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ABSTRACT

This work is a theoretical study of the electrostatic space-charge

waves which propagate in a hot plasma immersed in a constant and uniform

magnetic field. It is based on the self-consistent solution of the col-

lisionless Boltzmann equation with Poisson's equation in infinite planar

geometry and is restricted to interactions which involve only electrons.

By considering a series of velocity distributions f (_), a clear and
O

comprehensive picture of the propagation characteristics and stability

properties of these waves has been obtained.

The frequency and wave number of the normal modes are connected

through a dispersion relation which has been solved here, and the results

are displayed in both graphical and analytical forms. For perpendicular

propagation a mode is found near each harmonic of the electron cyclotron

frequency. If (_fo/_Vl) > 0 for some range of the velocity component

perpendicular to the magnetic field, v , it is shown that these modes

can couple to form regions in the dispersion diagram where complex fre-

quencies exist with negative imaginary part and real wave number, indi-

cating that the plasma supports space-charge waves which grow with time.

The exact threshold conditions for these instabilities are derived for

several distributions, and the growth rates are computed as a function

of the electron density. However, if __(_fo/_V±) < 0 for all vi > 0

or if the electron density is sufficiently low, the propagation in this

direction can occur without growth or collisionless damping; this sug-

gests that, experimentally, excitation and detection of these waves

should be readily attainable. When electron/neutral collisions are

taken into account, the results show that for collision frequencies

much less than the electron cyclotron frequency, damping is significant

only at points on the dispersion curves where the group velocity vanishes.

The results of the investigation of oblique propagation reveal two

classes of normal modes, one of which has no counterpart in the case of

purely perpendicular propagation. This leads to a new set of instabilities
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that are characterized by (i) onset conditions that are much less strin-

gent than that of perpendicular propagation, and (2) growth rates that

are strongly dependent on T, the ratio of the electron temperature per-

pendicular and parallel to the magnetic field. In the limit of an iso-

tropic Maxwellian velocity distribution, T = 1 and all obliquely

propagating modes decay with time as a result of Landau and cyclotron

damping.

Finally, a study has been made on the analyticity of the Laplace

transform of the electrostatic Green's function. This leads to (1) a

classification of the space-charge instabilities as either absolute or

convective, and (2) a prediction of resonances at harmonics of the elec-

tron cyclotron frequency, at the cold-plasma upper hybrid frequency, and

at intermediate frequencies between succeeding harmonics. The results

show that instabilities associated with perpendicular propagation are

absolute, while oblique propagation can support either absolute or con-

vective instabilities, depending on the electron density and the dis-

tribution in electron velocity.

iv



Contents

Pag____e

I. INTRODUCTION ...................... i

II. WAVE PROPAGATION IN A HOT MAGNETOPLASMA ......... 4

A. Basic Equations and Their Perturbation Expansion 4

B. Zero-Order State .................. 9

1. Particle Velocity Distribution ......... 9

2. Particle Trajectory ............... 12

C. Dispersion Relation for Cyclotron Harmonic Waves 13

D. Reduction of the Plasma Dielectric Constant .... 17

I. Spherically Symmetric Velocity Distributions 22

2. Distributions with the Form

fo(V_'V,l ) = fl (V_) 5(V,i - Vo,i ) ......... 23

E. Discussion ..................... 24

III. PERPENDICULAR PROPAGATION OF CYCLOTRON HARMONIC WAVES 26

A. Dispersion Relation ................. 26

1. Cold-Plasma Limit ................ 28

2. Cutoffs and Resonances ............. 29

B. Dispersion Characteristics for Perpendicular

Propagation ..................... 31

1. Ring Distribution ................ 37

2. Spherical Shell Distribution .......... 49

3. Maxwellian Distribution ............. 60

4. Mixed Distributions .............. 61

C. Classification of Instabilities ........... 66

i. Stability Criterion ............... 68

2. Application of the Stability Criterion ..... 73

D. Steady State Conditions and Collision Damping .... 77

E. Discussion ..................... 81

IV. OBLIQUE PROPAGATION OF CYCLOTRON HARMONIC WAVES ..... 84

A. Plasma with No Electron Motion Parallel to the

Magnetic Field ................... 84

I. Ring Distribution ................ 86

2. Distributions in Transverse Electron Speed . 109



Contents (Cont)

V,

B°

Co

D.

E.

VI.

APPENDIX A.

APPENDIX B.

REFERENCES

Pag____e

Distributions in Longitudinal Electron Energy ...... 113

1. The Dispersion Relations .............. 115

2. Solutions of the Dispersion Relations ........ ll8

Nearly Perpendicular Propagation ............ 124

Classification of Instabilities ............. 135

Discussion ....................... 139

EXCITATION OF ELECTROSTATIC RESONANCES IN A HOT

MAGNETOPLASMA ....................... 142

A. Basic Equations .................... 142

B. Singularities of the Green's Function .......... 145

i. Pinching at k± = 0 ................. 146

2. Pinching at Finite and Nonzero k± ......... 153

C. The Long-Time Behavior of the Electric Field ...... 155

D. Excitation by Spatially Periodic Sources ........ 163

E. Discussion ....................... 168

CONCLUDING REMARKS ..................... 169

DIELECTRIC CONSTANT OF A MAGNETOPLASMA WITH A

SPHERICALLY SYMMETRIC VELOCITY DISTRIBUTION ..... 172

THE CONNECTION BETWEEN K + AND K- . ........ 174

• 176

vi



Tables

Number

i. Instability threshold conditions for ring distribution. 49

2. Instability threshold conditions for spherical shell

distribution ........................ 59

3. Threshold conditions for zero-wavelength instabilities. 92

4. Poles in upper half k± plane for _ near n_ ...... 149
c

5. Form of G(_,x) and E(x,t) at resonances ........ 163

vii



i.

2.

3,

4.

5o

6,

7.

So

9.

i0.

ii.

12.

Illustrations

Cylindrical coordinates of the velocity vector v ...... ii

Original (C) and deformed (C') Laplace contour of

integration ......................... 16

Components of the wave vector k .............. 17

Analytic continuation of plasma dielectric constant to

upper-half complex frequency plane by deformation of

contour of integration in complex v plane ........
II

21

Typical dispersion characteristics of cyclotron harmonic

waves propagating perpendicular to the magnetic field .... 33

Ring (a) and delta function (b) velocity distribution .... 36

Dispersion characteristics of perpendicularly propagating

electron cyclotron harmonic waves for ring distribution . . 39

plot of vs v ............. 4s

Dispersion characteristics of perpendicularly propagating

cyclotron harmonic waves for spherical shell distribution . . 52

Dispersion characteristics of perpendicularly propagating

cyclotron harmonic waves for Maxwellian distribution .... 62

Criteria for the onset of instability for perpendicularly

propagating cyclotron harmonic waves in a mixture of (_)

Maxwellian and (l-G) ring electron velocity distributions . 64

Maximum instability growth rates for a mixture of Maxwellian

and ring electron velocity distributions ......... 67

13. Sketches illustrating absolute and convective instabilities .

14. Original (C) and deformed (C') Laplace contour of

integration ........................

15. Analytic continuation of integral representation of F(_,x)

by continuous deformation of contour of integration F,

ahead of advancing singularity at kl(_ ) and k2(_)

Sketch illustrating origin of singularities in F(w,x)

68

7O

.... 71

• . . 72

Conformal mapping of contours A, B, C, and D into complex

_I plane proving that instabilities of ring distribution
re absolute ........................ 74

ix
PRECEDING PAGE _'__,L,_NK NOT ELMED.



Figure

18.

19.

20.

21.

22.

Illustrations (Cont)

Locus of complex frequencies of perpendicularly propagating

cyclotron harmonic waves ................. 76

Deformation of contour of integration when roots of the

dispersion relation approach real axis in limit as Im(w) _ 0

from the lower half complex plane .............. 77

Dispersion curves for perpendicularly propagating cyclotron

harmonic waves in a Maxwellian plasma ............ 79

Dispersion curves for perpendicular propagation in a

Maxwellian plasma, with collisions ............. 82

Experimental confirmation of cyclotron harmonic wave

propagation in a Maxwellian plasma ............ 83

23. Cutoff frequencies for obliquely propagating cyclotron

harmonic waves with k± constant; ring distribution for

2/- 2) = 5, 20 ....... 89
_p w c ................

24. Resonant frequencies for obliquely propagating cyclotron

harmonic waves with k constant; ring distribution for

<a><¢4> ..........
25. Dispersion characteristics of obliquely propagating

cyclotron harmonic waves; ring distribution for _£ = 1.0

and (w2/Wc2) = 0.25, 1.0, 3.0, 5.0, 8.0, 20.0, oo . ..... 93

26. Dispersion characteristics of obliquely propagating

cyclotron harmonic waves; ring distribution for _± = 3.0

and (Wp2/Wc2) = 0.25, 1.0, 3.0, 5.0, 8.0, 20.0, oo . . . . . . 98

27. Dispersion characteristics of obliquely propagating

cyclotron harmonic waves; ring distribution for _ = 4.5

and (_02/Wc2) = 0.25, 1.0, 3.0, 5.0, 8.0, 20.0, 0o . . . . . . 102

28. Dispersion characteristics of obliquely propagating

cyclotron harmonic waves; ring distribution for

(Wp/Wc)2_ = i; @ = 70°, 45°, 15° ...... ......... 107

29. Resonant frequencies for obliquely propagating cyclotron

harmonic waves; transverse Maxwellian velocity distribution
2 2

for (a) (Wp/Wc) = 0.25, and (b) (w2/t0 c27 = 1 .... . . . 112

30. Dispersion characteristics of obliquely propagating

cyclotron harmonic waves; transverse Maxwellian velocity

distribution ...................... 118

x



Illustrations (Cont)

Figure Page

31. Imaginary part of _ for oblique propagation of

cyclotron harmonic waves ................. 120

32. Dispersion curves for obliquely propagating cyclotron

harmonic waves in a Maxwellian plasma showing cyclotron

and Landau damping effects ................ 121

33. Imaginary part of _ for obliquely propagating cyclotron

harmonic waves in a Maxwellian plasma .......... 132

34. Dispersion characteristics for obliquely propagating

cyclotron harmonic waves; Maxwellian distribution in

the transverse velocity component v± and a second-

order resonance distribution in the parallel velocity

component v H ....................... 138

35. Conformal mapping of contours A, B, C, D, to complex

kjl plane via the equation K+(_,_) = 0, establishing

the type of instability excited by obliquely propagating

cyclotron harmonic waves .................. 140

36. Portion of dispersion diagram for perpendicular

propagation in a Maxwellian plasma showing two points

where the slope d_/dk± vanishes for finite and non-

zero wave number ..................... 154

37. Contour of integration around singularities of the

Green's function ..................... 156

38. Contour of integration r k around a branch point in the

Green's function ..................... 157

39. Origin of singularities in F(_,k) when source is

spatially periodic .................... 167

xi



SYMBOLS

an(k)

_n(r, v, t )

b
n

c
n

function defined by Eq. (3.2)

/%) (E + v x B )particle acceleration (qa n _ _n

coefficient defined by Eq. (4.48b)

coefficient defined by Eq. (3.13); also coefficient defined

by Eq. (4.48c)

d
n

coefficient defined by Eq. (3.19); also coefficient defined

by Eq. (4.48d)

fa(n,v,t)

fan(r, v, t ),

f (r,v,t)

f )(v

,(v)
[I II

f(t)

g(x)

g(_)

h
n

i

velocity distribution of particle species a

th
n term in perturbation expansion of fa(_n,v,t)

distribution in the transverse speed v

distribution in the parallel speed v
l[

temporal part of external charge density, Ps(X,t) =

g(x)f(t)

Laplace transform of f(t)

spatial part of external charge density, _s(X,t) = g(x)f(t)

Fourier transform of g(x)

Fourier coefficient defined by Eq. (5.60)

integer index

k wave vector

Ik [ = (k 2 + k2) _ ,. also used as an integer
summation index

± II

xiii

_RECEDI_G PAGE ._'-



(k x , ky,k z )

k ,k
.2 11

k ,k
±r ±i

k k
II r, II i

k± 1

ffi(_,m

.th
i root of dispersion relation for perpendicular

propagation

Cartesian coordinates of wave vector k

components of k perpendicular and parallel, respectively,

to the applied magnetic field B
_o

real and imaginary parts of k respectively
±'

real and imaginary parts of k , respectively
II

(2_/L)

particle mass of species (%

n

no_(r , t )

integer index

particle density of species (%

n_o,n o

P
n

q_,q

qn

r

,Q_o(t),_o( t )

average particle density of species

coefficient defined by Eq. (2.78)

electric charge of particle species

coefficient defined by Eq. (2.79)

position vector

position of charged particle in the presence of zero order

fields

S-l, _(_)

t

Lommel's function

time

t ! integration variable

V

V

velocity vector

lvl = (v2 + v2)/_
i II

xiv



V
0

V

O_L

V
011

Vx,Vy,V z)

V
t

V
t±

V
tll

_o(t),_o (t)

V _V
/ H

,, ,_.)(_j_,v

W
n

W
Wnr' ni

x

electron speed for spherical shell velocity distribution

electron speed for ring velocity distribution

constant electron drift speed along the magnetic field

Cartesian coordinates of velocity vector v

thermal electron speed

thermal electron speed perpendicular to the magnetic field

thermal electron speed parallel to the magnetic field

velocity of charged particle in the presence of zero order

fields: V_o(t ) = d_:_o(t)/dt

components of v perpendicular and parallel to the magnetic

field respectively

unit base vectors in velocity space

(_ - _c)/k,,

real and imaginary parts of w respectively
n

displacement along x axis

unit vector along x axis

displacement along z axis; also dummy variable

[(£,t)

_n(Z, t )

_o(£,t),[o

D(_,k )
±

magnetic field

th
n term in perturbation expansion of

applied zero order magnetic field

function defined by Eq. (4.17b)

B(_,t)

XV



E(r,t)

_. (r,t)

_l(k,_)

F (_)
0

F(_,x)

G(_,x)

Hn(V H )

H + -
n' Hn

H(m)n (v)

I (z)
n

J(_,t)

_s(_,t)

j (z)
n

_(_,_)

(_)
C

K+,K -

L

P

R( t -t' )

_j

electric field

th
n term in perturbation expansion of E(_,t)

Fourier and Laplace transforms of El(_,t)

function defined by Eq. (3.5)

function defined by Eq. (3.76)

plasma Green's function, Eq. (5.4)

function defined by Eq. (2.69)

positive and negative "frequency" parts of H
n

_mHn(V,, )/_v m,,

Bessel function with imaginary argument

total particle current density of plasma

current density due to external sources

Bessel function

effective plasma dielectric constant, Eq. (2.50)

cold-plasma dielectric constant perpendicular to B
_O'

Eq. (3.10)

positive and negative "frequency" parts of K respectively

period o£ spatially periodic source (Chapter V)

function defined by Eq. (4.17a)

principal value of singular integral

rotation matrix, Eq. (2.42)

residue

respectively

xvi



#(t-t')

T

z(z)

matrix defined by Eq. (2.43)

(vt,,/vt±)

plasma dispersion function, Eq. (4.36)

(%

(%
am

_i,_2,_3

71,72

5

S(z)

C

C
O

e

h

_io

index for particle species; also the proportion of the

total electron density that is Maxwell±an in a plasma with

a mixture of ring and Maxwell±an velocity distributions

th
m zero of the Bessel function of the first kind of

order n

(Vo±/v t )

coefficients defined by Eq. (5.20)

coefficients defined by Eq. (5.29)

small expansion parameter

Dirac delta function

sign of electric charge

permittivity of free space = 8.854 X 10 -12 F/m

2 2

angle between k and z axis; also polar

angle in comple_ frequency plane (Chapter V)

Boltzmann's constant = 1.38 X 10 .23 J/°K

(Lvt/_c)2 and (Lvt±/_c )2

(L lVt/_c )2

(kVo /%1

permeability of free space = 4_ X 10 -7 H/m

xvii



u
± (k±

electron-neutral collision frequency

±

p(£,t)

ps(£, t)

Ps(£, _)

T

gO

Vo/%)

total charge density of plasma

charge density of external sources

Fourier and Laplace transforms of ps(£,t)

Cut
c

Cu (t-t'); also dummy variable (Chapter V)
c

cylindrical coordinate of velocity vector,

frequency (rad/s)

v = (v±,,,v)

Cu ,_
r i

_.(k)
J

m

e

H

real and imaginary parts of _ respectively

th
j root of dispersion relation

root of Eq. (5.64)

plasma frequency = (noq/eom)_

cyclotron frequency = Iql_o/m

cold-plasma upper hybrid frequency

r(z)

®

®(£,t)

gamma function

spherical coordinate of velocity vector,

electric potential

v = (v,,,e)

xviii



ACKNOWLEDf_ENT

I wish to express my appreciation to Professor F. W. Crawford, my

thesis supervisor, for his advice and encouragement during the course

of this research, and for his constructive criticisms during the

preparation of this manuscript. Thanks are also due to Dr. T. J.

Fessenden and Professor J. L. Moll for their reading of the dissertation.

I am grateful to Dr. T. D. Mantei and R. Bruce for their assistance

with some of the computations, to Drs. H. Derfler and T. C. Simonen for

use of their computer program that generates the plasma dispersion

function, Eq. (4.36), and to Miss Mary MeGrath for her assistance in

the preparation of the manuscript.

I am also indebted to the staff of the publications department of

the Stanford Electronics Laboratories for their many favors.

xix



I. INTRODUCTION

A plasma is a collection of positive and negative charges of suitably

high density that is characterized by a tendency to remain electrically

neutral. Any displacement of oppositely charged particles in this medium

creates a strong electric field that resists the displacement, and leads

to collective oscillations of the charges about their equilibrium posi-

tion. These oscillations have been studied extensively in various plasma

models over a long period of time [i] - [5], and a number of conclusions

can be drawn: (i) in the cold-plasma approximation where the random

thermal motion of the charged particles is neglected, oscillations of

an infinite plasma are nondispersive; (2) if thermal energy is taken into

consideration, space-charge oscillations are transported through the

plasma in the form of propagating longitudinal waves; and (3) the ampli-

tude of these waves may decay or grow in time, depending on the distribu-

tion of the particle velocities.

In recent years there has been considerable interest in wave motion

of this type that occurs in hot plasmas immersed in a magnetic field.

These waves are termed "cyclotron harmonic waves" since a mode of prop-

sgation is found near each harmonic of the electron and ion cyclotron

frequencies; they are predicted when the collisionless Boltzmann equa-

tion is solved self-consistently with Maxwell's equations in the quasi-

static approximation. This interest has been stimulated largely by

numerous observations of strong cyclotron harmonic effects in magneto-

plasmas. Examples of this are the emission [6] - [i0] and absorption

[8] of radiation at the electron cyclotron harmonics, and the excitation

of resonances in the ionosphere st these frequencies [ii]. In the latter

experiments, the Canadian satellite Alouette I, using a pulsed transmitter

of variable frequency, received a signal at the harmonics for several

periods after transmitting a pulse. A more complete review of these

phenomena is given in s paper by Crawford [12].

At first it might appear that the radiation emitted by an electron

gyrating in a magnetic field would explain some of these observations.

However, computations show that relativistic energies are required to

1 _P_RECEDINGPAGE BLANK NOT FILMED,



account for the measured intensities, whereas the experiments were carried

out in low temperature plasma. This suggests that strong collective

effects were playing an important role. Tanaka et al [13], [14], and

Canobbio and Croci [15] proposed that electrostatic cyclotron harmonic

waves are excited and radiate by coupling to an electromagnetic field.

It has also been suggested that cyclotron harmonic wave instabilities of

the type investigated by Harris [4], [5] may explain some of the experi-

mental results. Harris [4], [5], [16], and Ozawa, Kaji, and Kito [17]

have obtained approximate threshold conditions for these instabilities

near the electron cyclotron frequency, while Kammash and Heckrotte [18],

and Hall, Heckrotte, and Kammash [19] consider unstable electrostatic

oscillations that occur near the ion cyclotron frequency.

Full appreciation of the detailed behavior of cyclotron harmonic waves

in these studies is difficult since the dispersion relation which describes

the propagation is formidable. Simplifying assumptions are usually made

to facilitate the analysis, and consequently some effects may have escaped

notice. In this work the solutions to the dispersion relation describing

cyclotron harmonic wave propagation in a hot magnetoplasma are examined

in detail. Computations are presented which show for the first time the

dispersion characteristics of these waves, how instability arises from

coupling of the individual modes of propagation, and the exact threshold

conditions for these instabilities. The numerical results are compared

with analytic solutions of the dispersion relation that are obtainable in

certain limiting cases, and a detailed analysis is made of the steady

state conditions of the plasma in cases where instability is absent. Based

on this research, a clear and comprehensive picture of cyclotron harmonic

wave propagation is constructed.

The basic plasma model that is investigated consists of an equal number

of electrons and ions immersed in a uniform magnetic field and free of any

electric field. The theory which predicts electrostatic space-charge os-

cillations in this medium is considered in Chapter II. Matrix notation is

used wherever possible in the analysis to keep the equations tractable.

It has been found that the dispersion relation can acquire a relatively

simple form for certain classes of particle velocity distributions, and

this leads to important conclusions regarding the behavior of the waves.

2



Chapter III is devoted to a detailed study of the solutions of the disper-

sion relation for propagation that is perpendicular to the applied magnetic

field, and Chapter IV treats oblique propagation. The dispersion relation

is first solved for complex frequency in terms of a real propagation vec-

tor, and the results are displayed in both graphical and analytical forms

for several important velocity distributions. This leads to an accurate

prediction of the threshold conditions for instability and the expected

growth rates of the excited waves. These instabilities are classified as

either absolute (corresponding to growth in time) or convective (corre-

sponding to spatial amplification at a real frequency). The steady state

conditions of the plasma, characterized by the complex wave number solu-

tions of the dispersion relation for real frequency, are also examined in

the cases where the plasma is stable. In Chapter V a study is made of the

electrostatic resonances that occur in a hot magnetoplasma. This problem

has possible applications to plasma ringing that has recently been detected

in ionospheric [Ii] and laboratory [20], [21] plasmas. Finally, a general

discussion of the results is given in Chapter VI.

3



II. WAVEPROPAGATIONIN A HOTMAGNETOPLASMA

The dispersion relation that describes the propagation of plane,

electrostatic, space-charge waves in a hot, collisionless magnetoplasma

is derived in this chapter. Several forms of this derivation are avail-

able in the literature [3], [5], [22]. The one developed here follows

in principle the works of Stix [22] and Crawford [23], but as a result

of improved notation through the use of matrices, the presentation given

in this chapter is much more tractable and general. We also consider as

special cases two classes of velocity distributions which simplify the

form of the dispersion relation.

The basic equations and their perturbation expansion are presented

in Section A. After specifying the unperturbed state of the plasma in

Section B, we derive in Section C the expression for the electric field

associated with the propagating plasma wave and obtain the dispersion

relation that describes those waves. In Section D the dispersion relation

is reduced to a form that is convenient for numerical and analytical solu-

tion, and the chapter ends in Section E with a discussion of the results.

A. Basic Equations and Their Perturbation Expansion

The behavior of a collisionless plasma under the influence of applied

and self-consistent electric and magnetic fields is determined by Vlasov's

equation [24],

_fcz q(_ _f(:z

-_- + z • vf_ +_ (_ + zx_). -_-_ = o , (2.1)

and by Maxwell's equations,

_B

vx_=-_ ,

BE

V×H=J+J +e

(2.2)

(2.3)



-v._=!(p+ %) , (2.4)
0

v. B=0 , (2.5)

where rationalized MKS units are assumed. In these expressions

f (r,_,t) is the single-particle velocity distribution for species _;

q(2 and m are respectively the charge and mass of the species;

E(r,t) is the electric field; B(r,t) = _oH(r,t) is the magnetic field;

and eo and _o are respectively the permittivity and permeability of

free space. Vlasov's and Maxwell's equations are coupled through the

total charge density of the plasma

(2

(2.6)

and the corresponding current density

J(r,t) = _ qcno fdz fc_(r,v,t)v ,

(2

(2.7)

while Ps(r,t ) and Js(_,t ) represent the charge density and current

density due to particles that are distinct from the plasma and are looked

upon as external sources. In Eqs. (2.6) and (2.7), fa(r,v,t) has been

normalized such that the particle density of the species is

(2.8)n (r,t) = naofdV f(2(_v,t)

where n is the average density.
(20

then have the normalization

If the plasma is homogeneous, we

fdv f_ = 1 . (2.9)

Equations (2.1) - (2.5) define a closed mathematical system which

completely describes the behavior of the plasma. Because the electric

and magnetic fields are functions of p(z,t) and J(r,t), and hence the



velocity distribution f_(_,_,t), the system is nonlinear and recourse

must be made to perturbation-theoretic techniques to obtain a solution.

We expand all variables about a macroscopic state of the plasma for which

the velocity distribution f (_,_,t), the electric and magnetic fields
0_

Eo(_,t) and Bo(r,t), and the trajectory of the charged particles

_o(t) are either known or can be solved for. In terms of a small ex-

pansion parameter 5 we then write

CO

fa(r,v,t) = _ 5 n fO_n(r,v,t)
g...a

n=O

(2.10)

oo

E(r,t) = ! 5n En(r't)

n=O

(2.11)

CO

B(r,t) = ! 5n Bn(r't) "

n=O

(2.12)

After substituting the series in Eq. (2.1), we find that the zero-order

velocity distribution must satisfy the equation

_f(zo _f(xo

--_ + Z " vf_ + _ • _ = o
(2.13)

while the higher order corrections, f_n(_,_,t), are determined by

_f0_n _fO_n n

+ v • V fan + _ • _v = - !

k=l

(_V
n¢O

(2.14)



where

q__a
_n(r,v,t) = mcg [En(r,t ) + v X Bn(r,t )] , (2.15)

component of the particle acceleration due to the fields E (r,t)is the
_n

and B (_,t).
_n

Equation (2.14) can be integrated formally by transforming to coordi-

nates (_o(t), _zo(t)) that follow the motion of a charged particle in

the zero-order fields and hence satisfy the equations

dr (t)
_(2o

dt - _o (t) , (2.16)

d_a°(t)
dt - _0(_0 (t)' _C_o (t)'t) "

(2.17)

In this case the left-hand side of Eq. (2.14) can be written in the form

_fan d_o d_(2o _fan
__ v • , (2.1s)

+ dt " 0_o fan + dt

which is readily identified as the total time derivative (d/dr) of

fC_n(_o(t),_g_o(t),t). Here, _0_ is the gradient operator with respect

to _o(t). Therefore the rate of change of fan along the zero-order

trajectory is

dfc_n = n
- _ _k(_:Zo,_o,t) _f(_(n-k)(_°'_g°'t) (2.19)

k=l

This is to be integrated from t = 0 when the sources are turned on, to

the present time t when the particle's position and velocity, ro_(t )

and _Zo(t), coincide respectively with the Eulerian coordinates _ and

v. This gives us



n

f0t (r' v' ,t' )fan (_'_' t ) = - dt' _c_'_o'_o
k=l

= r_o( Zao(where _x_o t'), _o "- t'),

initial conditions are zero.

(r I v I ,t I )_a(n-k)'_o'_o
 Z&o

(2.20)

and it has been assumed that all

In this work we shall consider only equations that are linear in 5.

Consequently, instabilities predicted by this approximate theory may not

be found in a more exact analysis since the nonlinear terms which are

excluded here may stabilize the plasma. This will limit the time interval

over which our equations are valid. Since this work is concerned only

with space-charge waves, we also will invoke the quasi-static approximation

at the outset and assume that the electric field perturbation El(_,t)

can be represented as the negative gradient of a scalar potential, _(_,t),

that is, we assume El(_,t) =-_l(_,t) and hence V X _l(_,t)E = O. This

is equivalent to neglecting interactions which involve the magnetic field

perturbation Bl(_,t), and is valid when the phase velocity of the wave

is much smaller than the speed of light. In this approximation the full

set of Maxwell's equations is replaced by the linearized Poisson's equa-

tion,

V • E l(r,t) = _- Ps(r't) + qa nao f(_l

o CZ

(2.21)

The function fal is obtainable from Eqs. (2.15) and (2.20), where

Bl(_,t) is to be neglected in (2.15). Hence, Eq. (2.21) reads

f f0t• 5]
a

Sfao(Z&o'_o 't' ) Ps(r't)

8_o Co

(2.22)



( 2where ¢UpC_ = nc_oqcz/eomc_ is the plasma frequency of species _. In

writing these equations it is assumed that the source Ps is a term of

order 5. This integrodifferential equation can be solved for the electric

field after specifying the zero-order state of the plasma.

B. Zero-Order State

i. Particle Velocity Distribution

The zero-order state is defined by the equations

8f 8f

o ( ) o--_-_-+ v. _Tf + q E + v X B "-_ o m _o "_ _o -_--- = 0 ,
(2.23)

_B
"_o

V×E (2.24)

VXH = f v+e
-_o qno o'_ o _ '

(_

(2.25)

_7 " E - 1----__o - 6 o qn ° fdv fo ' (2.26)

V • B = 0 , (2,27)
_'o

where we have dropped the subscript _ and will assume that the summation

runs over the particle species. This convention will be followed through-

out the remainder of the chapter. If perturbation techniques are to be

useful, the zero-order state must be chosen so that it is physically real-

izable and yet analytically tractable. With this in mind, we consider a

homogeneous plasma immersed in a uniform magnetic field B with no elec-
_o

tric field present. All spatial derivatives in Eqs. (2.23) (2.27) then

vanish, and the state of the plasma is described by the equations



_f _f

o q (vX o
--_ +- B ) _ = 0 , (2.28)m ,'_ o

I qn ° fdv f v = 0 , (2.29)0 _

I qn fdvf = 0 . (2.30)o

In order to solve Eq. (2.28), it is convenient to express the velocity in

terms of cylindrical coordinates (vi,_pVll) as defined in Fig. I. This

gives us

v= v_ + vz , (2.31)
"_ J..!. II

bf bf bf bf
O O A 1 O ^ O ^

v * vb-_-z
_" £ J- II

(2.32)

B =B_ , (2.33)
_0 0

where _, v@ and z are orthogonal base vectors, and it has been assumed

without loss of generality that the magnetic field is parallel to the z

axis. Using Eqs. (2.31) - (2.33), it is readily established that

_f _f
o o

(v X Bo)" _ = - Bo _- ' (2.34)

and hence Eq. (2.28) can be written in the form

8f 8f
o o

•-_ - C_ = 0c -'_'-_"
(2.35)

i0



v,,

X

Y

Fig. 1.

VECTOR

CYLINDRICAL COORDINATES OF THE VELOCITY

v.

where g : q/Iql is the sign of the charge and _o = JqJBo/mc

cyclotron frequency.

The general solution of Eq. (2.35) is clearly

is the

f = f (v , _/ + ea_ t, ) (2.36)
o o _ c Vll

where f must be chosen such that the total current density and charge
o

density of the plasma vanish in accordance with Eqs. (2.29) and (2.30).

It is observed that the velocity distribution is a function of time only

if it is also a function of the polar angle _. If there is no dependency

on either t or _, the distribution must then be a member of the class

of functions defined by

fo = fo(V,V )
(2.37)

11



It is this class of velocity distributions that will be investigated in

this work.

2. Particle Trajectory

The zero-order particle trajectory which is required in Eq. (2.22)

is governed by the equations

dr (t')

_o = v (t') , (2.38)
dt t _o

d_°(t') q v (t') X B (2.39)
dt' - m _o _o '

since no electric field is present in this plasma model. The solution,

which coincides with the Eulerian variables (_,_) when t' = t, is

readily obtained, and the result is conveniently expressed in matrix nota-

tion in the following manner:

1 T(t-t' ) v (2.40)ro(t')=r _ ~ ,
C

v (t') = R(t-t') • v , (2.41)
_O _

where the elements of the matrices R and T

system are

in a cartesian coordinate

B

cos _ -_ sin _o 0

e sin _ cos _ 0

0 0 1
B

(2.42)

12



J

sin _ -6(1 - cos qg) 0

_(i - cos _) sin _ 0

o o qo

(2.43)

Here, _ has been set equal to _ (t-t'), and it has been assumed that
c

B is parallel to the z axis. It is readily established that the
_o

trajectory is a helical path parallel to the magnetic field. The radius

of gyration in the transverse plane is (L/_c )' and the frequency of

rotation is _ . R(t-t') will be recognized as a rotation operator in
c

velocity space.

C. Dispersion Relation for Cyclotron Harmonic Waves

The spatial homogeneity and time invariance of the assumed plasma

model permits us to solve Eq. (2.22) with transform techniques. We intro-

duce a Fourier transform in space and a Laplace transform in time according

to

El(k,¢O ) = dr dt El(r,t ) exp [-i(¢ot - k • r)] , (2.44)

and the inverse formula

t ~ ~ ,
) = (2_) 3 exp [i(¢ot- k" r)] (2.45)

where k is real and the contour C is a straight line parallel to the

real axis in the lower-half complex _ plane, below all singularities of

the integrand. This choice of C imposes the principle of causality in

that the response of the plasma due to sources that are turned on at

t = 0 is forced to be zero for t < O.

13



Equation (2.22) is transformed first over r. The integral equation
_w

for the k th Fourier component of the electric field then reads

.t

(2

dt' _l(_,t' )

o i 1

_Vo(t_t,) exp k. T(t-t'). = _-- Ds(k,t) ,
o

(2.46)

where v (t-t') is given by Eq. (2.41) and the time-invariant velocity
_o

distribution, Eq. (2.37), has been introduced. Since the left-hand side

of this equation contains an integral of a function of t' multiplied

by a function of (t-t'), we can invoke the convolution theorem

£ f0tdt exp (-lOut) dt' fl(t') f2(t-t') : fl(0_) f2(cu)

to find the Laplace transform of Eq. (2.46):

P v dt c_v (t)

O_ _o
exoE v]I

1

" Ei(k'm) = T" Ps (k'm)
o

(2.48)

In the electrostatic approximation, E(k,cu) = ik_l(k,c0), where _l(k,cb)

is the double transform of a scalar potential. Therefore, the solution

to Eq. (2.48) is

ik PS(_'OJ)
Ei(k,m) = , (2.49)

%k2K(_, k )

14



where the effective dielectric constant of the plasma is given by

2/foK(o_,k)-- 1 + _m d_ dt ik"
k2 ~ _V~o(t)

exp [-icot + i--'- k" T(t) "v]"co _
c

(2.50)

The stability of the assumed plasma - magnetic field configuration is

determined by the kth Fourier component of the electric field, El(k,t),

as t -* _. This limit is obtainable from the inverse Laplace transform

of Eq. (2.49),

(_ i t ps(k,_)exp (_t)
_1(_, t)

2_ CO k2 K(_,_)

(2.51)

with the procedure proposed by Landau [2]. In this procedure the

integration is carried out along a contour C' that is formed by the

continuous deformation of C around the singularities of the integrand

into the upper half plane as shown in Fig. 2. As t -* _, the contribu-

tion from the horizontal portion of the contour vanishes exponentially,

and, according to Cauchy's residue theorem, the limiting form of the

electric field is determined by the encircled poles at _ = _ (k). It
3

can consequently be written in the form

lira El(k,t) = 2_i _ _. exp [i0Jj(k)t]~3
t-.co

J

(2.52)

where

_j(_)

waves

.th
= 1 im [(cu-o_.)E. (k,o_)] is the residue of the 3 pole, and

~j co -*cuj j ~ i
satisfies the dispersion relation for electrostatic space-charge

K[coj(k),k] = 0 (2.53)

15



Ira(w)

(

!

x=POLE OF

I/K (w,_)

Re (w)

Fig. 2. ORIGINAL (C) AND DEFORMED (C') LAPLACE CONTOUR OF INTEGRATION.

The waves predicted by this equation are commonly referred to as cyclotron

harmonic waves. It should be pointed out that this result is based on

the assumption that the numerator and denominator in Eq. (2.51) are entire

functions of _ and therefore the singularities are poles located at

_.(k). If this assumption is not satisfied, the appropriate contribution
3

from any other singularities must be added to Eq. (2.52). It is now clear

that the stability of the plasma is determined by the complex frequency

solutions of the dispersion relation with k real. If Im(_j) < O, the

electric field will grow in time, and the plasma is said to be unstable.

Steady oscillations are excited if Im(_j) = 0, while the oscillations

will decay in time if Im(ej) > 0.

It is our purpose to investigate next the solutions of Eq. (2.53)

for several velocity distributions that are of general interest in plasma

physics. The choice of distributions is guided largely by experiments

that show evidence of instabilities and propagating waves in magneto-

plasmas. The representation of the dielectric constant in Eq, (2.50) is

in its present form inconvenient for this analysis and so, in the next

section, a more useful form will be derived for that function.

16



D. Reduction of the Plasma Dielectric Constant

The purpose of this section is to obtain a form of the plasma

dielectric constant that is convenient for the analytical and numerical

solution of Eq. (2.53), the dispersion relation for cyclotron harmonic

waves. Several representations of this term are available in the liter-

ature [3,4,5,19,49], but only those of immediate interest will be derived

here.

The basic form of the dielectric constant is, from Eq. (2.50),

/0
k 2 _ _v ° (t)

(X

exp[ -i_t + i v1_-- _-T(t).
c

(2.54)

Without loss of generality, it is assumed here that k lies in the

x-z plane at an angle e to the magnetic field as shown in Fig. 3,

permitting us to write for the cartesian components of the wave vector

(kx,ky,kz)--(k ,O,k), (2.55)i II

/
/

/
/

k ,' 8

~_ k,,

I Y

Fig. 3. COMPONENTS OF THE WAVE

VECTOR k.
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while the velocity space integration is most conveniently accomplished

in terms of cylindrical variables (v ,o/,v ) where
3- li

(Vx,Vy,Vz) : (vi cos O/, v3- sin O/, Vll) " (2.56)

We now make use of Eqs. (2.43), (2.55), and (2.56) in order to obtain the

expansion

k.T(t).v= 2k v sin cos + C + k v Co t , (2.57)
3- 3. li ]1 c

and similarly, with the aid of Eq. (2.41), it is readily established that

0 0

k _v (t) -k _cos (O/ +c_ t) +k _. (2.5S)
3- C I1

_0 3- il

Substitution of Eqs. (2.57) and (2.58) in Eq. (2.54) then yields the

expression

2

°/ f0K(_o,k) = 1 + _ -=P- dv V

i__,k 2 ii 3-_00
Sodv dO/ dt i o

3-

cos (, + c_t)
C

(2.59)

where

G(O/,t) = exp -i(co - k v )t + 2i _ sin c. . _ -_- cos O/+ c
C

(2.60)

18



We now make use of the Bessel function expansion [25]

oo

exp (iz cos C_) : _ in Jn(Z) exp (in(2)

n=-oo

(2.61)

to evaluate the integrals with respect to _. This yields

G(_/,t) = 2_

2 k v °° t /Jo _----_ sin c-'7-
C

¢0ct kAY _
sin

cos _ J1 _uc

exp kv,,,,

(2.62)

After introducing the identities [25]

I k v
J 2 ± ±

o to
c

¢ut j2 k v
exp {_inCOct/ ,

sin
n

n=--oo

(2.63)

¢ut j2%t n% k
i cos -_-- Jl 2 _ sin =

03c k_l n
n_-oo

exp (irzo t) , (2.64)
C

in Eq. (2.62) and substituting the result in Eq. (2.59), the dielectric

constant can be written in the form

f m_ _f _fo k vK(_,_) = i + _ dv _-- + k
2 H n

k ±n=-oo

• i dt exp [-i(_0 - k v - rzo )t] ,
il li C

(2.65)
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where the differential volume element in velocity space is dv = 2_v dv dv

since the integrand is no longer a function of _/.

The integration with respect to t will converge only if Im(Cu) < O.

Under this restriction, it is clear that

_0 °°

i , (2.66)
i dt exp [(L-i,cu - k v - nCUc)t] = ¢u k V nOJil II

II II c

and hence Eq. (2.65) reduces to

2 2<?>nCu _f _fo_ n

2 li 6u- k v - ntu

k ± _i n cn=-co

Im(_) < 0 , (2.67)

which is equivalent to an expression derived by Harris [5]. It will be

observed that if co is located on the real axis, the integration with

respect to v is no longer defined since a pole will be found on the
II

contour of integration at vii = (co - nC0c)/kll " The correct definition of

the dielectric constant for Im(c0) _> 0 is the analytic continuation of

Eq. (2.67) which can be obtained by using Landau's technique [2]; that is,

as co follows a continuous path across the real axis, into the upper half

plane, the contour associated with the v integration is deformed into
II

the complex plane ahead of the advancing pole at vll = Wn [-=(¢0 -n¢Oc/kll ]

as shown in Fig. 4 for k > O. This process leads to the following defi-
li

nition of K(0o,k) :

2O



'_(_,k)

2 o_ oo _(v)

k 2 II (_ - k v - nOD
-_ il IL C

2 co )

_ (_P .-_,,-co P s°° Hn (vii

1

k 2 dvii _ - k v - n_

+

I1 II C
n=

2 co co Hn/VH __ /

k 2 -k v -n¢II II C
n=.-_o

oo

Ik, Ik2 n=-<>o

2 oo

+ _ <_-n%2.i ) '
Ik Ik2 n---_o

Im(_)< o ,

, z,,,(_) = o,

Im(_) _> 0

(2.68)

VII

Vii r
Im (wn)< 0

Pll

Im(wn)=O

Vii r

VII

Im(wn)>O
Vtlr

Fig. 4. ANALYTIC CONTINUATION OF PLASMA DIELECTRIC

CONSTANT TO UPPER-HALF COMPLEX FREQUENCY PLANE BY

DEFORMATION OF CONTOUR OF INTEGRATION IN COMPLEX

v PLANE.
II
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where P designates the principal value of the integral and

oo n/_£c _f _v_l / k/]c__/0 o j2Hn(Vtl) = 2_ dv _-v + k v .
.k 2. II n j.

(2.69)

Other representations of the dielectric constant are derivable from

Eq. (2.59), and these will be presented in succeeding chapters as needed.

Further evaluation of the integral in Eq. (2.67) requires a specifica-

tion of each particle velocity distribution. However, before doing this

it is instructive to consider two classes of distribution functions that

the form of K(_,k) and lead to interesting conclusions.simplify

1. Spherically Symmetric Velocity Distributions

This class is defined by

f = f (v) , (2.70)
o o

where v[_[v_'2 + 2)_j.. is the speed of the particle.
vii -

this form, it is readily established that

For functions of

_f _f _f
1 o 1 o 1 o

v 5v - v _ - vDv
J_ I] il

(2.71)

and hence, after this has been used in Eq. (2.67), together with the

identity

nc_ +k v
c ]I II co

= -i +
co - k v -nco co - k v - nt_

II II c II II c

(2.72)

the dielectric constant can be written in the form
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2fo_ 1 o

k

j2(k )
°+ _ dvCO o

k 2 v _v Co- k v - no0
n=-oo Jl H c

Im(_o) < 0 ,

(2.73)

where use has been made of the identity [26]

oo

: j2(k )n
n=-oo

= 1 (2.74)

It is shown in Appendix A that for k real and Im(_) < O, the

dielectric constant, Eq. (2.73), is nonzero if the velocity distribution

of each particle species is a monotonically decreasing function of v.

Since the dispersion relation is obtained by setting K(_,k) equal to

zero, this result has the interpretation that the plasma cannot support
i

space-charge waves which grow with time. Bernstein [3] proves this theorem

for the case of an electron plasma with a neutralizing background of posi-

tive charge. The electron velocity distribution in that case is an iso-

tropic Maxwellian. However, the proof in Appendix A has no restriction on

the number of particle species or on the isotropic velocity distribution.

2. Distributions with the Form f (v ,v ) = f (v) 5(v - v )
O J. 11 l / 11 011

Here, all particles of a given species drift parallel to the

magnetic field with the same speed. It is pointed out that because of the

unit normalization of f , that is, f dv f = l, the function f (v)
0 _ 0 _

must satisfy the condition

f2_ dv _ (v)v = 1 (2.75)
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Substitution of the velocity distribution

f (v ,v ) =f (v) 5(_- v ) ,
o i II i 2. Oli

in Eq. (2.67) yields after integrating with respect to v
II

(2.76)

_ n_
c

K(_,k) = 1 - 2 Pn c_ - k v
O_ C n=-=oo

- nO_
II Oli c

k 2 oo

+ JdL2 qn
k

n=--oo
2c

-- n,, o,, %)(_ - k v

(2.77)

where we define

P
n

2

c ± 2. j2= -2_ --z dv

k 2, dv nJ.
.1.

(2.78)

So (v)vqn = 2_ dv2. f± (v_) J2n " (2.79)

It is observed that the roots of K(m,k) = 0 must occur in complex con-

jugate pairs if k is real, indicating that for every mode that grows

with time, there is one that decays.

E. Discussion

The main purpose of this chapter has been to derive the dispersion

relation for electrostatic space-charge waves propagating in a hot, colli-

sionless plasma immersed in a uniform magnetic field. It has been shown

that the plasma, in the quasi-static approximation, has an effective

dielectric constant K(_,k) that is dependent on both frequency and wave
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vector. The dispersion relation is obtained by setting K equal to

zero. The form of K for special classes of velocity distributions was

also considered. In the following chapters, the solution of the disper-

sion relation will be considered for several specific velocity distribu-

tions.
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III. PERPENDICULAR PROPAGATION OF CYCLOTRON HARMONIC WAVES

The purpose of this chapter is to solve for the dispersion charac-

teristics of cyclotron harmonic waves propagating perpendicular to the

magnetic field. The plasma will consist of an equal number of electrons

and ions, but the frequency of the waves will be high enough so that the

motion of the ions can be neglected. By considering a series of electron

velocity distributions, we shall demonstrate how instabilities set in

through mode coupling, and derive threshold conditions for the onset of

these instabilities.

The dispersion relation is presented in Section A, and some basic

properties of the solutions are derived. In Section B the dispersion

relation is solved for the ring, spherical shell and Maxwellian distribu-

tions, and the onset conditions are obtained for instability in a plasma

consisting of a mixture of the ring and Maxwellian distributions. In

Section C the instabilities are classified as either absolute or convec-

tive. A study is made in Section D of the steady state conditions of the

plasma, with and without collisions, when cyclotron harmonic waves are

excited by a source operating at a real frequency _ . The chapter ends
O

with a discussion of the results.

A. Dispersion Relation

After setting k equal to zero in Eq. (2.67), the dispersion rela-
IJ

tion can be written in the form

2 o0

cu

K(CO,k±) : i - -2.2 _ an(k )
OD

O n='-oo

ncu
c

tD - nOD
C

- o , (3.1)

where

c_ / 1 o j2c na (k) - k2 v
n 1 . 1

1
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and the summation over particle species has been dropped since only elec-

tron motion is considered. For computational purposes, an integral repre-

sentation of the dielectric constant K(_,k ) has been useful. This
i

form may be derived from Eq. (2.59) by carrying out the integration over

velocity space first. After setting k equal to zero and integrating

with respect to _, with the aid of the second identity in Eq. (2.62),

the dielectric constant in the direction perpendicular to the magnetic

field is

2 _f

f? si_K_,k ) = 1 - _ dt exp (-_t)2_ dv v dv k _--v
± k 2 . i ± ±

c _i_A- sin •
. cos T Jl cu

c

(3.3)

This expression can be pu S in a more convenient form if an integration by

parts with respect to v is carried out. The result is
l

2

K(co,k ) = I + -_2 dT exp i ¢0 T sin T F (T)
.L 03 O

CO C
C

(3.4)

where

(3.5)

= F (T + 2_) (3.6)
o

For convenience, T has been set equal to _ t. It is observed that
c

Eq. (3.4) does not converge if Im(_) _ 0. In order to obtain the analytic

continuation into this part of the complex plane, use is made of the peri-

odicity of F (T) and the fact that Im(m) < 0, in order to transform
o P

Eq. (3.4) to the following equivalent forms:
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co
2 -- r2_(n+l)

O3 n_
C

_ "r) sin 1: F (_)dT exp -i _o o
• C

= 1 +-_ exp - 2Tml

_c =0

dT exp
--_ T) sin T F ('[)-i °3c o

2

= i +-_2

0_
C

/o I--)
1 - exp (-2_i _c ) dT exp i _-Tc sin T F°

2
o_

C

sin _T (T + x) ,
sin _ sin • F o

(3.7)

where _ has been written for (_/_c). Clearly, the last expression is

defined for all _, except possibly at the points _ = r_ , and hence
C

is the proper analytic continuation of K(_,k ). This form is particularly
1

convenient for computational purposes since there are many efficient algo-

rithms that can be used to integrate numerically, such as Simpson's method.

Before solving the dispersion relation exactly, we will examine two limiting

forms of that equation.

I. Cold-Plasma Limit

In this case the electrons have no motion in the unperturbed

state of the plasma, and hence we can write

f (v )_ I 5(v )8(v ).
0 J. t Vll 2 _V / II

J.

(3.8)

Substituting this expression in Eq. (3.2), we find

28



a
n

n=+l
;

n = +2, +3, ...

(3.9)

which, when combined with Eq. (3.1), leads to the familiar cold-plasma

dielectric constant perpendicular to the magnetic field

2
03

W) = 1 - P (3 lO)
c 2 2

03 - 03
c

Clearly, the equation Kc(03) = 0 has a root at the upper hybrid fre-

03__ = (032 + 032) _. Since there is no dependence on the wave numberquency,
H p c

k , the oscillation at 03H persists without spatial dispersion.

2. Cutoffs and Resonances

If the unperturbed velocity of the electrons is nonzero, Eq. (3.1)

indicates that the plasma supports space-charge waves which propagate per-

pendicular to the magnetic field. The cutoff (k _ O) and resonant

(k _ _) frequencies of these waves are obtainable from the small and

large argument expansions of the plasma dielectric constant. If k is

small, we use the approximation [26]

J (z)_ 1 (2) Inl
n _ ' (3.11)

in Eq. (3.2) to obtain

a
n

1 k2(Inl-l)
_ Cn&

(3.12)

where

= -I fdv v21nl-I ,A-U-,_,_f°.c

n 221nl-l(inl!) 2 co2(Inl -I) "_ i i
c

(3.13)
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Substituting Eq. (3.12) in Eq. (3.1), the limit of K(cu,k )
1

then has the form

as k -* 0
2.

1 n

1 -

2

P
2 2 '

co - co
c

2 2(Inl-1) 2co c k co ncu
p _ n.l. _ c

2 2 2 2 cu - ncu
o_ - CD 0_ c

c c

cu_ n_
c

(3.14a)

c

(3.14b)

for all Inl > 1. Clearly, the dispersion relation

in this approximation at the frequencies

K(cu,k ) = 0 has roots
.L

O) = + +0_ c ,

and

1 c co
n P k2(Inl -I (3.16)

c

c

where K (_) is defined by Eq. (3.10). Thus, cutoffs occur at the posi-
c

tive and negative upper hybrid frequency and at all harmonics of the elec-

tron cyclotron frequency excluding n = ±1.

As k _ _, the plasma dielectric constant approaches a form
1

that is obtainable by substituting in Eq. (3.2) the large argument approxi-

mation of the Bessel function [26],

jn(Z ) _ 2 cos z 4 - '
(3.17)
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and combining the result with Eq. (3.1). Assuming co _ n6oc, it is
th

sufficient to retain only the n term in the infinite series and write

for large k
i

2
d 6o n6o

,¢(_,k )_ 1 n __ c - 0 , (3.18)

± k 3 6o2 6o - n6o c
.k c

where

d
n l o= - dv _'_ _ cos 2 "

&
J.

4 2) . (3.191

Clearly, in this limit, the dispersion relation has roots at

co dn
6o = n6o +-_

c 6o2 '
c

n = ±1, ±2, ... , (3.20)

implying that a resonance is found at each harmonic of the electron cyclo-

tron frequency.

B. Dispersion Characteristics for Perpendicular Propagation

If k is finite and nonzero, the dispersion relation, Eq. (3.1), is

difficult to solve as a result of the infinite series, and recourse must

be made to a numerical solution in order to obtain a detailed description

of the behavior of cyclotron harmonic wave propagation. However, simplify-

ing assumptions can be made which enable us to obtain an analytical repre-

sentation of the dispersion characteristics and hence facilitate our study

of the waves in certain ranges. For example, consider the case where

2 2
(6op/6o) << 1 Assuming now that _ _ n6o , it is reasonable to approxi-

c " c th
mate the infinite series in Eq. (3.1) by the n term and write the dis-

persion relation in the form
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2
o_ noa

K(_,k ) _ 1 - an ) _ - n_
_ c

c

= 0 . (3.21)

Solving for the frequency, we find

_(k ) _ n_ + a n ,
C

C

(3.22)

establishing that there is a mode near each harmonic of the electron cy-

/ 2/_2) is small and hence confirming our originalclotron frequency if _p_ c

assumption that led to Eq. (3.22). Two forms of a (k) are examined
n

here. First, if the velocity distribution is such that an(k_n) undulates

about the line a = 0, the dispersion characteristics predicted by Eq.
n

(3.22) will have the form shown in Fig. 5a. It is noted that the ampli-
2 2

tude of the undulation in the dispersion diagram increases with (_p/_c).

Consequently, it is possible that the loops above a given harmonic will

approach the loops below the harmonic immediately following it and lead

to coupling of the modes and hence instability. This possibility is

examined more extensively below. On the other hand, if the velocity dis-

tribution is such that a (k) > 0 for all real values of the wave number,
n

Eq. (3.22) indicates that the modes are confined to the frequency band
2 2

< (n+l_c as shown in Fig. 5b. If this result is true for (_p/_c)

arbitrarily large, no mode coupling is possible, suggesting that instability

does not occur in this case. There is, in fact, a theorem which guarantees

the stability of the plasma if a (k) > 0 for all n and which can be
n

stated in the following way: A sufficient condition that a magnetoplasma--

characterized by an electron velocity distribution fo(V±,V H) and a back-

ground of immobile ions--supports stable cyclotron harmonic waves propaga-

ting perpendicular to the magnetic field is

_Uc /d _fo j2
an(k) = - _ v_vx n > 0 ,

(3.23)

for all Inl > 0 .
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c

(b) Absolutely stable

k_

Fig. 5. TYPICAL DISPERSION CHARACTERISTICS OF CYCLOTRON
HARMONIC WAVES PROPAGATING PERPENDICULAR TO THE MAGNETIC

FIELD.

In order to prove this theorem, let _ = _r + i_i, and then separate

the dispersion relation, Eq. (3.1), into its real and imaginary parts:

2 o0

_D
C n=l

2n2_ 2

2 22) c
- _. - n co an D(_r = 01 c '_i )

, (3.24)

Im (K):-2C_iO_ r

2 co

O_
c n=l

2n2_ 2
c

an D(C_r,_i ) = 0 ,
(3.25)
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where

2

( 2 _ 2 _ 2 2) + 4 2 2D(cur,cui ) = CUr i n coc r i ' (3.26)

Here, use has been made of the symmetry condition a = a . Assume now
n -n

that a > O for all n > i. As a consequence of this assumption, Re (K)
n

can vanish only if _r _ O, while Im (K) will vanish only if (CUr_i ) = O.

Hence, we conclude that _. _ O, proving that if k is real, all solu-
1 1

tions of the dispersion relation, _(k ), must be real in this case.

This implies plasma stability. If more than one particle species is

taken into consideration, it is clear that the conclusion of the theorem

is still correct so long as each velocity distribution satisfies a condi-

tion analogous to Eq. (3.23). It should be pointed out that Baldwin and

Rowlands [27] have also obtained this theorem in a paper published during

the preparation of this manuscript.

One class of velocity distributions that satisfy Eq. (3.23) is de-

fined by the condition

(v ,v )
o j. jl

dv
.L

< 0 , (3.27)

for all v > O.

inequal ity

Hence a necessary condition for instability is that the

 fo(\'v )
(_v

I

> 0 (3.28)

must be satisfied for some range of v . It is difficult to determine

whether or not an instability does indeed exist in the general case. In

regard to this, it may be useful to approximate the dispersion relation

[Eq. (3.1)], by two terms of the series, giving

2

CU [a nCU
K(_,k ) _ i - -_ c

1 CU2 n CU - nCUc
c

(n + l_c ]

+ an+l co - (n + l)C_c] = 0

34
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which can be transformed to a quadratic equation,

2 2

- q-_ic+ q-_c_= 0 (3.30)

where

2

ql (2n + i) + a n

c

and

I 2 (an I

0_

q2 = n(n + i) 1 + _ + an+l) (3.32)
L0
c

Equation (3.29) describes the interaction between the two modes shown in

(_212
Fig. 5 for relatively small values of _ _c ), and it is clear from

Eq. (3.30) that the frequency is not necessarily real. Complex solutions

are found if

1 2

q2 >_ ql ' (3.33)

implying that instabilities are present. However, this result depends on

the validity of the approximation that was used to obtain Eq. (3.29).

In order to obtain a more detailed picture of the propagation charac-

teristics of cyclotron harmonic waves, we will devote the rest of this

chapter to computations which lead to an exact numerical solution of the

dispersion relation. This will enable us to obtain exact threshold condi-

tions for instability and a clear interpretation of the instabilities in

terms of mode coupling. Four electron velocity distributions are chosen

for study. The first is the ring distribution which describes a mono-

energetic collection of electrons that move only in the plane perpendic-

ular to the magnetic field and are uniformly distributed in velocity

space on a circle with radius v , as shown in Fig. 6a. This is to be
ok

distinguished from a delta function distribution in which all electrons
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Fig. 6. RING (a) AND DELTA FUNCTION (b) VELOCITY DISTRIBUTIONS.

have the same phase at every instant of time, and consequently, the state

of the plasma is represented in velocity space by a single dot which

rotates about the origin at the cyclotron frequency, as illustrated in

Fig. 6b. It will be noted that the delta function distribution is time

dependent and hence is not a member of the class of velocity distributions

examined in Chapter II.

36



The ring distribution occurs naturally in the earth's magneto-

sphere [28] when high-energy charged particles, streaming in from the

sun, are trapped by the earth's magnetic field at the bow shock. This

distribution may also be found in laboratory plasmas in connection with

experimental studies on controlled thermonuclear fusion. An example of

this is the DCX [29] where high-energy particles, injected perpendicular

to the magnetic field, are ionized by interacting with a cooler back-

ground plasma. The resulting charged particles are trapped by the magnetic

field with their transverse energy exceeding their longitudinal energy on

the average.

It should be pointed out that plasmas with anisotropic velocity dis-

tributions may not remain in this state for a relatively long period of

time. In the event that there is a background of heavy neutral particles,

collisions between electrons and the neutrals may play an important role.

For example, if only momentum is transferred during a collision, the elec-

tron velocity distribution will have the form of a spherical shell after

approximately one collision period. If energy is also transferred during

the collisions, the distributions will evolve toward a Maxwellian. For

this reason, the dispersion characteristics associated with the spherical

shell and Maxwellian distributions will also be examined below. Finally,

a mixture of the ring and Maxwellian distributions will be considered

since this condition is often found in devices such as the DCX [29J.

1. Rin_ Distribution

The analytic representation of this distribution is conveniently

written in terms of delta functions as

fo(\,v) = 1 S(v - v ) ) (3.34)
2 _Vol 1 ol II

After substituting this expression in Eqs. (3.2) and (3_) and carrying

out the integration with respect to the velocity, we find

1 , (3.3s)
an( ) -
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and

Fo (T) = Jo/2_ sin , (3.36)

where _ has been written for (klVo±/¢0c). Substitution of Eqs. (3.35)
±

and (3.36) into Eqs. (3.1) and (3.7), respectively, yield the dispersion

relation associated with the ring distribution,

n
c.L 2 _. ¢o - n_

t._ ± ±
c n =-'c°

(3.37a)

2

_2 _0 _ sin gT sin T J (2_ COS 2) = 0 • (3.37b)= i + dT sin _ _ o ±
Co
c

Figure 7a-g shows the dispersion characteristics for k_)
set equal

to i, 3, 5, 8, 10, 20, and m that were lobtained by solving Eq. (3.37b) _

numerically. Cutoffs are observed at each harmonic of the electron

cyclotron frequency, excluding the first, and at the upper hybrid fre-

quency. Resonances occur at all harmonics of _ . These observations
c

are consistent with the results of Section A.

2 2

If (_p/_c) is small, each mode is accurately described by

Eq. (3.22) For the ring distribution, the coefficient a (k) is
• n ±

given by Eq. (3.35), and hence, in this approximation, the frequency of

the mode is

n
Co(k ) = nco + p 1 (3.38)

2 _ 8_ '
± c _ ± ±

c

which accounts for the undulations seen in Fig. 7. It will be noted

that Eq, (3.38) predicts that the modes pass through points defined by
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[_ = n_ ,c Jn(_& ) =0] and [_ = n_ c, (_Jn/_±) = 0], in agreement with

the exact numerical solution. In order to prove that this is true for

2 2

arbitrary values of (_p/coc), it is only necessary to substitute in

Eq. (3.37b) the identity

T

T 1 8_ _Tsin T Jo (2_± cos _) =
l l

(3.39)

and then integrate by parts with respect to T. This leads to an alter-

nate representation of the dispersion relation

2

K(O_,k ) = 1 - p _X
. 2 sin _x _--

co l
c

(,.)]= o , (3.40)

where use has been made of the Bessel function identity [26]

2-- J

J0 _t+v
(2z cos T) COS (P-v)T dT= J (z) Jr(z)

Clearly, if _ [m(_/_ )] is an integer n, Eq. (3.40) implies
c

n
n ± _/ - 0 ,

.L

verifying that the modes pass through harmonics of the electron cyclotron

frequency when _ is a zero of the nth-order Bessel function or its

first derivative.

2 2

As (_p/_c) increases, the loops above a given harmonic approach

the loops below the harmonic immediately following it. The points at which

the loops can couple must always lie between _nm and _(n+l)m, where _nm
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th
represents the m zero of J (_). The first point at which two loops

n ±
2 2 (n 2)touch is (_p/_c) = 6.62 when the (n = 3) mode touches the =

mode for the first time. This is followed very rapidly by touching of

_2 2
the (n = l) and (n = 2) modes at (p/_c) = 6.81. After coupling

has occurred, there are ranges of _ in which purely real solutions

for _ do not exist. It is very important to investigate the complex

solutions to the dispersion relation in these regions. The real parts

of the complex conjugate roots for frequency are indicated by fine lines

and the corresponding imaginary parts are shown dotted in Fig. 7d-g. The

presence of these imaginary parts has the important practical significance

that an individual propagating mode will grow in time to an amplitude lim-

ited only by the validity of the small-signal theory which has been used

in obtaining the dispersion relation. It is pointed out that the imag-

inary frequency components can become very strong indeed. For example,

when the imaginary component of (_/_c) reaches unity, growth rates of

the order of 50 dB per cyclotron period (= 2_/_c) are implied. It is

an interesting feature of the complex roots that the lowest modes do not

show the highest temporal growth rates. This is indicated particularly

clearly by Fig. 7g.

A further point to note is the possibility of an instability

with zero real part. This can be seen from a study of the behavior of

the downward loops of the (n = l) mode. As (_2/_)- increases, this
P

2 2
loop approaches the (_ = 0) axis, and finally touches it when (_p/_c) =

17.02. Beyond this value, purely imaginary solutions can be found. These

are indicated in Fig. 7f,g. The threshold conditions for this instability

are obtained by setting _ equal to zero in Eq. (3.37a) and expressing

the result in the form

l 1 Jo(5) J1
- , (3.41)

2 2 ±

where the right-hand side is plotted in Fig. 8.

equation can be satisfied only if the llne

Since _ is real, this
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1 1
= const.

exceeds a minimum of [Jo(4 ) Jl(_±)/_± ]" When this occurs, there exist

purely imaginary roots of the dispersion relation, implying that plasma

fluctuations will grow in time without propagation. It is clear from

Fig. 8 that this can occur only if _ lies between succeeding pairs of
l

zeros of Jo and Jl'

Jo(,UJ.) Ji (,u.I.)
.u.,.

2 4 6 8

,IJ.L

Fig. s. P_._TOF [Jo(_ ) Jl(_.)/_.] vs v_..

In order to summarize these results, we list in Table 1 the

lowest threshold conditions for instability in the first four frequency

bands.
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Table I

INSTABILITY THRESHOLD CONDITIONS FOR RING DISTRIBUTION

Frequency Band

o < (_/%) < i

i < (_/%) < 2

2 < (O_/C_c)< 3

3 < (_/%) < 4

2 2
Values of (_0p/_ c )

for Onset of Instability

17.02

6.81

6.62

6.94

2. Spherical Shell Distribution

The spherical distribution can be expressed in the form

f (v,v)- i 5(v-v ) (3.42)
0 I II 4_v 2 o '

o

2where v = + v This describes a plasma in which all electrons have
II

the same speed, v , and are isotropically distributed in velocity space
o

on a sphere of radius v . The ring distribution would, in principle,
O

relax to this case after the electrons have undergone collisions in which

only momentum is transferred.

In order to evaluate Eq. (3.2) for this case, it is convenient

to work with spherical coordinates, (v,e,_/), in velocity space. The

coefficient a can then be written in the form
n

 c;0of0 j2a (k) = -2_ -_ dv -_v v de n sin _ sin _ .
n ± k

l

(3.43)

Since f (v ,v ) -= f (v), use has been made of the relationship
o i II o

_f _f
1 o 1 o

v _v vT_
.1. .L

(3.44)
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The integration in Eq. (3.43) can be carried out in four steps:

(a) Subsitute the identity [26]

j2 (k±v± sin e/ 1 f0_ /2 kv )
n k coc = _ dC_ Jo -_c sin e sin (2 cos 2na ;

(b)

(c)

(d)

Integrate with respect to e using the Bessel function

integral [25]

(z sin e) sin e-
sin z

Substitute the velocity distribution, Eq. (3.42), in the

result and integrate with respect to v;

Integrate over _ with the identity [25]

(3.45)

(3.46)

J2n(Z) = 2_ f0 _/2
d_ cos (z sin _) cos 2n_ . (3.47)

This procedure leads to the expression

J (2_)
2n ±

_2
±

and hence the dispersion relation, Eq. (3.1), is

(3.48)

2 _ (2 q) nco
co I J2nK(_,k )= 1 P c

2 _2 co - nco± CO C

c n=-oo ±

, (3.49)

where _± has been written for (kiVo/coc). This expression is readily

transformed to other forms. For example, an integral representation is

obtainable from Eq. (3.7) after the function F (T), defined be Eq. (3.5),
O

is evaluated. For the spherical shell distribution, that function is

given by
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sin )
F (T)= , (3.50)

o T

2_± sin

where use has been made of Eq. (3.46). Hence an alternate form of the

dispersion relation is

2

K((_,k ) = i + _ dT
1

O3
C

sin gT sin _ sin cos

sin _
±

(3.51)

which is also expressible in terms of Lommel's function [25]

S_l,,(_.)- -1 [_/2-- dT cos VT cos
Yx

V sin -2- ¢0
z

(zcosT) , (3.52)

if the identity

T cos os _l cossin _ sin 2_± _ dT
l

is substituted in Eq. (3.51) and an integration by parts is carried out.

This yields the representation

i -2 S-1,2_
K(_,k) : 1 +_ + 4 (2_±)

(3.54)

When

The computed dispersion characteristics are given in Fig. 9.

2 2 th
(_p/_c)__ is small, the n mode is represented by the function

2 (2_. !1

CO

¢0(k ) = n_ i + --_ J2n2 2
c

c _±

(3.55)
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Fig. 9. DISPERSION CHARACTERISTICS OF PERPENDICULARLY PROPAGATING

CYCLOTRON HARMONIC WAVES FOR SPHERICAL SHELL DISTRIBUTION.
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which has been obtained by combining Eqs. (3.22) and (3.48). This ex-

pression indicates that the dispersion curve undulates about _ = n_c,

passing through the harmonic when the equation, J2n(2_ ) : O, is satis-

fied, which is in agreement with the exact solutions in Fig. 9. As

.2 2
(_p/_c) increases, the amplitude of the undulation also increases, lead-

ing to mode coupling and hence instability. The lowest threshold condi-

tions for these instabilities in the first four frequency bands are given

in Tsbl9 2. When these results are compared with the numerical instability

criteria for the ring distribution (Table 1), two important differences are

observed: (1) the threshold conditions for instability in a plasma with

a spherical-shell electron velocity distribution greatly exceed that of

the ring distribution; and (2) unlike the ring distribution, no zero-

frequency instability is associated with the spherical shell. The strin-

gent requirements for instability of the spherical shell are closely

related to the fact that electron energy is no longer confined solely to

the transverse plane, but is also distributed parallel to the magnetic

field.

Table 2

INSTABILITY THRESHOLD CONDITIONS FOR SPHERICAL SHELL DISTRIBUTION

Frequency Band

o < (_/%) < 1

1 < (_/_)<2
C

2 < (_/%) < 3

3 < (_/%) < 4

2 2
Values of (_p/_c)

for Onset of Instability

Plasma absolutely stable

215.38

57.05

47.91

The absence of the zero-frequency instability in this case is

apparent in Fig. 9g. This can also be established from the dispersion

relation if _ is set equal to zero in Eq. (3.49). After using the

identity [26]

J2n(Z) = 1 ,

n=-oo

(3.56)
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the dispersion relation and the threshold condition for this instability

reduce to

2

i + p o

¢02 _2
c j_

= 0 . (3.57)

Since the left-hand side of this expression is positive definite for real

and nonzero _ , instability can never set in.
i

3. Maxwellian Distribution

It is important to consider the Maxwellian distribution since

it may be closely approached in many laboratory plasmas. Its analytic

representation is given by

• 1 \3/2

12 2)
vi+v.

exp , (3.58)

where v t is the electron thermal velocity (ETe/me)_" After substituting

this expression in Eqs. (3.2) and (3.5), and making use of the identities

[25]

_0 °° I_4_ 2 2
dt exp J (t2)t = p

2p /

exp (_p2) in(p2) , (3.59)

and

So <-dt exp Jo(at)t = 2p exp , (3.60)

the functions a (k) and F (T)
n ± o

have the form

a (k) =
n l %

exp (-_) In(_)
(3.61)

F (q:)= exp (-2h sin 2 "[)o 2 '
(3.62)

6O



where )X = (kvt/¢o c)2.

relation is

Hence, from Eqs. (3.1) and (3.7), the dispersion

K( ,k )= 1
±

2 0o

_0 exp (-h) I (h) n03

p _ n c (3,63)2 h tu - ntu
£u c

c n =-oo

2

= 1 +-_2 dT
03

C

sin _T

sin _ (sin T exp -2h cos = 0 . (3.64)

Equations (3.63) and (3.64) are equivalent to representations given by

Bernstein [3], when he demonstrated that all solutions of those equa-

tions correspond to stable waves. This conclusion is consistent with

the theorem proved at the beginning of this section since it is readily

established from Eq. (3.61) that a > 0 for all n.
n

The dispersion curves associated with the Maxwellian distribu-

tion are shown in Fig. i0. It is clearly seen that each mode is confined

th
to a specific band As (032/032) _ _, the frequency of the n mode

" pl C "

increases from

2

_0

O_(k ) = n03 1 + _p

± c 2
C

exp In( )]h
(3.65)

when the plasma density is low, to the limiting values shown in Fig. i0.

No mode coupling ever occurs, implying that the plasma is absolutely

stable.

4. Mixed Distributions

If a group of electrons with an isotropic Maxwellian velocity

distribution is added to the ring distribution of Section BI, the disper-

persion relation for purely perpendicular propagation is, in the notation

of Eqs. (3.37) and (3.63),
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Fig. i0. DISPERSION CHARACTERISTICS OF PERPENDIC_RY PROPAGATING

CYCLOTRON HARMONIC WAVES FOR MAXWELLIAN DISTRIBUTION.
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exp (-_) _n(_) n_
°K(tO,k) = 1 - _ tO - n_

_u c
c n _-°o

+ (1- _) _ _ _ _ _ - n_C= 0 , (3.66)
1 1

n=-oo

where _ defines the proportion of the total electron density that is

Maxwellian. As pointed out previously, situations similar to this may

be approached in certain laboratory plasmas, for example in the DCX [29].

A study has been made of this dispersion relation to determine

the threshold conditions for instability, in the first four frequency

bands, due to mode coupling of the type indicated in Figs. 7 and 9. Two

modes just couple in that case when the following equations are satisfied:

_k
I

- 0 (3.67)

_(k ,_)
J" = co

_ , (3.66)

where _(k ,_) satisfies the dispersion relation,

K[CO(k ,_]),k ,q] = 0 , (3.69)
I I

2 2
and q has been written for (_p/_c). The results are shown in Fig. ii.

When G = 0 (that is, the electrons are exclusively in the ring group),

2 2

we retrieve the critical values of (_p/_c) that are given in Table i.

As G increases, the threshold conditions become strongly dependent

on the velocity ratio parameter _ = (Vo±/Vt). In the first frequency

(2/ 2) increases monotonically withband, Fig. lla indicates that _c

6. The remaining three bands have a more complicated structure.
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Fig. ii. CRITERIA FOR THE ONSET OF INSTABILITY FOR PERPENDICULARLY

PROPAGATING CYCLOTRON HARMONIC WAVE IN A MIXTURE OF (_) MAXWELLIAN

AND (i-0_) RING ELECTRON VELOCITY DISTRIBUTIONS.
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For a given value of 5, the instability threshold condition may be

lowered if 8 is sufficiently large. Indeed, Figs. llb and llc show

2 2
that instabilities are predicted for values of (_p/_c) that correspond

to stability when the electrons are exclusively in the ring group. This

also has the effect of increasing the maximum attainable growth rate of

instabilities in a given frequency band. This is clearly illustrated in

12 where the maximum value of (_i/_c) is plotted as a function ofFig.

5. It is seen that the growth rate of instabilities associated with the

ring distribution can be increased by adding to that distribution a group

of Maxwellian electrons.

C. Classification of Instabilities

The uniformity of the plasma model that is under investigation has

permitted us to look for solutions of the linearized differential equa-

tions that have the form

exp Ii[_0(k)t - k- r] 1 ,
(3.70)

where the frequency and wave number are connected through the dispersion

relation,

: 0 . (3.71)

If _ is real and Im [_(k)] < O, Eq. (3.70) implies that the amplitude

of the perturbation will increase exponentially with time for any _I.

Hence, within the validity of the linearized theory, the plasma is unstable

and no steady state conditions appear possible. However, it was clearly

pointed out by Sturrock [30] that there are two distinct types of insta-

bilities, one of which does lead to a steady state. This distinction

becomes apparent only after a spectrum of waves is superimposed by inverting

the Fourier and Laplace transformations. This inversion can be written

in the form

fcd f dk(2_) 3 A(CO,k) exp [i(_ot - k. r)] ,

(3.72)
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Fig. 12. MAXIMUM INSTABILITY GROWTH RATES FOR A MIXTURE OF

MAXWELLIAN AND RING ELECTRON VELOCITY DISTRIBUTIONS.

where A (_,k) is the associated amplitude of the wave. As t

Eq. (3.72) may take on one of two forms as illustrated in Fig. 13. The

disturbance may grow in time at every point in space, or, if the speed

of the pulse is sufficiently large, it may propagate away from a region

of space while growing with time, leaving the plasma unperturbed. The
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Fig. 13. SKETCHES ILLUSTRATING ABSOLUTE AND CONVECTIVE INSTABILITIES.

Z

former situation is referred to as an absolute instability and the latter,

as a convective instability.

The importance of making this distinction should now be clear. If

the plasma is convectively unstable, a steady state exists and hence it

should be possible to excite sinusoidal oscillations, characterized by

a real frequency and the corresponding complex wave number solutions of

the dispersion relation. This effect will be totally washed out if an

absolute instability is present.

This section is devoted to a classification of the electrostatic

instabilities of cyclotron harmonic waves propagating perpendicular to

the applied magnetic field. To carry this out, we will use the now well-

established method that was developed by Derfler [31], [32], Bers

and Briggs [33], and Briggs [34]. The stability criterion is based on

the form that is acquired by Eq. (3.72) as t _ _. If that limit in-

creases with time for any _, the plasma is absolutely unstable; if

the limit approaches zero for a fixed _, the instability is convective.

In the following subsection, we will describe how that limit is obtained,

and then apply the results to unstable cyclotron harmonic waves.

I. Stability Criterion

For purposes of illustrating the basic concepts governing the

stability criterion, we will derive the asymptotic form of the electric

field when spatial variations occur only along the x axis, perpendicular
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to the magnetic field. In this case, £(_,k) is given by Eq. (2.49)

which, under the cited restriction, has the form

£(_'_) - _l(_'_) : _
ig(5 ) f (_)
c k K(_,k )

o .L .L

(3.73)

(5,m) = g(k )f(_)where we assume that the source can be written as Ps ± '

and _ is a unit vector along the x axis. After performing an inverse

transformation on Eq. (3.73), the electric field becomes

fc f_ood_%,.kig(k±) f(_)El(X't). : _ oo 2_ eok±K(c_,k i) exp [i(mt - k.l.x)]
(3.74)

fc d_ (_,x)f(_)= _ exp (imt)F (3.75)

where

_ d5 exp(-ikx) g(k)± (3.76)F(_,x)= i 2-V _ k x_,k ) '
-oo 0 j. .I.

^E
and El(X,t ) is defined by the expression, El(_,t ) = x l(X t). As

t _ _, the limiting form of Eq. (3.74) is derived by first deforming

the Laplace contour in the usual manner into the upper half complex

plane, around the singularities of the integrand, as shown in Fig. 14.

This yields

lim El(X,t) = i _ Res [exp(itot) F(o_,x) f(o_)]
t-+oo

_C d_+ _ exp (_t) F(_,x)f(_) ,
b

(3.77)
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cl

I x POLE

BRANCH CUT

Fig. 14. ORIGINAL (C) AND DEFORMED (C') LAPLACE CONTOUR OF INTEGRATION.

where the first expression is a sum over the residues of poles, and C b

is a contour around the branch cuts.

The singularities of the source function, f(cb), are usually

simple poles, rot example, if f(t) = exp (i_ t), then its Laplace trans-
O

formation is given by f(0o) = -i/(cu -0_ ). The term in Eq. (3.77) corre-
O

sponding to this singularity is

exp (iOOot) F(_o,X) ,
(3.78)

showing that a steady oscillation is excited at the real frequency _ .
O

To find the singularities of the function F(_,x), use is made

of a technique that has widespread applications in quantum field theory

[35]. When _ is on the Laplace contour C, it is assumed that the inte-

grand of Eq. (3.76) is analytic on the real k axis, which for conven-
±

ience we define as F, and that it has singularities in the complex plane

at k.(_), where
1

K[o_,ki(_ ) ] = 0 .
(3.79)
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It is further assumed that the only singularities of the integrand are

simple poles. In the process of deforming C to C', these singularities

follow a continuous path, and the integration remains well-defined so

long as the singularities do not move onto F. This possibility can be

avoided by deforming F to _ ahead of an advancing singularity, as

illustrated in Fig. 15, and thus obtaining the analytic continuation of

kAi

kz(_)
x

' 0

x
k I (_)

kAr

Fig. 15. ANALYTIC CONTINUATION OF INTEGRAL REPRESENTATION OF F(_O,X) BY

CONTINUOUS DEFORMATION OF CONTOUR OF INTEGRATION F, AHEAD OF ADVANCING

SINGULARITIES AT k1(03 ) AND k2(0_ ).

Eq. (3.76). This deformation will be necessary if the dispersion rela-

tion has solutions with Im(_) < 0 and k real, corresponding to our

previous requirement for instability. However, useful deformation is

impossible if two or more singularities, coming from opposite sides of

the contour of integration, "pinch" _ at k when _ = _ . This is
o o

illustrated in Fig. 16 with two singularities, kl(_ ) and k2(_ ). In

this case Eq. (3.79) possesses a double root at k (_o) implying±

o

= 0 . (3.8o)
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k2(¢0)

x

kl(W)

kzr

Fig. 16. SKETCH ILLUSTRATING ORIGIN OF SINGULARITIES IN F(c_,x).

When _ is near _ , the most significant contribution to Eq. (3 76)
o

will come from that part of _ which is near k and where the follow-
o

ing expansion is valid:

1 )2K(_,k ) _ _(%,ko)(O_ - %) + _._:kk(%'ko )(k - k
1 j. o

J. J.

(3.81)

Substituting this in Eq. (3.76) and evaluating the integral by the method

of residues yields

exp (-ik x) g(k l)] 1F(_,x) _ %k_--_l\-_kkl. (_-%)_' (3.82)
J...L/ .Jt._o,ko

which shows that a branch pole exists at _ . This expression is correct
o

to within a plus or minus sign, the appropriate one being determined only
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after K(_,k ) is specified. It is important to realize that Eq. (3.82)

specifies the form of the function F(_,x) near _ only if the two zeros
o_

of Eq. (3.81) lie on opposite sides of the contour P since only in this

case will pinching occur. If this condition is not satisfied, F(_,x)

will be analytic at _ .
o

We now can substitute Eq. (3.82) in (3.77) and integrate around

the branch cut to find that the asymptotic form of the electric field has

a component which varies in time and space as

! exp t - k x)] (3.s3)
t/2 o o

Hence, if Im(_o) < O, the oscillation will grow with time for any x,

implying that the plasma is absolutely unstable. If no such point is

found in the lower half _ plane, F(_,x) will be analytic there, im-

plying that a steady state exists. It should be clear that a singularity

will still occur at _ if more than two roots of the dispersion rela-
o

tion pinch F, but the form of F(_,x) near that point will be different

from what is given by Eq. (3.82).

In the light of this discussion, the stability criterion can be

stated in the following manner: Map that part of the lower half complex

plane which is bounded by the real axis and the Laplace contour C,

into the complex k plane with the dispersion relation. If, in the
±

process of doing this, the contour F (that is, the real k axis) is
i

deformed and pinched by two or more zeros of the dispersion relation,

the plasma is absolutely unstable and no steady state is possible.

2. Application of the Stability Criterion

In this section we will use this criterion to determine if a

steady state exists when one-dimensional space-charge oscillations are

excited perpendicular to the applied magnetic field. Briggs [34] has

pointed out that a convenient method that can be used to search for pinch-

ing singularities is to map contours of constant _i into the complex

wave number plane and look for saddlepoints of the function _(k ),

that is, points where
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By writing

)
-- 0 o

dk

dk - K '
o0

(3.84)

(3.85)

it is seen that if Eq. (3.84) is satisfied and K is finite, the partial

derivative K k must vanish, implying that the dispersion relation has

a double root in the complex k plane.

This technique has been used to classify the instabilities

associated with the ring distribution. Some results are given in Fig. 17

2 2
for (_p/_c)__ = 20 and 1 < (_r/_c) < 2. When contours A, B, C, and D

-0.1

CONTOUR A B C D
(_r/_ c) 1.22 1.28 1.5 135

118 (_r/UJc) 0

/ \

/ \
I \

i I
I |

! ,I
.0 1.4 !

| I
| I
t I

/
I

l

P'iJ. D CB A

+

4 / 5

BCD --- /J'_i =0 / A BC DA

-I

P'_r

Fig. 17. CONFORMAL MAPPING OF CONTOURS A, B, C, AND D INTO COMPLEX

_ PLANE PROVING THAT INSTABILITIES OF RING DISTRIBUTION ARE

ABSOLUTE.
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Fig. 18. LOCUS OF COMPLEX FREQUENCIES OF PERPENDICULARLY

PROPAGATING CYCLOTRON HARMONIC WAVES.

is based on the restriction that instabilities arise from mode coupling

of the type indicated in the computed dispersion diagrams. However, in

all cases considered, this type of mode coupling does indeed occur.

This section has been concerned with singularities of F(_,x)

in the lower half _ plane since these points imply instability. How-

ever, this function may be singular elsewhere in the complex plane. Of

particular importance are singularities on the real axis since, for stable

distributions, they are the lowest singularities in the _ plane and

hence determine the asymptotic form of the plasma response. This situa-

tion is examined further in Chapter V where we investigate the excitation

of resonances in a magnetoplasma with a Maxwellian velocity distribution.
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are mapped to the complex k plane with Eq. (3.37b), a saddlepoint is

found at (k = 4.46 ÷ i0.18. The corresponding value of the
frequency is (_o/_c) = 1.29 - i0.47. Since the saddlepoint is formed

by the merging of two roots of the dispersion relation that originate

on opposite sides of the real axis, the contour of integration is pinched

at k = k and F(_,x) is singular in the lower half frequency plane
o

at _ = _o" Hence the plasma in this case is absolutely unstable.

This result can be extended to more general situations. It

was pointed out previously that Eq. (3.84) implies that the function

_(k ) has a saddlepoint somewhere in the complex k plane. However,

that equation also implies that the inverse function, k (_), has a
I

branch point in the frequency plane. Derfler [31] has shown that this

interpretation can be used to classify instabilities. If a mapping of

the real wave number axis to the complex _ plane is a loop that is

located entirely in the lower half of the plane, a branch point of k (_)

must be encircled, suggesting that F(_,x) must also have a branch point

at the same frequency and hence that the plasma is absolutely unstable.

Derfler has shown that this interpretation is implied by the pinching

criterion.

Figure 18 shows a sketch of a locus that the complex roots of

the dispersion relation for cyclotron harmonic waves will follow as the

wave number increases along the real axis. It is easy to see that all

complex frequencies shown in the dispersion diagrams of Section B behave

in this manner. In order to separate the two branches in Fig. 18, a

second locus has been drawn along which the imaginary part of k equals

5, where 5 is a small positive number. The equation describing this

locus is obtainable by expanding the frequency _(k + i5), in a Taylor
&r

series,

_(kir + i5)_(k r ) + i5 8k ' (3.86)
lr

where _(k r) and its first derivative can be found in the dispersion
.A.

diagrams given earlier in this chapter. The appearance of a loop in

the lower half plane leads to the immediate conclusion that cyclotron

harmonic wave instabilities are absolutely unstable. Of course, this
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D. Steady State Conditions and Collision Damping

If the plasma is free of absolute instabilities, it is possible to

excite steady oscillations with a source operating at a real frequency,

. The form of the electric field in this case is given by Eq. (3.78).
o

In that expression, it is necessary to know the definition of the func-

tion F(_,x) on the real _ axis. This can be obtained with the pre-

scription described in the previous section: As _ approaches the real

axis from the Laplace contour in the lower half complex plane, the con-

tour of integration of Eq. (3.76) must be deformed ahead of an advancing

root of the dispersion relation that may cross the real k axis. This

will occur if the dispersion relation has solutions with Im(_) < 0 and

k real. However, it was shown in Section C of this chapter that the

plasma is absolutely unstable in these cases. In all other cases, a

steady state does exist, but there are still solutions where the fre-

quency and wave number are real and hence where the contour _, shown

in Fig. 19, must be used to define F(_,x) on the real frequency axis.

In order to determine which roots of the dispersion relation approach

the real axis from the upper or lower half k plane as _ _ _ , it is
o

only necessary to add a small, negative imaginary part, 8, to _ and
o

k,(_)

i

k_i
k I(¢u),k2(w) : ROOTS

OF DISPERSION RELATION

k_,(=)

Fig. 19. DEFORMATION OF CONTOUR OF INTEGRATION_HEN ROOTS OF THE DIS-

PERSION RELATION APPROACH REAL AXIS IN LIMIT AS Im(_) _ 0 FROM THE

LOWER HALF COMPLEX PLANE.
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then expand the function k_(_)= k(_o + i5) in a Taylor series:

k (% + 18)--_(%) + i_
_k (%)

J.

c_
O

(3.87)

Since k (_o) is real, dispersion curves with positive slope will ap-
±

proach the real k axis from the lower half plane as 5 _ O, and those

with negative slope will approach the real axis from the upper half plane.

Based on the above discussion, Eq. (3.78) can be evaluated by the

method of residues and put.in the following form if x > O:

E(x,t) = _ E 0 {i[_0ot - k°n exp ln(_°o)X]}

n

+ _ E n exp li[COot- <n(COo )x]} ,

n

(3.88)

where k ° and k- are those roots of the dispersion relation with
An .n

zero and negative imaginary parts, respectively, and where the amplitude

of each wave is

o [ ]
: )] o

(%,_n)

The first sum in Eq. (3.88) includes only those real roots of the disper-

sion relation for which (_k /_) < O. If x < O, only roots located

above the deformed contour are included in the residue summation. It can

be inferred from Eq .(3.88) that space charge oscillations propagating

perpendicular to the magnetic field in a plasma with a steady state must

attenuate in space if k.(e o) is complex, while the amplitude of the
J.

of the spatial coordinates if kl(_ o) is real.oscillation is independent

In this section, computations are presented which show the complex

solutions of the dispersion relation for k as a function of real

for a plasma having a Maxwellian electron velocity distribution. The
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dispersion characteristics for this distribution were partially examined

in Section B3 in which it was found that there are frequency bands where

the wave number is real (see Fig. i0). However, in other frequency bands,

the wave number is complex, corresponding to evanescent propagation, as

shown in Fig. 20. The high damping rates indicated imply that, experi-

mentally, detection of these waves will be difficult.

In practice, the degree of ionization of the plasma is often low,

and hence even the unattenuated modes that are predicted in a collision-

less Maxwellian plasma can suffer from damping as a result of electron-

neutral collisions. To take this effect into account in the derivation

I.C

REAL PART

IMAGINARY PART ....

I I I
) 1.0 ?_0 3.0 4.0

(kj.v t/we)

Fig. 20. DISPERSION CURVES FOR PERPENDICULARLY PROPAGATING

CYCLOTRON HARMONIC WAVES IN A MAXWELLIAN PLASMA.
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of the cyclotron harmonic wave dispersion relation, it is necessary to

solve Boltzmann' s equation,

3i" '
"_ C

(3.90)

for the velocity distribution f(_,_,t), instead of Vlasov's equation

that was used in Chapter If. The right-hand side of Eq. (3.90) repre-

sents the rate of change of the velocity distribution due to collisions.

A correct form of this term should conserve energy, momentum, and particles,

but this leads to a complicated integrodifferential equation for f. A

suitable approximate form of the collision term is that given by Bhatnagar,

Gross, and Krook [36],

c = -v - no

where n(_ nof dzf) is the particle density and v is a velocity-indepen-

dent phenomenological collision frequency. (Quantities with a subscript

zero refer to the equilibrium state of the plasma.) This collision term

conservesparticles, allowing them to relax in position space to the local

density rather than the unperturbed density, n . However, it has the
o

defect that neither momentum nor energy is conserved, and consequently

can be regarded as an approximation for collisions between electrons and

heavy neutral particles.

The modifications in the theory of cyclotron harmonic wave propaga-

tion, when use is made of Eqs. (3.90) and (3.91), are given elsewhere

[37]. It can be shown that the dispersion relation with collisions can

• 2
be obtained correctly from that with no collisions by replacing _ with

P
2
[1 - i(v/_)] and replacing _ with (_ - iv). For perpendicular prop-

P

ation in a Maxwellian plasma, Eq. (3.63) is then replaced by
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2 co

c n ----co

Z
n c

o_ - iv - n_
C

= 0 .

(3.92)

Figure 21 shows the solutions for complex k as a function of real

and nonzero collision frequency. Eight independent modes of propaga-

tion are indicated. Modes 1, 2, 3, and 4 are present if x > O, while

modes 1 f 2' 3 w and 4', , are excited if x < 0. It is pointed out that

the imaginary part of k for the primed modes is the negative of that

for the unprimed modes. It will be observed that the spatial decay rate,

Im(k ), is increasingly heavy in the higher frequency bands and may

easily be of the order of tens of decibels per wavelength for the value

of (V/_c) chosen. Similarly, heavy damping is indicated for all modes

as _ _ n_ and Re(k ) _ co. It should be noted that Fig. 21 does not
c

show all modes. Indeed, since the dispersion relation is a transcendental

function, one can always find an infinite number for a specified _. Only

those modes with the smallest damping rate are indicated in that figure.

E. Discussion

In this chapter the dispersion relation for perpendicularly propa-

gating cyclotron harmonic waves has been solved numerically for several

electron velocity distributions that are of current interest in plasma

physics. Criteria for the existence of instabilities have been derived,

and the results show that the necessary conditions are (i) (_fo/_V_) > 0

for some v > 0, and (ii) (_/_) > x, where x is a critical number

that is obtained from the numerical solution of the dispersion relation.

An analysis of the instabilities has shown them to be absolute. The ef-

fects of electron-neutral collisions in a plasma with a Maxwellian elec-

tron velocity distribution have also been considered. The results show

heavy damping for frequencies near the harmonics of the electron cyclotron

frequency. In addition_ the damping becomes progressively heavy in the

higher frequency bands, suggesting that it would be difficult to observe

these modes experimentally.
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Fig. 21. DISPERSION CURVES FOR PERPENDICULAR PROPAGATION IN A

MAXWELLIANPLASMA, WITH COLLISIONS.
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Up to this point, no mention has been made of the experiments on

cyclotron harmonic wave excitation and detection. Unfortunately, only

limited work has been done in this area. The most conclusive results

come from the experiments of Mantel [20], Harp [38], and Crawford [39].

Figure 22 shows some of the data obtained by Mantel, and excellent agree-

ment is observed between theory and experiment. Because of the nature

of the experiment, it was convenient to hold (_z/_z) constant along
P

each curve rather than (_/_). Experiments with unstable distribu-

tions are almost nonexistent. Anastassiades and Marshall [40] appear to

have obtaine_ some data that agree with the theoretical dispersion diagram

of the _y_5_-r_-_lL dispersion relation, but no conclusive observa-

tion of the predicted instabilities can be found in the literature.

40

0

0

0

0

I

THEORY
EXPERIMENT " o o

II
"00 I 2

(k.L vt/_ c )

Fig. 22. EXPERIMENTAL CONFIRMATION OF CYCLOTRON HARMONIC WAVE PROPAGATION

IN A MAXWELLIAN PLASMA. (From Mantel [20]. )
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IV. OBLIQUE PROPAGATION OF CYCLOTRON HARMONIC WAVES

The dispersion characteristics of cyclotron harmonic waves propagating

oblique to the magnetic field are examined in this chapter. Specific elec-

tron velocity distributions are considered which clearly show how and at

what frequencies instabilities set in. Furthermore, it is shown that elec-

tron velocity distributions which are stable for perpendicular propagation

can be unstable if the propagation occurs Oblique to the magnetic field.

Instabilities of this type are essentially those investigated by Harris

[4], [5] and are found in magnetoplasmas when the transverse energy of the

gyrating charged particles greatly exceeds the longitudinal energy. An

important finding of this chapter is that the threshold conditions for

instability in oblique propagation are much less stringent than those of

perpendicular propagat ion.

The dispersion relation is solved in Section A for a class of velocity

distributions describing s plasma with no electron motion parallel to the

magnetic field. As in Chapter III, the motion of the ions is ignored.

Section B treats the more general situation where a spread exists in v ,
II

the component of the electron velocity along the magnetic field. An approx-

imate expression for the imaginary part of the frequency is derived in Sec-

tion C for the case in which the propagation is close to an angle of (_/2)

to the magnetic field. This formula is then compared with the exact numer-

ical solution of the dispersion relation for the case of an isotropic

Maxwellian velocity distribution. In Section D the instabilities are

classified as either absolute or convective, and the chapter ends in

Section F with a discussion of the results.

A. Plasma with No Electron Motion Parallel to the Magnetic Field

The dispersion relation for cyclotron harmonic waves propagating at

an arbitrary angle to the magnetic field is given by Eq. (2.68). As demon-

strated in Chapter II, that expression takes on a characteristically dif-

ferent form if all charged particles of a given species, _, move parallel

to the magnetic field with the same speed, v . The velocity distribution
IiO
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in this situation can then be written as

fo(Vl.V) : f_(v) _(v,, Vo,,) ' (4.1)

leading to the dispersion relation given by Eq. (2.77) and repeated here

for convenience:

2¢U _ k 1 n¢u c
K(¢u,k) = 1 P Pn ¢u - v k

¢u
c n= -oo

- ntD
011 il C

k 2 oo ¢u2 ]

II _.oo cqn (¢_ _ n_c)+ _ n=- - Voalkji

= 0 , (4.2)

where the coefficients Pn and qn are defined as follows:

2

So j2Pn = -2_ _ dv± dv n '
i

(4.3a)

Soqn 2_ dv± f±(v) j2 k v= n vi
(4.3b)

It is clear from Eq. (4.2) that if the wave vector k is real, the fre-

quency _(k) must either be real or occur in complex conjugate pairs.

In this section Eq. (4.2) is solved for the frequency, and the

threshold conditions for instability are calculated. For convenience in

notation, v , the drift speed of the charged particles parallel to
Oli

the magnetic field, is set equal to zero. This introduces little loss

in generality since the frequency of plasma oscillations when v is
Oli

nonzero can be recovered by a simple doppler shift, whereby _ is replaced
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with (_ - v k ). Clearly, this frequency change does not affect the
oll II

growth rate of any instability if k is real since the quantity v k
_I Oil II

is also real. In order to gain some insight into the form of the dis-

persion characteristics predicted by Eq. (4.2), a specific electron ve-

locity distribution is considered first, namely, the ring distribution

that was introduced in Chapter III. The motion of the ions will be

neglected in this study due to the relatively large mass of these par-

ticles. The ring distribution is followed by a treatment of the more

general situation where a distribution exists in the transverse energy

of the gyrating electrons.

1. Ring Distribution

The ring distribution describes a plasma where all electrons

are confined to the plane perpendicular to the magnetic field and rotate

with the same speed, v , at the cyclotron frequency. In terms of a
Ol

delta function, we can then write

_(v -v )
f (V)= ± O_L (4.4).1. 2_v

oJ.

Substituting this expression in Eq. (4.3), integrating with respect to

v , and combining the results with Eq. (4.2) yields the dispersion rela-
±

tion

CO k± 1 n2 ) nco

K(_,k) = 1 - -_ _ d_ _ - _
03 _L ..L C

C n--- -co

2 _ , 2 )72j

k co

+
--_-- n _L

k _co - nco
n---oo c

= 0 , (4.5)
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where v has been set equal to zero and " has been written for011 _

(k±Vo±/_c). Since ion motion is neglected, the summation over particle

_c' and v referspecies _ is not required, and the quantities _p, o±

to the electrons. Note that if k is identically equal to zero, we
[I

retrieve Eq. (3.37a), the dispersion relation for perpendicular propagation.

Since the dielectric constant in the direction oblique to the mag-

netic field is a function of three variables, namely, _, k , and k ,
± II

a second condition must be specified before the propagation is uniquely

determined. In this section two examples of plasma wave propagation are

examined. In the first example the component of the wave vector perpen-

dicular to the magnetic field is a constant number, and the dispersion

relation is solved for _(kil). This situation corresponds to propagation

parallel to the magnetic field in a bounded plasma. In the second example

the angle of propagation 8 = tan -1 (kl/k), as defined in Fig. 3,
is

constant, and the dispersion relation

2 1  Jn2

K(oo,k) = 1 - -.]! in 8 _.L0o2 _±
c n =-oo

nco
c

co - no_

_ - 22]no_ /

co

2 _ j2 (_.L) c
+ cos 8 n {CO _

n =-oo c

= 0 , (4.6)

is solved for 00(k), where k : Ikl. This describes plane wave propaga-

tion in an infinite plasma at a fixed angle @ to the magnetic field.

Each example will now be considered separately.

a. Bounded Geometry

To solve the dispersion relation in this geometry it is

2 2 2
convenient to use the relation, k = k + k , and rewrite Eq. (4.5)

± II

in the form
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2 _ 2( )co _J _± c

p 12 d co - nco
co _± _ c

2 = -k 2 c n=-oo (4 7)
kll ± 2 oo 2 ' "

CO CO

i - _ _ j2(%) c 2

2 n (co - ncoc)coc n=-oo

which explicitly shows the dependency of the wave number k on both
II

the frequency and the constant k . This representation of the diaper-
J_

sion relation has a distinct advantage in that the cutoff (k n = O) and

resonant (kll = _) frequencies are immediately identifiable. The wave

number vanishes first when the numerator is zero, and the denominator

nonzero, giving the expression

co2 oo _j2 (_i) nco

_ _ 1 c oi - _ _Fi co - nco
CO ]_ ± C

C n=-oo

(4.8)

This equation was solved in Chapter III, and the results can be summarized

2 2

in the following manner: If (cop/co--c) is small, the cutoff frequency is

accurately given by

[2 ]co _J2n(% )
I p i (4.9)

co (_.L) = ncoc co
C

As (co2/ 2) increases the detailed behavior of the solution of Eq. (4.8)
p- c

can only be obtained numerically. The salient features of these solutions

2 2

are illustrated in Fig. 23 with (cop/coc) equal to 5 and 20. It is seen

that the roots of Eq. (4.8) may be complex in certain ranges of _ for

(2/co2) sufficiently large. The real part of the frequency is shown as
p c

a fine solid line, and the imaginary as a fine dashed line. Since all

complex solutions must occur in conjugate pairs if _± is real, we con-

clude that long-wavelength space-charge oscillations may grow with time.

The threshold conditions for these instabilities are found in Table I.
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Fig. 23. CUTOFF FREQUENCIES FOR OBLIQUELY PROPAGATING CYCLOTRON

HARMONIC WAVES WITH k± CONSTANT; RING DISTRIBUTION FOR

2 _2(_p/ c ) = 5, 20.

A second class of cutoffs can be predicted with Eq. (4.7).

These are obtained by assuming _ _ n_ and approximating that equation
C

with the expression

2
k
II

2
k
±

_.l.Jn(t__ ) nob C

(4.10)

where Jn'(#i ) is the first derivative of Jn(_). Clearly, kll _ 0 as

0o -* n03 , implying that a cutoff is found at each harmonic of the elec-
C

tron cyclotron frequency.
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A resonance (kll = _) occurs when the demoninator of

Eq. (4.7) vanishes, yielding the expression

2 oo 2
tb 03

1 - _e j2 (K) c
2 n nCUc)2_ ((.13 -
c n =-oo

= 0 (4.11)

If (6u2/_ 2) is small we look for solutions near the
p- c

where Eq. (4.11) has the approximate form

th
n harmonic,

2 2
t0 to

1 - --_2 j2(_±) c
n ( )2co _o - nco

c c

= 0 (4.12)

Solving for the frequency yields the expression

[<:=)1¢u = ntu 1 +- COp J4_

c n
(4.13)

th
This result indicates that two branches undulate about the n harmonic,

passing through the points defined by (_ = n_ , _ = _ ), where
c ± nm nm

th th
is the m zero of the n -order Bessel function. Figure 24a shows the

2 2
form of the branches near the second and third harmonic when (_p/_c) =

(_/_) increases, a down-going and an up-going loop approach0.25. As

each other and eventually couple to form a gap where complex frequencies

occur in conjugate pairs, one corresponding to growth and another to col-

2/ 2)lisionless damping. This is clearly illustrated in Fig. 24b for ( _c

equal to 1. For convenience, the positive imaginary part of (_/_c) has

been plotted using the line, (_/_c) = n, as a base, but the scale is

identical to that of the real part. It has been found that for all cases

, _± andconsidered coupling occurs in the ranges Un_ < < U(n+l),m,,

<_± < _ (m+l) assuming that the parameter (COp2/m_) is suf-_(n+l),m n, '
2 2

ficiently large. Some critical values of (_n/_c) are given in Table 3

for the first three frequency bands. By comparing this numerical

criterion with that of Table 1, the onset conditions for complex cutoff
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Fig, 24. RESONANT FREQUENCIES FOR OBLIQUELY PROPAGATING CYCLOTRON

HARMONIC WAVES WITH kl CONSTANT; RING DISTRIBUTION FOR (a)
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Table 3

THRESHOLD CONDITIONS FOR ZERO-WAVELENGTH INSTABILITIES

Frequency Band

0<o_<_
c

Range of _£

0 - 2.40

2.40 - 3.83

3.83 - 5.52

<co <2o_
c c c

2_ <_<3_
c c

0 - 3.83

3.83 - 5.14

5.14 - 7.02

0 - 5.14

5.14 - 6.38

6.38 - 8.42

Critical Value of _/_)

for Onset of Instability

0.34

1.07

1.38

0.53

1.70

1.62

0.66

2.29

1.82

frequencies, it is clear that space-charge oscillations with short wave-

lengths parallel to the applied magnetic field are, by far, more sus-

ceptible to instability than oscillations with long wavelengths. However,

it should be pointed out that, in practice, there is a spread in the

electron velocity components parallel to the magnetic field. This may

wipe out the short-wavelength instabilities and hence modify the rela-

tively weak threshold conditions for instability due to oblique propa-

gation.

Next, we consider the case where kjl is finite and non-

zero. Three distinct values of _ have been chosen to indicate the
1

characteristic behavior of propagation in a bounded plasma. The first

(_, = 0 as= 1.0) is in a region where no growth can occur when kLl
A.

seen in Fig._. The second (_± = 3.0) is in a region in which the

only instability that can occur is that at zero frequency. The third

(_ = 4.5) is in the region where loops from n = 1 and n = 2 may
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couple
curves

2 2
[(_p/_0c) > 6.81]. We shall examine the effect on the dispersion

2 2

[(_l%)l(k vo_l% ) ] as (%1%1 is varied.

Case 1 (_± = 1.0). The results are shown in Fig. 25. For low

values of (_/¢) the dispersion curves show no instabilities. Each

passband n = i, 2, ... has a slow and a fast space-charge wave asso-

ciated with it, the frequency spread about n_ decreasing rapidly with
c

increasing n.

2 2
(_p/_c) increases, the plasma branch (n = 0 mode) couples toAs

the slow space-charge wave of the n = 1 mode and instability occurs as

2 2

indicated in Fig. 25b for (_p/_c) = i, and in Fig. 25c-g for higher
2 2

values of (_p/_c). This instability first occurs for propagation at

about 45 ° to the magnetic field, and the imaginary part (_i/_c) increases

asymptotically to about 0.3. In assessing the strength of the instabilities

it is worth remembering that (_i/_c) = 1 represents a growth rate of 55

dB per cyclotron period (= 2_/_c)O

6.0

5.0

4.C

I.C

0 1.0

Z 2(_,p/_): o,25

(k_Vo_/_,_).,.o

21o 3'.0 41o _'.o 6'.o 71o _,.o
(,,,Vo,/_)

(a)

Fig. 25. DISPERSION CHARACTERISTICS OF OBLIQUELY PROPAGATING CYCLOTRON

FOR _, = 1.o A_ (_/_) = o._5,HARMONIC WAVES; RING DISTRIBUTION

1.0, 3.0, 5.0, 8.0, 20.0, oo.
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Fig. 28. CONTINUED.
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It will be noted from Fig. 25b that the upward progress of the upper

_2 2
hybrid frequency with increasing _ p/_c) has the effect of raising the

fast space-charge wave of the n = 1 mode toward the slow space-charge

wave associated with the n = 2 mode. These ultimately couple and give

rise to a new absolute instability in the range 1 < (_/_c) < 2. This is

clearly indicated in Fig. 25c for (_/_) = 3. For convenience, the

imaginary part of (_/_c) is shown dashed using (_/_c) = 1 as zero line

and its scale is identical to that of the real part. It will be noted

that again real propagation is possible only for angles greater than

(_/4) to the magnetic field and that the growth rate is not much smaller

than that in the 0 < (_/_c) < 1 frequency band, For the case of Fig. 25c

the asymptotic growth rates are approximately 0.2 and 0.4.

2 2

Figure 25d for (_p/_c) = 5 indicates the increasing angular range

over which absolutely unstable propagation occurs and also that the growth

rates increase steadily. It will be observed that the location of the

hybrid resonance, now located in the band 2 < (_/_c) < 3, has theupper

effect of carrying the fast space-charge wave of the n = 2 passband

toward the slow space-charge wave of the n = 3 passband. The coupling

of these modes is indicated in Fig. 25e for (_/_) = 8.

2 2
Figures 25f and 25g for (_p/_c) = 20 and _ indicate that there

2 2
is very little essential difference in behavior as (_p/_--c) increases to

2 2

large values. Successive passbands become unstable roughly for (_ + _c)
>

(r_c)2 , but the growth rates are small except in the first few passbands

2 2) _ _. The asymptotic limits in the first three passbands
even as (_p/_c

are approximately (_i/_c)__ = 0.6, 0.2, 0.1.

2 2
Case 2 (_± = 3). These results are shown in Fig. 26. For (_p/_c) =

0.25, curves similar to those of Fig. 25a are obtained except that the

frequency spreads about _ = nLD _ in the passbands for which n > 1 are
c

appreciably greater. This reflects the periodic behavior of the loops in

the various passbands indicated in Fig. 23.

2 2
As (_p/_c) increases, instability occurs first not in the lowest

passband, as for _ = I, but in the second and third passbands at propa-

gation angles of about (_/6) to the magnetic field. This is indicated

2in Fig. 26b, A further increase to /_ ) = 3 (Fig. 26c) introduces
C
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absolute instability into two further passbands. The curves should be

compared with those of Fig. 25c. Although the growth is slightly less

for _± = 3 than for _ = 1 in the first passband, the instabilities

in the second and higher passbands are more serious. By the time

2 2

(_p/_c) = 5, the growth rate even in the first passband is higher for

the _ = 3 case. Further increases confirm these basic trends. Compar-

ison of Figs. 25e-g and 26e-g indicates wider ranges of instability and

higher growth rates for _± = 3.
2 2

Above (_p/_c) = 17.02 we expect new phenomena to show in the dis-

persion curves due to the zero frequency instability mentioned earlier.

This is indicated in Fig. 26f,g. At very small values of k , two pairs
li

of complex roots are found. As k increases, one pair disappears and
il

2 2
a complex root with very rapid growth rate remains. Increasing (_p/_c)

flattens the real branch to zero leaving purely imaginary solutions for

all values of k
II

Case 3 (_± = 4.5). The results for this case are shown in Fig. 27.

It is interesting to compare the results of Figs. 26a and 27a for

----2 2

LCUp/CUc ) = 0.25. It will be seen that the frequency spread in the various

passbands is in some cases larger for _± = 4.5 and in others smaller.
i

This depends, of course, on the heights of the loops in the various pass-

bands for k = O. Continuing the comparison, we note that whereas
I[

Fig 26b shows instability at (cuz/co2)_ = 1, no such instability is indi-
p- c

2 2
cated in Fig. 27b. For (C0p/COc) = 3 or 5, the situation is rather dif-

ferent. The wider range of instabilities is then exhibited for _ = 4.5,

though the growth rates in some passbands are lower than for _ = 3.0.
i

2/2
At (COp c) = 6.81, coupling between the n = 2 and n = 1 modes

occurs for k = O. This is reflected in the curves of Fig. 27e, where
II

absolute instability is indicated in the second passband for all values

of k . It will be noted that this particular instability has the highest
II

growth rate of all the passbands over the entire range 0 < k < oo. This
II

2 2

becomes even more marked at very high values of (0_p/C0c) as is shown by

Fig. 27f,g.

It will be remarked that the real frequency component in the second

passband drops to almost exactly - •c(CUr/C°) = i for k = O. For otherII
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values of _± it is actually possible for the real part to lie below

unity. There is then no real frequency component at all in the second

passband.

b. Unbounded Plasma

In this section we will consider the dispersion character-

istics of plane cyclotron harmonic waves, propagating at a fixed angle

e to the applied magnetic field, in a plasma with a ring electron veloc-

ity distribution. The dispersion relation in this case is given by

Eq. (4.6). The solutions to this dispersion relation may be obtained

from curves in Figs. 25-27 after e and _ (_ kVo±/toc) are specified and

if the corresponding value of _± (_ _ cos 8) is either i, 3, or 4.5.

However, it is more convenient to solve Eq. (4.6) directly for to(k).

Some results which illustrate the basic features of the dispersion curves

2 2

are given in Fig. 28 for (top/toc) = 1 and 8 = 70°, 45°, and 15 ° , respec-

tively. Cutoffs and resonances are observed at all harmonics of the elec-

tron cyclotron frequency. In addition, a cutoff is found at the frequencies

which satisfy the following equation:

<n22ton toc 2 toc

1 - -_ 8 + cos 8

tO tO - to
C C

which is obtained from Eq. _) by setting

zero. Solving for _ yields the expression

= 0 , (4.14)

k identically equal to

to = _ toc + top
1 +

I 2 J

cos
_ p c

2 2 )2( +totop c

I./2

(4.15)

When k is finite and nonzero, Fig. 28 shows that two

modes are found near harmonics, as could have been deduced from Figs. 25 to

27. However, in this case the modes undulate about the frequency to = ntoc
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and pass through the harmonic when p satisfies the equation,

Jn( _ sin e) = 0. Note that as e decreases, a down-going and an up-

going mode couple to produce complex frequencies for a small band of wave

numbers. The complex roots must occur in conjugate pairs so that one

mode grows exponentially with time at the indicated rate and the other

decays with time. As e decreases further from 45 ° to 15 ° , additional

modes couple and the growth rates become larger.

It is now apparent that the propagating modes in bounded

and unbounded plasmas have similar characteristics. In each case there

• Furthermore, both classes ofand (n+l)_care two modes between n¢ c

modes are very unstable and exhibit complex frequencies for much smaller

valuesof thanwaspossibleforpurelyperpendicularpropagation.
The main difference between the two classes is that the unbounded plasma

exhibits modes which undulate about the harmonics of the cyclotron fre-

quency while the frequency of the modes of the bounded plasma vary mono-

tonically with k .
li
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2. Distributions in Transverse Electron Speed

The results of the previous subsection indicate that a magneto-

plasma with a monoenergetic ring distribution is capable of supporting

a large class of electrostatic instabilities. However, this plasma model

may be too idealistic since there is usually particle motion parallel to

the magnetic field and distributions in the particle velocity that in-

fluence the stability characteristics of the plasma. At this time we

consider a more general problem and examine the propagation characteris-

tics of cyclotron harmonic waves when there is a distribution in the

components of the electron velocity perpendicular to the magnetic field.

As in the first subsection, we will assume that there is no particle

motion parallel to the magnetic field. Our objectives are to obtain the

basic form of the dispersion characteristics for oblique propagation in

this case and to determine the factors that influence the stability of

the plasma. The effects of electron motion parallel to the magnetic

field are considered in Section B.

When the motion of the charged particles parallel to the mag-

netic field is neglected, the most general form of the dispersion relation

is obtainable from Eq. (4.2) by setting Vol t equal to zero. Solving
2

explicitly for k yields the expression
II

k = - k (4.16)
II I D(_,k 1 ) '

where use has been made of the relation, k 2 = k 2 + k 2

and are defined as follows:

and the functions

2 co

N(C_,k) = 1 - --_2 _-- Pn _ - n_C , (4.17a)
¢o c

C n-----co

2 co 2

X °D(¢0 k)= 1 ---_ qn 2 "

_c n=-oo

(4.17b)
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Only the case where k is constant will be considered here since the
± -i

form of the dispersion curves with the angle of propagation @ [_ tan

(k,/kH)]_ held constant can be inferred from thecharacteristics that

will be described below. From Eq• (4.16), it is readily shown that, in

the general case, cutoff frequencies are found first at the zeros of

N(_,k ), that is the frequencies of perpendicularly propagating waves),

and second at harmonics of the electron cyclotron frequency• In addition,

resonant frequencies occur at the zeros of D(_,k±). These solutions of

the dispersion relation are reflected in the propagation curves shown in

25-27 For certain transverse velocity distributions f (v), theFigs

cutoffs and resonances may be complex. This was the case, for example,

for the ring distribution, and as a consequence, instability was excited

in the plasma. Another distribution that can go unstable is the trans-

verse Maxwellian:

V'L (4.18)
exp

2

Although perpendicular propagation occurs, in this case, without growth,

obliquely propagating waves can grow exponentially with time under the

proper conditions. In order to determine what these conditions are,

Eq. (4.18) is substituted into Eq. (4.2) and the integration with respect

to v is carried out, yielding the dispersion relation
±

CO exp (-_,) I (_',) n(.b

K_,'-_ _j = 1 P n c2 _ co - no_
o3 c

C =--00

+ 2]n=-ooexp (-X)In(X)(__ _)2'

= 0 (4.19)

'ii0



where ._ = (k vt±/co c)2 and use has been made of the identity

dq exp Jn (q )q (_p2)= p In(P ) exp
(4.20)

Alternately, Eq. (4.19) can be rewritten in the form given by Eq. (4.16),

in which case the functions N(c_,k ) and D(co,k) become:

2 co

exp In nN(CO,k.L) = i P c (4.21a)2 _ co- nOo '
o0 c
c n---oo

2 _ 2
co co

D(co,k i) = i - "-P-" ! exp (-%) I n(%) c2 2
co (cu
c n=-oo - ncoc )

(4.21b)

The equation N(co,k ) = O, which determines the cutoffs, is nothing

more than the dispersion relation for perpendicular propagation that was

considered in Chapter III. Figure l0 shows the computed dispersion dia-

gram for this case where it will be noted that _(k ) is always real

if k is real. Consequently, no long-wavelength instabilities are
i

excited. However, the resonant frequencies may be complex. To see how

, (2 co )this comes about it is assumed that l is small and that _ is
P

near n_ c. It is then reasonable to approximate the series in Eq. (4.19b)

by the n th term. Solving the equation D(_,k£) = 0 for _ yields the

expression

= h
Co nco +-co Cexp (-_) I n( ) ,c p

(4.22)

which is plotted in Fig._, 29a for (cop/C0c) = 0.5 and n = 2 and 3. For

larger values of (c_/co:), numerical methods must be used to obtain the

resonances. Results of these computations are shown in Fig. 29b with

2 2

the case (co__/C_c)P = 1, where it is found that complex frequencies occur
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in a single finite range of the parameter (kjvt±/_c).__ This result is

in contrast with that of the ring distribution where several bands of

(k Vo±/_c) produce complex solutions. It is important to note that

these instabilities set in with the plasma frequency less than the

cyclotron frequency.

Figure 30 shows the form of the complete dispersion diagram,

2 2

computed from Eq. (4.19). The parameters (_p/_c) and (klvt±/_c) were

chosen so that some waves are unstable. The imaginary part of _ is

shown dashed and drawn to the base, _ = n_ . These curves behave in
c

essentially the same manner as that of the ring distribution in Figs. 25

to 27 with the exception that no long-wavelength instabilities occur,

reflecting the discussion of the previous paragraph.

From the results of this and the previous section, we can con-

clude that oblique propagation may excite two classes of instability,

one of which occurs only if the wavelength parallel to the magnetic field

is relatively small and has no counterpart in exact perpendicular propa-

gation.

B. Distributions in Longitudinal Electron Energy

In this section we obtain the real wave number solutions of the

dispersion relation for cyclotron harmonic waves in the general case

where a distribution exists in the electron velocity components parallel

to the magnetic field. The expression that describes this situation is

given by Eq. (2.67) and, for convenience, is rewritten in the form:

2 oo Hn (vii

---1 + dv = 0
II O_ - k v - nO_

k -oo II II c
n_._oo

where

Im(co) < 0 ,

(4.23)

Hn(V ) = 2n" dv _ + k v,_lt/ vII n ±
(4.24)
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Since only electron motion is being considered, the summationover par-
ticle species is redundant and hence was not included in Eq. (4.23).

The analytic continuation of this representation of K(_,k) to the real
axis and to the upper half complex plane is obtainable from Eq. (2.68).

Unlike the special case examined in Section A, the roots of Eq. (4.23)

are in general complex, as will be appreciated from the complete definition

of K(_,k) in Eq. (2.68). Consequently, the amplitude of electrostatic
waves propagating oblique to the magnetic field grows or decays with time,

depending on the sign of the imaginary part of _. These complex roots

result from the presence of electrons that can interact strongly with

the electric field associated with the space-charge wave. The physics
involved in this interaction have been considered elsewhere [22] and can

be summarizedas follows: An electron, spiralling about the magnetic field,
sees the wave at the doppler-shifted frequency, _' = (_ - k v ). SinceII II
a spread in v exists, it is always possible to find an electron for

II

which _' = n_ , where n is an integer. By solving the equations
c

of motion for such electrons, it is shown that in the linear regime there

is a net energy exchange between the gyrating electron and the electric

field of the space-charge wave. Damping of the coherent oscillations

results if the charged particle gains energy, while instability is present

if the particle loses energy. The net temporal change in the wave ampli-

tude is determined by a superposition of all resonant electrons. Cyclotron

damping or instability arises from those electrons which see the space-

charge wave at nonzero harmonics of the cyclotron frequency, while if the

particle sees a static field, corresponding to n = 0, Landau damping

or instability results.

Little is known about the temporal rate at which the amplitude of

cyclotron harmonic waves changes due to Landau and cyclotron damping or

instability. In this section computations are presented which show the

form of the dispersion characteristics when a spread in the parallel

velocity component v exists. The basic features of the characteristics
II

are illustrated with electron velocity distributions that have the form

_vt± ±
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where vt± [= (EL/m)_] is the transverse thermal speed of the electrons

T. is the associated transverse temperature, and the function fll(vll)

has the normalization

o0 ( vii
dv f ) = 1 (4.26)

II II

The following functions are chosen to represent fli--(vll):

(i) Resonance

v

f (v) = t,, (4.27)
II II 2 2 '+ )I_ (vii Vtl I

(ii) Maxwellian

. I_).=,,.
f (Vii)if _2_V2,] exp 2vtl, (4.28)

where, for the Maxwellian, vtl I is rms parallel speed of the distribution.

Since all moments of the resonance are infinite, vtl i in that case is

interpreted as a measure of the spread of the distribution.

i. The Dispersion Relations

The form of the dispersion relation for each of the distribu-

tions cited above is found by first substituting Eq. (4.25) in Eq. (4.24)

to obtain the function Hn(Vll). The integration with respect to v± is

accomplished with the identity [25]

So q2 j2(q)q P exp (_p2) in Pdq exp n =
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yielding

In2°Hn(Vl,) : - exp (-h) I (h) -- fll(vil) - k II(v[l ,

n L vt± II dvll

(4.30)

/22.2

where _ has been written for (k vt±/CUc). If the resonance function

is substituted for f (Vll), the velocity distribution has the formII

__ Vtl] __

fo(Vx'Vll) = - 2--2-

v£
exp

2

2 2)
Vll + vtl I

(4.31)

and, after combining Eqs. (_, (4.27), and (4.30), the dispersion

relation becomes

exp (-X) In(A) o0 dv

L--n\ "_(_,_) : 1 - 2 2Ik + )(_ - k ,,
2 h (vii vtll _i LJ

03 c =_

2 _ 2vtuc_ 2 oo v dv

+ _-_ exp (-X) In(X) 2

(2 2 ) (_ _ kn=-oo + Vtli II _1

- n %)1

= o, Im(_) < o

(4.32)

The integration with respect to v
II

of residues, yielding for k > O,
II

is readily accomplished by the method
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O_ k exp (-h) I (hl_ p n
2

_c n=-oo

nc_
c

O_ - ik v - n_
II II c

_ 2 ]
k

ii _ c+ -_ exp (-h) I (h)n 2
k _02 - ik v - ntu )

n=-oo II II c

= 0 . (4.33)

Clearly, this expression is analytic over the entire complex 6u plane,

except where co = n_ + ik v .
c II li

In our second example the Maxwellian function is written in

place of fll(Vll )' leading to the velocity distribution

%(\,v,) = 22)

/ v v

± I, (4.34)
exp 2 2

2vt± 2vtt i

From Eqs. (4.23), (4.28), and (4.30), the corresponding dispersion rela-

tion is

2 Ii i (1-T _.Cu - nc_c_ 1

_0 co - )n°°c Z
K(to,k) = I +----P-- + exp (-_) I (_) .....

2 2 n Q_-k \_/_ k, vt,, / Jk Vtl I n=-oo il Vtll

= 0 , (4.35)

2 ) and the function Z(z), which arises from the2 /vt±where T = (vtl t

v integration, has the following definition, in the notation of Fried
II

and Conte [41]:

Z(Z) = V/__Pfoo__ exPt -(-t2)z dt- io" V/_-exp (-z2) •
(4.36)
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Here P signifies that the principal part of the integral is taken if

lies on the real t axis and _ has either of the values 0, i, or 2,

depending on whether the imaginary part of z is less than, equal to,

or greater than zero, respectively. The second term on the right-hand

side arises from the analytic continuation of the v integral from
II

the lower to the upper half complex _ plane, in accordance with the

definition given in Eq. (2.68).

2. Solutions of the Dispersion Relations

In order to appreciate the structure of the dispersion charac-

teristics when a spread exists in v , it is useful to return to the
II

extreme anisotropic case where the electrons have no motion parallel to

the magnetic field. Assuming that the transverse speed of the gyrating

electrons has a Maxwellian distribution, the dispersion relation is

given by Eq. (4.19) and the solutions are shown in Fig. 30. It is readily

6.0

5.0

4.c

2.C

2 2
(_p/_c)= 5.o --Re(=/mc)

f

i

0V / i
o I.O

I I I

2.0 3.0 4.0 5.0

Fig. 30. DISPERSION CHARACTERISTICS OF OBLIQUELY

PROPAGATING CYCLOTRON HARMONIC WAVES; TRANSVERSE

MAXWELLIAN VELOCITY DISTRIBUTION.
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established that both Eqs. (4.33) and (4.35) reduce to Eq. (4.19) in the

limit as vtH -_ O. For Eq. (4.35), this limit is obtainable from the

asymptotic expansion [41]

Z(z) ~ 1 13 .... (4.37)
2z

If temperature effects are introduced parallel to the magnetic field by

means of a resonance distribution in the velocity component v , a com-
l[

parison of Eqs. (4.19) and (4.33) shows that the dispersion characteris-

tics are then given by the expression

_(k ) = _D(k,, ) + ivt,ik,, , (4.38)

where the _D(kll) are the complex frequency solutions of Eq. (4.19) that

are shown in Fig. 30. Since k is greater than zero, each branch of
II

the dispersion diagram has acquired a positive imaginary part which may

transform growing waves to waves that decay with time if the parallel

thermal speed v is sufficiently large. This point is illustrated in
tH

Fig. 31 with a comparison of the imaginary part of _(kH) in the first

five frequency bands for two values of the temperature ratio (Vtu/Vti).

The curves corresponding to (vt,/vt±) = 0 were obtained from Fig. 30,

and the second set, corresponding to (vtll/Vtl) = 0.2, were computed

from Eq. (4.38). It is seen that a parallel electron temperature is

manifested in three characteristic ways:

I. As k -* oo, every mode acquires a large positive imaginary
I]

part which implies strong attenuation with time.

2. If the normalized wave number (kilvtl/¢0c) is sufficiently

small, each mode has a positive imaginary part that varies

linearly with k
II

3. There may exist finite ranges of the normalized wave number

(kilVtl/_0c) over which the imaginary part of c0 is negative.

The waves falling into this group are consequently unstable.
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Fig. 31. IMAGINARY PART OF _ FOR OBLIQUE PROPAGATION OF

CYCLOTRON HARMONIC WAVES. Here the parallel component of

the electron velocity Vil is distributed according to a

resonance function with effective thermal speed Vtll,

and the transverse components have a Maxwellian distribu-

tion with thermal speed vt±.

When v is distributed according to the resonance function, the real
II

part of the frequency is the same as that of a plasma with zero thermal

electron speed parallel to the magnetic field, and hence is obtainable

from the dispersion characteristics shown in Fig. 30.

It is seen from the above that instabilities can be expected only

if the electron temperature is sufficiently anisotropic, as originally shown

by Harris [4,5]. In the limiting case of an isotropic plasma where the veloc-

ity distribution of the electrons is a function only of VF-----(V 2 + v2)/2]
'L± L, 4

and where (_fo/_V) < 0 for all v > O, instability cannot be excited _see

Appendix A). Space-charge oscillations decay exponentially with time in

this case. For purposes of illustrating the dispersion characteristics
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for an isotropic plasma, Eq. (4.35) has been solved numerically for

_(ktt) with the temperature parameter T equal to unity. The Maxwellian

distribution occurs commonly in laboratory plasmas, and for this reason

these computations are of particular significance. Figure 32 shows the

resulting dispersion characteristics for _ values of (_ /_ ) and of

(k±vt/_c), where v t (= vt± = vtl,) is the thermal speed of the isotropic

Maxwellian distribution. To obtain these curves the function Z(z) was

generated numerically from a computer program written by H. Derfler and

T. Simonen. It will be noted that, as in other cases, two modes are

found in each passband. The damping rate, given by the imaginary part

of _, increases rapidly with (kllvt/_c) , particularly for modes that

have a cutoff at harmonics of the electron cyclotron frequency. It is

remarked that for modes between n_c and (n+l)_ c, (_i/_c) has been

plotted with the line _ = n_ as a base, and with the indicated scale.
c

It can be concluded from these curves that for propagation more than

about iO ° off exact perpendicularity, attenuation of the order of 50 dB
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Fig. 32. DISPERSION CURVES FOR OBLIQUELY PROPA-

GATING CYCLOTRON HARMONIC WAVES IN A MAXWELLIAN

PLASMA SHOWING CYCLOTRON AND LANDAU DAMPING EFFECTS.
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per cyclotron period would be encountered. Consequently, oblique propaga-

tion will normally only be observable in a narrow angular range near

(_/2) to the magnetic field.

C. Nearly Perpendicular Propagation

It has been shown in the previous section that cyclotron harmonic

waves propagating almost perpendicular to the magnetic field in a Max-

well±an plasma are lightly damped due to Landau and cyclotron damping.

In the limit of perpendicular propagation, this damping disappears and

the waves can propagate without collisionless attenuation. In this sec-

tion approximate expressions have been derived which give the rate of

decay and the frequency of oscillation of cyclotron harmonic waves in

the limit as (kll/k)-*-1 0, where k and k are, respectively, theII ±

components of the wave vector k parallel and perpendicular to the mag-

netic field. This limit corresponds to waves propagating at angles near

(_/2) to the magnetic field. The expressions are compared with the exact

numerical solutions of the dispersion relation to determine when their

validity breaks down.

The dispersion relation for cyclotron harmonic waves can be written

in several equivalent forms. For the purposes of this work, the most

convenient form is that given by Eq. (4.23):

2 co

_PC° _-,_ foo H n (vii)K._ ,_.(to k') = i -2 / dVli v - w - 0, Im__.( ) < 0 ,
k k -oo II n

It n=-oo (4.39)

where

_0 °° In_ _f _f°'_ J2 (k-_cX /Hn(Vl,) = 2_ dv o± _--v + k v
± tl _"_'vll/ n ±

(4.40)

Here Wn has been written for (_ - n_c)/ktl. A background of singly

charged ions, with a density equal to that of the electrons, is also present

in the plasma, but the motion of these particles is neglected due to their
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large mass. We now assume that the wave vector k is real and look

for roots of Eq. (4.39) that are close to the real 0o axis and that are

characterized by the inequalities,

I¢Oi/kl, l << Vtll and I (¢0r - r_ c)/k'l I >> Vtl, ' (4.41)

for all n. Here the quantities m and _. are, respectively, the
r 1

real and imaginary parts of the complex frequency m and is the
, Vtll

effective thermal speed of electrons along the magnetic field. Since

(_i/klj) is small, an approximate expression for these roots can be found
th

by expanding the n integral in Eq. (4.39) in powers of the imaginary

part of Wn, according to a prescription given by Jackson [42]:

Hn(v,,) (XWni
dv = m_ dv11 V -- w - iN II v -- w

- li nr ni -oo il nr
m=O

(4.42)

Here we have made the substitution w = w + iw and for definite-
nr ni'

ness, have assumed that k is greater than zero. Equation (4.42) is
II

now substituted in Eq. (4.39) and the real and imaginary parts of D(co,k)

are set equal to zero, giving us the expressions,

2 co

=l - dv
k 2 it v - wk --oo II nr

II n=-oo

_l ) (Wnr) 2 )I+ _WniH + O(Wni = O,

(4.43a)
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2 j H(1)(v)
ImEK( ,g)]- p n2 ni P dv II v w

k -oo II nr
kll n=-oo

- _Hn(Wnr) + O(W2ni)l = 0 ,

(4.43b)

where only terms up to the order of Wni have been retained. To lowest

significant order in Wni, the solution of these equations for _i is

°° n_O_ i % 1n
_k _ H r_ .

I1 II /

= H( 1 '
O_i oo ) (vii)F

,, V - (0_r -n_ /k-oo li I[
n=-co

(4.44)

where _ is determined by the expression
r

2 oo Hn (vii )

i P _ p F d v _ ,/ - 0 (4.45)
2 il v - (o_r - no_ ,/kk k -oo II C II

II n=-_

In obtaining these expressions, use has been made of the definitions,

Wni = _i/kll and Wnr = (_r - nC°c)/kll" Since, from Eq. (4.41), the

quantity (_r - n_c)/k" greatly exceeds vtl I, the parallel component

of the electron thermal velocity, the singularities on the real vlt axis

in Eqs. (4.44) and (4.45) are located where Hn(Vll) is vanishingly small.

Consequently, it is reasonable to neglect the contribution of the pole

and use the expansion

-k M vmk m

i It _ I2 tl

- ntu )/k o_ - ncu (_r cvii - (t_r c I1 r c m=O no_ )m '

M being the total number of terms in the approximate series,

(4.46)
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to obtain an asymptotic expansion of the principal value integrals as

k - O. Combining _.qs. (4.40), (4.45), and (4.46), and noting the
II

s metry condition fo(\' -v ) = So(v,v,,) it is readily established,
after judiciously integrating by parts, that the real part of the fre-

quency is determined by the equation,

k nc_ k
C II C

1 --_ -_ a + b

2 2 n o_ - n_ --2 n (o_ ncu )2
cuc r c k n= -oo r c

k 2 _ ncu3 k 4 _ 4

l, _ c ,, _ _e
+-_ Cn 7 n (% 4k (0_r - ncu )3 + 3 d nc_ )

n=-_ c n=-oo c

(4.47)

where the dimensionless coefficients a n, b n, c n,

as follows:

and d are defined
n

a
n

CUc 1 j2

I

bn = /dv fo J2n kI_c_ 1

(4.48a)

(4.48b)

d 1 _fo j2 kI__c_ 1 2c n =- v v. _v n vl, '

(4.48c)

2 /d j2 k<__c¢ / 2
d k v

- 2 v fo n II
n 03

c

(4.48d)
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In deriving these expressions, it is necessary to make the assumption

3f (,,±,v H ) approaches zero as IvllI approaches _.that the function v ,--
II o

Equation (4.47) can be regarded as an expansion of the dispersion rela-

tion in terms of the mean thermal speed of the electrons along the mag-

netic field. If only the first two terms of the expansion are retained,

the dispersion relation will have the form

_0 n (oc II . c
1 - _ k± a + b n = 0

n (o_ - n(o c ((or _ nC°c )2
_c n=-_ n=-

(4.49)

which will be recognized as the dispersion relation of a plasma in which

the electrons have no motion parallel to the magnetic field. This case

was treated in Section A of this chapter. The remaining two terms in

the expansion in Eq. (4.47) represent the lowest order thermal correction

to Eq. (4.49).

In Eq. (4.44) the denominator is an infinite series of principal

value integrals. Each integral can be evaluated in a manner similar to

that used above since the pole at v = (% -n%)/k_ is far out on the
,,

real axis where, we assume, H(1)(V,,n)' the first derivative of  n(V ),
th

is vanishingly small. Combining the n integral in the denominator

with Eq. (4.46) and using Eq. (4.40) we find, after integrating judiciously

by parts,

._ n ,I 2 nCOc
P dv _ a

'I V - ((Or -n(o )/k 2 n (C0r c- Jl c II co - n(o )_2
c n=-oo

2 _ 3
co n(o

+2k2 1 b c + 3k2 f c c

I1 n _(OUr - n(oc)3 H n ((or - n(oc )4
n=-oo n=-oo

zkll I c+ 12--r d + ..
n

(o ((or - naz )5
c n=-oo c

(4.50)
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It is also necessary to assume that certain derivatives of fo(V ,v )

vanish as IVlll _ _. This expansion has been carried out to the same

order in the electron thermal speed along the magnetic field as Eq. (4.47).

In order to determine the accuracy of our approximate formulas, we

now consider a specific velocity distribution and compare the dispersion

characteristics obtainable from Eqs. (4.44) and (4.45) with the exact

numerical solution of Eq. (4.39). We assume that the electrons have an

isotropic Maxwellian velocity distribution:

\+v0 ""2 "
f (v i,vll) = _vt exp 2vt /

(4.51)

Substituting this expression in Eqs. (4.40) and (4.48), and integrating

with the aid of the identity [25],

exp (-72t 2) J2(Gt)t dt- 1 (22 C_2

n 272 exp I n , (4.52)

yields

2 2

exp (-h) In(h) exp (-vH/2vt) (nod + k v ) (4.53))H
" 2 c II II '

i

n(vl' _ V t V_ V t

exp (-h) In(h)
a

n h
(4.54a)

b = exp (-_) In(E) , (4.54b)n

c = exp (-Px) In(h) , (4.54c)n

exp (-h) In(h ) , (4.54d)
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)2
where h has been written for (k vt/_ c The dispersion relation

for the isotropic Maxwellian distribution is given by Eq. (4.35) and

solutions for _(kll) are shown in Fig. 32. As a first approximation

to these curves, we use Eqs. (4.44) and (4.45), and Eqs. (4.49) and

(4.50). For the plasma under discussion,

(1). _-

_/n_r ! exp (-h) I (h)exp -(cur- nO°c) /2vtk,I

n _/_ vtkl I
n=-_o

co

I exp (-h) In(h)

n=-oo

k2v \ co

C )2 + 2 \'-_C / exp (-h)In(h)CUr - nC°c n=-oo

2
CU

C

(CUr - nCUc ) 3

(4.55)

where the real part of the frequency is determined by the equation,

C0 exp (-h) I ()k)

i ---_ h n

co Lk 2c n=-_

n_
c

CO - IKD
r c

k 2 oo C02 )21
II I c+ --_ exp (-X) I (h)

n (C0rk - nco .
n=-oo c

= 0 (4.56)

It is pointed out that only the first two terms of Eq. (4.50) have been

retained in order to be consistent with the order of the expansion of

Eq. (4.49). Figure 30 shows typical solutions of Eq. (4.56) for c0r. It

is seen that for certain ranges of (kllVt/_c), er may be complex (the

imaginary part is shown as a dashed line and drawn to the base _ = n_ ),
r c

which is completely inconsistent with our initial assumption that _ is
r

kli is real and,real. However, when ( vt/_c) is sufficiently small, _r
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qualitatively, has the same dependence on the wave number as the fre-

quencies shown in Fig. 32. A comparison between the exact and approxi-

mate solutions of the dispersion relation shows that good agreement is

possible only in the limit as k - 0. This is illustrated in Fig. 33a
II

with the imaginaryparto_ _ Equations(4.55)and (4.58)wereused to

compute the approximate curves, and the mode beginning at (_r/_c) = 1.409,

when k _ O, was chosen. It is seen that even when (_i/_c)___ is as
II -15

small as i0 , a discrepancy between the two curves is present. Better

agreement can be attained if we expand the approximate formulas to a

higher order in the thermal speed of the electrons, as given by Eqs.

(4.47) and (4.50). For an isotropic Maxwellian distribution, Eq. (4.44)

then has the form,

1

co 2 2 2

exp (-h) I (X) c
n v_ vtkl In= -oo

G(_r)
(4.57)

where the real part of the frequency is determined by

1 4
cbc [k 2 _=_

n=-Oo

2 2
k (D

exp (-h) In(k) I_ c + II _ c
h (Dr - r_c k-_ exp (-h) In(h) ((Dr- _c )2

n=-<x)

2 oo 3

ktl 2+--_ exp (-k) I (k) c
n _ n(Dc)3k n=_oo ((Dr

+3

/k _ 2\ 4 oo

vt____k__j (De

: .% = o,(%

(4.58)

131



10°1

10-12

10-13

10-14

2 2
(Wp/_ c ) = 5.0

(klV t/oJ c ) = I

--EXACT SOLUTION

,APPROXIMATE SOLUTION

(a)

i0-15
0 0.05 O,I

(k,, vt/¢_c)

Fig. 33. IMAGINARY PART OF _ FOR OBLIQUELY PROPAGATING CYCLOTRON

HARMONIC WAVES IN A MAXWELLIAN PLASMA. In (a), the dashed line

was computed from an approximate formula which neglects the thermal

motion of the electrons parallel to the magnetic field when the

real part of _ is computed; in (b), the real part of _ is eval-

uated to lowest order in the parallel thermal speed of the electron.
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and the function G(_ r) is defined as follows:

I

oo

G(%.) = _ exp (-A) In(^)
n_--oo

c /:v2\

(_r- _c)2
c / n=--co

exp (-_)I (A)

2
(19

C

(cur- .%)3

+3

k2v2\ oo 3

"cu_.,, t| exp (-A) In(k) c

\_-c2/n=__ (cur - ncuc)4

+ 12

k4v4\ oo 4

Z|_I, t.l exp (-h) In(k) c

C

(4.59)

Figure 33b compares Eq. (4.57) with the imaginary part of _ obtained

from the exact numerical solution of the dispersion relation. These

2 2
curves correspond to the same mode examined in Fig. 33a. For (_p/_c) = i,

exact agreement is seen for (kHvt/_c) out to approximately 0.034, corre-

sponding to an angle of propagation of 88.5 ° with respect to the direction

of the magnetic field. This angular range can be increased by increasing

2 2 2 2

the parameter (_p/_c). For (_p/_c) = 20.0, exact agreement occurs out

to 85 ° .

The approximate formulas that have been derived in this report are

not capable of reproducing the dispersion characteristics of the modes

that are found near the harmonics of the electron cyclotron frequency.

Indeed, for _ near n_ , Eqs. (4.55) and (4.57) predict that _.
C 1

is less than zero, implying temporal growth. However, this cannot occur

in a plasma with an isotropic Maxwellian velocity distribution. The rea-

son for this breakdown is that our initial assumptions, Eq. (4.41), are

not valid near the harmonics. This is readily established by using

Eq. (4.49) to show that

m -n_

lim r c = 0 . (4.60)

kll "_ 0 k
[I
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D. Classification of Instabilities

It was pointed out in Chapter III that instabilities can take on

one of two forms, as illustrated in Fig. 13. If the amplitude of a plasma

disturbance increases indefinitely with time at any point in space, the

instability is absolute and hence no steady state can be maintained.

However, it is possible that an excited pulse will propagate away from

a region of space while the amplitude of the pulse will grow with time.

This situation will leave the plasma in a quiescent condition, implying

that a steady state is possible. Instabilities of the latter type are

called convective. In this section the instabilities associated with

obliquely propagating cyclotron harmonic waves are classified according

to this prescription.

The basic ideas that are relevant to the classification are summarized

in Chapter III (Section C). The main part of the criterion is a mapping

of the lower half complex frequency plane onto the complex wave number

plane via the dispersion relation. If this mapping shows that two or more

roots of the dispersion relation, which are located on opposite sides of

the real wave number axis when _ is on the Laplace contour, merge to a

single point as Co approaches some frequency with negative imaginary

part, absolute instability is present. If this merging does not occur,

the instability is convective.

Before applying this criterion, it is important to note that the

representation of the dielectric constant given by Eq. (4.23) is not a

unique function, but one with two branches if k is real. The two
il

branches are readily identifiable if use is made of the identity

V -- W
[l n

+o0

- i _0 d_ exp [i(vll - Wn) _] ,
(4.61)

where Wn has been written for (CO - nC0c)/kl,. In order to insure con-

vergence of the integral, the plus sign is chosen if Im(wn) < O, and

the negative sign if Im(Wn) > O. Substituting Eq. (4.61) in Eq. (4_)

and assuming that the imaginary part of co is less than zero leads to

the following expression:
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K (0_,k) =

)K+(0_,k,kl, I = 1 + 2_i _ _ H + _ -- , .k,kl, ,
k k 2 n kll

II n= -°°

2+ <+ )K-(0_ k I = 1 - 2_i _p _ H: - r_c

k >0
I1

(4.61a)

k < 0
11

(4.61b)

where the positive and negative "frequency" parts of H ,
n

are defined as

respectively,

 d4H:(Wn,k,kl) = _ exp (-iWn_) Hn(4,k,kl) (4.62a)

and

f mH:(Wn,k,kH) = d--_exp (-iw 4)Hn(4,k,k,l)
_ 2_ n

(4.62b)

In these expressions the function Hn(t,kl,kli) is the Fourier transform

of Hn(Vll,k ,kll) , that is,

H (4,k , ) = dv exp 4) H n(vl,,km ) "--n kll _ II ( iVll ' kll
(4.63)

It is remarked that the two branches,

but are connected by the relationship

K + and K- , are not independent

K+(-_*,k ,kll) = K-(_,ki, - kll)* ,
(4.64)

as shown in Appendix B.
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As a result of the decomposition in K(_,k ,k l) in Eq. (4.61),

the instability criterion stated in Chapter III must be modified slightly.

Derfler [32] has given the appropriate changes when a dispersion function

has properties similar to those indicated by Eqs. (4.61) and (4.64). For

purposes of discussion, we assume that k is a fixed, real number and
±

that the propagation is parallel to the magnetic field with frequency

and wave number k . Then, it can be inferred from Derflerts work that
II

absolute instability is present if (I) zeros of K +(_,k i,kl) collide

across the positive k axis--rather than the entire k axis--as
II II

varies along some contour in the lower half complex plane, or if (2)

zeros of K-(_,k,kll)± collide across the negative kH axis as the fre-

quency varies in the lower half plane.

For purposes of illustrating the type of instabilities that can be

expected for oblique propagation, we consider the following electron ve-

locity distribution,

2 2
3 exp (-\/2vt_)vtH

fo(V,V, ) - 2 2 2 ' (4.65)

2 2 )
vt± (vll + vtl I

implying that the transverse velocity components have a Maxwellian distri-

bution while the parallel components have a second-order resonance distri-

bution. In order to obtain the positive frequency component of K(_,k),

Eq. (4.65) is substituted in Eq. (4.23) and the integration is first

carried out with respect to v using Eq. (4.29), and then with respect
±

to by the method of residues under the assumption that Im(_) < 0
V H

and k > O. This procedure yields the dispersion relation,
II

2

)K +(co,k) = 1 - -_2 (_ - ivtHkll kH
OO

C

- ivt, k, L, k )7

+ ivtHkll _(0 J = 0 ,

(4.66)
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where

2 co

k

F( ,k,k,,) =
k

n=-co

exp (-h) I ()X) nco
n c

c

2 co 2
k _o

II _ t c
+--_ exp (-h) In(X) )2

k _co - nco
n=-oo c

(4.67)

In Eq. (4.67) the variable )k has been written for (kvt_/_0c). In

order to show where instability can be expected in this case, the complex

frequency solutions of Eq. (4.66) are plotted in Fig. 34 for positive,

real k . As in previous examples, there exist two propagating modes
II
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Fig. 34. DISPERSION CHARACTERISTICS FOR OBLIQUELY

PROPAGATING CYCLOTRON HARMONIC WAVES; MAXWELLIAN

DISTRIBUTION IN THE TRANSVERSE VELOCITY COMPONENT

v± AND A SECOND-ORDER RESONANCE DISTRIBUTION IN

THE PARALLEL VELOCITY COMPONENT vtl.

138



in each passband, one of which maygo unstable as a result of a dip in

the imaginary part of _. Instability occurs when the minimumof the

dip passes the line, _. = 0. Figure 35 shows the variation of one1
unstable mode(dashed line) in the complex w plane as a function of

the velocity ratio (vtll/vt±). The four contours, A, B, C, D, are

now mappedonto the complex _H plane and a search is madefor saddle-
points where -(_K+/_kll) = O, corresponding to the merging of two zeros
of K+(_,k). If these zeros originate from opposite sides of the real

k axis, an absolute instability is present. For the case whereH
(vtll/vt±) = 0.42, a saddlepoint is found at _llo = 6.81 + ii.65 when

(_/_c) ° = 1.405 - i0.03. Since the positive wave number axis is also

pinched, an absolute instability is present. If the velocity ratio is

now increased to 0.43, the contour of integration is again pinched, but

the frequency at which this occurs is located above the real axis. There-

fore, the instability in this case is convective since there are still

complex frequency solutions with Im(_/_c) < 0 and real wave number,

A further increase in the velocity ratio to 0.5 completely stabilizes

the plasma.

E. Discussion

The main features of this chapter can be summarized as follows:

Electrostatic waves propagating in a bounded magnetoplasma with a ring

electron velocity distribution support a large class of instabilities

that have onset conditions that are far less stringent than for purely

perpendicular propagation. In a given frequency passband there is found

a series of bounded regions in _±(_ kiVo±/_c) where growing waves are

predicted. The regions are defined by

, (4.68)
< _ < an+l,nm _ m

th
where _ is the m zero of the Bessel function of order n. For

nm

other values of _i the waves propagate without growth or attenuation.

If temperature is first introduced in the plane perpendicular to the

magnetic field, only one range of _± predicts growing oscillations.

Temperature effects parallel to the magnetic field are manifested by
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PLANE VIA THE EQUATION K+(0_,k) = O, ESTABLISHING THE TYPE OF

INSTABILITY EXCITED BY OBLIQUELY PROPAGATING CYCLOTRON HARMONIC

WAVES. The instability is convective for (vtLl/vt±) = 0.43,

absolute for (vttl/vt±) = 0.42, while the plasma is stable for
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strong damping of waves with small wavelengths and by weak damping for

propagation nearly perpendicular to the magnetic field. Also, if the

velocity distribution is sufficiently anisotropic, instability is pre-

dicted for a finite band in _ll(_ kllVtll/_C ). Finally, the instabilities

were classified as being either convective or absolute. It was demon-

strated that for a sufficiently low temperature parallel to the magnetic

field, the instabilities are absolute. However, as the ratio (vtll/vt±)

approaches unity, the instability becomes convectiveand then damping

sets in.
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V. EXCITATION OF ELECTROSTATIC RESONANCES

IN A HOT MAGNETOPLASMA

In recent years a considerable amount of experimental evidence has

been accumulated, from both laboratory and ionospheric studies, which

indicates the presence of strong resonant effects, or prolonged ringing,

in magnetoplasmas. Resonances have been detected at harmonics of the

electron cyclotron frequency, st the plasma frequency, and at the upper

hybrid frequency. In this chapter it is shown that within the range of

the electrostatic approximation, resonant plasma oscillations can be

excited perpendicular to the magnetic field at frequencies which agree

with experimental observations.

The background and some introductory considerations of the problem

are given in Section A. This is followed in Section B by the definition

of the plasma Green's function and a study of its analyticity in the

complex _ plane. In Section C we obtain the asymptotic form of the

excited electric field as t _ _. We examine in Section D the depen-

dence of the resonances on the spatial form of the source and, in partic-

ular, we consider a source that is periodic in space. The results are

discussed in Section E.

A. Basic Equations

The theory which describes the behavior of plasmas in the presence

of a uniform magnetic field, in the electrostatic approximation, has been

given in Chapter II. If external charges are present with density

ps(_,t), space-charge oscillations can be excited in this medium with

the associated fluctuating electric field obtainable from Eq. (2.49)

by performing inverse Fourier and Laplace transformations. In this

chapter the asymptotic behavior of the electric field is examined as t

approaches infinity to determine the components of this field after the

uninteresting transients have died out. The following assumptions are

made concerning the plasma model: (a) The plasma is composed of electrons

and ions with equal density, but the motion of the ions is neglected due

to the relatively large mass of these particles; (b) the space-charge
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oscillations are one-dimensional and directed along the x axis per-

pendicular to the magnetic field; and (c) the electron velocity distribu-

tion is an isotropic Maxwellian. Under these restrictions, only E(x,t),

the x component of the electric field, survives. Thus, by inverting

Eq. (2.49), we find that our basic equation that must be evaluated is

#-

E(x,t) = | exp ,%
(5.1)

where

codk exp (-ikx)1

--co O ±

(5.2)

and, from Eq. (3.63), the plasma dielectric constant perpendicular to

the magnetic field is

2 oo

exp (-_) I ()_) n0_

K(C_,k£) = i - p _ n c2 _ _ - n_
C

C n------co

(5.3)

Here, C is the Laplace contour running parallel to the real axis in

the lower half complex _ plane; _ has been written for (k, vt_c),_ -_

where vt_is the thermal speed of the electrons; and the source has

been expressed as Ps(X,t) = g(x) f(t), which is transformed to

Ps(k1,_) = g(k,) f(_). As t approaches infinity, the asymptotic form

of Eq. (5.1) is determined by the singularities of the integrand. In

this chapter we assume for convenience that f(_) is analytic in the

entire complex _ plane, thus representing excitation of the resonances

by a temporal pulse. The singularities in the function F(_,x) can be

found with a technique introduced to plasma stability studies by Derfler

[31], [32] and by Bets [33] and Briggs [34], and used in this report to

classify cyclotron harmonic wave instabilities as either absolute or

convective. These singularities arise from the deformation and pinching
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of the contour of integration of Eq. (5.2) by two or more zeros of

K(_,k ) as _ varies along some path in the complex plane. The basic

parts of the technique are explained in Section III-C.

It should be remarked at this point that the determination of res-

onances in this manner is closely related to the problem of absolute

instabilities in plasmas. If the function F(_,x) has a pinching sin-

gularity in the lower half complex _ plane, the plasma is absolutely

unstable. A necessary condition for this situation to occur is that the

dispersion relation, K(_,k ) = 0 possess complex frequency roots (with

negative imaginary parts) with real wave number. We are concerned here

with cases where F(_,x) is analytic in the lower half plane but singular

at isolated points on the real axis. Situations of this type are of

significant importance since the electric field that remains as t _

will contain a component that decays very slowly with time. This is evi-

dent in Eq. (3.83) where a decay rate of (1/t _) is indicated. This

condition of long-lived fields, or ringing as it is often called, is de-

fined as a resonance and has been the subject of a great deal of experi-

mental research in plasma physics in recent years [ll, 20, 21, 39].

In what follows, the real frequency resonances of a magnetoplasma

with a Maxwellian transverse electron velocity distribution will be lo-

cated. Although there are other stable distributions that have some

academic interest and hence could be considered, the Maxwellian is more

appropriate because of its common occurrence in both laboratory and extra-

terrestrial plasmas. Having found the frequency of the resonances, this

will bring us naturally to our main objective, the derivation of the long-

time behavior of the electric field. It may appear at first that this

is given by Eq; (3.83). However, that formula is based on the assumption

that two roots of the dispersion relation pinch the contour of integration.

If the number of such roots exceeds two, the singularity in F(_,x) will

be different from what is shown in Eq. (3.82) and hence the limit of the

electric field as t _ _ must be recomputed.

It should be pointed out that this problem has been treated previously

with a different technique. Sturrock [43], for example, finds resonances

at each harmonic of the electron cyclotron frequency and at the cold-plasma,

upper hybrid frequency, but does not include in his analysis adequate
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justification that a resonance does indeed occur at the indicated fre-

quencies. However, with the use of the pinching criterion, this justifi-

cation is readily established and, in addition, other resonances are

obtained that Sturrock did not predict. The approach adopted here appears
to have been first used in plasma wave studies by Nuttall [44] when he

examined electromagnetic resonances in a magnetoplasma.

B. Singularities of the Green's Function

It is convenient to excite the resonances with a sheet charge located

at x = O. The spatial form of the source is then given by the expression,

g(x) = 5(x), and hence, g(k ) = i. Under this assumption Eq. (5.2)

reads

f_ dk exp (-i k x)= = i k
- 0 .L

(5.4)

and is clearly identifiable as a Green's function. The response of the

plasma to a source with arbitrary spatial form is obtained from the con-

volution integral

o0F(o ,x)= dx'O(co,x-x')g(x')
_00

(5.5)

The multiple zeros of K(cu,k I ) which pinch the contour of integration

of Eq. (5.4) can be obtained from the dispersion characteristics shown

in Fig. I0. As explained in Section III-C, this may occur at frequencies

where the group velocity (d_/dk) vanishes. For a Maxwellian plasma,

this condition is found at the following points:

(i)

(ii)

(iii)

k = 0 when _ =nm and n = 1_zz, 23, ....

k = ±_ when _ = nt0 and n = ±l, 22, ....
± c

k finite and nonzero when ,,Inl_c < _ < -,,(Inl+ i)¢0c- and

n = 2, 3, .... Note from Fig. l0 that this case is not

present in every frequency band, In fact, if Inl_ c <

(Up2 + 2)_c_ < (Inl + 1)m c, the dispersion curves show that

the group velocity is nonzero for _ < ,,Inl_ c and 0 < k < _.
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It is pointed out, however, that case (ii) will probably not occur in

more realistic plasma models. For example, it was shown in Chapter IV

that when electron-neutral collisions are introduced in the theory, the

double root at k = _ is replaced by two distinct roots which are
1

located far in the complex plane, on opposite sides of the real axis.

Collisions will also affect the other multiple roots in a similar manner

but not as strongly as that which occurs at k = _. For this reason,
I

case (ii) will not be included in the forthcoming work. It is now shown

that cases (i) and (iii) are responsible for the singularities of F(co,x)

on the real co axis.

I. Pinching at k = 0
I

The zeros of K(_,k ) in the vicinity of the origin in the

complex k plane are obtained by expanding Eq. (5.3) in a power series
I

about k = 0. For co near nm , this yields
l C

2 co 2 n_°c _k Vtl_2 (n-1)COp 1 _ _ , n > 2 (5.6)

z(co, ) 1 2 2 2 \ % / -co -co 2nn! co co - i_0
C C C

where use has been made of the small argument approximations of the Bessel

and exponential functions to obtain for positive n

n

exp (-h) In(h)_T.

If co is near (-rzo c) where n > 2, the symmetry condition I_n(h) :

I (h) implies that the correct form of K(co,k l) is obtained from Eq. (5.6)
n

with the substitution

co- . (5.8)

Hence, any resonance found on the positive real frequency axis has asso-

ciated with it a mirror image on the negative axis. For this reason, it

is sufficient to restrict our work to positive harmonics of the cyclotron

frequency.
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The zeros of Eq. (5.6) are located at

k
±j

i

¢0 ¢00 co t0
• -- P

c nn' _ 2
vt± co co - co

P

j-I )• exp i _ _ , j = i, ..., 2(n-l) (5.9)

Since co is near nto
C

venient to write

and in the lower half complex plane, it is con-

5 /% t _

Co =nco + exp _ie) Q5.10)
e

where 5 is a small expansion parameter and 8 is in the range

-R < 8 < 0. Equation (5.9) then reads to lowest significant order in 5:

k
±j I_cn 2 _ _2181

COc _ COc _ 1 _
2 2

vt± C0p n - 1 _0c/

. exp [i 2(4-i) _ + e]2(n-l) ' J = i, ..., 2(n-l) (5.11)

It is clearly seen that surrounding the origin in the complex k plane
±

there exist 2(n-l) poles of the integrand of Eq. (5.2), with (n-l)

above the real axis and (n-l) below. Furthermore, it is seen that the

poles are uniformly distributed on the circumference of a circle centered

at k = 0 with radius

1

CUc nn I 1 o_p

= "_t.tL "_c co2p n 2 - 1 co

(5.12)
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Clearly, as 5 _ O, that is, as co _ ncoc, the poles converge toward

the origin to form a 2(n-l) th root of the dispersion relation that

pinches the real axis, and hence the contour of integration, at k = O.
&

It is now a simple matter to find the form of G(co,x) near

the harmonics of the electron cyclotron frequency. Because of the

presence of poles surrounding the origin the most significant contribu-

tion to Eq. (5.2) will come from values of k near zero. Therefore,
±

for co sufficiently close to nC0c, an approximation to the integral

will be obtained by substituting for the integrand its small argument

Before doing this, it is convenient to separate exp (-ikx)expansion.

into its real and imaginary parts to obtain, after invoking the symmetry

condition K(co,-kI) = K(co,k±)

oo dk sin k x
i i (5.131

G(CO,x) = 2_ e k K(CO,k)
--oo O ..[.

Substituting Eq. (5.6) for K(co,k ) and k x for sin k x, this ex-

pression reads, for co in the lower half complex plane and near n_ ,
C

_ dk
± , (5.i4)

G(0_,x) - 2_£o(2X(Cu - n_c) - k2(n-l)± -O_c(CU)(co -nco c )

where we have introduced the variables

2 2 I.. \ 2(n-l)

co 2nn' coc (C°c hP , a - ' (5.i5)z(co)=i- 2 2 2 / "
c co - co c co \ti/

c p

It will be noted that K (co) is the effective cold-plasma dielectric
C

constant in the direction perpendicular to the magnetic field.

The integration in Eq. (5.14) is accomplished with Cauchy's

residue theorem, which permits us to write
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(_x

G(CO,x) - i_ (CO - ncoc) _ Res [k_j(CO)] , (5.16)
o

J

where the summation extends over the residues of the poles located in

the upper half complex plane at k +.. Equation (5.9) gives the position
AJ

of all poles near the origin, while those above the real axis are listed

in Table 4 for three different positions of the hybrid frequency. It is

Table 4

POLES IN UPPER HALF k PLANE FOR CO NEAR
].

nco
c

Position

of Hybrid

Frequency _H

_H < ncoc

COH = nCOc

COH > nC°c

Poles above the Real k Axis

+
k
±j

1

1 _p 5

n 2 - i_ .

exp [i 2(4-1)_+ 0]
2(n - i) '

j = 2, ..., n

2nco

+ c 52k = (£ i
2

±J (n2 - l_° c _i

exp Ii (o-1) _ + A]n - 1

j = 2, ..., n

i (D

k + i 1 ..]Z_
" = (_ " 2

±3 2 1 coc ;

1

exp [i (20-1)_ + e2(n - 1) ] '

j = I, ..., n-I

pointed out that when deriving this table, CO was set equal to n_ +
c

5 exp (ie) with -_ < 8 < O, and the dielectric constant was approxi-

mated by its value near nCO:
c
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K(_) _,

2

1 _p_
2 2 '

n - ico
c

2nco
c

(n 2 - 1_2 (CO- n0_ )
C

C

% # n% , (5.17a)

CoH = no0 c
(5.17b)

It is readily established from Eq. (5.14) that

Res [k ] = 1 (5.18)
, 2n-3 "

±J 2(n - l)kj

Hence, after substituting this result in Eq. (5.16) and making use of

Table 4, we obtain

)2-V_iVn
1 (c° - n°° c _ [
_l 2(n - l) exp

j=2

n-2

G(_,x) -
ig

o

(CO - nco c) n-1 n

_2 2(n - 1)

i (_-n_)c

_3 2(n - l)

\

2n - 3 ]
- i(j--1)

n i _] '

_ exp [-i(j-1) 2n- 3 _]n _ '

j=2

coH = nco c ,

(5.19a)

(5.19b)

1

n-1

exp -i(2j-1) 2(n l) '

j=l

_H > nC0c ,
(5.19c)
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2n-3

o_2 1 n-2
n 2 1 o_c

2n-3

1 "_2-
_3 = 2 _ 1 _oc

(5.20)

The finite sums are closed with the identity

n sin nq)

exp -
2

(ik )
sin <0

k=l 2

exp (i n + i _012
(5.21)

yielding the formula

[ 13_- i exp 2(n - 1)exp - i(j-l) 2n - -
n ff

j=2 sin 2(n - I)

, (5.22)

n-i

[ 2n - 3_ 1 • (5.23)exp -i(2j-l) 2(n i) =

i sin 2(n )j=l - 1

After substituting in Eqs. (5.19a-c), the form of the Green's function
th

near the n harmonic reads
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! 2(n- ii (_-n_ ,
c

_i 2(n - i) sin 2(n - I)

(5.24a)
9

n

_3 2(n - 1) sin 2(n _-1)

_H > n_c " (5.24c)

Clearly, there exists a singularity at integral multiples of _ exceptc

the first. When _H / n_c' the singularities are branch points which

are replaced by branch poles when _H is identical with nCOc. It will

be observed, however, in Eq. (5.24b) that an exception to this rule

occurs at the second harmonic when the hybrid is equal to that frequency.

In this case, G(_,x) is regular at 2_ and hence no resonance will
c

be found at that frequency.

In additionto the singularities found above, the Green's

function has an additional one at the upper hybrid frequency. The form

of G(_,x) near this point is found by substituting in Eq. (5.6) the

power series expansion of K(_,k l). For _ _H _ n_c ' this has the

form, to lowest significant order in k ,
1

2_H(_- I- c t_____ (5.2_)
K(_'5)_ --_ % 2 _ 3

COp P
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Clearly, this expression has zeros at

k

2 2
+- 2 2 exp i co > 3co (5.26a)' p C '

copVt±

2 2 exp i co < , (5.26b)
v ' p c

cop t_

which pinch the real axis as _ _ O. Here we have made the substitution

=% + 8 exp (ie) , -_ < o < o . (5.2v)

Thus, for co near _H' residue evaluation of Eq. (5.6) yields

G(oo,x) =

i xT1 1 2 32> , (5.28a)
2c° (co_%)_' p c

x72 1 2
CO < 3co2 , (5.28b)

2¢ 0 (co _ _H)_ ' p c

where we have introduced the variables

71 = p p c -
72=[ P c

(5.29)

A branch pole is clearly evident at the upper hybrid frequency.

2. Pinching at Finite and Nonzero k

The dispersion characteristics of the Maxwellian distribution

have branches which are typically of the form illustrated in Fig. 36.
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_o

-k 0 ._¢ k o
k.L

Fig. 36. PORTION OF DISPERSION DIAGRAM FOR PERPENDICULAR

PROPAGATION IN A MAXWELLIAN PLASMA SHOWING TWO POINTS

WHERE THE SLOPE d_/dk, VANISHES FOR FINITE AND NONZERO

WAVE NUMBER.

Modes of this type are characterized by two points (C_O,kO) and (¢_o,-ko),

where the slope (d_/dk) vanishes and hence where

_k (_'5)--0 45.30)
1

This conclusion is based on the assumption that K _ 0 at both points.
_0

However, this is clearly satisfied for the Maxwellian distribution since

from Eq. (5.3)

2 oo

CU exp G-h) I (h) ncu

K (Co,k) =_E _ n c > 0 (5 311
2 h (CO nCu )2 ' "CD
c n=-oo c

for all _ and k .
1

If, as indicated in Fig. 36, the dispersion relation has only

a double root at k ° for _ = _ , it is readily established that
o

Kkzk± (_o'ko) = Kk_k± (too' - ko) > O. Hence, the Taylor series expansion

of K(_,k) about the point (_o,ko) yields, with the use of Eq. (_'_,

the approximation

1 (k - k )2K(_'ki)_ _(%'ko) (_-%) ÷_ Zk k (%'ko) o (5.32)

154



For _ in the lower half complex plane at

CO = O_0 + 5 exp (is) , -_ < e < 0 , (5.33)

Eq. (5.32) has two zeros on opposite sides of the real axis at

o,k

which converge to k as 5 -* 0 to form a double root that pinches the
o

contour of integration of Eq. (5.13). Similarly, there exist two zeros

of K(cu,k) near (-ko) which behave identically to those in Eq. (5.34)

and are located at

25Kk k (CUo,ko)1 _

k =-ko± i L K (CUo,ko) j exp (i_) .

(5.35)

Thus, for _ near _o' residue evaluation of Eq. (5.13) yields

sin k x

G ((_,x) _ o 1 (5.36)

eoko(2K Kk.Lk )_ (0_- LO )_ '..L 0

and reveals a branch pole at _ . The partial derivatives in this ex-
o

pression are evaluated at the point (_o,ko).

C. The Lon_-Time Behavior of the Electric Field

The asymptotic form of the electric field can now be obtained by

deforming the Laplace contour in the usual manner around the singularities

of the Green's function. Then in the limit as t _ _, Eq. (5.1) reduces

to
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E(x,t) _ _ exp (itot) G(00,x) f(00) ,

k k

(5.37)

where the summation is over the branch points of the Green's function

and the contour F k extends around the k th branch cut as shown in

Fig. 37. Here we have assumed that f(_) is an analytic function of

_, corresponding to pulse excitation of the resonances. It should be

pointed out that not all singularities are indicated in this figure.

For purposes of clarity we have excluded those singularities of Section

th
B with finite and nonzero wave number. We now examine the k term

in Eq. (5.37) at each branch point.

I
I

-W C

W

O Q;c
-a; H

-4w c -3w c -2w c 2Wc

_r

----" BRANCH CUT

r.

Fig. 37. CONTOUR OF INTEGRATION AROUND SINGULARITIES OF THE GREEN'S

FUNCT ION.

Case 1 (_ = n_ c, _H _ n_c)" Since the contribution to the integral

from the part of P k in the upper half complex plane vanishes exponen-

tially as t _ _, it is sufficient to expand the integrand about

= n_ and retain only the most significant parts. Hence, in this

c th
limit, the k term of Eq. (5.37) approaches, for _H < n_c'
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Ek(x,t) =

1

x_ _ f(r_uc) exp in_ct + i 2(n- 1

CO_l 2(n - i) sin 2(n - i)

1

_D du_ )2--_/_• _ exp [i((u - n_ )t] (tU - n_e e

k

(5.38)

where Eq. (5.24a) has been written for G(_,x). Figure 38 shows that

the integration along F k can be written as a sum of three terms:

IF = IAB + IBC D + IDE ,
k

(5.39)

where

IFk = _ exp [i((u - ntUc )t] (0J - n_c)_

k

(5.40)

A

0 B
I

C

D

Y
_r

BRANCH CUT

F k

Fig. 38. CONTOUR OF INTEGRATION F k AROUND A BRANCH

POINT IN THE GREEN'S FUNCTION.
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Writing

f _%
= n_ + 5 exp kiO),

C

(5.41)

it is clear that

lim IBC D -* i5
5-_0

2n-i

2n----_ fO exp i 2n 2 8
(5.42)

= 0 , (5.43)

while in the same limit,

1

z exp _0_
IAB + IDE = i exp i 4(n - I) 2--_ z

1

fo (-%t) jTT:T [i _ ] 1 exp+ i exp 4(n - 1) 2--_ i
(5.44a)

co dcD.

[ fo_ = - 2 exp - i 4(n - I) sin 2(n - i) 2_

1

• exp (-Wit) CO_l " (5.44b)

Here, the integration with respect to _i [_ Im(_)] has been extended

to co for convenience. This step is purely formal and will introduce

no error in the limit as t _ co. The integration in Eq. (5.44b) is

accomplished with the identity

f: dx x p (-qx) = F(p+l)
exp

qp+l '

(q < O; p + 1 > O) (5.45)
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where F(z) is the familiar gamma function• Hence, after combining

Eqs• (5•43) and (5.44b) with Eq. (5.39) and substituting the result in

Eq. (5.38), the component of the electric field at co = no_ is, in the
c

limit as t -* o%

Ek(x,t)-

1

xC_2-_ F (2n - 12n 2 ) f (nCOc)

2_(n - 1)eo_ 1

exp inCOct + i 4(n - 1)

2n-I

t2n-2

(5.46)

If eH > n_c' the only change in this expression occurs in the phase,

and it is readily established, from Eq. (5.24c), that the asymptotic

form of the electric field is

1

x2_ ,_n 2) c [ -1)] (5.47)
F/2n- i f(n_ ) exp inC0ct- i 4(n _

Ek(X't) - 2_(n - 1)COB 3 2n-1

t2n-2

Case 2 (co = n_Oc, °°H = n°°c) " This case requires a recomputation

of the branch cut integral. From Eqs. (5.24b) and (5.37), the correct

expression for the electric field, as t _ _, is

Ek(x, t) =

1

x(_2-_-_ f(n¢0 c) exp [in0Oct + i 2(n __ i)]

6o_2 2(n - 1) sin
2(n - 1)

_ de• _ exp [i(e- n_c)t] (co - n_Oc )

k

_ n-2

n-1

(5.48)

where the contour F k is shown in Fig. 38. Following the integration

in Case I, we define
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n-2

expdO_ [i(_ - n_c)t] (0_ - n_c ) n-1 (5.49a)

= IAB + IBC D + IDE
(5.49b)

In the limit as 5 _ O,

reduce to

the components of the branch cut integration

1

IBC D = i5 n-1 -* 0 (5.50)n - 1

I "= _ exp (-_i t) _iIAB + IDE i exp i n - 2 3_ 0 d_
• n 1 2 2_

n-2

n-1

f0oo d¢_.+ i exp (-i n-2n 1 2_) -"_lexP2_ (-_uit) O_i

n-2

n-i

(5.51a)

= [i exp i 2(n _ sin _ (5.51b)
- 1 n- 1 1

tn-I

where Eq. (5.41) was written for t0 in Eq. (5.50), and the integration

with respect to 03. was accomplished with Eq. (5.45). Hence, the com-
1 th

ponent of the electric field at the n harmonic reads

Ek(X,t) =

1

xjC : r cos
x(n - 1)_o_2

<i nO_c t2(n - 11 exp + i 2)

1

n-i
t

(5.52)
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It is observed that E k is identically zero when n = 2, indicating

that no resonance exists at the second harmonic in this case. This is

a manifestation of the analyticity of the Green's function, Eq. (5.24b),

in the region about 2_ when the upper hybrid frequency also equals
C

2_ .
C

Case 3 (0o = c0H 4 n_c)- The component of the electric field excited

at this frequency is obtained by combining Eq. (5.28a) or (5.28b) with

the k th term in Eq. (5.37). This yields the expression

xf(_H) [i711E k(x,t) - 2E exp

o [.72 j

/r de - )t] (_-_H) -_(_Ht) _exp [i(_ %
k

(5.53)

2 > 3 2c, while thewhere the top entry in the brackets is chosen if _p

bottom entry is chosen if 2 < 3 2. The branch cut integral will be
p c

recognized as a special case of Eq. (5.49a), namely, the case n = 3,

and hence we take advantage of the result of the integration, Eq. (5.51b),

to obtain

Ek(x,t) :

X_lf(_) exp + -- 2> 2

I 2f_60 t/2 , _Op 3%

2_ t _
o

(5.54a)

2 3 2 (5.54b)
p

p c

where use has been made of the identity r(1/2) : V_.

Case 4 (_ = _ ). This case corresponds to the singularities
o

described in Section B2. They are found only at frequencies larger than

the hybrid and have an associated finite and nonzero wave number k .o
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A comparison of Eqs. (5.36) and either (5.28a) or (5.28b) indicates that

the singularity at _ is of the same type and form as the one at theo
upper hybrid frequency _H" Hence it is readily established from the

computations of case 3 that the electric field excited at _ is
o

 k(x,t) = f(_O ) sin koX fF d_ )t] (Cu - cu )-_)_ exp (iCUot) _ exp [i(c0 - ¢u° o-
oko- (2KKk k " k

(5.55a)

f(00o) sin k Xo exp (i0_ot + i 4)

t _
, (5.55b)

where the partial derivatives are evaluated at (_o,ko).

In order to summarize the results obtained here and in the previous

section, Table 5 lists the frequencies at which the Green's function is

singular, the form of G(_,x) near these points, and the time and spatial

dependence of the electric field excited at each resonant frequency. It

is seen that the decay rate of that field at n_ is critically depen-
c

dent on the!hybrid frequency. If _H _ nCOc' the decay rate decreases

from (I/t 3/2) at n = 2 to (l/t) in the limit as n _ _. However,

these rates can be decreased significantly by setting the upper hybrid

frequency identically equal to n_ . Indeed, the decay rates in this
c

case are always slower than (l/t) and vary from (1/t _) when n = 3 to

a limit of a time-invariant amplitude as n _ _. When n = 2, Eq. (5.52)

indicates that the electric field is identically zero, and hence the

entry in Table 5 corresponding to this case is not applicable at the

second harmonic. It will be recalled from Section B that in addition

to the resonances found here, an equal number of resonances are found

on the negative frequency axis which are mirror images to those at posi-

tive frequencies. The correct form of the Green's function in the vicinity

of these points is obtainable from previously derived formulas by replacing

by (-to); and similarly, the correct form of the electric field is

found by replacing _c' _H' and _o by their negative values. After
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Table 5

FORM OF G(_,x) AND E(x,t) AT RESONANCES

Frequency G(_0,x)

0_ = nt0
c

o_ = nt0
c

_H = nt°c

o

1

- )2-GUt;
c

n-2

m

(¢b - n_ ) n-i
c

-

(_ - _ )-_
o

lim E(x,t)

t-* oo

x exp(in%t)
2n-i

t2n-2

x exp (in_ct)

1

tn-I

x exp (i_Ht)

t _

t - kx)exp i (¢0° o

t_

making these substitutions, n is still restricted to positive integers

greater than one.

An important factor that should be considered in plasma resonance

studies is the spatial form of the source. Up to this point, this effect

was neglected, and the resonances that were obtained depend only on the

properties of the plasma medium. In the next section, we will illustrate

with a hypothetical, though instructive, example how a spatial distribu-

tion in the source can completely change the results of this and the

previous sections.

D. Excitation by Spatially Periodic Sources

When the spatial form of the source is taken into consideration

through the function g(x), the frequency response of the plasma is

obtainable from either Eq. (5.2) or (5.5), i.e., from
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F(_,x)= __ dx'G(_,x- x')g(x'), Zm(_)< 0 ,
(5.56a)

cod_ exp(-ikx)g(k )
= i 2_ _ k K(_,e_ ' Im(o_) < 0 ,

-co o j.
(5.56b)

where G(0_,x) is the Green's function and g(ki) is the Fourier trans-

form of g(x). Clearly, if g(k i) is analytic on the real axis, the

only change in the results of the last section is the replacement of x

by

exp(ikx)g(k)]k ' (5.5_)lira

k-_k
Lo

where k is the point on the real axis where pinching occurs, ttow-
±o

ever, if the condition of analytieity is not satisfied, the nature of

the resonance can be changed significantly.

In order to illustrate this, consider a source that is periodic

in space with period L. The function g(X) now satisfies the condition

g(_+ T.)= g(x) (5.58)

and hence possesses a Fourier transform which can be written in the form

CO

g(ki) = 2_ _ hn8 (k£ 2F) , (5.59)

n_Nco

where 5(k ) is the Dirac delta function and h is the
& n

cient in the Fourier series expansion of g(x), that is,

th
n coeffi-

n = _ dx exp L_x g(x) (5.60)
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By choosing a coordinate system in space such that the average of g(x)

over one period is zero, the coefficient corresponding to n = 0 clearly

must vanish. This convention will be adopted here. After substituting

Eq. (5.60) in Eq. (5.56b) and performing the integration over _$ with

Im(oo) < O, the frequency response of the plasma has the form

0o

F(oo,x)= _ i exp(-inklX)hn (5.61)
6onkl.iK (_, nk± 1 ) '

n=- oo

n¢o

where k has been written for (2_/L) Clearly, this also defines
±l

F(oo,x) for Im(oo) __ 0 as long as the radius of convergence of the

infinite series includes this part of the complex oo plane.

It is now evident that a spatially periodic source quantizes the

wave number, restricting its values to integral multiples of (2_/L).

As a consequence of this, singularities in F(oo,x) no longer occur at

harmonics of the electron cyclotron frequency. Indeed, for oo _ moo
C

and k _ O, Eq. (5.3) implies that
±

2

oo exp (-h) In(h) moo
K(OO k ) _"'P- c

' ± 2 _ oo -moo
(/3

c
C

(5.62)

and hence the expression for F(_,x) reduces to

F(OO,x)

2 oo

oo - moo oo

cc _mm 2
c oo

p n---m

n¢o

i exp(-inklX)hn
e nk

o ±l

n2hl

exp (-n2_l) Im(n2hl )

(5.63)
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where hI has been written for (k lVt±/_c)2.- Clearly, F(_,x) has

a simple zero at each harmonic of the cyclotron frequency, including

the first, implying that no resonances occur in the electric field at

those frequencies.

However, Eq. (5.61) does have singularities at other frequencies,

namely, where _ satisfies the equation

K(0_,nKl) : 0 .
(5.64)

This is the dispersion relation for perpendicularly propagating cyclotron

harmonic waves, and the roots at _m(nkll) can be obtained from the

curves shown in Chapter III. For _ in the vicinity of _ , it is
th m

necessary to retain only the n term in Eq. (5.61) and hence, with

the use of the Taylor series expansion

K(0_,nk 1 ) _ K0_(_m,nk l)(O_ - turn) ,
(5.65)

the expansion for F(_o,x) has the approximate form

i exp (-inKlX)h n 1 (5.66)

F (00,x) _ eonk.L iKcu(O_m'nk_ 1 ) c_ - _0m '

to reveal the presence of a simple pole. The distribution of the poles

along the real _ axis is obtainable from Fig. 39, where the dispersion

2 2

relation for a Maxwellian plasma is plotted for (_p/_c) = 8. In this

figure, an arbitrary value of K1 is indicated along with integral

multiples of this constant. It is clearly seen that the frequency re-

sponse of the plasma has an infinite number of poles between n_ c and

(n + l_c, the density increasing indefinitely near the bottom of the

band.

To obtain the time response, the Laplace contour is deformed around

the singularities on the real frequency and into the upper portion of

the complex plane. Taking the limit as t _ _, Eq. (5.1), in conjunction

with Eq. (5.66), reduces to
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Fig. 39. ORIGIN OF SINGULARITIES IN F(c_,x) WHEN SOURCE IS

SPATIALLY PERIODIC.

hnf(COm) exp i(_Omt - nkllX)

E(x,t) = - Z 6onkilKco(°_m,nkil) '
(5.67)

m,n_O

showing that a propagating wave is excited at frequencies where F(_,x)

is singular. It will be seen, by comparing this expression with the

results in Section C, that unlike the fields excited by a nonperiodic

source, Eq. (5.67) does not attenuate with time.

The example considered here is only one of many others that demon-

strate the same point: the behavior of the electric field that is excited

at a resonance may depend critically on the type of source that is used.
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E. Discussion

The results of this chapter show that the one-dimensional Green's

function G(_,x) for a Maxwellian plasma is singular at (i) _ = nto
2Z c

2 + _ ) ; and (iii) an intermediate
for n = ±2, ±3, ...; (ii) _ = ±(_p c

2 2
+_ ) <

frequency _o between Inl_ ° and (Inl + l)_c if (_p c

(Inl + l_o c. As a consequence of this, application of a temporal pulse

to the plasma will excite components of the electric field at those fre-

quencies. These components have the important property that the temporal

decay rate is small, suggesting that experimental observation may be pos-

sible for an appreciable length of time. It is pointed out that the

form of the singularities, and hence the time dependence of the excited

fields, will change with the type of source that is assumed. This was

clearly illustrated in Section D where the source was spatially periodic.

The results show that resonances in the electric field no longer occur

at harmonics of the electron cyclotron frequency. Instead, the periodicity

of the source quantizes the wave number, restricting its values to integral

multiples of (2_/L), where L is the period. For each allowed value,

a propagating wave is excited in each band of frequencies bounded by n_ c

and (n + l_ c. Unlike the examples with nonperiodic sources, the fields

in this case are free of attenuation.
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Chapter VI

CONCLUDINGREMARKS

Plasmas in which the constituent charged particles have a distribu-

tion in velocity can exhibit strong and important effects that have no

counterpart in the cold plasma approximation. This was first brought to

light by Landau in his classic paper [2] when he showed that longitudinal

space-charge waves, propagating in a Maxwellian plasma with no magnetic

field, decay with time. The existence of these waves has since been veri-

fied experimentally by several workers [45-47]. The introduction of a

magnetic field leads to new effects that may have far-reaching signifi-

cance in areas of plasma research as widely separated as controlled

thermonuclear fusion and ionospheric phenomena. These effects include

(1) the presence of longitudinal space-charge waves, called cyclotron

harmonic waves, near harmonics of the cyclotron frequency of each particle

species, (2) the existence of such waves that propagate perpendicular to

the magnetic field without collisionless damping, and (3) the excitation

of electrostatic instabilities by anisotropies in the plasma temperature.

These basic properties of hot magnetoplasmas were established predominantly

by Bernstein [3] and by Harris [4,5]. However, due to the complexity of

the dispersion relation which determines the propagation of cyclotron

harmonic waves, detailed properties, which would be required if theory

is to be compared with experimental observations, have been difficult to

obtain. This work has been devoted to an analysis of a hot magnetoplasma

in the quasi-static approximation in order to determine the exact form of

the dispersion characteristics of cyclotron harmonic waves, to derive

exact threshold conditions for instability, and to examine the steady

state conditions of the plasma.

A somewhat idealized model, but one that is closely approached in

many experimental situations, has been treated here. We have considered

a time-invariant and uniform plasma that is immersed in a constant magnetic

field and that is free of electric fields. Two types of charged particles,

with equal number density, are present: electrons and singly charged ions.

However, the motion of the ions has been neglected due to the relatively

large mass of these particles. Under these assumptions, the Vlasov
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equation was solved simultaneously with Maxwell's equation in the quasi-

static approximation to derive a dispersion relation for cyclotron

harmonic waves. For purposes of illustrating the basic features of the

propagation, a series of electron velocity distributions has been con-

sidered. The dispersion relation has been solved for each case numerically

and, when possible, analytically. Our results indicate that for perpen-

dicular propagation, a mode is found near each harmonic of the electron

cyclotron frequency which may go unstable if (_fo/_V±) is greater than
2 2

zero for some range of v and if the parameter (_/_c)p_ is sufficiently±

large. Using a well-established criterion, we have found that these in-

stabilities are absolute. In cases where instability is not excited,

space-charge waves which propagate perpendicular to the magnetic field

with a real wave number are free from collisionless damping. However,

in practice, collisions between the constituent particles are present,

which could seriously limit the spectrum of waves that would be detected

experimentally. This was illustrated in the report with electron-neutral

collisions, and it was found that waves with large frequencies relative

to the cyclotron frequency, or waves with short wavelengths, are heavily

damped as a result of these collisions.

Oblique propagation has additional features that have no counterpart

in exact perpendicular propagation. The primary new feature is the presence

of an additional mode in each frequency passband bounded by succeeding

harmonics of the electron cyclotron frequency. This new mode leads to a

second class of instabilities that have onset conditions that are less

severe than those of perpendicular propagation, and are found only if the

effective temperature of the electrons perpendicular to the magnetic field

is sufficiently greater than the temperature along the magnetic field.

These instabilities can be either convective or absolute, depending on

the values of the parameters that characterize the plasma.

An important problem considered in this work was that of the steady

state conditions of the plasma in the quasi-static approximation. In

situations where absolute instability is excited, the plasma cannot return

to equilibrium since the amplitude of an arbitrary disturbance grows

indefinitely with time at any point in space. However, in cases where
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all instabilities are convective or where instability is not present,

the plasma response contains components that decay very slowly with time.

This resonance condition, or ringing of the plasma, occurs at harmonics

of the electron cyclotron frequency, at the upper hybrid frequency, and

at some intermediate frequencies, and is the result of singularities of

the Laplace transform of the plasma Green's function.

It was mentioned earlier that the plasma model considered in this

study may be approached in many experimental situations. The excellent

agreement between the theoretical predictions of this work and the experi-

mental observations of perpendicular propagation (see Fig. 22) adds con-

fidence to our model. However, there are situations where external factors,

such as confining walls, could alter our results significantly. For ex-

ample, in an infinite uniform magnetoplasma, cyclotron harmonic waves prop-

agate perpendicular to the magnetic field without collisionless damping

since the periodicity of the electron trajectory in the plane transverse

to the magnetic field leads to the periodic regeneration of the initial

form of disturbance of the plasma. If walls are present, the periodicity

of some electron orbits will be destroyed, leading to phase mixing of the

normal modes that make up the disturbance, and hence to damping. Harker et

al [48] are presently carrying out computations to determine the importance

of this effect. In connection with the instabilities predicted in this

research, nonlinear processes (which were neglected here) may limit the

growth rate and lead to an equilibrium condition. These are but a few

of the many effects which should be considered in a complete study but

which are difficult to treat as a result of the complexity of the basic

equations that determine the spatial and temporal behavior of the plasma.

Consequently, many of these important problems may remain intractable in

an analysis which involves the solution of Boltzmann's equation, and

recourse might have to be made to alternative treatments, such as computer

simulation of plasmas.
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Appendix A

DIELECTRIC CONSTANT OF A MAGNETOPLASMA WITH A SPHERICALLY

SYMMETRIC VELOCITY DISTRIBIIrION

It is demonstrated in this appendix that the dielectric constant of

a magnetoplasma

2 _f C2 co _f n

K(cu,k) = 1 - dv v_ + 2 v v _'U k v ---ncu
k II II c

O_ _ n=..._

Im (co) < 0 , (A.1)

with k real is not equal to zero if the velocity distribution of each
o_a

particle species is spherically symmetric and satisfies the condition

(v)
o

< 0 . (A.2)

Bernstein [3] proves this theorem for the special case of a plasma con-

sisting of electrons, with a Maxwellian velocity distribution, and

stationary ions. We now follow his proof, but with these restrictions

relaxed.

Let cu = cu + icu in Eq. (A.1). Then the real and imaginary parts
r i

of K are, respectively,

2

Kr(cu,k) = i - P dv v
k 2

C_

+ Z cup 1 j2 cur(CUr_ - kuvll - ncuc) + cui2
k2 v V _ n \ Coc / k v ncuc)2 + CU.G n=-_ (CUr . II z

(A,3)
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Ki (0_,k) --_ 0_p 1 j2 0_i(-kllVll -
k 2 Vv-_v ...... + 2 •

=-_ n (_r - kll vii n_c)2 _i
(A.4)

We now add K to (_ /_ )K i and then use the identityr r i

O0

n_--oo

(A.5)

to arrive at the sum

2

P/0 dvv °f0k 2 "_v de sin @

oo n (k v @) (k v cos _ + nc_ )2j2 \_-c sin " c(CD k v cos e nO_ _j2
2

- - +03. / \

n=-oo r , c 1 kA.6)

where spherical variables have been introduced in the velocity integration.

Clearly, the right-hand side of this equation is greater than zero due to

Eq. (A.2)9 and hence K and K. cannot both be zero. This confirms the
r 1

statement made at the beginning of the appendix that K(_,k) is nonzero

if k is real and Im (_) < O.
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Appendix B

THE CONNECTION BETWEEN K+ AND K"

It is the purpose of this appendix to derive the formula that con-

nects the positive and negative "frequency" components of the dielectric

constant of a magnetoplasma in the electrostatic approximation. These

functions were defined in Chapter IV and are repeated here for convenience:

(4.61a)

k k 2 kll ' kl 'kll

II n---oo

(4.61b)

where we introduce

cod_H:(Wn,k±,k,,) = _ exp(-iWn_) Hn(_,k.L,k,,) (B.la)

fO d_H'n(Wn,k,k ) = -co _ exp('iWn_) Hn(_'k'k" ) "
(B.ib)

The Fourier transform of Hn(V ,k,k H) is

g (_,k k ) ' dv exp _) )
n ±' " oo " (iv H Hn(V,,k ,k,

(B.2)

where from Eq. (2.69)

Soco (v_ _fo _fo_ j2 (k_c_)Hn(Vl,kj.,kll ) = 2_ dv v V_'- + k V_H /± ± x II n

(B.3)

An identity that will be useful in this appendix is

k ) =  n(C' k )* (B.4)
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which is derived from Eq. (B.2) by assuming that k

and by making use of

n(Vl -k,i = -H.n(V H,k,k H .

and k are real
II

(B.8)

Consider now the function

<nc )sO < °cHn __ , k±,kll = _ exp i -k
II -oo II

/0 _ d_ I" co- n_

c
= _ exp i k

II
_) _n(-¢,L,-k,,) . (B._)

After introducing Eq. (B.4), the right-hand side of Eq. (B.6) takes the

form

/0 _ d_ l" CO- nco

c
exp i k

II
, )*

(B.7)

and therefore we can write

" (C°knC°c /* fO°° d_ / " "c° " n_°
H -- k = - i c
-n , ±''kll _ exp k

\ II II

-o_ - nco ,kil>
.H + c

n 1_ , k ..1.
II

(B.8)

Replacing n by -n in Eq. (4.61b) and taking the complex conjugate of

that function, we find with the help of Eq. (B.8) that

K+(-Jk ) : K'(_,_, )* .± 'kli "kll
(B.9)

This relates the positive and negative frequency components of the

dielectric constant if k and k are real.
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