] o @ https:/intrs.nasa.gov/search.jsp?R=19680010331 2020-03-12T08:45:48+00:00Z

ROTATIONS AND OSCILLATIONS OF A NEUTRON STAR

o &
—— et 3
! frad
md T
Oy
=m Y=,
<2 ™
. e A <.
CHAU, WAI-YIN e Lo
. 4 % : —
e i tte
. ’ — @
S T e
C’Jm -
b -2
w

Submitted in Partial Fulfillment of the Requirement for
the Degree of Doctor of Philsophy in the Faculty of Pure

Science, Columbia University.

1967

v



II.

III.

1v,

VI. ’

VII.

VIII.

IX.

X.

Table of Contents

Abstract i
Acknowledgement i1
Introduction 1

Gravitational radiation from rotating and non-radially
oscillating objects 9
Effect of rotation on radial oscillations and consequent
emission of graviational radiation 14

Results of gravitational radiation calculation and

consequences 30
Problem of bifurcation in the classical case 35
Structure of a rotating polytrope: classical case 43

Structure of a rotating polytrope in the post-Newtonian
approximation: a variational formulation 52

The variational equatigns in the Post~-Newtonian

approximation 59
Methods of solution and results 75
Discussion of results and outlook 83
Appendices

Matching of boundary conditions for the gravitational
potential ' 85

Potential energy tensor for a system of homoeoidally striated

density distribution 91
Calculation of the various potentials 95
References 99



ABSTRACT

We consider iﬁ the first part of this thesis gravitational radiation
from various pulsating and rotating objects using the formula obtained
with the weak-field limit of general relativity. The cases of rotation
and oscillation are first considered separately and then the effects of
rotation on radial oscillations are investigated, Numerical estimates
are made with data relevant to a neutron star and it is concludéd that
most of the energy a neutron star may acquire during its formation is
dissipated rapidly, unless the rotation is quite slow,

We then consider the various means by which rotation can be slowed
down, and in the classical case, we arrive at the conclusion that whether
a neutron star can bifurcate to form a non-axisymmetric Jacobi type con-
figuration is8 quite uncertain, owing to a lack of knowledge of the
equation of state. We remarked, however, that the problem should be
considered in the framework of Post-Newtonian approximation, and by
making use of a variational approach, we obtain a set of equations Aeter—
mining the structure of a fast-rotating polytrope., We solve the equations
for the case of unity polytropic index and with the assumption of
axisymmetry.

We pointed out that despite its’;implicity in the classical case,

a variational approach is not the most convenient one in the Post-
Newtonlian approximation. A/direct solution of the hydrostatic equations
would be simpler in the ené. We concluded by suggesting that one should
look into the effects of viscosity and problems arising from internal

motion.
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I. TINTRODUCTION

The energy content of a neutron star has been the subject for much
discussion in recent years, in connection with the energy supply and
mechanism of the various X-ray sources. If one thinks of a neut¥on star
as being formed catastrophically, probably through the free-fall collapse
of a supernova, then one observes that large dynamiqgl velocities should
be developed and there should be oscillations about the stable configu-
ration, since it is highly unlikely that the neutron star would arrive
at the stable configuration gently. Furthermore, the dynamical speed
of the oscillating object would not be much less than that of light since
the dimensions of the equilibrium structure of a neutron star are not
more than 3-10 times the Schwarzschild radius. Thus a large quantity of
energy of oscillation, amounting to about 1053—54 ergs for a star of
mass = 1 Mo (solar mass) must be dissipated before the final stable
structure can be arrived at.

Various mechanisms have been suggested for the dissipation of this
amount of energy. Hoyle, Narlikar and Wheeler (1964) proposed that the
~emission of electromagnetic waves could lead to a very large rate of
energy loss, It is pointed out that the dynamic oscillation of the
main body of the neutron star implies an oscillation of the associated
magnetic field. Such a field exists in the neutron star, because electrons
and protons are also present inside despite the dominance of the neutrons,
in a ratio determined by the condition that the sum of the top of their

Fermi-distribution be equal to that of the neutrons, Furthermore, the



magnitude of the magnetic intensity at the surface of a typical neutron-

> gm/cc and radius 106 cm) could be as large as 1010

star (density 10l
gauss because even a star with such a small dipole field as the sun's
(1 gauss at a mean density 1 gm/cm3) would develop a polar field of -

1010 gauss if it were catastrophically contracted to a density of about

15

10 gm/cm3. With such a large magnetic field, the>tota1 emission rate

might be as large as ~ 10"2 ergs/sec (just the Poynting vector times the
surface area of the star). Furthermore, it is pointed out that the strong
gravitational field of the star creates a near vacuum immediately outside
itself, and hence the electromagnetic waves are free to travel out into
space. Thus, with no‘propagation difficulty arising, an emission rate

of ~ 1042 ergs/sec is sufficient to dissipate the available store of

~ 1054 ergs in - 1012 secs or 105 years.,

The other mechanisms for energy dissipation which has been inten-
sively studied are the various neutrino processes. Neutrino cooling of
non~-oscillating neutron stars via the Urca neutrino processes, i.e.
neutron-neutron scattering followed by beta-decay and its inverse, has
been investigated by various authors (e.g. Chiu and Salpeter 1964,
Bahcall and Wolf, 1965a, Finzi 1965a) Finzi (1965b), however, seemed to
be the first one to point out that the vibrational energy of a neutron
star could also be dissipated through v-processes. He considered the

following reaction
n+n-+n+p+e+ ;e (1.1)
and its inverse reaction

pte+n>n+nt+v . (1.2)



In his calculation, Finzi assumed a constant density of p ~ 6 x 1014
gm/cm3 for the neutron star and complete degeneracy for all the particles,
which were described as free fermions. At the density used, only
neutrons, protons, and electrons are present, and the Fermi level En

of the degenerate neutron gas is about 93 Mev. The Fermi le;els of the
proton and electrons, Ee and Ep, can be determined from the condition

of chemical equilibrium and charge conservation. One finds in this way
Ee = 89,5 MeV and Ep = 4,3 MeV, and the ratio of proton~electron pairs

to the total number of particles to be about 0.009.

Thus, the equilibrium concentration of neutrons, protons and electons
in the degenerate gas of the neutron star is a function of the density.
In a pulsating star, the density varies periodically with time and
therefore the concentration is most of the time different from the
equilibrium concentration. For densities slightly higher than nuclear
density, the equilibrium concentration of e's and protons increases with
increasing density. Therefore, when the gas is compressed, reaction
(1.1) will transform some neutroﬁs and protons and electrons, plus anti-
neutrinos which will escape. Conversely, when the gas is expanded
reaction (1.2) will transform some protons and electrons into neutrons,
Plus neutrinos which will escape. These two reactions proceed at the
expense of the vibrational energy of—the star, which is very effectively

52 u8 ergs/sec where a is the ratio of the

damped at a rate given by ~ 10
radial displacement of a point during oscillation to the distance of that
point from the centre of the star.

The calculation has been carried out for the general case of non-

uniform density and non-zero temperature, and applied to some actual




neutron star models by Hansen (1966) and Hansen and Tsuruta (1967). The
result of the calculation indicates vibrational energy still ranging
from about 1047 ergs to 1051 ergs at 103 years (the supernova explosion
leading to the Crab Nebula is believed to have occurred 910 years ago

at a distance of about 1100 pc). This calculation thus does not rule
out the possibility of a vibrational energy source for the Crab Nebulg.
This, however, is the case if only there is no other major loss mechanism,
We may, for example, have to take into account neutrino-reactions other
than the aforementioned Urca processes (and their u-meson analogue with
e and Vo replaced by u and vu). In fact, Bahcall and Wolf (1965b)
suggested the following nr processes which gives a vastly increased rate

of neutrino emission via the transformation:
T +n+n+e + Ge (1.3)
n+e +n+n + v, (1.4)

and their py-meson analogue. Whether this actually occurs depends on
whether nuclear matter at very high densities contains ''quasi free pions",
as suggested by the idealized model of superdense matter as consisting

of independent, non-interacting gases (Ambartsumyan and Saakyan (1960),
Cameron (1957)). On the basis of this model, high pressure raises the
fermi energy of neutrons, protons and electrons to such a point that

I, Ao, u and 7 and other particles are formed. No pions, however,
would appear until the density exceed about 300 times the nucléar density,

although there may be interactions strongly lowering the critical density

required for pion-production and for the initiation of the nw-processes.



If such a process is really effective, then the temperature and
energy content of the neutron star in the Crab Nebula should be now far
too low to be of significance for the X-ray radiation currently observed.
However, Tsuruta and Cameron (1966) suggested that the pion-neutron inter-
action is such as to make it unlikely that the nw-process can operate
at all. We shall therefore make no further remark on the v-processes
and shall pass on to the next important mechanism of energy loss--gravi-
tational radiation--which forms the main body of our work in this thesis.

The existence of graviational radiation was predicted by Einstein
(the usually quoted references are: Sb. Preuss. Akad, Wiss, 688, 1916
and Sb. Preuss. Akad. Wiss. 154, 1918) shortly after he formulated his
general theory of relativity. Systems of moving masses should emit
gravitational waves. in analogy with the emission of electromagnetic waves
by a system of moving charges. There has, however, been some skeptism
about the reality of gravitational radiation (Pirani, 1962) and no
gravitational waves have as yet been observed, However, some experimental
work now seems feasible (Weber, 1961, 1963, 1964, 1967), and with the
resolution of some theoretical issues in recent years, it has been
possible for a number of physicists to conclude that general relativity
does predict the existence of gravitational waves, Such fundamental
problems are, however,_beyond the scope of our present thesis. Instead,
we shall consider, in the spirit of Landau and Liftschitz (1962) the
problem of energy radiated by moving bodies in the form of gravitational
waves.,

For a system of bodies moving with velocities small compared with



that of light, the energy loss by gravitational radiation is given by

the weak field limit to general relativity as: (Landau and Liftshitz,

_dE _ @ (321)’« | ~
kT 45cf\ At (1.5)

where 6Iis the energy of the system and DaB

1962)7

is the quadrupole moment of

the mass distribution, defined as:

Dig = Jf(ﬁ)@ Xaky = 546";) Ax (1.6)

Angular momentum can also be lost through graviational radiatiom,
at a rate given by (Peters, 1964)

Al 26, 3D PP
dE T 45 cs x> otd (1.7)

where Li is the i-th component of the angular momentum vector P and
eijk is a completely antisymmetric unit pseudotensor.

Making use of formulae (1.6) and (1.9), we have calculated the loss
of energy through emission of gravitational radiation of various oscil-
lating and rotating systems (Chau, 1967). A rotating, non-axisymmetric
body is found to be slowed down very fast, provided that the asymmetry

is large. For a purely oscillating system, the quadrupole mode is

damped exponentially, with the higher modes surviving.

T Greek subscripts range from 1+3, and summation over repeated indices

is.understood, unless stated otherwise.



Besides these directly radiating modes, we have to consider also
the radial mode of oscillation. Although a purely radial mode does not
radiate, the rotation which is almost surely present would destroy the
spherical symmetry of the system, again leading to radiation. We have
carried out a detail analysis of this mechanism of drawing energy from
a radial mode to other non-radial ones, and found that after a time of
about 103 years, the surviving radial mode would only be significant if
Q<10 sec_l.

Such a small angular velocity for effective enérgy storage poses
a serious problem with regard to the angular momentum of the neutron
star. A very significant amount of angular momentum must be lost if we
wish to have any significant radial mode of oscillation in the star at
all. This can, of course, be achieved by the emission of gravitational
radiation but the rate would be extremely insignificant unless the
neutron star can form a non-axisymmetric Jacobi-ellipsoid of large asym-
metry. Even then, the difficulty is not completely resolved, because
with the loss of angular momentum, the asymmetry would become smaller
and smaller; and the rotating configuration would become axisymmetric
at a still very large angular velocity.

Nevertheless, we shall consider whether a rotating neutron star
can form a non-axisymmetric Jacobi type configuration or not. A problem
of this nature has been dealt with very extensively by Chandrasekhar
and Lebovitz (1962a) and Chandrasekhar (l962b)) in the classical case
for an incompressible fluid. It is showathat for a slowly rotating
object, the axisymmetric sequence of Maclaurin ellipsoids represents

the equilibrium shape of configurations, but at a certain angular



velocity Qb and beyond, a non-axisymmetric Jacobi sequence branches off.
Since Qb is smaller than that when equilibrium is no longer possible,

an incompressible object does really exhibit a point of bifurcation at
the angular velocity Qb'

Similar investigations have been made for the case of polytropes
(James 1964, Roberts 1963). James method is much more exact, and he
obtaingd the result that only polytropes with an index n < n = 0.808
can exhibit a point of bifurcation. Roberts' approach, on the other
hand, is much more approximate. However, his is the one we shall follow
because of its simplicity.

Cameron and Tsuruta (1966) have applied these ideas to the rotating
neutron star by the assignment of effective polytropic indices. We also
make some more general estimates of effective polytropic indices, but
point out that the problem should be aﬁtacked at least within the frame-
work of Post-Newtonian Approximation (to be abbreviéted as PNA for the
rest of the thesis).

Again assuming that a neutron star can be approximated by a polytrope
with a certain effective index, we are thus led to the determination of
the structure of a fast-rotating polytrope in the PNA, We use a
variational approach developed by Roberts (1063) and Krefetz (1966), and
obtain the solution for the case n = 1, We point out, however, that a
variational formulation like Roberts' is extremely cumbersome and perhaps
unwarranted in the PNA. A direct generalization of Jame's method may

probably be more profitable.



II, Graviational Radiation from Rotating and Non-

Radially Oscillating Object

We begin by considering gravitational radiation from a rotating
ellipsoid of mass m, uniform density p and semi-axes (al, 3y, a3). This
has actually been considered by Chin (1965), but our method here seems
to be s}mpler, and in any case illustrative of the one we shall use in
our later discussions,

Let the angular velocity Q be in the z-direction. In the body set
of axes (x' y' z'), all the off-diagonal elements of the quadrupole
moment tensor about the origin vanish because of reflection symmetry.
The diagonal elements can be simply evaluated, and are given by:

/ ", 3, '
D-. = T (3@; "ao\ad)

W (2.1)

vwhere 1 = 1, 2, 3 and is not summed over.

In terms of the space-set of axes (x, y, z), we have:
x' = X o Ot 4-3 sm Nt
4! = -Xsmlt + Yot -2
3 =3

and from the theory of tensor transformation, we have for Dij in the

space set given by

=) Eﬁg.fiﬁé
DL) Dol@ 5)(& 3)((‘} (2‘.3)
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Substituting the Dij calculated from Eq. (2.3) into the equation for

energy loss (1.5), we immediately have

- 48 _ 326
125¢*

/m‘n‘ (d: "‘h")z (2.4)

For slow rotation, the configuration does not differ much from that

of a sphere of radius R, Thus, we can put
A= &, = ‘VlR/

where n is a small quantity. Eq. (2.4) can then be simplified to

_df EX: .
i 124G ’Mﬂbw‘(l (2.6) |

K T 1255

To find the damping, we need an expression for the rotational energy.

This may be calculated classically, and the result is

£ = L (a4ax)

lo
v L mEr 2.7)

Substituting this into Eq. (2.6), we readily have
e
4 , Jlo
SU = T4 kt (2.8)

where Qo is the angular velocity at t = 0, and the "damping-parameter"

k is defined as
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l 8 1- \*
R &
¢ (a+ay)

v 256 QG
—TM'Q"VLR'

(2.9)

We must remark that in the case of a Jacobi ellipsoid, nz also
depends on 92. Thus Eq. (2.8) is actually not completely correct, and
should be interpreted as only giving a rough idea of the damping. For
a typical neutron star of mass = 1 Me and radius R = 106 em, even a
small n = 0.1 would reduce an no = 102 cps to 407 of its value in about
10” secs or ~ 30 years. However, we must caution that it is not clear
at all whether a rotating neutron star can form a Jacobi-type configu-
ration. We shall elaborate on this point in §V.

We next consider an axisymmetric .oscillation of a spherical mass
of imcompressible fluid of constant density p and radius R. Following
the usual procedure for describing liquid drop oscillation, we describe
the deformed surface by

2(p) = K[ |+ 4.00) + -+ olMPm(e)J

(2.10)

where the an's are functions of time and <<1, and the Pn's are Legendre
functions. We note that there is no a, term because of the assumption of

incompressibility, and the a. term is left out because it shifts the

1
centre of mass. Because the fluid is of constant density, Eq. (2.10) is

sufficient for the calculation of the D,,'s. We observe that we need

13

calculate only one diagonal element, since the off-diagonal terms vanish

1
because of axial-symmetry and since D11 - D22 =-3 D33 because of
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axisymmetry and the vanishing of trace.

Making use of the orthogonality of the Pn's, we find by direct

calculation

_ EHQRS lod: nln+i)
D5 5 [d‘ +%§’,,, (An=1) (2nt1) (3n+3)

(2.11)

30 denu. ('M'H\') ('VL'H )
0 (olw’
ned,.. (2ﬂ+l>(2%+5>(1ﬂ+5) + ( )J

We notice that the Pz—mode contributes the dominant term to the quadru-

pole moment tensor, and hence to the energy loss.

We now assume

oLa = C)nti g“;‘ 6;11:

(2.12)

where @0 is the amplitude, assumed to vary only slowly over a period so
33D

that in calculating 3 » We can treat it as a constant.
t

Up to terms linear in a. s ve need only consider the P2 mode., Sub~
. 1
stituting D33 from Tq. (2.11) and using D11 =Dy, = -5 D33, we obtain
from Eq. (1.5) the energy loss averaged over a full cycle in this

linearized approximation

(2.13)

where the subscript 2 means that we are considering the Pz-mode.

e
Now the energy of the Pn-oscillgtion (n+0) is given by Rayleigh
(1945)

y

/
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l

2
S s
4’\_(2%*}-') no N

gw = Tr_? R.g

(2.14)
From Eqs. (2.13) and (2.14), we therefore have

dholt) = duy(0) &K 2.1

where | 4 G’mgl N (2.16)
Ko = 25 C> Sa

We thus see that the Pz-mode is damped exponentially. To have an
idea of the damping rate, we again take our typical neutron star of mass =
1l Mo and R = 106 cm, and the classical expression for an incompressible

fluid for the oscillation frequency of the non-radial modes (Lamb, 1932)

¢* = Inln=1) 4
" @ntl) 3

Traf

(2.17)

With this, Eq. (2.16) gives
. | y
(2.18)
Thus, after an extremely short time (~ 1 day); the P2~mode becomes com-
pletely insignificant and only the higher modes remain. From Eq. (2.11)

we see that the coefficient of the coupled term a o is of the same

n+2
order of magnitude as the squared term anz. Thus, for the mode with the
largest amplitude, we can neglect the cross-term and take the squared

term to be the only contribution to D33. In this case, the energy loss
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expression for this n-th mode becomes

—~ d§, 1044 G [ woulat+) VR
£ i) S e

Eq. (2.14) and (2.20) would then give

oo .
ol.:a (‘t) - O) . ) (2.21)
|+ K oo t

where _
25 G'mLO/ml* ’}'.Ls (/'L'H )4'
C® G\ flant) anrs)> .
22

Kn =

)

and is ~ 4,3 x 103 sec-l using Eq. (2.17) and the data relevant to our

"typical" neutron star.

Thus, the higher modes would be damped at a much slower rate than
the Pz—mode. However, in the non~linear domain, the dynamical coupling
between the various modes should be considered. This coupling could give
a stronger damping because of energy transfer from the higher modes into
the Pz-mode. Furthermore, the oscillations would not be purely harmonic
as given by Eq. (2.12). Thus, our analysis should be interpreted as

giving only an essentially qualitative description of the actual picture.
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Suppose now the above pulsating object is also rotating slowly.
We linearize our calculations in the small parameter (Q/g), to which
order the energy loss expression remains unchanged because it should
be even in Q. If the rotation is about the axis of symmetry, as is
probably the case for the slowly rotating case, then no angular momentum
is lost, as can be seen by examining Eq. (1.7) and noticing that it
vanishe;s for a system possessing axial symmetry and hence vanishing off-
diagonal Dij's. Just to have a rough idea of how rotation can be damped,
we consider an object rotating about the x~axis and at the same time
pulsatihg in an axisymmetric manner about another axis, the z—axis, say.
The loss rate can then be readily evaluated using the same technique

leading to Eq. (2.6). The result when we consider only the P2-mode is

- 5L[.| q (;4m¢l 4 > _Y

For higher modes, the numerical coefficient would be different and

(2.23)

°n04 would replace uzozg In any case, it is clear from Eq. (2.23) that
for small (Q/0), the rotation is damped out much more slowly than the
pulsation., By the time the non-radial oscillations become insignificant,

much of the rotation would still persist.
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III. Effect of Rotation on Radial Oscillations and

the Consequent Emission of Gravitational Radiation

In 8§11, we have been considering the directl& radiating modes. Now
a purely radial mode does not radiate. This can be immediately seen by
noticing that a radially oscillating object maintains its spherical sym-
metry. Thus all the Di

's are equal and D,, = O to { ¢+ j, But the trace

i ij

of Di; also vanishes, and hence each diagonal element also vanishes. There-

fore, Eq. (1.5) gives zero for the energy loss. This, however, is only

true for a purely radial vibration of an ideal spherically symmetric dis-

tribution of mass. If there should be any coupling of the radial mode

to a non-zero mass quadrupole, then gravitational radiation would again

be emitted. Thorne and Mettzer (1966) pointed out that the chances are

overvhelming for a neution star to passess a finite amount of angular

momentum, and ény natural amount of angular momentum, divided by the

relatively very small moment of inertial of a neution star, implies

typically a very high angular velocity. We have also seen in the last

section that rotation is damped away relatively slowly, and thus, we can

almost certainly think of some rotation present together with the radial

mode. And we shall now show in detail that this rotation, by destroying

the spherical symmetry of the system, would serve as the mechanism to

bring about the coupling of the radial mode to a directly radiating one.
Since the change in density distribution should be independent of

the sign of @, we thus have to take all effects of rotation up to terms

of order (9/0)2. We consider then a sphere of radius R consisting of a

compressible fluid of uniform density pulsating in the lowest radial mode
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when the Lagrangian displacement is given by:

&, = ate ot G-

where a 18 a constant. If this sphere is given a small, uniform rotation,
the oscillations are altered both because the equilibrium shape 1s changed

the pulsation equation includes additional centrifugal and Coriolis force term.

In one presence of rotation, Euler's equation can be written as:

5 + 29( X&)+ pRx(Lxg) (3.2)
= -¥Yp- PYQ
where u is the velocity, p is the density, p is the pressure, ¢ is the

gravitational potential given by Poisson's equation:
2
Ve = “hmGy (3.3)

and 3(*
'DB% = '}'(& V>M (3.4)

When axisymmetric perturbations are considered, it is more
advantageous to write the above equation of motion for u in the rota-
ting frame in spherical polar co-ordinates (Ledoux and Walraven, 1958),
With the definition of velocity components in spherical co-ordinates

given by u_ = r, u, = rf, u

0 = r sin 0¢, we have:

¢

RTIR § LY
—B—'Et -.('{_9?:‘2_ 2_(‘)_3.;&9[,(_‘?‘ = _B__ -—‘}73{ + 51 5m o

(3.5)
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Kb - 2N no Uy

= 1% _ [ >p
T

.B_l&ﬁ. .f_ (/(.QQT - g_{
*

29

) PT EY) ’!‘QY’SMOC@({) (3.6)

%‘%4- Ei‘fté;@te-F I’Q—QT:Q + 20 sty +20Uocord

) l op
romd 3§ reryy o9

= 'o becanse of ax\sym«eﬁg

(3.7)

Assuming time-dependence eiot for the Lagrangian displacement € and

linearizing in §, we héve, by making use of the relation obtained at

equilibrium:
2 2, L '
Z(i‘i—ﬂ* Sin B > + VF (3.8)

the following alternate forms for Eqs. (3.5) - (3.7)

/
—6§ 2»6ﬂ$m9§4}—-?—§— ~Lsp (3.9)
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—61§¢+ 2&6&(%"75&\0 + §9w6> =0

(3.11)

Here the unprimed quantities indicate the equilibrium values of a
dniformly rotating spherical of constant density, and the primed ones
are the Eulerian perturbed values. The perturbed quantities p', p' do¢'
can be related to the equilibrium values by making use of the continuity
equation, Poisson's equation and the adiabatic relation between pres-

sure and density variations, respectively as follows:
g'=-div ¥
= - fa(i\ri (3.12)
2
Vi =-416pdiv§

PI

(3.13)

—-TF o((v; — _g )ZF .10

To solve for Er, Ee and £, we first expand them and 02 in powers

¢

of @, retaining terms up to those of order 92. Thus, we write:

§' = (ol-l- _D_K,L + .D}o/z_z

(3.15)

;r = {To+ Q?‘fl + Ao E’fa. (3.16)
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g@ = ﬂgal + ﬂzggL

(3.17)

SR A

where Ero is the same as gr defined in Eq. (3.1) and there are no

zeroth order terms for &e and £,, since the motion is purely radial in

¢

the absence of rotation. '

For oscillations that are originally axisymmetric, it can be shown
that ol = 0 (Clement, 1965). This can be quite readily seen if ope
formulates the problem in terms of a variational principle and examines
the equation providing stationary valﬁés in ¢ for arbitrary variations
in £ . Then it becomes apparent that the first order change in ¢

-~

brought about by rotation acsually arises from the Coriolis term in

the equation of motion, and if one writes the normal modes of the.Lagran-
gian displacements in terms of thespherical harmonics Ylm (9f¢), the
Coriolis term will be found to be proportional to m. Hence, for an
axisymmetric oscillation where m = 0, we have o = 0 and so only a

second order change to the characteristic frequency. Also, we remember
that the right-hand side of Eq. (3.10) is of order 92, since pressure

and the density perturbations should be independent of the sign of Q.
With the above in mind, we substitute the Eqs. (3.15) - (3.18) for 02,

E.r Egs and £, into Eq. (3.10) and (3.11), and by comparing terms of

¢
different orders in {1, we readily obtain:

Eez = \;n = ;h =0 - (3.19)
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ﬂ"gdﬂ = '2*'<%) §w.0 E‘\"o

(3.20)

oD EM + b, =0 | (3.21)

Eq. (3.20) for £¢1 agrees with a corresponding expression given by

Clement (1965). To solve for £.2 (or equivalently, 592), we turn
to Eq. (3.10). Although the r-equation (3.9) has not been used at
all in this analysis, it will be shown later that it can be used to

solve for 022 with known &, hence giving a check on the rest of the

calculations.

\

Using Eq. (3.19) - (3.21), we can write Eq. (3.10) as:

'-n?&olgeb +in 5w 20d* = - l?—i - -—‘—E-P—/ -I-—g-—%‘;—

(3.22)

We have to evaluate first the right-hand side of Eq. (3.22), using
Eqs. (3.12) - (3.14). We use for the equilibrium quantities those of
a uniformly rotating mass of fluid of constant density (Chandrasekhar,

1962a). Thus, we have for a rotating ellipsoid with a surface given by:

I SR S

a, a4 a;

(3.23)

(al = a, in our present axisymmetric case)
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The gravitational potential ¢ is given by:

¢ =mGpare, (I- ZAX)

(3.24)
where QOLM.
I = So A(u)
A= (5o
“Jo Alw(aF+uw)
d &) = @w (af+n)
and the relation between pressure and density is given by:
—)% = L (xixt) - § 4 comadunt 525

where the constant is so chosen that the pressure vanishes on the

surface.

We define the eccentricity e:

X
Qy -
b

¢ = |-
o, (3.26)

and the relation between e%/;nd 92 is given by, the:wvirial theorem,

say, as:
o Jimel -920t)e =l 30-8”)
27‘6}’ = ? (3 e )S.m e o2 (3.27)
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For small rotation in which we are interested, we can treat e ;
as a small parameter. Expanding the various expressions listed above,
and keeping terms only up to those of order e2, we readily obtain

from Eq. (3.25) and (3.24):

—?- = 3 Ut - 7:65-){—} - $RY(- o)

(3.28)

_%e"[ﬁ + )-% e v (2 - 33»:«2@)]

where we have made p vanish on the surface (3.23), which we can now

write as:

ae) = R 1+ er(Fsace-5)]

(3.29)

and we have related & and a, of the ellipsoid to R by:

Q= R/(H‘ —é-el) (3.30)

!

C{_5 = K(\" EXN (3.31)

and the relation between e2 and 92 becomes:
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2 150

- gnéf (3.32)

Using now Eqs. (3.12) and (3.13) for p' and p', and Eqs. (3.19) -

(3.21) for &, and Eq. (3.28) for p, we can now write Eq. (3.22) as:

/
"6’:_'5'9&‘{‘ A sindh o+ = -4 a§1 15 Atsimdb

T30 %
: >kn
+ #—[l}w‘mxe(w-})—%—réf+ fg

- ¥yrgp (51 $R e dv § ]

(3.33)

An examination of Eq. (3.33) indicates that in the desired solu-
tion, the 6-dependence of 662 can be taken as sin 20, Thus, by also

making use of Eq. (3.21), we can write:

Eax = 3((0 sw.40

(3.34)

fo = - Zj(r) s’ 0

(3.35)

and for the perturbed internal gravitational potential we write:



?'(1,8) = go(ﬁ -+ 9,(t) Ble)

(3.36)

with go(r), gz(r), and f(r) still to be determined.

By substituting Eqs. (3.34) - (3.36) into Eq. (3.33), we would

then have:

- 6,4+ 24t = %_ﬂ_ﬁr_) B e (vh3)

“G‘?)(m rs TR (Fr-30)Gr dvs)

(3.37)

o
e

By inspection, we see that f(r) = a\r can be a solution provided

that A satisfies: ///

N@nap - 65) = -dmephe =2+ Y

(3.38)

where use has been made of one fact that in this case %3

while from Poisson's equation, we have gz(r) = =4nGpa k

div & = 0,

21’.‘.

Our derivation is now nearly complete except for the constant k2‘
This can be determined in quite a straightforward manner by demanding

that the gravitational potential and its derivatives be continuous on

the perturbed boundary. The details of the calculations we leave in

Appendix A. The result is:
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_ 249 [
Ko = |20 7\:6)0 '"T}\ (3.39)

which therefore gives a A from Eq. (3.38):

- 092 _ 1§
>\. - ca} bo 4 3;)

(3.40)

Our solution is now complete. Summing up, we have for the Lagran-

gian displacement:

£ = dt - 2a0Atol Gsh

(3.41)
= *Sunlb

§9 dAT ST A 5.2
(5 .

55‘43 = 2"(75_3 A" Su 6 (3.43)

and the new boundary becomes:

h'(&) = hle)[l‘i‘ol&'i@t --,zm)\cng ca»,KfJ 3,489

with r(8) given by Eq. (3.29).
We remark that, although our solutions are obtained by inspection
from the 68-equation (3.10), they satisfy the boundary conditions that

£ = 0 at the center, and give a surface on which the pressure vanishes.

-
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Furthermore, as remarked earlier on £.11, we can substitute the solution

for § from Eq. (3.41) - (3.43) into the r-equation (3.9), which would

then yield an expression for 022:

—de, +26 A = 2R, +(1-3%) o + % ITep A\

p : (3.45)

On substituting for k2 and A the values as given by Eqs. (3.39)

and (3.40), we have:

6::: —i;—()b—"?)b’>.

(3.46)

which agrees with the corresponding expression given by Ledoux (1945).
7
With Eqs. (3.41) - (3.44), the quadrupole moment tensor can be
readily evaluated. Limiting ourselves only to terms up to 92, we

have for the time-dependens/part:

s =

D,y = ~ & mpd R oo 8 (4= 1))

(3.47)
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We note here that D33 is of order Qz, which is expected since the
departure from sphericity is brought about by rotation. Furthermore,
D33 « a which is also expected, since a purely rotating axisymmetric
object with no pulsation should not give any non-vanishing, time-
dependent quadrupole moment.

With Eq. (3.47), we have from Eq. (1.5) for the time averaged

energy loss:

4 S (Fr D

(3.48)

Since no angular momentum is lost in this case because of axi-
symmetry, the angular velocity @ will remain comstant. Thus, all
the energy loss is at the expense of oscillation. With £ given by

Eq. (3.41) - (3.43), we have for the total pulsation energy:

6;-6

(3.49)

A comparison of Eqs. (3.48) and (3.49) shows that the energy

decreases exponentially, given by:

Kot

&) = dlo)e

(3.50)
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2 GCmRY 4 /45 v A\2
where Ko = — U (T ¥
° A5 ¢ ( T 6—> (3.51)

Again, using our typical neutron star, and a vy . 1.5 as a crude
compromise between y = % for an extremely relativistic, completely

degenerate fermi-gas, and y = %-for a perfect, monoatomic gas, we

obtain for Ko:

SRV /
Il x 1o JL

Ko

(3.52)

Using o, = 3X 103 cps (Tsuruta, Wright, and Cameron, 1965),
we find that for Q = lO2 sec-l, the oscillation energy is reduced to
ingignificance after a time of agout one year. Thus, radial oscilla-
tion is damped away extremely rapidly if there is a coupling with
rotation. '

For this and other points, we/shall discuss in more detail in

the next section.
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IV. Results of Graviational Radiation Calculation

and Consequences

We now assemble here for discussion the various expressions derived
in the last two sections for damping of oscillations. We remember that
we take for a typical neutron star an object of mass m = 1 Me and radius
R= 106 cm. For the oscillation frequencies, we use ¢ = 3 x 103 cps for
the radial mode (Tsuruta, Wright and Cameron, 1965) and the expression

(2.17) for an incompressible fluid for the non-radial ones.

For the Pz-oscillation, Eqs., (2.15) and (2.18) gives:
| -k X
O{lo (*) = d‘p(O) e y

where K2 = 1,2 x 10l sec_l.

For the P4-oscillation, Eqs. (2.21) and (2.22) give:

O(l:.o (o)
| Kydys £

dyo () =

where K4 = 4,3 x 103 sec-l.

For rotation and nearly radial oscillations, we have Eq. (4.50) and

Alk) = dlo) et

where Ko = 1.1 x 10-14 94.

(4.51)

From these expressions, we can easily obtain an upper limit to the
total oscillation energy after any length of time by taking the original
amplitude to be unity. We remark that we have assumed uniform density

for the equilibrium configuration in our work, and this is of course not
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true for the neutron star. However, the departure from uniformity is
not too big, except for the outermost regions, and our calculations
would still give a very good idea under what conditions the oscillation
energy can still be large enough to be of interest in phenomena in
supernova remnants. The results of damping in the various cases are
tabulated as shown in Table 1. From the table, we see that the only
significant surviving mode after a time of 103 years would be radial
modes if @ < 10 sec-l. This is indeed a very small angular velocity,
and by comparison, the angular velocity of bifurcation for an incom-
pressible object is about 3,5 x 103 sec-l, while the centrifugal accel=-
eration at the equator would become comp#rable to the gravitatiénal

acceleration for Q about equal to 1.4 x 104 sec_l.
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TABLE I
Energy Remaining in the Various Modes at Different Times as

a Result of Graviational Radiation Damping

Oscillation Energy (in ergs) at Time:

Mode
Initial 3
(@ = 1) 1 Day 1 Year 10 Years
P_(q=10° sec™™ | 2.7 x 16°% | 2.3 x 106°1 | 6.0 x 10?2 0

P.(a= 10 sec D) | 2.7 x10° | 2.7 x 10°F | 2.7 x 10°7 | 4.1 x 10%

P(L=1sec) | 2.7x10°0 | 2.7x10°0 | 2.7x10°0 | 2.7 x 10°
* L= 0 51 49 48 47
Po()l— processes) 2.7 x 10 2.1 x 10 3.0 x 10 3.0 x 10

P, 1.8 x 10°2 0 0 o
B, 1.4 x 10 3.8 x 10%° | 1.1 x 101 | 1.1 x 10%8

*
Taken from Finzi, A.,P. R. L. 15, 509 (1965).

Thus we see that a small angular velocity is required for effective
energy storage in the radial modes of oscillation, and this poses a
serious problem with respect to the angular momentum of the neutron star.
If we assume that the neutron star of @ ~ 10 cps is formed by contraction
from an original star of mass = 1 Me and radius - 1011 cm, then, if
angular momentum is conserved in the process, the angular velocity of
the original star would have to be 10-9 sec-l, very much slower than

that for normal stars. It thus appears that to save the situation, i.e.

to have a significant amount of energy stored in the radial modes of a
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neutron star about 103 years after its formation, a very significant
amount of angular momentum has to be lost.

One mechanism of slowing down the spin of the neutron star is !
suggested by Cameron and Tsuruta (1966) in which there is a loss of |,
angular momentum when an external magnetic field exerted a torque on
mass flowing away in the form of solar wind. Using the estimate of
Woltjer (1964) that a neutron star may be formed with a magnetic field
of the ;rder of 1014 > 1016 gauss, thez/estimate that the spin can be
eliminated in a time scale of seconds.

On the other hand, if a fast rotating neutroﬁ star can form a
Jacobi-type configuration of/large asymmetry, then the resultant mass
quadrupole formed can lead ;o a very rapid damping by emission of gravi-
tational radiation, as discussed in S§II.

Of course, this by no means takes away all the spin, for with the
loss of angular momentum, the rotating configuration gradually loses its
asymmetry. If’finally arrives at an axisymmetric shape, when no further
loss is possible and still with an angular velocity far too large for
effective energy storage.

Cameron and Tsuruta (1966) have considered such a possibility and
they tackled the problem in an approximate manner by the assignment of
effective polytropic index, It is known that for a classical polytrope
of index less than about 1 (James, 1964, Roberts 1963), a point of
bifurcation does exist on the sequence of axisymmetric equilibrium

configuration, and for sufficiently fast rotation, the equilibrium shape

can be one of non-axisymmetry. With this in mind Tsuruta and Cameron
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assigned rough polytropic indices to theilr models of neutron stars by
comparing the ratio of central to mean energy densities for their models
with those for polytropes. Using nuclear interaction potentials in their
equation of state, they have found that the effective polytropic index
of their models with a mass in the vicinity of one solar mass is indeed
near or below unity. Hence they conclude that there is a good chance
that neutron stars can deform into Jacobi éype configurations if they
are spinning fast enough.

We wish to remark that the whole problem of bifurcation is actually
a very much more involved one, and the above resuit is still inconclusive.
We shall give in the next section a brief survey of the bifurcation
problem in the claséical case, and employ another method of assigning
effective polytropic index. Then we shall point out that a full dis-
cussion should at least be attempted in the PNA, and we shall developed

the first few steps that can lead to the final solution.
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V. The Problem of Bifurcation in the Classical Case

The question of whether a point of bifurcation can exist along a
sequence of axisymmetric configurations has been answered for an
incompressible fluid in the classical case by Chandrasekhar and
Lebovitz (1962a). They pointed out that the equations characterizing
the state of equilibrium "provide no substance at all to the common
expectation that symmetry about the rotational axis should be associated
with any form produced by a rotational field." However, when QZ - 0,
an obvious way to satisfy the equation of equilibrium identically is by
requiring axisymmetry. Hence the equilibrium shape is that of an
axisymmetric, Maclaurin spheroid (Lamb, 1932). However, as 92 increases
and the configuration departs from sphericity, a point could be reached
when it is possible to satisfy the equilibrium equation without the
assumptions of axisymmetry. For an object rotating uniformly about
the z-axis, the general condition for the occurrence of a point of bi-

furcation along a sequence of axisymmetric configurations is:
N _ .
N I“ = W\L“z (5.1)

where 1, =J}x,’“ dx

(5.2)

is the moment of inertia tensor, w12° 12 is a supermatrix defined as:
3



- 36 -

V..
Wegigy = PXp 3%y dx

(5.3)
with the potential tensor Vij defined as:
// / / /
V.. = )&= %D
K |x - x| ”
(5.4)

For an incompressible fluid, simple analytiec solutions can be
obtained for Iii and qu; 13 and (5.1) can be easily solved. This
gives an eccentricity e, = 0.8126700, and since this is smaller than
e = 0.9528867 when ordinary instability of the Maclaurin spheroid
sets in, one can therefore conclude that a bifurcation point does
exist for an incompressible fluid.

But a neutron star is not incompressible. At the least, it
. should be approximated to by a polytrope with an index to be assigned.
Now this problem of whether a polytrope of a givén index n can possess
a bifurcation point is much harder to analyse than the corresponding case
for an incompressible fluid. One first has to determine the structure
of a fast rotating polytrope, and this is no simple matter in itself.
Then one has to determine whether the required angular velocity  for
bifurcation for a given index n is larger or smaller than the critical
velocity Qc when equilibrium is no longer possible before one can say
bifurcation actually takes place or not. We shall postpone a more

detailed discussion of this to the next section, and we shall just

quote here that it was found that polytropes with an index n <n, = 0.808
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possess a point of bifurcation,

Assuming that we can treat a neutron star within this classical
framework, we must first of all decide on how to assign an effective
polytropic index to the star. As described earlier, Cameron and
Tsuruta made the assignment by a comparison of ratios of central
densities to mean density. They obtain a result of n < 1 for those
models with a mass in the range 1 - 2 Me (depending on model). Now
a syst;m of degenerate fermions can be regarded as having an effec-
tive polytropic index of 1.5, and thus it seems\from their calcu-
lations that the effects of general relativity and nuclear interac-

tions can lower the effective index:he to $ 1. We shall examine

ff
this problem in more details here.
Effects due to general relativity alone increase the central
condensation, but except for large relativity parameter q (defined
to be the ratio of central pressure to central energy density) and

high index n, the change is quite small. This can be seen from the

following table, taken from Tooper (1964).

p./?

n q=0.0 q=20.1 q=0.4
1 3.2899 3.342 3.736
1.5 5.9907 6.310 8.326
2.0 11.403 - 12.99 24.41
2.5 23.406 31.180 129.60
3.0 54.180 98.35 4177.0
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Furthermore, since pc/a is increased by general relativistic
effects, one would be led Ed/a larger N.¢g than is actually the
case if one makes the assignment by comparing pc/S for a model with
the corresponding value for the non-relativistic polytrope, as
Cameron and Tsuruta have apparently done.

We therefore are of the opinion that relativity-effects are not

the ones lowering n Instead, interactions brought about by a

eff °
nucle;r—potential would probably account for the lowering. In fact,
when one takes a Harrison-Wheeler-Wakaons type of equation of state
(representing matter by a non-interacting mixture of election, proton
and neutron gases; more about this later), then pc/a ranges from
2,7 X 103 to 12 from one end of the stable mass spectrum to the other
(Wheeler, 1966). For a Skyrme (1959), Cameron (1959), Saakyam (1963)
type, representing matter by a gés of neutrons interacting through an
emprically derived nuclear potential, the corresponding range is 8.1 -
2.8. One would certainly arrive at quite a different Noes when one
compares the above figures with the corresponding ones for a polytrope.
There 1s, however, another method for the assignment of effective
polytropic index. By definition, a polytrope is described by the
following pressure-density relation:

f — KfH‘"}‘{

(5.5)

where k is a constant and n is the polytropic index. Thus:
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d L P
\+J'P: = ———

l&Af (5.6)

Graphs of &nP against fnp can be found in the works of Cameron and
Tsuruta (1966a, b), and we have made some rough estimate of the
slopes from the curves. For the two types of nuclear potentials,
desig?ated by Vp and VY in their work, there is a certain threshold
density below which the slope corresponds to that of a polytrope
with n ~ 1.5, and above which the corresponding value for n is ¢ 1.
This may be understood on the ground that nuclear potentials only
come in significant at high density. At low density they become -
unimportant, and we simply have a collection of fermions for our
system., For the VY potential, the threshold density 1is about 1014
gm/c.c., whereas that for the V, is . lO15 gm/c.c. Now for a

B
typical neutron star described by a VB type of equation of state

15.5 _ 1,16

(with m = 0,97 My and R ~ 6 km), the density is about 10
gm/c.c. throughout the star (except, of course, very near the sur-
face); whereas one described by a VY equation of state (with m = ZMG’

R = 10 km) has a corresponding range from 1014 - 1015

gm/c.c. In

both cases, the density is above the threshold one, and as we have

stated, the corresponding neff would be s 1. Thus, the two different

methods of effective index assignment are consistent with each other.
To see further the effect of the nuclear potential terms, we turn

to an equation of state in which they are completely neglected. This

is the Harrison-Wheeler equation of state (Harrison, Thorne, Wakano
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and Wheeler, 1966), which applies to a mixture of three ideal fermi

gases—--electrons, protons and neutrons--in statistical equilibrium

at absolute zero. By making use of the following assumptions:

a) electrical neutrality, i.e., number of electrons = number

of protons, or equivalently, fermi momentum of proton =

fermi momentum of electron,

b) neutrino neutrality, i.e. the particles are in B-equilibrium

with fermi energy of electron and fermi energy of proton =

fermi energy of neutron,

c¢) sum of pressure of the three kinds of particles is equal to

the external pressure,

they succeed in obtaining for p = 4.63 X 1012 gm/c.c. and up:
5/ s/q\ = ¢/5
Pglomse) = ko9 (Rt p™)
where ﬁ‘ — ,}q%-a( X Iolo

%, = §.120¢ X o'

From Eq. (5.7), we immediately obtain:

H'?*ﬁ

dbt _ 5
dbap 3

2
3

(5.7)

(5.8)
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We evaluated the above for p = 1014, 1015, and 1016 gm/c.c.
We then find, from Eq. (5.6), the values for n to be 1.59, 1.82
and 2.63 respectively. Thus, they/egme far short of then < 1
necessary for the existence of a bifurcation point. This, however,
is not surprising, since w9/are just considering a collection of
non-interacting fermi pargicles.

It is not known what should be the '"exact" equation of state.
Despife the apparent unreality in the above equation of state, it is

not easy ''to make any improvement (in this equation of state) which

will be at the same time substantial and reliable'" (Harrison, Thorne,

Wakans, Wheeler, 1965, p. 121). Furthermore, the masses and radii
of stellar models based on various equations of state differ only by

factors less than three, e.g.

Eq. of State log Pe M/Me R (km)
HWW 15 0.6 10.5 *
VB 14,9626 0.4 11.66%
VY 15.0359 1.5 11.9 +

*Meltzer & Thornmer, Ap. J. 145, 514 (1966) Fig. 2
tCamerone & Tsuruta, Can. J. Physics, 44, 1863 (1966) Table 4

16
However, for density in the range 1014 - 10

gm/c.c, it seems appropriate
to take into account in some manner the effects of nuclear interaction.
In this aspect, the HW equation of state seems less realistic then the

Vg or VY ones, although the latter ones are by no means completely reliable.
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Thus nuclear potentials seem to be capable of depressing the
effective polytropic index to a value when bifurcation is possible,
provided that the density is high enough. This comes from the fact
that the two potentials become highly repulsive at high densities, and
hence diéfavor the crowding together of matter and hence leading to
a low central condensation. Since VY becomes much more repulsive
than YB at high densities, it should follow that a VY type model
stands more chance for-bifurcation than a VB type. This is confirmed
from the results of Camerone and Tsuruta (1966b) .

We close this section with the observation that classically, it
seems possible for a neutron star to exhibit a point of bifurcation.

We must caution, however, that this depends very much on the equation

of state used. Also, we remark that a typical neutron star of mass M =
1 Me and radius R = 10 km carries a relativity parameter GM/RC2 ~ 0.14
and hence should not be treated within the framework of classical hydro-
dynamics. At the least, we should examine the problem in the PNA re-
cently developed by Chandrasekhar (1965).

To do this, we turn our attention to the structure of a rotating
polytrope, which we shall determine using a method first developed by
Roberts (1963) in the classical case. This we shall review in some

details in the next section.
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VI. Structure of a Rotating Polytrope—classical case

The structure of a slowly rotating polytrope has been considered
by Chandrasaekhar and Lebovitz (1962¢), when it is possible to arrive at
an analytic solution by expansion in terms of the rotation parameter.
Bifurcation, however, certainly does not take place at small rotation.
Thus, our interest is primarily that of a highly rotating polytrope which
has been studied with different methods and degrees of accuracy by
James (1964) and Roberts (1963). The latter used a very approximate
method which is nevertheless extremely simple and easy, at least fog the
classical case, James approach, on the other hand, is direct and exact,
and though we shall not use it here, we shall 1list it out, since it
i8 certainly the best and most correct one to use.

James considered the axisymmetric case first, and determined its
structure by expanding the density and potential near the centre of mass
in a power series in the radial variable (the coefficients themselves

are expanded in terms of thg/Legendre polynomials), and then using

analytic continuation and step-by-step integration for the rest of the
object., The end of an axisymmetric sequence is defined by the vanishing
of the effective gravity 8o at the equator, He then considered a small
non-axisymmetric perturbation and arrived at a condition for the existence
of such a non-axisymmetric form adjacent to the axisymmetric one. This

is used in conjunction with 8o = 0 to see whether bifurcation occurs
before or after the end of the axisymmetric sequence. The result is

that bifurcation is possible for polytropes with an index n < n, = 0.808,
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Robert's approach is a variational one, and the procedure is to minimize
the total energy while keeping the mass and the angular momentum constant.,
This is used to pick the 'best" trial function from a particular class
of trial-function which, in Robert's case, 1s the class of all spheroidal
distributions in which the equidensity surfaces are similar and similarly
situated concentric spheroids.

Now for a rotating polytrope with a pressure (p), density (p) rela-

tion described by
L

E — k:jj it

(6.1)
(where n, K are constants), the total energy E can be written as:

E = rotational energy + internal energy + graviational energy

To | pwdx +ak S’H*”Li + ("%j?Udi)

- "lz'_'ﬂtl _\"I[- - J): , say (6.2)

where §? is the angular velocity, ®w the distance from the axis of rotation
and U the gravitaional potential. I, II and IIT represent the various
integrals, a notation very convenient later in the PNA,

The angular momentum L and mass M are

L = ’QJ S)mla(i =N (6.3)
M=) pax 6
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Suppose now there is a change 6§p(x) in p(x) such that L and M are un-

altered, ie.

SL

gngyw‘otgg + SLSSf w'dx
=0
(6.5)

and M = ng dy =0 (6.6)

We suppose also that the corresponding change 8U in U is given by

Poisson's equation

VI<QU> = ~tG (Sf} 6.7

"z

i

-z j(USg)JrgJSU) AX
[ Updy + 56
= —SUgj) d,& (6.8)

e g0, = £{(Usp-psU) dx

all Sf«a. (6.9)

H

where use has been made of Poisson's equation and Gauss divergence theorem.

Thus, the change in E due to a change in p is given by:

(E =+ (ansn L+026I) I - 34T
= jY(’H—!) Kf* _U -1 DU‘] Spalx

(6.10)
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where 6 has been eliminated &L = 0.

To take the remaining constraint 6M = 0 into account, we introduce

a Lagrangian multiplier A, and demand that

S(E-

AM)=0

which becomes, from Eqs. (6.4) and (6.10)

- ((M-H)K)OJ’:—U —-LLSL"WL—_/\_]S)%Q =0 (6.11)

Foran arbitrary 6p, we therefore have:
L
(e Kp™ = U+ +trwi+ A

which is just the equation of hydrostatic equilibrium for a polytrope

(Chandrasekhar 1962c).

the graviational potential at the pole of the configuration.

(6.12)

Incidentally, we notice here that (-A) is just

The variational principle is then applied to a trial function:

where

with the
The
surfaces

in great

‘P::

@tl

Pn)

= X4 xS+

eccentricity e = constant.

SEAN T

(

&

X
_ea)

(6.13)

(6.14)

theory of an inhomogenous ellipsoid in which the equidensity

are similar and similarly situated ellipsoids have been discussed

detail by Roberts (1962).

Fv)

Yo
ply) dy?
}tl

Using those results and defining

(6.15)
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where n, is the surface of the spheroid defined by p(no) = 0, we find

lg] =48 M—j 9 1*d (.16
T = L+7ka“‘J 9”" (6.17)
AT = - () an
M = unfice S%MZ"(”( (6.19)

(o]

Heo
L = %RWJ §ytdy

(6.20)

We next consider variations w.r.t. p, {2 and e, and we eliminate 69 by
6L = 0. Following the approach just described and equating the coeffi-

cients of 6p and e separagéiy to zero, we finally obtain the basic

(WK 5 w% ) [ et

and the equation relating Qz and e2:

S IG0N dy
j o Fly) dy

(6.22)

- nérJTe‘
=

[(3 -2er)sime -5eF€?J

Eq. (6.22) can also be obtained in a more direct manner using the virial

theorem (Chandrasekhar and Lebovitz, 1962).
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In keeping with the theory of polytropes as usually presented, we

now introduce the dimensioriless variables A, 6, £ defined by:
g =x6™
(6.23)

=dY » e
where b - (’}’L‘H)K)\‘ "
- o\ el Tle)

(6.25)

flo) = =

with | (6.26)
|-e2 & €

Furthermore, the rotational parameters w and v are defined by:

_512.
AT =
9\7{@,}\ (6.27)

and w=v f(e). (6.28)

With all this, Eq. (6.21) becomes:

and (6.22) can be rewritten as:

i“&“i—r—i = GCW} (6.30)

e’ Csm’e

n
- 6 + M) (6.29)

Zw‘Eb low$te'G.) - 60w
20wt o () FIS 2]+ 15w T8 a5
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0,
with 3.\ = S 6 (; O(E (6.32)

T, = [ryemds
— Wt!)

—

5-n) [gf (-6’&")} Z—\' ng’] (6.33)

and Eo is the first zero of the solution of Eq. (6.29) for 6.
The most convenient procedure of solution is the following:
(a) Take aw < 1
(b) Solve Eq. (6.29) for 6, subject to 6(0) = 1 and 6'(0) = 0. Let
Eo be the first zero of this solution,
(¢) Evaluate G(w) from Eq. (6.32) using the now known 6(£) and Eo.
(d) By inverse interpolation , e can be determined from Eq. (6.29)
(e) v can then be obtained from Eq. (6.28).
Thus, for any given v, one can find the corresponding eccentricity.

Furthermore, it is found that solutions exist only in a limited range
0 < v < vc (6.34)

We now apply to our homoeoidally striated spheroids the criterion
for the existence of a point of bifurcation along a sequence of uni-
formly rotating axisymmetric bodies., From Chandrasekhar and Lebovitz,

(1962a) we have:

T = We= W =Wy,

where wii's are the potential energy tensors and the other symbols are
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as defined in §V. For our particular density distribution, all the

quantities can be readily evaluated and we have after simplification
o ( 2
(3+8€2—S’e4>34m e = eJiet (loe +‘3>

for the eccentricity of the spheroid at bifurcation. Two distinct
characters of this condition # stand out. First of all, it is the
same as that for the homogenous spheroid. Secondly, it is independent
of p(nz). Thus, * alone cannot be used to determine whether bifurcation
actually takes place., We have to determine, in addition, the eccentric-
ity (or angular velocity) when equilibrium is no longer possible and
compare it with that at bifurcation before we can say whether an object
can actually bifurcate or not.

In the particular case n = 1 (which shall be the one under study

in the PNA) Eq. (6.29) can be solved exactly to give:

6(’@) = wt (-w) 34;{ (6.35)

This function gives 6(50) = 6'(50) =0 forw= w, = 0.178465 at Eo =
4.493409, From the procedure of calculations just described, we readily
find that v, = 0.106757, e. = 0.86988. Since e. > e, it appears there-
fore that according to.this variational approach, bifurcation would indeed
occur for the n= 1 polytrope before the termination of the axisymmetric
equilibrium sequence.

This result seems to be at variance with that arrived at by James

(nc = 0,808). This should, however, be expected from the very nature of

our approach. Roberts himself pointed out that the variational calculation
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must certainly overestimate Vs because a system loses equilibrium
essentially through a local violation of the hydrostatic equation at
the equator. The variational calculation, on the other hand, satisfies
the hydrostatic equation in an integrated way, and the assumption of
homoeoldally straited equidensity surfaces will artifiecially p;event
matter from being ejected from the equator for as long as the rest
of the surface can constrain it to the body.

With this note of caution, we shall now turn to the generalization

of this approach to PNA.
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VII., Structure of a Rotating Polytrope in the Post-Newtonian

Approximation——a variational formulation

We shall show that a principle similar to Roberts can be formulated
in the framework of the PN equations derived by Chandrasekhar (1965).
In that approximation, the expressions .for enmergy E, mass M and angular

momen_um= :;,_VE; ; . S?_H_ " _}I:S?UO{K
¥ ?{%ﬂ‘*j?ww + -’émijwgg,
+ 2 fper (e 3) dy + 2 SfUT(an
52’7 vald.?i - 293'5 f‘w”% Ay ] 7.1

- S pdx + tﬂ"ﬁf’wtdz& T 35?“‘«&}7-”

L = _Q.wa"o(ﬁ + 5 { S‘Bwau?{ T 4“}?“”“‘3&
+515§'&5L(T[+%>4£ - Mlj? UJLZML} (7.3)

where pll = nP is the internal energy for unit volume,  is given for the

axisymmetric case by

(7.4)
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where Vz%),v = _+7TG_§) x“: (7.5)

and the other notations are the same as those defined in §VI.

As in §VI, we not write, following the notation of Krefetz (1967):

LTE % 45 o7

E=snl+L -3 +35 |7V 3271
—_ S £ —— v

AV F2 Vi -3 Mk - 201X ] (7.6)

M=M+ 5= ($21+310)

.7

L= ald G (PE4 T+ I +IC)

(7.8)

where I, II, . . ., IX represent the different integrals in Equations
(7.1) > (7.3).

Our variational approach consists in taking the variation of E,
subject to the conditions that M and L remain constant. We proceed by
eliminating 6Q with the aid of 6L = 0, and then solving the remainder of
problem by the Lagrangian method of undetermined multiplier. (SE - A 6M =
0 with A being the Lagrangian multiplier).

The details of the calculations are given in Krefetz (1967), and

hence we shall not repeat them here. The final result is:
A TH ST -3 + 5] -+l - 23S
426 —Z¢Wi + 200X ]
=_/\[gmq+z%(§sfﬂ+ %SE)}

(7.10)
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Fora completely arbitrary ép, Fq. (7.10) should led to the hydrostatic

-equation in the PNA (Krefetz, 1966):
V=T - U-tewta[ U
Utiaw™)(T+ %) - 4 ($ 02 m9)° -
3V w?) - 28 + 4wl

= constant ' (7.11)

where ¢ is defined by

V'3 = —4TGP ¢
g c\: =+ U4 SEW + “i_f?

(7.12)

(7.13)

That this is indeed the case we now proceed to demonstrate.

Before considering the variation of the various integrals in Eq.
(7.10), we first of all remark that we need only take the variation of
the integrands because our integrand vanishes on the boundary.

We now consider the various terms in Eq. (7.10)

-1¥(T = an g)oa(x
(T+5)Sp dy

(7.14)

(7.15)

-0 = - Usp dx

(7.16)
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° 26U~ 6V =H5U(Tr+ 7) -2 U286y
+.§.sﬁjym‘£w5 ——}_QZJW‘USfoQ

(7.17)

where use has been made of:

esvdy = (& ¢pdy

(ref. Chandrasekhar, 1965, P. 1500, Lemna 3)

AW - T = -5 “ﬂ“—"“fdi
-ie J(w‘Ug)od - Fn ) fw‘éUo{g(m)

2§ = ‘Fn‘jwl% Sf A X |
(having used the same technique as that in getting Eq. (6.8)).
ASM, = ./\_ng‘i?i | (7.20)
LA = Lol (wtipds

SACIL = ¢ | USpdy

Putting the various terms (7.14) + (7.22) into Eq. (7.10), and using

m+ -g- -U - %— Q2 52 = A in the explicitly post-Newtonian terms, we get

(7.19)

(7.21)

(7.22)

(we should have used the Newtonian A0 instead of A, but this doesn't

. matter for the explicitly PN terms)



. SE"./L%M = gfdi‘iW*}g‘—U—- Jl__QlUJL
- __y
+E Lyt (5U-2 B (T5) + 7w
AU =28 4 U] -/
- z’/\:; (éUfi’ﬂ""&S*)

= 0 (7.23)

By a simple factorization, Eq. (7.23) can be written as:

Lo (en) [ 14 & (e —tnre?)[dy =0
(7.24)

where ¥ is the same expression as that defined in Eq. (7.11). Since Eq.
‘ (7'.214) is required to be true for an arbitrary &p, we have ¥ = X, and
this is equivalent to the equation of hydrostatic equilibrium (7.11).
Having demonstrated that our variational procedure is really a correct
one, we now proceed to apply Eq. (7.10) to a rotating polytrope. Since
the whole calculation is long and messy, we first outline the steps as
follows.
We shall assume with Roberts that the equidensity surfaces are

similar and similarly situated spheroids. We therefore write:

9("{) = Fo(%) + illz Cl:f;/(’l) (7.25)

where N

1 X
'I/C':—_ )(ll-}- X; +’ (\.22)

. The constant e is the eccentricity for a particular solution, p is the

(7.26)
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trial function, and the ai's are the variational parameters. A subscript
zero indicates that the quantity so labelled is derived from the Newtonian

solution. Thus, e.g.,we shall write for the eccentricity e of the PN

configuration:

e=e + li- e' (7.27)
c

and for the angular velocity Q:

Q=0 + lz— Q! (7.28)
Cc

Because of the complications caused by the various PN terms, we have
not been able to solve the Euler-Lagrangian equations, as Roberts has
done. Instead, we use the variational principle directly, and determine
the parameters in our trial functions by minimizing the energy subject
to the constraints as mentioned.

Remembering that 6Q has already been eliminated with 6L = 0, we

therefore have the following Eqs. from §(E - AM) = O:

:§§L ( E; “_/\.f“L:) = CD i=1,.

.y N
(7.29)

= (E-LM)=o

For a given Newtonian configuration (hence known eo, Qo’ po), the

(7.30)

above becomes (n + 1) equations in the (n + 3) unknowns ag, e', Q' and A.
We thus still have two more conditions at our liberty. We choose

to take the mass as defined in (7.2) and eccentricity of the PN configu-

ration to be the séme as those of the Newtonian one. Thus, our problem

is completely specified. We are comparing a PN polytrope with a
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neighbouring Newtonian one of the same eccentricity and mass. The,
variational equations then enable us to calculate the change in density

distribution and angular velocity.



- 59 -

VIII. The Variational Equations in the

Post-Newtonian Approximation

We shall now set up the various equations arising from the
variational formulation. Let us first take Eq. (7.29), which is

actually equivalent to'writing out Eq. (7.23) where we now take

$9 Sa = Sa; 9;’
Thus, we have from Eq. (7.23):
Pl {T+f-U-ta8m+=F
( -~ = :%7 =0 | (8.1)

where F and H represent the explicitly Post-Newtonian terms in Eq. (7.23).

We now expand the various terms in order of %2 . Thus:

T+3

i

) Kft

I

(MH)KSO + 4 J—-"-) S af!

(8.2)
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U= ijf‘“l %

= () + = ac el (!
_Ggmw Lagl)

[2&*}! \ ~ (8.3)

n =Nt En!
= -j\.o +‘ -%;—_/\_f

(8.4)

(8.5)

Substituting into (8.1), we therefore have:

)(?;,42‘, [(Mﬂ) Kfj‘“ U, -t Wz—‘/toj
L 0.l
-+ Sy a(x[<P af> 205 9 ijf;f;/(f)di,
—Q'w + F, — A -4, Ho]
=0

(8.6)

where a subscript zero means that the quantity denoted can be evalu-
ated usifng the Newtonian configuration. Since the integrand of the
first integral vanishes identically, because of the classical hydro-

static equation, we therefore have:
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o Z}:aékyay)j:?dx —GZQJJP“({“(“>P{T‘)0( Ay

.8 S?@ whdX, “-/\:fledf‘»
thE-LH, =0

(8.7)

where

Fo = S o/ |-t (U - m)(TH L)

+ -g—n“b‘u‘t Y Usp5 =28 4 Y o>28)] Ay
® °

(8.9)

Hfo{[éU—%WW‘La&fA

(8.10)

For the e-Eq. (7.30), we go back to Eq. (7.10) where now § = %; .
Before any variation is possible, we have to write out the integrals in

such a way that the e-dependence is/gxplicit.

We first define
=
<
- ﬁ(z (8.11)

® X3 = JI=er Ys
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Then the volume element dx would become /& - e2 dn and the
spheroidal equidensity surfaces in x co-ordinates would become spheres
in the n co-ordinates, with a radius n* say.

With this, the various integrals become:

¥*
1=|pmdy = S S:Lf’””*\

(8.12)
%
U g
I[=S?TN>,&= “MKWJ Py
9 (8.13)
' < (el (Crey
m = =K €7 om € =
dﬂ: S?UA& G € LF " (8.14)

whet F("{) = S 2?(”1’)1’[/4%/

—

A
W = S?K)#d?\(ﬁ = %& \-Q"ff%éi% (8.15)

‘l* Py
v = wazw - m:e-sge WUl dysedodo

o 0
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l

<

l

o7 ¥ L
X?UTMK 2‘275’““%;{5’“”1]%‘0{7&640

(8.17)
- 2.7:1(*- .
it = gf’vzo(g& = J&nmﬂfU y 4 su6dg
0 o (8.18)
— '3
X = i“m W (|ox )[BT - elRee] [ e
§ LG(I@)[ = ]J% F;af;()
o4k
Mo =5§ ox = WJT—EFJ P%&dv(
0 (8.20)

The derivation of the above is all very straightforward, except
for III and IX, which we calculated using a method developed by Roberts
(1962). This is shown in Appendix B. The variation in e can now be

simply written down as:

2 (E-AM) =0 =—
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#
Lmﬂe_ Sfﬁo{ ‘(-Tlf/zke wan% Ay
eﬁ.

[eJTT-@e)&MC]j Fody + c‘(ENl)

-JL[ &‘1‘14 C;(ENZ,)]T-O (2.20

where

(eNy) = el S?ﬁ’dw - -ﬂ[

5 r_ ane JJ?U %‘*d‘z sw’ddg

4 S’iogﬂ'y = 40[’11%4,\,56 o ]

\r—— il
+ ;zm““MKS ojo 9‘*" 3% 4ty W’J@]

4og | gl Smkf””U{Mdee

-5 W SS fU %au(smede

+m—;;;,5 3 §>U U edysieds |
—l—LmzC.%c)f “yF a[vl (6-22)
sl (e s)*eﬁ?(e“)

e 4

withh CX(€> =

Yo

=3

- Yo
f.«‘*a[% + r'G [ﬁﬁ*(‘éi’)w ‘S] szdv( (8.23)

s)-
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In the above expre551ons except of course for the explicitly

PN terms 2 (PN1) and —2 (PN2), the integrals are taken over the

BN configuration with a radius 1% where
p(n*) = o
and. VL% - Yo + 9
what  D(y,)

]

0

(8.24)
The expression for the 'mass' M can also be written out in terms

of the wvariable n as follows:

Sgix 44 jgm dx + Sijch]

= Wi S MZM + ¢ \:%Eﬂ:m JOMQM |

+ 16 Q“’;)Ml& ﬁoF:O(“’L J
Y, e

= b |~e’5 foudy * kmi-es CL‘L%S B4
+—L(womtg bty + el e")”’“‘“ef‘:“d

Co

(8.25)
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We note that since po(no) = 0, all the integrals can now be taken

from 0 - n .,
0]

If we demand that the 'mass' M of the PN configuration as defined
by Eq. (8.25) be equal to the mass of the Newtonian one as given by

(6 4), we would then have, since we have chosen e = e

Zaa f/%%’t + 300 S £yt dy

3 -g%:o ﬂ‘z"z.
+ ﬁGﬂE; : XF;J%

]

(8.26)

We shall now render the p-equation (8.7) the e-equation (8.21)
and the M-equation (8.26) dimensionless. We use the same transformations
as listed in Eqs. (6.23) and (6.26), and we are therefore performing
the scalings in terms of the classical K and A. Thus, A is not neces-
sarily the central density of the PN configuration. We also choose
with Tooper (1964) the ratio of the central pressure to the central

energy density for the PNA parameter q. Thus,

NPT KaE
L= Naa T

il

(8.27)

Furthermore, we put

6() = 6.5) + & 2, 4,6/ (5)
gl

(8.28)
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and on comparing Eq. (8.28) with Eq. (7.25), we have:

4 -///
= (mkA"” n) 6, 6{

(8.29)
/

All the "potentials'" will also be written in dimensionless form (see

Append.ix C). Thus:
n~l /
(Q:GSM (x/) 6] (x) Ax’
X-x |

= ame JToer dih U* (5,5)

(8.30)
o
'nl /
where _Ua*(g‘e) A w J 6
(8.31)
witl, W= Tt 1 esn6 (i-el)
<§> T T l~es + «
(8.32)
Al) = (IHw) (lce2 )
dkd 80(§°> =0
(8.33)
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(8.34)
%,
here 1 (§(6> f - Jg 5, §/4§/
(8.35)
_ W,
0 (%) = C—:S o Ax
= AT G Jiver 9
(8.36)
whias “dw
@ Sé-\-m)A/\A)S 6%?’;%3/
(8.37)

Since the Lagrangian multiplier actually carries the dimension of a

potential, we therefore write

./\_z./\.o+ EL;./\./
= Ao-i—%JL

where \IL .
" A, = -argd* A Jlrez U &2



- 69 -

A= TGN I-ed AK

(8.39)

with UO* just beilng the potential U* calculate at the pole where
E = Eo and 8 = 0. ///
With this preamble, we can readily change Eq. (8.7) into the

following dimensionless form:

/

Z Q4 [H’e"j 2o 6] vty —m(\-eo"‘)ﬂ&)D(l-‘,g‘,')J

3w—e?3‘€)f Yolyty - fe){l&]ﬁ‘fef'*

-3 (e ey 1l YU ED (0, 2)
4 ) [ 1 (e v U [0, 8] 5ty
+4E ) [Gle) ()™ D (e, 15)
- 5'(%“) )ﬁ(éo (I-e2) D(e,3)
4 o) fle)JiF [o" ol g4y

§=0

i



- ) (e ) TEE (605 4
T 2 ) v, H(&ﬂz(wo‘) D (¢,

+ () (1-e8) ™ [$(e) 1" D (c,5)
+mt3)(1-e2) feo) D(¢,¢)

Yot U (led) [He)] D{e %) (5.40)
-2 (n+) (e > )He‘,)} Vs D /«,8)

where the D's represent the various double integrals, defined as follows:
D(%é;ﬁ ~ SS 60% ‘6/7\5*04&\6 d6 Ezaj.‘i
D(c2) = Sg 5" b! U st do e dy
D(s15) = SS wl g (U*) saode 7oy
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Do) = || o U™ 2 do ctd

D(%) = Jj 6" U b6 de § 7 dy
D(43) = ﬁ 6. 6;/,@}"‘5 a6 do ¢ dy

2 /
- S ,U,l — -Qoﬂ. (8.41)
0 QAN -((-GK>\1+V\
The derivation of the above terms is quite straightforward, except that

in calculating 5 ?;/ §oA_X , We use

syzm - G S{ ()2 )

l><—>(fl

ffetiamio

where we have used the definition of ¢ and ¢ as given in Eqs. (7.12)
and (7.13).

We shall now consider Eq. (8.21) - (8.23). Remembering that we
have chosen for our problem e = e, and after separating out the zeroth

order part, we have:
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/

- L) {COJ\?:, ~(te)sile, J ﬁ S
Co

LNl = 2edr) U Ta;fe's sy
A-.OI_
el el €y + Qe

@2 = S0 [fle e, v, U Jo,*x s
"2 eeJia [fe) ] [ Gl -l ”fj U Jo

Co

(8.43)



+ L (i )eo[ﬂeu v, D (6,4)

B 2CONACCANENERD
~ dnefle) D(o,11)

T 2n]ime {le.) Dlo,12)

+ 5 i )e,Tmer [$le) ) Do, 13)
- £ (mt)(1-e2) [5—(&)]z D(o,14)

T (), @(eo) [3((&)] af( . )zy"c(;' (8.44)

where the double integrals are:

5o 1

D(0,4) = SS Be" U)"'g‘*ot; > & d 6

0 o

D{010) = m
D(O,\l) =SY°‘§7T %HU;\% ed; o

T

D= [ [T

o

A

6;“ Y (ql e U ) §44§ 538 dg

ow S <J—‘ ‘Uﬂ) £ of,“’ Svad-d 6
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D(0,13) =jojn0j (U*)&é;w A8 ‘gaig
B

0

D(o14) = f Jn@ U2 (FEU*) Tdr sasds

and aae mUX)

is given in Appendix C.

The M-Eq. (8.26) is relatively simple. We can easily change it to:

n 4; Sn@o%'l e; dy + L mtl) He)w, (oeo/“é"*r{;

39 o

I 2 )
+—L% Eé:“ - @L*‘)-}(&)J <F0%>cl§‘ =0

(8.44)

Eqs. (8.40), (8.41) - (8.43) and (8.44) then form the basic set of

equations we shall use to solve for the aj's, v' and A%,
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IX, Method of Solution and Results

We have stated that Robert's result can be used as the zero-th
order solution. We shall consider here only the case n = 1, because
of the existence of an analytic solution (refev(6.35))

- Sw §
0o(3) = w4 (I-w) “% o

For a given w, Roberts' (1963) solution gives the corresponding

eccentricity e, and radius Eo' Thus, for example, for w = 0.178465
(corresponding to the largest possible value for equilibrium), we have
v, = 0.106757, e, = 0.869889 and Eo = 4.493409,

For the trial functions, we must choose those that satisfy the
boundary condition that at the origin, the first derivative must vanish.
In the absence of further information, and because of its simplicity,
we shall take |

T8 = Aot 434G E

(9.2)

The term linear in £ has been left out because it causes a cusp at the
origin. To gain an idea of whether this will give a reasonably good
approximate solution, we shall solve our equations for the special case
of no rotation and compare the results with those given by Krefetz (1967).
The only difficulty in the solution of the problem lies in the
evaluation of the various infegrals, which are of 3 types (1) single
integrals like Jeo“gzdg' (2) "potential" like U* and (3) the various

double integrals D's.
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Because of the analytic expression for m = 1, all the single

integrals can be easily evaluated, and hence we shall not bother des-

cribing them here,

A typical "potential" integral is U#*

U# _ ? AV So
0 Alv)

ple!dy’

(9.3)

The integral over £ can be exactly carried out because of Eq. (9.1).

For the integral over v we split it up from O - 100 and then 100 -+ «,

Thus symbolically, we have
o) |00 4Y
(

§, =), 1)
= 1,+1,

I, is calculated using the 32-point Gauss—~Legendre quadrature For I

100
, say.
23
we expand the integrand in series of %-and keep the first two terms., The
integration can then be exactly carried out.
As a check, we consider:

_ S“’ ol - _ 2sale

o(tV) Jicvuy =

T
!
For e = 0.869889, the exact result is 2.42554. Our method gives 2.42470,

thus carrying an error of 0.03 per cent.

Our double integrals are typically of the form

So T
[ 3 Glse) seasdy o)

0 o
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where G(£,6) is one of the "potentials" discussed in Appendix C; and
f(£) is some simple function of £. The integral is evaluated using a

12-point 7th degree accuracy formula (Tyler, 1953). In this method:

ta. +b

S \:(Xnt})obwhi = (CLL:> &Z-F(ixu i%}t)

-0 ~b
+8, Y F(4X,1Y.)
+Ry T F(LX;, 0)
J{ZRL} ZF(O)i‘jQJ.

(9.5)

where Rl = 0,520593

RZ = 0,237432

R3 = R4 = 0,120988

and 1L 71
a b

= 0.380555
X, v
2 .22 . 0.805980
a b
X, Y
3 = 2% o 0.925820
a b

1 .1
This method yields (0.6639) for the integral J J ax dy which is
o‘0 Y 2 2

correct up to the last figure when compared with the35§a2¥ result,

“In applying this method to our integral we need only define:
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wien + . (9.4) would then become

4o Fb
[ { 360 Gly)dedy

-~ =b

where now a = %go and b = 1.

To see how accurate such a formula is for integrals of
our type, we apply it to the special case of no rotation. For
D(o,o,n):“ﬁ,”'e: -U;*Solﬁolg Sld'g (see P.70), exact calculation
gives 163.2126 whereas the above formula gives 163.2329.

Our procedure of solution is the following. For a given
w, we calculatega, e, and v, for the classical configuration
by the procedure listed on P.49. With this, we can then calcu~
late the various integrals that appear in the variational equa-
tions. The results are then fed into another computer program
that computes the coefficients for the various ay's in equa-
tions (8.40), (8.42) and (8.44). The net result is then just a
set of linear, simultaneous algebraic equations which can be
readily solved for a, , a, , az , v/ and Jtr .

The results are tabulated as ﬁollows, in which we remem-

ber 2

_ Jio
Vo = ATGA,

/
- Rent
TGK\T>

from eqn. (6.27)
from eqn. (8.40)

_Sl = _Qo-jc- "é,;ﬂ’/ from eqn. (8.4)
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As a check on the accuracy of our results, and the validity
of our approach, we compared our results with those of Krefetz

(1967) for the non-rotating case. This is shown in Fig.1l,where

]
we plot 6(‘;) from eqn.(9.6) against Z « It can be seen that the
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agreement 1s a very close one.

The effectusYrotation and PNA on the density distribution are
shown in Fig. IT , where we plot 62;) against § for different values
of w. The curves are terminated at the radius of the classical con;
figuration. The change in angular velocity due to PN effects are, on
the other hand, displayed in fig. IIJ , where we plot v“ against w .

Our calculations indicate that for the same eccentricity and
mass, the PN configuration has a larger angular velocity than the
Newtonian one. This is in agreement with the results of Chandrasekhar
(1965b) for a rotating Maclaurin spheroid in the PNA, when the figure
of the rotating body in the PN theory is also approximated to by a
spheroid, HHis results, however, are obtained without really solving
the equations of equilibrium, although an exact analysis, when the
PN congiguration is no longer assumed to be ellipsoidal can be found
in a later paper ( 1966 ) .

We defer to Section x for further discussions on the general

nature of our approach.
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X. Discussion of Results and Outlook

Our results should only be interpreted from a qualitative point
of view, although they do indicate, in agreement with Chandrasekhar
(1965b) that for the same eccentricity and mass, the PN configuration
has a higher angular velocity than the Newtonian one. In the first
place, our assumption of an ellipsoidal density distribution for
a rotating polytrope is an extremely crude one. Its chief merit in the
classical case lies in its simplicity, and its giving a simple, ordi-
nary differential equation for the density distribution. However, all
this seems to be lost when one goes to the PNA, and the calculations
turned out to be tedious and time-~consuming. Furthermore, Chandrasekhar
(1966) has shown that even in the case of uniform density, the deformed
figure in the PNA has a quartic surface instead of a quadratic one.

It thus appears that it may actually be far more profitable, and even
simpler in the end, to employ the direct and yet more accurate approach
of James.

There are in fact many more aspects of rotation that we have not
touched on at all here. We have assumed uniform rotation throughout,
but it is far more probable that a state of non-uniform rotation would
prevail in the stellar interior, at least in the beginning. Thus, one
should take viscosity into account and investigate how rapidly non-
uniformily in rotation can be smoothed out.

In addition, we have left out altogether the possibility of inter-

nal motion, which could lead to a whole variety of interesting phenomena.
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Thus, for example, one can consider an ellipsoid rotating along a
z-axls, with an irrotational internal motion described by a Lagran-
gian displacement linear in the co-ordinates (see, e.g. Lamb, 1932,
p. 719-723). This is the problem first considered by Dirichlet
and one obtains the interesting result that the surface can osc11—
NS exiremel Extreails

late~ between an-oblate and awprolate form.

Further investigations were carried out by Dedekind and Riemann
(for a brief review, see Chandrasekhar 1965a, 1965b, and Basset 1888).
The former proved a remarkable theorem to the effect that different
states of internal fluid motion can preserve the same external,
ellipsoidal shape and the latter showed that the most general type of
motion compatible with an ellipsoidal figure of equilibrium consists
of a superposition of uniform rotation and internal motion of uniform
vorticity about axes that lie in a principal plane of the ellipsoié.

Thus, we see that there is still much that can be done in this
whole field of rotation. The problem surely does not end with the
determination of the structure of a rotating polytrope, or the loca-
tion of the bifurcation point . One’can surely consider, in conjunc-
tion with the problem of neutron star and gravitational radiation,
ellipsoids of the kind sugggsted by Dirichlet, Dedekind and Riemann.
To this and related proble;s, we hope to return sometime in the

future.
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Appendix A

Matching of Boundary Conditions for the Gravitational Potential

On P. 2% , we claim that the expression for gravitational radiation
is all determined one A is found, and that this can be done by a matching
of boundary conditions for the gravitational potential this we now do.

In the equilibrium configuration, the internal graviational potential

can be written as:

iut
L7 =nbparo(aaas) i e (2-35000) |
(A.1)

where the notations are the same as those used in §III. We notice that

Eq. (A.1) gives

g = TGP {5+ TGrY)

in the absence or rotation, agreeing with the usual formula one has for

that of a sphere. The external potential §gut has to satisfy:

2 - OUt

v 90 =0 (A.2)

The solution to this Laplace equation can be written as:

o0
— P k,‘
c_% T +§U@Z~:ﬁ Pelese)

(A.3)

To determine the unknown constants KO and Kl; we demand that




- 86 =

(fﬁ l\w‘t- - ’;SOVt>
\-fo S Lo S

- > — out
(7359 %)

(A.4)
on the boundary S defined by
AlB) = Q»,(H' T et st )
(A.5)
Eqs. (A.4) can be easily solved, and we have:
. z
ko - 3 TCG:‘)Q 0-‘ a—; (A.6)
- 5 2 )
Kl}o - T[LS (Qs - ) (A.7)
k _ ¥ Q?( 4 _g:a 'L)
5_/9’ = T %3 4, - 3 (A.8)

and all other Kl’ L = 0.

Substituting into (A.3), we therefore have:
ovt ~$pe | Q ;
¢, = WG;’% “—“iilag Jr%e (e 1 I (at-5ar J’%

(A.9)

We now consider the boundary conditions under perturbation. We first of

all write the gravitational potential as:

- - -/
?- - @o'{- 9. (A.10)
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and for ¢int’ we demand that

‘7‘ §§-iwi _

‘-‘/;ui

v ¢

On putting

-{2‘:,0‘&{. - —Q‘T(-Clj)é:

we then immediately have:

~g (1 p)

[\

_EG J‘o/
“tf7(65j3 Y E;

]

L0+ 19) ) Bals) ]

%=

Vl?a&") = ,[z 31- (T?—
Vi"Po('v“) =Ll ;_3%) = =2A

T+ T

A 2723
T”BT(T S

- M(%'H) (PM _ O \V//MZ,{O

The solutions to the above equations can be written as:

Go(r) =

+— v+ C,

(Po((r) = ‘é‘)\“{'l"{‘ i/

\loz("? = Kre

(LO n (T‘) =

\f = 2,0

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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where the constants k2’ c, and a  are unknowns to be determined by a

matching of boundary conditions. Thus, in the presence of perturbation,

the total internal gravitational potential can be written as:

I
;};
GO
bt &)
~—— A
w|p
.irru
l
v
~
PN
.&\.
'\I
~—
&
iy
N
,1
ZT
(Q
-.4
C\L\
W
v
v
.~
Y

(A.21)

. The external potential has to satisfy

vléouf - Ve- — out @ovt/

I
O

Tt
and remembering that <1>OUt is caused by the perturbation, we can therefore

write the solution as:

3 ot _ TGP

ict d;

N SLICSDN AR IA0)

i)

In using the boundary conditions (A.4), we remember that the unperturbed

+7Té1§><[ 493( ¢

(A.22)

gravitational potential and its derivative has already been made con-

5 . tinuous on the unperturbed surface co; and also the perturbed surface S
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can be obtained from the unperturbed S by the Lagrangian displacement
o .
£. Thus, the boundary conditions can be written in terms of quantities

-

evaluated at So’ €.8ey

@), = @)+ @), + (F.78)s, T 059

for both ¢int and ¢OUt. Hence

(%;_Mj:>5 — <§00t>s

= ("), = <§°°t'>so

and similarly for the matching of the gradient,

(A.23)

Using then Eq. (A.21) and (A.22), we have by straightforward cal-

A
a

culations:

-H'(C; %‘-éfck;-) T =

AV}

e Thai4 i) = Age - £ A

( 34‘571'69 Qs & FG?CZ; (A.26)
- ,f'al_ _S;‘a_;__> = Al"l 1 _-E:_ /‘\o
o ) < B+ g

The above comes from a matching of the potentials.




(A.25)
The above comes from the matching of the derivatives.

On solving the set of equations (A.24) and (A.25) we would have:

299 | e
L

‘QL:. o .[(,—C‘gf i (A.26)

which is the expression used in Eq. (3.29).
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Appendix B

Calculation of Potential Energy Tensor for a

Homoeidally Striated Ellipsoid

By definition, the potential energy temsor wij is:

W = *'L:IJ(?(YQ \/"/2042{

Ly L
J (.1)
where the potential tensor Vij is defined as:

( y(gg)(x{- x/) (Xf Y;/)O;L

\/p‘)(XJ: G) l.)f."?;(./‘g

\
J

X/ (B.2)

ann

In the particular case of an ellipsoid demnsity distributiom,

p = o(mz)

where m2 = + + : m

1A
o)

(B.3)
'
By noticing that the integrand in (B.1l) is symmetric in X and X, we can
evaluate the integral in a very simple fashion. (Roberts 1962). First
of all, we could have divided the integral into two parts, an integration
of X and X' over the homoeoids (m, m + dm) and (m', m' + dm'); and then
an integration over m and m'. The variables m and m' can take any values
between 0 and 1. However, by making use of the gymmetry of the integrand,
we can adopt the equivalent alternate, yet far more convenient procedure,
of integrating over m 2 m' and doubling the result. Thus, we write (B.1l)

symbolically as:
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(B.4)

where Vij(m) denotes the tensor potential produced by the homeoid
(my, m + dm). Since Vij<m) is constant for all points inside this
homoeoid, the integration of pUij over (m', m' + dm' is trivial. It is

simply 4ma, a, a, m12 p(mlz) dnm’ Vij(m)' Now:

v\:b,{,m) = an Gf(m)//ﬂ QfaKaélo{M AC g‘b.(a.s)

v

(see Roberts, 1962).

|
S Wy E -$tG ata alA g‘}i LAML An'm § () m'* j’['“"“)

(B.6)
1

Defining F(mz) = J p(mz)dm2 and makiﬁg use of

m2

!
SL%JAijé@WJM’=Jjg&ﬁdmﬂ;jﬁoau

we can easily reduce (B.6) to

? [ 2
\‘NCJ = “Kzél 4«‘%;4@& AC gt\g' §0 [F(V"L)] ol m
(8.7)

We shall now calculate f o EZ‘Q dx along the same line. We first

of all note that the integral can be written as:

Y VS
SPXJQI&‘:& !

i

’
L) b

J gl )
(8.8)
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and VAL ST (3.9

in the case of axisymmetry relevant to our probiem.
Now the potential d. at a point ( l ” 3) produced by a howoeoid
4

(m, m + dm) with a censity distribution pXi is given by (Routh, 1922;:

50 ,

> ! :
v \ -~ .- P 1 )/ s EAL

rPepry ) = QTG f/whﬁxkt@gu)/u

i ) Erw)aln) a0

where A = 0 for interior points, and given by

N -

L v L \/,‘c

,\l —_ /\21—-—"‘ - ke - s <
2 N J [ = A

REFA Gih L &SR

for exterior omes. A(u) is, as usual, defined by:

\,

allw) = &Cir?**/(m *V\)Lfisw‘vu
If we now take an ellipsoid consisting of a series of homoeoids with

m=0 + 1, and consider an interior point (Xl 9 3) lying on the surface

of the ellipsoid:

then we can obtain the total potential Di(Xl XZ’ X3) by summing
?
di(xl X2, X3) fronm=0tom=n, and then m = n tom = 1 The final
’

‘o

result is:




?[W/)W{dm !

J:‘ (zg )A/«) .S,,,«

(B.11)
. v &
where . = > Ny
%,
. (Ci; ~£“\>

For constant p, we immediately have:

/!
//

0, = (TCC?JP a';/aza;) X, c;{A -

N
2
A /} Jf (B.12)

™M

d
with a N
/\‘ \ _ AU
ot T, @Ea)(erte) - (aduwaly

Eq. (B.12) agrees with the corresponding expression for D. given by

1
Chandrasekhar (see, e.g. Ap. J. 136, 1042, 1962).

We now turn to Eq. (B.8). By interpreting the integral as the
potential energy of a system where the density distribution is pXi’ and

by making use of Eq. (B.10) and the method listed earlier in this

Appendix, we readily obtain:

Sfm?'gd_i SD(XHBV"‘ Xz.&a)d)(

~n,

5,2 A /’, T2 |
QTG4 Ay Ay /U”‘ " am

l

(B.13)
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Appendix C

Calculation of the Various Potentials

For an axisymmetric density distribution of the form

p = p(mz)

where m2 = + 0 <mg 1 (c.1)

The potential at any point (Xl, X2, X3) is given by:

L) ‘ '
/
. N = | om oy (j
g X = [(G( G Us ( 2 dm
U ( w)‘s) '/\'g ala) )1 ) (€.2)
2, . 4

) P \E X, +4, + XgL (c 1’3)‘
w re - i

e (’M ) th_{ U a; +u

A6 = @) (ad+w)

(C.4)

For p = constant, (C.2) immediately gives:

Ulax) = Tapa s, (T-T A
where I - mdm\

o A[&)

This agrees with, say, Eq. (47) of Chandrasek..r (Ap. J. 136, 1042, 1962).

We now define a new set of dummy integration variables:
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n = ma
(c.5)
= 9
v - 5
1
when (C.2) can be written as:
"Q, '»z:al:yzo ,§D-\J¢
_( - 2o do
b XI)XZ) X§ = TCGJ('CL OA[V) _53 L L
" c.6)
&
where now 6(3 \ 2
- = |-¢
A
- /A a{/\r-\‘L /Y J.'”.
AU’) GtV \V‘tglu)
v = L
4 Il-: '\ﬁ‘xb ! A3L
1 i T T
(U l~e& v
We now effect another transformation of variables,
ST
X2 =M ©.7)
vy, 2
X3 =  l-e Nq

when the ellipsoidal equidensity surfaces in the X -~ co-ordinates would

now become spheres in the n - co-ordinates. With this, (C.6) can be

written as:

u{J- (e [
Ulu,0)= w6 Jie | Mzu j puldy!

a4

V

(C.8)
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i ~ p i ,-w\ apn &
where an T . - v { +Vi»l j (lnﬁ /) V(I_S
o e
\+V |-e v

I

Z L ! ’n
RN il (I-ex) v et
A l-e*+4 1

We now change to the dimensionless quantities 6 and £ defined by

p = Ae"’

(%))
n = af

when we finally have the desired expressions

[V s

Ulg,e) = angiled A U (5,0)
with \"“(gﬁ) Ja (v (“ 6;\@ 4( (€.10)

‘S[Uﬂ> J;;f
Zf. Z .
(§+> S0 4 ety (loer
x+ r et 4+ U
With similar manipulations, the expression (B.1l) for the D1 pro~-

duced by the 'density" pX, can be written as

A

B = aTG AT %) OF where
" < v So -
b J Q"H]')A{U) § d{ (C.11)

Similarly, a potential U

3 produced by a density distribution pj' =
n~-1
Aeo 6, can be written as:

3
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here U} < 50 A('U‘) )g.‘. @o Oa ? § ,

S

In Eq. (8.42), we have the occasion to use 22

this is simply a matter of differentiating an integral with respect to

From Eq. (C.10),

a parameter., In general, if

/ f L?z, 6() s

Then \c} } ! ‘)o;_

Then BVU \ ] a r \}
™ 2.t L_y
e 5 e 26 49
“ v %o )./
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