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ABSTRACT

The behavior of test particles in the presence of uniform, parallel,
and steady electric and magnetic fields in addition to a weakly turbulent
magnetic field is studied. The quasi-linear approach is used to find a
diffusion equation for the distribution function describing the test
particles; the diffusion equation describes the pitch-angle scattering
experienced by the test particles due to the random fluctuations of the
magnetic field.

In the weak-electric-field 1limit the equation is analyzed in detail
and an expression for the electrical conductivity in terms of the corre-
lation tensor of the fluctuating field is found. Finally, for the case
of a particular model of the turbulence and a Maxwellian distribution of

test particles, an explicit formula for the conductivity is given.
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I. INTRODUCTION

It has been shown in recent worksl’2 that test particles in the
presence of turbulent electromagnetic fields exhibit such behavior as
acceleration and diffusion. It is therefore evident that turbulent
fields will influence the transport properties of a plasma, which are
usually determined solely by binary collisions. In many plasmas which
arise in the study of astrophysics the density of particles is so small
that the effects of binary collisions may be completely overshadowed by
those of the fluctuating fields. Hence it would be useful to obtain
formulas for such transport properties as viscosity, electrical conduc-
tivity, and thermal conductivity in collisionless turbulent plasmas.
Indeed, the viscosity for such a plasma has recently been calculated in
a heuristic fashion by Tsuda.d

Of the other two quantities, that which lends itself more readily
to calculation is the electrical conductivity since it does not require
consideration of inhomogeneities as would the thermal conductivity. We
therefore consider a homogeneous plasma subject to uniform, constant,
and parallel electric and magnetic fields and, in addition, a weakly tur-
bulent magnetic field. We shall find an equation governing the distribu-
tion function for each particle species in the presence of these fields,
and we shall analyze this equation in the static, weak-electric-field
limit which will yield a formula for the electrical conductivity in terms
of the properties of the turbulent plasma in the absence of the electric
field. Finally, an explicit formula for the conductivity will be given
for a specific model of the turbulence in the small-gyroradius limit.

We employ the quasi-linear approach developed by Hall and Sturrock,2
relevant results of which we now state briefly: We assume the particles
of one species to be described by a distribution function F(Xu,t) giving
their density in phase space. X (u = 1,2,...,6) stands six orthogonal
coordinates which specify positign in phase space. A particle at the

point X at time t obeys the equation of motion
vl

& = GH(XV,t) + gu(xv,t) (1.1)



where G“ describes the effect on the motion of the large-scale, steady
fields and g“ the effects of the turbulent magnetic field. We next
consider an ensemble of distribution functions F, all of which are
identical at some initial time t = to but which are subject to different
realizations of the fields gu thereafter, so that at any time ¢t > to
the distribution functions for different members of the ensemble will have
different values. We need an equation for <l?>, where ( > denotes

an ensemble average. Under the assumptions that <:g“>>= 0 and that

there is a time scale T satisfying

F
T, <<T<<—L%F— (1.2)

g, g—xu

where Tc is the correlation time for the turbulent magnetic field, we

find that, to lowest order in g , <Fﬁ> obeys the following equation:
!

oCF> . g 0Fy 19 [hD M—F—Z} (1.3)

t no oX h X v ox
" " v

where h 1is the determinant of the metric tensor in phase space for the

chosen coordinate system. D“V is given by

t

D t) = [ e (X g (Ry(e),e)dar, (1.4)

t
o}

X&(t') being the position of a particle in phase space at time t' on
the unperturbed orbit (i.e., the orbit calculated with gu = 0) which
passes through the point Xd at time t. The integration must be carried

out in a coordinate system which has the property that

oG oG
—gil+Ga§)TL-l=0. (1.5)
Q

We may now apply the results to our particular case.

2



II. A HOMOGENEOUS IN PARALLEL ELECTRIC AND MAGNETIC FIELDS AND
A WEAKLY TURBULENT MAGNETIC FIELD

We assume a homogeneous plasma with the uniform fields along the

z-axis, Hence the total electric and magnetic fields are given by

o
@
N
N
+
[0/
ol
P
[\"]
-
o

The turbulent field is assumed to be statistically homogeneous and

steady so that the correlation function

RaB(x,t;x +p,t+ 1) = <:8%1(x,t) 5BB(X +p,t +7T)>, ,B = x,y,z,

(2.2)

may be written simply as RGB(B,T).
We restrict outselves to a nonrelativistic calculation, so that the
equation of motion (1.1) of a test particle of charge q and mass m

in the presence of these fields are given by

d—> -
xX_P
2, (2.3)
%% = qE + ; X 5 +-§— ; X 6§ , (2 4)
o
where ¢ = SEQ (2.5)
= — .



Rewriting (2.4) in component form, we find

dp
X _ a -
dat pr + B0 (pySBz pzéBy) !
dp
Yy __ . -
PRt B_ (pzan pXSBz) ’ (2.6)
dp
z Q
Fradt qE + . (px6By - pyBBZ) .

(o]

Solving (2.6) with 5B = O gives the momentum along the unperturbed

- - -
orbit p'(t'). Requiring that p'(t') = p when t =t', we find

pi(t') =p cos(¢ +a(t - 1), \

p;(t') =p, sin(ﬂ + ot - t')), ’ (2.7)
pi(t') =p, + qE(t' - t), /

pi(t') =p, + aE(t'-t) ,

p!(t') =p , > (2.8)
gr(t) =g+ qlt - t'),

where @ is the azimuthal angle in momentum space. From (2.8) and (2.3)

we then find, requiring X'(t') = X at t' = t, that




x'"(t') = xz - T, sin(ﬁ + ot - t')),
y'(t') = yZ + T sin(ﬁ + o(t - t’)), (2.9)

?

12
' ! — __Z_ LI _Cl_E L. 2
z'(t') = z + — (t t) + o (t t)

where rg = = , (2.10)

The assumption of homogeneity allows us to consider momentum space
diffusion alone, so that we are left with only three phase space coordi-
nates of interest; we denote the coordinate pz by pu=1, pl by

w=2, and @ by pu= 3. Then we find that

dp, Qpl \

= = qE + —Eg [SBy cos @ - BBX sin g] ,

dpl ap,

I = —E; [SBX sin @ - SBy cos ﬂ] , > (2.11)
ap

dg Q z .

3 = 0-3 5B + 5o (6Bx cos & BBy sin &) ./

o o1
Hence

G1=qE,
G, =0 , (2.12)
G3=—Q,

so we see that for these coordinates the condition of equation (1.5) is

satisfied. Defining SBe by

- ; - 2,13
SBe 8B, sin o] By cos @ , ( )
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we find

Qp
& ="g§— 6B9
(o]
and
sz
=—258
g, B By (2.14)

Proceeding as in the paper by Hall and Sturrockz for the case of a
uniform magnetic field, we suppress the coordinate ¢, concerning our-
selves with only the phase-independent part of «<Ff>. Dropping the
brackets, noting that h = pl, and calling the phase independent part

F, equation (1.3) becomes

B BF 3 D OF 5 OF
S__ 5‘; 11 3p, * P12 83:
1 9 - OF ~ OF
+F—8_[p¢ D21$z+ p, D,, yl] , (2.15)
where now
)

_ 27

t
D (p _ ,t) = 21[ f dg f (gu(Xa,t) gV[XC'((t'),t’])dt'; w,v = 1,2,

wv

o
(o]

(2.16)



These formulas may be written more explicitly as

2 21 t
D, = 2 f dgf p p!(t') (BB (%,t) 8B (¥'(t'),t")> at’ \
t

2nB
o o
2
= pl Vv H
_ Q2 27 t
- ' 1 3z -t 1 1 1
Dy, = 5 f def psz(t )<6Be(x,t) BBe(x (t'),t") >dt
218
o o t
o
= _psz |2
(2.17)
Q2 21 t
~ - - - i
Dy, = - 5 f deff plp;(t')<8B6(x,t) 8B (x'(t")> dt’
27B
o (¢} t
o
= -PZDLV - qEA ;
and
92 2% t N
=y _ ' t e 1 1 1
Doy = 5 f dgf pzpz(t )<6Be(x,t) BBe(x (t'),t')>dt
21B
o o t
o
— 2 .
= pz v + qEA
where we have introduced the following definitions:
2 2 t
y = & 5 f dgf (aBe(Q,t) 639(?'(t'),t')>dt'
21B o t
o o
and (2.18)
2 21 t
A = 2 5 f d,@/ (t' - t)<6Be(§E,t) 6Be(§(t'),t')>dt'
218
o [o] t
o



Thus equation (2.15) becomes

S5F 5F d >  Pg 5F SF SF
St TE T (‘tép“ sz-p—)Hﬁ 3, pz$>‘ ESS|
z z L4 z L 14 (2.19)

which, upon changing variables from pZ and pl to 4 and p defined

by

P
z 2
p=\/p°+p 2 , (2.20)

pz + pl

p,:

becomes

5F 5F  (1-42) oF
5 *qE[“Fp +—§&]

= %H[(l—uz)v %E] - qE %Hl:(l-uz) A( )] : (2.21)

This equation is valid for any magnitude of E. However, to analyze this

215

-k
P

151

equation in general appears quite formidable. We therefore investigate
the equation in the weak-electric-field limit. We assume that F takes

the form

F~F +FQqE+ o(quz) . (2.22)

We also look for an equilibrium solution such that %% = 0. However, this
condition will be satisfied only approximately since some heating of the
plasma will occur. Fo satisfies the equation found by Sturrock and Hall2
with no electric field, which has the consequence that, since F is as-
sumed stationary, Fo is necessarily isotropic. We assume further that
F1 is proportional to Pl(p). Now v and A depend on E, since the
unperturbed orbits depend on E. So we expand Vv and A in powers of

qE to obtain



2 2
v=v(p,u)+ v,(p,1u) aE + 0(q"E")

and (2.23)
A (pyu) + & (p,u) aE + o(a’e?) .

b
"

Using (2.22) and (2.23) in (2.21), assuming g% = O and hence that F0

is isotropic, we find, after dropping terms of second and higher order in

qE, that
OF OF OF
qEp gpg ~ g—“ [(1-u2)v0 wl] qE - %“ [(1-u2) Iy 5—59] qE. (2.24)
Taking
F (p,u) = £ (Plu, (2.25)
we obtain the equation
OF OF
" ypg = £, (p) % [(1-u2)v0] - g_u [(1-u2)A0]5p—0 : (2.26)

On multiplying this equation by | and integrating from -1 to 1, we ob-

tain

OF

1 1
[ —f (1—p2)Ao<p,u)du] Sp—" = 'fl‘p’f (l-uz)Ao(p,u) dp . (2.27)
-1

-1

wln

Hence we arrive at the following expression for fl(p):

£,(p) = - 2B) (2.28)



where

1

3 2 2
7(p) = Ef (1-u%)a (pu)dn = 28 - £ 4,
-1
and (2.29)
3 2 2
n(p) = §f (1-p )vo(p,u)du =2V . " 39 ¢
-1 )

and Von and Abn are the coefficients of the nth order Legendre

polynomials in the expansion of Ys and Ab, respectively, in spherical

harmonics:
) = v (o) (),
= (2.30)
Bo(pab) = S ()R (0)
Now
{p,>= -lqupz F(3)dp , (2.31)

where N 1is the mean particle number density. In spherical coordinates,

this becomes

00 1
{p,>= zm‘lf p° dpf F(p,u)udy . (2.32)

o -1
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On using (2.22) and (2.25), this becomes

o
ag -1 3
{p,>=—3 GEN / £, (p)p7ap . (2.33)

(o]

Equation (2,28) enables us to write this expression as

® OF
<pz>=—§qEN_lf %%%lgpgpsdp . (2.34)

Since the electrical conductivity (in e.s.u.) is given by

Na{p, )

g —mE— , (2.35)
we finally obtain the formula
2 2 OF
4rq 1-7(p) _o 3
= - d 2.36
3m / =(p) Sp p ap , ( )
o

which may be written alternatively as

o - 4nq2 > 1 S ‘p3 1'7(1))] F (p)pzd (2.37)
- 3m f ngp {p) o P '
o

Equation (2.37) is interesting in that it shows how various "spherical
shells" of particles contribute to the conductivity, but equation (2.36)
is the more useful form.

The total conductivity is to be obtained, of course, by summing the

contributions from all particle species.
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III. THE CONDUCTIVITY IN THE CASE OF A GAUSSIAN
CORRELATION FUNCTION AND A
MAXWELLIAN PARTICLE DISTRIBUTION

From (2.36), (2.29), (2.18), (2.13), and (2.2) we see that the elec-
trical conductivity is determined by the correlation functions
Raa(;—z'(t'), t-t'), where o and B can take on the indicial values
x and y. If the turbulence is to be statistically axially symmetric
about the z-axis, the most general form for the correlation tensor

R can be shown4 to be

ap

- a§2+b akn
ROtB(p’t) = ' (3'1)

agmn an2+b

where the components of B along the x, y, and z axes are £, 7, and
/.2 2

£ respectively, and a and b are functions of Vg +n", €, and -T.

If BBX and BBy are uncorrelated, we have an "isotropic" correlation

tensor for which a = 0, so that

XX vy ( )
3.2

R = R =0
Xy yx

A simple yet physically interesting form for b 1is a Gaussian distri-

bution:

b(p,7) = 62B02 exp|- -2 exp|- —— (3.3)

where L is the correlation length, Tc the correlation time and
c

0 (an2> (5B 2}
6 = 2 = g . (3'4)
B B
(o] o
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In this case we have, from (2.18),

2 27 t
© (3.5)
A - o 5 J{?n dgg/’t (t'-t) b(x-x"(t'),t-t") cos(ﬁ-ﬁ'(t') dt)
218, o t

From (2.9) we see that

1
x-x'(t') = 2rg sin = ot cos(¥ + & ar) ,
L1 . 1
y-y'(t') = 2rg sin 5 qr sin(g + 5 or) , > (3.6)
p
Z qQE 2
z-z'(t') =-— T4+ — 71 ;
( ) m 2m ’
where T = t-t'. ©Now Vo and Ao are the formulas for v and A
with E = 0, so that
62q232 27 t-t 2r2 p2 2
o o g .21 z 2 (
vy o= f dO’f dt cos 0T exp - |—= sin” = 01 + 17+ ==,
o 2 2 2 2 7 2 2
2mm ¢ o o L zm”L 2T (3 7)
c
2
524282 2 t-t 2r pZ 2
o o g .21 z 2 T
a = 22_[ d(?ff TchosOTexp-——zsm 5%4- 22T +—-2-.
° 2mm ¢ (o) (o] Lc 2m L 2TC

For t—to > T we may extend the upper limits of the above integral to
c

infinity and so obtain

=) 2 2.2 2
EzquiTc b2 2 % -r:/Li z r (n+1) %e%12
_[n o -
vole) =5 32 \' * 52 € E : In 2] P 2 2y
c ° = c 26 +EéL>
P, (3.8)

13



and

-1
2 2
5°a°B, T 22
ao(P,H) =T33 + 2 ’ (3.9)
|Y
mc fe)
where
mLc

For a very weakly turbulent field, & << 1, and, in consequence,
a << 1 so that we may neglect 7(p) in equations (2.36) and (2.37).

In thg case that, for all moments which contribute significantly to
r
Fo’ EEE <1, 1i.e., in the small gyroradius limit, we may use the fol-
c
lowing expression for v0 instead of the more complicated (3.8) in

evaluating the conductivity by equation (2.36):

-% 2.2
C

2 2
= ) quo TC p2M2 QT
o) =\ —2 = (14 25 ) e || ()
mc P,

O

If we now assume a Maxwellian momentum distribution corresponding to a

temperature T for Fo,

2
F (p) = N(2ﬂka)_3/2 exp ‘[?Ek_'r] , (3.12)

and define the quantity

1 2 2
c(v;w) = 3 / (1-u7)d — oxp - -y , (3.13)
2 2 2./ 2 2
) (1+w°") 2(1+w )

14



we find, from (2.36) and (2.29), the following formula for the electrical

conductivity:

8 d
g = \/_ch f )2< ) (3.14)
3x 5 B b.¢
[o) —
X
o
where
9 p02 mch
X" =g = (3.15)

2 2
As noted above, we must have rg /LC << 1 for all momenta contributing
to F, in (3.12) in order for this analysis to be valid. From (2.10),

this condition obtains if

2kT 1 << 1 (3.186)
mo?L 2 o%r %x 2
C (o]

or, equivalently,

QT “x > 1. (3.17)

Thus we see that ¢ depends on the density of carriers, the carrier
gyrofrequency, the mass of the carriers, the magnitude of the ambient mag-
netic field, the degree of turbulence, the correlation time and length,
and also the temperature of the plasma.

For x02 >> 1, 1i.e. for sufficiently small temperature only the

range x << x contributes to (3.14), so that we may approximate C by
o

(3.18)

15



to obtain

2 2 2 2

4 V2 Nme %O T © 4 —x° ax , (3.19)

3d B T

(o] C [s}
1.€.
2 2 2
Nmc %O T
g = AR e c (3.20)

(27)”% & BT,

It is interesting to note that, in this case, the conductivity of
a plasma has a larger contribution from ions than from electrons. Even
in the general case given by (3.14), for which the condition xo2 > 1
does not necessarily hold (such as the solar wind in the neighborhood of
the earth), the ions are still the principal contributors to the con-
ductivity. The implications and applications of this analysis, including
a study of the equation (3.14), which must be used for many cases of

astrophysical interest, will be given at a later date.
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