instead, they are
related to each other by equations (B77).

Stress—strain relations. With the above notations established,

the assumed stress-strain relations for the components of the structure
can now be described. For the stiffeners they are as follows:

P

[e]
ey = T e (a = 1,2,3,4)
o o

(1)

with the Young's moduli El and E2 independent of Y, E3 and E4

independent of x. Equation (1) gives the strains along the axes of

the stiffeners. The strains in the stiffeners along their lines of



attachment to the platé are obtained by adding to these the strains
due to bending moment and temperature variation across the depth of
the stiffener. Thus the stiffener strains along the lines of attach-
ment are

P M

o o i _
e, + A E + (E n + )cu)ta (a0 = 1,2,3,4) (2)
o o a o

for the stiffeners at x = 0, x = a, y = 0, y = b, respectively.

The plate stress-strain—displacement relations are taken to be

du

_ = = -

9x X ®x + Cle C3Ny

a v = £ = -

3y by e + C2N C3Nx

du av

3y 9x ny C4ny (3)

where u(x,y) and v(x,y) are the x-wise and y-wise displacement
components, and the compliances Cl’ C2, C3 and C4 are independent of
X and y. If the plate is homogeneous and isotropic, with thickness

h, Young's modulus E, and Poisson's ratio v, then

- -1
;=% T
_ v
C3 =
c =21+ v)
4 Eh

In order to describe the assumed moment-curvature relations for

10



the stiffeners, it will be convenient to introduce a notation for
the displacements of the stiffeners in direction perpendicular to
their axes. Let u;(y) and u:(y) denote the x-wise displacements

of points along the axes of the stiffeners located at x = 0 and

X = a, respectively; and similarly let vz(x) and vZ(x) denote the
y-wise displacements of the stiffeners along y = 0 and y = b,
respectively. Then the curvatures of the stiffener axes can be
represented by dzuz/dyz, dzu;/dyz, dzvj/dx2 and dsz/dxz, and

the following relationships are assumed between these curvatures and

the forces and moments acting on the stiffeners:

%*
o om» \
—T = - - [N_(0,y) - N, (¥)] - x, (¥
dy Elll GlAsl x 1 1
2 %
d"u, My (y) 1 .
- dy2 = = E I - G A [Nx(a,}’) - Nz(y)] - ‘2()7)
272 252 L (2)
*
d2v3 M3(x) 1
—z = - - N (x,0) - Nx)] - <, ,(x)
dx E313 G3A53 ¥ 3 3
2 *
d V4 M4(x) 1
- - - = [N (x,b) = N, (x)] - «x, (x)
dx2 E4I4 (J4AS4 Yy 4 4 /

The first term on the right side of each equation represents the
curvature due to bending moment, the second the curvature of the
stiffener axis due to rate of change of transverse shear, and the

last the curvature produced by temperature variation across the

11



stiffener. The stiffeners are assumed to be so constituted that
transverse shear strain arises only from transverse shear force;
that is, the stiffener temperature distribution per se does not
destroy the normality between stiffener cross sections and
stiffener axis-.

In anticipation of the subsequent imposition of continuity
conditions between stiffener and plate edge, it may be noted,
parenthetically, that the curvature along any constant x 1line

in the plate is given by

a2y N_ de 3N N
552 = % Ty T "% ax f G (5a)

and along any constant y line by

324 aN_ de_ aN_ oN
=2 - %3 T3y "Gyt Gy (5b)
These expressions can easily be derived from equations (3).
At the corners, where the stiffeners meet, the relative
rotation of the stiffener axes, positive for a reduction of the
angle between them, is
___1+Vl(o)+V3(o) at x=0,y=0;
’ - ]
ko Gifs1 C3hgs
- —2-+ VZ(O) - V3(a) at x = a, y = 0;
= ’ - ’
Ky Cohgy  Cihg3
A)

12



Vz(b) V4(a)

3
- - - at x = a, y = b;
k3 GZASZ G4A54
and
M V. (b) Vv, (0)
4 1 4
- - + at x =0, y = b;
ky  GiAgr  Guhg,

The"angle changes of the plate”at the corresponding corners are

given by

c )

4(ny x=0, y=0 \

- C[#(N )

xy'x=a, y =0

4(ny x=a, y=b

and ~ CA(ny)x=0, y=b

respectively. In the subsequent analysis (Appendix B) the two sets

of angle changes, (A) and (B), will have to be equated.

SERIES EXPANSIONS FOR PRESCRIBED LOADS AND THERMAL STRAINS

The results of the present analysis, to be discussed shortly,
consists of formulas for the stiffemer and plate stresses, stiffener
moments and transverse shears, in terms of the given loading and
thermal-strain distribution. However, the loading and thermal
strains do not appear explicitly in these formulas, it is rather
the Fourier coefficients of these quantities that are required. 1In

anticipation of this requirement, it is assumed that the given

13’



distributed loadings can be expressed in Fourier series of the

following form, with known coefficients:

Nl(y) = ¥ B' sin (B%XO
n=1 .
5 ary (6)
N.(y) = £ B" sin (/%)
2 n=1 n b
M i1
No(x) = £ B'" sin (Eira
m=1
M iy
N4(x) = I B;" sin (9359
m=1
N nm
= ' y
q, () = I, Q  cos (O
N nm
q,(y) =L QF cos 073%
n=0
M mnx
q.(x) =2 Q' cos (™)
3 m=0 m a
M mmnx
q,(x) = L, Q" cos (—;—0 (7

The known curvatures of the stiffeners arising from the known
temperature variation across the stiffeners are also assumed to

be representable by Fourier series with known coefficients, as

follows: N
- ] n‘!TY
ki (y) = L; K sin (550
N
() =1 K sin &
n=1
M mux (8)
K3(x) =3 K%" sin (—;fﬁ
m=1
M mmX
= nu MTX,
K4(X) z K.m sin ( = )

m=1

14



Similarly, certain thermal-strain differences and certain
first derivatives of the plate thermal strains at boundary are

assumed to be known in the form of Fourier series, as follows:

N
- = oo Oy
el(y) ey(O,y) nZy T, sin ¢ b ) \
N nm
e, () = e (a,y) = I} T " sin G
> (9)
M
_ - " . M7X.
e3(x) ex(x,O) mgl Tm sin ( " )
N /
_ _ "o s mmx
e4(x) ex(x,b) = méle sin ( A )
de N am
___1 _ ) . J
(Bx )x=0 - ngl Ln sin ( b )
A
de N an
.~2 _ 1" . 2
( Bx)x=a - ngl Ln sin ( b )
a > (10)
M
(_fis = 7. L"' gin (EHE%
3y y=0 n=1l m a
/
Bex M —
X = ni .
(ay y=b mgl Lm sin ( a )
Finally, Bzey/ax2 + Bzex/ay2 is assumed to be known and repre-
sentable by the following series in the open region O<x<a,
O<y<b:
Bzey 32ex M N — a
%2 v 357 T pfinfy Ty SR TR sin Ty (11)

15



Finite upper limits M and N are shown for the summation indexes
in equations (6) to (11) in expectation of the fact that it will
normally be necessary to use truncated rather than infinite
series for practical computational reasons.

The Fourier coefficients appearing in equations (6) to (11)

can be determined from the usual definitions. For example,

b
t _ Z_ . n'rrz
Bn =% jo Nl(y) sin = dy
2_Gno b nmw
Q' = q,(y) cos =L dy
b 1 b
0
2 [P any
" _ & _ .
Tn =% Jo [el(y) ey(O,y)] sin =, dy
4 bra 3% 32ex mrx nmy
mn - ab Jojo( 5wzt T3y2) sim T sin T dxdy (12)
where 6no is Kronecker's delta. Integration by parts in
equation (12) gives the following alternate formula which permits
Tmn to be evaluated from the first derivatives of ey and e
instead of the second derivatives:
4 b ra de mmx nm
T =-Rr_ 2 —L cos sin 2L dxdy
mn a ab 0’0 Ix a b
a b de
nm 4 X nny ., WmIX
5 b JOJO 3y cos - sin — dydx (13)

Equation (13) can be used for discontinuous ey or e provided
that Beylax and Bex/ay are regarded to be infinite, in the

16



manner of the Dirac delta function, at the loci of points of
discontinuity. If ey and e  are continuous in the closed

region O0=x=a, O0%<y=b, further integration by parts gives

b
R L _ . an
Tin = " a ab [ [ey(a,y) cos mT ey(O,y)] sin —Ex dy

bra
_(BTyo 4 (g BIX . DTy
(a ) =5 j J ey(x,y) sin == sin = dxdy

0‘0
_ar 4 (a[e (x,b) cos nm - e (x,0)] sin 2= gx
b ab o X ’ x 2 a
nw, %4 arb ., nmy . WX
—(b—) - ex(x,y) sin =)= sin == dydx (14)
0‘0

RESULTS OF ANALYSIS

The analysis in Appendix B gives equations for the plate
stress resultants, the stiffener tensions, bending moments and
transverse shears, mainly in the form of Fourier series. In the
first of the following subsections, these equations are pointed
out, that is, their location in Appendix B is given. Subsection
(2) tells how the Fourier coefficients and other unknowns appear-
ing in these equations can be computed and gives the basic
equations for the general case and the simplified form of the
basic equations for various symmetrical and antisymmetrical cases.

Subsection (3) provides simplified basic equations for several

1



limiting cases (zero eccentricity between plate edge and stiffener

axis, zero or infinite flexural and shear stiffness for the stiffeners).
The subsections (4) and (5) describe and give results for twenty-

two numerical examples, showing the effect of varying selected
parameters. The last subsection (6) provides a discussion for the
numerical results and indicates the importance of the parameters

that are considered.

(1) Equations for the plate and stiffener stresses. The

equations for the plate stress resultants, the stiffener tensions,
bending moments, and transverse shears are given in Appendix B and

are summarized in Table 1.

TABLE 1. SUMMARY OF PLATE AND STIFFENER STRESS RESULTANTS

REGION OF
QUANTITY SYMBOL EQUATION VALIDITY
Plate Shear Stress
Resultants ny (B34) Entire Plate
(B24) Entire Plate,|
excluding
edges
Plate Normal Stress (B25)-(B28) Edges, ex-
Resultants in y- N cluding
direction v corners
Last four
equations
of
(B133) ’ Corners

18



TABLE 1 (continued).

SUMMARY OF fLATE AND STIFFENER STRESS RESULTANTS

REGION OF
QUANTITY SYMBOL EQUATION VALIDITY
(B29) Entire Plate,
excluding
edges
(B30)-(B33) Edges, ex-
Plate Normal N cluding
Stress Resultants x corners
in x~direction
First four
equations
of
(B133) Corners
Stiffener Transverse
Shear Forces V. (i=1,2,3,4) (B15) Entire
i X
Stiffener
P, (i=1,2,3,4) (B13) Entire
i X
Stiffener,
excluding
Stiffener Axial ends
Tensions Pi<o)’Pi(b)
(i=1,2) (B76) Stiffener
Pj(O),Pj(a) ends
A =0+ =
(3=3,4) &3t =Y

Corner Moments Pro-
duced By Coil Springs

ﬁi(i=1,2,3,4)

(B129)-(B132)

Stiffener Bending
Moments

M, (i=1,2,3,4) (B14) Entire
1 Stiffener,
excluding”
ends
(i=1,2) .
(B77) Stiffener
1, (0) 1, (2) ends
(3=1,2) (x=0+,y=0+,
x=a~,y=b-)

19




Table 1 is self-explanatory. However it may be worthwhile
calling attention explicitly to certain aspects of the equation$
cited in it. For example, it is noted that equation (B24) given
for the plate stress resultant Ny, is not valid along the
plate edges. Special equations, (B25) to (B28) are therefore
given in Table 1 for the plate stress resultant Ny along the
plate edges. These special equations are, in turn, not valid at
the plate corners, and other equations, (B133), are therefore
indicated for the plate corners. Amnalogous remarks apply to the
plate stress resultant Nx’ the stiffener axial tensions, and the
stiffener bending moments. It was noted earlier that because of
the mutual reactions Vl(b), V4(O), etc. at the stiffener
junctions (see fig. 4), the limiting internal values of the
stiffener bending moments, namely M4(0), Ml(b), etc., are not
necessarily equal to the corner coil spring moments ﬁ&’ etc.

For the same reason the limiting values of the stiffener tensioms,
P4(0), Pl(b),etc., are not in general equal to the externally
applied stiffener end loads Px"', Py"’ etc.

Evaluation of series coefficients and other basic unknowns.

In order to use the equations listed in Table 1 for numerical

calculation of stresses, etc., one must first evaluate the Fourier

coefficients c'. c". o', "M ' " ™ . s'. g". g'
n?® Sn° > :gm’ gm’gn’gnsj s Spe SLe Spo

m m mil

1mn i mTn e ] 1t 11t ey 3 .
s b b b b and v v v v appearing in them, as
m ’ °n® °n® Pm ® Pp ° n® n® Vm* Vn PP g ’
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well as the corner moments ﬁl’ ﬁz, ﬁB’ Eﬁ’ and the stiffener end
shears vl(O),gvl(b), etc. The first eight groups of coefficients,

namely, c; through g;", and the four corner moments ﬁl’ ﬁz, ﬁ3, ~4,
are the key to the calculation of the other unknowns. Once these

‘key unknowns are evaluated, the following sequence of steps will
lead to the remaining unknowns: From equations (B11l) to (B118)
compute the stiffener end shears vl(O), vl(b), etc.; from equations
(B76) the stiffener end tensions; from equations (B77) the stiffener
end moments; and from equations (B92) and (B94) to (B99) the remaining
Fourier coefficients for the plate stresses (jmn)’ stiffener tensions
(s;, etc.), stiffener bending moments (b;, etc.) and stiffener trans-
verse shears (v;, etc.). Thus the basic objective in the rest of
;his section is to describe the calculation procedure for the key
unknowns, c! through g’'", ﬁl’ ﬁz, ﬁ3, and ﬁ4.
These key unknowns are defined by various systems of simul-
taneous equations in Appendix B, depending upon the type of
symmetry of the structure and loading and the type of connection
at the stiffener junctions. These various systems of equations
are summarized in Table 2. Those cases which have been studied
numerically, and for which computed results will be given sub-
sequently, are indicated in the table by heavily outlined boxes.
The box with a double border in the upper left corner of Table
2 contains the most general equations; the equations for all the
other cases represented in Table 2 can be obtained by reduction

from this most general case.
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TABLE 2.

EQUATIONS FOR COMPUTING c's, g's AND M

l’ ﬁz’

My, B,

PROPERTIES OF
SYMMETRY

CORNER CONDITIONS (SAME TYPE AT ALL CORNERS)

ELASTIC-JOINTED

HINGE-JOINTED

NONE

(general case)

(B119) to (B126)
and (B129) to
(B132)

(B119) to (B126)

with M. =M, =M_=
% =0 172773

4

(B119) to
(8126) and
(B129) to
(B132) with
k1=k =k =k, =

Structire and loadi
symmgtgical about y=y

and x=§,

M given by (B148)

with M=0

2 374
SINGLE SYMMETRY: (B135) to (B142) (Bl352 to (B140) | (B135) to
Structure and loading with M1=M2=0 (B142) with
sygmetrical about k1?k2=m
y=5-
DOUBLE SYMMETRY: (B149) to (Bl52);} (Bl44) to (Bl47)|(Bl44) to

(B148) with
k

oo

ENTIRE SYMMETRY:
Square plate; structure
and loading sz@metrical
about yiia x=-, and the
plate diagonals.

(B157), (B158);
M given by (B156)

(B154), (B155)
with M=0

(B154) to
(B156) with
k

(=]

Structurg symmetrical
a .
about y=o, x93 loading

angisymgetrical about

YT, X=7.

with M=0

SINGLE ANTISYMMETRY: (B160) to (B167) | (B160) to (B165)|(B160) to
Structure symmetrical with ﬁ1=M2=o (B167) with
about y=5i loading kl=k2=w
angisymmetrical about

Y=o

DOUBLE ANTISYMMETRY: (B169) to (B173) |[(B169) to (B172)|(B169) to

(B173) with
k

@«©

ENTIRE ANTISYMMETRY:
Square plate; structure
sygmetrical about y=50
x=-, and plate diag-
ondls; loading anti-
symmetrical about y=5>
x=-, but symmetrical
about plate diagonals.,

B178) and (BL79);

(
M given by (B177)

(B175) and (B176)
with M=0

(B178) and
(B179) M
given by
(B177) with
k

o0
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A procedure for solving the most general equations, those in the
double~bordered box, follows:

(a). Solve equations (B119) to (B126) simultaneously, for c's
Mz, M3 and MZ. (An

iterative procedure, such as the Gauss-Seidel iteration method, will

and g's in terms of the other four unknowns ﬁl’

probably be advisable in this step, especially for large M and N.)
(b). Substitute the results from (a) into equations (B129) to

(B132) to eliminate the c's and g's, and thus obtain four equations

1° MZ’ M3 and M4 as unknowns.

(c). Obtain the values of the M

containing only the M
1° ﬁz etc., by solving these

four equations simultaneously.

(d). Substitute the values of M etc., into the results

1 ﬁz
obtained in (a) to compute the values of c¢'s and g's.

For the other cases represented in the table, some simplifi-
cations of this procedure is possible. For example, for the case of
a non-symmetrical structure with purely hinge-jointed stiffeners,
ﬁl’ ﬁz, ﬁB and ﬁ4 vanish; hence, as indicated in the table, equa-
tions (B119) to (B126) alone are sufficient for a solution for
each of the c's and g's, while equations (B129) to (Bl32) become
unnecessary. Thus steps (b) to (d) of the above procedure can be
eliminated.

The case of mixed corner conditions (i.e., some joints purely

hinged, others not) is not included in Table 2. However, such a

case can be handled with the general equations in upper-left box
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of Table 2, by merely equating to zero the appropriate corner moment
(ﬁl, ﬁz, ﬁB or ﬁA) and the corresponding spring constant (kl, k2, k3
or k4) for every joint that is hinged. In addition, for each hinged
corner one of the four equations (B129) to (B132) must be omitted
from the system in accordance with the following scheme:

Eq. (B129) omitted if corner (0,0) is purely hinged.

Eq. (B130) omitted if corner (a,0) is purely hinged.

Eq. (Bl3l) omitted if cormer (a,b) is purely hinged.

Eq. (B132) omitted if corner (0,b) is purely hinged.
These equations relate the angle change of a plate corner to the
angle change of the coil spring at that cornero* The equation to
be omitted develops the indeterminate form M/k = 0/0 in one of its
terms when the corner moment and spring stiffness are equated to
zero. If the indeterminacy is removed by first multiplying
through by the spring constant, the equation merely re-states
that the corner moment vanishes.

For the case of single symmetry, single antisymmetry, and

double antisymmetry, the procedure is similar to the one just
described, except that smaller systems of equations are involved.

For the cases of double symmetry, entire symmetry, and entire

antisymmetry in Table 2, a further simplification was made for

*
This significance of equations (B129) to (B132) is more readily
apparent from their earlier form, (B128).
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k # «: The equations corresponding to (B129) to (Bl32) were solved
explicitly for the corner moments (they are all numerically equal
in these cases) in terms of the c's and g's, and the corner
moments were then eliminated in the equations corresponding to
(B119) to (B126). Therefore for these cases the equations which
are given for the c's and g's do not involve corner moments, and
the c's and g's can therefore be computed immediately in terms of
known quantities. When k = « (rigid-jointed stiffeners), however,
it so happens that, for the case of double symmetry and entire
symmetry, the equations corresponding to (B129) to (B132) can not
be solved explicitly for the corner moments, and the above simpli-
fication is not possible.

(3) Limiting cases. A simplification results in the equations

of Table 2 if some limiting cases of the structure are considered.
The simplified equations for several such limiting cases are
derived in Appendix B and listed in Table 3. The equations in
column A of Table 3 were developed for the purpose of the numerical
wark, the results of which will be presented later. The equations
in the remaining columns were developed for the purpose of com-
parison with earlier work of others. Limiting case D corresponds
to the case considered in reference 13 limiting cases B and C
correspond to certain special cases in reference 2. Thus a partial
check on the correctness of the present analysis is obtained by

noting that equations (B198) to (B201l) in table 3 are equivalent
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to equations (B61l) to (B64) of reference 1, respectively, and equa-

tions (B191), (B192) and (B193) in Table 3 are equivalent to equa-

tions (B57), (E34) and (E35) of reference 2, respectively.

TABLE 3. EQUATIONS FOR COMPUTING c's, g's AND M FOR SEVERAL LIMITING
CASES
PROPERTIES LIMITING CASE
(4) (B) (© (D
Zero eccentricity Two opposite All four All four
OF between plate stiffeners stiffeners | stiffeners
edges and stiffener | have infinite have infi- | have zero
centroidal axes bending and nite bend- | bending
shear stiffness,|ing and stiffness
SYMMETRY two other stif- |shearing (including
feners have zero|stiffnesses| limiting
bending stiff~ |(includ- case A)
ness (including |ing limit-
limiting case A [ing case A
and K'=K""=0 for|and K'=0
all 3 %nd m) |for all n)
(B198) to
None (B201) and
(B196)
bouble (B191)
Symmetry
Entire
(B180) to (B182) (B192) to
Symme try (B194)
Entire
Anti~ (B183) to (B185)
symmetry
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(4) Description of numerical examples. The foregoing general

results were used to obtain numerical stress data for twenty-two
illustrative problems. These problems are of three types: thermal-
stress problems involving a continuous "pillow-shaped" temperature
distribution, without any applied loads; "shear lag" problems, in-
volving the diffusion of loads from the stiffener ends into the
plate; and thermal-stress problems involving a discontinuity in
temperature between the stiffeners and plate. The three groups of
problems are shown schematically in figure 5.

In all these problems, the plate is square (b=a) and isotropic,
with Young's modulus E, Poisson's ratio v = 0.3 and thickness h.
The four stiffeners are identical, with cross-sectional area A,
effective shear cross—sectional area AS and bending moment of
inertia I. The stiffeners are assumed to have the same Young's
modulys as the plate and to have no temperature variation through
their depth. The structure, loadings, and thermal strains in these
problems are symmetrical about both center lines, namely x and y =
%3 and also about the plate diagonals. This kind of symmetry was
referred to as entire symmetry in tables 2 and 3.

In the thermal stress problems, the stiffeners are at a
uniform temperature of zero, while the plate has either .a "pillow-
shaped" temperature distribution of the form 6 sin CEEQ sin (E?ﬁ
(fig. 5(a)) or a constant temperature of 6 (fig. 5(c¢)). Thus 6
denotes the temperature rise of the plate center relative to the

edges.
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In the shear-lag problem (fig. 5(b)), the temperature is uniform
and the loading consists of identical tension loads of magnitude P
‘applied to the end cross section of the stiffeners.

Additional information about the numerical examples is given
in Teble 4, which consitutes a summary description of all the twenty-
two cases analyzed numerically. As shown in Table 4, the stiffeners
were assumed to be either rigidly joined (k = «) or purely hinged
(k = 0) at their junctions. A range of values of the stiffener
flexibility parameter ha3/I was used; high values of this parameter
represent fairly flexible stiffeners, and zero represents stiffeners
which are perfectly rigid under bending moment. The area ratio
parameter 4ah/'n2A was assumed to have the same value 1.0 for all
the twenty-two cases. In two of the numerical examples (Nos. 7 and
14 in Table 4), some offset (ti = 0.0272a) was assumed between the
stiffener axes and the lines of attachment of stiffener to plate;
in the remaining examples this offset was taken as zero. In six
of the cases, deflections due to transverse shear in the stiffmers
were neglected by the device of equating the effective shear area
As of the stiffeners to infinity; these cases are identified by
A/As = 0 in Table 4. In the remaining cases, shear deformations
of the stiffeners were considered, and the effective shear area
AS was taken equal to the effective stretching area A, as an
approximation. A value of A/AS slightly greater than 1.0 would

probably have been more appropriate. However, since the appropriate
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value of A/A.S varies with the shape of the stiffener cross section,
and since the effects of transverse shear were expected to be small
in any case, the value 1.0 was selected as a reasonably good one

to indicate the order of magnitude of the effects of transverse
shear deformations.

Table 4 also shows the value, namely 39, of the upper summation
indexes M and N used in the calculations. The size of M indicates
the size of the system of simultaneous equations that has to be
solved (e.g., 40 equations for M = 39). The value M = N = 39 was
chosen after trial calculations with M and N as high as 49, because
it gave sufficient accuracy without excessive computation time
(average computing time = 7 minutes per problem on the IBM 7074 for
solving the simultaneous equations and computing the stresses).

The last two columns of Table 4 give the main equations em-
ployed in solving the listed twenty-two numerical examples and
the figures in which the numerical results are plotted.

It is worth mentioning that the solution to the problem of
discontinuous temperature distribution (no external load, constant
plate temperature 8, zero stiffener temperature) was obtained very
easily from the solution to the shear lag problem by means of a
superposition technique, as indicated in Table 4. This superposition
technique is described in Appendix C.

(5) Results of numerical examples. The numerical results of

the twenty-two example problems listed in Table 4 are presented
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TABLE 4.

LIST OF PROBLEMS SOLVED AS NUMERICAL EXAMPLES

Problem
Number

Classifi-
cations

Stiffener
Joint

ha3

I

w'n

&
5

A

[

M
(=)

Equa-
tions
Employed

Results

RIGID

110,000

39

figs.

g(b) (1),

9(c) (1)

10,000

figs.
9(a)9 (b)
(1), 9()]

500

figs.

9(b) (i),
12

figs.
9(b) (11)
9(c) (41)

110,000

fig.
9(c) (1)

PILLOW-SHAPED TEMPERATURE I)ISTRIBUTION1

fig.
9 (c) (11)

11

10,000

.0272

(B154) to
(B156)

fig.
9(d)

HINGED

10,000

(B180)
(B181)

fig,
9(a)

10

11

12

SHEAR LAG2

RIGID

110,000

(B180) to
(B182)

figs.
10 (a}d)

10 (b)(1)

10,000

1

figs._
10(b X1

10(d)

500

fig. .
10(bX1id)

figs. _,
1o(a)d 1)

10(bX{1)

10(e)({)
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TABLE 4.

(Continued), LIST OF PROBLEMS SOLVED AS NUMERICAL EXAMPLES

Problenm
Number

Classifi~
cations-

Stiffener
Joint

4ah
T2A

A
A
S

M
(=N)

Equa-
tions
Employed

Results

13

14

15

16

17

18

A G2

SHEAR

RIGID

0

39

(B180) to
(B182)

figs.,
10(a)
(iid),
10(e).
(1),

10,000

N\

.0273 "

(B154) to
(B156)

fig.
10(4).

HINGED

110,000

(B180)
(B181)

figs.
10(a)(i;
10(b)
(i11), 10
(c) (i1),

figs.
10(a)
(i1),10
(b) (111)
10(e)
(144).

110,000

fig. 10
(e) (11).

0

A\l

figs., 10
(a) (1i1)
10(e)
(111).

19

20

21

3

DISTRIBUTION

TEMPERATURE

DISCONTINUOUS

110,000

500

0

0

0

USING SUPERPO-
SITION METHOD

fig. 11
(2) ().

figs.

11(a) (1)
12,

figs.1l

(a) (i1),
11(b),

fig. 11
(b).

= 0.

ture throughout the plate.

No external load; plate temperature =

31

All problems are for an entirely symmetric square plate.

No .external load; plate temperature =§ sinﬂg sing% s stiffener
temperature
A tension load p applied at each stiffener end.

03 stiffener temperature

Uniform tempera-

= 0,




in the form of dimensionless plots of the plate stress resultants Nk,

Fivad wvalnae nf xr +tha ot
e b oA (=

N a
& 9 N (=2 vaiLuco J [ 81

¥y xy

tension P3(x), stiffener bending moment M3(x), and stiffener trans-

£n
o

[a]

verse shear V3(x). In view of the symmetry which exists about the
plate center lines and diagonals, these results plotted over the

range 0 2 x/a 2

0.5, 0 2 y/a 2 0.5 suffice to describe the results
for the entire structure. All stresses, tensions, moments and shears
were computed at x/a intervals of 0.02 in the region x/a = 0 to
0.1, and 0.05 in the region x/a = 0.1 to 0.5. In the y-directions
y/a intervals of 0.1 were used.

The results are presented in figures 9 - 12. 1In these figures
the results are grouped in different ways in order to show the effect
of varying one or another of the parameters involved. Because of
these groupings, the same set of results may appear in more than one
place, as indicated by the last column of Table 4. The figures and
the significant parameter which is varied in each are described
below:

(A) Figure 9 gives numerical results for the pillow-shaped
temperature distribution problems, with

1) Figure 9(a) showing effect of stiffener joint rigidity
(k)3
(ii) Figure 9(b) showing effect of stiffener bending
stiffness parameter (ha3/I);
(iii) Figure 9(c) showing effect of stiffener transverse
shear stiffness parameter (A/AS);
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(iv) Figure 9(d) showing effect of eccentricity between the
stiffener axes and the lines of attachment of stiffemer to plate (t-i/a)°
(B) TFigure 10 gives numerical results for the shear-lag prob-
lems; with
(i) TFigure 10(a) showing effect of stiffener joint rigidity
(k)3
(ii) Figure 10(b) showing effect of stiffener bending stiff-
ness parameter (ha3/I);
(iii) TFigure 10(c) showing effect of stiffener transverse
shear stiffness parameter (A/AS);
(iv) Figure 10(d) showing effect of eccentricity between
the stiffener axes and the lines of attachment of stiffener to plate
(t*/a).
(C) Figure 11 gives numerical results for the discontinuous
temperature distribution problems, with
| (i) Figure 11(a) showing éffect of stiffener bending rigidity
parameter (haB/I); -
(ii) Figure 11(b) showing effect of stiffener transverse
shear stiffness parameter (A/As).
(D) Figure 12 gives a comparison between the pillow-shaped
temperature distribution and the discontinuous temperature distri-

bution.

(6) Discussion of numerical results. The typical difference in

effect between rigid and hinged joints for the stiffener comnections

can be seen in figure 9(a) for the pillow-shaped temperature distri-
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bution and figure 10(a) (i) for the shear-lag problem. The plate stress
resultants Nx and Ny are only slightly affected by the type of joint
rigidity, with the effect being a localized one near the corners. The
shear stress resultant ny is more markedly affected, but again the
effect is significant only near the corners. As is to be expected,

the hinged joint permits larger values of ny at the corner than does
the rigid joint. Because of shear deformations in the stiffeners,

ny is not zero at the corners even for rigid-jointed stiffeners.

As far as the stiffener stresses are concerned, the effect of
joint rigidity is seen to be negligible for the stiffener tensiomns,
but significant (as is to be expected) for the stiffener bending
moments and shears. The effect on the stiffener bending moments
and shears is most noticeable at the stiffener ends, of course.
However, the effect propagates along the length of the stiffener
towards the center a distance which depends on the stiffener
flexural stiffness. In figure 10(a)(i), for example, with ha3/I =
110,000, denoting a fairly low flexural stiffness, the stiffener
shear and bending moment are essentially the same for hinged and
rigid joints when x/a is greater than 0.1. On the other hand,
figure 9(a), for a higher flexural stiffness (ha3/I = 10,000), shows
the stiffener shear and bending moment differing significantly for
hinged and rigid joints over a greater length of stiffener.

For the limiting case of infinite stiffener flexural stiffness
(ha3/I = 0), it should, of course, make no difference to the plate
if the stiffener jumctions are rigid or hinged. This expectation is

borne out by the computed results in figures 10(a) (ii) and (iii), where
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a single set of curves represents the plate stress resultants for both
rigid and hinged joints. In this case the stiffener stresses, except
for the bending moment, are also unaffected by the type of stiffener
junction. The stiffener bending moments for hinged and rigid joints
are seen to differ only by a constant when the stiffener: flexural

stiffness is infinite (figs. 10(a) (ii) and (iii)).

When the stiffeners are infinitely rigid in both flexure and
shear (ha3/I = 0, A/AS= 0) and the loading is that which corresponds
to the shear-lag problem (that is, equal tensions at the stiffener
ends), it is to be expected that all the requirements of equilibrium
and compatibility can be satisfied by a homogeneous state of biaxial
tension in the plate with zero shear, and uniform tension along the
length of each stiffener. This expectation is borne -out by the com-
puted results in figure 10(a) (iii). The plate stresses and stiffener
tension shown there agree well with those that would be obtained by
a simple direct and exact calculation based on considerations of
equality of strain between stiffener and plate and overall equili-
brium of each stiffenexr. This agreement constitutes a check on the
correctness of the equations and method of the present paper.

The effect of stiffener flexural -stiffness is deﬁonstrated in
figure 9(b) for the pillow-shaped temperature distribution, figure
10(b) for the shear-lag problem, and figure 1l1l(a) for the discon—‘
tinuous temperature distribution problem. Except in figure

10(b) (iii), the stiffener junctions are taken as rigid.

35




For the pillbw—shaped temperature distribution problem with rigid-
jointed stiffeners, the plate stress resultants Nx’ Ny and Nky change
only slightly as the stiffener flexibility parameter haB/I varies
from 110,000 to 10,000, as shown in figure 9(b)(i). The change,
however, is more pronounced in figure 9(b)(ii), where the parameter
haB/I_is varied from 500 to the limiting value of 0. These changes,
whether slight or pronounced, are seen to be most significant near
plate corners and plate edges. The irregular wiggles appearing in
figure 9(b)(i) along the line y/a = 0 are believed to be not present
in actuality but caused by slow convergence of the series for the
stresses along plate edges.

By comparing figures 9(b) (i) and (ii) of the present paper
with figure 5(c) of reference 1 (in Which stiffener flexural stiff-
ness was assumed negligible), it can be seen that for fairly large
values of the stiffener flexibility parameter, say ha3/I 2 10,000,
the analysis neglecting stiffener flexural stiffness (ref. 1) is
sufficiently accurate for all of the plate stresses except those
near the plate corners. For smaller values of haS/I, on the other
hand, the present type of analysis appears to be needed in estimating
plate thermal stresses even in the interior region of the plate.

The effect of stiffener flexural stiffness on the stiffener
stresses for the pillow-shaped temperature distribution problem is
slight for the stiffener tensions but may be significant for the

stiffener bending moments and transverse shears (see, for example,
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fig. 9(b)(c)). It should be noted that because of finite stiffener
flexural stiffness, the stiffener end tensions are not zero, despite
the absence of external stiffener end loads.

_Corresponding to figure 9(b) (i) for the pillow-shaped tempera-
ture distribution problem, figure 10(b) (i) shows the effect of stiffener
flexural stiffness for the shear-lag problem by comparing plate and
stiffener stresses for ha3/I = 110,000 and 10,000. It is noticed that
for the same variation of the stiffener flexibility parameter ha3/ I the
change of plate stresses is more significant for the shear-lag problem
than for the pillow-shaped temperature distribution problem. The
effect is again more significant near plate corners.

Comparing figures 10(b) of the .present paper to the corresponding
figure in reference 1 (fig. 6(c)), it is observed that the analysis in
reference 1, which neglects flexural stiffness of the.stiffeness, is
applicable only for fairly high values of ha3/I, say ha3/I Z 110,000,
in the central region of the plate. At the plate corners, considerable
difference is observed between the results of reference 1 and the
present results. Most importantly, the plate corner shear stress. re-
sultant Nﬁy is finite in figure 10(b) but infinite in the result
given in reference 1. A noteworthy effect of stiffemer flexural
stiffness is to cause the limiting internal stiffener tension at the
stiffener end to be different from the externally applied stiffener
end load. This is evident from the fact that P3(x)/P is not equal to

unity at x/a = 0 in figures 10.
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Because the shear deformation of a beam is usually insignificant
compared to the deformation due to bending, it is to be expected that
the effect of finite transverse shear stiffness of the stiffeners on
the plate and stiffener stresses will be small for plates with stiffeners
of practical size. This expectation is supported by the results in
figure 9(c) (i) for the pillow-shaped temperature distribution problem
with rigid-jointed stiffeners and figure 10(c) (ii) for the shear-lag
problem with hinge-jointed stiffeners. 1In both figures the wvalue of
ha3/I = 110,000 is used, which corresponds to the stiffeners of fairly
low (but practical) flexural stiffness. The alteration of plate stresses
in these two figures, due to varying the stiffener shear stiffness pa-
rameter A/AS from 1.0 to O, is seen to be very small and localized
near plate corners. The alteration of stiffener tensions and shears is
also insignificant and localized near stiffener ends. As far as
stiffener bending moments are concerned, figure 9(c¢) (i) again shows a
small and localized (near stiffener ends) change when A/AS is wvaried
from 1.0 to 0. TFigure 10(ec)(ii), however, exhibits a significant and
non-localized change of bending moment for the shear-lag problem with
hinge-jointed stiffeners.

It is known that when the stiffeners are more and more stiff in
bending the stiffener shear stiffness will play a more and more
important role in stiffener lateral deflection. Consequently, for a
plate with stiffeners of very high bending stiffness, the effect of

stiffener shear stiffness on the plate and stiffener stresses may be
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expected to be highly significant. This expectation is confirmed by
the results in figures 9(c) (ii), 10(e) (i), 10(c) (iii) and 11(b). For
all these figures the stiffener flexural stiffness parameter ha3/I is
taken as the limiting value of 0. It is noticed that, in this case,
the effect of varying the stiffener shear stiffness’ is by no means
a localized one near plate corners as in the case of low stiffener
flexural stiffness. Rather, the effect on the plate normal stress
Ny of the pillow-shaped temperature distribution problem (fig. 9(c)
(ii1)) is seen to be more significant in the central region of the
plate than near the corners.

It should be mentioned that.the dashed curves in figures
10(c) (i) and (iii) are not computed results but are the exact results
obtained by a simple direct calculation based on considerations of
equality of strain between stiffener and plate and overall equili-
brium of each stiffener, as mentioned previously. The computed re-
sults can be found in figure 10(a) (iii).

It is interesting to see that figures 9(d) and 10(d) exhibit
a pronounced effect of the eccentricity between stiffener axes and
plate edges on the plate stresses. This effect is seen to be distri-
buted throughout the plate and highly amplified near plate corners.
In figure 10(d), for the shear-lag problem, the maximum plate normal
stresses Nx and Ny are changed enormously near the corners by intro-
ducing the eccentricity between stiffener axes and plate edges. Owing

to this important change, it is concluded that in shear-lag problems

39




especially, a careful study of the eccentricity between stiffener axes
and plate edges is needed for a safe and economical design whenever
such an eccentricity exists, and the plate stresses should be com-
puted with the inclusion of this eccentricity.

The effect of this eccentricity on the stiffener stresses is
less important as indicated in figures 9(d) and 10(4d).

It is an attractive idea to try to replace a non-uniform
temperature distribution by an equivalent uniform one. Figure 12,
however, discourages such an idea, for the two types of temperature
distributions dre seen to produce entirely different types of stress
distributions. A careful consideration of the actual temperature
distribution in a plate for a practical problem is therefore
advised.

EXPERIMENTAL INVESTIGATION

A limited experimental investigation to confirm the theoretical
approach was felt to be desirable. Therefore an experiment was per-
formed corresponding to the entirely symmetric shear-lag problem of
figure 5(b) with rigid-jointed stiffemers. In the actual experiment
tension loads were applied along one diagonal at a time, and the
strains that would be produced by simultaneous loading at all four
corners as in figure 5(b), were deduced by appropriate rotation and
superposition. In the following subsections are given the detailed
description of the test specimen, the test procedure, and a com-

parison of the experimental and computed results.
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Detailed description of test specimen. The test specimen was

made of 7075-T6 aluminum alloy. It consisted of a 15 3/4" x 15 3/4"
X 1/16" square plate sandwiched between two identical four-sided
square stiffener frames. The assembled specimen is shown in figure
7(a), which also show the corner grip fittings used in applying
tension loads along the diagonals. The stiffener frames are
shown in figure 8(a), and the manner in which the plate was sand-
wiched between them is shown in figure 8(b). The stiffener frames
vere machined from a solid plate so that near-perfect joint rigidity
was automatically achieved without any special fittings. The two
stiffener frames were tightly bolted to the plate by 1/8" diameter
steel bolts at 15/32" spacing along the centerline of the stiffeners.
As shown in figure 8(b), narrow strip washers were inserted between
plate and stiffener frames in order to achieve approximately a line
of attachment between plate and stiffener along the latter's centroidal
axis. Figure 7(b) shows in detail one of the corner grip fittings.
The strain gage types and locations are shown in figure 7(a).
Those gages distributed over the upper left quadrant of the plate
were used for measuring plate normal stresses, those in the lower
right quad;ant for plate shear stresses, and those on the stiffeners
for stiffener tensions and bending moments. Strain gages were used
on one side of the plate only.

Experimental procedure.. The Young's modulus and Poisson's ratio

of the material were first determined by means of tension tests on
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two specimens cut in mutually perpendicular directions, from the
plates out of which the stiffeners were machined. The following
values of Young's modulus and Poisson's ratio were obtained, with

no significant difference between the two oriemntations:

E

10.66 x 106 psi

0.33

v
These values were employed in the two-dimensional plane stress stress-—
strain relations in order to convert the measured plate strains to
stresses.

The main specimen itself was tested in a universal tension
testing machine between heads which gripped one pair of diagonally
opposite grip fittings. Tension load was gradually applied and
strain gage readings were recorded at 400-pound intervals until a
maximum load of 2000 pounds was reached. The specimen was then
unloaded and strain readings taken at the same loads during the
unloading process in order to ascertain that the material had
not been stressed beyond the elastic limit. For each gage, a
straight line was fitted to the strain-versus-~load data and the
slope of this straight line was used to define the experimental
value of strain per unit of applied load. Except for some gages
in regions of low strain, there was relatively little scatter of
the test points from a straight line. The same procedure was
repeated with load applied along the other diagonal. By rota-

tion and superposition, strains corresponding to the simultaneous
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application of equal loads at all four corners were obtained.

Comparison of experimental and computed results. For purpose

of the calculations, the plate was considered to end at the bolt line
(i.e., at the centerline of the stiffeners), thus making the dimension
"a'" 15 inches. The stiffener cross—sectional area was assumed to con-
sist of all the shaded areas in figure 8(b), thus it included the
stiffener area proper, the strip washer cross section, and the portion
of the plate outside the bolt line, resulting in a value of A equal
to 7/16 square inch. For computing the moment of inertia of the
stiffener, the neutral axis for flexure was considered to coincide
with the bolt axis (that is the very slight shift in neutral axis

due to the plate area outside the bolt line was neglected), making I
equal to 0.01899 in.4, and ti = 0. All four stiffener joints were
considered as rigid. The stiffener effective shear area for com-
puting shear stiffness was assumed as equal to the stiffener cross-
sectional area, thus making A/AS = 1.0,

On this basis, calculations were made for the plate stresses,
stiffener tensions, and stiffener bending moments in the experi-
mental specimen., The computed results are represented by the
solid curves in figure (13). The small circles, triangles, and
squares represent the corresponding experimental results.

The agreement between theory and experiment is seen to be good.
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CONCLUDING REMARKS

A plane-stress analysis, together with some experimental
confirmation, has been presented for a linearly elastic edge-
stiffened rectangular plate subject to any equilibrium system
of boundary loads and any temperature distribution, on the
assumption that the elastic constants are independent of the
temperature. The analysis is by means of Fourier series.

This problem had been considered earlier (ref. 1), with the
stiffeners idealized as having finite extensional stiffness but
negligible flexural stiffness and as being attached to the plate
edges along their centroidal axes. In the present work, these
idealizations have been dropped in favor of the following more
realistic assumptions regarding the stiffeners: (i) The
stiffeners have finite bending and transverse shear stiffness
as well as finite extensional stiffness. (ii) At each corner,
where two stiffeners meet, their end cross sections are joined
by a coil spring to simulate any degree of joint rigidity from
fully hinged to fully clamped. (iii) There may be eccentricity
between the stiffener centroidal axes and the lines of attach-
ment of stiffener to plate; similarly, there may be eccentricity
between the stiffener centroidal axes and the lines of action of
externally applied shear-flow loadings. (iv) There may be

temperature variation across the stiffener depth, producing a
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thermal curvature as well as a thermal strain of the stiffener axis.

Numerical examples have been worked out in detail in order to
investigate the effect of the first three of these assumptions on
the plate and stiffener stresses. Three types of loading were
considered in these examples: a thermal loading consisting of a
"pillow-shaped" temperature-rise distribution over the plate, a
thermal loading consisting of a zero temperature rise for the
stiffeners and a non-zero uniform temperature rise for the plate,
and a force loading consisting of equal external tensions at the
ends of all four stiffeners. In all of these numerical examples,
the structure was square with symmetry about each centerline and
each diagonal.

The numerical examples revealed that finite stiffener
flexural and shear stiffness, joint rigidity at the corners, and
eccentricity between stiffener axis and line of attachment be-
tween stiffener and plate can all have a significant effect on
the plate stresses, especially near the corners, and on the
stiffener tensions. The inclusion of these elements also leads
to stiffener shears and bending moments which, of course, would
otherwise not be present at all.

Certain limiting cases of the present problem correspond to
certain special cases of the problem in reference 2., As a check,
the equations of the present work for a number of these limiting

cases were shown to agree with the corresponding equations of

45




reference 2.

It is expected that the analysis and numerical results of the
present paper, combined with engineering judgment, may provide
qualitative and quantitative information of use to stress analysts

and structural designers.
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APPENDIX A

SYMBOLS

Remarks. (i) The subscript 1, 2, 3, or 4 on a symbol for a
stiffener-related quantity (excluding corner moments) identifies
the stiffener location as x=0, x=a, y=0, or y=b, respectively.
Such symbols when appearing without subscript indicate the common
value of the quantities these symbols represent. (ii) The
Fourier coefficients of known quantities (loads, thermal strains,
etc.) and the initially unknown stiffener-related quantities
(stiffener tensions, bending moments, etec.) are generally repre-
sented by capital letters, while the Fourier coefficients of the
initially unknown plate-related quantities (internal stresses, etc.)
are generally represented by small letters. (iii) Those symbols
used in Appendix B for the combination of certain known quantities
and Fourier coefficients are only defined where they are first

used but not complied in this appendix.

a plate dimension in x direction; see
figure 1.

a . F.C.* for the stress function F(x,y); see.
equations (B1l) and (B85).

a&, aﬁ, %L", ﬁ;" F.C. for F(0,y), F(a,y), F(x,0), F(x,b),

respectively; see equations (B12) and (B84).

*
Here and in the rest of the list the symbols F.C. stand for Fourier
coefficients in series expansions:

——— e ———
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Aps Ays Ay 4y

ASl’ ASZ’ ASS’ s&

mn T LARA1
bn’ bn’ bm’ bm

t 1" mn 1mn
Bn’ Bn’ By Bm

el(Y) s e2 (7) Hd e3 (x) ’

e4(X)

stiffener cross-sectional areas.

stiffener effective cross-sectional areas for
computing transverse shear stiffness in bend-
ing parallel to the plate.

plate dimension in y direction; see figure
1.

F.C. for BBF/Byg; see equations (B39) and
(B73).

F.C. for stiffener bending moments Ml(y),
Mz(y), M3(x), Ma(x), respectively; see
equations (Bl4) and (B938).

F.C. for Nl(y), Nz(y), N3(x), N4(k), respec-—
tively; see equations (6).

F.C. for Ny(x,y); see equations (B24) and
(B66).

F.C. for Ny(O,y), N&(a,y), Ny(x,O), Ny(x,b),
respectively; see equations (B25) to (B28).

plate compliances; see equations (3).

F.C. for 83F/8x3; see equations (B38) and
(B72).

4 4 .
F.C. for 3 F/ox ; see equations (B35) and

(B69).

stiffener thermal strains; see figure 3.
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ex(x:Y)a ey(x9Y)

E
mn

Ey» Ey» Egp B,
F(x,y)

&mn

e glll'

' "
gm’ gm, gn » &,

G,, G

1> Gy B3> G

h

12 koo kg Ky
K

' "o nn
Kh, Kn’Km , Km

plate thermal strains; see figure 3.

4 2 2 4
Czﬁnﬂ/a) + (C4 - 203)(mﬂ/a) (an/b)” + Cl(nﬂ/b) .
Young's moduli for stiffeners.

stress function for plate; see equations (B4).

F.C. for Nx(x,y); see equations (B29) and (B67).

F.C. for N_(x,0), N _(x,b), N _(0,y), N, (2,y),
respectively; see equations (B30) to (B33).

moduli of rigidity for stiffeners.

thickness when plate is isotropic.

F.C. for 34F/3y4; see equations (B36) and
(B70).

stiffener cross-sectional moments of inertia
about centroidal axes perpendicular to the
plane of the plate.

F.C. for —ny(x,y); see equations (B34),
(B92), (B94) and (BI95).

spring stiffnesses (moment per radian) of
the coil springs.located at (0,0), (a,0),
(a,b), and (0,b), respectively; see figure 2.

common value of the above when all are equal.

~F.C. for Kl(Y), Kz(y), K3(X), K4(x), respec—

tively; see equations (8).
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1 11 mnt mnit
Ln’ Ln’ Lm ’ Lm

m, n, p, q
M
M1W),M2®D,M300,

M, (x)

=1

n
N

N4(X)

NX(X’Y) ’ Ny(X,Y) )

ny (x,y)

F.C. for (3ey/3x)x=0, (3ey/3x)x=a,(8ex/3y)y=0,

(Bex/ay)y=b, respectively; see equations (10).

summation indexes (integers).

upper limit on m and p.

stiffener bending moments about centroidal
axes; see figure 4.

corner moments produced by the coil springs at
stiffener junctions (0,0), (a,0), (a,b), and
(0,b), respectively; see figure 4.

common value of the above when all are equal
in magnitude.

summation index (integer).

upper limit on n and gq.

external running tensions, force per unit

length; see figure 1.

plate stress-resultants, force per unit length;
see figure 4.
summation index (integer)
4 2, 2 .
F.C. for 9 F/9x 3y ; see equations (B37) and

(B71).
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Pl(Y) s PZ(Y) ’ Ps(x)s
P4(X)

] 111 m 1nmn
Px’ Px’ Px ’ Px

P

q

q[l' (%)

Q» Qs Qs Q'

11t 1
s S

s', 8", s
n’ "n’ "m m

tas

t;l’ t", tl;lll t];ll
n ’

stiffener cross~sectional tensions; see

figure 4.

stiffener end loads indicated in figure 1.

common value of the above when all are
equal in magnitude.

summation index (integer).

external shear-flow loadings; see figure 1.

F.C. for q;(y), q,(¥), 43(x), q,(x), respec-
tively; see equations (7).
F.C. for the stiffener cross-sectional

tensions; see equations (B13) and (B99).

offset distances between stiffener centroidal

axes and plate edges; see figure 1.

offset distances between the lines of action
of external shear-flow loadings and the
stiffener centroidal axes; see figure 1..
F.C. for the first derivatives of the
stiffener cross-sectional tensions; see.

equations (B21l) and (B63).
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Tlll’ T"’ Tullll, TIInlll

ul*(y), uy,*(y)

v3*(X), v4*(X)

Vl (Y) ’ VZ (Y) ’ V3 (%) ’

V4(X)

F.C. for Bzey/ax2 + azex/ayz; see equations
(11) to (14).

F.C. for thermal strain discontinuities
between stiffeners and plate edges; see
equations (9).

x and y components of displacements in plate.
x-wise displacements of points along the axes
of th
respectively.

plate displacement component in y-direction.
y-wise displacements of points along the

axes of the stiffeners located at y=0 and y=b,
respectively. '

F.C. for the stiffener transverse shears;

see equations (B1l5), (B96) and (B97).

stiffener transverse shears; see figure 4.

F.C. for gF/Bxayz; see equations (B40) and
(B74).

F.C. for the first derivativesof the stiffener
bending moments; see equations (B22) and (B64).
F.C. for 83F/3x28y; see equations (B4l) and
(B75).

Cartesian coordinates; see figure 1.
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Gij

e (x,5), sy(x,y),
ny(x,y)

€1 (s £y £5(x),

84(X)

kg (7)s Ky ()5 Kg(x),s

K4(x)

Cartesian coordinate; see figure 1.

F.C. for the first derivatives of the
stiffener transverse shears; see equations
(B23) and (B65).

coefficient of thermal expansion of plate

and stiffeners in numerical examples.
Kronecker's delta, unity when both subsecripts

are equal, zero otherwise..

plate total strains; see equations (3).

stiffener total strains; see equations (1).

stiffener thermal curvatures due to vari-
ation of temperature through the depth of

the stiffeners.

temperature rise of plate center relative

to the stiffeners, used in numerical examples.

Poisson's ratio when plate is istropic.

53




APPENDIX B

THEORETICAL ANALYSIS

In this appendix are given the method and details of analysis
for the problem described in the main body of this report.

The analytical approach is similar to that of reference 1.
However, in reference 1 the flexural stiffness of the stiffeners
was assumed to be negligible. This single assumption simplified
the analysis considerably, for the externally applied running
tensions were then transmitted directly to the plate edges, and
therefore the boundary values of the plate normal stress were
known. The dropping of this assumption in the present analysis
adds considerably to the complexity of the problem. It not only
makes the plate normal stresses along the boundary unknown, but
also introduces unknown corner moments at the stiffener junctions
if these junctions are not hinged. To compensate for the increase
in the number of unknowns, it is now necessary to invoke additional
conditions of compatible deformation, which were not required in
reference 1. These are the requirements that (a) the curvature of
a stiffener and the curvature of the plate edge to which it is
attached must be equal, and (b) the change of angle between two
stiffener axes meeting at a corner must be equal to the shear
strain of the plate at that corner. These conditions lead to as
many additional equations as there are additional unknowns.

The details follow.
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Basic equations. With u(x,y) and v(x,y) denoting the x~- and

y-components of infinitesimal displacement, the strain-displacement

relations for the plate are (also see eq. (3))

au
ax

E.= £ =25 Y, =2% 27 (®1)

EX v~ 5y T ox

Equations (Bl) imply the following compatibility condition on the

strains
2 2 2
2 ‘Yz! _ 2 Ex _ o g\z -0 (B2)
ex3Y 34* x*

The plate equilibrium equations, namely

DNx  DNay_ 2Ny + aA/x‘y-o (83)
ax Y Y IX
imply the existence of a stress function F(x,y) such that
23F °F F
Me=Sg YT M= s5hg (24)

Elimination of the strains in equation (B2) by use of equations (3)
and then the stresses by use of equations (B4) leads to the following
form of the compatibility condition, in-which account is already taken

of the equilibrium and sStress-strain relations:

o*F S 6, | . _
C' 2 +(C-2 R G STt Sert et @9

Considering now infinitesimal lengths of the stiffeners as free

bodies, and utilizing equations (B4) to express ny, NX and Ny at the
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| plate edges in terms of ¥, one obtains the following equilibrium
equations governing the longitudinal variations of the stiffener

cross—-sectional tensions, bending moments, and transverse shears:

L — (5 eea LW =0 \
a/fa 5%F
J9 T (azay/\z—a.—f--?z(y) =0 5(56)
d8 -
o= azay /Y=o —L =
o -
gdx azay) = +Z =0 )
M,
7 4 (37?97)7- A LD =Y cg) =0 )
AT 4 OF N _ Gyt =
fz; * % Gopea™ 5 é K =e ) (B7)
Tz ~& (azay)y o *LEE— Y =0
a’/"é ( axay)y=é — @l =0 )

+(ayz)z = \
‘/bé éij/a z=a —Nago =0
Iy »(BE)

3 —
az=) o TN (R =0

_&+(3;3_J=5_A/4(z)=o )

The sign convention for the stiffener tensions, bending moments and

shears is shown in figure 4.
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Integral attachment between the stiffeners and the plate edges
implies equality of their longitudinal strains along the lines of
attachment and leads to the following additional set of conditionms,
in which account is taken of the strains of the stiffeners due to

bending and non-uniform temperature distribution across the stiffeners:

4' z.=, [——‘-J-Q 1 L + Qe=E (= (g +CNy ~C Me),..,

2
£ +[£2 +,{;(j)jz‘+ )= E,(aP=(E+CM~C M), .

£, M |
iy [&5{1 +,r179]z‘ 4G )= En (Y =(Ca? G N~ G,

L&  rM 4
e ] G L= (G M AW

In these equations, the terms on the right-hand side are from equatiomns

(3). Substitution of equations (B4) yields

TAL/ [ f/f@”]“*[‘?[y) Ges -G )zo ((é’ﬂ)

' & ez

Pc‘a [”wf/gzy)jz;£+[e;(y)-<;(a,yg]- a z+ afz.

=<2
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(B9)

_ﬁ/ﬁ [/’73{1)7,_[(27]2‘ +[€f2.9 @(102/—59;@”*4%:0:&

AsEs %
WA
i [ +A’(:0]z‘ +[€(29— Gz 4]~ c s 3( Z)

Integral attachment between the stiffeners and plate edges also

implies equality of their curvatures. With the use of this condition,

equations (4) and (5) together with (B4) lead to the following
equations of compatible curvatures between plate edges and stiffeners:

i oF 8%y L1
(GG C ke (520" 2 3,

tet G NI+ =0
I~
(G-I Gz2 y‘)z - a,z3) )-a [ Iz
‘@f(iyﬁ W] 1G9 =0
(G-QHe), ~CEE) -~(E5, 2 0o

éé‘ﬂgl‘ .) 6%57+/<;(29:=¢9

B2 o%? M
( -%zza,)_ —cr:a—;;-) v W=
[ ( T2 y _J A/ w‘/ @ =
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The problem can now be stated essentially as follows: Solve
equations (B5) to (B9) and (B10) for F, Pi’ Mi and Vi (i =1,2,3,4)
subjected to boundary conditions arising from the prescribed forces
at the stiffener ends and the prescribed distributed loadings Nl

through N, and 9, through Q- In the following sections a formal

A

solution to this problem will be obtained in terms of Fourier series.

Series assumptions for F(x,y), Pi’ Mi and Vi' In the region o<x<a,

o<y<b of the plate, excluding the edges (x = o, a) and (y = o, b), the
stress function F(x,y) will be assumed to be representable by the

double Fourier series

7N
_ . I )y Z
Fex, 9)= ,,g, ,,2:/ Rl )5”7(”2 2 (B11)

with as yet unknown coefficients. Equation (B1ll) is, of course, not
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- valid at the edges; however, there the values of F can be represented

by the single Fourier series

Fce ) =,,§A: a,,’szh(%’! \
v (o<¥Y<b)
F (2, y).-:”_% a’:’\s,ﬂ(ﬁ}y) > (B12)
F(x,0)= g ay'sin (2%
(o<=x< @) |

F iz 8= 5 alsm?I%)

Equations (B1l2) are again not valid at plate corners. At the corners

F is assumed to be single-valued. It will be seen later that the

corner values of F do not have to be determined.

Similarly, the stiffener tensions, bending moments, and transverse

shears will be assumed in the following form:
N
— / b I
Fch=2 s, 3//7(716?)
N
- 7, 27
B)= 2, 5lsin(ZZL)

n=/

(o<Y<&

_ M . 7 . R ITA
@ (%) _,,E, Sy S = (B13)
( o<x <)

2 ww .
£ = z \5;”/.5”7(%) /

(o< Y<éb)

3

M=,z b sin (zgz)

(o<x <)

2w
/j;(29-=’$§’ég,smq(2%gga )
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[ =0
y nry
V. =,2 v cos (Z2)
— Z7 7 mIx
Ko=2 vlces(%Z
a4
A, =2 Y cas(ZZ)

(osYs b

F (B15)

The coefficients in the series in equations (B1ll) to (B1l5) are

related to the left-~hand sides through the usual formulas:

a-b
dmﬁ:ﬂ-—‘é-[f Fez, 50 sinfZlZ /h(%’d)a/zo/f

’, 4 .
a, =32‘l FeopsimlFhdy | ek.
S, = z& P sin(2FL Ay

p y: . P
4, = -Z—/o ,(ﬁjln(%—)dj/ erc.

7/”/:_ _?b&/ V(y)w(_gi)a/j e/c.

Series for the derlvatlves of F(x,y),

12 M and V

(i =1,2

(B16)

(B17)

(B18)

(819)

(B20)

»354).

The derivatives appearing in equations (B4) to (B9) and (B10) will also

be assumed expressible in series as follows:

oY =0 y
o S
Q/.Ig =,,,2a‘, tm cas ﬁéﬂ’tj
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79 " et
f//;: =”___Z; 2w, cos o 7 >
(B22)
dpts = 5 w07 cos (FD
- m;; ) o co<xX <A )
jz =m=o 'WM/C&J‘( X )
2 = ¥ g/ 55D
a/i ”;’ Co< 9<4)
4 o, g7
=g =22 (%2 523)
Vs M _ mx
L2 =2 &
(e<x<a)

xS
2= 22 sin (P50

2 N . .
Ny ZE = 2 2 e in(ZB9InED  (J5) 29

2
X M=) =1

27 4 _
.(/Vy)m= (;_zé;%w = ”zzl C,,’;/n -ﬁzﬂ—j) (o< Y<bD (525
4 N , .
(/\/g)z=¢=(§—é/—f W= 2 En :m(-%}’lj (0<Y<4) (B28)

JZ _ M o maZ
CNyly=o = (27*5).]:0 —m2=-/ Com S5 (o< x <) (B27)

(/\.9)‘7% =(§—é} = ZMQ:’/J/}y(—’ﬁg_z) (o< <) B28)
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-2(2-5})//(_73)3,,(’””1 w;[—’lz”éagla/z (B60)

—JI» Y. T
0, =2 )2 /Giang[ Z’jsm{éj)’é#/z: (B61)

Zrr s -“?—(i:-ﬂ—z//(——i):n[”’”car(%a‘/j/z (B62)

ab xS
The coefficients appearing in the series for the derivatives
(equations (B21) to (B41)) are , of course, not independent of the
coefficients in the series for the basic quantities (equations (B11)
to (B15)). The former can be expressed in terms of the latter by
means of integrations by parts in the right-hand sides of equations

(B42) to (B62). For example, from equations (B42)

/. 2- 4 y
2,/= 2522/ prb) costrm - £+ GE [ P24 ] \

= ‘%é.ﬂ’[f(‘)w(ﬂﬁ) ~Pr]+ —’%’-’-‘ s,

£ =23 J;o[f(é)CQS(nw)—_P(oy-l--Zz S Y (B63)
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wy /
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Similarly, from equations (B43)
,

-3,
u,,’ 26”"[/'/,(5)60.?07”)~/V,m)]+—%{-’_ g

)

v _ 2—-0(;,, nir
== Zfﬁf;czbiﬂﬂJYUbﬂy-—.A1;(d&7qﬁ == b,

= %{I_,,_, ] M, castmm~1 4] + ZE 4,

74 - [/
Wi = -2?‘{\_»”[/;/: (@) cescmm - M + 27, .

and from equations (B&44)

g, =5 v’

st mT L~
.

m a. “Im

? (B64)

? (B65)

Similarly, two partial integratioms with respect to x in equation (B45)

give

/ o
Cnn (EDZ [ 2] -7 ] - (B R

Two with respect to y in equation (B50) give

Fonm =(POFL @0 0" ] - (4D A
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In equation (B55) partial integration with respect to x, followed
by partial integration with respect to y in both of the resulting

terms, gives

/';" = (-2‘5;:":2(2‘ ”0)[("/)mm;-(d,£)—(“/)m;(%0) _(__/)’7;(014)

2-d, N
tdig
+ Feo, 0)f+(ZT) =222 ), @) ]
+ (55 2-J» 2222 [0 ") ~ @) ] HEZIN D) Gon (BES)
in which single valuedness of F at the corners has been assumed.

Proceeding in a similar fashion with the right-hand sides of

equations (B56) to (B62) one obtains

e,,,,,=("” f“/) I/ _(”177)32[0 {")Md ,:/ ""(m”) d»m (B69)

@.

4:,,”=(—”5—)Z‘3 A M (‘%‘) ot = A ] 4 2E)* B (B70)

H=s i”at”.) (4D "™ F (@)~ Fra - Frod) +7c00)]

+ 2BV [ ay- 2]+ 2 (B0 G, 4] WD, (B11)
4, = ‘Z-;—:Q”P[ )"~ ] - (””"2 2 I e, =2, [~ (22 e (B72)
om =37‘S—\-[ 72~ F.7 - zz'[@) 2y ] e, (B73)
2rnn= -CE) J., (B74)
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ZXmn = —(’%E)_/mn - (B75)

It should be noted here that the stiffener end tensions Pl(o),
Pl(b), P2(o), P2(b), etc. appearing in equations (B63) are the limiting
values of Pl(y), Pz(y) etc. as stiffener ends are approached. They
are in general not equal to the externally applied stiffener end loads
P;, P;', P;", P''"', etc. because of the mutual reaction forces exist-
ing at the points where stiffeners meet (see fig. 4). The Pl(o),

Pl(b), etc. are related to the applied loads P;, P;', etc. by the

following equations:

£ = 5= Yo Beo= £+ ) \
£ =F-p@ VACEY ANARCS

f(ﬂ%)
VAOLY- e L=+ ek
L=V B@)=B4 ik /

Similarly, the stiffener end bending moments Ml(o), Ml(b), MZ(O)’
Mz(b), etc. in equations (B64) are the limiting values of Ml(y),
Mz(y), etc. as the stiffener ends are approached. When there is
essentricity of attachment between plate edges (therefore corner
hinges) and stiffener axes, these stiffener end moments will not be

equal to the corner moments 1° MZ’ etc. produced by the coil springs.
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The two sets of moments are related as follows:

M cor=14,-4 V(o) 1,02 = /7, +z‘,‘\l§ I
A
M&=r,-¢, V(a) M, b= 11, flf;:%(d)
\ . >(B77)
My =17, -t 1@ IMyo) =t +5 Vb
Ms fa)=/‘72—f; AD, Mal(@) =17, -H‘f Y b )

Boundary values of F. From equations (B4) (using subscripts on

F now for convenience to denote partial differentiations),

Therefore

6(°;y)= /Z\}(O,O) +£‘y z(a/'y/)a/j’

and

f (o4 =Fcoo * (o) +/5ZJ’//\4{, Co gAYy’ (B78)

Substitution of y = b in equation (B78) gives

4
;5;(z>a)==——/C%Qﬁo b -Feoa) J/rf/f zrﬁo.VL)‘{g'aéy ]

which result,substituted back into equation (B78) gives
VAN 44 ”
Feog) = FeogprLlFcat)-Feoo-[ ) Moy 2dy¥ly’]
J s’
"'[[ NeCo g2y ’dy’ (879)
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Thus the variation of F along the edge x = o has been expressed in
terms of two comstants F(o,0), F(o,b) and the boundary stress resultant
Nx(o,y). Replacing Nx(o,y) by its series expansion, equation (B32),

and carrying out the integrations indicated in equation (B79) give
FCeq)=Fre0)+ z—[;:zo b-Froa) -, Z A (“) :m/_z-@ (850)

Going through a similar procedure for each of the remaining edges, one

obtains

N o 2 .
Fla ) =Fca )+ ZZ[F/@Q—/—‘M/)] -h_:z; A (,Tf-,)sm(ﬁz”lf) (B81)
F(Za)=fFtoo)+ =/ Fea D-Fead)- . 2‘ Cm L ) Sri( 22 (B82)

7
FCxb< Feab+ S IFad)-Fab]-,Z o Ga) s ?ZB)  (883)

Substituting equations (B80) to (B83) into equations (B17) and

carrying out the integrations one has

/

) =2 [Feoo)—cn"Fead)]~62)°7,"

@, =% [Fea o) -0 Fcad] -G 7"
(84)
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Loy =

I

= [ F¢0,0) )" I -6

Q “w_ —2';,." [ /l' e, A)-—(—/) F(a é)] Gﬂﬂ C ”I:ll
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"Thus, the Fourier coefficients in equations (B12), and therefore the
boundary values of F, have been expressed in terms of the four unknown
constants F(o,0), F(o,b), F(a,o0), F(a,b) and the unknown coefficients

g!'', g, e, c&"' related to stresses along plate edges.

I m

Substitution of series into the basic equations. Through equation

(B63) to (B75) all the unknown coefficients in the derivative series

are expressed in terms of the basic unknowns a__; s', s'', s''', s'''';
mn’ “n® “n m m
b' b" b"' b'l". v' Vl' V"l v"", C' c" C"' c""
3 b m 3 m 3 n’ n E] m ’ m 3 n’ n b m ) m
g', g'', g;", g;"'; and F(a,b), F(a,o0), F(o,b), F(o,0); and in terms

of the end values of Pi, Mi and Vi (i =1, 2, 3, 4). Relationships
among these basic unknownswill now be obtained by substituting the
assumed series into the basic equations (B5) to (B9) and (B10).
Considering first equation (B5), substituting into it the series
expansions from equations (11) and (B35) to (B37), and eliminating

e ns L.s and P through equations (B69) to (B71), one obtains:

< / ERE [en- ") ] ~(%T 22/~ coma] + %@4@.’,]

+(C, 285 (ZBED [ ™ Fah - Fra,9 - 0" Fcad) +752)]
*;‘( (5B €na., - ]+ 2 5D DY 2L 0", -,

+ (P e [+ C JEDE [ 25T

— B F a0 an ]+, f + Ty =

72



Solving this equation for a__ and eliminating a', a'', a''', and a""
mn n’ "n m

through equations (B82), one obtains
a,, =”—1—,;4][—-3 [ Ecad) -7 Fea o) —) o b+ Froa)]

/

~z 1 Sm + Z B 0 G + FEEBN Gl e T TC

(}”77) ﬂ_)/—j”:—()i”’,[(/”yd-f(‘ﬁfc 2Cy)]

+3 ( X,,,,r)[c -c) a,,’j[f—;@c' +cZE)%C, -JC,'-)]J; (B85)
where
Epr = Co (BB %4 (C-2G00 2B 45 4 & 05 (886)

Thus, through the compatibility equation, the unknown a have been
expressed in terms of a smaller class of unknowns, namely the cé,
C;l" Ct;l”’ C{;}lll’ gt;l’ gt;" grv‘vv’ and gvvvr

Turning now to the equilibrium equations for the stiffener

tensions, (B6), substituting the series from equations (B21), (B34),

and (7) and utilizing equations (B63), one obtains the relationships

_J;o 7
'Z—T-[(‘/)”ﬁféj—_zlofoyv‘[%@.fn/—Q -2 j”m:.o (B87)

7 przo
(rn=cs,2- - /\/)

-— ” . 4 M '
n=c /L2 --- W)
w AN
”"’[(/)f(a) AL +CZD) 5 ~ G ~24 =o (B89)
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2"5;)1 ” . 02777y 7 27 \ "
22 [ )" Pea) - Lim] +HED) s, + Ry - 2— S o (390)
Uen=G L2 ~ = M)

The equations of this group with n = o and m = o will be written

separately. From equation (B68), in conjunction with (B84) and (B85),

it is first noted that

dfo‘o____a_g_[/z—/:)}oj_/‘:—zq,oj -—F(’@é)v’-Ffdzé)j (B91)

' Y 202 2y ,
o/;n =’cz/,0no)(;2; -aﬁg—) or 719
}(B92)

N iy
/mo b (/1);1-) (¢ o C-/n/ Lor mxo

o, (B89) and (B90) for

Therefore equations (B87) and (B88) for n

m = o give

Pbh=rca)-4 -7, # z (i) can -y =o (B93a)

LH-p+b8,+ é/ao—- Z < ,,)( = )= 0 (B93b)
w ' 4 4 27 v

LR -F@-a -al,t 2 G)(Z ~F,) =0 (B93c)

L)-L)+aq +2], ~ > ”ﬂ_)[j,,"’ AT M (B93d)

These equations serve to establish four different forms of expression

for joo’ as follows:
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"y

r
Joo= = + G L LA - L@+ 2 (L)t ] (8942)

\ 4 iy 4

Ao ==RS —4 [ Bl -pr) - 2 GEyen"Ca- ] (B94b)
: " / N yi w2

Jom QAL Bt B G2 50] 1)
f sy / N A ” V4 P

L = —Q~F [ Lca-Be —ﬂ% G, =4, // (B94d)

All the four expressions will be used at different times in the later
analyses.

Equations (B92) and any one of (B94) give expressions for those
unknown jmn having at least one subscript zero. An expression for
those jmn with neither subscript zero can be obtained by substituting

T trey

into equation (B68) the expressions for aé, aé', a '', al and

an from equations (B84) and (B85). The result is:

. 72"2 , , 2 Y, ”
Ton == 25 [ Ton* (G =0 E]C + 2 OPUZ 0 2, 1Cf
X O

nxo

wr o0 3, ’ “
t g [BOEI I I FCRILL -0 I 99

The equations of equilibrium for the stiffener transverse shears,
(B8), will now be considered. Substituting the series from equations
(B23), (B27), (B28), (B32), (B33) and (6) into equations (B8), and

considering equation (B65), one obtains:
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U =511 28,7 xe \
y,, =677r) z ;’7//// 8,7 2% 2)
(B96)
V” )[C‘ 5 J (/1%0)
U =[-8 (o 2)

Meanwhile, from equations (B15)
N 14
o) = - / ’
Vio=2 v, =2+ 27" et
It therefore follows that
4 é 4 7
Vo -2 G2/ 7 =877

V74
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Similarly, equations (B7), with the various terms replaced by their

S

series expressions from equations (7), (B34), (B15) and (B22) and

' ey w%"' then eliminated through equations (B64), give
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h the use of equations (892), (B93), (896), and (B97) one
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Equations (B9) can now be used to establish the expressions for

the Fourier coefficients s', s'', s''', s''"'" in terms of the same
n’ “n m m

class of basic unknowns c&, cé', c&", c;"', g&, g' , g"', and

g!'''. Using series expansions from equations (9), (B13), (B1l4),

n
(B25) to (B28) and (B30) to (B33) and eliminating b&, bé', bé",

bé"' through equations (B98) the following expressions for the
sé, s&', sé”' and s"" result:
S - " (f)
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Reduction in number of simultaneous equations. Equations (B87)

to (B90) with the n = o0 and m = o equations excluded, and equations
(B10) with their various terms replaced by series expansions, can
now be used to obtain eight systems of simultaneous equations in

which the c;, c;', cé", c&"', gé, gé', g;", and g"" are the only

unknowns (V (o), V (b), l’ 2, etc. are assumed to be known for the
time being; their expressions, in terms of the c's and g's, will be

given later). The first four of these systems of equations are

obtained from equations (B87) to (B90) when s;, s&', s%", s$"'

jmn, Pl(o), Pl(b), etc. and Ml(o), Ml(b), etc. are eliminated with the

aid of equations (B76), (B77), (B95) and (B99). They are as follows:
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The remaining four systems of equations are obtained from equations
(B10). First, the series expansions from equations (6), (8), (10), (Bl4),
(B27), (B28), (B32), (B33), and (B38) to (B4l) are substituted into

equations (B10) which results in
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Then x W d b
mn, mn, wm, mn,

expressions in equatioms (B72) to (B75) and (B98), after which a s jmn*

and aé through a;" are eliminated by means of equations (B85), (B92),

(B95) and (B84). The following four systems of equations result:

and b& through b;? dre replaced by their
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Equations (B100) to (B103) and (B105) to (B108) contain

4 (M+N) simultaneous equations which serve to determine the 4 (M+N)

unknowns:, namely, c', ¢'', ¢''', 'V
n’ n m m

LR
°

> 81> 8> 8 "', and g

These eight equations could be further reduced to four equations if

equations (B100) and (B1l0l) together with equations (B105) and (B106)

were solved for each c;, cé', g, and g'''" in terms of all the gé,

n

gy ' c&", and cé"'. In place of equations (B102), (B103), (B107)

and (B108) a new set of 4M simultaneous equations would be obtained,
involving only 4M unknowns (gé, gé', cé" and c&"). While fewer
unknowns would have to be solved with the use of such reduced 4M

simultaneous equations, the former 4(M+N) simultaneous equation, (B100)

to (B103) and (B105) to (B108), will be retained and employed in this

report because of its greater simplicity in the form of the coefficientsS.

End shears of stiffeners. Moment equilibrium of the stiffener

located at x = o will now be considered. Referring to figure 6,

taking moments about point 0, and applying equations (B77), one obtains
— —_— Iy £ b o /b
—V 6> b + (=D + £ Yo -yye] + 8 [ Noyo0dy + &[G dly
(-] o

_/f/\/z (0 904 44 +/f V() YdY = o
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Substituting the series expansions from equations (6), (7), (B32)
and (B34) dinto this equation and carrying out the integrations

indicated, one gets

)

~ < N
V(b EL v )= BV ) =) (&) (-1)"(B,- 5)

e -8R0+ L (A=) @109

m=0o

In view of equations (B76), equations (B94a) to (B94d) may be rewritten

as follows:

Joo - "Q __ (P P) Lb %( un) +,§[ (O)—V+(O)] (B110a)

n

=0+ Lb(P P)—,i> -1 (m,)( e ) L[V -V, ()] (B110D)

!

%r (3 - g )+ LV -y, )] (B110c)

]

[-{e]

-'I\/IZ ?AVI: 3M=

0‘—'
-4
[R)
]
2,
)
D=
S~
ﬂ'-v_
]
XY,
—
f
P,PI-

- _Qnu+ f Bm j:‘_ z( l)n b 3 3 )+| [V(b) V(b)] (B110d)
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Substitution of equations (B11l0a) and (B92) into equation (B109)

yields
v. -\ - - t'L i /] ':- ] ] N n b ] —- n b m
((b) = (M, -M)+ + (Ea -B, )+(t, +t,)a,-Y ) (2B, + L(—u) (29, (B111)
n=j ne)

Writing the moment equilibrium equations for the stiffeners
located at x = a, y = o, vy = b, and going through a similar procedure
but using equations (B110b), (B11l0Oc), (B110d), respectively, for
eliminating joo’ one obtains the following equations for V2(b), V3(a),

and V4(a) analogous to (B1l11l):

wl

- A om m & o.oon N a " d
)= L (A -F, )+ 8 (B8 ) - (6 + )0, - Feu&)B, + e ) (B112)
n=| n=y

A . M ™M
_ - — t, L) Aoy m "w m 7]
V(@)=L (A,- M)+ -OT(P; B )+(t,*t,)Q, - [(—l)(,%ﬂ)Bm +,,,£.$')('_:L;’)Cm (B113)

mei
"Wy

i . n m
_ - - t " A g, Mm m m m ny
W= oA 2 (6- 8- 1) 0 - fep e Loz oo

Equations (B11l) to (B1l1l4) give the expressions for four of the
eight stiffener end shears. The remaining four end shears, namely
Vl(o), VZ(O)’ V3(o) and V4(o), can be obtained in a similar manner

by taking moments about the other end of the stiffener, or can be
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obtained by using equations (B11ll) to (B1l1l4) and the equilibrium

Amesmtd v maf I L Lt T atraweal Fmnmmne Ml =ncay T Lomm Arem Aot meno A~
CyudiLlulls UL SLlilclicl Jaltlddl 1LULLED. Llllc LEOSUlillly TADILCOHOSLIULLS dlC
V)= L(M ) (t +t z (B115)
0)= & (f P )e, - 2 (29,

(/] T

\, (o) = (H Ml)+_1-(l> f) t+t 2(__.)5 +Z(hﬁ)3 (8116)

n=(

Vo= R A (B-EL) (6 6)Q]- Z(mq,)B @ (B117)

mz)

V,(o)-:_é.Jﬁz )+t1 (f f) (t t’)Q Z(mﬂB rZ(m—n)C (B118)

me}

Eliminating Vl(o), V2(o), etc., in equations (B100) to (B1l03) and

(B105) to (B1l08). The expressions for stiffener end transverse

shears, equations (B111l) to (B118), can now be employed to eliminate
the Vl(o), V2(o), etc. involved in equations (B100) to (B103) and

(B105) to (B108). These equations then take on the following form:
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' m=t (B119)

ST ATN RS e
m=
200 &) - R) - 5 (L AR R

n ] n n n " 0 n

(% Co — F, c - G'Mn. 3,\, + HMn, 3.»

M M n-

oM

£ - ™ ! n "
e (" )€ LB Lo o)
= msz) mn

(B120)

2 A‘('E:')L_ = - m le_ - o Mmoo
* 3 T, O DI s I3 | (SR S
ms) mna

Az i -
- ‘z“[ A (t) @ “f:r.)+ IHI‘L_—(-') M3]+ﬁ(ﬂ%)+9[m,-(-u)nm’]+ R,
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(B121)

* n=t mr.
(91_(1:';):-, i(q) [C,(Q}T)Bé;w‘—é][ _( l)nﬂ::'
n=i
A L6 (e 2 ) )R- )™ A,, ,) Fcd e B
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' t " t m ' 1y

=2 (B & G- G- & - (o0

*8 1 (AL [ (G S e & Tl

B R4 R

I n) (B123)
(n=12,...,N)
Lo ch ~Ki el - Bl o v g 8
n I\—H
- 2SS L [ B GG (0]
mz)
- 4 LT
+& Do e e L (605G an- () )“Jmﬁaﬁi -t e ]
t,_"“ L g —
b G A ) & L S [T
(n=1,2,..,,N) (B124)
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(B125)
(m: ,2,., " M)

e ] i n un w 1]

-K 9 -P ¢ +5

C
Nm Ve Nm “m N, m N ™

nn

g%Z””UacW@GW*Q[wﬂ]

nz '
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A GGIDL [ e (G )("”)EI e 3[9 3]

z ll' O - n 2 2: v "
+C'1— E,I,( )( )[H ) ] d, Ey Ty m )“"[“ (l)”] Zm

(m=1, 2,00, M) (B126)
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Thus the stiffener end shears, which were considered known
in the earlier analysis for the sake of convenience, have now been
eliminated from the basic equations. If the corner moments, Eﬁj
ﬁé, ﬁs and ﬁ; are now also taken into account as unknowns, equations
(B119) to (B126) contain 4M + 4N.+ 4 unknowns, namely, cé through
ci"', g' through g"" and'i%_ through M4, but only 4M + 4N

simultaneous equations. Four more equations are therefore required.

These ‘four equations are developed in the following subsection.
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Corner moments. The centroidal axes of any two adjacent stiffeners

are at 90° to each other before loading. Owing to the development
of end shears and corner moments, a small change of this angle will
occur during loading. This change of angle is given by expressions
(A) in the main body. Similarly, the plate edges at each corner,
which make an angle of 90° before loading, experience a small change
of angle during loading because of the plate shear stress resultant
ny at the corner. These angle changes are given by expressions

(B) in the main body. Equating expressions (A) and (B) (because of

integral attachment between stiffeners and plate), one obtains

A, V. (0) Vito) -

- — + + = C, N, (90
hl G'o AS! G'x Rs; ¢ s w
M. Velo) _ Vs(a) -

- = 4 - =-G, N,, (2,0
ky  GAn G Ag ¢ mn >
_ (B127)
Rq G, Ase G‘,Asq v

- M—f _ Vi) Vaqto) /
Ry on  on, | Gelm(ab)

t+ » (s G-, A,
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Substitution of the series expression,equation (B34), for the right

side terms of these equations yields

M,
- +
h' G‘;Rs, qusz mz) n=1
M. V(o) _ Vy(a) LT Gt SR
-2l @ g Y, b)) e JM]
2 Gi_'qsz G},Asz toe mz nzi m=i go
(B128)
M,  Volb)  V,¢a) - s L < T
sy o b Vya) - -54[JOQ+Z(-U JMO+Z(~0) .\m+z Z(-l) JMJ
m=i ATt mecy =}

G'z Asy G:, Ase

, +§ i(_,)“jmn ]

- N
. . n
C?-[‘)oo +Z Jmo *+ Z(") Jon
m=\ h=y m=} n=i

-t V,(t) + Vq(o) =
Using equations (B11ll) to (B118) to eliminate Vl(o), VZ(O)’ etc. -and
.mo’ jon and jmn’

equations (B92), (B110), (B95) to eliminate joo’ 3
one can convert equations (B128) to the following final form:
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O'N - M, +/\'ﬁ3 - tp',?,’
M N . MmN .,
T SELE VWY [9oralg, 22T EL (erer, ]
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+"§%,[(;,'3;+%+zcc L(u ”)é e o - ce'z 2[1v2e 0 )%E ]
M J_ d n 9 - )"L “”
o ke LR L e 'Z fulvze S ar g
!
+

(B129)

&y "r LN M wN g "
SN "%1'(9:) o~ [9..;6'/ Inj*66, 8 § 2('.::/.5_'.) [ea=c0"e2]

mey Nz

N Hn
m*Z [Ga *&*ZC'CPL(WJZ WX
" m=,
“Z“"":%,[a'z; G, *26,6, ¢ (2t Z 5]+ & 'Z_(-u malire 2 e g m
mz) S

Enm. " B

(B130)

M i »
=-Gq,2 my - - 2 oy ny DX R
q' 6m=u azy & (t Emn, [9 ( ‘] G G wélhzﬂ( “) b Eﬁ:\, [C'L ¢ 4
N m
e S b A T VP o (nx
+3:m<) 2[1+26, (on )..Z., = ]3 mc UM [ _.nzc;d + (¥ )MZ_. Em] N

S M( ¥ g (_,)n. " s L. "
TRy " JewSe -E[M’ " LS L e
* r'm (B131)
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Equations (B129) to (B132) can be written in a matrix form and
the left side will have a symmetric coefficient matrix for ﬁl

through ﬁ4 which reads
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If the inverse of this matrix exists one can always find an expression

M, M3

and c's. These expressions can then be employed to eliminate all the

for each of the corner moments M

1» , and M,, in terms of the g's

corner moments appearing in equations (B119) to (B126). Eight new
groups of equations result. These eight new gtroups of equations

contain 4M + 4N simultaneous equations and exactly 4M + 4N unknowns.

A solution for each of the unknowns is then possible. However, it is
not intended in this paper to give the expressions for ﬁi through ﬁz
and to eliminate them in equations (B119) to (B126). Although this

can be done by straight forward algebraic operations, the process

is very tedious. Later on, when some special cases are considered,
equations (B119) to (B126) and (B129) to (B132) will be much simplified.

In such cases, an expression for each of the ﬁi through M4 will be given.

Evaluation of plate stresses, stiffener tensions, bending moments

and transverse shears. The foregoing analysis can now be concluded as

follows: The values of ¢'s, g's and ﬁi through Ez can be obtained
from the system of simultaneous equations (B119) to (B126), and (B129)
to (B132). With these values known, equations (B11ll) to (B118) give
the stiffener end transverse shears, Vl(o), Vl(b)’ etc. The values

of the stiffener end tensions, Pl(o), Pl(b), etc. and the stiffener

end moments, Ml(o), Ml(b), etc. are then given by equations (B76)
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and (B77), respectively. Having determined the above quantities,
equations (B98) give the Fourier coefficients b;, b;', bé", bé"',
equations (B99) the s;, sé', sé", s;"', equations (B96) and (B97)

the v&, v;', v&", vé"', and equations (B92), (B95), and one of the
equations (B94), the jmn' Then equations (B13) can give the stiffener
tensions, equations (Bl4) the stiffener bending moments, equations
(B15) the stiffener transverse shears, and equations (B24) to (B34)
the plate stresses except the normal stresses at plate cormers. The

evalvuation of the corner values of NX and Ny is given. in the

following subsection.

Corner values of Nx and Ny. By using the first of equations (B9)

and letting y = o, one obtains

B, (o) .1 M) ~ o) — -
e +1E.I' + X,(o)] t+ee) = e,(00 +C Ny62) -CyN, (0,0

Similarly, one can write

By (b) [ My {b) < _ )
H1Ez_+[éjz_l,_ + K, (D]t + e, () = e,(a,b) +G Ny (a,b)-C,N, (a,b)

Py (@) [ Mst2) i . = N e
;3&3' +[ E-—.,I; +7(; (Q)}ts t €;(a) e (2,9 +C, Ny (2,0) -G, 4(a,9)

P‘ (o) M'(o) > (o) t‘i + -
e,(0) = €,(0,b)+¢ Ny(ob)-G,N, (o)
H,E, +[E414 Xq ] q ¢ ) x I) C« X 3y

01 [00 W]t 5 ) - & b0 -G o)

104



£ Co) +[ M'--(:) + Xl(o)] t: + 'ez(o) = e.,(“ao) *‘C,_Ng(_dlo) ‘63 Ny (a,0)

A, E, 2Ty

fl

-21522-P[ PH(O) *’}{3(Q{,t:- + €3 00)

e.(0,0) +C N,(o0) -G, N,lo0)
As Ex EgT3 x (2.9 +G, Ny 3

2y ca)+[ e, X, @] tf + e,(0) = €,(ab) +G,Ny(a,b)-GNy(a,b)
A' E, E# IQ‘

The above eight equations serve to establish the corner values of the
plate stress resultants Nx and Ny in terms of the known thermal strains,
and the end values of the stiffener bending moments and tensions.

Solving the above equations one obtains,

P,(0) M, (o)
N,lo0) = ' L-a (ic [H E, (E_, +k())t +e, o)~ e.’(o O)J \
Py ¢ M A
+ GZ[ H;Eo: +(E;(]':°: +X3(°yt3 + es(O)—er(o'o)]B
Py to) M, (o) “
Jo - T (D) t + e (Q)_e (Q 0)
Ny(o,0)= cczc‘. EC[R.,_E.L Edl+7<1. )z L 4 (8, ]

Py() My (a)
raf BB (BRI e

. NONEALY, “ -
Nx(o’ b)- GTC.I:?_GE EG [ A, ( &g, L +x'(6))t’ v e.(b) e’(D' b)]

Py (o) [ ML0) ~
+G. | '/3’;%7*( B X, o) ey00)-ente b)]j
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N, (a,b) = —| Plb)  rM i
+ G [_1_(__“ 4(“)
A (B0 e o9 ecan]

Ng(oe) = —L g [ ) () .
Y q'ct “C;‘ C. AE, +( -E-,-_:’C"" +7<.(0)) t, +e.(9) ‘e‘i(a’O)J

+ Gs[fi_(g) (f_(ii.) +7(3(a)) t_: + e, —Qx(o,O)]}

+(M1(0) +7( (0))T +€,(0 - e,(a o)]

+ Ci[ P, (a0 +( 3(“).}%‘(4)) tsi + 83(0-) —87(6)0)]}

Ez T,

+X (b)) t,:“ +e (b -e, (o;b)}

11

+7<(°))f + €0 -2, (o b)]}

F, (&) ( Mutb) )((6)2( + e, (b)- e, (a, 5)]

f

) 7_"CIL R,_EL N L
¢ G [ Pes) (H.,ca) 4
3[41,:;, + et +7(4(Q))t4 +e,<a)*e,<a,b)} )
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Special case: symmetry about y = %u If the structure, loading

and thermal strains are symmetrical about the line y = o then a

corresponding symmetry obtains in the stress function F and in the

plate and stiffener stresses. Consequently one may set

o o

224:2"“ é :f4/ %,=£4}i2=£3/‘ \

yd ”
&, =0 For n even ;

E, =4 j & =(;; 5 Aez = Asg ; &, =
Qm 2—4,,, 74/‘ a.// ” ‘5/)7 = Bﬂ =0 7[:/’ 77 evesn 57::=5/;I/
4 _ L4 147 _ trr ’ _ P ” 174
ool m; =G 1 G =G 5 B4 & =5
5(B134)
7;77,-, =0 7[9’;» 727 ever ; 7;,/= 7;7_”=0 7/,,7/ n even ;

1y , v 7" _ # za
= n o o oy 77

7S =T f oalt ;= =3

” ” 7% _
eves ; fp::/;n /;7’ all Crp = Com /or /4 m ;

=/, ; M= et

Ry

In place of equations (B119) to (B126) the following system results:
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A7 aﬂ - A7 = éMﬂ iﬂ' * ///"f/l ?ﬂ
e 4(*)2 /‘*/,,,,[ ’ 9?
- _ 2T _y Z A
(55 z, *-’)C},\,aé;,,,fzz*é/lg */)
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. 771 v 7/
)}g[g(‘a:- ~—

-——a v, 2%
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L A
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‘ 7,
— .-/
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)/‘4? /efl (n=43 D) (3135)
R S e 8 g
- E (2% R4 tF) 2wz ey, Ao (57
ARG OB, w T
M‘ 22 a2 na & A(2F)
7’;,(/) [Cl( Z \MJC]C +“~—~['~£-—s+/)///
o 4(5) -
L +
=7 ) 7) /?,; r=t3,o_ 4, (B136)
G = )g - R PR
== 2(22)7 46T L 4
2( u(z g L, )
=2 /43(4;) ¥ N7 y3 4 7 7
TR (o Tl ey )
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= 43{'——5—% 2 Emﬂ[(a_d)(_é_ ’[) ELJ
< XM mE AW _/_ > mr
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a y4 f?[ 107
t Az £, 7, } Con
- _4_____/_—£——(__’f'+/)/\7 +_i_/_é_.i'_.4-/\7 —2-/ (B138)
G 54,77 (2 1 o a2 7 (=130, N)

7
2

(—/);;, Z’,T / [(Cg _ C; )(%v)z—g(’—,;;/l_éfzjz”/

msl - X /
L2 4 2‘24’ lcnx
| W A é.;z; ) Cm (B139)
</ A 1‘24 = 1‘: ] ="
— Gan T (F D) Ly (e m)
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(IA/m K )/ - ( Won SM»;)C

—_ (: » N / 1 = Ji ’ p
=22 L A [(C-C B O - - e

C; a /1:/,:"; m//
'*'—E’ZA/ {C 7”7727_7-___[5'(/;, /;”)
ZEAcw T e e e )
A ¢ 10
+mr777r£_'3_[3}[07,, “(—)ZLJ
= / 24 N y — —
T G A1 /mf[M, —(-/)”MJ—ZM (=13, - 1) (B140)

It should be noted that in this special case equations (B121) are
identical to equations (B122) and equations (B125) are identical to
equations (B126).

The eight aystems (or 4M + 4N) of equations, (B119) to (B126),
have now been reduced to six (or 2M + 2N + 2). A similar procedure
also reduces the four equations, (B129) to (B132), to the following
two equations, because the symmetry makes equation (B131l) identical to

(B130) and (B132) identical to (B129):
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,
T
- C//(; > iy i 4 = f )":‘/(/ 1)/"2; (73 2 +7 / VAR é—//)n

w2 1y
M /_/ 2 ) A/
o mmrY pg (~1) @, b 7
CCEZ 2 (R (o ,,)- =2 a1+ CE EEs
+ -ZA/ [ / C}.x P v 27 nes ”
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Equations (B135) to (B142) constitute 2M + 2N + 4 simultaneous

equations with exactly the same number of unknowns, namely, c', c¢'',
n’ n

Trt

cé", gé, g;', g;", and My, M,. The other basic unknowns, < ’
gé' and M3, _z are given in the equations (B134).

Special case: symmetry about y = %-and X = %u A further-

reduction in the number of simultaneous equations results if the
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structure, loading, and thermal strains are symmetrical about both

centerlines, y = g-and X = %u In this case one may write, in addition

to equations (B134), the following conditions:

Aod, , D=L, &°=4%, ¢°=4", g =R =R A =R, £ =F,

s 4

a / ”
G =6, A@xzzﬁéz/ &y =&y =0 For 2w even ; 4% =“-&L 74r Z’aé/;

v 274 _ , 7,7 y s’ 74 sy
B, = B, =0 74/ m even; 13, =8B, 747" Z d/o/ ; j—;) =ﬁ7 2/; = '? s
P V4 Ve e d — — — — —
/2 = 121 ='Z€; "Zﬁ; ;M = /M. :/@4 2’@4 =7, T =0 ﬁ£~ mor M eUEN ;
}(3143)
277 trop 7z I
Tr = Tom =0 ﬂy 7 cyen T =7, /;/ 2 ac/a/ )
2 rtp 7 _ i —
Cn = ¢, = /;n ‘Z» =0 7/0'7’ 7 evEn | C’,;/ :C,,// 74r 7 00/"//'
ron /

;;w =¢Z 147” 7 aaé/’/ 7.

Using the above equations and observing that the equations
(B135), (138) and (Bl4l) are now identical to equations (B136),
(B139) and (B142), respectively, one may reduce equations (B135) to

(B142) to the following systems:
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(2, ~ A ) of - (G = m D2

. > A,04%)° .
ST ) E o,

Y

(B144)
Bun =~ Em )i, = (&) — 4] ) o
SR YT o £t
NG SRV A CT AR
* ai[' Zf? Jj’f;}ﬁ ~fom Com=trya,- -, pp) (B145)
Gy~ ki)~ (2] = 0 ) g
=4 F 5L Fl((a- N - )
FE (gL (G- er]- (oS 223
~+ —f;r— ;f_? Z.I%- ¢,
“?:(_5/1,_77%"7 ‘Z_ﬂ/ (7=b2- M) (Bise)
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=g G (G- Y B

4 N =2 2 & 2- f"'
T L |G FE £ [ - G - ) (3D 55

=4 _L. Q — Z—/u (B147)
m (m=43-- -, p7)

24 £ / /! [T W / /0, £ luh 297w/

5. e g, 4G R, el —qa 23, T, e
;) /P M A w Y

el A, TG G F ) Z, = 1 +~ I (B148)

The last equation may be used to eliminate the M involved in
:quations (B1l44) to (B147), provided that the spring comstant k is
lot infinity. If this is done, the following system of equations

cesult:
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—;é...{" < 53_44244 11; G +dy (2 ~ £}y
AL e A R
=8 - A5 4'?{—”}/ Crn=43, <=, n) (B149)

M /56(1 é A3(37_}’—l_ ,/ ;”’2"_[_ e 4 y
-)‘}—;{% ad” Z‘;' (}/ Z, A 3?;7—," (T) E,bi +é:h7°/ N _;A-//ﬂ)}?f
I <)
Z b AHE) o ;) st X
+7%i%ﬂ5 ;! I, 797[[@/4”-'-4(_{427 a ;/g_g:ﬁj
8 (G = A )Y
—i(’ZA/ﬂ{(”ZT)"(’d’(G;+Q /“*7((/—4——6/4#’)2(“&1/2—/]0/
a 23--/;1 £ Z. 5,,;, C WA Z(; F=p a Ef} 3’
4 A 3)
ey
+ 2l F T a5 2

£ L/{g( .:) é f ﬁ ¢ M —/—_ 177
MK Y L X l C/ /—‘—_)7:2/* E/"Z'J] ?8’
— P-4 4 As ("f;)l /
=R, ~Rar w5 CMm=L3 - M) (B150)
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g E 2L (63 QBT B, i
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e e R MO o) P
E rE o el raqa H TR ) by, (G 5
=2, +# z«f:—é—/—f—j;%/ﬂ/ =43~~~ M) (B151)

A
74 __/___ﬂ_?” ﬂz / w " /
Z”_.{véf,’Tg; e 2 o2, (1) z; -4, (z,, —fr”m)}gr

20213 2 =13 mp
7 £ L a X [ (77 »

5 {#Z &4 nm PR (g =G #( —-f Ij » (4o ~Sum )} 7
A/ d; 27 2‘7(— / Z.ﬂ' 2 Z‘;’t.

_$=Z/.3:-{4 C:rT_Z_Eﬂz—[CC G (73 / ,(—;—)—;z_:

/7

A £
< »'_’f?:E_/_ 4
/.  a 4 27 / 1w
—£Z7 '%27{[ ,/45/ rECG T ( )Z.,j, _;Z:]} gg.
— 7 “ / A& /
= Z’M + Z;_é-sfs mz v Cm={43 -, M) (B152)
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When k approachesg infinity, which implies rigid-jointed stiffemers,
equation (B148) can no longer be employed to eliminate the M in
equations (Bl44) to (Bl47). 1In such case no simplification for the
basic equations is possible, and equations (B144) to (B148) should be

solved simultaneously for the c's, g's and M.

Special case: _symmetry about x = a/2, y = b/2, and the plate

diagonals. 1If the structure, loading and thermal strains ae entirely

symmetric, that is to say, symmetrical about the two centerlines-

x = af2, y = b/2 and the plate diagonals, the following relations

exist:

j R AR BB =L (=0,

V4
/7

G GGG Auy=hrr=hor = Aegh b=-8, = 4, =~

for 7 oddf and /‘7=A//' &y =&n =Qn =&n =0 4 7 even;

, ” ViZd 1224, / 94 777 V74

G5 G555 - 5 =R p,

T =Ma=My =My =M, T

=0 76;" 77 or 27 even ;

/ 7 7”7y Vil

8, =8,= 58, = 65, 7@' 7 o/a/ and M= v J F(BlSB)

4 7 w wy
Bpn =8"= 8, =5, for 7 even ;

7C;/ = 7:» =7n = Ta f;r' 7 oaé/' auva/ M=7 Y,
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P4

P s, /
" / V4
A= =Pn =20 o # odd  and M= N

2 I e
e = Cal 2R, = S odd  and M=N;

Ve red 2 P
7w =745 =7, = 75, =0 74}7 neyf/;/ez‘c_ )

It is observed that when the above relations are considered,
equations (Bl44) and (B1l46) are identical to equations (B1l45) and
(B147), respectively. The system of equations (Bl44) to (B148)

then reduce to the following form:

u o 2 409 mr  / ’ ,
= (O A ) + Ly (D = FL ) E

rM A(f‘/z o ’ , 107
—7,':4;';,-- {_Z_( z +/)[4(%}3£_—;/; —/‘7%2'- +£m (6’,\4” _/////7)} m

a AT — =~
LT A A (m=l3 M) (B154)
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M Cf?ﬂfl'__ﬂ_”:__{__ NNz 2 Pl a 2. 'L“
~ RN ET T CE -G - G Fr)
£ a a t° / ’ »
MY T -5 alia Jon ( Gan -ﬁS\M/))} Cm
—_ 2L 2 5 =
=gz M4 Cr=43--=, M) (B155)

Meanwhile, equations (B153) can also be simplified as follows:

M Y =y
Z =-=(C %%A_—Wa—('%z) z-

N

~ ’ (B156)
v ez el ggrece (s Ear + T

My

Again, if k approaches infinity equation (B156) can not be used
to eliminate the M in equations (B154) and (B155) and therefore.
equations (B154) to (B156) have to be solved simultaneously for
g&, c;" and M. If k vanishes,(implying hinge-jointed stiffeners),
equations (B154) and (B155) alone are solvable for gé and cé" by
setting ﬁ'equal to zero. Equation (B156) then becomes unnecessary.

For any finite value of k equation (B156) can always be used to eliminate

the M in equations (B154) and (B155). If this is done, one has
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‘m%..{%(i}“ DO - Bl S 7 a (£

I

0l (2 2 ) i Gy — Hin )} =

= £ il_arﬁ’l{f’//—z’ -7 (=3, M) (B157)

&, omw nw [ 7|2 mTN= t“l
R e (CALZLC) -G () — w7

_ 32 _/ A mx &y / . 4 s
Z(, a £7 nm A g;‘:j; ( a .E,,,z,"'ﬂc,m(ZMn_]f/_vn)} I

_M C mxnr L mr mT £° 4 a a .z
B G L ) ) ) ) AR
F /L a 4y ! L7 * s y)
~ R EL x wn [&As'*‘{(/(;“(ﬂ ;%-;’ 5”,3,]*0{,:”(51»'”)}"/;

< / a =7
=-Kazrol —Z (7=0,3,"""",0) (B158)

Special case: antisymmetry about y = % Similar to the symmetrical

cases discussed above a simplification exists if the loadings and thermal
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strains possess certain antisymmetrical properties but the structure

possesses corresponding symmetrical properties. For example, if the
. . . b .

structure is symmetrical about the centerline y = E-but the loadings

and thermal strains are antisymmetric about the same centerline, one

can write immediately the following relatiomns:

A
43 = §4 ; 459 =/4.$4 ) &n = gﬂ,,: a 7[/7 77 oa/a//' Q,;;//: Q,;”
747« aj/ 2 ;) 5,;/:' 5; =0 7 aa/s/j @:p”: _8/;;” 74’ ﬁaé/ 7?2)'
’ ” , s > _ “ ” tos
GG GG G e G s

7_7,:// =—_77;/// /ﬂ d’% 277 /. fﬂ/ - Cﬂ,, =/;’///= 27////= o %’,’ wdo//

F(3159)

s

, V4 e 2 > A7 = i
/e =T 74’/4,5/ i j o = o 7, 1,7 %= - 5 e

Substituting the above conditions into equations (B119) to (B126)
and leaving out the equations (B122) and (B126), which are now
identical to equations (B121) and (B125), respectively, one obtains

the following simplified system of equations:
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(B161)

727[__/,[ - (-7 cﬂ]
g A T8
N7 AOY M CAe e

yz2,%
(B162)

; ,4( ) _ — 4
o (Bt A ~ 0 ) R
(meis2 M)
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+Cﬁ‘:z,,,,,;,;{4(-’£-/ 5 B (GO~ ()

)(WI)E.Z'J EI, }c':,

1 /
7 2 m E( G- )8 (2

E,L, nr 4 d
(7=2,4,---,/) (B163)
7y 7 ” ” ” “ i 1
T & =By i = L a7 Sg 4
::—4(/’7171-2(-/) zr [(C ’ My
F4_ 4 m=/ a )

£
+ L ) () ﬂ"’) ,,,,,fc“( 4(—’%’)‘

o
c’ﬂ

7)7

// /

L B = 2 L b
7 a +Z”—"zf.z7’”/“ +/)/7"+Z”

N

.
G &

(B164)
( n=2, 4, -"‘//\/)
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— (5 ) (55 :‘zj 3]
‘ézﬁfi(zé + )77 - )~ 2,

(7= 1,2 ;M) (B165)

Using equations (B159) and writing out the full expressions for

c)ng etc., one can also rewrite equations (B129) and (B130) as follows:

L L2/ 2G s 1y — // 20 =
(ﬁ, * pA 6//45/+ 24 +d_ 6/4:3 . (.ﬂ.—@l_ﬁ + 4,54) Mz
4 o 4 T /A7 2__/__‘ ’
= Tt /C‘;;‘{;; 7,?4' a { 5) &, Zm

nza%,
b / Ce z byt )
—_ + —X = —
+7I§4;“ 777[[6:,'4:/ a * a 464( 4 7%/ EM')J fﬂ-
G 4 Am\E L1 )"
—_ Z L / +2C'/(___ ] 10,
a ?7:2/4, 7”[[ / é’) 7)%. E/nn ;/;

(B166)
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=y s‘z[@’ﬂu + —fi— + % AT
+Zdada, 24 (ZZyaz ;’)m[ R I

(B167)

while equations (B131l) and (B132) become identical to the above two

equations.

Equations (B160) to (B167) may be solved simultaneously for

c;, c'', C;", g . g"' g;"', and Ml' M,, or one may use equations

(B166) and (B167) to eliminate ﬁl and ﬁz in equations (B160) to (B165),

and then solve for cn, cn, c'", gé, g' , and g
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Special case: antisymmetry about x =-%, y =”%. If the structure

is symmetrical about the centerlines x = %-and y = %-but the loading

and thermal strains are antisymmetrical about the same centerlines,

then, in addition to equations (B159), one can write

Aicde; Z,=1,, 24", 2= 47 A A=Ak, =2

/
s

E=£z/' 4/262)' /4_;/’_"/:2./' Qm =g/ﬂ =0 7[0/‘ 772 oa/ﬂ//‘

7 ” o7 1"y

&, =&, fﬁr- 7 even j By T En =0 For om oddy

, ” 14 11y

B =-8, fr » ever f% ='_j? =7f;' ::‘f; )

2t 4

5= ==L = L5 Tmao for m odd

? (B168)
ey sy yd /”
T = Tm =0 /07’ 7 4/0//' 7 =7, 74?’ 7 even;

7/ /I— s £ /d , 7
Fow SPn T Cn = Cay Z0 Aoy m o‘a/o//‘ Ca="Co S 7 even,

V4 V{4 — -_— — -— —
2@, = "é%, 74;f 77 eves MM, =/, = /%(4=='/%¢ =M

/
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With the use of equations (B168), equations (B160) to (B167)

may be reduced to the following simpler system:

. ’ / r¢,
( 2&4n +'/;4n >‘%: -.<,é;;ﬂﬂ A%ﬂ‘)éz

,4(2?‘/a M /
= -2 (5 (7 +1)C 2., T2,
(£ -
P E () E R - ,:;,Jcm
< /4(2‘) Al =
'*'_a—é—[z( ‘ )"’:‘ /.Z' J (n=2,2,-.. 1)
(B169)

(D + Fip D8 = (G Hym )

% Y4
= -4 W“(A}()’*’)Ciz . A Y

=24

3(Z§‘ IJ &
e 2 (AL ) E (e -

+.z _(_Z‘gl s LD,
[2/ ) 4 JM— » (777:2'4’___’/\4)
(B170)
/ / , , r
(-Z'-‘M +K/"/ﬂ)c” - (ZOM/: +SM/?/;/z
M
< / .
== 7,5, (s I (22) -3 ];
M ”
+ & E A Q)5 )—L[m,!) gz
: 2% w
7 s }Cm
oL / ys f"' ,
—-EET-iji-:;E-[JEZé— +'4)’07 -z, { »= 2/ﬂ5--‘/A{)
(B171)
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CL B mr [ZZ" + ’)M —Zm (m=2,2,"" ", M) (6/72)

M N 2
—% >, 2. mr ) pr _/ ’
~la R A (Z) ‘iz, > ( )
zﬂ < 7L , B173
£ 4 £ Y72/ / vor
+7’="""'”7z [6‘7’4;/ 2t 44(7 ),,,%4 é:,,;]z; + [

Having established the equations (B175) to (B179), the method of

solving these equations for the key unknowns is essentially the

same as before. As in the previous special cases, the last equation

may be used to eliminate the M in equation (B175) to (B178)
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Special case: antisymmetry about x = %3 y = %3 symmetry'about

plate diagonals. If one imposes the symmetry of the structure,

loading and thermal strains about the plate diagonals into the last

special case, it can be shown that

a-—_—é/ '4/£/42=/43='44=4/ th.': 742/"'-:15‘_:2::;:2‘1‘ \
AR A A R AL AT Y SN

”r 2227 ror "

)[)o'i’ Ma/a/,‘ 4ﬂ/= &n, = 5/:/23/7”:0 /m" 73 Ja/o//

V4

&m :&M :gm :&))1” /o?’ a/[(; 7221 dﬂﬁ/ M:A//

1ty Ve

/ ’7
5”7 = —5,7; =5/77 =—5m 7[:7— Wg/ 77 a./w/ M-’—'A/)

%/= —F;” _ ’_Py,,, _ @W/z B = e o 3
Ton for mar i bl T =T w0 for ol T=TE0
for ol i T =T = To = ~ T for m even and
A T A
for 7 odd ; Fn =8 = = =C For m even and 1=N;
Cm ==Cm =/: = ‘;,,;”/ for m evern and M= A/
/‘7,='/‘Z=/‘Z="/‘74 =/, et . y
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Substituting the above telations into equations (B169) to (B173)

and discarding duplicated equations, one obtains

4 , ,
D24 [ %d( /) 7””[ Z_/] E/ﬂﬂ ?nﬂ (DM” +F';'/” )J jﬁ:

—£—4 (?‘ ﬂ' ~ 7

- > eI )+/)[ (E) 2 =5 148, (G +H )} om
. At A,
= F(2(F7 7)) ~+ :: ) /i7 - R,

( n= 2,4, '/M)

(B175)

4GB (G- B - E00 (1, E M
& C, mx -
—7”_%;{421_—; a £ ,,,[C/( %’,—) (m )("—_) 5[]

g A A Z‘t 177
a8l Byt S} e

( n=2,4,-- - -/M)
(B176)
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a / o ‘4 M / 124
+ + = T
+ 29:%4, mn [&45 22 a d (’: &) 7%4," E/ﬂﬂ]c”’ r”

(B177)

Equations (B175) to (B177) may be solved simultaneously for gt:l, ct;l"

and M. One may also use equation (B182) to eliminate M in equations

(B175) and (B176), which results in

ud A > ! mr 2 7y 7
- mrppTY L 32 7 &7y /
»E;- [ZC;( z 4/)7(—29 Epmn aZ C:(L I~ ;1_,:4’“ ( d«) Errg

2

M Z“: .
A £ -

V4

4 / , /Y

/ a 2 A mT L 7

& T (s + 25 e 200 G )G, Gt )

4 / / ~—
_-_—_FZ/-’ —/€ (7):2/4,"'//‘4)

(B178)

131



=z Ny

EIAZ IS

M gr . ’ P
e R N S o) Pl
_ M {4_(;_7”__/7% / [C/(mtz_c'(/mv)z f’_’i)? &)‘_z_‘_f ‘4 a a #?
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ra A 1, G 40t s b Y
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” a / _—/
—_— _2[ p— - Z,
where
2 A ) 2 A(LY)
ZZ/ (, z ,) ¢t I
LA
< a GAs a*
< / Z_f:_/.
]I//_ ?EI( & /)
Limiting case of negligible tl'so If the plate is attached to
or very close to the centroidal axes of the stiffeners, the values of
tll, tzl, etc., may be considered zero.

Consequently, all the equations
obtained above can be simplified.

For example, equations (B154) to
(B156) of the entirely symmetrical case can now be written in the
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following form with D'n’ F' , G} Ht:[n’ etc., expanded into their full

Mn® "Mn’
expressions:
ZMI{AC/;W ///72_/_+ ClW[ P
gl a1 AR E,, J:nn 7 4 [/4£+ 7§( ) E J}

771'[ £ 1
=03 E A  ort [C/E -+ ({ (”[)7,_/3 7 ]}
- £ ‘_2x oy
= T 4, — T A E, T TAEGET %,5“ B (B180)
(n=1/3---- /M)

. _Cl_————/— 3- mr
7”% 40.’« ~ A EM[C, _C;[_&LZ)J
l 2 M 7T
b {4 & TR N Ll o))

(G-G)(ZE) &) (22 S )2 2 T

/

)

P
Qa

Z

a Aa ;.7
+Z"4_Z” —C—LKﬂ +?a;_[ (77»’!) GVL—]B +gva’z‘ 4

(7=1,3""""17) (B181)
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Similarly, equations (B175) to (B177) of the entirely anti-

symmetrical case become

M
P
2%

s

]

3 a
[ (ZE) 2 — o

.
a

4

2122/,

(B183)

2,4, - --/M)
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Limiting case of large stiffener bending and shearing stiffnesses.

The case in which some edges of the plate are forced to remain straight
can be handled by allowing the bending and shear stiffness of the

corresponding stiffeners to approach infinity. Inasmuch as the
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simplification of the equations developed above for this limiting
case is straightforward (one merely replaces by zero all terms
involving the inverse of the bending or shearing stiffness of those
stiffeners to be held straight), the simplified equations will not be
given except for two special cases, both with Ké = K;' = Ki" =
=KA"' = 0: (a) Double symmetric, two opposite stiffeners perfectly
rigid in flexure and shear, the other two stiffeners perfectly
flexible, t§ = 0. (b) Entirely symmetric, all four stiffeners
perfectly rigid in flexure and shear. These two cases were selected
because they correspond to problems solved by another approach in

reference 2 and therefore provide the opportunity for a check.

For case (a), substitute

/ / < / o
et ao tiao | and KLR=o

£ 2IT)* -4 mmr_ [/ 4 »r 2 5 w2/ /
PRIAE AN bl Aot A KA e
_nr Lz ”
FIGAE+ZE B2 £ T2,
H —
= F2 (GO -2l -R,  tr=13 M) (3186)
=".~ 727
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(B187)

(B188)

—///
~

._IM)

.,r/

N\
It

In equations (B147), first let t; = tg = o0, then multiply each side

by EBIB’ and finally let E313 = o and M = o to obtain

B/

L1\
A N\Y
h

Substituting this last equation into (B186), (B187) and solving for

(B189)
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Equations (B189) and (B190) can now be substituted into equations

(B188), which become

r N » N »
< o ¥ G orr 1 2 2 B Sy
sz QOS5 2 T F,, ~ a5 4% (G, ]

7" i,
¥ (M=43 -, M) (B191)
”?

Equations (B191l) can now be compared to equations (D57) of reference

2. Although different notations are used, they are found to be

equivalent.

For case (b), let

/-

;?727 = arns’ J{:;;=o

A
&G4 =°

Substituting into equations (B154) to (B156), one has

139



4 4 )2/ /
[AFF 2, (a//_.;,,,J//,,
Pl =4 7387 »
[ GAEZE +C,’5;(—”5—/?§; Z-‘;,,]/ Ptk
4‘ ‘5-'4 Vg 7
& gt o (B192)

M
L _cyrmRrs p27 70 o
5 C/“j,-ofz-.(ﬂj ,,,.]/}C‘"
2 a7 5193)
< Asn"-z;”-+ca Zh (B19:
cn=L3 - M)

(B194)
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For M = 0, which corresponds to the case of hinge-jointed stiffeners,
equations (B192) and (B193) are found to be equivalent to equations
(E34) and (E35) of reference 2, where identical limiting and special

conditions were assumed.

Limiting case of small bending stiffness. The case in which the

stiffener bending stiffnesses are zero and ti = tz = o (a=1,2,3,4)

was analyzed in reference 1. The same case may be obtained as a
limiting case of the present analysis by considering the stiffener
junctions to be hinged and allowing the stiffener flexural stiffnesses
to approach zero. The resulting equations can be compared with those
of reference 1 to provide another check on the correctness of the
present analysis.

To arrive at the limiting case just described, let

Mm,=1t, = t. =0 (x=1,2,3,4) (8195)

ok

in equations (B123) to (B126), multiply by ElIl in (B123), E212 in

in (B125) and E,I, in (B126), and finally set

(B124), RA

Eylg
E.I., =0 (%=1234)

The following simple relations result:
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) (B196)

w/ ", )

Substituting (B195) and (B196) into equations (B11ll) to (B118) one

has

V(o= Yy cb)=V, =V, (&= l5c0)= )= j D= \jca)= o

consequently, from equations (B76)

L=p, L= pid), B'=p) B"=L4)
(B197)

B =B, B'=Fw), L= ), L epa

By virtue of equations (B195) to (B197), equations (B119) to

(B122) degenerate to the following system:
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3 m [
;l(—.) ('%;,‘7) Emn ]
[5,:-(-,)'13‘"1'] (n=12,...,N) (8198)

7., -(~')n5,'h (n=1,2,...,N) (B199)

En-G1"CL ] (m=1,2,.. . M) (B200)

.., M)  (B201)
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where

— 1
- | _ 1 C mTr ] _ 1] G mAr
gm - 9#\ ] "a'_' 7 gm - Sm ) —d‘:

and
Un' = Q,: +%[f.(o)—(-|)"f'(b)]+ b (B,',—B:) + A,E, M(GSB:\"‘T,:)

anTr
M
=) Ko
m:)

Ui 0l e 2[R O-CT (0] o (o) -eL)enE (6, T))

M
+ Z (- ')mKnm_
m=!

(- oy ()

Ur'= G + i‘,[Pz(O)‘(")m o))+

e " mo_un

Um = — Q',,: +.&[f’(0)-(‘l)mf,(“)]' 5%:11 (Bm“ 8»\) +A,E "';’Zr(qssit"'T':“)

o
bmT7

+ i 0™ K
n=l

with Kmn given by

Koo = Lo, § 20 o= 3 ()6, [o-00" 00
n
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In reference 1 the plate external distributed tensions are
assumed to be transmitted directly to the sheet edges. This condition
is now given by equations (B196). The last four equations, (B198) to
(B201), are found to be identical to equations (B61) to (B64) of
reference 1 except that the loading terms Rﬁ, R;', Rg", Rﬁ"' in
reference 1 are now denoted by U&, Ué', Ué", and Ué"', respectively.
This coincidence is considered as another check on the correctness of

the equations presented in this paper.
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APPENDIX C

METHOD OF SUPERPOSITION

In this appendix it will be shown that the shear-lag problem
(Figure 5(b)) and the discontinuous-temperature-distribution
problem (Figure 5(c)) are very closely related. 1In particular, it
will be shown that the stresses for either one of these problems
can be obtained by superimposing a very simple stress distribution
on the stresses of the other problem. For simplicity this will be
demonstrated only for the case of the entirely symmetric structure
with isotropic plate and stiffemers and plate of the same Young's
modulus; the same reasoning can be extended with no difficulty to
nonsymmetric structures.

The argument is developed with the aid of figure 14. Problem
A represents the discontinuous-temperature-distribution problem,
in which the stiffeners have a temperature rise T of zero, the
plate a uniform temperature rise of 6. Problem B represents the
same structure with the same temperature rises, but in addition
stiffener end tensions of magnitude o6AE. These tensions in
Problem B are so chosen as to produce stiffener strains of magni-
tude of in complete compatibility with the plate strains of
the same magnitude. In view of this compatibility, the plate
stresses are all zero in Problem B, while the stiffener tensions

are uniform and of magnitude a6AE., Problem C represents the
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shear-lag problem of figure 5(b) with stiffener end tensions of
magnitude -~aBAE. It is easily seen that by superimposing the
loads and temperature rises of Problems B and C, one arrives at

the loading condition (purely thermal) of Problem A. Consequently,
if the stresses for the shear-lag problem (Problem C) are known,
one immediately obtains the stresses for the discontinuous-tempera-
ture-distribution problem (Problem A) by superimposing the very

simple stress distribution of Problem B.
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Figure 6.- Free body diagram of the stiffener at x = 0.
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(a) Comparison of results for rigid-Jointed stiffeners(solid curves) and
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hinge-jointed stiffeners(dashed curves); ha3/I = 10,000; A/Ag = 1.0;
ti/a = 0. (problems 2 and 8)
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(bv) Comparison of results for different stiffener bending rigidities;.
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Figure 9.- Continued.
(c) Comparison of results for finite stiffener transverse shear stiffness
(A/Ag = 1.0 , Bolid curves) and infinite stiffener transverse shear
stiffness(A/AB = 0, dashed curves); ti/a = 0; rigid-jointed stiffeners.
(1) ha3/1 = 110,000 . (problems 1 and 5)
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(11) ha3/I = 0 . (problems 4 and 6)
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(a)

Comparison of results for zero eccentricity(ti/a = 0, solid curves) and
finite eccentricity(ti/a = ,0272, dashed curves) between stiffener
centroidal axes and plate edges; ha3/I = 10,0003 A/Ag ='1.0; rigid~-
Jointed stiffeners. (problems 2 and 7)
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1.0' 441 -8 ¢ - ..-. .6

L1l

=
3

XA

N\

Y

|
L i] B
VA TFAYZY AN

NJ

—IXIITXA

AN
R
\ VA
A NI
A

7y -

T2X
7 AN
4

AN I
"
-

I

\'hY

AV
1\
1
o)
L
S
1t

[HEEP 40

O AENAVERENEEEEy NN R

NxA u T THE
Ph Y11 I U I O O O Y D

\ . N A EHER A

=

u NERSARESSS ‘v A
111 N Y = e 1T
A 3 Ea ._—-03 d. __‘ I B | ]
™ .
HHN LHH 2 S
N o N I

7
y A
:
|

|

|

L

1

]

Y
VAN R
y SN

1] _

Y x/a 5 Y x/a

Figure 10(a).- continued.
(11) ha®/I = 0; A/A, ='1.0 , (problems 12 and 16) -

161

5



6

N_A

Ph

N
AR T
T Ty

'f‘T—T'_ T
- =
T [N NS
(SRR A =
. T -
I
T
R
L
1
P SRR

.6

;;.Em: 0
J—-]-.-’—-ﬁ.l..z..s,.a,.s

2
>
1
1

13

|

]
T
Ll
i

!
[

4.4 . -
R A
. ]

N

-
L

-.15

'8- L1

3
H
T

V(x)

|
&4

WLt 4

L]

Ql;

e}
.
+

[
T
Tt

|
> A

14- s
[ \fii " 1
TN
T "&; 4

td td

x/a

Figure 10(a).- continued.

.5 0

(111) ha3/I'i 0; A/Aé = 0. (problems 13 and 18)
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Flgure 10.- continued.
(b) Comparison of results for different stiffener bending rigidities;
A/A - 1 0; t /a = 0,
1) ha /I = 110,000( go1id curves) and ha /1 = 10 OOO(dashed
curves); rigid-jointed stiffeners. (problems 9 and 10)
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(i1) haB/I'- 0(solid curves) and ha3/I = 500(dashed curves);
rigid-jointed stiffeners. (problems 12 and 11)
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Figure 10(b).- continued.
(111) ha3/I = 110,000(solid curves) and h83/I = (O(dashed cuzves);
hinge-jointed stiffeners. (problems 15 and .16)
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Figure 1U.- continued.
(¢) Comparison of results for finite stiffener transverse shear stiffness
(A/AB = 1.0, solid curves) and infinite stiffener transverse shear
st:lffneas(A/As = 0, dashed curves); tila = 0; and
(1) haBII = 0; rigid-jointed stiffeners. (problems 12 and 13)

166



- . qQ
_.8 _\“ tO AS44 H-E 4
CE AN PR R LA /e
' IXUTEFHEEE
N L
RERENY ___‘.\‘_..__J
NxA.' -~ o o ' o0 108 L O O Y 0 O
Ph 1 o
| -] .7/ u
. E
4 -1 :’__J,ﬁ—'
— - -4 ’/
T ; .
gy =
74 T
rhv ]
0 1

t . 399
.8 l_u__

to 1.39

4

y, 4
1/

N A NS
Y.
Ph K

I ——

y4

0 ?Eﬁk

-.1

0 x/a 5
Figure 10(c).~ continued.

12
.3
o2

1.574

Bl ﬁahto 1.596
.8 [Ty
4 ._:y/a
NHALE H
\\ -1 |- - .
RN AT
N A NS o
xy R -4
Ph - x -1
AN R T e T 2
= N 4] |- ...‘?/_ 3
SNAN L] b
ANER \<\\/(f LA - o
A NS e L 4
1 DR HAAL
™ .-\. .
T ?$§\§é;2f'
\ b
1.0 1]
N
P(x) . 1Ir
4 Sum
=SRHEN Tt
'5
+0004 11 —TT
M(x) ! WA
Pa I
RaxE H-
THEN T SAEansEN
0
-.0001 V-
.02
V(x) - -HAHA
P L - -
0 A EHEERE .
‘ FEH

-.01 -
0

x/a

(11) h33/I = 110,000; hinge-jointed stiffeners. (problems 15

and 17)

167




ilyra

g
L
]
;
j8E)
L
I
0
:
L
h
1
—} v
ra,'."f.-.
i
P
'y
7 :
i
L)
]
:
<
s
:
[y

1
5
1 T
)
L
|
L
[
T
T
-
T
T
%,/..
Y
Tty I
1 0
H A T
T It S an
) fl '
1]
Py
]
1 K
1
[
[
(M1
.
}

(s IR Rt
l -

[l
L
]
Vi
v
U
L]
I
i
[l
;
T L
i
=
[
1
it
o

P4l

T

1

]

I
o]
I

Iy A
| (A D
IR R
P
Y
[l
|
T

A SR SN
2 N Hftel
Ph 1 for alt|yfa-- 2 TN RS .2
-1 54 _ - -2 [ _4-\\§:;\ - 1.3
1A 1 [ ] - | 1. . L
oA e ; e R -4
M- dEER -—"~-—-—=:-=== . ] Ll}-1> *
/-l.A ,ﬁ;;;:‘?i“_ RERN ¢ O N iy oy e 2 E %i
Lz ] M o
P B H L 0 for all y/a

A
A\ QW
N
AN
Lo
A\ TR
N\
AXY
|
=

_FJ
- -1
4- 4] RENN
4.4 RN R {4 4=
£

0 ™~

o SEEENY
-] {-|-4~
ot dmjorts fod o) b font dom b [ e ol foue e bl

1-0 NI TNUNY DO O Y Y T W O [ I DY '3

- THH 1.
o2
5y . {1 -

HEHEF ; el

N A 1 A

B<
O]
N
N
T
AU
0

SSyatt N - 0
Ry N 1173
- \<‘§§.~ |-
N S 3
S 3 -4 S .4 ¢ 6
N - T l3
N = S
i ——— . 2

/
o
<
]
I
-
|
T

ANE - 1
] -_‘\\
NH_ Al Nt

0 x/a 5 0 x/a 5

Figure 10(c).~ continued.
(ii1) ha3/I = 0; hinge-jointed stiffeners. (problems 16 and 18)
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Figure 10.,- continued.
(d) Comparison of results for zerd eccentricity(ti/a = 0, solid curves)
and finite eccentricity(ti/a - .0272, dashed curves) between
stiffener centroidal axes and plate edges; haBII.- 10,000;
A/A8 = 1.0; rigid jointed stiffeners. (problems 10 and 14)
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Figure 11.- Dimensionless plate stresses, stiffener tensions, bending moments
and transverse shears due to discontinuous tempeeature distribution;
v = .3; 4ah/n2A = 1.0; tl/a = 0; rigid-jointed stiffeners.
(a) Comparison of results for different stiffener bending rigidities,
A/Aa = ].0.
1) ha3/I = 110,000(solid curves) and haSII = 500(dashed curves);
(problems 19 and 20)
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Figure 1l1l(a).=- continued.
(11) hal/i= 0. (problem 21)
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Figure 11.- continued.
(b) comparison of results for finite stiffener transverse shear
stiffness(A/As = 1.0, solid curves) and infinite stiffener trans-
verse shear st:lffness(A/As = (, dashed curves); ha3/I = 0.
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Figure 1?.- Comparigon of dimensionless plate stresses, stiffener temsions,

bending moments and transverse shears for pillow shaped temperature
‘distribution(golid curves) and discontinuous temperature distributio
(dashed curves); ha3/1 = 500; 4ah/n%A =.1.0; A/AB = 1.0; ti/a - Q3

v = ,3; rigid-jointed gtiffeners. (problems 3 and 20)
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Problem A

=0
T = 0// T=20
T=90 / =
T ol
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ﬁ Problem B ﬁ’ *OAE ﬁ Problem C II aGAE
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/
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Figure l4.- Method of superposition.
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