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1. Introduction. In a recent paper, G. R. Sell [5],

[6],. has developed methods which allow one to apply the theory
of topological dynamics to a very general class of nonautono-
mous ordinary differential equations. The purpose of this note
is to illustrate how the methods of Sell can be extended to

nonlinear Volterra integral equations of the form

t .
(1) : x(t) = f(t) + ‘f a(t, s)g(x(s), s)ds .
0

A complete discussion of our results along with the proofs of
the theorems noted here will appear in [3] aﬁd [4]. In this |
note we shall restrict ourself to a description of the semi-flow
generated by (1), and we do this in the case where x,f,a and
g are real-valued. |

Because of the generality of our methods, they can b.e
applied to many problems. Some of theseAapplications are
treated in [4]. We shall illustrate our techniques by analyzing

a problem of J. Levin {1l] in Section 5.

2. Construction of the Semi-Flow. A flow is defined

to be a mapping m: X x R—> X, where X 1is a topological
space and R the reals, that satisfies (i) 7(x,0) = x,

('ii) m(m(x,t),s) = Mx,t +s) and (iil) ™ is cont.inuous. A
(local) flow was defined in [5] a;nd for this note we need the

concept of a (local) semi-flow, in which we restrict t to be



nonnegative. A local flow differs; from a flow in the sense
that ‘motions T(x,t) may fail to exist for all time t. We
refer the reader to [5] and [7] for details.

For Equation (1), the semi-flow is constructed as
follows: Let @(t) = ¢(f, g,a;t) denote the solution of (l). Under
hypotheses on f, g and a which are stated below, it is shown
in [3], that ¢ is uniquely determined and depends continuously

on f,g,a and t. Now define the function T_f by

T
(2) T £(@) = {(T+8) = S a(T+ 8, s)g(9(s), s)ds

0
for 8 >0 and T in the interval of definition of @. Define Bt
and a, by

g,r(x, s) = g(i, T+ t)

a,‘_(t, s) = a(T +t,T+s)

for T>0, 0<s <t <o and all x. A topological space X,
which is defined below, consists of ordered triples (f, g,a), and

the mapping ™ is defined by
(3) : m™(f, g, 2;7) = (T f,g..a.), (1 20).

Our object is to show that the mapping T defines a
semi-flow. Most of the defining conditions are easily checked.
The continuity of T is the only difficult item, and this, of

course, depends on the topology on X.

3. Admissible and Compatible Topologies. Let

+
C: C)/(R , R) denote the space of real-valued continuous functions

+ .
defined on R . Assume that 8 has the topology of uniform



convergence on compact sets. We shall assume that the term
£(t),” from (1), lies in (6. The terms g(x,t) will be assumed
to be in a linear topological space ﬂ, and the kernels af(t, s)

belong to a linear topological space 4
Definitions. The space ﬁ is said to be admissible if
the mapping |
(g,'f)—-—>'g.r
of £l x R+ into .&/ is continuous. The space 4 is said to be

admissible if the two mappings

(@, T)—>a_  and  T—pa(T+«,-)

+ + . :
of 4 x R into JL and R ' into 4 are continuous. We say

that the pair (.8,4) is compatible if

(1) Both éf and 4 are admissible'and
(2) For every f e @ g € g, a € 6(, Equation (1)
admits a unique solution @(f, g,a;t) and furthermore ¢ depends

continuously on f,g,a and t .

Theorem 1. Let (.Z;/, 4) be compatible linear topological

spaces. Then the mavoping ™ given by (3) defines a semi-flow
on x= Cxh (.

The question of admissible and compatible spaces is

discussed at length in [3] and [4]. We present here just two
examples of compatible spaces. These are chosen because
many application's fit into this format.

The space /gp' l1<p <o . The collection of all

measurable functions g(x,t) : R X R+—-—>R such that for each



compact set KC R there exist locally Lp functions mf(t)

and k(t) such that

I g(x, t)} < m(t)

1

lgtx,t) - gly, 0l < k(&) ]x - yl

for all X,y in K and t in R+. We define a topology on

.&p by saying that a generalized sequence {gn} converges to
g if for every compact interval I C R+ and every compact
set XC e(I,R) (where C(I. R} dénotes the Banach- space of

real-valued continuous functions defined on I) one has

.f|gn(X(S),s) - g(X(s),s)lp ds—> 0
I .

uniformly for x(-) in _X
The space Xéo . The collection of all continuous
functions g(x,t) : R % R+-—~>R such that for each compact

set KC R there exists a continuous function k(t) such that

lgx,t) - gly, )] <k@®)|x - yl

- +
for all x,y in K and t in R .

The topology on }éoo
is the topology of uniform convergence on compact sets.
The space ap’ 1<p<owo. The collection of all real-

valued measurable functions aft,s) defined for 0 < s < t<om

such that (i) for each t, a(t,s) is locally L in s where
-1

p-l +q 1 and (ii) for each compact interval I cr' and

every t > 0 one has

fla(t+h,s) -a(t,s)|[fds—>0
I .



as h-—>0. The topology on dp is defined by saying that
a generalized sequence {an} converges to a if for every

. +
compact interval I CR one has

fla (t,s) - a(t, s)|? ds ——> 0
I n

uniformly for t in compact sets.

The space doo' The collection of all real-valued
measurable functions af(t,s) defined for O <s<t <o and
such that (i) for each t, af(t,s) is locally L1 in. s and
(ii) for each compact interval I CR+ the mapping t —»al(t,-)
is continuous in the weak*-topology on @(I, R)*. The topology
for doo’ which is a weak topovlogy, is defined by saying that
a generalized sequence {an} converges to "a if for every
compact interval I CR+ and every x(-) e G(I, R) one has
[[an(t, s) - a(t, s)]x(s)ds —> 0

uniformly for t in compact sets,

Theorem 2. The spaces (ﬁ d and (500, doo)

are compatible.

Other topologies are given in.[3] and [4]. An interesting
feature that arises in our study is that as one weakens the
topology on the kernels aft,s), it is necessary to strength.en
the topology on the terms g(x-, t} in order to preserve the
compatibility of the pair (&,d). We refer the reader to

the main papers for details.



4. Compact Motions and Limiting Equations. Two of

the basic problems in applying topological dynamics is to
dete.rmine conditions under which a motionv m(x,t) is compact,
that is, T(x,t) remains in a compact set for all t> 0, Aand

then to analyze the asymptotic behavior of m(x,t) in terms of
the w -limit set. In [4] sufficient (and sometimes necessary)

conditions are given in order that the.z motions g and a, be
compact in g'and d Because of lack of space, we will

not formulate these results here. As for the motion T(f, g, a;7),

one can prove the following result:

Theorem 3. Let (g,d) be a compatible pair and

assume that the motions g, in ﬂ and a, in d are compact.

If the solution @(t) = @(f, g, a;t) -gg_ (1) lies in a compact set

for all t >0, then the motion T(f, g, a;t) remains in a compact

set for all t>0.

The problem here is to show that the family {TTf: TZAO}

lies in a compact set in @ This follows from the notion of

compatibility and the fact that T_£(8) can be formulated as
8

(4) T f(8) = @(T+ 8) - 5'0 a_(8, s)g (9. (s), s)ds.

Once one knows that a mofion Tf(f, g,la;T) is compact, then
its w-limit set ﬂ is compact and nonempty. A typical point
(F*, g*,a*) in ﬂ is characterized as the limit of ﬂ(f,g,a;'\'n)
for some sequence ‘Tn-——-b 0. One can show that in this case,
the translates @ (t + Tn) converge uniformly for t in compact
sets to a function @#*(t). Under appropriate integrability con-

ditions on af(t,s) and g(x(s),s) one can show that ¢ *(t) satisfies

¥ P UET Wl e
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t
(5) p*(t) = £x(t) + f a*(t, s)g*(p*(s), s)ds

-Q

where fq_ —s % in 8 In other words, the function F*
n
is of the form
0

Fk(8) = f*(8) + f a*(0, s)g*(p*(s), s)ds.
-0 ’

. This generalizes a result of R. K. Miller [2].

5. An Application. The following problem, which is

a generalization of a problem of J. Levin [1] follows easily
with our techniques.

Theorem 4. Consider the equation

t .
(6) x(t) = f(t) - J.' {a(t-s) + b(t, s)} g(x(s))ds
0 :
where (1) £(t) is_continuous for t > 0 and f(t.)—) fO as
t > oo,

@) a(r) ¢ C'[0,0) N L (0,0) and a(r) > 0,

(3) a'(r) <0 and a'(r) # 0 on any interval [0, T],

T >0, T+1

(4)° b e doo and f !b(s + r,s)lds-—) 0, as T-— oo,
. T .

uniformly for r in compact sets,

(5) g(x) 1is locally Lipschitzian and strictly increasing.

Assume that the solution ety = off, g,a;t) of (6) is bounded.

for all t>0 and let X,

be the solution of

x, = [, - Ag(x()

)
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