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ABSTRACT

In the uniformly rotating reference frame of the restricted 3-body

problem (in which Earth and Moon occupy fixed positions on the abscissa),

the equilateral libration points L4 and L 5 are known to be points of

equilibrium. A particle placed at rest at one of these points will

remain at rest for all times. According to linear theory, for very

small disturbances from equilibrium the particle will tend to move

along bounded trajectories in the immediate vicinity of these points.

When the force field near L4 and L5 is not assumed to be linear,

and in addition other perturbing effects are included, the particle's

motion might be excited sufficiently and lead to unstable divergent

trajectories.

This dissertation presents the results of an analytic study of the

3-dimensional stability of motion of a particle near L4 in a nonlinear

Earth-Moon force field, upon which is superimposed a linear solar grav-

itational field distribution. In particular, the long period features

of the particle's motion are studied, which stem from the excitation

at or close to the particle's natural frequencies, and are introduced

by the presence of resonance terms in the internal (Earth and Noon) and

external (solar) force fields.

The results show that in the presence of the internal nonlinear-

ities the stability of motion predicted by the linear theory is valid

for only a very restricted region of initial displacement and velocity

disturbances. Disturbances outside this region would lead to divergence

of the solution. The nonlinear coupling of the out-of-plane terms with

the in-plane terms was found to be of minor importance and did not con-

tribute to an appreciable transfer of energy from one mode of motion

to the other.

The inclusion of the external force terms was found to admit some

equilibrium solutions of the variational equations. Of those, the one

stable equilibrium solution found was characterized by a coplanar el-

liptic particle orbit around L4which had its major axis (of magnitude

roughly 120,000 mi) oriented at right angles to the line joining Earth
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to L4. This orbit was traversed in a clockwise sense at mean angular

rate equal to that of the Sun, as seen in the rotating coordinate frame,

and very close to the particle's faster coplanar natural frequency. The

particle's motion thereby became synchronized with that of the Sun.
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I. INTRODUCTION

The subject of the Earth-Moon libration points has aroused in re-

cent years the curiosity and interest of a great many researchers in

the field of celestial mechanics and analytical dynamics. This renewed

interest by modern day investigators in this classical problem has been

stimulated by the recent telescopic sightings by K. Kordylewski (1"2) of

two faint cloud-like objects or shapes in the vicinity of the L4 and L5

Earth-Moon libration points. These findings have led to a great amount

of speculation regarding the origin and stability of motion of such

clouds, believed by many to be composed of minute dust particles.

Although a number of more recent naked eye sightings from high

flying aircraft have since been reported by a few investigators in this

country, the issue of the existence or nonexistence of these libration

dust clouds has not yet been resolved to everyone's satisfaction by

any of the current studies, and is still the subject of debate between

proponents and detractors of this hypothesis. While the definitive

answer to this question might not be obtained until concrete evidence

and data will be gathered near these points from a space vehicle, the

quest so far has not been all in vain. In the process a great many

areas for further research of both a theoretical and a practical, mis-

sion oriented, nature have been exposed and tackled, which will keep

many researchers busy for quite a while.

In the present dissertation we shall not attempt to shed new light

on the question of the existence of dust clouds, but shall confine in-

stead our attention to the study of the interesting underlying theoret-

ical problem in nonlinear analytical dynamics of a particle. This par-

ticle may be associated, if one desires to do so, with the center of

mass of a hypothetical dust cloud. It should be pointed out however

that the uncritical application of some of the results and conclusions

of the present study to the dust cloud problem mlght lead to mislead-

ing conclusions, since such important destablllzlng effects as solar

radiation pressure and partlcle collislons have not been considered

here.
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If. LIBRATION POINT GEOI_TRY

Some of the geometrical features of libration points are briefly

indicated below for the purpose of orientation.

The five libration points (also known as Lagrangian points) of

the classical restricted 3-body problem (i.e., Sun is neglected, and

Earth and Moon revolve in circular orbits about their common center of

-mss) are indicated in Fig. 1. They are points of equilibrium in the

coordinate frame XYZ, rotating around the Z axis with the mean angular

velocity n of the Earth-Moon system, in the sense that no net acceler-

ations are experienced by particles at rest at these points.

¥

L

Lz

Fig. I: Libration points of the restricted 3-body problem.

By means of linear small perturbation analysis the collinear

points L 1, _, L 3 were feund to be unstable to small initial dlstur-

banees, while the equilateral points L4 and L 5 _re found to be points

of stable equilibri_aroundwhlch small _-plitude conditionally pe-

riodic (i.e., in this case deubly periodic but not necessarily slmply

periodic) motions resulted for small initial disturbances.

The more realistic physical model used in the present analysis is

shorn in Fig. 2. The Sun, lunar orbital eccentricity e _ .055) and
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inclination I of the Earth-Hoon plane with the ecliptic (i _ 5 °) are

included. The Earth Is assumed to move in a clrcular orbit around the

Sun.

\ WNAR_urr (sm._
s UDEO)

LINE OF NODES

(R_EssI_ J_ aue To SUN)

Fig. 2: Three dimensional geometry of the 4-body problem.
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III. BRIEF REVIEW OF PAST WORK ON THE SUBJECT

Most of the basic work on the restricted 3-body problem stems back

to some of the classical studies in analytical dynamics of Lagrange,

Jacobi, Poincar_, etc. which are discussed in most of the standard text-

books on Celestial Mechanics. Some of the main features and results

are briefly smmnarized in the following sections.

More recent analytic work on the 3-body problem concerned itself

with such questions as the existence of periodic orbits both in the

vicinity of the libratlon points, as well as periodic orbits which fill

the whole Earth-Moon space and possibly loop a number of times around

both primary bodies.

Studies which included the solar force field are of a more recent

vintage and are predominantly of a numerical nature, in that they

tackle the problem by direct integration of the full set of differen-

tial equations of motion for various periods of time t, and usually

for a very restricted set of initial conditions t3-5)"" (i.e., zero par-

ticle displacements and velocities, and collinear position of the major

bodies in the order Earth-Moon-Sun). The application of Hamiltonian

techniques to the 2-dlmenslonal libration point problem was suggested

in an analytic study by Breakwell and Prlngle. (6) These techniques

are extended in the present thesis to the 3-dimenslonal problem which

also includes the effects of lunar orbital eccentricity.

I. THE CLASSICAL RESTRICTED 3-BODY PROBLEM: PAST RESULTS

AND THEIR LIMITATIONS

Some of the basic results of the 3-body theory, as related to the

libration points, and some of the questions left unanswered by the

theory are mentioned in A and B, respectively.

A. I. The existence of the five Lagrangian equilibrium points

shown in Fig. I was discovered.

2. The stability of motion near these points was investi-

gated by linearizing the equations of motion near these points.
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3. For small deviations from equilibrium the coplanar homogen-

eous set of equations (Eqs. (25) with p = u = m = O) in the xy plane,

which becomes uncoupled from the z equation, was shown to give rise

to a doubly periodic solution with the eigeavalues w1 -_ .955 and _

.298 (these frequencies were nondimensionalized with respect to the

mean Earth-Moon angular velocity n-_ .23 rad/day). The uncoupled, out

of plane, linear equation in the z direction possesses a simple har-

monic solution with eigenvalue _3 = 1. (The reason for a period of 1

lunar month in the z motion is easy to explain physically if we con-

sider the limiting case of a vaaishingly small lunar gravitational

force field. In that case the small particle at L4 follows a near

circular planar 2-body orbit around the Earth at the lunar distance,

which crosses the Earth-Moon plane twice for each complete particle

revolution, thus leading to an orbital period of 1 lunar month, which

is also the same as the period of the projected simple harmonic oscil-

lator in the z direction.)

4. A first, and only, integral constant of the motion was found

to exist. This so-called Jacobi constant Cj corresponds to our scler-

onomic (i.e., time independent) Hamiltonian H, and consists of the com-

bination E - ah z = constant = - Cj = H, where E is the particle's total

energy (i.e., kinetic and potential) in a nonrotating baricenter cen-

tered coordinate frame, h is its angular momentum in the Z direction,
g

and n is the mean angular velocity of the Earth-Moon axis.

B. Some difficulties are encountered if one tries to extend the

stability conclusions obtained from linear analysis to predict the be-

havior of the complete nonlinear system. The main reasons are indi-

cated below.

I. The near commensurability of the eigenvalues w I --==3w2

leads to an internal near resonance with a detuning E12 = w I - 3w2 -="

o954593-3-.297912 = _ .06086. This causes poor convergence of the

usual perturbation solutions by means of which one attempts to evalu-

ate the effects of higher order terms, by substituting back the homog-

eneous solutions into the nonlinear driving terms. Some of them give

rise to combination frequencies which are nearly resonant with the

natural frequencies of the linear equations, and thus lead to small

divisors in the next approximation.
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2. The Hamiltonian H is not definite near L4 or L5 (positive

or negative). This sign indefiniteness has a bearing on the nature of

the stability of adjacent motions, as is briefly indicated below.

If we suitably recombine the terms in H of A(4) above we can come
1 2

up with an equivalent relation for the Hamiltonian H = _ v + Vef f,

2 .2 92 12
where v = x + + and Vef f represents an effective potential

1 2 + y2) _ _i/r I _ _2/r2.energy Vef f - 2 w (x2 The first term in H

thus corresponds to the kinetic energy, as measured in the rotating

frame, while the last two terms in Vef f represent the usual gravita-

tional potential energy V. In this new form H can be interpreted as

being in the nature of an energy integral of the motion. The nature

of the stability near L4, 5 can thus be deduced from the shape of the

surfaces Vef f = constant in that region. It turns out that near the

equilateral points the planar part of Vef f has the shape of a "poten-

tial hill" rather than the "trough"which is required for stability.

This circumstance raises a question concerning the applicability

of the linear-theory stability analysis to the c_mplete nonlinear sys-

tem, i.e., whether the nonlinear system would exhibit the same kind of

stability as predicted by the linear equations for given initial con-

ditions. One may remark at this point, on the basis of work to be pre-

sented later, that the answer is yes in a rather small neighborhood of

L4. The nonlinear system will however exhibit instability for certain

ranges of initial conditions.

It is also approprlate to remark here that the stability of motion

exhibited by the linear system near L4 and L 5 in the presence of a po-

tential energy 'bill" is brought about by the presence of gyroscopic

terms in the linear equation (due to the Corioli's force 2(_ x _ which

arise in the rotating frame). When further nonlinear and external ef-

fects are included, it is possible for additional energy to be trans-

ferred into the system with the result that initially small oscilla-

tions may grew in the course of time.

It is interesting to mention that a Taylor series expansion of

Vef f near L4 shews the equipotential curves to be extremely elengated

ellipses of fineness ratio roughly 1:10 oriented at right angles to
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the line from barycenter to L4. The potential field thus falls off

quite slowly as we move in a direction perpendicular to the Earth - L4

line.

3. Another internal resonance occurs because of nonlinear

coupling of the z and xy solutions, and the near com_nsurability of

the eigenvalues _ _=- _3' with the resulting detuning El3 _ .0454.

This resonance leads again to poor convergence of perturbation type

solutions.

4. Although not actually a part of the classical 3-body

problem, it might perhaps not be inappropriate to mention at this

point also the presence of a third important resonance of an external

nature caused by the Sun's perturbative action on a nominally circular

lunar orbit, which is an important factor in the subsequent analysis.

This indirect solar perturbation leads to a detuning E_I = 2[w I - (I - m)]

= 2[.95459-.92520] _ .05878.

5. The additional complications of resonances introduced by

the inclusion of lunar eccentricity terms will be taken up later.

2. NUMERICAL APPROACHES (SOLAR EFFECT II_q/IDED)

Straightforward integration of the complete set of differential

equations, for zero initial conditions, gives rise to particle tra-

jectories, a typical xy projection of which looks roughly like the

one shown in Fig. 3 (taken from Ref. 4).

Figure 4 presents schematically another plot due to Feldt and

Shulman (5) of total particle displacement d with time t for an inte-

gration time period of 5000 days. Initial conditions were the same

as those in Fig. 3.
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t- 70O OAYS

\

x.lO-J{Ht)

Fig. 3: Typical particle trajectory in xy plane near L 4

(t = 700 days)
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IV. SOME CONCLUSIONS REGARDING PRIOR STATUS OF THE PROBLEM

The following conclusions summarize some of the points which were

raised in Sections Ill(A) and Ill(B):

I. The past analytical efforts do not resolve in a satisfactory

manner the question of boundedness of motion near the equilateral li-

bration points of the Earth-Moon system, with or even without the in-

clusion of the perturbative effect of the Sun.

2. The numerical results available to date are rather limited

in that they were generated only for restricted sets of initial con-

ditions and initial Earth-Moon-Sun configurations. Consequently they

do not shed much further light on the question of the possible exis-

tence of domains of initial conditions and configurations which allow

small amplitude_ bounded motions to take place for long time periods.

3. In view of the multiplicity of possible starting conditions

and configurations, it is quite clear that a purely numerical search

for such initial conditions would be both costly as woll as of ques-

tionable success, and thus not very attractive.

4. The necessity and usefulness for further analytical ground-

work on this problem seems to be clearly indicated.

The above brief rundown will hopefully help to bring into better

perspective the difficulties as well as the motivations underlying

the present investigation.
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V. THE I_RA_IAB L FOR A PARTIC_ NEAR L4

We shall desire the expression for the Lagranglan of a particle

near the L4 llbratlon point, in the rotating xyz frame centered at L4,

and having its xy plane coincide with the fundamental Earth-l_on orbi-

tal plane. To this end it is convenient to start out with an inertial

reference frame xl,Yi,Z I in which the positions of Earth, Moon, Sun

and particle P are designated by the numbers 1, 2, 3, and 4, respec-

tively, and by the posltionvectors R. (i = 1, .... 4). The kinetic
I

energy TI and potential energy V I of all the masses are then

4

= 1
TI _ _ miRi'Ri

i=l

4 4

VI = - _ I Gm.m.

2- i,j=l rij

i/j i/J

(1)

We switch first to an Earth centered rotating coordinate system Xe,Ye,Ze

with the X axis pointing in the direction of the instantaneous position
e

of the Moon (we neglect here the 3000 mi separation of barycenter from

the center of the Earth). For a particle of unit mass at point 4 we

then have

1

Pl P2 P3
V = (3)

r14 r24 r34

_1 _2 P3
1 r__ --_9 2_I " _14] + + -- + -- +_'_1 " 21

r14 r24 r34
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where

_i = Gmi

i = 1,2,3

The last term in L is independent of particle position and velocity

and can be dropped. This follows from our assumptien that the par-

ticle does not affect the motion of the primary bodies. It is also

convenient to remove from L the explicit presence of the Earth's in-

ertial velocity RI" This can be done via Lagrange's equation

d't _r'14 0

(4)

and the Earth's equation of motion in inertial space

-- _2 -- P3 --

R 1 = -_-r12 + -_-r13

r12 r13

(5)

• t •

Since _ _ R 1 ( 4 ), one can replace Eq. (5) by the equivalent

relation

Ir P3 -- 4]_14 r12" -_- r13"12 r13

(6)

After substituting Eq. (6) into (4) one can extract from it the

expression for L shown in Eq. (7):

+ r . J___ ._l
L : 2"r14" r14 r14 P2 r12 / 3 34 r13 /

(7)
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The last (solar) term in (?) can be further s/mpUfied if we re-

place it vlth the solar potential energy gradient evaluated at the

position of the Earth, as shown in Appendix A. This neglects terms
3

magnitude (r14/r13) --_ 1.5 x 10 -8, which is quite satisfactory inof

the present case, and leads to the expression

L = _14 " r14 +--
r14

1 rl _3 [3__13 rl 1-

+ _ - rs - " _14rl 3

(8)

Expression (8) is still not in the desired final form of a Taylor

series expansion aroundL 4. Before we carry out the expansion it is

convenient to nondimensionalize everything, as indicated in the next

section.



-14-

Vl. NONDIM_NSIONALIZATION AND EXPANSION AROUND L4

I. NONDI/_NSIONALIZATION

The nondimensionalization is most conveniently carried out by

choosing the reference frequency n and length D defined by

n _

D 3
= < _M + _ cos i > = mean angular veloc-

ity of E-M axis X _ .23 rad/day
e

D = < r12 > = mean E-M distance _ 2.4 X 105 mi

(9)

(i0)

It should be pointed out that the only physical quantity which

can be measured with any degree of accuracy is n, so that the refer-

ence length D is actually a computed, rather than a natural quantity,

and is defined by Eq. (9). The averaging of r12 in Eq. (I0) must there-

fore be interpreted in the light of the more basic definition (9).

WMdenotes the mean angular velocity of an isolated Earth-Moon

system (no solar perturbations present), and _ and i are indicated in

Fig. 2.

Two basic dimensionless quantities which will appear often in our

equations are

o3ns _--.074801 (II)

mffi _-= _i + _2
V r13

and

1 (12)
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where

n s = angular velocity of the Earth around the Sun

From now on all lengths, velocities and times will be treated as dl-

mensionless quantities, but we shall retain their old symbols.

2. EXPANSION AROUND L4

Just as n was the basic quantity selected in the nondimensionali-

zatlon of the equations, we shall select m as the basic quantity, or

yardstick, which defines order of magnitude. We shall denote by o(m)

a quantity of first order of smallness, o(m z) of second order, etc...

The Lagrangian L of Eq. (8) can be written in terms of displace-

ments and velocities measured in the L4 centered xyz frame by writing

the dimensionless vector relations

r--14= rlL +

• .. "_. _ _

r.. = r._ + r + w x r
IL

(13)

where

r = xl + y[y + ziX z

= 1+ p¢o= =instantaneousdisplace-
meat of libration point

L4 from the Earth

m

and for the total angular velocity _ of the xyz frame in inertial space

=E_ +_(t) =_ +_(t) (14)
n z z

p(t) and D(t) are the perturbations of the E-M distance, and angular

velocity caused by solar and eccentricity effects, and are provided by

classical lunar theory. (7,8)
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1 2
p(t) = - .0079 cos 2{ - .00093 - e cos ¢ + _ e (1 - cos 2¢)

15
_-em cos (2{ - ¢) (lS)

+ oo, .'s,.

15+ .0202 cos 2{ + 2e cos ¢ + _- em cos (2{ - _)

52 j+ _ e cos 2¢ Tz

= Vxi--x + _yly + VzT z
(16)

For additional detalls regarding the above expressions, and for an ex-

planation of the various angular variables used, the reader is referred

to Appendix B. The coordinates of the Sun in the Xe,Ye,g e frame, pre-

sented in Eqs. (17) are also developed in this appendix.

The Sun's position coordinates in the rotating frame are

xs _ r13 cos

Ys = - r13 sin

zs = r13 sin i sin (_ - v') (17)

We now stipulate that the following quantities will be treated

as being of the first order of smallness:

m,e,x,y,z,Px,Py,P z , _-,
(18)

The momenta Px,Py,Pz conjugate to x,y,z are introduced through the

relations
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_ 8L_ r

Px 8x x - 2

_L i

Py _ Py + --2 (19)

_L

Pz _ z

The terms linear in e(_ .055) in p(t) and l,(t) are obviously on|y

of o(m), and will have to be treated in a different fashion if we are

to retain the definition of Eq. (]S)o This problem will ,Trise when we

include the eccentricity in the canonical transformations to slow variablrs.

The use of a Taylor seriec to expand L and H around L4 in terms

of x,y,z, Px' ... etc ... raises the question of how many terms of tb,_

series expansion have to be retained before we truncate it, i.e., what

order of nonlinear terms must be retained so as to take into account

all the dominant perturbative effects. _ais question is readily an-

swered by noting that the highest internal resonance is that resulting

from the near equality w I -_ 3_ 2 _i,:h indicates that nonlinear terms

up to and including the fourth order must be retained in the Taylor

expansions of L and H.

When all the steps have been carried out and all the terms col-

lected, as shown in Appendix C, one obtains for the Hamiltonian H, de-

fined as usual by n_qns of

where

and

.

H = pr r - L (20)

T _ _ = (i X 3) rowmatrfx of mome,ta elementsPr = Px 'Py 'Pz

r = = (3 x i) column matrix of position _lement_
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the expression of Eq. (21)

H = H(°) + Ht = (P2x + p2+y p2z) + (YPx - XPy) + _ (x 2 - 5y2 +

I

r13

_(o)

'c >I÷i _/_Uy + ux z

32 y - + + I-_ x + _-_x z + l_y z

- 6-Z---xy - l--ffgy -gz + - gO x 2
4

2 3 x + ysy . _ x2 y2- m _ x s

r13 s

(21)

In the above expression we have split H' into a cubic part H3, a

quartic part H4 and a solar part Hs) which in turn is composed of in-

direct solar effects (via p and u) and a direct solar effect (via the
2

m term).

We shall concern ourselves in Section VII only with the motion

resulting from the bracket [ _(o) which represents the linear and
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O

quadratic part H (°) of H. These terms give rise to a system of forced

linear differential equations whiehwill be discussed below.

The analysis of the effect of the terms in H t on the motion of

the particle will be started in Section VIII.
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VII. THE LINEAR DIFFERENTIAL EQUATIONS AND THE TRANSFORMATION

TO NORMAL CANONICAL COORDINATES

Hamilton's equations can be written down in a very compact form

by using the matrix notation. We define the (3 x I) column matrix

for r and P in a manner similar to those introduced for r and P
r r

in connection with Eq. (20), and introduce the additlonal (1 × 3) row

matrix of partial derivatives of H (°)

H(O) [_H(°), _H(°) _H(°)]
r =L-_-- -W--'TJ

40 ) _-_H(o) _(o) _o)]
r y

(22)

The equations of motion then can be written in the form

[:IiolrT= 9° H( o

[ ':J
(6 X I) column matrix (23)

HCo) co_ _;o>where rT and HpT are the transpose of H (°) and respectively
r r '

is the (6 x 6) matrix
O

(24)

I is the (3 x 3) identltymatrix, and 0 is the (3 x 3) null matrix.

In component form, Eq. (23) becomes

_- _:' :,_ +, +{-_°+_ (o+°3}

_(o °3}
(cont. on next page)
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(o)

S

= _ H(O) = p 1x x Y - _ x + (1 - 2_)y

r13
S

= _ H(O) = _ p + 5
y y x _Y + :3/-43 (I - 2_)x

CXsYs + _y2) _

r13 s

-P = - Ii "°'(_ = - z +
Z z I II-

r13 s

(25)

The terms in [ Is contain the direct and indirect solar contributions.

The homogeneous part of Eq. (25) is obtained by setting p = v = m = o.
iwt .

The characteristic equation resulting from a trial solution e is

(26)

where

ffi_ (1 - 2W) = 1.26753

The solutions to Eq. (26) are the eigenvalues

_i = _ "95459

_2 = _ °29791

_3 =_ 1.0 (corresponds to an
uncoupled z motien)

(27)
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The above w's are the natural frequencies which were used in the

discussion of the detunlngs in Section IIl.

Let the solutions of the homogeneous set of equations be denoted

by x_yjz-..and suitable particular integrals by _,y_-..

plete solutions are

x=x+_

y=y+_

: : :
• $ •

Thus the co,.-

(28)

For later use the 6 constants of integration whlch appear in the

solutions (28) are best introduced by transforming first to a normal

canonical set of coordinates Q and momenta P

(29)

which also satisfy Hamilton's equations of motion and represent un-

coupled motions in the form of independent simple harmonic oscillations

having as frequencies the three eigenvalues wi.

The linear equations of transformation can be written in the form

m

Y

z

X

P
Y

J

/QI1

Q2

Q3

PI

P2

(30)

where J is a (6 X 6) matrix whose columns consist of the eigenvectors

corresponding to the eigenvalues • w1, and which are normalized so as

to satisfy Eq. (31) which is the necessary condition for a canonical

transformation.
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J _oJT= _o O1)

The matrix presented in Eq. (32) satisfies this conditions and thus

provides the proper coordinate transformation.

J

m

o o o _o_+_1o+_+_/o

-_1o1(o_+1)

0

Kx
- 2z2_ o _ _ 0,__ o

0 0 0 0 1

_,_o_(o_+1/ o

_ o

_7_ -_ 0

Kw_119_ 2o_I-_-- o_)o
0 -1 0 0 0

(32)

v_tere

= 2 45 .,-1/2_ {l_o_÷n_-_l_
K1 = .62016

K2 = .72101

i = 1,2

The numerical values of the elements in J are_
w

0 0 0 2.05374 -5.66028

-1.24032 -1.44202 0 -.823463 3.06768

0 0 0 0 0

-.687459 -.0727629 0 .823463 -3.06768

.750378 .272262 0 .869732 -5.23066

0 0 -1 0 0

m

0

0

1

0

0

0

(33)
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In terms of Q and P the Hamiltonian H (°) (for the case p = _ = m = o)

becomes

H(O) 1 2 2 1 + 2 2 1 2 2 (34)

The solutions for the three harmonic oscillators which make up

the expression for H (°) in Eq. (34) can be given in the form

QI=°-Tsio

sin w282_
Q2- 5

Q3 = _ sin w38_3
w3

(35)

where 8_i= t + 81 , 82_= t-82 , _3 = t + 83 , and _i,Si are the 6 re-

quired constants of integration.

Substitution of Eq. (35) and the J matrix (33) into Eq. (30) gives

the homogeneous solutions for the coordinates

x = 2.902 4_ l cos _t_l + 8.003 _ cos _282_

(36)

Z = C08
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The particle trajectories in the xy plane corresponding to each

of the two coplanar normal modes are ellipses with major axes at right

angles to the vector r-'iLand thickness ratios (minor axis/major axis)

1:2 for w I and 1:5 for w 2 as shown in Fig. 5. Motion proceeds in a

clockwise direction.

Fig. 5: Trajectories of normal modes.

The complete unperturbed xy motion consists of a weighted super-

pesition of these two normal modes, and is in general not periodic.

The particular solutlens R,y, corresponding to the forcing func-

tions contained in the [ ] brackets of Eq. (25) are most readily ob-

tained from the coplanar equations

3 =_ _ f + fp- 23 - _x - _y x y
x

9
_+ 2_ - _ x - _y = Y + fx + fP

Y

(37)
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where fx = fy' fPx' fpy denote the direct and indirect solar forcing

functions of the subscript variables given in equations (25). For

our purposes it is sufficient to obtain the particular solutions to

o(m2). After introducing Eqs. (16) into (37) we obtain the solutions

e

(38)

whe re

o = .01016 cos (2_ - 67.2°)1

_o .00867 cos (2g + 38.3°)J

Resulting from the

indirect solar terms

= .31 e cos (¢ - 72.2 ° )
e

Ye = .227 e cos (¢ + 50.2 ° )

= 11.1 em cos (2_ - _ - 75.2 ° )
em

Y-era = 7.86 em cos (2_ - ¢ + 51.76 ° )

_e2 = 1.274 e 2 cos (2_ + 30.8 ° )

_e2 = 1.062 e 2 cos (2_ - 66.0 ° )

2 _ 127.7o)_)
2 = 1.697 m cos (2_

m

2 _ 20.83 o) ]2 = 1.43 m cos (2g
m

L = .5oe2 }
_c = .2895 e 2 Constant displacement

Resulting from the
direct solar terms

No particular solution for _ is retained since it is of o(m 3) or

higher, and would lead to terms of o(m 5) when substituted into H t. On

this point we shall have somethlngmore to say in Section XIII.

The corresponding solutions for Pr are readily obtained from the

relations
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P =_-y
x

P = y+ X
Y

etc.

(39)

It is interesting to note that if we substitute Eq. (35) into

Eq. (34) we obtain the simple expression

H(°) = _1 - % + % (40)

The particular manner of introducing the polar set of integration

constants ui,Bi into Eq. (35) follows from the canonical relationship

which they bear the Hamiltonian H (°). The quantities 8_I,- _2_, B_3 and

_i' _2' _3 form, respectively, a canonical set of coordinates and con-

jugate momenta with respect to H (°) of Eq. (40).

Thus

_i = I = H(°) al = - H(°) = 0 or al = const
al BII

_2_ = -I = H (O) _ = + H (O) = 0 or _2 = const (41)

_3_= 1 =H (°) H(°)
CZ3 _ = - _3 = 0 or _3 = const

The above results are in agreement with our stipulation that _.
1

and Bi be constants.

Furthermore, the quantities _i and Bi themselves form a canonical

set with respect to an unperturbed Hamiltonian H = 0.

The above canonical properties will be made use of when we analyze

the perturbative effect of H t.

The form of H (°) in Eq. (40) makes it very easy to verify the

point made earlier in B(2) of Section III, regarding the sign indeter-

minacy of H which is seen to depend, for small _3" on the difference
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_i - _2" Although in the present case _i and _2 individually are

constants, it turns out that for the case _3 _ 0 the combination

_l(t) - _2(t) remains a constant of the motion also when the pertur-

bative effects of higher order internal nonlinearities are included

(but external solar perturbations and lunar eccentricity are still

neglected). Thus _i and _2 maY grow individually as long as their

difference remains fixed, which indicates the possibility of an in-

ternally generated instability near L4 also for the classical re-

stricted 3-body problem (for which we use the exact expression for H).

That H is a constant of the motion in the latter case (where

H _ H(t)) as stated in A(4) of Section III, is readily verified since

0
d't = _'-r _ _ = using Eq. (23) ffi- + =

(421

The only existing integral of the motion, the Jacobi constant Cj

(see pp. 281 of Ref. 9 where it is denoted by unsubscripted C), is

equal to the negative of H

H ffi - Cj (43)
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I
VIII. .MODIFICATION OF THE LI,_AR SOLUTION DUE TO H

The inclusion of the terms in the liamiltonian H t, neglected until

now in the previous solution, can be handled by a method equivalent to

the customary variations of constants technique by requirinR the orig-

inal constants of integration _ and B introduced in Eq. (35) to become

functions of time, which then satisfy Hamilton's equation:_ with llamil-

tonian H s.

Inasmuch as we are not concerned in the present investigation with

an exact or detailed determination of the partlcle's trajectory, but

rather in the overall broad features of the motion, we shall desire to

obtain only the slowly varying components of ff and 0 which will arise

from the secular term_ in lis and those terms containing low combina-

tion frequencies which arise from the near resonances.

This can be accomplished by means of a suitable canonical trans-

formation of coordinates fram the polar canonical set c_,_ associated

t
with H = 0 to a new slowly varying canonical set _ ,0t associated

with a new slowly varying llamiltonian K s. K t will contain only the

lowest frequency terms which arise in H t as a result of the above

transformation, all other faster terms having been suitably eliminated.

The question as to which frequencies should be retained, and the cut-

off point beyond which the periodic terms are dropped cannot be readily

answered in general terms, but would depend on the particular probJem

considered, and also on the density of spacing of the resonance peaks

in the lower end of the frequency spectra_n. This point w_ll be te_iched

upon again later in connection with the _peclflc form of the expres

slon for K t.

Returning once more to the coordinate transformation mentioned

earlier, it is reasonable to assume that for relatively _;mall displace-

ments x,y,z of the particle, the effect of IIt wtnlld be in the nature

of a perturbation of the linearized solution f_md earlier. With this

assumption in mind we may now consider a stationary contact transfer

marion
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I

c_i : oti + 6o_i

#

Bi = Bi + 65i

(44)

that may be introduced wlth the aid of a generating function G(B,_ t)

G(B,= _) = i__ + S(B,e _)

which satisfies the relations (I0)

(45)

_, _ bG - 6+ S t

_= _-_.=ot + sB

(46)

The first term _t in G generates the identity transformation,

while the function S(B,_ t) = S I + S2 denotes an additional suitably

selected generating function which is introduced for the specific

purpose of eliminating all the short period terms which occur in H t"

S l is selected to eliminate the terms of o(m 3) and S2 those of o(m 4).

Since S does not depend explicitly on time t we can write

KS(Bs,_s,t)= _°)(Bs,_t,t) + HS(BS,_t,t) (47)

where H above is evaluated in terms of the new coordinates _t and new

#
momenta _ .

When all the required steps of the transformation are carried out,

as indicated in Appendix Dp one arrives at the following relation for

K t

-- -- 1
(48)
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and H4 are the long period terms resulting from the Taylor

series expansions

n=l

(49)

evaluated at xjy_z.

_H3_Sl] denotes the long period part of the Polsson bracket of

H 3 with S I. H4 results from the substitution of the homogeneous so-

lutions x,y,z into H4, and consists of an internal part H4int and an

external part H4ext which contains both the direct and indirect solar

effects.

The algebraic work needed to express K t in terms of t _t and t

is rather formidable, and is one of the major stumbling blocks in what

would otherwise be a relatively straightforward solution. A few repre-

sentative steps of the required manipulations are briefly demonstrated

in Appendix E. If all the manipulations have been successfully carried

out, one does eventually come up with an expression for K t which has

the general form shown in Eq. (50).

_[ ]+ t + t + t3/2
Ks = _ bl + b2C2A_I+%I _2b3 _3b4 _i bsCA_I+_ 2

o '3/2rb a +
+ 2 L 6 A_2+X 3 b7a_-A_l+h47 d + ct'i/2_ rb a ]I 2L 8 A_l+k5d

c_tl/2 tFb C bloC_3+A_3+% 7 _l@2bll 1 12+ I _3L 9 A_I+X 6 + _ + t • + cze2b

+ _2b13 (x•l/2b C + =f=ell2Fb c
+ 2 14 o+X 8 1 2 L 15 _-A¢I+X 9

+ •2b • S_bl8 + _+ s ,
3 17 + _I°_3 bI9C2AI3+XII °_2a3b20

czsl/2otsrb C b22CA13_cr+A_3+l13'[_j+ 2 3L 21 A_2+XI2 +

+ bl6CA_2+llO]

(50)
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bj(j = I,''-22) are known constants and Cx stands for cos x.

The detuning frequencies retained in Eq. (50) have the following mag-

nitudes:

and

2_1 _ 2(1 - m - w I) = -.05878

3 2

2A¢ 1 _ 2(1 - _ m - Wl) = .08242

A¢2 = ¢- 3w2B2_ -_ (1 - .0042 - 3w2) = .10207

c_ = WllB1_ - 3w28 _ "-# w I - 3w2 = .06086

A13-_ oI - 1 = -.04541

A13 + A_ 3 --_- .04541 - .0042 = -.04961

c_ - A(_1 _ .06086 - .04121 = .01965

(50a)

A13 - _ + A¢3 _ -.II05

The terms containing A¢ arise from the lunar eccentricity.

As can be seen from Eqs. (50a) no terms with frequencies larger

than .12 have been retained in the expression for K _. Although this

choice of cut-off frequency appears at first sight rather arbitrary,

it can be argued here that for higher frequencies the resultant de-

tuning would not be narrow enough to introduce the very small divisors

which usually lead to divergent solutions, and that consequently their

omission should not materially affect the overall features of the re-

sultant particle motion.

The large number of frequencies which still are left in K' pose

considerable difficulties in the way of a straightforward analytical

treatment. To enable one to carry out nonetheless a reasonably mean-

ingful analysis of the effects of internal resonances and of the solar

perturbation, it was found necessary to reduce the number of admissible

resonance peaks still further. This was accomplished by disregarding

for the present time from further consideration all the terms which
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arise from the lunar orbital eccentricity. While this step does tend

to restrict the present analysis to encompass only circular lunar or-

bits, it manages to reduce the number of detunlng frequencies left

down to 3. For this number of resonances an analysis can be carried

Out.

Eccentricity terms could perhaps be reintroduced at a later time 2

possibly by means of an additional perturbation of the variational

equations which result from the present circular orbit analysis. A

possible shortcoming with such a scheme might be that it would prob-

ably lead to a set of parametrically excited linear differential equa-

tions which would not be readily solvable.

Another somewhat different approach might be attempted_ if we re-

call that the elliptic 3-body problem (no solar perturbation present)

admits as a solution an elliptic particle orbit around L4. This el-

lipse is identical to the ellipse along which the moon appears to move

relative to an observer moving with constant circular velocity along

the moon's mean circular reference orbit, but rotated 60 ° with respect

to it. Stated another way, the particle's motion is synchronized with

that of the moon_ but takes place 60 ° ahead of it. Variational equa-

tions for these orbital elements due to the solar perturbation could

then be set up and hopefully solved.

The above are just two of the many other different approaches

which might have to be explored in greater detail before the more gen-

eral question of stability of motion could be satisfactorily resolved.

In the present dissertation however_ we shall hereafter confine

our attention only to the case of zero lunar eccentricity.
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IX. THE LONG PERIOD HAMILTONIAN FOR e = o AND

THE ELIMINATION OF TII_ t

For the case of e = o the expression for K' shown in Eq. (50) is

reduced to the simpler form given in Eq. (51) below. The numerical

values of the coefficients b, and the phase shifts %, are determined

after one performs all the tedious algebraic manipulations similar to

those briefly demonstrated in Appendix E. There results

where

I

_3 = _i(t+ _> (t+ _> = _541t + _81 B3

The first bracket contains all the internal terms, while the sec-

ond bracket includes all the external (solar) terms. The long period

• I

contributions to the coplanar (ffl,_2) terms resulting from the periodic

parts of the indirect p(t) and v(t) terms in H • were found to cancel

exactly the indirect periodic terms generated by the linear forced re-

sponse Xo and _o of gq. (38). The external terms displayed in Eq. (51),

which are left after the above cancellations, stem from the contribu-

tion of the indirect constant component -.00093 in p, from the direct

(J) terms in H, and from the forced responses _ 2 and _ 2 of the
m m

linear system.
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Equation (51) shows that the dependence of K a on time t comes

about through the presence of three distinct slowly varying trigono-

metric terms with frequencies .06086, .09082 and .05878, all of which

are of o(m). Since the same trigonometric functions also depend on

various combinations of the three angular variables B_(i = 1,2j3)p

the possibility suggests itself to eliminate the explicit presence of

t by means of a suitable redefinition of the 8i so as to absorb the

time dependent terms. Such a transfomtion would result in a new

liamiltonian K which would not depend explicitly on t.

This absorption of the time terms is accompllshed by means of a

coordinate transformation to a new canonical set of variables @* and

6" as indicated below.

We define 81 via

2BI_ = .05878t + 2a_B'txx + 29"40 - 2C + 2E'

or

* ' (52)B1 = .02939t + wIB 1+ 14.7 ° - c + _a

The conjugate momentum _I is obtained by the introduction of a

generating function J1 defined as

J1 = @1E.O2939t + U_l_ + 14.70 - E + E"_ (53)

so that

s _31 * . ot_.

cxl = _S_ _@1 or @1

For the definition of 62 we use the trigonometric argument

(54)

.06086t + a_ + 3_6_ + 14.2 °
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t from Eq. (52). This leads to the expressionand substitute for B1

F 7 ".03146t + 3w2B 2 + ( - (t _ .5o + B1

which suggests that B2 be taken as

B2 = .03146t + 3w2B + ( - (' - .5° (55)

Use of a second generating function

J2 = u2 .03146t + 3w2B + ( - (z _ .5° (56)

gives for the conjugate momentum _2

* _2

u2 =_2
(57)

The expressions for B3 and _3 can be obtained in a similar fashion

with the aid of _3" Combining first the cosine and sine terms

.08608 cos 2_3 - .03934 sin 2_3 = .09464 cos [2_3 + 24.56°_

we find that

_83 ffi.074801t + w3B3 _ ( + ( + 2.42 ° (58)

and after introducing a generating function J3 we obtain

. °l3 ,

(_3 : _3 : e3
(59)
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Letting J = J1 + J2 ÷ J3 and noting that J = J(Bt,_*,t) we de-

termine the transformed time independent Hamiltonia K from the re-

lation

bt 46o)

Substitution for _s,ss in tezms of _ ,B in Eq. 451) and use of

Eq. (60) results in the desired expression for K :

* { *2 * * *2 .... "1/2 "3/2K = .1154_ 1 - 5"1_1_2 + 3"059_2 - LJ'_/_I _2 C * *
BI+B 2

- .002231 2 + .02939cz 1 + .03146_2 + .074801_3 in t

+ "004193_3 - "007336_2 - _1 .005149 + .02563C 2 xt

461)

where the notation C = cos x has again been used for convenience.
x
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X. ANALYSIS OF THE INTERNAL COPLANAR MOTION

1. SIMPLIFICATION OF THE HAMILTONIAN

The analysis of the motion governed by the Hamiltonian K of

Eq. (61) is made easier, and a greater amount of physical insight is

gained, if we treat at first separately the internal terms contained

in the first bracket. The modifications required by the presence of

the second, external, bracket are then taken up later.

Let us write for convenience

K = K. + K (62)
1 e

where

K. = all the internal terms
1

K = all the external terms
e

and confine our attention in this and the next section to the Hamil-

tonian K..
l

It would help matters appreciably if we could eliminate also for

the time being the coupling which exists between the out-of-plane and

coplanar terms.

This elimination can be accomplished by a suitable choice of ini-
e

tial conditions which result in _3 _ 0, provided we have reason to be-

lieve that a physical motion in which _3 does not depart much from its

initial small value can in fact exist.

The resultant coplanar type of motion can be maintained as long

as the nonlinear coupling with the out-of-plane terms does not lead

to an appreciable transfer of energy from one mode of motion to the

other.

In the next section, where we consider the out-of-plane motion,

this situation will be shown to hold true.

On the basis of the foregoing we shall neglect here all the
, ,3

terms in K , which leaves us with the 2-dimensional Hamiltonian Ki2

given by
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* "2 * * "2 "1/2 *_/2.,
Ki2 = .115_ 1 - 5.1(XlO_ 2 + 3.059_ 2 - 23.97o_. c_,,- _^,.,,,

A z _1t_2 =

+ .02939_ 1 + .03146_ 2 (63)

Since t is not explicitly present in Ki2 , the latter can also be

treated as a constant of the motion.

2. INVARIANCE OF THE DIFFERENCE _I - u2 AND BOUNDED MDTIONS

The presence of BI and B2 in Ki2 occurs only through the combi-

nation BI + 82 . From this one readily sees that

_Kt2 _Kt2

_81 _82

which implies that

czI = cr2 (64)

and after integration results in the additional coplanar integral of

the motion

c_1 - _2 = DI = * IDll (65)

Unfortunately, this last integral does not provide any bounds on

the magnitude of the coplanar displacements, inasmuch as _1 and _2

are not prohibited by Eq. (65) from growing individually as long as

their difference remains unchanged.

On the other hand it is clear that the validity of the present

fourth order theeryweuld cease to hold long before the _'s have grown

to very large size, and that additional higher order terms in H would

have to be included in the analysis. Equations (64) and (65) are of
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great use in those cases when _1 and _2 do not grow without limit.

Let us consider now the question of boundaries of _ . From

Eq. (64) we have

2

972 * "3_2=23. _uu _. .
1 1 2 J31+[32

2 * *3 [K* *2 * *= 23.97 Ul_2 - i2 - "I15_I + 5"lUlU2

*?- 3.059_; 2 .02939_; - o03146_ 2 (66)

We now introduce the new variable

_2

¢=T T
(67)

and Eq. (65) into Eq. (66), which can then be written in the form

2

\"/(_3"97D1_ = f2(_) _ 32(_)
(68)

where

f ___.

± - for

D I >0

D I <0

(69)

and

.2028 - _4_( _ .0801 _2 + constant

(.2028 +_-4)_ - -0801 _2 + constant

D I >0

D I <0

(70)
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The constants in Eq. (70) denote the value of _(o) and are re-

lated to the value of the Hamfltonian Ki2.

The points at which the _ curve intersects the + or - branch of

the f curve

= • f (71)

correspond to points at which _2 = 0 and, by Eq. (65), also _1 = 0.

Reality of the particle motions requires that f2 _ 2.

The gradual changes of the motion of the physlcal particle in

the xy space can be described by observing the motion of a representa-

tive mathematlcal point along a given curve _ In a plane in which f

and _ are plotted as functions of _.

If the _ curve intersects both branches of the f curve or inter-

sects the same branch at two different points, then _1 and _2 w111

have finite values at intermediate points on _, which tend to_mrd zero

as the representative point approaches the f curve. The sense of mo-

tion of the point is reversed every time one of the branches of f is

reached, so that the point continues to travel back and forth on a

given _ curve between Its points of intersectlonwlth f. The turning

or extremal values of the momenta u are thus fixed by the values which

assumes at the points of intersection of _wlth _ f.

The geometry in the f(_ and _(_) plane is shown schematically

in Fig. 6.

The curves _ in Figs. 6(a) and (b) represent bounded particle

trajectories in the xy plane. The tangency points P2,P3 at which

d _, f,
dq - =*

and (72)
o* °*
crI = (x2 = 0

are equilibrium points in the (u1,_2) plane, and with the aid of

Eq. (66) can be shown to correspond to coplanar periodic partlcle
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orbits. Equation (66) requires that B1 + B2 = n_r, which can also be

written in the form

' 3w28 _ + + 14.2 ° 0_B 1 + .06086t - n# =

Reference to Eq. (51) shows that this condition eliminates the

detuning term due to coplanar coupling and indicates co_,ensurability

"l

of the internally perturbed coplanar normal frequencies _ = w1 +

and _ = w2 + w2_ _. The periodicity of the coplanar particle orbits

follows from here.

The equilibrium is stable at point P2 and unstable at point P3'

where smaU disturbances may cause a displacement to a neighboring curve

such as _ which causes divergence of the physical motion.

Transition from stabillty to instability occurs at points where

_. ffi i f. (73)

When D 1 > 0, f# does not change sign as can be seen in Fig. 6(a),

and from this follows that all the periodic particle orbits for which

_1 > _2 would be of the unstable kind. For the case D1 < 0, f# does

change sign at some value _ > 1 and we note accordingly the presence

of one stable and one unstable equilibrium point along the +f branch

in Fig. 6(b).

3. THE PERIODIC MOTIONS

When one solves the tangency Eq. (72) for the value of _ which
* e

corresponds to every choice of D1, one can obtain an _1 for every _2

found. In the G¢1 versus _2 plane this solution curve represents the

so called "tangency locus" of equilibrium values of _1 and _2 which

designate periodic particle orbits. This curve is presented in Fig. 7,

where we have chosen as coordinates the quantities lO_l and 10_2

(ffl and 3_ 2 are in fact the associated "action variables"). On this

curve we have set the angular variables t_2
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* * * [i °

_2 = B1 + B2 = I°r
(74)

This plot is seen to consist of two distinct branches which con-

nect at the point (1.12,0). The left hand branch consists of a seg-

ment of stable periodic orbits which is followed by a segment of un-

segments __2 = O. The unstable branchstable periodic orbits. On both

on the right hand side of (1.12,0) requires a _2 = w.

Two more curves passing through (1.12,0) and consisting of left

hand and right hand branches are also shown in this figure. The lower

(solid) curve denotes the loci of intersection points P3 of _3 with the

second f branch. (For added clarification small inserts of the appro-

priate geometrical situation described by Fig. 6 are also displayed

here in connection with specific segments of the curves.)

The dashed curve lying close to the P3 locus represents the inter-

section of _3 with the _ axis. On this curve _2 = _r/2. The values

of _2 which allow stable motions to exist in each one of the domains

I - IT which are separated by the above curves are indicated in the

figure, and also by shaded regions in the smaU inserts from Fig. (6).

The axis _2 = 0 represents the locus of stable periodic particle

orbits which are traversed with a mean angular frequency differing but

slightly frem _. The stable periodic segments along which I0 >>

10_ marks those particle orbits which are traversed with a mean fre-

quency close to _.

Curves of D 1 = constant, intersecting all the above curves are

also displayed for a few selected values of D 1.

4. FREQUENCIES OF TIE PERIODIC MOTIONS

In the present nonlinear treatment, except for the special periodic

motions mentioned above which are described only by one single normal

mode, all the other periodic particle orbits are generated by a super-

position of both normal modas. Periodicity here is achieved as the

result of an adjustment of the natural frequencies via the nonlinear
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coupling which occurs between the two modes and which makes them exactly

commensurable. The resultant frequency shifts AwI and Aw2 in the orig-

inal undisturbed frequencies wI and _, lead to normal modes with modi-

z and t
lied commensurable (3:1) frequencies wI w2

I

wI = wI + _vI = 3w_ = 3(w 2 + _) (75)

This point was also raised earlier in the discussion following Eq. (72).

The orbital period T is determined by the slo_er mode

2_
T = 0

I

w2

(76)

During this time T three cycles of the faster mode are completed.

E. Evaluation of the Frequency Shifts for Periodicity

For every point on the "periodic motion" curve of Fig. 7 there

exists a unique set of equilibrium values _IE and _2E"

The shifts AwI and _ can be estimated by writing

_(1 + 6;)t = 3_(1 - _)t (77)

and solving for a_B; and _ from the relations

.. 2Ki2

.02939 + Wl_;
B1 = _.

•* _K:2 •s

B2 = . - .03146 + 3w2B 2

b_ 2

(78)

evaluated at UlE and _2E" From here one finds
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-, * * *-1/2 *3/2
A_I _I_I = .2308_IE 5 la2E= _ . alE a2E

•t * * "1/2 "1/2
aw2 = _ w2_ 2 = 1.7alE 2.039a2E • alE a2E

(79)

where the upper sign corresponds to _2 = 0 and the lower to _2 = _"

F. Variation of cz's Near Equilibrium Points

For small disturbances from the equilibrium points P2 and P3 the

time dependence of _ can be approximated by means of a Taylor series

expansion of f and _ around the equilibrium points.

Letting

E 1 2 nf = fE + (_ - _E )f + _' (_ - _E ) fE + "'"

and 1, _E) 2 (80),_= ,_ + (¢ - _E)_ + _-. (_ - _ + ...

and recalling that _E = fE" _ = fE' we can combine Eqs. (681 and (80)

to obtain (after approximating 23.97 by 24 for convenience)

24_ 1 d

(83)

"whence

241Vzl_/If_l(f_ - _) t
- _=e

(84)

"<_.For a stable point such as P2 in Fig. 6(b), _ have fE

This makes the exponent in Eq. (84) imaginary of the form iw t and
a

indicates a slow oscillatory variation in a. For an unstable periodic

u > _ which leads to an exponential growth of a withpoint such as P3' fE

time.

/
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A few representative values of the period T = 2_/w are indi-ff ff

cated alongside the stable periodic segment in Fig. 7.

The developments of the present section can now be summarized by

means of the following general conclusions:

I. On the assumption that the out of plane terms do not couple

strongly with the in-plane terms (which will be proven later)

it is possible to reduce the problem to an essentially 2-di-

mensional one.

2. Initial conditions which lie on an _ curve located to the

left of the limiting curve of type _3 will lead to bounded

motions of the particle in the xy plane.

3. Depending on whether the _ curve is tangent to the f curve

at a point such as P3 or P2' periodic particle motions of

an unstable or a stable type, respectively, may exist.

4. The periodic orbits generally result from a superposition

of the two normal modes of vibration in which the nonlinear

coupling has brought about commensurability of the basic

frequencies by means of appropriate frequency shifts. For

special initial conditions, periodic particle motions con-

sisting of only the faster normal mode may exist.

5. In the neighborhood of stable equilibrium points of type P2'

the momenta _I and _2 perform low frequency bounded oscilla-

tions in time. Near unstable equilibrium points of type P3'

the J's will tend to grow exponentially with time, which

results in a large growth of the particle's motion in the

physical xy plane.
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Xl. ANALYSIS OF THE INTERNAL OUT OF PLANE MDTION

The analysis of the out of plane motion is rather simple and

straightforward compared to the coplanar analysis of Section X. We

shall investigate the coupling of _3 and _i in the region where _2 = O,

by neglecting the _2 terms in Eq. (61).

The reason for this particular decision is the result of hind-

sight, based on a prior preliminary study of the external effects on the

coplanar motion which disclosed the presence of a stable equilibrium

point _i _ O, _2 = O, for the Sun perturbed problem. This will be dis-

cussed in more detail in Section XII.

Let us denote by F the internal terms left in the Hamiltonian

K of Eq. (61) when all _2 terms are dropped. We have then

* "2 ** **

F = i154_ 1 + .09035_I_3C 2 , , + .08893_i_ 3
• ( 81- 83)

.002231_32 * ,- + .074801_ 3 + .02939_ 1

(Sb)

Let _3 = _l - _3"
From Hamilton's equations we then obtain

_I = 2"'09035fflff3S243

_3 = - 2- .09035fflff3S 2&_3

(86)

This leads to the new integral of motion

+ _3 = D2
(87)

with D 2 > O.
.* .-2

As we did before for _2' we can now write for _I
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Cd,ll 2 2*2*2 I - "1154_1 - "08893G'1(x3= 4.(.09035) _I _3 - 4 F* *2 * *

+ .002231o_ 2 - .02939_ I - .074801o_3] 2

(88)

We introduce the auxilliary variable _3

_3
(89)

and end up again with the equation

(90)

where this time

f=+_3(1 - _3) (91)

and

f'(o) = + 1 (92)

F

"_ = .09035D 2
1.277(1 - _3 )2 -

.32534 .50259

D 2 D2 _3

.9843_3(1 - _3 ) + .02469_ 2

(93)

At the origin, the first and second _ derivatives are

50259 > 0_t(o) = 1.5703 - "
D 2 <

depending on D 2
(94)
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Tl"(o) = _#(_3 ) = -.5366 < 0 (95)

"_t(o) < 0 if D2 < .3201 (96)

and

Ti'(o) "c - I if D 2 £ .1955 (97)

The magnitude of the slope _t will determine the time history of

_3" In particular, if _ < - I then _3 will exhibit a circulatory

behavior, while a value of -i < _t < 0 would lead to a librational

behavior.

An upper bound on _t can be established by making a reasonable

estimate for an upper value of D2. Such an estimate can be furnished

from some of the mathematical and physical considerations which underlie

the present analysis.

From a mathematical standpoint it is clear that in the binominal

expansions and truncations used to obtain the expression for the Ham-

iltonian H(x,y,z,t) of Eq. (21) it was assumed that x,y,z were small

compared to unity.

From a physical point of view it is not clear that relatively

large displacements away from the Moon would necessarily invalidate

the conclusions of the present analysis, but the large accelerations

resulting from large displacements towards the Hoon or Earth could not

be tolerated.

If we assume that the displacements should be limited to values

x,y,z < .5 (say) then for the excitation mode eI we can obtain from

Eqs. (36)

_l .5< -T = .25

i.e., _i < .0625
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and also

_3 < .0625

so that for these limits

D2 < .1250 < .1955

The slopes of all _ curves are thus steeper than f'(_3 ) from

which follows that every _ curve will intersect both • f branches,

giving rise to a circulatory motion in AI3 as indicated in Fig. 8.

#

At3

1T

0

-IT

_3

_0

I

_3

Fig. 8: Geometry in (f,_3) and (_3,(3) space.
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Since }_'!>If'l no equilibrium points with _3 ¢ 0 can exist,

and consequently no periodic orbits in xyz space result from the non-

linear coupling of modes i and 3.

The actual slope of any _ curve would depend of course on the

value chosen for D2, subject to the limits mentioned earlier.

We may choose for example a representative value of _I = .006

(say) and assume if3 to be of the same magnitude (this ffl is very close

to the actual coplanar equilibrium value of _1 in the externally per-

turbed case discussed in Section Xll). Then we have

,.i.

D 2 _ 2o'3 = .012 (98)

This results in a slope

.5026 -I0
Qt __ 1.57 - .01--_ = -40.3 : tan

or (99)

8 _ 90°

In other words the _ curve intersects the _3 axis nearly vertically,

from which one concludes that _3 _< constant; thus, there is hardly any

energy interchange taking place between if3 and ffl* which shows that

the out of plane coupling is not very important in this problem, and

that the motion is dominated by the coplar_r coupling.

That the out of plane coupling does not introduce any instabili-

ties when if3 << and ffl is close to its equilibrium value ffl _ .006

could also have been deduced directly from the expression for F in
,

Eq. (85). For very small if3 it is sufficient to consider only the

terms linear in _, and to evaluate the coefficients at _I _ .006.
J

The resultant Mathieu type Hamiltonian F indicates a parametrically

excited motion. Such Hamiltonians are discussed more fully in Appendix F,

(in connection with the solar effects on the coplanar motion examined in

Section XlI) but under the assumption that the values of _I and _2 are
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to remain very small (i.e., coplanar particle motions for very small

perturbations from rest at L4) .

If one applies the results of Appendix F to the present situation,

and notes that the coefficient of _3C2(=._=.)piP3 is smaller than that of

_3 one readily concludes that the parametric resonance present in the

out of plane motion does not lead to instability.
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XII. ANALYSISOF EXTERNAL EFFECTS

i. DETERMINATION OF EQUILIBRIUM POINTS

For a complete analysis of the motion in the presence of the ex-

ternal solar effects, one must retain the complete expression for K

given in Eq. (61).

From the discussion of Section XI it was seen that the _i,_3 in-

ternal coupling did not lead to any measurable transfer of energy from

the out-of-plane mode to the coplanar mode of motion, while from Sec-

tion X we have established the existence of an appreciable coplanar

coupling effect.

The major long term solar effect causes mainly an excitation of

the _i mode. The _3 mode does not experience any external excitation

to the order of magnitude of the terms retained. This latter state-

ment follows from the developments presented in Section XIII.

If a stable motion in the presence of the Sun is possible in which

_I,_2 and _3 remain small, it would suffice to retain only linear terms

inK* in order to determine long term effects. To linear terms we have

the simpler Hamiltonian

.02425_ 1 + .02412_ 2 + .07899_ 3 - .02563_IC28_ {
(lOO)

which is of the Mathieu type j as indicated in Appendix F, and leads to

parametric resonance in the _i motion.

Since .02563 > .02425, the stability criteria of Appendix F indi-

cate that the motion falls into the unstable region of the Mathieu

plane, and that therefore to linear terms no motion can exist for which

_I remains very small.

From a physical point of view this means that the libration point

L4 is not stable with respect to small perturbations, when the solar

force field is included, and that the higher order terms in K2 must be

retained in any analysis.

The lack of stability exhibited by the linearizedHamiltonian does
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not preclude the existence of equilibrium points in the _ space for

the complete Hamiltonian. In view of the negligible effect of _3 on
the coplanar motion, it is of interest to look for equilibrium points

for if3 = O. Such points in the (ffl,ff2) plane are determined by look-

ing for solutions to Hamilton's equations of the form _i = _2 = 0.

Once such points are located, it is then necessary to investigate

the type of equilibrium which exists there, and to identify the stable

ones.

This search is more easily carried out if one switches over to a

set of normal canonical coordinates (Q,P) defined by

q¢ ,

Q2 I
I =

P1

P2

0 0 0 1

0 2 0 0

0 0 _ 0

0 0 0

S.
B2

C*
B1

(ZOl)

After setting _3 = 0, the two dimensional part of K , which we

denote here byE., becomes
Z

* .i154 *2 *2) 2 5.1 (p*2 *2\/*2 ) 3.059 (p*2K_ = ---'4----[el + QI - --_-- i + QI )kP2 + Q + _ 2 + Q22) 2

4 IP2 - QIQ2 2 + Q2 + " 2 I + QI

.02412 _ *_ *2) .02563 (p*2 QI 2)+ 2 ,r^-._ + Q2 2 I - (102)

The equilibrium points (Qe,Pe) are obtained from the solution of

the equations
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i )j.Pe

K _'¢
= _o 2p*T

= 0 (103)

From Eq. (103) we have

K2p_ - 0 = .I154P + ....
521 PI + Q2

4 P 2 + Q2 - "°°1379PI (]04a)

,_ 2

23.97 (3PiP2..2 PiQ2**2 .... _ 2 \ *4 + - 2P2Q Q ) + "02412P2

(104b)

. .f.9 *2) _ *['2 *2)
K2Q _ = 0 = .II54QI_PI" ÷ QI - QI_P2 + Q2

4 Q2 + Q2 + "04988QI (i04c)

K .=0=
2Q 2

5.1 .(p.9 *2) *! *2 "2)- 7- Q2 I- + Q1 + 3"059Q2_P2 + Q2

23.97 ! * * * * *2 * *2) *- QIP2 + .02412Q 24 _2Q2PIP2 - 3QI02

(1.04d'_

Equations (I04c) and (lO&d) are identically satisfied if we choso

Qle = Q2e = 0. For convenience we shall therefore restrict our search

to those equilibrium points for which

Qle = Q2e = 0 (i0'_)
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For the above Q's Eqs. (104a) and (104b) give

*3 * *2 2 3 *.I154P I - 2.55PIP 2 5.810P - .001379P 1 = 0 (106a)

*2 * *3 * *2 *
2"55PI P2 + 3"059P2 - 17"43PIP2 + "02412P2 = 0 (106b)

One equilibrium point can be obtained by setting P2e, = 0 (which

automatically satisfies Eq. (106b) and then solving for Pie from the

relation

.1154P_ 2 - .001379 = 0 (107)

or

which corresponds to

P = .I093
le

ale = .005975

(108)

_e above value of _i is the oue which was used in earlier sec-

tions when representative numerical values were used.

The first equilibrium point, which we denote by El, is thus specl

fled by the coordinates

El: QI = Q2 = Q3 = P2 = P3 = 0 ffl = .005975

PI = .I093 _2 = 0 (qoq)

_3 = 0

Another equilibrium point can be found for which P2 _ O, all othe_

homogeneous coordinates remaining the same as for point E1 . The values
@ *

of P1 and P2 result from the solution of the algebraic equations (I06_,

and (106b), after P2 is factored out from the latter. The coordi_mtes

of the second equilibrium point Ell were found to be
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EII: QI = Q2 = Q3 = P3 = 0

PI = .1106 _i = .006116

* * 10-6P2 = -.003675 _2 = 6.753 ×

(11o)

1_he two points E1 and Eli were the only ones readily found for

the present simplified conditions. A machine search of the complete

set of Eqs. (103) might reveal the existence of additional roots. The

periodic elliptic particle motion of mode close to wI corresponding

to conditions at E 1 has a semimajor axis of about 60,000 mi and a

semiminor axis of half this value. These values were determined by
_1/2

comtr_ting rma x = [x-2 + y-_2_x where the w I modes of x and_y of Eq. (3.6)

were used, and the maximum determined with respect to _18 _. It can

be shown that this requires_ that 8.422S2ari _ + 4.423S2wi_+247.14o_ = 0

and results in a value Wl__
15.62 ° . The dimensionless expression

for r then becomes r _ 3.2_ I/2max max_ _ , and at _i ='-.006 amounts to

roughly 3.2 _.955:006 x 2.4 x 105 = 58,128 __ 60,000 in round numbers.

In a similar manner one finds for the maximum dimensionless dis-

placement in mode w2 the semimajor axis rma x __ 9.1_and in miles

rma x = 9.1 x 2.4 x 10 5 ; 9.1_/_2P2_ x • 2.4 x 10 5 miles.

It is of interest to observe that this result indicates the par-

ticles mean motion is synchronized with that of the Sun such that

their angular positions coincide closely whenever the particle crosse_

one of the axes of the ellipse.

We recall that at equilibrium QI = 0 and hence _i = n_ with

n = 0,I''" For n = O, Eq. (52) gives

B_ = 0 = .02939t + wIB _ + 14.7 - { + E t

and from here

WlB_I =Wlt - .02939t - 14.7 + ( - (a
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Whenthe particle crosses the major axis we had _i_i = 15.02,

and from the commensurability of angular velocities at El, (41 - .02939)
= 1 - m. Substitution above gives

15.62 + 14.7 = 30.32° = (I - m)t + E - Et _

as defined by Eq. (B-9). Equation (17) then shows the Sun to be lo-
cated 30.32° below the x axis, and therefore closely aligned with the

major axis of the particle's orbit.

2. STABILITYOFTHEEQUILIBRIUMPOINTS

The stability of the slow variations around the above periodic

equilibrium motions in the xy plane can be determined by setting up

the expression for the variation 6K which results from taking small

displacements 6Q and 8P around the equilibrium values Qie = 0 and

Pe" Clearly, since E1 and,Ell are equilibrium points, the coefficients
of the linear terms in 6P must vanish, and on then obtains in three

dimensions

i,

_K *2[ *2 *2 ] [ *2( *2 *e)= .02885Pi e 66P 1 + 26Q 1 + .... 1.275 Ple 8P2 + 6Q2-

* * * * "2 C *2 *2)+ 4PIeP2e6PI6P2 + P2e 6PI + 6QI + ""_

*2 *2 *2

+ .7648P2e[66P 2 + 26Q 2 + .. _ •

*2
* * * * "2C$PI 2 + _QI _]+ 4PIeP3e6PI6P3 + P3e

*2 *2 *2 *2 * * Q28P16P3 ++ .04958[PIe6P 3 + P3eSPI + 2PleP3e

[p*2 1 *2 *2) * * * *+ .2113 2e 6P3 + 6Q3 + 4P2eP3eSP28P3

+ P3e

* * *2 6Q221+ .0395_8P32 + 6Q32_ - 5.810[PIeP2eC36P 2 +

(¢on't on next page)
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"2/ * * * * .01212616P12++ P2e_36PI6P2- 6QI6Q2)+ 6Q12_

+ .01206216P22 + 6Q22_ - .01281516PI 2 - 6Q12_ (nl)

Applying expression (IIi) to point E1 results in

* *2 *2 *2 *2

= + - -

÷ + (112)

Since for every value of i = 1,2,3 the coefficients of 6P. have
1

the same sign as the coefficients of 6Q_2(i.e., 6K* is either positive

or negative definite irrespective of the signs of 6P or 8Q ) we can

conclude that point E I is stable for small disturbances in all princi-

pal directions. The period of the slow variations in 6PI,6QI is approx-

imately 83 months.

It is more convenient to retain only coplanar terms in 6K for

the determination of stability at EII. We then obtain the expression

* *2 *2 * * *2
6K = .0014118P I + .025638Q I + .0018388PISP 2 + .0036526P 2

* * *2
+ 7.847 x 10 -5 6Q16Q 2 - .0011506Q2 (113)

If we now assume PI and QI to remain unchanged while we intro-

duce variations 6P 1 and 8QI we have

6K* = .0014116P12 + .025636Q12 (114)

where 6Q2 = ,6P2 = 0

Thus 6K is pesitive definite for variations in the first set of

coordinates and hence 6QI and 6P 1 remain bounded.

Repeating the same steps for 8P2 and 8 while keeping P1 and

ql fixed gives
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* *2 *2

6K = .0036526P 2 - .0011506Q 2 (115)

where 6P I = 6_I = O. * *

Since 6K is not definite for arbitrary choices of 6P 2 and 6Q2

we conclude that point EII is not stable in 8P 2 and 6Q2 , and hence is

an unstable equilibrium point. The equilibrium for variations gP 3

and 6Q3 was found to be stable, which is in agreement with the find-

ings of the last section.

The above conclusion could have been reached also more rigorously

in a somewhat lengthier fashion by writing down the complete system

of first order linear differential equations for 6Q and 6P obtained
*

from 6K of Eq. (113), and examining the roots of the appropriate char-

acteristic equation. We would find that

..6QI

.*

6Q2

6P 1

6P2

0 0 .002822 .001838

0 0 .001838 .007304

-7.85- 10 -5 0 0

-.0023 0 0

6Q_ _

6Q2 1

8P 1

16P2_

(116)

st
A trial solution of the form e

equation

would lead to the characteristic

S4 + 1.282-I0-4S 2 - 2.031"10 -8 = 0 (117)

which has one positive root because of the negative constant term.

Equation (117) thus bears out the conclusions reached from Eq. (115).

A simple geemetrical description of the stable and unstable re-

gions in the 6 dimensional P ,Q space is of course not feasible. On

the other hand it is possible to take advantage of the fact that the

stable point El is noticed to lle very close to the unstable point Eli.
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It is thus of particular interest to determine the extent of the stable

region around El, by expanding K up to cubic powers in 6P and 8Q
around E1.

The intersection of surfaces of constant K with the (P2,Q2)

plane, for a value of PI = .II, is shown in Fig. (9). The dashed

curve shows the separatrix which passes through Ell and separates the

stable from the unstable regions.

In the physical xy plane, a point in the stable region gives rise

to slow variations of the elements of the periodic particle orbit cor-

responding to E1 . A point in the unstable region of the (P2,Q2) plane

would lead to large particle departures from the equilibrium orbit,

and thus indicate a possible divergence.
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EVALUATION OF THE EFFECT OF THE RESONANCE CAUSED

BY THE FORCED SOLUTION

We had alluded on page 23 to the fact that no forced solutions

in z, i.e., _, had been retained since they are of o(m 3) and would

thus give rise to terms of o(m _) or higher in H when one went on to

derive the long period contributions.

A closer second look at the external z terms in H (°) disclosed

the existence of a very closely tuned forcing term in the linearized

out of plane z motion which could introduce perhaps small divisors

in the solution for _ and thus depress the order of magnitude of that

solution. This would introduce another important long period term

into the Hamiltonian K. The resonance in question arises for example

from a term such as

2 1
X Z =s s -r13. [ sin i° sin [i.0040212t + f]

which would lead to a detuning of magnitude

1.0040212 - 1 = .0040212 (118)

This value would introduce a nnlch slower term in K than any of

the terms previously retained, and might conceivably require a redefi-

nition of the angular variable B3 introduced earller.

The developments indicated briefly below disclosed that the z

resonance terms cancel each other exactly, and consequently do not

contribute a term slower than the one already considered. No further

modifications to the analysis of the out-of-plane motion of Section XI

• mre thus required. The steps leading to the above mentioned cancel-

lationwere nevertheless found interesting enough to justify their

inclusion here.

The z portion of the external part of H (°) of Eq. (21) was

(o) 2[3 _ 1

(119)
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For a coordinate system with its x axis pointing at the instan-

taneous position of the Moon, the angular velocity components u and
X

u are given by
Y

Dx = i cos _ + _ sin i sin

Dy = _ sin i cos _ - i sin

(120)

These are the same as Eqs. (B-3) except that _o has now been re-

placed by D = grit + E - D and g = 1.0040212.

The angular velocities _ and i can be expressed in terms of _,i

and the solar acceleration component W normal to the Earth-Moon plane

at the Moon's position, by means of the variational equations on page

404 of Ref. 9, in which a corresponds to (r12) here

r12 sin= W
2

na sin i

: r12 cos
i - W

2
na

(121)

2
By our nondimensionalization convention na = I, so that

u - W sin _ cos _ - cos _ sin "fl = 0 (122)
y D

and the angular velocity w has thus no component in the y direction.

One can also write for _x

_x - Dna_" sln2_ + c°s2_ = (I + p)W
(123)
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A suitable expression for W can be obtained by differentiation

from the potential energy V s near the Moon. If we let x,y,z denote

small displacements from the instantaneous position of the Moon, we have

W = _ x,y,z=O = _z _ 3 " _14
r13

If2x- _z J _3 s(l + p + x) + ysy + ZsZ

r13

- _- (1 + p + x) 2 + y2 + z 2

x,y,z--O

m2 xSz= 2 + o(_) = 32 sini cos_ sin(_ -_')
r13

- _r I

x,y,z=O

(124)

To sufficient accuracy then

Dx ='-W = 3J sin i° cos _ sin (_ - V') (125)

(o)
To check if H(z) would in fact lead to the presence of small di-

(o %

visors in the solution for _ it suffices to check if H(z) contains

slowly varying terms of frequency .0040212 _enwe replace in it z

and P by the homogeneous solutions _ and P .
z z

H(z) = _m sin i ° 4_ 3 cos 8 in (I.0040212t + E)

1 [cos 8_++ _cos (I.0040212t + .}+ _ Dx_3 _sin B_

(126)
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- v' - _ = -i.0040212t - ( (127)

we may retain in v only the dominant resonance term
x

3 2 sin (I.0040212t + () (128)
Dx _ - [ m sin i°

(o)
When Eq. (128) is substituted into H(z) of Eq. (126) and all the

terms combined it is found that all the long period terms cancel each

other exactly and only fast terms remain. From this one can conclude

that the forcing function of the linearized z equation does not con-

tain a resonance term which is close enough to introduce small divisors

into the forced response _ and thereby lower its order of magnitude

from o(m 3) to o(m 2) or less.

Based on the foregoing we can conclude that the neglect of the

contribution of _ to the long period terms (bH/bz)_ was consistent

with our convention of neglecting terms of order higher than o(#).

This analysis shows that although the Sun has an appreciable long

term effect on the changes in inclination of the lunar orbital plane,

it has the same effect also on the orbital plane of the librating

particle, with the net result that any relative long term out-of-plane

responses vanish. Short period, fast, relative terms do not cancel

out though.
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XIV. S_YAND CONCLUSIONS

In the present dissertation, the 3-dimensional stability of the

motion of a particle near the equilateral libration points of the Earth-

Moon system, in the presence of the Sun, has been investigated.

Because the inclusion of lunar eccentricity would have introduced

into the problem a larger number of internal and external resonances

than could have been handled by the present method of approach, it was

found necessary to restrict the stability analysis to a lunar orbit

perturbed by the Sun but without eccentricity.

Four major conclusions emerge from the present study. First,

small coplanar motions near L 4 or L 5 will grow large because of para-

metric excitation by the Sun, as a result of nonlinear resonance. In

fact, the growth of the energy in the faster normal mode of the linear-

ized theory is found to be governed by a Mathieu equation.

Second, the out-of-plane motion is not seriously excited by the

Sun, and has a negligible effect on the coplanar motion, which is the

dominant factor as far as stability is concerned.

Third, a stable periodic coplanar orbit can exist in the presence

of the Sun. It consists of a clockwise motion along the 1:2 ellipse

corresponding to the first (or faster) normal mode, and has a semimajor

axis of approximately 60,000 mi. The external nonlinear excitation

cause_ Ehe mean angular motion of the particle to become synchronized

with that of the Sun. Thus to an observer located at L4 and looking

continuously in the direction of the Sun, the particle would appear to

move back and forth across his line of sight in the manner of a simp]_

harmonic oscillator. The times of crossing of the line of sight coi_

cide closely with the times at which the line of sight is aligned with

the major or minor axis of the ellipse.

Fourth, the presence of the internal resonant excitation, result

ing from the near commensurability (3:1) of the two coplanar normal

models makes the stability somewhat delicate. As a consequence, the

semimajor axis of the second mode is limited to magnitudes less than
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approximately 2450 n_i. For larger values the motion becomes unstable

and may result in very large displacements which would exceed the range

ol applicability of the present theory.
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Appendix A

SOLAR GRAVITATIONAL GRADIENT CONTRIBUTION

Consider the term

1 r13 " r14

3
r34 r13

(A-I)

of Eq. (7), and decompose r34 into

r%4 = r%l + r--14= Z (for simplicity)
(A-2)

For (r14/r31) << i we can expand I/r34 into a Taylor series around r31

as shown:

I

r34
I__ + _14 " V

l 71''/2'= r31

[F_ " 734]

I

3

III/2' +

[_]
I_14=o

eoo

(A-3)

where

V

_31

and _31 = - _13

l _-VK =

[_..-]_":[..C [_.C

(A-4)
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and

r13 • r14

3

r13

(A-5)

where

I

Similarly

= unit diadic

12 (_14 " _14) V2
i i- r _

[_. _,_',_" _ _/_._

1- r 3 - - =z

= _ r14 " [-'4--, i31r31 3r31 r31 t [3/_" r31-- 1'_2/ 4]
I 14 _" r3 1 -- " _1• FI =-T j " _ r14

r31

L (A-6)

Combining (A-l), (A-3), (A-5) and (A-6) and neglecting the first

term of the series_ I/r13 p which makes no contribution to the equations

of motion, we end up wlth the last term of Eq. (8) which is the expres-

sion of (A-6), and represents the solar gradient force near the Earth.
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Appendix B

THE EXPRESSIONS FOR p(t) ANI) v(t) FROM LUNAR TIEORY

The expression for p(t) is readily obtained from Eq. (I), p. 281

of Ref. 7, after computing (a/r) -I ffi1 + p(t) = r12 and retaining only

terms of o(J) or lower. The term -.00093 of our Eq. (15) corresponds

1 2
to - _ m in the series for (a/r) -I. The semlmajor axis a is set equal

to the reference length D in our notation.

Derivation of the expression for v(t) requires a few more alge-

braic manipulations. We shall make use for this of Fig. 2 (p. 13) and

Fig. 4 (p. 38) of Ref. 8, which are combined for convenience in Fig.

B-l, and also Fig. B-2 which shows the lunar orbital plane as viewed

from above (i.e., looking in the direction of the negative Z axis).

In order to facilitate the derivation we shall retain (in this Appendix

only) the notation and symbols of Ref. 8 irrespective of the use to

which some of the letters have been put in the main body of the present

report. Where necessary, the corresponding letters in our notation

will be pointed out.

In dimensional symbols we now have

-=+ n+ + + sini ×
e

(B-l)

_O = nt + ¢ - [_

SO that

e e

(B-2)
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The dimensionless form of w results if we set n = 1 in (B-2).

Noting that i x , Xye, x z are parallel respective to the unit vectors
_ _ _ e e

Xx, Xy, iz of our L4 centered coorindate frame, we have

ux = _ sin i sin _o + _ cos _o

.y= sincos% - sin
(B-3)

both of which are of o(m 3) or higher. The expression for _ can be
z

obtained by taking the time derivative of the true anomaly v in either

one of the expressions on p. Ii0 of Ref. 8 or Eq. (2), p. 281 of Ref. 7.

This results in the coefficient of _ of our expression (16).
z

With the aid of Fig. (B-I) it is also relatively straightforward

to determine the components of 313 in the wxx, [y and [z directions.

We refer the reader to pp. 38, 41, and 79 of Ref. 8 for a more de-

tailed presentation of the relations summarized here. For convenience

the following explanatory relations for the various angular arcs are

summarized below.

Ex or Ey = fixed reference line in ecliptic

mr(t) = v t - _ where x _ =- _ Q = arc of nodal regression

W = x _ + [_A (measured in two planes) ="vEA

¢ = V EMo(O) i.e., at t = o

s = tan MtM

v = xM t = ecliptic projection of xM

i=Mt_M

y = tan i--_ sin i

_o = _Mo = nt + e - _

• Em•(o) at t = o if e # o¢ =
S

One can then show that

i 2 3 4 )cos gaa' = cos (v - v') cos M•M = 1 - _ s + g s - ... cos (v - v')

(B-4)
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and since

2s = I - e I y2_j i 2- _ _ sin _ + e_ sin ... + _ e V sin ... + ...

(B-5)

(from p. 41 of Ref. 8).

while

2 2 2 2 2
s _ y _ sin i _ sin i = sin (5°8e43 n) _ .008 << I (B-6)

o

we can approximate to sufficient accuracy

cos Min' _ cos (v - v') = cos [nt + ¢ - nit - ct

+ e, e t times periodic terms]

--_cos [(I - m)t + E - E t] + higher order terms

(we have divided by n = 11 (B-7)

sin M_' _--- sin [(i - m)t + ¢ - ¢'] + H.O.T. (B-8)

Define: _ = _M_' = (i - m)t + ¢ - ¢" (B-9)

and note that

sin mtT = sin i sin _ m' = sin i sin (v' - _) (B-10)

With the above relations we can now obtain Eqs. (17) of the text

x s r13 cos

Ys = - r13 sin
(B-II)

zs = - r13 sin i sin (v' - 0) = r13 sin i sin (0 - v')
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Appendix C

TAYLOR SERIES EXPANSION AROUND L4

The steps needed in the expansion of the various terms in the La-

grangian L of Eq. (8) up to fourth order terms [i.e., o(#)] are indi-

cated below. In dimensionless notation we have

.... 1 (1+ p) i" +_ (1+ o) Tr14 = rlL + r where rlL = _ x y

and thus

r142 = (i + p) + x + (i + p) + y + z = ... algebra

= 1 + (a + b) = 1 + I (C-l)

where a and b refer to the two terms following i.
-I

This enables us to write r14 in the form

r14-1= [i + 1] -1/2
I 312 1513 5 714:i -_-I+_ -_-_ + 1-_ " _" +

(C-2)

-i

A similar expression applies also to r24 after replacing x by -x

in Eq. (C-l).

Evaluate now the various terms in (C-2).

12]:
=/+ 2ab + b2

2ab = 2D(2 + x +,v_'Y) (x+.q_y + x2 + y2 + z2)
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40Cx+_y+x2+y2+2)+2,Cx+_y)2

= 2p[2(x + BY) + 3x2 + 5Y2 + 2z2 + 2_ xy]

+ o(m 5)

Terms independent of x, y, or z have been dropped since they don't con-

tribute to the final D.E.

= x + 2_ xy + 3y 2 + 2(x + _/3y) 2 + y2 + z2

neglect as H.0.T.

3ab 2 -_ 6p(x + _/_y)2 + o(5)

b3 -t (x + _y)3 + 3(x + _y)2 (x2 + y2 + z2) + o<m 5)

b 4 = (x + ,j_y)4 + o(m 5)

Combining the above terms and neglecting noncontributing factors

gives

-.___,[ ( )]r14 _ p(x + _y) + x + _y + x2 + y2 + z2

3
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+2( 2+y2)2+ 4} 1,_ {6p (x + _iy)2 + (x + Jiy)3

3.5 (x + _f_y)4 (c-3)

Furthermore

r12 - _ ] 1 (I+ p)2+ (i+ .)xr14 = (I + p) i (1 + p) + x =

3 3
r12 = (I + p) = I + 3p + ...

Thus

r12 • r14

3
r12

i
=_-(I+ p)-l+ (I+ p)

-2
x - 2px + noncontributing terms

(C-4)

The Lagragian L in Eq. (8) is made dimensionless by multiplying

it by D/(_ 1 + _2 ). Let us multiply Eq. (8) by this factor and then

set

p.l+ _ ffi1

D=I

and introduce the dimensionless quantity

_i (c-5)
_I = _I + _'2

while from before we had defined already the quantity

_2
_ffi

by Eq. (12).
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It then follows that

m

_1 + _ : 1 (c-6)

Consider the contribution VEM of Earth and Moon to the potential

energy term in L of Eq. (8)

+_- _ rl

VEM = _ _ + r2 r12 ]

(C-7)

We recall that only the x coordinate changes sign when we use the ex-

-i -I

pression for r14 to obtain_:24. A convenient expression for VEM can

be obtained by making in r24 the following substitution for all odd

powers of x

2n+l 2n+l _ 2x2n+l i)-x = x (n = 0,

When use is made of Eq. (C-6) and the lengthy algebraic manipula-

tions are carried out, one ends up with a VEM given by

:{Ix2 52 1 2 4_ _VEM - _ y + _ z - (I - 2_) xy

p(x+ 4_y)}(°) i_6_ + {_ 7 1 - 2_ x3 316 + Y

+ i_.__ . 33 xy2
16 - _62 12 xz2 + _I 3 2 }3

• x y - _ yz 2

{i-_ 4 123 2 2 3 2 2 33 2 2 3 4 3 4+ 37 x - _2_--x y + T_'x z + 1-"_Y z - 1-'_Y - _ z

+ _32 (i - 2_) x3y 45(1 - 2p)W_ xy3 + 15(1 - 2_) xYz 2}
32 8 4

r 3 2 15 2 3 2 9 (1- 2_)xy,_ sj+ p_L-_x +T-y -_- +_
(c-8)
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The solar contribution V
S

found below.

to the potential energy term in L is

L YsZy -r13 = x s + _- + z zs Z

• = + XsX + (I + p) Ys + Ys y + z zr13 r14 (I + p) x s s

Now

- --_ 3 " _14 - _ rl

2r13

(c-9)

so that only terms of o(m 2) or lower must be retained inside the bracket.

After dropping all terms which do not contain the particle's coordinates

we get

will lead to o(m 5) terms (C-IO)

and

2 2 y2 2r14 -_ x + _y + x + + z (C-II)

V
S

Substitution of (C-10) and (C-II) into (C-9) results in

=_ _ [(xx+_°_)+(x+_ _,)(__+_,_+z°z)]

(c-12)



-82-

The Hamiltonian H is defined by the relation

-- T.
H = -r_ " r - L = pr r - L (C-13)

whe re

__ ".L "--

= • = r__ •_ = (c-t4)P

L_I4J [_ J _" = r14

=I denotes the identity tensor. The equality p = r14 is a consequence

of the linear dependence of r14 on the velocity components x,y,z, in

the rotating coordinate frame. Writing r14 as

r14 = rlL + rir + m x

rlL = rlLilL + _ x rlL

• m em

"= = ST + yi + zi
rlr x y z

we get

r__ = ... al_ebra ...
o Q £4

- y(l + vz) Tx

+ _

+ [4-23 (I + p) vx - I (I + p) Vy + z + yvx - XUy]Tz

(c-15)

We now introduce the momenta P via Eq. (19), solve for r from (0-14)

and obtain the expressions
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4_+ (i+ p) +y 1+ vz yX=Px 2 _P - "_

y 2 - 2 + ZVx

z = Pz + _ (I + p)+ xj Vy- [_23 (I + p)+ y_ vx (C-t6)

Also from Eq. (C-14) and Eq. (19) we can write L in the form

i 2 i + + -V
L = _ Px- +_ Py _ z- VEM s (c-tT)

If we now substitute (C-t7) into (C-13), make use of (C-14) and

(C-16), and neglect all the terms which do not depend on the momenta

P or the particle's position_we end up after a lot of algebra with

the expression for the Hamiltonian H presented in Eq. (21) of the text.
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Appendix D

CANONICAL TRANSFORMATION TO SLOW VARIABLES

We shall outline here the steps which underlie the canonical trans-

formation from the variables _,8, to the slow set _:,8:. These variables

are analogous to polar coordinates where _ corresponds to an amplitude

and _ to a phase shift. We shall find it convenient to use also a car-

tesian set of generalized coordinates q,p in terms of which the trans-

formation relations will be developed.

Let

S = S(q,p s) = SI + S2 (D-l)

be a generating function from the set q,p to a second slowly varying

set qt,ptwhere SI will be selected to remove from H the 3rd order

terms (all of which are short period) and S2 to remove all 4th order

short period, and define

S

q
= (i X 3) row matrix of partial

derivatives of S

SqT = (3 x I) column matrix of partial derivatives

Then

• ')p = p + S T(q,p
q

• q,pt
q = q - Serf( )

(D-2)

Let

Aq=q-q

I
_=p-p

(D-3)
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and expand S T and StT in a Taylor series around the values of qS,pt.

To second order in _ and Ap

F

') = Is
SqT(q

_P

5qT t(qS,pt) + SqiAq + _ AqTs _ t Aq + ""
q q

(D-4)

The expressions for q = q(qt pt) and p = p(qt,pZ) can then be de-

veloped via (D-2) and (D-4)

_(qS pt) + S tAq + i Iq _ AqTs tT I Aq + ""
q q

/ I

q - S tT(q ,pt) _ S(qt pS) Aq + ... (D-5)

P p_qt

In.order to prevent carrying unnecessary terms along let us esti-

mate the order of magnitude of the above terms. Since S will be used

to perform a transformation of variables in H t which contains terms of

o(m 3) and 0(4 ) then the lowest terms in S will be of o(m3). We might

also use the notation o(x 3) since the xpy,z coordinates are the ones

to be transformed.

Let us view q as equivalent to B and p as equivalent to _.

Then the derivatives result in the following orders of magnitude

S = o(H3) =-o(x 3) = o(¢z 3/2)

s 4 s = o(ot1/2) = o(x)
p c_

Sq -t S B = o(¢x 3/2) = o(x 3)

(D-6)

SpT q 40(Sp) = o(x)

We assume also that
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_q ='-o(x) + higher order terms (D-7)

We thus note that the term AqTSqtTqt Aq = o(x 5) and after operating

on it with _/b • it becomes o(x 3).
P

Eq.at_on (D-5) c_n then be written as

Aq = - Spit - Sp_fqZ Aq + o(x3)- - "'"
(D-8)

and terms of o(x 3) are not carried along. Thus to o(x2)- we can write

the following relation

I + •_ Aq--_ - SprfSp_fq

which can be inverted to solve for Aq

-i

_q_=--[I + SpeTq/_ SpaT--_-Spa T + SpSp _q • _f
+ o(x 3)

(D-9)

where I is the identity matrix.

From Eq. (D-2) we also note that

Ap OCSqT): oCx3) + H.O.T.

Expanding for AP as was done in (D-9) for _q we find

/_p - Sq + o(x 5)-----Sq_ _q• Sp_
(D-10)

The partial derivatives of H can also be treated similarly to the

partials of S. Thus
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H = o(s)
q

(D-11)

For a scleronomic generating function S we have the transformation

relation for Hamiltonians

K(qt,p t) = HCq,p) (D-12)

and expanding H in a Taylor series around q',p" gives

K(qS,p t) = H(qS,p t) + Hqt Aq + Hpt Ap +

H(q:,p:) + "'"
+Y_'- tT

_q

1 [AqTH Aq= H(q°sp t) + HqtAq + HptAp + _ qtTqa

+ AqTH Ap+ ATH Aq+ APTH n ' Ap[
qaTpt prfqt P P J

leo

= H(qt,p t) + Hqt - Spa T SpaTqtS p Sq aTq tSp rf1 B

[ ffl HqITq'I - + tT1• + S •S •q Spit SpffqtSp+½ _ Sp p p c

+ 21--[-Sp• + SptSp•qST]?qaTp•[SqaT- SqaTq•SpaT]

21__.[Sq i Sp •Sq iq aT] HpiTq • [-Sp + aT]+ _ aT Sp aTq tSp

21-'ISq s- Sp tSq •q aTl Hpr£p • ISqaT- SqaTqtSprTl
+

(v-13)
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The subscript letters A,B,C,D have been introduced merely for

ease of subsequent identification of the respective brackets [ ].

We recall that

it = H (°) + H3 + It4

oCx2) oCx3) 0(4)

(V-14)

3 4

where H 3 contains x terms and H4 denotes the 4th order terms like x ,

m2x2,px 2 etc. This breakdown into H 3 and H4 will be made use of in

choosing the relations defining Sl(q',p') and S2(qt,p').

We shall assume S1 to contain only o(x 3) terms and S2 only terms

of 0(4), because we shall select S2 so as to remove all 4th order

short period terms from the Hamiltonian K.

pr£ pr T Ip_qt pr£q

= _ S 1 - S2 + Slp_Tq SI + S I rfq,S2 + S2 S I + o(x 4)
p_T prf pt T P pt T prfqt prf

o (x) o (x 2 ) o (x 2) o (x 3) o (x 3)

0)-15)

Thus to 0(4 ) , which is the highest order retained in all terms,

'[ ]A H(°) [ SlHq S2

q L p ST p aT ptTqtSlp + H3q ,

(D-16)

Similarly, the following expressions can be derived

[ _ _ S1 + S 2 - S 1 S 1 + H.O.T.
qJT qtT qtTqS paT

(v-17)
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+ H.O.T.

(D-18)

1 1 H (°) S
2" _ ]C Hq [ ]A "t2"Sl

aTq t pt qITqt lpt T

(D-19)

l H(O)t [ ]c [ ½ "-T sl ,st
2" Hqefp: pt qSTp qJT

(v-20)

t H(O)I [ ]A .., _ _. Sl
2" [ _D HptTqt q, ptTqSSlp_

(D- 21)

1

2" [ _D HplTp' _ ]B --t ½ Slq,H(°)p/Tpl SlqJ T
(I)-22)

Substituting (D-16) and (])-18) through (D-22) into (D-13) results

in the expression

K = H(°)+ H3 + H4 + H_O)[ - S IpIT - S 2p_£ + S IptTqlSlp_.£]

j. (o) t s. H(°)_.s. ½s H(°)+_-s H s - _- - ,s1
Ip0 qtTqt lp, T ipt q.r£'p, lqt T lq, ptTq p'T

+ ½ s s (°) s_
lq: p_pO lqa T

(D-23)
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Recalling the definition of the Poisson bracket

[H,S] = HqSpT - HpSqT
(D-24)

and applying it to the terms of Eq. (D-23) one can obtain after a

lengthy series of manipulations and combinations of terms the expres-

sion

1

+ _ ,Slq,Slp

in terms of qt and pt only.

Let us choose for the definition of SI the relation

(°),Sl_ - H3 = 0 (D-26)

and thereby remove H3 which contains only short period terms.

Then

- tSl
q P

i
(D-27)

The third and fifth final terms in Eq. (D-27) can be combined

into the one bracket
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(D-28)

We now define S2 such as to remove all remaining 4th order short

period terms from K. Now both H4 and [H3,SI] will contain both long

period ( ) and short period (s-p) terms, which can all be eliminated

by letting S2 be defined via

H4s. p [ 3'Sl -TSl ,Sl =0
s-p q P

(D-29)

This leaves the long period form of the Hamiltonian K as

K = H (°) + H4 - [ 'SI (V-30)

and if fit and 8 t are selected as the canonical variables, rather than

ff and (t + 8 •), the long period perturbation Hamiltonian K' is obtained

as

i
K' = %- _-IH3,SI_ (D-31)

To this expression one must still add the contribution from the

linear forced solutions _,y due to H (O) as indicated in Eq. (49) which

then finally leads to the relation presented in Eq. (48).

Comparison of the K from Eq. _-31) with the K presented on p. 63

of Ref. 6 shows that the two Hamiltonians are not alike. This differ-

ence can be traced to the particular way in which the time dependent

generating function Sl(q,pt,t) of Ref. 6 was defined there by means of

an equation in the mixed variables q,pt, instead of first carrying out

the transformation to the new set of coordinates q• pt shown in this

appendix in Eqs. (D-9) to _D-13).

As a consequence of the use of mixed varlables, some of the terms

which would have appeared from the additional Taylor series expansion
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over q were thus missing and only one half of the terms of the Poisson

bracket [H3,SI] of Eq. (D-31) showed up in the function _ introduced

in Ref. 6. The absence of these additional terms prevented the cancel-

lation of nonpolynomial terms (i.e., terms which do not arise from

binomial expansions such as (x + y)n where n is some finite integer)

and led to the presence of an extraneous term such as the _13/2_ I/2

term in Eq. (I0) of Ref. 6.

The source of the incorrect results, which can arise when one oper-

ates with mixed variables anytime terms higher than of first order are

retained in the Hamiltonian, were recognized by Prof. Breakwell, who

then suggested that the correct procedure in choosing the function S I

would be to transform first to the new set of coordinates qt pt. The

implementation of this suggestion led to the developments presented in

this appendix, and avoided here the presence of the inadmissible non-

polynomial terms.

The derivation of the Mathieu type Hamiltonian in Appendix F does

make use of mixed variables. However, the results obtained there are

correct since only linear terms were retained in H.

A last comment should be made regarding the slow variables qt pt

l
or _ ,8 t. It turns out that it is impossible to prevent the presence

of some higher order long period terms in S2 which arise because the

term SlqtSlptT may contain also long period parts. From this it fol-

lows that in the expression for, say, q

q = q' - S1 + SlptTq,S I - S2 (D-32)
p tT peT pltT

the last two terms may also make some long period contributions to q,

which would tend to contradict the assertion that qS (and also pt) are

the only long period variables. This situation is unfortunately un-

avoidable and cannot be circumvented by redefining SI or $2, since the

elimination of the extra long period terms in qt or pt via S would

automatically result in the introduction of unwanted higher order short

period terms into K that S would be incapable of suppressing simultaneously.
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Fortunately this impasse is not too serious since the bothersome

long period terms in Eq. (D-32) are of o(m _) or higher and may be

safely disregarded within the extent of the present theory inasmuch

as qt does not appear in a linear manner in H. They would pose a prob-

lem however if the present approach were to be extended to encompass

some of the higher order terms currently neglected.



-94-

Appendix E

SOMEILLUSTRATIVESTEPSIN THEDERIVATIONOF
LONGPERIODTERMSIN Kt

The steps leading from Eq. (48) to Eq. (50) required by far the

most time consuming, tedious and exacting manipulations and computa-

tions of the whole investigation. Weshall indicate here only briefly

as an examplea few representative intermediate steps so as to pro-

vide the reader with a feeling for what is involved here.

First a general remark concerning the Poisson bracket FH3,SI].
In the expandedform, and using the polar canonical variables _ and

B, this becomes

EH _ = H._tSI t - H_ tS._t
3'SI Jmi 1_i J(_i I_i

(E-I)

where the tensor notation for summation over i = 1,2,3 has been used.

The same bracket, when I{3 and S I are expressed in cartesian coordinates

x,y,z,px,Py,Pz, can also be written as

J3'SI = H3xSIp + + .... }{3P Six - - H3p Slz
x y x z

(E-2)

which indicates that the bracket will give rise only to polynomial

x2p2 X3py 4terms of the form z' ' y ' etc.

From this it follows that when one evaluates the long period terms

in the polar coordinates used in Eq. (E-I) one must be careful to ob-

serve that only polynomial type terms should be retained. Thus, one

can obtain secular terms like 5ff_2 _2, 7_ .-. etc. or slowly varying

t ; _i/2_23/2terms like (.--) _I_3 cos [(w I - w3)t + --'] or (-'') _ x

cos [(w I - 3%)t + "''], but not terms such as (''') _:312_q12 ×

cos [(W 1 - 3_)t + "''] because such a term could not arise from products

3 3 which are the only kind that could give rise
of the form XlY 2 or YlX2

to long period trigonometric terms with a frequency wI - 3_. The

quantities x l,y2, etc. represent the wI term in _ and the w2 term in

of Eq. (36), respectively.
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This polynomial requirement is not satisfied in Eq. (I0) of
D B

[.0609tRef. (6) which contains the term 16.2_{3/2_21/2 cos + ,_i_I

+ 3w2@ 2 - 4.480].

We shall indicate now a few steps in the evaluation of one of

the long period terms in the Poisson bracket. For convenience we let

H 3 = H32 + H33 (E-3)

where

H32 = coplanar (x,y) terms in H 3

H33 = out-of-plane (z) terms in H 3

Similarly

S1 = S12 + S13 (E-4)

where

t

S I = - _ H3dt (E-5)

from Appendix D. (We recall that [H,S] = - _/St when H is treated

as the momentum conjugate to the coordinate t.)

Then

[H3,SI_ = _H32 + H33, S12 + S13_ =

= _H32,S12_ + [H32'S13_ + !H33'S12_ + _H33'S13_
(E-6)

Let us take the first bracket in Eq. (E-6), and consider for example

only the component H_ISIB I in it. It can be shown that it arises from

the product of the two parts
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= I/2_I _ M(al 3 N(33a3+ a2) + - 7a4)}A

+ _/2 {MCh+ b2) + NO3b3 - 764)}B

-112 211 I N(33c3 _ 7c4) }
+ _I _ _ M(cl + c2) + _ C

(E-6)

and

SI2BI

=_ 3/2 "
Ul t M(al

1/2 [.,_,.,..I
- C_lO_2 _J."x_,u1

1/2 fM'c '
- _l oe2-_ x. 1

,+ c2) + F

where we have dropped for convenience the primes on the _'s and _'s.
I .. s are defined

The quantities a I "'" a4, bl "'" b4' "'" cl " c4
-t- + ASC , where

in terns of x = AIC(1), + A2C(2 ) and _ = AIU(1)+61 2 (2)+62 "36"

(I) _ elS_l, (2) - _2_ and AI,A _ "'" 81'62 are obtained from Eq. t )-

M and N are two constants defined as M = _/16 and N = (I - 2_)/16.

In terms of the above constants one can obtain the following ex-

pre ssions

' =_ _ 1(c +½%(1_+8a I = a I AIAI (1)+61 i

a t [2 el elbl = AIAIA2 _I + _-- C2(I)+(2)+61 + _el - _2"

+

, )+ _ c(1)-51

C2 (1) - (2)+61 I

"11

t..I

uo1

121 =1 + -
AIA 2 el + e 2 C2(1)+(2)+62 2e 1 " _2

C2(1 ) -(2) -62]

(E-7)
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and similar expressions for all the other quantities inside the ( )

brackets.

We observe from Eq. _-6) that in the Poisson bracket, the coef-

_ would arise from the product of brackets [ }A with [ }D'ficient of

and in the same manner we note that the

coefficient of _i_2 * results from [ ]A-[ ]F; [ ]B"[ ]E; [ }C "[ }D

1/2 3/2
_I _2 _ results from []B-{ IF; [ ]0 "{ ]E

2

resultsfrom { }c"[ ]F (E-S)

Products of brackets [ ] as indicated in Eq. (E-8) arise in all

the partial derivative products of H 3 with SI, and must be summed up

for every combination n m
_i_ j to obtain the final value of the coefficient

for that particular combination of _'s.
2

For example, to obtain the coefficient of _I in H32_IS1281 we
have

2 = 3 -
a'l: - [ ]A [ ]D - 2" {M(al + a2) + N(33a3 7a4)}

• iM(aI• z + a_) + N(33a 3 - 7a_)_, (E-9)

where the following relations among the a's apply here

I = •
aI = aI a 3 a 3

I •

a 2 = a2 a4 = a4

(E-10)

Expanding and using the appropriate relations for the a's (not

shown here) gives
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2 3 JO3a 3 7a4)2}_1: - _ _(al + a2)2 + 3MN(al + a2)(33a3 7a4) + 2-

(z-11)

2 2
3 M2(al + a2)2 = 23_M2(al + 2ala 2 + a2 )

3 M 2 AIAI 4" C26 _ A_6
= _- + _" C26 + al,_I _k_"+ + •

(E-12)

3_i(a I + a2)(33a 3 - 7a4) = 3_N 3 1 AIAI C51 8 C38 4--

)IJbl 5 , 10 1 3 ,3(2C8 + 1 e361g AIA 1 _-- C6 + _ AIA 1 _-
1 1

(E-13)

32 N2 (33a3 -
I i_2.t4/3 1 C261)I 46211 .4.,2(23_+ C261) I7a4)2 = 23--N2 089 _ IAI _+ _- - AIA I

A 1 • 5 (E-14)

I t

When the numerical values for AI,AI,A2,A2,CsI,C261, etc. are sub-

stituted into Eqs. (E-12) through (E-14) and all the terms added, one

obtains the result

-92 .8710t2 (Z-15)

This same, or a similar_ procedure must be repeated for every

combination of cz's which arises from all the terms of the Poisson

bracket.



• -99-

Appendix F

MATI{IEU TYPE HAMILTONIANS

Consider the near-resonant Mathieu equation

X+ W2oEl + T_cos 2_ to (i + ¢)_ = 0 (F-l)

where _, E, << i. The effect of the trigonometric coefficient is to

introduce a parametric excitation term into the simple harmonic oscil-

lator model.

It is easily seen that as E _ 0 a resonant forcing term will arise

in case a perturbation solution is attempted, after the X (°) solution

to the equation

+ 2x = 0 (F-2)
o

is substituted back into Eq. (F-l) to provide the next higher term.

The Hamiltonian of system (F-l) is

I Ep2 w2X2_ H (°) + H'H=_ + =

w = WoEl + _' cos 2Wot(l + E)_ I/2

(F-3)

X,p = generalized coordinate and momentum, respectively

H (°) = }{amiltonian of simple harmonic oscillator of frequency w
o

H t = perturbation Hamiltonian (for _ << i)

The solution corresponding only to H (°) is

x(O) = 2_ sin w (t + 8) (F-4)
W O
O
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where _ are constants of integration.

When H t is included 3 _ and B become functions of time t. It is

useful to consider mainly the long period variations in _ and _ since

these basically tell us the most about the "averaged" long term behavior

of the system.

The canonical transformations of variables shown next serve the

purpose of suppressing all short period terms in H. We assume that

and _ can be decomposed into short period and long period (_t,Bs) com-

ponents, i.e.,

s.p.

B -_ B s + Bs.p.

Introducing X (°) into the Hamiltonian H t

Ht i 2 2
= _ Wo_X cos 2Wot (1 + _)

(F-s)

and rearranging terms gives

H t _--_{cos 2Wot(l + () i [2= 2 - g cos Wot(l + () + 2_o(t + B)

-g cos 2Wo(Et - B) (F-6)

The last term with angular velocity 2_o( << 2w o is of low frequency

and thus gives a contribution to the long period part of H t.

Let this term be designated by _t

_t = _ 4_ cos 2Wo(Et - B) (F-7)

Note that _ still contains s.p. terms so that _t still is not the

final form of the desired long period Hamiltonian.
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To obtain the D.E. for t we introduce a generating function

S(_S,8,t) of the Hamilton-Jacobi equation which, to first order terms

can be written in the form

s = ¢'_ + _Sl(=',8,t) (F-8)

in terms of the new momenta a t and the old coordinates 8. Thus

_S s _SI

= _-_=_ + _ _--6-

8 t AS _Sl

=_--=_+_ ,
(F-9)

relate the old and new coordinates and momenta, s St form a canonical

set with respect to a long period Eamiltonian K t, such that

.t _K t

_, _ _K'
_t

(F-IO)

where

(F-11)K' = H'+ _--{

The Hamiltonian K t of Eq. _F-II) is treated as a function of the

coordinates _s,St and t, after the transformation relations (F-9) are

substituted into the right hand side of _-ll).

To linear terms only

H'(u,8,t) = H'(u' + _S18,8,t) =" H'(us,8,t) + H.O.T. (F-12)

and thus
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4

K t _ H t C_t,_,t) + Ht(_t,8,t ) + _S I
sp t

+ H.O.T. (F-13)

The function S I is chosen in such a way as to eliminate all s.p.

terms from (F-13). We thus require

,TS + H' (u',8,t) = 0
it sp

(F-14)

from which results

I t

_ t(l + ¢)
SI = 8Wo(2 + E) sin 2Wo(2t + Et + 8) - 4Wo(l + E) sin 2_ °

(F-15)

Expanding 8 around 8 t in H' of Eq. (F-13) gives, again to first

order

K" = H'(_',8",t) = - _ cos 2wo(Et - 8') (F-16)

with the aid of Eq. (F-7).

Equation (F-16) defines a long period, time dependent, Mathieu

type Hamiltonian.

Stability Analysis

t t
The differential equations for _ and 8 are summarized by the

matrix equation

(F-I_)

Rather than solve Eq. (F-17) directly for i and 8 t it is more
W

convenient to introduce a further generating functions S (_,8',t)
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so as to eliminate the explicit dependence on time and thereby trans-

form K I to a new Hamiltonian K* which is a constant of the motion, i.e.,

K = K = constant.
o

Let us define a variable 8 by the relation

and then take S

8" = 8' - (t (F-18)

to be given by

s* = o,*(8'- (t) (F-19)

Since

* B' 8"S. = -(t =

and

! *
S t = _ = _
8

the two variables ff and 8 are canonically related to the new Hamil-

tonian K which becomes

K* = K' + St* = K' - ¢_* = - _4 cos 2Wo _* " (_ (F-20)

That K

fact that

is an integral constant of the motion is evident from the

= by Hamilton's equation -
_K

. + = 0
BB

• K = K = constant of the motion
O
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The stability or instability of systems governed by Hamiltonians

of the form (F-20) can readily be established based on a comparison

of the magnitude of the coefficients of _ and _ cos 2Wo8 in (F-20).

The relative magnitude required of these coefficients for insta-

bility or stability to exist can be determined as shown below, and the

conclusions then checked by referring to the known stability regions

of the Hathieu plane.

From Eq. (F-20) we obtain the differential equations for

-* _K *
- , - sin 2w 8 (F-21)2 O

b_

and squaring,

* 4E (F-22).*2 o I - K +- 4 o

after sin 2 2w _ is replaced from Eq. (F-20) and the constancy of K
o

is made use of.

The condition necessary for _ to vanish is obtained by setting

the right hand side of (F-22) equal to zero, i.e., at the intersection

of the two lines.

and
y=_

4 K* + 4E *
Y=_ o _--_

(F-23)

This is shown in the next sketch, Fig. (F-l).

.Fr°mthis sketch we see that for._o > _cr and &o > 0 the variation

of _ is bounded by the lines y = • _ if 4E/_ > I, thus implying a

stable motion, while if 4E/_ < 1, _ grows without llmit.

Hence, if
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¥
SLOPE

/

_ 4E

t ",sLo < I

.q
- 0 AT POINT5

y- -_

Fig. (F-l): Stability Conditions for Mathleu

Type Hami itonians

4(
--> I _ stability exists

TI (i.e., x ffi bounded)

4(
--< I _ instability exists

(i.e., x-# _ as t 4 m)

This leads to the conclusion that the motion is unstable if in the

Hamiltonian K the coefficient of _ is smaller than the coefficient

of _ cos 2_oB .

The above conclusion is also borne out by considering the Mathieu

Equation in the standard form,

d2v
--+ (a - 2q cos 2z)v = 0
dz 2

(F-24)

Referring to Eq. (F-l) and introducing a new time variable
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= _ t(1 + () + lr
o 2

and (F-25)

d= d
%(1_ + c)dt d_

Equation (F-l) reduces to (F-24) if

a

I

(l + ()2
and (F-26)

q

2(1 + ()2

The stability boundaries of the Mathieu plane (q,a) in the vicin-

ity of the region a _ I are shown below (see for instance p. 114 of

R_f. Ii).

&

/
N

SLOPE 2/'I_

N =, e Z+
c. i --a i -_ cI -_q ""I

q

pERiODIC SOLUTION

_ UNSTE_.E REGION BOUI_D_t_E$ WHICI4 C_N_._BE RPPRO_II_IRTEO BY

I q2 _ 5TP_IGHT LINES NEAR
r."i N.,--set --a = | - - i T_E RaNT (0,0

I .

Fig. (F-2): Stability Boundaries in Mathleu Plane (q,a)

On se the slope (da/dq)__n _ -I.
i ta:v

The slope of llne N - N is, from Eq. (F-26), (da/dq)N_Nt = 2/_,

and q = _/2 for a = i (pt. I).
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As the value of (a) changes from 1 to i/(i + E) 2 _ i - 2E + 3E 2,

point i translates along line N - N t to either point 2 or 3, depending

on whether the solution remains unstable (pt. 2) or enters the stable

region (pt. 3).

Comparing the values of q on se I and N-N t for the same change

Aa _ - 2_ + H.O.T. we have

On se I qse - Aa = (-I)(-2_) = 2_
q=0

On N-N
-- _a= 2 -

qN + a N-N

H.O.T.

Hence_ if qN > qse' i.e., if _/2 -_> 2E, or 4¢/_ < I, point i

moves to point 2 and indicates an unstable solution. This is in agree-

ment with the conclusion reached earlier via the Hamiltonian approach.
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