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Introduction. An interest in problems involving functional differ-

ential equations has been evidenced recently and several papers have
been written using results about these systems which were previously
published. In particular, the book [4] by Halanay has become an
often used reference. The purpose of this note is to point out a
mistake in [4] and to present the correct results.

The systems under consideration here are linear differential

systems with time delays (Chapter 4, §3 of [4]); namely, systems of

the form (see p. 362-368 in [4])

(1) (1) = [Ox(t+s)a_n(t,s) + £(t)

where the function 1, which is of bounded variation (B.V.) in s,
may contain a singular part. The case where 1 has no singular
part is considered correctly in [4]. We shall derive the correct
results for the general case under slightly less restrictive hypothe-
ses than in [4]. The systems (1), under the hypotheses stated be-
low, appear as the linear variational equations in the study of gen-
eral nonlinear variational (optimal control) problems (see [2]).

The error in [4] is due to an incorrect interchange of the
order of integration involving a Stieltjes integral., If the Stieltjes
integral can be written as a sum plus a Lebesgue integral (i.e., if
1 has no singular part and can be written as a saltus plus an ab-

solutely continuous function) then the ordinary Fubini
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theorem can be used as was done in [4]. However, in the general case
where the measure depends on both variables of integration and con-
tains a singular part, an unsymmetric Fubini type theorem (see 1)
must be used. To use this correctly, one must always interchange
over regions which are rectangles (the cross-product of intervals).
For those readers who are not familiar with Lebesgue-
Stieltjes integration, the following reasoning will show that some
of Halanay's results on the general systems (1) are incorrect. The
system (1) includes as a special case a system with a simple time

lag

(2) %(t) = A(t)x(t) + B(t)x(t-6) + f(t)

and 17 1is very easy to find in this case. The adjoint system for
(2) is well-known and is given correctly in [4]. If the adjoint
system given by Halanay for the general case of (l) is correct, it
should reduce to the adjoint system for (2) whenever (2) is con-
sidered as a special case of (1). It is not hard to show that it
does not and hence must be incorrect.

In what follows we shall use vector matrix notation and a
vector and its transpose will not be distinguished when it is clear
what is meant. For the convenience of the reader, we have used the

notation of Halanay in [4] whenever possible.




§1. ' Representation of solutions. In this section we derive a rep-

resentation theorem (a variation-of-constants formula) for solutions
x of (1) in terms of solutions of an adjoint system under the fol-

lowing assumptions on 1. As a function of t, n(t,s) is measurable
for each fixed s, and for each t, it is of bounded variation in s.
We suppose that there exists a finite constant -T such that n(t,s)=
n(t,-t) for s £ -T and every t, and also that n(t,s) =0 for

s 2 0. We further assume that there is an L, function m(t) such

that
| n(t,s)| = m(t) for all s

and

oo

0
S\:/_ooq(t,s) = s\!-wn(t’s) = m(t)

for every +t.

Thus we are considering essentially the same 1n as in [U4]
except the condition that n(t,s) be continuous in t, uniformly in
S, has been dropped. Our assumptions on 7 are quite reasonable
and systems satisfying these hypotheses actually appear in applica-
tions (see [2]) where 1n 1is a measure (in s) obtained from the
Riesz theorem.

Under the above assumptions the system (1) can be written




I
x(t) =[O x(tes)an(t,s) + £(t)
(3) %(t) = {frx@)dﬁn(t,rs-t) + £(t)

where we assume that f is a given Ll function. In the discus-
sions below, it will often be convenient to use a function p which
we now define as p(t,s) = n(t,s-t). Then p(t,s) =0 for szt
and p(t,s) = p(t,t-1) for s = t-tT.

Let x(a) be a solution to (3) for «a > o which satisfies
x(a) =¢(a) on [o0-T,0], where ¢ dis in BV[o-T,0]. That is,
x(a) is an absolutely continuous function for o« > g, sat-
isfying (3) a.e. on some interval [o,T] and agreeing with the

function ¢ of bounded variation on ([o0-T,0]. For each t in

(0,71, let Y(a,t) be B.V. in o and satisfy
Wy - Y(s,t) + fzn(a,s-a)Y(a,t)da =FE s e [o,t]

where E 1is the n X n identity matrix., We also assume that
Y(s,ty =0 for s >t. This assumption is not necessary in order
{(4), but is convenient for the representa-
tion to be found below. Theorems guaranteeing the existence and

uniqueness of a solution to (4) may be found in [2]. Similar




theorems for the system (3) can be obtained by an easy generalization
of Theorems 1 and 2 in [1]. (The requirement that the initial func-

tion ¢ ©be continuous in [1] is not necessarys ¢ of bounded varia-

tion is sufficient.)

Using the integration by parts formula for Lebesgue-Stieltjes

integrals, we obtain

fzx(a)daY(a,t) + f;;‘c(a)Y(a,t)doc = x(a)Y(a,t)[; .

This gives

x(t) = x(0)¥(o,t) + f:;x(a)day(a,t)

v 530 i(a, b

or

(5) x(t) = x(o)¥(o,t) + fzf(a)Y(a,t)da
+ fgx(a)daY(a,t)
+ f:;{ [%( s)d n(a, s-a)}¥(a,t)da.
-1 s

Let us consider the last term on the right side of equa-

tion (5). This term may be written
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t, @
FEC 1% x(s)a p(oy ) ¥a, t)da
Q-T
which is equal to
t, [t
FEC 1° x(s)a pla, )} ¥(0, b)do
o-T
since p(a,s) = constant = 0 for s = a and p(a,s) = constant =
p(a,a-7T) for s £ @-T. We next use an unsymmetric Fubini type
theorem due to Cameron and Martin [3] to interchange the order of
integration in the above integral. This theorem says that under

certain hypotheses on the functions involved (these hypotheses

are easily shown to be satisfied in our case) one has

[2s(w)a_fop(x, v)ak(x)

= fidk(x)f:s(u)dup(x,u).

Applying this we have

fz{ ngx(S)dsp(a,s)}Y(a,t)da

) ngX(S)dsfzp(a’s)y(a,t)da.

Since p(a,s) =0 for a = s, this integral may be written
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/° x(s)dszp(a,s)Y(a,t)da
g=-T

+ [ix(s)a_fPp(a, s) (0, t) da

Thus equation (5) becomes
x(t) = x(0)¥(0,t) + [T8(a)¥(0,t)da
+ [ox(s)a ¥(s,t)

+ % o(s)a fp(a, 5)¥(a,t)d
O=-T

+ fzx( s)dsf:p(a, s)Y(o,t)da

or

(6) x(t) = 9(0)¥(0,t) + [or(a)¥(q,t)da

+ 1% p(s)a fip(a,s)¥(a,t)da
O=T

v [Ex(s)a (¥ (s,t) + [Pp(a, 5)¥(a,t)a0) .

Since 7Y(s,t) satisfies (4) we obtain

x(t) = 9(a)¥(0,t) + [T£(0)¥(q,t)da

+ 1% o(s)a fip(a, s)¥(a,t)da.
O=-T
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If o and t are such that o+t < t, then the properties
of 71 imply that éETp(a,s)Y(a,t)da is a constant function of s

for s 1in [U-T,o] so that the last term above may be written as
g o+T
£ ;$(S)dsfc p(a, s)¥(a,t)da.

If o+7T >t, then we may still write the last term this way since

Y(a,t) =0 for o >t. Hence we have

(7) x(t) = ¢(a)¥(o,t) + fgf(a)Y(a,t)da

+ 7 0(s)af7 (e, 5-0) ¥, ) o

This is a variation-of-constants formula for solutions x
of (3) in terms of a particular adjoint solution Y of (4). It
should be noted that both the adjoint (4) and the representation in
(7) differ from those of Halanay in (4]. This author has been un-
able to find any meaningful representations using the type of sys-
tems given as the adjoint system in [4].

We next let X(t,0) be a solution as a function of t for

t >0 to(3) with £f=0 and

0 for t <o

X(t,0)
(8)

X(o,0) = E.

it




From the representation given in (7) we have that the rows Xi(t)

of X(t,0) are given by

xi(t) = xi(o)Y(c,t)
for t > 0. Hence we obtain

X(t,0) = X(o,0)¥(0,t)
or

X(t,0) = Y(o,t) for t >o.

From the definitions of ¥ and X for ¢ 2zt we find that
X(t,0) = ¥Y(o,t) for all o,t. Using this result in (7) we find

that the solution x of (3) with x =¢ on [o0-T,0] 1is given by

(9) x(t) = ¢(o)X(t,0) + fgf(oz)X(t,a)doc

+ cfiTCP(S)deg”ﬂ(a, s-a) X(t,0)da.
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§2. The general adjoint system and the associated bilinear form.

In this section we shall discuss the general adjoint system to (3)
(of which (U4) is a special case). A bilinear form associated with
the system (3) and its adjoint will be given.

Let ~o<a<b<owo with a <<b. Let x Dbe a solution

to (3) on [a,b] with f = 0; that is

. t
(10) x(t) = { Tx(s)dsp(t,s) t e [a,b]
with x(t) = ¢(t) for a-T £t £ a, where ¢ 1is of bounded varia-

tion. lLet y be a solution of

(11) Slr(s) + [op(a,s)y(adac) = o

for s ¢ [a,b] and y(a) = ¥(a) for « ¢ [b,=), where ¥ 1is of

bounded variation. WNote that for s < b, equation (1l) may be written
d b+T
=(y(s) + [ plays)y(a)da) =0

since éTTP(a,S)Y(a)da is constant in s for s < b. Thus to solve
(11) for s < b, one need give the initial function V only on
[b,b+1]; that is, one may essentially take V¥ =0 on (b+T,x).

Let a <0 <t <b., At this point we assume that o+7 < t.

We shall later remove this restriction. Using integration by
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parts as in §1 we obtain

(12) x(£)y()-x(0)y(0) = [Tx(a)ay(e)

+ J5U 12 x(s)d p(a, 5))y(a)da,

We now consider the last term on the right in (12). As in

§1, this may be written
t, t
[E0 S x(s)apla, s))y(@)aa
-1
which becomes, when one uses the unsymmetric Fubini type theorem,
t t
/ x(s)dsfcp(a,s)y(a)da.
0-1

Using the fact that o+1 <t and pla,s) =0 for o s s, this term

can be written

ngx(s)dsfzp(a,s)y(a)da
+ 12 "x(s)a S tla, s)y(@)da

" f:_Tx(s)dszP(a,s)y(a)da.

Since for s in [o0-T,0], the term




/%, ol s)y(a)da

is a constant function of s, the three integrals above are equal to

1% x(s)a [ (e, s)y(a)aa
o-T
(13) + fz'Tx(s)dsfzp(a,s)y(a)da

t t
+ [o_x(s)a _J p(a,s)y(a)da.
Adding and subtracting the term
t t+7T
f’t—Tx( S)dsft p(a,S)y(a)da
to (13) we obtain

£f1x(s)dsfg+Tp(a,s)y(a)da

+ fZ-Tx(s)dsfzp(a,s)y(a)da

I3 x(s)a S pley s)y(a)do

+

[%_x(s)a ¥ p(a, s) y(@)aa

which may be written




|
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I5_x(s)a 7 p(o, s)y(a)da

+ f;'Tx(s)dsz+Tp(a,s)y(a)da
(1)
- 1Y x(s)a [T p(a, s)y(a)aa

+ ft_Tx(s)dsfz+1p(a,s)y(a)da ,

since for s in [o,t-T], the term

5 00, 5)y( o) ac

is constant in s.
Combining two of the terms in (14), one obtairs
g g+T
Jg_x(s)a J pla, s)y(a)do
t t+T
(15) + fcx(s)dsfS p(a, s)y(a)da

- f:‘;_Tx( s)dsfznp(oz, s)y(a)da

Substituting (15) for the last term in (12) gives
x(£)y(t) - x(0)y(0) = [ x(s)ay(s)
¢ [5x(s)a ST 00, 5) y(e) aa
(16) o o+T
+ fo_Tx(s)dst p(a, s)y(a)da

- I x(sYa ST p(a, s)y(adaa
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Now for s in ([o,t] we have that

I% op(ass)y(a)aa

is constant in s. Hence the second term on the right side of (16)

may be written
t oo
[Ex(s)a S 7n(a, s)y(0)don

Thus equation (16) may be written

x(£)y(t) + [3_x(s)a [} pla, s)y(o)da
= x(o)y(0) + J7_x(s)a [T (e, 5)y(a)da

t
+ [2x(s)a (y(s) + [op(a,s)y(a)an).
If y 1is a solution of (11), we obtain

x(4)y(t) + [1_x(s)a [ (e, s)y(o)da

= x(0)y(0) + [7_ x(s)d [0 " p(a, s)y(c)da

We have thus shown: If we define Qt(x,y) as

(18)  B(x,y) = x(t)y(t) + [T_x(s)a ST p(a, s)y()da,
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then along solutions x and y of (10) and (11) we have

B (x,y) = Z(x,y)
whenever o <t and o+7T < t,

It is easy to see that if F(g) = F(t) for o and t
arbitrary such that o <t and o+T <t, then F(og) = F(t) for
arbitrary o and t, 0 < t. This implies that F 1s a constant
funetion,

Hence, along solutions x and y of (10) and (11), the

function 4, (x,y) defined in (18) is a constant in t, a < t < b,

t
We now have (17) holding for arbitrary o < t, o,t in
[a,b]. We next fix t. We are interested in a representation for
y(o) for arbitrary o < t.
For any o <t, let X(a,0) be a solution of (10) as a

function of o for « > g, satisfying X(o,0) =0 for a <a,

X(o,0) = E. Then (17) gives

X(t,0)y(t) + [y_X(s,00a_JF " p(o, 5)y(a)aa

= X(o,0)y(o) + fg_TX(s,o)dsfg+Tp(a,s)y(a)da.

This is the same as

(19) y(o) = X(t,0)5(t) + [{_%(s,0)a ¢ "p(0, £)y(a)aan
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From this one sees that knowing y on [t,t+t] and X(s,0) for
each o <t is sufficient to find y(o) for o < t.

As we have already seen, if Y(s,t) is a solution of (4),
(this is actually the system (11) with Y(s,t) specified as Y(s,t) =
0 for s>1t, Y(t,t) = E and Y(s,t) satisfying (11) as a function
of s for s<t), thenm Y and the matrix function X in (19)

are related by X(t,a) = Y(a,t). Hence, (19) may be written
t t+7T
(20) y(o) = ¥(o,t)y(t) + [,  ¥(o,s)d_J." "p(a,s)y(a)da.

The formula (20) expresses y(o) for o <t as a function
of y(a), a € [t,t+7] and the solution matrices Y(s,a), a € [t-7,t],
of (11) with "initial functions" &(s) = 0 for s > q, ¢(a) = E.
Note that these results agree with the previous remarks
about system (11) being written as
& (y(s) + 12 p(a, s)y()da) = 0

for s <b, where one specifies ¥ on [b,b+T] to obtain a solu-

tion y(s), s <b.
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