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FOREWORD

This report was prepared by North American Aviation, Inc,, Space
Division, under NASA Contract NAS9-4552, for the National Aeronautics and
Space Administration, Manned Space Flight Center, Houston, Texas, with
Dr. F,C, Hung, Program Manager and Mr, P.P, Radkowski, Assistant
Program Manager. This work was administered under the direction of
Structural Mechanics Division, MSC, Houston, Texas with Dr, F, Stebbins
as the technical monitor,

This report is presented in eleven volumes for convenience in handling
and distribution. All volumes are unclassified,

The objective of the study was to develop methods and Fortran IV com-
puter programs to determine by the techniques described below, the hydro-
elastic response of representation of the structure of the Apollo Command
Module immediately following impact on the water, The development of
theory, methods and computer programs is presented as Task I Hydrodynamic
Pressures, Task II Structural Response and Task IIl Hydroelastic Response
Analysis,

Under Task I - Computing program to extend flexible sphere using the
Spencer and Shiffman approach has been developed, Analytical formulation
by Dr., Li using nonlinear hydrodynamic theory on structural portion is
formulated. In order to cover a wide range of impact conditions, future
extensions are necessary in the following items:

a, Using linear hydrodynamic theory to include horizontal velocity
and rotation,

b. Nonlinear hydrodynamic theory to develop computing program on
spherical portion and to develop nonlinear theory on toroidal and
conic sections,

Under Task II - Computing program and User's Manual were developed
for nonsymmetrical loading on unsymmetrical elastic shells, To fully
develop the theory and methods to cover realistic Apollo configuration the
following extensions are recommended:

a, Modes of vibration and modal analysis,

b. Extension to nonsymmetric short time impulses,
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€. Linear buckling and elasto-plastic analysis

These technical extensions will not only be useful for Apollo and
future Apollo growth configurations, but they will also be of value to other
aeronautical and spacecraft programs,

The hydroelastic response of the flexible shell is obtained by the
numerical solution of the combined hydrodynamic and shell equations., The
results obtained herein are compared numerically with those derived by
neglecting the interaction and applying rigid body pressures to the same
elastic shell, The numerical results show that for an axially symmetric
impact of the particular shell studied, the interaction between the shell and
the fluid produces appreciable differences in the overall acceleration of the
center of gravity of the shell, and in the distribution of the pressures and
responses. However the maximum responses are within 15% of those pro-
duced when the interaction between the fluid and the shell is neglected. A
brief summary of results is shown in the abstracts of individual volumes.

The volume number and authors are listed on the following page.
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ABSTRACT

The analysis presented in this volume is confined to the
impact of the Apollo Command Module on water using a rigid
sphere as a mathematical model. A general potential for the
oblique impact is derived using a method developed by the
first author of this volume. This method differs from the
existing approaches in that the condition for the flow to be
tangential to the varying wetted portion of the spherical sur-
face is satisfied for all values of t, where t denotes time;
while using the conventional method, the potential has to be
calculated for each increment of time.

Particular series expansions are obtained in the case
of vertical impact for the velocity of penetration, the free
surface, and the pressure., These are power series in the
depth of penetration., They are obtained from the nonlinear
differential equations instead of from the linearized ones,

A computer feasibility study is included in this volume.
No numerical calculation is attempted at this time. An
analytical formulation has also been extended to the conic
and toroidal section of the Command Module.
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INTRODUCTION

The water impact problem has been of interest to the U. S. Navy for
many, many years because of its concern to understand the physics of ship
slamming, seaplane landing and torpedo launching. A large amount of money
has been spent to finance both theoretical and experimental studies of this
problem,

As a result of these studies, many papers have been written and pub-
lished on water impact of bodies of simple geometry such as wedges, cones
and spheres. These publications cover both the experimental and the theo- -
retical aspects of the problem. A short list of papers is given in a review
article by V.G. Szebehely (Applied Mechanics Reviews, ASME Journal,
February 1960). In reviewing all the publications on this subject one can
conclude that some progress has been made but that the main problem
remains.,

Recently the water impact problem has aroused the interest of the
National Aeronautics and Space Administration and the spacecraft industry
for the reason that a spacecraft, such as Apollo, is adapted to land mainly
on water, Because of the high cost of the payload, it is extremely important
that the engineers have a workable knowledge of the impact pressure during
the first few microseconds, perhaps a few milliseconds after the impact, in
order to achieve an economical and safe design,

To gain knowledge of pressure distribution of landing impact, experi-
ments have been funded by the space agencies and data have been obtained.
We know, however, that any instrumentation has a time lag. Furthermore,
the instruments mounted near the body nose, which strikes the water first,
are always knocked out of their positions, As a consequence, no records on
impact pressure during the first few micro- to milliseconds have been
obtained,

In order to obtain these important values, one has to resort to theo-
retical studies and to check the theoretical results against experimental
data taken a few milliseconds after impact. In the case of concrete experi-
mental verification, confidence in the theory is established and the theoreti-
cal pressure distribution for the first few micro- to milliseconds can be used
for design.

As pointed out, however, by G. Birkhoff in his book on hydrodynamic
stability, the water impact problem is one of the knottiest problems, with
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which neither mathematicians nor hydrodynamicists have had any luck, This
indicates that the physics of the problem has not been fully understood, hence
none of the approaches used so far to attack this problem is perfect.

The approach advanced in this report is based upon the assumption of
impact of a sphere on an incompressible calm sea, Under the assumption of
irrotational flow, a velocity potential is introduced which has to satisfy the
following conditions:

1. The flow has to be tangential to the surface of the sphere,
2. The potential has to be dependent on the impact velocity.

3. The far away quiescent free surface has to be a part of the solution
of the kinematic equation for the simple reason that the potential
has to depend on the initial free surface.

4, After submergence, the solution has to reduce to the classical
solution for a sphere moving with the velocity of penetration in an
infinite medium.

Conditions 1 and 2 have been imposed by various authors, while 3 and 4
are introduced here for the first time.

As pointed out previously, the major obstacle to the solution of the
water impact problem is the development of the mathematical theory. Many
writers believe that any solution to this problem, even with the exclusion of
Conditions 3 and 4, would reduce to a constant, since it concerns a boundary
value problem with a closed boundary. However, one should note that this is
only true when we limit our discussion to functions regular in all variables.

The solution presented in this report consists of two parts, both analytic
in the angular coordinates but not in the radial coordinate. As the radial
coordinate is concerned, one is a Laurent's series, the other is an analytic-
function of £nr multiplied by the -1/2 power of r. Since the second part is
not regular in r, our findings do not contradict the classic theory which states
that the (regular) solution to a Neumann problem with a closed boundary is a
constant,

This new solution contains a class of functions given as definite inte-
grals. These functions solve problems for a sphere just as Bessel functions
solve problems for a cylinder.




A second difficulty of the problem of water impact is the determination
of the arbitrary functions contained in the general solution from the boundary
conditions. It is clear that the four conditions listed in this INTRODUCTION
are not sufficient to determine all the arbitrary functions. It is also clear
this physical problem has a unique solution, but it is not clear what physical
phenomena take place immediately before the impact.

It is true that a completely incompressible approach will lead to infinite
initial impact pressure which is physically absurd. To avoid this it is advis-
able to take the compression wave into consideration. This is done in this
report by demand that the potential function satisfies the wave equation near
the first point of impact.

The results obtained from this procedure lead to solutions containing
only one arbitrary constant and two arbitrary functions of the single variable
of integration, These functions are fixed by momentum balancing.

The final potential, the free surface, the impact pressure and impact
force are all in the form of power series of the depth of penetration, the
coefficients of which can be evaluated from recursion formulae. A numerical
procedure to compute these coefficients is outlined in this report. No cal-
culation has been made at this time.






I. MATHEMATICAL FORMULATION

The problem of a sphere impacting on water can best be treated by
using nondimensionalized moving spherical coordinates. We will describe
the coordinate system first, then give the fundamental equations of motion
in these coordinates. Finally, we will discuss the boundary conditions for
the potential thoroughly.

1. MOVING COORDINATES

Denote the dimensional coordinates of a point in space referred to a
body-fixed coordinate system (moving system) by

X, Y, Z (rectangular)
R, 6, w (spherical)

and those referred to a space fixed system by

;(, S_(, _Z_(rectangular)

Figure 1. Coordinate System
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We will assume that the moving system and the (space) fixed system
coincide at time T = 0.

For our study, it is convenient to nondimensionalize all the quantities.
Thus, we set for the coordinates

1

:ROX,Y:ROy,Z:Rz

1

X =Ry Y=Ry, Z

0 R =z (1)

0

where R0 is the radius of the sphere, and for the physical quantities

T=5t V(t) =V w(t), P=Pp (2)

<:,O;u

0

where V(t) is the velocity of the sphere VO = V (0) is the initial impact
velocity, P the dimensional pressure, P( its initial value. It is clear
that the nondimensional rectangular coordinates are related by

t
E:X,V:y,E:z+S w(t)dt (3)
0

and the moving rectangular and spherical coordinates by
X = rsinwcos 6, y = rsin wsin 8, 2 = rcosw (4)
2. FUNDAMENTAL EQUATIONS
Under the assumption of irrotational flow one can assume a velocity

potential ¢ which is nondimensional in the nondimensional system. For an
incompressible fluid the dimensional continuity equation is

+—-::O (5)

where 6, \7, and W are the dimensional velocity components referred to the
space-fixed system. If ¢ represents the velocity potential for the relative
motion in the body-fixed coordinate system, the continuity equation becomes
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3
¢, 1 1 8

rsinw r Jw

(6)

LB\ 1
SInw 5, 2 . 2
. r sin w

The dimensional momentum equations

+ U

U — oU

—+V —:+‘7"g='§a—li
X oY oz P 9X
N, vV, g¥__1&
axX oY 0z P oY
A S T
Byl LR
X oY 97, P 0dZ

(7a)

(7b)

(7c)

where 5 denotes the dimensional density, assume the following forms in the
nondimensional moving rectangular coordinate system:

-

2 2 2]
01%, 1 (ai’) ' (_3&) + (8¢) o P (8a)
ax |5e T2 | \ax 5y 7 Bx
0|« 1 [ d 2 0 \ 2]
919, 1 (.?L) (Ji) + (Q‘B) ) (8b)
dy |at 2 Ix oy 9z/ | oy
o [ o9, 1 3¢ : 3¢ : ¢ ? P
5z |tz (g) + (5 (3%) T g Y- er (8o
where
P 2
C
o=—""— = [ (9)
P
V0 0
is a nondimensional constant and
g, = 8/8* (10)

is the gravity at earth-sea level, c, the velocity of sound in water.



Integrating Equations (8) one obtains the Bernoulli equation

2 2 2
2367 @ @] e

By virtue of the relations

2 2 2 2
r =x +y +z
tan6 =y/x
1
1(2 2) 2
tanw = X +vy

one can write the Bernoulli equation in moving spherical coordinates as

follows:

or . 06 ow
r sin w r

R RN N

rcosw

= -ap - lwo(t) + g*

3. PARTIAL DIFFERENTIAL EQUATION FOR THE FREE SURFACE

(11)

(12a)

(12b)

(12c¢)

(13)

Let us assume, for simplicity, that the initial free water surface is
quiescent immediately before the impact. After the impact, the disturbed

or raised free surface is given in the moving spherical coordinates by

flr,6,w,t) =r-r(6,w,t) =0

SPLASH

RAISED FREE SURFACE
QUIESCENT INITIAL
FREE SURFACE

B - DEPTH OF PENETRATION

Figure 2. Free Surface
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This surface has to satisfy the kinematic condition

Df

5= 0 (15)

which, when expressed in terms of moving spherical coordinates, becomes

o¢ 1 9¢ or (L Bd))l or 8r_0 (16)
or 2 . 26 20 "\t Sw/T 9w ot
r sin w

Equation (16) asserts that, once a fluid particle reaches the free surface,

it can only move on this surface. It is clear that the far away quiescent free
surface is part of the free surface and has to satisfy Equation (16) in an
asymptotic manner.

4. PRESSURE CONDITION

For an incompressible, irrotational fluid the Bernoulli equation
(Equation (13)) determines the pressure for a given potential ¢. This
pressure is a function of location and time within the liquid mass. It
reduces, however, to a constant at the free surface. This means that for r
defined by Equation (14) and satisfying Equation (16) one will have

2 a2 2
2l 1@ 2 )L @

2 Jr . ow,
r sin w

+ (v'vo (t) + g*) rcosw = constant (17)

forr = r (0,w,t) all 6, all w and all t.

Equation (17) is called the pressure condition for the free surface. It
will be used to determine the arbitrary function contained in the integral of
the kinematic equation. The problem of the determination of the arbitrary
function using pressure condition is nonlinear.

5. BOUNDARY CONDITIONS FOR THE POTENTIAL

The conditions for the potential listed in the INTRODUCTION need some
justification. Let us take up the first condition and assume that the sphere
is rigid. Then any liquid particle movihg with the induced (perturbation)
velocity will not penetrate the spherical surface. Instead, it will move
tangentially to this surface at every point of the wetted portion, of course,
at any time. Mathematically this means



(g—f) r:1:° (18)

identically everywhere on the wetted portion of the spherical surface, i.e.,
for every value of 6, of w and of t in that region.

Now we can discuss the second condition given in the INTRODUCTION.
Under the assumption that the body is moving with velocity w (t) towards the
space-fixed point at infinity, for an observer in a body-fixed reference
system the point at infinity is moving with a velocity wq(t) towards him.

This means mathematically that there exists an absolute potential $ for
which

V8l - (%) = w, (1) (19)

Since the velocity Wo(t) of the sphere is proportional to the impact velocity,
Equation (19) shows the dependence of the potential on impact velocity.

Conditions (18) and (19) are not sufficient to uniquely define the
potential. To achieve this we will need additional conditions. One of
these is given by the third of the conditions listed in the INTRODUCTION.

We note at first the difference in disturbances created by a sphere
impacting on a calm sea from that created by one impacting on a rough sea.
Undoubtedly the potentials in these cases are not the same. In other words,
the potential has to depend on the initial free surface. This condition
is expressed mathematically in that the initial free surface

r = rO(G,w,t) (20)

has to satisfy the kinematic condition

o] d
(@) o1 (a¢) T, ] (aq;) 1% %o o
. 00 r ow r OJw t

r=r r051nw r=r 0 r=r

o

(21)

asymptotically. Furthermore, the pressure there has to be zero. Equation
(21), when considered as an equation for ¢, gives an additional condition

to fix onc of the arbitrary functions contained in it, while the pressure
condition fixes another.

- 10 -




The fourth condition listed in the INTRODUCTION is also important,
for it defines the behavior of ¢ after submergence. It is clear that, when a
space capsule has penetrated a certain depth, the body will behave like one
in an infinite medium. The mathematical expression for that in the case of
a sphere is:

1
(cb) = w(t) <r + 2—E>cosw (22)
B =B, g

where B is the nondimensional depth of penetration and B a critical depth
and

r

¢‘0 = WO(t) <r +-lé %)cosw (23)

is the classic potential for a sphere moving with a velocity w,(t) in an
infinite medium.

The four conditions discussed above are obtained from physical
considerations. Any potential, whether analytical or numerical, used to
describe the physics of impact (vertical or oblique) of a sphere on water
has to satisfy all these conditions.

- 11






FRECEDING PAGE BLANK NOT FiLhizD

II. ANALYSIS

1. INTEGRATION OF THE LAPLACE EQUATION

a. Separation of Variables

To integrate the Laplace equation in spherical coordinates

2 i 2
27 r 9r @ rsine r 8w \>'™ 2w 2 2 2 -
or r sin w 060

we use the classic method of separation of variables. We set
4= ¢ (8) y (r, ) (29

and demand that ¢ {(6) be periodic in 6 and that i (r, w) be periodic in w.
After separation of variables, one gets ’

2
) oy 2 9y 1 1 0 ( 84}) B
r sin w -s—rz +? 5 T Tsmo T 3% sinw == -hy=0 (25)
and
2
d ¢1
5 + h¢l =0 (26)
de

where h is a parameter of separation. The periodicity of the solution of
Equation (26) requires that

h=m
where m is an integer. Hence, we have

¢, (8) = Am(l)(t) cosm6 + Am(z)(t) sinmé (27)

-13 -



where the A's are arbitrary functions.
Equation (25) can be written as

2 2

9 2 9y 1 1 9 ( . 8¢> m
ot T rsie 9w g, -3z w0 (28)
9 2 r sSin w
r
Assuming
b= b, b, (r) (29)
one has
do¢ 2
1 d . 2 1 m
oo do <smw ———dw_> - <Z+ k + —2 >¢2 =0 (30)
sin w
and
2
d ¢ dé
2 "3 3
r >t 2r + 1 + k ) ¢3 =0
dr dr

1
where <Z + k) is a second parameter of separation.

The next thing to do is to find out whether there are restrictions on k
imposed by the periodicity of ¢, (w) inw.

Introducing a new variable ¢ by

2
= sin w (32)
one can write Equation (30) as
2
4021 )d *2 + 20(2 3cr)f1jb—2 (1 k) “lo. =0 (33
A -39, c\\gftkjotm Jeé, =

Any solution of Equation (33) is a function of ¢ which is periodic in w,
regardless of what value k assumes. Hence, there is no restriction on k
imposed by the periodicity requirement of ¢2.

- 14 -




To solve Equation (33) one sets

¢, =0 X (34)

2
d
Xm Xm
a(l - o) 5t m+ 1 - (m+z+l>0' o
do
1( ( 1)+1+k)X -0 35)
oy m(m + Z m (

To discuss Equations (31) and (35), one distinguishes two cases.
These are

2

- (n 4 i) , N positive integer (36)

() k >

W

2

(ii) k = £, { > o non-integer (37)

\

We will show in the follow:ng sections that case (i) delivers the classic
solution, while case (ii) gives rise to a new class of solution. A combination
of these two solutions gives the solution required.

b. The Classic Solution

For % + k = - n(n+ 1) Equation (31) becomes

3 _
r + 2r = -n(n+1)¢.3—0 (38)

Its general solution is

¢,=c Dy c gy -2+

3 (39)

where the C's are arbitrary functions. For the same value of k Equation (35)
reduces to

- 15 -



de m-n m+n+l dxm
o(l -¢) 5 1 (m+ 1) - < > > + l> e
do
—1( n)i( + 1 =0 (40)
-5 (m - > (m+ n+ )X =

which has the general solution

(1) (m+n+1m-n'l_ )
Xy = B (munt) F 2 22177
2 P ' 3
+ BB, n, (1 -0 F(mzn+l,m-2n+-;:;z;l-o) (41)

where the B's are arbitrary functions. Consequently, we have

1 1 - 2
¢2(w) = sinmw B( )(m, n,t) F(m+2n+ s mz n; %; cos w)
2 - 1 42
+B( )(m,n,t)cosw F(m;n+1’ m2 L +§-; %’;coszw>l (42)

For n =m + 2s, where s is a positive integer, the first hypergeometric
series terminates, while the second series degenerates to a polynomial
for n = m + 1+Zs.

Using F. Neumann's definition for associated Legendre functions (see
Reference 1,p.323, or Reference 2,p.117).

‘m

E" .
m (2n)! 2 n-m (n-m)(n-m-l) n-m-2
P_ ()= . (L-p ) M -
n Zn(n - m)in! 2(2n - 1)
+(n-m)(n-m- I n-m-2){n-m-3) n-m=- 4
2.4(2n - 1)(2n - 3) :
- ) (43)
one has for —}1- + k = - n(n + 1) the following solut—ion for the Laplace

equation

- 16 -




b = z Cn(l)(t)rn + Cn(z)(t)r -(n+ 1)} i lAmn“)(t)cosme
n=20 m=0
v A Nysinme | pm (cosw) - (44)
mn n

where the arbitrary function B(l) (1)(t)
2
and A ( )(t). This is the classic solution to the Laplace equation for a

spher{enrx}ecaptured in Lamb's book {Reference 2).

and B(Z) are absorbed into A
mn

To satisfy conditions (18) and (19) at the same time one has to choose
n=1, m=0. Thus we obtain

-2
¢0 = wo(t) (r + -;—r ) cosw (45)

This is the potential for a sphere moving with velocity Wo(t) in an infinite
medium.

c. The New Solution

2 .
For k ={ Egquation (31) becomes

2
d ¢ do
2 3 3 1 2) ~
r +2rdr +<4+Q ¢3—0 (46)
dr
with the following general solution
1
¢3 =r 2 (Bcos(ﬂ gnr)+Asin( ¢ '~Qnr)) : (47)

As a consequence of Equations (18) and (19), the conditions for ¢4 are

d¢
3
<(-1-r—> -0, |V¢| =0 | (48)
r=1 r =

Since

3

2 (AQ-%—B)COS (¢ £nr) - (B [ +iA> sin(E Enr) (49)

dé -
3: 2

dr r
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the second part of Equation (48) is satisfied. To satisfy the first part one

chooses
B=2{A

and obtains

1

2
¢3 = A(/,t)r (2 fcos(! [nr) + sin(/ tnr))
where A is an arbitrary function of / and t.

2
For k = { Equation (35) becomes

2
d
X 1 dx
o(l - o) ;n+ (m + 1) - <m+E+l>] dqm
do
e, 2],
v m-!-2 + xm—O

which is the hypergeometric differential equation with

L msLyir)
a—zm 2

%(m-f%-i[)

w
1

Y m + 1

The general solution of Equation (52) is given by

i@wg)+u,L¢n+g_zAlw1;”\

X © Gk t) Fisg 2 2 2 2

1

Pl 2) b L, 3) L3
+ CZ(nL1<,Q(1 -} F 5 \m + > + 2 > 3 {m + 2] 33

where the C's are arbitrary functions.
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Consequently, one finds

l< l) il l( l)__i!.l.
CIF(2m+2+2,Zm+2 2,2,(1-(r)
1
2

, %(m +§’-) -—izg;—g--(l-o)> (55)
Because of the relation

0<o=1 (56)
1;he integer m has to be positive while £ may have any real value.

However, one can also use the relation

Fla, B;y;8) = F(B, a;vy;8)

to limit f to positive values. Since the coefficients of the hypergeometric
function F(a, a;y;%) have factors of the form (a + p)(a + B) where a and o
are conjugates complex, the functions contained in Equation (55) are all real.

From the above discussion one concludes that the new solution to the
Laplace equation satisfying Condition (48) is

1 5

b= A(t) + r 2 z (sinw)m

m =0

B ] (m, t)cosmB

r lZQcos (£ fInr)
0

Cl(m,ﬂ,t)F(%<m+%>+ ;—2,%<m+%)

+ Bz(m, t) sinmé

+ sin(£ Anr)

i 1 Zw)
- 53 cos
| i( 3)_1@1’ EATRTNE N
+ Cz(m,ﬁ,t)cosw F(Z m+2 +—2,-2-(m+3 - 2,cosw) d2(57)

where A, B;, B, € and C, are arbitrary functions of the variables indicated
in the parentheses. It can be shown by convergence considerations that the
upper limit of integration is

a=1 (58)
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d. The General Solution

Now we can combine the classic solution given by Equation (45) with the
new solution given by Equation (57). Thus we obtain the general solution to
the Laplace equation (6) with Conditions (18) and (19) as

1

1 -2 z |
b= A(t) + wo(t) (r + 5T )cosw +r z (sinw)m Bl(m, t)cosm®O
m=20 )

@

+ Bz(m, t) sinm6 Y 22cos(£ Inr) + sin(£ Bnr))
0

™=

m +

Nlr—-

il 1 1 il 1 2)
X‘Cl(m,ﬂ,t) F ) > 2(rm+2>- 5, 33 COS W

+ Cz(m, £, t)cosw F(% (m +%) + 21—2 1(m+;) i -g—, cos w)d? (59)

This potential satisfies the condition that the flow is tangential to
the surface of the sphere. It also shows its dependence on the impact
velocity. It would reduce to the classic solution for a sphere moving in an
infinite medium after submergence, if one could show that the new contri-
bution becomes negligible after the sphere penetrates a certaindepth. Two
of the arbritary functions contained in ¢ have to be determined by the
initial free surface condition. This will be discussed later.

For vertical impact one has m = 0 and
1 -2
¢= A(t) + w_(t) |r + 5T cosw
0 2
1

2

+r (ZBcos(Q gnr) + sin (£ 2nr)) 1 ig 1 L 1 Z)

CI(Q,t) F(— {COS W

it 7
i 3 i 3 2
+ Cz(ﬁ,t)cosw F<E + l-e- ___1_@ -2-; cos w>

1T df (60)

This solution contains only three arbitrary functions A(t), Cp (£, t) and

CZ( £2,t). A(t) and CZ(Q ,t) can be completely determihed by the condition of
their dependence on the initial free surface.
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2. DETERMINATION OF THE ARBITRARY FUNCTIONS

a. Determination of CZ(Q 1)

The initial quiescent free surface is given by

__B
r() " cosw (61)
where
g =1- B(t) (62)

with B(t) denoting the nondimensional depth of penetration (Figure 2). For
this surface one finds

0 sinw
—— = 6
55 = P(t) > Bt 050 (63)
COS W

or 81‘0 - f3

Furthermore, one computes, from Equation (60)

29 . wo(t) (1 - r-3 )cosw

ar
3
12 2, . (1 il 1 ig 1 2
-5t (1 + 42 7 )sin(f Inr) CIF 4+ > g 303 ¢os w)
0
3,10 3_ i3 2
+Czcost(Z+ S Z- 33 cos w> df (64)
To compute 3¢ one sets
ow
3,40 g 3 10 _3
a=gt5 P=3-32. Y73

in Equation 9.2.12 on page 243 of Reference 3, and finds
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2
RSN YA S VN VI W) (3 ig 3 u._l.)
12 4F(4+2’4'2’2’?,+F4+2’4'z’2’§
_p(2y i 3 i L,
—F(4+ 2: 4- 2)2’2) (65)
By virtue of Equation (65) we obtain
1 1
1 -2 "2
% = - wo(t) <r +—2-r ) sinw - r 2 sinw (2[ cos(f Inr) + sin(/ tnr))
0
1 5,408 4132,
(1+4[)Ccost(4 2,4-2,2,cosm
3,40 3 i 1 2)
+C2F(4+2,4—2,2,cosw d/ (66)
At the quiescent free surface, defined by Equation (61), the first
derivatives of ¢ assume the following values
1
¢ cos3w 1 cosZ/3w 2
d _ _Cos w 1 cos w .
(ﬁ) -WO 3 osw > 372 (1+47 ) X
r=r §] g
0 0
i 1
X sin(l In B -1 {n cosw) C F( 21 1. I—ZI;—Z—; Coszw)
: (3 i 3 i1 3 '
+C2cosw F(4+2,4-2 2,cosw (67)
2
ﬂ = - W P +-—1--Cos ®) sinw
ow 0 \cosw 2 2
r=r B ‘
0
L 1
2 : .
- coslw sinw ‘21’ cos (l /np -1 Incos w)
p° 0

(Continued on next page)
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5 if 5 il 3 ) ENETRENY Z)I
— == —_ —=..;c0os w}+C —t— | —_——
XF(4+2,4 2F4+2,4 2,2,coswldl
(68)
Since B(t) is the depth of penetration, one has
B (1) = - w, (1 (69)

Substituting Equations (63), (67) and (69) into Equation (21), one obtains

73 !
2 2 .2
w,cos w-iﬁ cosw (1 + 41 )sin(l /n co;w> X
0
1 il 1 g 1 2 3, i 3 ig 3 2
X Cl F(T+_2_’71———2’7’ cos w) + C COSw F(—‘I >z 2 > cos w)}df
3 1
2
-B sinz:\/_ {Zl cos (lln CO;w>
0 .
cosw 1 5 if 5 i 3 2
- i — / = .__.___ .
31n(lln B )H4(1+4 )C CoOS W F<4 > 2 > 55 cos w)
344 3 ig 1 2 Yo 2 2
i i 1 _ _
+ C2 F(T+7’T-7’ > cos w) d/{ > sin wcos® w =0 (70)

The arbitrary time function C, can be determined from the condition
that the initial quiescent free surface should satisfy the kinematic condition
asymptotically, i. e., Equation (70) should hold true for w-72. This is the
mathematical expression for Condition 2 stipulated in the INTRODUCTION
to this report.

For w-1/2, one obtains from Equation (70)
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1

Cz(l,t){Zt’ cos (unSiﬁn‘)— sin( ! In Sige)ldf =0 (71)
0

for small ¢ and all t. Equation (71) is an integral equation of the first

kind. For a given t, its kernel is a function of / and sine. It can be shown
that the eigenfunctions of this kernel form a complete orthogonal system. The
only solution to Equation (71) is then

C,=0 (72)

The facts that the quiescent initial free surface '
rcosw = B(t)

is a plane parallel to the plane
w = (73)
2

and that two parallel planes are tangent to each other at infinity lead to the
conclusion that the initial quiescent free surface is an asymptotic solution
to the kinematic equation for the free surface.

Hence, we have from Equations (60) and (72) the following result:
The velocity potential for vertical impact of a sphere on an incompressible
fluid is of the form
1 -2 ' '% h
o= A(t) + wo(t) (r +—2-r_ )cosw +r j (21 cos(! fnr) + sin(! tnr))
0 .
1

if 1 if 1 2
XCI([,t) F<4+ > 1" 33 cos w)dl (74)

b. Determination of A(t)

Consider the pressure acting onthe initial free surface at infinity, one
has from Bernoulli's equation for

rcos w = B(t), r..m,w-——g— (75)
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and p = 0 the result

(%)r..er‘%wg (t) = - (V'Vo(t) + g*)ﬁ(t) (76)

weZ
2

From Equations (60) and (75), with CZ( f,t) = 0 one has

(%ﬁ) = A (1) + W, (0B(Y (77)

-

W = —

and substitution of Equation (77) into Equation (76) results in

t 1 (Y 2
Alt) = A -[ (zxsvo(t) + g*) B(t)dt - 7] wo(Dat (78)
Jo 0

where A is a constant.

As a consequence of Equations (74) and (78) we have the general

potential satisfying Conditions (1) and (2) stipulated in the INTRODUCTION
as

t ‘t
o= A -[ <2v°v0(t) + g* (t))dt-'%- /0 wg (t)dt + wo(t) (r +—1-r -Z)COS w

2
70
1 1
2 : 1 g 1 qg )} 2
+r /(2[cos(l2nr)+sm(lfnr)) Cl([,t) F<4+ > 1 55 53 Cos w)|d’
0

(79)

where A is an arbitrary constant and C1 is an arbitrary function of / and t.

c. Absolute Potential

To obtain a nontrivial value for Cl( f,t) one has to introduce the
absolute potential ¢ by

- 25 -



¢ =6¢+ w, (t)z (80)

It is clear from the conditions

2 ] :
(ar) =0 (81a)
r=1
w=20
and
(gg) = w, () (81b)
r=1
w = O

that ¢ is a relative potential and that ® gives the absolute velocity.

At the initial stage one will expect the absolute potential to satisfy the
wave equation in the space-fixed system

5. VOZVZ&S
v -\—) =0 (82)

ot
which is valid for r = 1, small w and small t.
Since the absolute potential satisfies the Laplace equation in the space-
fixed system, Equation (82) reduces to

=0 (83)

Equation (83), when written for the body-fixed system, reads

2- 2~ —

;) 90 . od 2 0 ¢

—__ 2 —_— —_— =

N Wollaaat = Wol®) 5t W () R 0 (84)
A

which is valid for r ~ 1, small w and small t.
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Using the transformation

9 _ 9 1 . 0
—8_;_ COS(,\)E; _;s1nw —aw (85)
one computes for r ~ 1 and small w
a—d):coswa—d)——l-sinw-a—cb-:O (86)
Z r r ow
2 2
2 9 2 2 2
9 g’: cos w—%— +—731nw cos w % - —sinw COSw_u
oz ar r dw ¥ drdw
2

1 2 9
r or 2 9w 8r2

I

From Equation (64) one obtains, by differentiating with respect to r

2% 4
—>= 3W0(t)r cos w
or
> 1
3 72 2. . 1 i 1 i1 1 2)
+zr A (1 +41 )sin (? l/nr)C1 F(Z+—2-,—-7,E,c05w df

-5 ,l1
1 = 2 1 iy 1 iz 1
_7r2 / /(1 + 41 )cos({ Inr) C1 F(Z+-—2 v~ 33 cos w)dl
0
(88)
For r ~1 and small w one has
1 1 2

azq> > L(1 + 41 )Cl(z,t)
*2:3w0(t)+ T fnsinw d/ (89)

0 47 2/ \a" 2
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where Equation (10) on page 114 of Reference 2 is applied.

Introducing Equations (80), (86), (87) and (89) into Equation (84) one
obtains

3 . .. . .
3W0 - 2w W -WO+2Bw0+g6w

00 0
2
]
1 2, 2 Cl
1 (1 + 42 )wo(t)Cl(f,t)-4—-2— df
+in2£n sinw ot =0
2 r(Ly )L, i) - 00
4 2 4 2
0
where
t
B(t) = [ w(t)at (91)
0
0
denotes the nondimensional depth of penetration.
Equation (90) is only possible if and only if
. 3 « e o S .
3B -2BB -B +2BB + g*B = 0 (92)
and
2.°2 o ch
(1 +427)B (t)Cl((Z,t)-4 5— = (93)
ot
are satisfied simultaneously.
d. Determination of B
Writing
< 2 g* 1
B = -= -—= 94
y(x) 3" B > = X (94)

one reduces Equation (92) to the linear equation
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2
d
LY W a0 (95)
2 X
dx

Equation (95) can be transformed to the Bessel equation

2
i_‘zl.+ %j_éu <-§—2>u= (96)
by setting
1
23%)° = &, yx) = £ul) (97)
Thus, we find
u:aJ2(§)+bY2(’§) (98)

where J_(£) is a Bessel function of the first kind and Y, one of the second
kind. a and b are arbitrary constants.

Using Equations (94) and (97), one gets by substitution

< 1 1 1 1
"2 (1 ) _ ?(1 )? 7(1 )7
B =12(5-B)|al, \2.3" (5 - B +b K, \2.37(5 - B

- gk 20 for B < - (99)
and
1 L
B% - 12 (B--l_> al, 2<3(B—%)>2 '-%bYZ 2<3(B-%—)>2
1 1
-gg*zo forB>E (100)

I, and K, are modified Bessel functions. The constants in Equation
(99) and (100) are so chosen that the two functions defined by these equations
1

are identical near B :E-.
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To determine a and b one takes the nondimensional initial impact
velocity into consideration and obtains from Equation (99)

1 ’ 1
2 2 1,
6 a12<6 >+ b KZ <6 > - .3.g>.< =1 (101)

From the nature of the functions I2 and K, and the restrictions imposed
by Equation (99), one concludes, by letting B —= %, that it is necessary to
choose

b>0 (102)
A second equation for a and b has to be obtained later.

Under the assumptions that r = 1 and w is small, one can solve
Equation (99) to obtain

B

=t (103)

N~

where B is the initial depth of penetration created by the compressionwave
immediately before the impact. '

Equation (103), when inverted, gives the depth of penetration B as a
function of t.

e. Determination of Cl (2,t)

Introducing B2 into Equation (93) we have a second order linear
partial differential equation for C; which can be treated as an ordinary
equation. In fact, if one considers C| as a function of B(t) and makes use
of the relation
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B-2_p%2 (104)

dt dB
Equation (93) can be written as
82C -2 0C
2 1 1 dB 1 1 2\ -2
B — +E ﬁ; —aB - (Z + 2 )B (t)Cl =0 (105)
JoB
BZ
It is not hard to obtain B from Equation (99). After substitution of the

22
. B . . .
values of B~ and % into Equation (105), one can integrate the result as an

ordinary differential equation and obtain a solution containing two additional

arbitrary constants which are. functions of /. These constants have to be

determined by momentum balance and the pressure condition,

3. DETERMINATION OF THE FREE SURFACE - A FEASIBILITY STUDY
From Equations (99) and (101) it is clear that, for small depth of

penetration, the square of the velocity of penetration and the velocity
itself can be written as

[o0]

-2

B:1+Zava,B: ZbBV (106)
v=1 v=0

where the coefficients are linear functions of a single parameter a.
Consequently one finds, from Equation (105)

B N v
C (2,1 = VZOCV(Q)B (107)

where only CO(Q) and CI(Q) are arbitrary.
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Substituting Equation (107) into Equation (74} results in

b= At) + wo(t) (r + %r-2>cosm

1 1

[e0]
2 v
+r B 20cos(f fnr) + sin(f fnr)) C (2)
2 ( ) c.

1 sp 1 ig 1 L2
X F(_ FUNLINEY AR S )
i 50 g ; cos w)dl | (108)

which is of the form

8= > &, (r,w)B" (109)
v=20

This potential contains two arbitrary functions of the dummy variable £ and
involves otherwise only known linear functions of the parameter a. Neither
the space variables nor the time variable are involved in these functions.

Assuming
[e0]
r = F(w,B) = 2 £, (w)BY (110)
v=0

as the equation for the free surface generated by the impact one has, by

substituting r = F into %;—?, %E and % the results

o9 N o (o)B
<ar> > e,(w)B (111)

r=F v=0

t
’
<

06 N y
<8“’>r - Z ¥ (w)B o (112)

0% AN v
<at>r_ = Z X, (w)B (113)

where @,, ¢, and ¢y, are known functions of fo, fl’ .

!
g
<

.
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Writing

: r2 = z gv(w)BV (114)
0

f ... and f, and making use

where gv(w) are known quadratic functions of f_,
one obtains

of Equation (16) - the kinematic equation for the free surface,

the equation

for vertical impact.

Comparing coefficients of BY one gets

v Y % M
Z \I’-g'z T Z(v_p+l)f_ IZbg_z
w0 VTRR &y vudw - L N T L
(116)
For v =0 one has
df0
= - —_— ' 117
Po8oly “208g - ¥ gu (117)
giving fy in terms of fo and its first derivative.
For v=1 one finds
df1 dfo
2bogof, =8, * 8,20 - vy qe- Y g0 - 181 T P18 (118)

which gives f2 in terms of fO’ fl and their first order derivatives.
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It is not hard to calculate the coefficients of

(QE)Z - i o B, (i‘i’.)z - iq;*gv (119)
N N 0l L _F W&o

from Equations (111) and (112).

Substituting Equations (113) and (119) into the pressure condition
(Equation (17)) for the free surface and assuming

oo

) : dé v
=B — = 120
wit) = B 2 VZOQVB (120)

where a, and b, are related by Equation (106), one gets by comparison of
coefficients of B’

X (o7 + @) 0 (121)
w —_ k=
0( )+2 <IJO+ o) Tt 8
and
1 ¢ sk
Xv(w)+E(<I>V+\I/V)+a2:O (122)
for v = 1,2, 3,
We note in passing the following facts:
1. The calculation of b, in Equation (106) from a  involves second
degree algebraic operations.
2. The calculation of CZ(Q), C3(£), ... from CO(Q) and Cl(ﬂ)
involves only linear operation (Equation (107)).
3. The determination of ¢ ,(r, w) in Equation (108) requires only
write-out.
4. The calculation of & . (w), ¥, (w) and X, (w) involves differentia-

tion, substitution and expansion of known functions.

5. The calculation of g (w) from f, requires simple quadratic
operation,
6. The computation of fl’ fZ’ ... from Equation (117) and (118)

requires only linear operation.
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* *
7. The determination of ¢ and J, in Equation (119) requires
substitution, expansion and multiplication.

8. The determination of a, in Equation (120) follows immediately
from Equation (106) by multiplication of two series.

Since the evaluation of all the coefficients involves only algebraic
operations with, and differentiation of known functions, a computer program
for the calculation of the free surface is feasible.

4, MOMENTUM BALANCE - VIRTUAL MASS

The momentum of the fluid is given by

Momentum I\—/[=P]VV$dT (123)

where

P = density of the fluid

¢= velocity potential of the absolute motion.
V= volume depicted below.

We will denote

unit normal to free surface (Sl)
by n] and that to the frontier
surface (S,) by E’Z

A m

S2

Figure 3. Virtual Mass
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Writing Equation (123) in terms of a surface integral by Gauss'
theorem, one has

M= -p Lln1¢ds -p L2n2¢ds (124)

The vertical component (z-component) is obtained by taking the scalar
product of Equation (124) with the unit vector in the z-direction,_éz.

vl = dr o ad
(M)z = vav$'.esz =p /V P dTv
- pf—- == f—- =
. - . 125
Sl n, ezcbds P SZn2 ez$ds (125)

If the free surface is defined by

Fl(x,y,z,t) =0 (126)
the unit normal is given by
VFl
n, = — 127
) o, | (127)

Surface SZ’ the frontier boundary of the virtual mass, is given by
2 2
Fz(x,y,z,t)ZR:x +y2+zzzc2 (128)

The scalar prodnct of its normal vector with Ta'z, the unit vector in the
z-direction gives

VFZ
n,.e e —gzcos(z,r) (129)

o€, " |VF2|' 2 TR

Substituting Equations (127) and (129) into Equation (125) results in

=P dr = - S - R)od 130
( )z V 3z P Sl lVFII .ezd>ds P Sz cos(z, R)dds ( )

- 36 -




The force is given by the time rate of change of the momentum

F -
d = d / 1 - = / 0
S - -4 P 3 . R)®d s
Fz dt( )z T Sl \VFI\ . ezcbds P Szcos(/,R)atds (131)

On the other hand, the force may also be determined from the integration of
the pressure.

FZ = F + ] . PNds (132)
S
where
¥ = downward force exerted by the body.
PN = pressure normal to the surface, S
1
S =

= total surface omitting the wetted surface of the body.

To evaluate the integral in Equation (132) one used Bernoulli's equation

o]

;
efl
I%,|

(133)

(o)
-

Since p = 0 on the free surface, the integral in Equation (133) becomes

], pN ds :f cos(z,R)pds = - p / cos(z, R) <V$ V$ + %i:)ds (134)
S S S
2 2

Combining Equations (131), (132) and (134) we have

) = 2 d - =
F - p/ |V¢| cos(z, R)ds = T [ e dds (135)
S l
SZ
For the water impact problem we are concerned with an infinite fluid
which, according to Figure (3) means that the frontier surface moves towards

infinity. Recalling that the potential for the absolute motion vanishes at
infinity and is proportional to the inverse of R we can assume that
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3

ve~ R Zas R—-o

Consequently, the integral over S in Equation (135) becomes

—|2 ~ 4. 1
lim ’Vd>| cos{(z,R)ds = _lim — cos(z,R)ds = 0
S2 R S

and therefore

d — VE,
F=-— / P ST e )ds (136)
s |VEl| =

The downward force exerted by the body, F, is determined by the time rate
of change of the momentum of the body

F-2 (Mowo(t)) (137)
where
MO 2 mass of the body
wo(t) = vertical velocity of the body

Combining Equations (136) and (137) one gets

_ / VF,
Mw(t)+fp¢<——.'€>dsl:0
00 S |VF1| z

1

d

dt

which, integrated once, gives

VFI
MOWO(t) +/ p$ IVF——l . €Z> ds = c, = constant (138)
S 1
1

-.38 -




Defining the momentum virtual mass, M, by

0 / p—d;<VF1 .’e’z>ds (139)
WO(t) S |VF1|

1

one gets, by momentum balance, the result

<1 +M—N;)w0(t) -1 (140)

In Equation (139) ¢ is given by Equation (80), w,(t) by Equation (99)
and F; by Equation (110). After expansion of all the Iunctions involved in
power series of B one can obtain a series expansion for M. Substituting M
into Equation (140) one can determine the parameter a contained in Wo(t)
and the arbitrary functions of / contained in ¢ by comparison of
coefficients.

After the determination of ¢ and subsequently of 5, the virtual mass

can be calculated by using Equation (139), the pressure acting on the sphere
by the Bernoulli equation, and the impact force by Equation (137).
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III. SOLUTION FOR THE CONICAIL AND TOROIDAL
SECTIONS OF APOLLO

The Apollo vehicle is made up of three distinct geometrical parts: a
spherical segment as the base, a conical section as the wall and a toroidal
section as the joint of base and wall.

In the case of vertical landing it is clear that only the base experiences
the critical pressure. However, one is also interested in the existence of
the potential solution for the conical and the toroidal sections. That a
potential does exist for each of these cases is demonstrated in the following
section.

1. SEPARATION OF VARIABLES

The Laplace equation is separable when expressed in any orthogonal
coordinate system (£}, £, £3) which can be transformed directly to the
rectargular coordinate system (x, y, z) through relations of the form:

x =x (&1, §2, €3) etc. In particular, the Laplace equation is separable in
the conical coordinate system and the toroidal coordinate system. That is to
say, in either of these coordinate systems represented by (gl, €2, €3) the
partial differential equation can be decomposed into three ordinary differen-
tial equations. This means, by setting

SE, £y £y) =6, (E) b, () 6, (&) (141)

one can obtain three ordinary differential equations for ¢; (§1) y $2 (gz)
and ¢3 (§3) from the Laplace equation

v2 6 (6, €, £,) =0 (142)

2. SOLUTION FOR THE CONICAL SECTION

To find the potential for the conical section of Apollo one uses conical
coordinates and sets (Reference 4)

) &, &
ap

x =% (143a)
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The coordinate surfaces are spheres and cones given by

2 2 2
x +y2+z =€ sphere

1

2 2 2
LS. + =2 = 0 cone
g2 2 -p% g -af

2 2 2

2 2 2
X + == = 0 cone
§2 §2 52 §2 0.2

3 73 37

where

2 2. 2 2
> >
a > gZ g §3

(143b)

(143c¢)

(144a)

(144D)

(144c¢)

It is obvious that the surface of a cone is specified by £ = constant,

say §2 = 1.

Introducing the new coordinates into the Laplace equation one obtains

the following separated equations

2
Tz h,
déi 3 dgl §i 1

- 42 -

(145a)




2
(609 () 2 g (o000 o)t () o

at; d€,
. (145b)
a o do
2 2\ (2 .2 3 2 2 2\ 9% 2
(ﬁ - §3)(° '§3)d§z tE,y (z§3- o -P )?E;"*(kz' k1§3) $; =0
3 (145¢)

where k and ky) are separation constants.

The classical potential is obtained by assuming discrete eigenvalues

for k} and kp. It is known that the classic potential does not satisfy the
boundary condition

on the surface of the conical section. This can be remedied, however, by

giving discrete eignevalues to k] and continuous eigenvalues to kp following
Dr. Ta Li's theory.

3. SOLUTION TO THE TOROIDAL SECTION OF APOLLO

The potential for the toroidal section can be obtained by introducing
toroidal coordinates £, &5, €3

x = (146a)
(1-2)

y = (146b)
)



1/2

a <l - §§>
(146¢)

Utilizing the transformations

§l = cos h (7)
§2 = cos (o)
§3 = cos (¢)

we find that the coordinate surfaces are tores, meridian planes and spheres.

(sphere) (147a)

2 2 2
x ty +(z -coto) =
sin o

1/2 >
2 2 2 a
<X ty > -acothr + 2z = ————— (anchor ring or tore) (147b)
sin h T

y = x tan ¢ (plane through z-axis) (147¢)
It is evident that the surface of a tore is given by T = constant, i.e.,
§1 = constant.
The separated equations are
2 .
5 d” ¢, dé, k,
(g -1)—+2g — + [k + ——— \¢. =0 (148a)
1 d§2 1 dgl 1 > 1
! (gl ) 1)
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cd%e, o de
2 2 2
-t ct 2k b =0 (148b)
(r-¢) i 2
2
a® ¢ dé
(1-6) —2-6,—2-k,8,=0 (148c)
3 2 %3
dt, dts

where kj and k, are separation constants.

The classical potential was obtained by giving discrete eigenvalues to
k1l and k. Since this potential does not satisfy the boundary condition

(9¢/01) = 0 for £ = constant. Continuous eigenvalues have to be assigned
to k2 to obtain the new solution.
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CONCLUSION

The study made in this report on the vertical impact of the Apollo
vehicle on water is based upon the assumption that the flow is incompressible
and nonviscous. The sphere is taken as the mathematical model for the
Apollo capsule. This is physically realistic for vertical impact since the
bottom portion of the capsule is a spherical segment. However, it is also
shown that the conic portion and the toroidal portion are amenable to analysis.

The first difficulty in solving the impact problem is to find the correct
nontrivial potential to satisfy the boundary conditions. This is overcome by
using a new separation technique, recently developed by the author. The
second difficulty lies in the determination of the arbitrary functions. This is
partially accomplished by considering the initial free surface and the pressure
condition at infinity, and partially achieved by combining the Laplace equation
with the wave equation near the first point of impact and then by momentum
balancing.

It is shown in this report that the potential, the virtual mass, the
velocity of penetration, the impact pressure and the impact force are all
series of the depth of penetration. It is also shown that the calculation of
the coefficients of these series can be done numerically, so that a computer
program is in sight.

A general potential for oblique impact of a sphere is also obtained.
However, the determination of the arbitrary functions has not been attempted.
How this should be done in the oblique case will depend on the outcome of the
numerical program of the vertical case. The vertical entry is comparatively
simple but general enough to give information which could lead to better
understanding of the oblique problem.
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