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Determinations of 88 tesseral harnonic coeificients of the
gravitational field were made from comera tracking of seven satellites
plus boppler tracking of five satellites. It was found that addition
of Doppler tracking of satellites which @lso hnve apprecinble camera
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The analyses described in this paper are in continuation of
those reported 1% years ago fgﬁgig, 1966a}. These investigations
are distinguished from other determinations of the earth's gravi-
tational field principally in using an entirely analytic dynamical
theory. The principsl changes from the previous solution were
1) the incorporation of Doppler tracking data, and 2) an increase

in the number of gravitational harmonic coefficients in the solution.

Incorporation of Doppler Data. Tracking by the U.S. Navy

"Transit” Network was received in the form of Doppler frequencies,
scaled to a reference freguency of about 107 MHz, at intervals of

16 seconds. To utilize these data in the same computer programs

as the camera data, and to cconomize computer time, the following
conversion and compression was applied to the Doppler data: 1) the
form was converted to range rate in "canonical®™ units: earth
radii/(806.8137 secs.); 2) the time was converted from W4V emitted
to Al; 3) observations within 15° of the horizon were omitted, and
tropospheric refraction corrections applied; 4) 3 or 4 observations
at equal intervals over each pass were selected; 3) for one day

at a time, an orbit was fitted to these observations by iterated
least sguares, taking into account variztions of the grovitational
field up to 4, m = 4 by 6) from this orbit, the range-rate wos
calculated for each of the originzl 1lb6-second interval observations;
7) for each pass, a combination of a polyaomnial in time and a
station position shift was fitted to the residuals of the observed
with respect to the computed raunge rates; 8) at three times within
each pass, a range rate was cualculated as the sum of the range rate
from the orbit fitted for the dsy plus the polynomial & station
shift fitted to the psss. The finul inforration written on a binary
tape for use in the subsequent snalysis included as one record for
each pasgs: @& type nunher identifying the deta as renge rate; the
tracking station number; the nuaber of obhservalions in the pnss;

the GST and AL time (dn Modified Julicn Days) of the steart of the

pass; the three aggregated renge rates forsed by the process describud

above; and the tine adter pooss stoart for each of those runge rates.



Selection of Svherical Hzrmonice Coefficients. The zonal har-

monics were held fixed at the values given in Table 2 of Kaula
[1966al. The tesseral harmonics selected for solution were all
those for which a normalized coelficient of magnitude 8 x 1078 /47
caused a perturbation of at least 10 meters amplitude in one
satellite or at least 5 meters amplitude in two satellites, as
listed in Table 3 of Kaula [1966a]: all coefficients thru 6,6;
7,1 thru 7,5; 8,1 thru 8,65 9,1 and 9,2; 10,1 and 10,2; 11,1; and
and 12,1; plus the small-divisor or near-resonant, harmonics: 9,9;
12,125 13,12; 14,)2; 15,12 thru 15,14; and 17,14.

Thus there were a total of 88 unknowns conmon to all orbits.
With 7 unknowns represented by the Keplerien elements plus an acceleration
parameter for each arc, the computer storage capacity for the normal
equations as currently dimensioned was equalled. An increase of
capacity to at least 1U45 unknowns could be accomplished with very
little difficulty. In the solutions described herein, the positions
of 16 Baker-Nunn camera and 33 Transit Doppler tbacking‘stations
were held fixed at the values obtained by Gaposhkin [1966] and

Anderle & Smith [1967] respectively. It is intended to modify the

programs to increase the capacity for unknowns and to sclve for
stetion position shifts when warranted by the accuracy of the solution
for gravitational coefficients. So far, this stage hus not been

reached.

Sumpary of Satellites. The satellites used are summarized in

Table 1. TFor the five satellites which also were uszd in the 19606

-

sclution the data are essentially the same (except for 5 more months
of Transit 43), becnuse 1963 was the vear of minimum disturbances
of atmospheric density by soler activity. There are minor podifi-
cations in the ares actually used, however, heoenuse of changes in
acceptance criteria for arcs: as well as number of iterations and
number of observations (32 for Trensit UA, 40 for Venguard 2, 60

for the others), a chi-square test was applied.




The significant additions to the data are the tracking of
Courier 1B (28.2°), GEOS 1 (59.5%), and Zezcon Explorer B (79.7°).
It was found that adding a satellite of different orbital incli-
nation made much more difference in the solution than did adding
Doppler tracking. Considerable testing was done using different
weights of the Doppler tracking relative to the camera tracking of
GEOS 1, in particular, with very little variation in the results.
While this situation adds to our confidence that the Doppler portions
of the program are correct and accurate, it means that the major
benefit of adding the capability to analyze Doppler data will not
come until it enables znalysis of orbits of appreciably different
inclination than the set in Table l: in particular, a polar orbiter.

In addition to Doppler tracking of a polar satellite, it is
desirable that the amount ol tracking of Beacon Explorer B be
increased appreciably and that tracking of all satellites from more
overseas stations be added so as to give a better distribution of
observations than indicated by Table 2. The poor distribution
apparently arises in part from the unavailability for administrative
reasons of tracking from some overseas stations. This mzldistribution

is more severe than that tested by Anderle [1966].

Supplemental Data, Because the station positions were held

fixed, of the three types of supplenzntal cauations vsed in the
earlier analyses only the 2U-hour satellite orbit accelerations

were applied (see Table U of Faula [19662]). Carrying these eguations
at unit weight, they have & mild influence on the sclutions for
the 2,23 3,1; ard 3,3 coefficionts. It is planned to add some of

the more accurate recent accelerations derived 1

,lvsis. The method of purtitioned novimals as
; [1966a, Eg. (1)-(2)] was utilized, so that there

vias po 1imit on the musher of orbitzl aves which could be analyzed

In addition, one refercnce froouency corecciicnh per pass was

included as an zdditicozl onticnal unknown to be sceparated out of
1S

the nomwils in the smme manuer s the orbivel elsnents

Lxercise




of this option, however, appeared to make little difference in the
esults for the gravitational coefficients
‘he normal eguation bhlocks generated from the Doppler data
were kept separate from the blocks generated from the camera data,
in order to facilitate the testing of different relative weights
of Doppler vs. camera tracking. However, as mentioned previocusly,
variety of tracking type seems to make much less difference than

variety of orbital specificetions.

Results. The best solution (by the criterion of minimum dis-
crepancy from terrestrial gravimetry [Kaula, 1966b]) is given in
Table 3. This solution utilized a priori standard derivations of
+ 10"5/4° for non-resonating coefficients of degree 4 = 7. This
limitation is disappointing; the variety of inclinations is such
that more than a three-fold ambiguity in periodicity of pertur-
bations by tesseral harmonics should be resolvable. Of the two
inadeguacies which are most likely to cause this result, insufficient
amount of data and error in dynamical theory, the former is easier

to rectify, and hence is being tested first.
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TABLE 2: GEOGRAPHIC DISTRIBUTION OF DOPPLER TRALCKING

Number of passes observed from stations within each octant

Longitude E: 25 115 205 295 25
Lati- 90 g
tude 0 1109 3724 g 651
N 0 : -
333 352 o ! a1

-90
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Tesseral Harmonics of the Earth’s Gravitational Field
from Camera Tracking of Satellites®
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A total of 7234 Baker-Nunn camera observations of 5 satellites were analyzed to determine
simultaneously 44 tesseral harmonic coefficients of the gravitational field, 36 station co-
ordinates, and 511 orbital elements, Supplementary observational data incorporated in the
solution included accelerations of 24-hour satellites and directions between tracking stations
from simultaneous observations; observation equations were also written for the differences
between geometrical and gravitational geoid heights at tracking stations. Several variations
in relative weighting of different observational data and a priori variances of parameters were
tested. The previous independent solution most closely approached was that by Anderle
based on Doppler data, from which the rms discrepancy was +0.18 X 107 for 38 normalized
harmonic coefficients, or =7 m in total geoid height. An equatorial radius of 6,378,160 = 5 m

was obtained.

INTRODUCTION

The analyses described in this paper are a
continuation of those reported three years ago
[Kaula, 1963a, b]. They are an appreciable im-
provement over the previous analyses because
of better cbservations of more recent orbits,
better methods of analysis, and better use of
supplemental data. This investigation is one of
four principal efforts in the determination of
tesseral harmonies of the gravitational field.
The complexity of such investigations makes it
desirable that there be independent efforts
which differ not only in the tracking data but
also in the techniques of analysis.

CHANGES FROM PREVIOUS SOLUTIONS

The dynamical theory applied, formation of
partial derivatives, use of observational and
timing variances, formation of observational
equations, and accumulation of normal equa-
tions are essentially the same as described by
Kaula {1963, b; see also Kaula, 1966a]. The
most significant improvement is in the data,
Baker-Nunn camera observations of the Smith-
sonian Astrophysical Observatory. The satellites
used are somewhat better distributed in in-
clination, and, all being later than 1962 March
7, are appreciably less affected by drag than

1 Publication 487, Institute of Geophysics and
Planetary Physies, University of California.

those used in the earlier analyses. The satellite
data are summarized in Table 1. In determining
the preliminary orbits, I rejected arcs for the
final analysis not only if the number of observa-
tions was insufficient but also if excessive itera-
tions were required to obtain a satisfactory fit.
The greatest deficiency of camera tracking, us-
ing solar illumination, appears to be an inability
to obtain a good distribution of observations of
satellites that are low enough to be sensitive to
the variations of the gravitational field (perigee
below 1200 km) and are of inclination ap-
preciably higher than the latitudes of the track-
mng stations (less than 37°). Thus the most
sensitive satellite used in this study, 1961e,, is
the poorest observed, whereas the best observed,
1961a8d,, is so high as to be useless for determin-
ing gravitational harmonics above the fourth de-
gree.

To solve for a maximum number of tesseral
harmonics, the geopotential central term GM
was held fixed at 3.986009 X 10" m®/sec’, the
mean of values determined from Ranger lunar
probes [Sjogren and Trask, 1965], and the
zonal harmonics J, through J; were held fixed at
the values [Kozat, 1964; King-Hele and Cook,
1965; King-Hele et al., 1965] given in Table 2.
Perturbations due to these zonal harmonics, as
well as lunisolar perturbations of more than 107
amplitude, were calculated in analyses of both
preliminary and final orbits. Arbitrary poly-

4377
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TABLE 1. Specifications for Close Satellite Orbits
Satellite

1959a; 1960:2 196101 1961adt 1962841
Name Vanguard 2 Echo 1 Rocket Transit 44 Midas 4 Anna 1B
Epoch 1963 Jan. 27.0 1963 Jan. 10.0 1962 May 21.0 1962 Aug. 18.0 1963 Jan. 9.0
Semimajor axis 1.301994 1.250052 1.146988 1.568120 1.177254
Eccentricity 0.16417 0.01139 0.00799 0.01209 0.00707
Inclination 0.57383 0.82437 1.16620 1.67302 0.87514
Argument of perigee 3.13491 1.93573 1.18658 1.67305 0.94214
Loungitude of node 2.87158 0.79776 0.46898 6.27650 2.84671
Mean anomaly 1.76589 5.92654 3.92748 0.67818 0.80524
Min. acceleration* -0.51 X 10~ -—1.00 X 10~¢ 0.02 X 107® —-0.25 X 107 —0.44 X 107°
Max. acceleration* 7.01 X 10 1.35 X 10—® 0.90 X 10™® 0.41 X 102 0.27 X 107¢
Perigee motion/day 0.09238 0.05200 —0.01210 -0.01708 0.04364
Node motion/day —0.06141 —0.05415 —0.01438 0.00367 —0.04119
Periods/day 11 .48 12.20 13.86 8.68 13.35
Max. A/m, cm?/g a.21 Q.27 0.12 0.08 0.07
Min. A/m, cm?/g 0.21 0.08 0.11 0.02 0.07
Perigee height, km 560 1500 880 3500 1080
Starting date 1963 Jan. 18 1963 Jan. 1 1962 May 12 1962 Aug. 3 1962 Dec. 31
Ending date 1963 Nov. 20 1963 Sep. 28 1963 Jul. 24 1963 Oct. 27 1963 Nov. 2
Number of arcs 13 15 15 15 15
Days/arc 18 18 18 30 18
Min. obs./arc 42 67 32 61 61
Total observations 790 1628 612 2882 1322
SAQ Spec. Rept, Nos. 185 185 148,185 147,185 168

* Units for acceleration: dn/dt in radians/(806.8 sec)?, where n is mean motion.

nomials were limited to a ¢* term in the mean
anomaly, making seven orbital constants for
each are.

To solve, in effect, for an indefinite number of
orbital constants simultaneously with tesseral
harmonic coefficients and corrections to station
coordinates, I used the technique of partitioned
normals; ie., writing the normal equations as
[Kaula, 1966a, pp. 104-10G]

N N, zll _ S
Ny N, ZzJ Ss

where N is the matrix of normal equation coeffi-
cients, z is the vector of corrections of parameters,
and s is the vector of normal equation constants,
makes it possible to write a solution for z, alone:

ey

TABLE 2. Fixed Zonal Harmonics

l J; 10-¢ élo 10-¢
2 1082.70 —484.198
3 —2.55 0.965
4 —1.50 0.500
5 -0.15 0.045
6 0.50 —0.140
7 —0.37 0.090

Z, = [Nu - N12N22_1N21]_l
Is — lesz‘lsz] (2

If z, is the correction to orbital constants, which
are peculiar to each arc, the nonzero elements
in the matrix N,, will be in a series of square
blocks down the main diagonal, one block per
arc. Hence the inversion N,~! and the sub-
tractions of N,;N.:,~N,; and N,;N,,~1s, in (2)
can be made separately for each arc. Therefore,
at any time only those parts of the normal
equations pertaining to the parameters common
to all arcs—the corrections z; to tesseral har-
monic coefficients and stations coordinates—
plus the parts peculiar to the one arc being
analyzed need to be stored in the computer.
This technique is also used by Anderle [1966}
and Guier and Newton [1965] in analyzing
Transit Doppler tracking data; it is probably
the principal difference in method from the
iterative technique used by Izsak [1966] and
Gaposhkin [1966) in analyzing the Baker-Nunn
camera tracking data.

The principal inaccuracies in the calculations,
aside from neglect of drag, are believed to be
the absence of short-period J,? terms in the
orbital theory of Brouwer [1959] and the failure
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TABLE 3. Subscripts Im of Geopotential Coefficients C;,,, S;,, of Magnitude £8 X 10-¢/I2
Causing Perturbations of Amplitude of More than 5 Meters
Zonal harmonics and tesseral harmonics which are of degree 4 or lower or which are near-resonant

are omitted.

Terms Im Causing Perturbations of Amplitude

More than 10 to 20 5to 10
Satellite a e I 20 Meters Meters Meters
1959« 1.302 0.16 32.9° 51,52,61,62, 53,72,83, 54,64,73,74,82,84,92,
63,71,81 101,111 93,102,104,122,141
1960, 1.250 0.01 47.2° 51,61 52,63,64, 53,54,62,65,71,72,81,
82,101 85
19610, 1.147 0.01 66.8° 51,61,62,63, 52,53,54, 71,73,74,75,76,86,87,
65 55,6466, 91,92,102,103,111
72,81 ,84,
101,121
19618, 1.568 0.01 95.9° 61,62
196284, 1.77 0.01 50.1° 51,52,61,63,  53,62,65, 54,55,72,73,74,75,83,
64 71,81,82, 85,86,92,102,111,121
101

to correct station positions to a common epoch
for latitude variation [Veis, 1960, pp. 97-98].
Both these defects are of the order of =10 m or
less in effect. The parameters to be determined
were therefore selected as being of greater
expected effect. Experience indicates that track-
ing stations as far apart as the Baker-Nunn
cameras should to this level of accuracy be
considered as moving separately, Hence 36 of
the unknowns in z, are corrections to station
coordinates. To select the tesseral harmonic
coefficients to be determined in addition to the
low-degree terms up to degree and order I, m of
4, 4 and the small divisor terms for which m is
approximately equal to the number of revolu-
tions per day and 1 is odd, I calculated orbital
perturbations under the assumption that the
normalized coefficients C,,, S;» are 8 X
10-%/1* in magnitude, a rule-of-thumb which
appears quite good up to about degree 15 [Kaula,
1966d). The results of this calculation appear in
Table 3. Twenty-two coefficients of degrees 5
through 8 were selected on the basis of per-
turbing at least two satellites more than 4=10 m;
I, m = 10, 1 was omitted as being difficult to
distinguish from 41, 61, and 81 using the number
of satellites available.

_ a_nf_2_3R;mpq
8 Minpe = faa na M dt dt

— cos
sin

3 a
—’? Almra(ay ¢, I)(l - 2p+ Q){

The small-divisor, or near-resonant, harmonies
[Anderle, 1965; Yionoulis, 1965] under the =8 X
10-¢/1* assumption were significant for satellites
1960¢, (twelfth order), 19610, (fourteenth
order), and 1962Bu, (thirteenth order) but not
for 1959, or 1961ad,. The particular degrees
selected for solution were those which happened
to have the largest partial derivatives. The
procedure for evaluating these partial derivatives
is exactly the same as for the lower-degree
harmonies, with the important precaution that
the rate for a perturbation of the mean anomaly
through the perturbation of the semimajor axis
is not assumed to be an integer multiple of the
mean motion.

More specifically, for a disturbing function
term of the form

in
leva = Klmyq(ay €, I) S {(l bt 2p)(0
COs,

+({l =2+ QM+ m(2 — 6)} 3
where 6 is Greenwich sidereal time, and (q, ¢, I,
o, M, Q) are the Keplerian elements—semima-
jor axis, eccentricity, inclination, perigee argu-
ment, mean anomaly, and nodal longitude, re-
spectively. The indirect perturbation of the
mean anomaly is

}{(l —2po+ (@—2p+ QM+ m(Q — 6)}

[(0— 200 + (1 — 2p + QM + m(Q — 6)] 49
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TABLE 4. Twenty-Four-Hour Satellite Orbits
Satellite 1963 314 1964 47A 1965284
Name Syncom 2 Syncom 3 Early Bird
Inclination 33° 0.1° 0.2°
Start longitude 305.1° 244.7° 174.0° 118.0° 81.0° 179.2° 330.7°
End longitude 302.4° 197.5° 161.5° 102.2° 52.0° 178.2° 330.7°
Observed acceleration X 10° —1.962 1.888 0.435 —2.203 0.849 1.476 —1.201
Deviation +28 +74 +44 +44 +54 +62 +9
Amplitude factors of Q2 0.7775 X 1072 0.9144 X 1073
partial derivatives Qu —0.0155 X 10~ —0.0582 X 1073
Qs 0.1752 X 1073 0.2253 X 103
Q2 0.0008 X 103 —0.0182 X 1073
Qus 0.0344 X 10-3 0.0482 X 102 .

Accelerations and partial derivatives in radians/(planetary time unit)?, where planetary time unit =

806.8137 sec.
where n is the mean motion, u**a™*
1966a, p. 49].

To strengthen the solution, two types of sup-
plemental data were included: the accelera-
tions of 24-hour synchronous satellites and the
mutual directions of tracking stations obtained
from simultaneous satellite observations, which
are different from those used in the dynamical
calculations.

The acceleration in longitude of a 24-hour
satellite appears in an observation equation of
the form

[Kaula,

> Qun[Cin sin mA — 8, cos mA]

(I—m)even

= 7‘\o + 55‘0 (5)
where
_a=mtet+ 11”2, ; (a)
Qin = [ a+ m! ] sn "’(a)
°F lmp(I) Glm(e) (6)

in which p is (! — m)/2, a, is the equatorial
semimajor axis, and Fy,,(I) and Gy, (e) are
polynomial functions of the inclination and
eccentricity, respectively [Kaula, 1966a, p. 51].
The observed accelerations A, (corrected for
lunisolar perturbations) and their standard
deviations o(X,) were taken from the work of
Wagner [1966]. Five accelerations of satellite
1963 31A at a variety of longitudes and one
acceleration each of 1964 474 and 1965 284
were used, as summarized in Table 4.

The direction of one tracking station from
another as obtained by simultaneous observa-

tions of satellites appears in an observation
equation of the form

{0 1 OIRI

001]

‘lu; + Au; — (ui 4 Aw))/|u; — u] = 8l
(7
where R;, is the rotation matrix from coordi-
nates referred to the earth’s pole and Greenwich
meridian to coordinates with the 1 axis along
the line from station ¢ to station j and the 2 axis
along the major axis of the error ellipse of the
observed direction:

R, = Rl(P)Rz(_(D)RaO\) (8)

In equation 7, ¢ and \ constitute the observed
direction of station j from station 7 in the form
of latitude and longitude, and p is the angle
between the normal to the meridian plane
defined by N and the major axis of the error
ellipse.

The directions between 14 pairs of Baker-Nunn
camera stations derived by Aardom et al. [1965)
from 615 pairs of quasi-simultaneous observa-
tions of satellites of about 3700 km altitude are
given in the form of direction cosines ¢ with
respect to polar-Greenwich axes of station j from
station 7. The standard deviations are given in
the form of the semimajor and semiminor axes
a and b of the error ellipse and the angle 6
between the major axis and the normal to the
plane defined by the stations and the earth’s
center. To apply these observations in (6) and
(7), we have
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¢ =sin"¢;

A = tan™" ¢p/cy
n=u X u
—sin ¢ cos A
m = {—sin ¢ sin A (9)
€os ¢
K = {—sin A
cos A
p = tan”' (n-m/n-k) + 0 — /2

The semimajor axis of the error ellipse was
always within 18° of the station-center plane.
The number of observation pairs used for each
position line varied from 5 to 90; the standard
ellipse semimajor axis varied from =23 to
+10.5 X 10°; and the semiminor axis varied
from +=09 to 3.9 X 107 The stations appear-
ing in these 14 pairs of equations are noted in
the last column of Table 7.

We can also write as an observation equation
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the fact that the geometrical geoid height de-
rived from the position of a tracking station
should differ from the gravitational geoid height,
calculated for the same point from the harmonie
coefficients, only by the contribution §Nge of
variations in the gravitational field of higher de-
gree than those represented by the coefficients

(1 0 OR,.Au— a, ) P.(sin p)
l.m

[Cim cos mA+ 8, sin mA\] = 6Ngg — Nax
(10)

where Ry, is defined by (8) (the rotation about
the 1 axis being of no effect), using the position
@, A of the station, P,,, is the normalized asso-
ciated Legendre function, and Ng, is the
geometrically calculated geoid height, obtained
from station position u, the station height above
sea level h, and the reference ellipsoid of semi-
major axis 6,378,165 m and flattening of
1/298.25, corresponding to the potential coeffi-
cient J. in Table 1. Also applied as a fixed
correction are the contributions of the fixed
zonal harmonics to the gravitational geoid

TABLE 5. Datum Weights and a priori Standard Deviations of Parameters

Parameter, a priori Standard

Datum Weights Deviations
Station Gravity Coefficients
Close 24-Hour Mutual Directions Positions, Cims Sim
Solution Satellites* Satellites and Geoid Heights{ m 10—¢
A 1 1 1 © @
B 1 1 0 © o
C Varied 1 0 @ @
D Varied 21.2 Moderate ® ©
E Varied 21.2 High @ @
F 1 1 1 10 )
G 1 1 0 10 ©
H Varied 1 0 10 ®
I Varied 21.2 Moderate 10 ®
J Varied 1 1 10 ©
K Varied 1 1 10 Deg 2-4: « ; 5-8:8/12
L Varied 1 0 © Deg 2-4:; 5-8:8/1%
M 1 1 0 10 All 8/12
N Varied 1 1 o ©
0 Varied 1 1 al @
P Varied 1 1 b @
Q Varied 1 1 ¢ ©

* Varied satellite weighting: 1959a1, 2.05; 1960:s, 1.00; 196101, 2.70; 196181, 0.55; 1962841, 1.20.

t Moderate weighting: directions 10.5, heights 16.4. High weighting: directions 110, heights 270.

1 Station weighting a—c: all stations «, except a. Station 1 fixed in sll coordinates. b. Station 1 fixed in
longitude and radius. c. Station 1 fixed in longitude only.
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height. Since the semimajor axis a, is used in
calculating Ngg in (10), the mean radial shift
of the tracking stations can be considered as a
corréction to the semimajor axis, The standard
deviation of the ‘observation’ 8Ngy in (10) was
estimated to be 420 m as follows. The 49
coefficients fixed or being determined on the
=£8 X 10-%/i2 rule contribute a mean square of
(26 m)? to the geoid height, which was subtracted
from the (33 m)* mean square estimated from
autocovariance analysis of gravimetry [Kaula,
1959, p. 2418].

In combining widely differing types of data,
the relative weighting is necessarily somewhat
arbitrary, particularly when the observational
variances are derived in different ways. For the
satellite observations, variances based on ob-
servational residuals of previous analyses were
used: (12.07)* direction and (0.050 sec)® time
[Kaula? 1963b, p. 5184]. For the 24-hour satel-
lite accelerations and the directions between
stations, the variances produced by the least-
squares analyses of Wagner [1966] and Aardom
et al. [1965], respectively, were used.

Furthermore, when one type of data is rep-
resented by many more observations than an-
other, as was the case for the close satellite data
(14,468 equations) compared with the supple-
mental data (47 equations), the neglect of
covariances in the former will be much more
significant, and the use of the correct variances
in simple least squares will result in an over-
weighting of the more numerous relative to the
less numerous.

For the foregoing considerations the com-
puter program was so modified that when the
normal equations for a particular satellite had
been generated, they were saved on tape to be
read off and multiplied by the weighting factor
before being added to the combined normal
equations. In this manner, additional solutions
with different combinations of weights could be
made. A further capability which was included
for these short-time additional solutions was
change in preassigned variances and starting
values for the parameters.

Some of the data weighting and preassigned
standard deviations of parameters tried are
given in Table 5. The varied satellite weights
and the supplemental equation weights in ex-
eess of 100 were calculated on the basis of mak-
ing each satellite and each block of supplemen-

WILLIAM M. KAULA

tal data of equal weight; the square roots of
these ‘high’ weights are the ‘moderate’ weights
between 10 and 100 in Table 5. However, since
the satellite variances are probably too large
and the supplemental variances probably toco
small, the smaller weights for the supplemental
data are probably more realistic. In any case,
over quite a wide range of weights the influ-
ence in the solution will appear for any datum
which differs significantly from the bulk of the
data in its sensitivity to certain parameters.

As discussed by Kaula [1966b], solutions for
a set of station coordinates from close satellite
tracking are subject to systematic error in ori-
entation. In the iterative solutions from camera
data by Izsak [1966], Veis [1965], and Gaposh-
kin [1966], the over-all orientation is essen-
tially fixed by correcting orbital longitudes and
station longitudes at alternate stages. In the
solutions from Doppler data by Anderle [1966]
and Guier and Newton [1965], one station is
held fixed to establish a longitude reference. In
the analyses described in this paper, several
solutions (A through E, L and N in Table 5)
were made in which all stations were left free
to move, in the hope that adequate orientation
would be obtained from the inertially referred
directions constituted by the camera observa-
tions. The opposite alternative of fixing one
station in one or more coordinates was also
tried (solutions O, P, and Q). However, there
is no reason to give preference to one station
over another, and it seems better to treat all
stations equally and to allow some influence on
the camera directions by preassigning variances
to all station positions (solutions F through K
and M). The use of such preassigned variances
gives weight, in effect, to the solution on which
the station coordinates were based.

Missing from Table 5 are some obvious
alternatives: omitting or giving higher weight
to the 24-hour satellite data, restraining the
fifth- to eighth-degree gravitational coefficients
completely, including or omitting mutual direc-
tion and geoid height equations separately, ete.
Most of these alternatives were tested at an
earlier stage, with a set of close satellite data
differing in some respects from those used in
the final analysis. In these tests the variations in
the weighting of the 24-hour satellites had a
considerable effect: their omission resulted in a
wider scatter of results for the coefficients Css,
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TABLE 7. Station Positions
Rectangular coordinates u referred to the equator and Greenwich meridian.

Coordinate Shifts

Alternative Solutions Pre-
Station Starting ferred In
and Number of  Coordinates, ¥, H, I, N, O, Q, J, ¢ Direction Eq.
No. Observations m m m m m m m m m with Sta. No.
1. OrganPass(926) u. —1 535 753 -—-32 —31 —26 —121 0 19 -38 6 7,9,10,12
us —5 167 000 18 27 13 98 0 61 18 5
Uz 3 401 047 19 47 4 178 0 158 27 5
2. Olifantsfontein 5 056 133 7 17 18 7 26 -—11 18 6 8,9,10
(664) 2 716 489 —19 —32 —28 —114 —-72 —54 =29 7
-277582 -9 -9 -1 -50 -—-19 -39 -8 7
3. Woomera (719) —3 983 738 10 10 -6 66 22 19 6 7
3743 127 —40 —46 —42 —78 —71 —117 —45 6
-3 275 615 1 4 5 —32 4 —19 6 6
4, San Fernando 5105 610 —22 —36 —11 ~-98 —39 -6 -—23 5 8,9,10
(790) —0 555 226 -—18 —-25 +3 —-73 —38 —17 —19 7
3 769 693 30 57 25 192 73 172 39 5
5. Tokyo (339) —3 946 697 21 26 31 150 71 94 25 7 6
3366293 ~—5 —6 —22 —26 —18 68 -8 7
3 698 858 16 13 24 176 56 150 14 7
6. Naini Tal (678) 1 018 206 13 24 6 61 29 2 15 7 5,8
5 471 103 -9 —-10 —6 —104 —32 -—-73 ~—11 5
3 109 620 34 26 47 218 91 194 40 5
7. Arequipa (518) 1 942 768 8 11 4 —40 —19 30 2 5 1,9,10,11
—5 804 089 2 4 —4 38 -5 38 -1 5
—1 796 968 8 4 32 51 43 93 11 7
8.  Shiraz (564) 3 376 887 1 8 —-12 -—11 —2 —47 -2 6 2,4,6
4 403 994 -—-25 —31 —15 —113 ~-52 —-79 —-27 6
. 3 136 264 29 38 41 210 83 186 34 5
9. Curacao (484) 2 251 822 11 -5 8 —38 —20 29 6 5 1,2,4,7,10,11
-5 816 923 12 —15 13 62 7 58 10 5
1327 171 3 —1 10 147 19 156 11 5
10.  Jupiter (567) 0976 281 —10 —17 —4 —76 —34 -2 —12 5 1,2,4,7,9
—5 601 390 7 13 2 70 0 59 75
2 880 247 34 34 34 194 35 186 40 5
11.  Villa Dolores 2 280 572 3 =20 8 —44 26 24 —4 5 7,9
(552) —4 914 580 24 21 8 8 33 95 18 6
—3 355 464 -1 1 29 -31 1 -13 4 6
12.  Maui (623) u1 —5 466 063 8 12 9 38 19 66 11 6 1
us —2 404 286 11 22 8 94 32 41 18 6
us 2 242 180 36 36 45 189 51 179 39 6

Si: as well as some others, whereas weighting
them heavily distorted Csy, Ss1 from the values
strongly indicated by the close satellite data.
Varying the weights of the geometrical data and
restraining the higher gravitational coefficients
appeared to have little effect on the solution for
the low-degree coeflicients. Also tested was
omission of each close satellite, one at a time, in
a solution for the low-degree gravitational
coefficients. As anticipated, omission of 1961a 8,
the least sensitive satellite, had least effect and
omission of 19610, had greatest effect.

REesvLrs

The principal test of the value of different
solutions was intended to be the x* test: if the
original estimates of weights, variances, and
covariances are good (and if the formulation of
the problem is correct), the corrected quadratic
sum should be close to the degrees of freedom.
In other words, the quantity

g =["W't — 2"s)/(n — p) (11)
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should be close to unity, where f is the vector of
observation equation constants; W is the
weighted covariance matrix; n is the number of
observations; p is the number of parameters;
and z and s are the solution and normal equation
constant vectors, as in (1). The ¢’s obtained
varied from 1.18 (solution B) to 1.54 (solution E).
However, much of this variation is due to the
weights incorporated in the sums in the numer-
ator, but not in the denominator, of (11). If the
number of observations n is changed from
Z.-n,— to Z.-w,-n.-, where w; is the weight of
data of type 1, the ¢’s vary from 1.01 (solution E)
to 1.33 (solution F); A, D, F through K and M
through Q are all between 1.25 and 1.33. Of those
which are distinctly lower, B, C, and E all fail
to utilize the mutual direction and geoid height
data. On the other hand, E overutilizes these
data; i.e., some of the geometrical geoid heights
resulting from solution E agree with the gravita-
tional geoid heights within a meter, which is not
possible without distorting the lower-degree
gravitational coefficients by forcing them to
absorb much of the higher-degree contributions
to the station geoid heights.

Hence the choice of preferred solution must be
based on more selective indicators of the essential
quality of sensitivity of data to parameters
determined. The most obvious weakness is that
of over-all orientation: when all 36 station
coordinates are free to shift, erratic results are
obtained, as shown by solution N in Table 7.
Some constraint must be applied, as it has been
in all previous analyses of close satellite tracking.
Such constraint necessarily amounts to some
weighting of previous solutions. The station
positions obtained by the iterative satellite
orbit analysis of Izsak [1966] and Gaposhkin
[1966] now seem superior to starting values
based on terrestrial data, as used by Kaula
[1963a, b]—certainly so for stations not connected
to continental datums. The next choice is between
expressing this weighting by fixing one station
(solutions O, P, Q) or by assigning a priori
variances to all station positions (solutions F
through K and M). As previously discussed, the
latter seems better in principle, in that no
preference is given to any one station; the results
in Tables 6 and 7 do not appear to markedly
contradict this choice.

The two solutions which assigned a priori
variances to gravitational coefficients, K and M,
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differed negligibly in their results from solutions
J and G, respectively, the maximum changes
being decreases in absolute magnitude of 0.09
to 0.11 XX 10-¢in two or three fifth- and sixth-
degree coefficients. Of the remaining solutions,
F through J, F, I, and J are preferable to G and
H because they incorporate the supplemental
data, and H, I, and J are preferable to F and G
because they give relatively greater weight to
the sensitive lower satellites 19610, and 1959«
than to the insensitive high satellite 1961a?,.
The two preferred solutions, I and J, differ in the
weight assigned to the supplemental equations,
the effect of which shows most markedly in the
sectorial harmonic coefficients Css, C ¢4, and S
For these three coefficients solution J is much
closer than I to the independent results based on
the Doppler data of Anderle [1966] and Guier and
Newton [1965]. Perhaps the differences are a
reflection of the variances adopted for the direc-
tion data being too small relative to those for
the close satellite data. We adopt solution J,
but the preference is slight.

Seven solutions for gravitational coefficients
through the eighth degree are given in Table 6,
which suffices to demonstrate the more im-
portant effects of variations in weighting. The
standard deviations o¢,, resulting from the
least-squares calculation are also given for
solution J; the one figure given pertains to both
Cin and §,,, since their standard deviations
always agreed within 0.01 3 10-¢. The highest
correlations between different harmonics pro-
duced by the least squares occurred in the
expected places: (1) between coefficients both
appearing in the 24-hour satellite equations, for
example —0.754 for 7(Cs, Cs), —0.321 for
T(éaz, Saa), —0.311 for T(Szz, 633), and 0.240
for 7(Ss:;, C«); and (2) between coefficients of
the same order m and degree ! differing by an
even number, for example —0.534 for #(C 41, Cs1),
0.692 for r(Csy, Csy), 0.480 for #(C ., Css), and
0.446 for #(C.4, Css). All correlation coefficients
not in these two categories were less than 0.18;
most of them were less than 0.08. Most correla-
tions between gravitational -coefficients and
station coordinates were less than 0.05; the
largest was —0.152 for 7(C s, us,2).

The solutions for the fifteenth-degree coeffi-
cients are not shown in Table 6 because they
always came out the same:
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TABLE 8. Comparison of Geoid Heights (Solution J)
Referred to an ellipsoid a, = 6,378,165 m, f = 1/298.25.

Longitude Elevation Geoid Height, m
Station Latitude, East, above MSL,
Number deg deg m Geometrical Grayvitational
1 32.4 253 .4 1651 ~-36 —23
2 —26.0 28.2 1544 28 24
3 —31.1 136.8 162 —27 0
4 36.5 353.8 24 54 51
5 35.7 139.5 58 18 19
6 29.4 79.5 1927 —64 ~49
7 -16.5 288.5 2451 23 2
8 29.6 52.5 1596 —32 —13
9 12.1 201.2 7 —47 —22
10 27.0 279.9 156 —49 —30
11 —31.9 294.9 598 26 9
12 20.7 203.7 3035 —6 —20
Cis12 = —0.043 £ 0.002 X 107° tion of Anderle [1966] the quadratic sum of
~ s differences in the coefficients was 1.29 X 10-12,
815,12 = —0.031 =& 0.002 X 10 equivalent to #27.3 m in geoid height, or an rms
Crsas = —0.032 4= 0.007 X 10~° discrepancy of .10.18 X 10-% per coeflicient.
For other solutions the comparable figures are:
Sis.13 = —0.065 &= 0.007 X 107° Guier and Newton [1965], 38 coeficients, 1.91 X
- s 10-12, £:8.8 m, £-0.22 X 10-8; Izsak [1966], 32
Cis.1a = 0.010 =£ 0.003 X 10 coefficients, 1.94 X 10-12, 8.9 m, +0.25 X
Bise = —0.011 == 0.003 X 10°° 10~-%; and Gaposhkin [1966], 40 coeflicients,

The geoid corresponding to solution J (plus
Table 2) is shown in Figure 1. For 38 tesseral
harmonic coefficients in common with the solu-

<3 "‘“ 2 AR
RZRED) :;;l/
&t\‘} ” 3 :”/ %

1.00 X 10-1?, +=6.4 m, #4-0.16 X 10-¢,

The results for station coordinate shifts arc
given in Table 7, together with the standard
deviations for the preferred solution J. The

» °

A

o
L S
% Lo
20 20
1 ’ 0
0 —05m w30 40R 50— 60 — gao 20 - sh—o
1 ! b~
| .
\ = | o
0 1 o
| |
\ -
20 N 20
30 B o
o
o
k3

o =
- 5

Fig. 1. Geoid heights in meters referred to an ellipsoid of flattening 1/298.25. Based on
solution J, Table 6.



EARTH’S GRAVITATIONAL FIELD

ill-conditioning and orientation problems occur-
ring when the stations are allowed to move
freely are evident from the results for solution N:
formal standard deviations for station coordi-
nates generated by the least-squares solutions
were about =11 m, but the rms difference
between solutions A and N is =25 m. Covariance
between different stations also appears to be
high; for example, the solution N Au,,. has 16
correlation coefficients that are higher than 0.20.
The fluctuation of station positions between
different solutions in Table 7 is considerably
more than that implied by the fluctuation of
gravitational coefficients in Table 6. Multiplying
the range of variation of a coefficient in Table 6
(e. g, 0.10 X 10-¢ for Cs,) by the average
partial derivative of satellite position with respect
to the coefficient yields a range of about 6 m
in orbital position. From this we would expect a
range of about /12 X 6, or 20 m, in station
position, since a station coordinate appears in
1/12 as many equations. This is about equal to
the absolute average discrepancy between co-
ordinates for solutions O and J, which utilize
the two alternative methods of fixing orientation.
It is also about equal to the rms deviation of
the coordinate shifts of solution J, =22 m, from

the iterated solution of Gaposhkin [1966].
Geometrical geoid heights with respect to an
ellipsoid of equatorial radius 6,378,165 m and
flattening 1/298.25 were calculated from the final
positions for solution J. These geoid heights,
together with gravitational geoid heights ob-
tained from Figure 1, are given in Table 8. If
the mean value of a geometrical minus gravi-
tational geoid height is taken as a correction to
the semimajor axis, a value of 6,378,160 == 5 m
is obtained. Using this radius with the GM of
3.986009 X 10" m®/sec® gives an equatorial
gravity vy, of 978.0262 c¢cm sec™, which is some-
what lower than terrestrial solutions previously
obtained [Kaula, 1966b]. The geometrical-
gravitational geoid-height equations have prob-
ably had the effect of pulling the stations out-
ward a few meters from the correct radius
toward the starting values based on 6,378,165 m.

CoNCLUSIONS

This investigation demonstrates that a good
solution for the nonzonal harmonics of the
gravitational field can be obtained from a rela-
tively small amount of data. The agreement of
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the gravitational coefficients with other solu-
tions using different data or methods of analysis
is also quite satisfying; it indicates that the
amplitudes of persistent oscillations in the orbits
are being determined to within about =5 m.
The results for station coordinate shifts are not
so satisfactory: the limitations on directions
with respect to inertial space in which observa-
tions can be made for a given orbital are of
approximately 18 days apparently results in
poor separation of station coordinates from
orbital parameters. Some constraint in orienta-
tion is needed for the entire system, as well as
considerably more data, to gain an improve-
ment over the accuracy of =20 m obtained in
this study.
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