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A B ST RA CT 

A computer routine for numerically integrating 

Lagrange's Planetary Equations for lunar satellite orbits 

was revised to integrate an alternate set of perturbation 

equations which do not have the small eccentricity restric-

tion of Lagrange's Equations. This set of equations was 

solved numerically for the time variations of the orbit 

elements of circular lunar satellite orbits. Consideration 

was given to orbits with near equatorial inclinations and 

low altitudes similar to those considered for the Apollo 

Project.

The principal perturbing forces acting on the 

satellite were assumed to be the triaxiality of the Moon 

and the mass of the Earth. The Earth was considered as a 

point mass revolving in an elliptical orbit about the Moon. 

The variations with time of the orbit elements 

for twelve sets of initial conditions were investigated. 

Data showing the results for both short time, three revolu-

tions of the satellite, and long time, 80 revolutions of 

the satellite, are presented in both tabular and graphical 

form.
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I. INTRODUCTION 

With the recommendation of the President and the 

approval of Congress, the United States of America has 

launched the scientific and technicological undertaking 

of manned exploration of the Moon. The program has been 

assigned to the National Aeronautics and Space Administra-

tion and has been titled "Project Apollo." 

One prerequisite to lunar landing is the es-

tablishment of the Apollo spacecraft in a lunar orbit. It 

is necessary that the variation of this orbit with time 

be known in order: 

(1) To effect a landing in a preselected area 

of the lunar surface, and 

(2) To establish stay times on the lunar sur-

face in order to assure successful comple-

tion of rendezvous with the command module 

during the return to lunar orbit. 

The necessity of determing the characteristics of Apollo-

type lunar orbits prompted the investigation described here. 

The investigation of Earth satellite motion has 

been quite thorough, however, a relatively small amount of 

1
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work has been done in lunar satellite theory because sig-

nificant interest in this area has developed comparatively 

recently. There are several reasons why the theory of 

terrestrial satellite motion is not directly applicable to 

lunar satellites. While usually the mass of the Moon is 

neglected in studies of Earth satellite motion, the greater 

mass of the Earth has a significant influence on the motion 

of a lunar satellite. Also, one of the first assumptions 

in most investigations of Earth satellite motion is that 

the Earth is aSpheroid of revolution. The Moon, however, 

is best approximated as a triaxial ellipsoid; i.e. the 

Moon is not a body of revolution. Therefore, it has no 

plane of symmetry. Consequently, the lunar gravitational 

field is more complex than the gravitational field of the 

Earth. Moreover, its orientation with respect to an in-

ertial coordinate system is changing with time due to the 

rotation of the Moon about its axis. Due to these factors, 

the problem of describing the motion of a near lunar sat-

ellite is in general a different and more complex problem 

than that of describing the motion of a near Earth sat-

ellite. It should be noted that the presence of atmospheric 

drag, which greatly complicates the motion of near Earth 

satellites, is of no consequence in the motion of lunar 

satellites.
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A survey of the literature concerned with this 

problem reveals that the primary effort, thus far, has 

been the development of approximate closed form solutions 

to Lagrange's Planetary Equations, which are a set of 

first order, nonlinear, differential equations for the 

time rates of change of the orbit elements. Lass and 

Solloway (Reference 10)* have developed approximate solu-

tions to these equations for near circular orbits using 

the averaging process of Kryloff-Bogolinboff. For this 

analysis the Moon was assumed to be a triaxial ellipsoid 

in .a circular orbit about a point mass Earth. The effects 

of the Sun were neglected after they were shown to be on 

the order of 0.005 times the effects of the Earth. Lorell 

(Reference ii) presents some of the long term and secular 

effects of the Earth, Sun, and lunar gravitational poten-

tial on lunar satellite orbits for the same Earth-Moon 

model. Tolson (Reference 15) has developed a first order 

approximation to the motion of a lunar satellite under 

the influence of only the Moon's noncentral force field. 

A few published results exist which deal with 

numerically integrating the perturbation equations. Two 

*References appear on pp. 71-72.
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such efforts by Brumberg and Goddard are recorded in 

References 3 and 5 respectively. Brumberg considers the 

Earth and Sun to be point masses and the Moon a triaxial 

ellipsoid. Goddard neglects the effects of the Sun and 

considers the Earth as a point mass in a circular orbit 

about the Moon. Each of the authors considers polar and 

equatorial orbits of both large and small eccentricity. 

The integrations are carried out over a period of 40 revo-

lutions, and both authors conclude that these orbits exhibit 

a high degree of stability. However, these investigations 

deal with orbits of greater altitude and eccentricity than 

the Apollo-type orbits. 

The analysis presented here is concerned with the 

derivation and numerical integration of a set of differen-

tial equations for the time rate of change of the orbit 

elements for circular lunar satellite orbits of low alti-

tude, 50 to 150 miles, and near equatorial inclinations of 

0.50 to 20° (direct orbits) and 160 0 to 179.5 0 (retrograde 

orbits). Integrations were carried out over a period of 

80 revolutions of the satellite. This corresponds to a 

time interval of 7 to 8 Earth days. The results, indicating 

the variation with time of the orbit elements, are pre-

sented in numerical and graphical form.



II. ANALYSIS 

A. Motion of the Earth-Moon System 

Before formulating the problem,. the motion of 

the Earth-Moon system will be reviewed. 

The Earth-Moon system revolves about its center 

of mass, the barycenter, with a period of 27.32 Earth days. 

Because of the larger mass of the Earth ( 	 = 81.32), the 

barycenter lies within the radius of the Earth. The ef-

fects of the Sun and planets as well as the asphericity 

of the Earth and Moon result in the Earth-Moon orbit being 

a perturbed ellipse with an average orbital eccentricity 

of 0.0549. The average distance between mass centers of 

the Earth and the Moon is 384,000 km (238,600 miles). 

As seen from above the Northern hemisphere, the 

directions of the Earth's rotation about the Sun and the 

Moon's rotation about the Earth are westward or counter-

clockwise.

The line of intersection of the Moon's orbit 

plane with the ecliptic (plane of Earth's orbit about the 

Sun) is called the line of nodes. Due primarily to the 

perturbing influence of the Earth and the Sun, the line 

of nodes regresses westward with a period of 18.6 Earth 

years, and the line of apsides, or major axis of the lunar 

orbit, rotates eastward with a period of 8.85 Earth years. 

5
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The inclination of the Moon's equatorial plane 

to the ecliptic is practically fixed at 1 0 32 1 , while the 

inclination of the plane of the Earth-Moon orbit to the 

ecliptic is 5°9' (Figure i). This accounts for the fact 

that an observer on Earth would at one time see the north 

pole of the Moon (position A in Figure 1) and half a month 

later see the south pole (position B in Figure 1) . This 

apparent oscillation in the Moon's poles is called the 

"optical libration in latitude." Since the Moon moves in 

an elliptical orbit and its spin rate is practically con-

stant, to an observer on Earth the Moon would appear to 

oscillate about its spin axis. This apparent oscillation 

is called the "optical libration in longitude." These 

librations in latitude and longitude result in the even-

tual exposure of 59 per cent of the lunar surface to an 

Earth observer. 

B. Problem Definition and Assumptions 

Since the Moon is not spherical and s-ince bodies 

of the Solar System exert a mutual influence on each other, 

the motion of a lunar satellite is not a simple ellipse 

such as that associated with ideal two-body motion. Its 

motion can, however, be described in terms of the so-called 

osculating ellipse. The osculating ellipse is an ellipse



A

Equatorial Plane 

7 

Moon	 Orbital Plane of Moon 

Figure 1 

Orientation of the Lunar Equatorial Plane 
with Respect to the Lunar Orbit Plane.
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which at each instant of time is tangent to the satellite 

orbit at the point occupied by the satellite. Hence, as 

the satellite moves along its path the orbital elements of 

the osculating ellipse are constantly varying with time. 

The rate at which they vary depends on the magnitude of 

the perturbing force. The limiting case of zero perturb-

ing force results in simple two-body motion. 

In the case of lunar satellites the principal 

perturbing forces are: 

(i) Triaxality of the Moon 

(2) Earth's gravity field 

(3) Sun's gravity field 

(4) Gravity fields of the planets 

(5) Solar radiation pressure (important only 

for low density satellites) 

The relative importance of these perturbing factors de-

pends on the type of satellite and the nature of its orbit. 

The perturbing force for this study is obtained 

after making the following assumptions: 

(i) The Moon is a triaxial ellipsoid of uniform 

mass distribution. 

(2) The Earth is a point mass which moves in an 

elliptical orbit about the Earth-Moon mass 

center. The initial orientation of the
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Earth-Moon system is determined from a 

truncated set of Brown's ephemeris equations. 

The subsequent motion of the Earth relative 

to the Moon is approximated by elliptical 

two-body motion. For the time periods of 

interest here this is a reasonable assump-

tion. 

(3) The lunar equatorial plane is inclined 6°40' 

to the Earth-Moon orbit plane. 

(4) The mass of the satellite is negligible. 

(5) The effects of the Sun are neglected since 

it has been shown (Reference 10) that they 

are on the order of 0.005 times the effects 

of the perturbations due to the Earth. 

(6) All other perturbing effects are neglected. 

These assumptions must be incorporated into a 

system of perturbation equations which describe the time 

rates of change of the orbit elements of the osculating 

ellipse. Before considering these equations, the ephemeris 

equations for locating the relative Earth-Moon position for 

the selected epoch date will be discussed. 

C. Earth-Moon Ephemeris Equations 

In view of the current schedule for project 

Apollo, the epoch date of January 29, 1970, was chosen for 

this study. At that time the Moon will be entering its
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third quarter, and lighting will be favorable for a lunar 

landing. Since published ephemeris data for the Moon are 

not available this far in advance, approximate equations 

based on Brown's theory were used to establish the relative 

Earth-Moon position for this epoch date. 

In 1920, E. W. Brown published a set of tables 

of motion of the Moon which have subsequently been used 

to describe the lunar ephemeris. These tables are the 

result of some 1,500 separate terms which account for the 

perturbation in the Moon's motion due to such effects as 

the presence of the Sun and planets and the ellipsoidal 

figure of the Earth. 

A truncated form of Brown's series expansions 

may be used to determine an approximate position of the 

Moon as a function of time. The equations used in this 

analysis to approximate the Moon's position were taken 

from the appendix of Reference 1 and may also be found in 

Reference 8, pages 109-145. 

Figure 2 shows the geometry of the Moon relative 

to the Earth. The geocentric mean longitude of the Moon, 

its perigee, and its node are represented by Lm	 m' and 

m respectively and are measured in the plane of the eclip-

tic. The symbols L 5 and	 are the geocentric mean longi-

tudes of the Sun and of its perigee. Further define
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A ' =Lm Ls C'=Ls'WS 

B'=L- D'=Lm 

Now, if - is the true longitude of the Moon 

measured in the plane of the ecliptic andp is the true 

latitude above the plane of the eôliptic, then X - L_ and 

can be expressed by sums of periodic terms whose argu-

ments are algebraic sums of multiples of the four angles 

A', B', C', and D'. 

In this approximation the expressions for longi-

tude and latitude include only the effects of solar per-

turbations on the two-body motion of the Earth-Moon system, 

i.e., the effect of the planets and the oblateness of the 

Earth are neglected. Furthermore, only terms whose coef-

ficients exceed 60 seconds of an arc are retained. The 

expressions in seconds of arc are as follows: 

Longitude = Lm + 22,639.500 sin B' - 4,566.426 sin (B' - 2At) 

+ 2 1 369.902 sin 2A' + 769.016 sin 2B' 

- 668.111 sin C' - 411.608 sin 2D' 

- 211.656 sin (2B' - 2A1) 

- 205.962 sin (B' + C' - 2A1) 

- 125.154 sin A'-+ 191.953 sin (B ? + 2A1) 

-	 165.145 sin (C' -	 2A1) 

+ 147.693 sin (B ? -	 C') 

-	 109.667 sin (B' +	 C')

El
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Latitude = 18,461.480 sin D' + 1,010.180 sin (B' + D') 

- 999.695 sin (D' - B') - 623.658 sin (D' - 2A') 

+117.262 sin (D' + 2A') 

+ 199.485 sin (D' + 2A' - B') 

- 166.577 sin (B' + D' - 2A') 

+ 61.913 sin (2B' + D') 

The fundamental arguments in these equations are 

functions of time and are given in Brown's "Tables of 

Motion of the Moon." The equations for these quantities 

are:

LM = 270026111'71 + 1,336r 307°53 1 2606 tc 

2	 3 
+ 7.14"t + 0'0068 t 

= 33401914640 +
	 r011	

t 
2

11	
3 

- 3717 t - 0.045 t 

Qm = 259°lO'5979 - r134008131,,23 tc 

+ 748 t 2 + 0'008 t 3 

A' = 35

	

	
r

O°44'2367 + 1,236 307 0 07 1 1793 t 

+ 6t05 t + 0t0068 t 

B' = 296 0 06'25'31 + 1,325 198051123?54tc 

+ 44.31 t + 0.0518 tc

J.
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C t = 35e028'33':00 + 99r359002159u10 tc 

- 0'54 t - 00120 t 

D' = 11 0 15 h 11 ? 92 + 1,342r8201,57?:29 t  

0'.'34 t	 -.O'0Ol2 

Here t is the time in Julian centuries which has elapsed 

since the epoch, January 0, 1900. On this date 2,415,020 

Julian days have elapsed, hence 

- Julian day no. - 21415,020 
t c -	 36,525 

It has been shown in Reference 1 that these 

equations are accurate to just over 3 minutes of an arc 

in longitude and 2 minutes in latitude. 

In order to calculate the position of the Moon, 

let x,y,z in Figure 2 be a geocentric rectangular ecliptic-

oriented coordinate system with the x axis directed toward 

the vernal equinox of January 0, 1900. Then, if i,j,k are 

unit vectors in the directions of the coordinate axes, the 

unit vector in the direction of the Moon, i m' is given by 

I = cos f3 cos	 I + cos P sin . j + sin	 k 
m 

Further, the unit vectors, 1n and i, in the directions of 

the ascending node and the lunar perigee are given in the form
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A

i n = cos cT + sin n1J 

= (cos Qm COS Wm - Slfl Q. Sfl Wm COS ie)T 

+ (sin c 1 cos Wm + Cos Qm sin wm COS

	

± (sin w.	 1eY 

where i e is the inclination of the lunar orbit to the 

ecliptic and Wm is the longitude of lunar perigee meas-

ured from the ascending node. From Figure 2, it is seen 

that

jIn )< imiI 
cos I e = -	 - 

	

cos	 sin j '. - 

1 - Cos 2P Cos 2(	 - 

and the true anomaly, f, of the Moon is 

eQs f =	 .TM 

= cos P cos Wm cos ( 

+ cos P sin Wm COS 1e	 ( 

+ sin P 53-fl wm Sfi 1e
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The sign of f is the same as the sign of i X 

so that

sin f = sign [cos i sin (X m) 

-	 sin COS 1e COS (

______ 

)	 1	 -	 cos2f 

On January 29, 1970, the epoch chosen for this 

study, the quantities defining the Earth .-Moon orientation 

are:

Julian Day rumber = 2,440,616 

Lm = 213.4880 

= 305.823° 

= 343.776° 

205.928°

= -3.601° 

I = 260.229° 

D = 265.1530 

The elongation of the Moon, D, is the angle 

measured in the ecliptic, from the Earth .-Sun line, west-

ward, to the projection of the Earth-Moon line on the 

ecliptic.

For this analysis the above set of geocentric 

orientation angles must be transformed to the selenocentric 
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inertial coordinate system described in the next section. 

However, transformation is simplified by the fact that the 

x axis of the selenocentric system is chosen to be parallel 

to the line of nodes of the geocentric system. 

After establishment of the initial orientation, 

subsequent motion of the Earth-Moon system is approximated 

by ideal two-body motion. In Reference 12 on pages 32-53, 

derivations of the two-body equations used in this analysis 

are presented. The results are summarized below: 

e2 
(i)	 E = M0 + e sin M +	 sin 2M 

e3 
+ - (3sin 3M - sin M) + . 

-1 
f	 Il+eI	 E 

(2) tan	 = [i 	 tan 

cos E - e 
(3) cos	 1 - cos E 

a(1 - e 2) 
(4) re = 1 + e cos f 

Here a is the semi-major axis, e, the eccentricity, and f, 

the true anomaly of the Earth-Moon orbit. The mean anomaly, 

M, is the product of the mean angular velocity of the Moon 

about the Earth, We, and the time elapsed since previous
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perigee passage. The relationship for E, the eccentric 

anomaly, (Equation i) is a series expansion of Kepler's 

Equation 

(5)	 E - e sin E = M 

Average values for the Earth-Moon orbit elements are 

a = 384,422 KM 

e = 0.0549 

We = 0.266507564x 10	 rad/sec 

D. Coordinate System 

Prior to developing the perturbation equations, 

the coordinate systems employed for this analysis will be 

described (see Figure 3). 

18 

(i) Selenocentric "Inertial" Coordinate System 

(x,y,z). Here the word "inertial" is used to indicate 

that the ccordinate system does not rotate but translates 

only. This system has its origin at the Moon's center of 

mass. The x axis lies along the intersection of the lunar 

equatorial plane and the Earth-Moon orbit plane and is di-

rected toward the ascending node of the Earth's orbit



Figure 3.

Selenocentric Coordinate Systems.

19 
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relative to the Moon. The z axis is directed along the 

Moon's spin axis, and the y axis lies in the equatorial 

plane so as to form a right hand triad. The positive 

direction of these axes is shown in Figure 3. 

(2) Body Fixed Selenocentric Coordinate System 

(x',y',z'). The x',y',z' coordinate system corresponds 

to the principle axes of inertia and forms a right hand 

triad. The x',y' axes lie in the lunar equatorial plane. 

The x' axis is directed toward the Earth, and the z' axis 

coincides with the Moon's spin axis. This coordinate 

system rotates with a constant angular velocity equal to 

the Moon's spin rate. 

The angle 0 is measured in the lunar equatorial 

plane and is the orientation angle between the x,y,z and 

x t ,yt,z t axes systems (0 < 9 < 360 0 ). The angle 9e between 

the inertial x axis and re, the Earth's radius vector, is 

measured in the Earth-Moon orbit plane (0 < 6e < 3600) 

The relevant expressions are: 

o = f +e e	 o 

o = M + arc tan(cos I tan e 
e	 o 

where f is the true anomaly, M is the mean anomaly, and
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is the phase angle between the x axis and perigee of 

the Earth's orbit relative to the Moon. 

E. Perturbation Equations 

Fundamentally, six constants or orbit elements 

are required to describe a satellite's orbit, four to 

describe the orbit in plane and two to orient it with 

respect to the coordinate system. The orbit in plane is 

described by 

P : semi-latus rectum 

e	 eccentricity 

W	 argument of pericenter 

time of perigee passage 

The orbit plane is oriented with reference to the coordinate 

system by

longitude of ascending node 

I : inclination of the orbital plane to the 

equatorial plane 

For circular orbits, w and t have no signifi-

cance since pericenter is undefined. Since in this study
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circular orbits will be of primary interest, these quanti-

ties will not be directly considered. 

Generally, Lagrange's Planetary Equations are 

used to describe the time rates of change of the orbit 

elements (Reference 13), however, singularities arise in 

this set of equations for zero eccentricity. To avoid 

this difficulty, an alternate set of equations described 

in Reference 14 has been adopted for this study. Since 

their derivation is not readily available in the literature, 

it will be presented here. 

The x,y,z axis system in Figure 4 is the same 

selenocentric inertial system discussed previously. The 

unit vectors i,j,k lie along the x,y,z axis respectively. 

To vector combinations of r, the radius, and V, the velocity, 

which will be used in this analysis are the angular momen-

tum and eccentricity vector, defined as: 

(6)

 - VXh - 
(7) e =	

Lrn - r 

Here a subscripted € is an unit vector in the subscript 

direction, and 'ni is the Moon's gravitational constant.
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The vector e lies along the major axis always directed 

toward periselene. 

In Figure 4, E is an unit vector lying along 

the line of intersection of the instantaneous orbit plane 

and the Moon's equatorial plane and directed toward the 

instantaneous ascending node. The inclination angle of 

the orbital plane, I, is measured from 0° to 160°, "right 

handed" with respect to €. The angles u and w are meas-

ured from 00 to 3600 in the orbital plane from the ascend-

ing node to r and e respectively. The longitude of the 

ascending node, Q, is measured from 00 to 360 0 in the 

equatorial plane from the x axis to 

To determine the transformations between r and 

V and h, e, w, u, 0, and I, we first write r and V in 

terms of € and €.
1
, a lateral unit vector in the r, V 

r  

	

plane ( TE, 
=h X Er)	

The radius vector is simply rEr, 

in which the magnitude of r may be found by dotting each 

side of Equation (7) with r and introducing Equation (6). 

That is

-	 - -	 - VXh rXVh	 hh 
r	 [e+€]=r . - 	

=	 m 

h2 r[e cos (u_w)+I]=-
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7-M 
(8) = 1 + e cos Cu - 

V is solved for from Equation (7) by crossing each side 

with h

TT X {e + € 1 =	
• 

x [ e [c os (u - - sin (u - W)TE 	 + r	 1	 r 

=	 (1:;. 	 )V - (T	 =

Ifl 

(9) V = j— [[ e cos (u - w) + l ] ' + e sin (u - 

The following terms will now be defined to further 

simplify computations and to eliminate the small eccentricity 

restriction of Lagrange's Planetary Equations:.: 

2 
P = 	 A = e cos w	 B = e sin w 

m 

Substituting these expressions into Equations (8) and (9) 

yields



/
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Pe 
-	 r 
r - 1 + e cos (u - 

which may be written as

P..
r 

(10)	 r = 1 + A cos u + B sin u 

and 

(ii)	 V = -	 [ ( 1 + A cos u + B sin u)1 

+ (A sin u - B cos u)] 

The reverse transformation is the determination 

of the defined quantities when given r and V. These 

quantities follow directly from the definition of the 

variables:

	

=xV, P=•	 ____ 

kX€h 
€ r = U	 ,, €=5jflI	 , A=€	 e, 

(12)	 B -	 X e  Eh	 CO5 I	 h	
k , 0 < I < 180° 

cos	 E.	 ,	 sin 92 =	 j ,	 0 < n < 3600
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COS U =	 €,	 Slfl U = 7 X €r 

0 < u < 360* 

The sets of equations for 0 and u are solved in pairs to 

determine the proper quadrant for the angle. 

Now consider the equation of motion 

dv - force 
dt	 M 

or in alternate form 

(13) 

where M is the mass of the satellite. 

In the alternate form it may be seen that F is 

the perturbing force since the case for F = 0 corresponds 

to central force field motion. 

Equation (13) along with Equation (12) can be 

transformed into the derivatives of the six orbit elements, 

thus forming the perturbation equations. 

Since Equation (12) expresses the orbital ele-

ments most directly as functions of h and e, their deriv-

atives are facilated with expressions for h and e.
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h= r X 	 + r X  

From Equation (13), it follows that 

(14)
	

+ r 	 (F _--) = r X F 

The derivative of any unit vector €a 

dai	 i--	 a	 1	 -	 ---	 --	 - 
= dt =	 a - - a = - [(a	

a 	 - a 	 a)] 

=-(x)x 

Using this expression, it follows from Equation (7) and 

Equation (14) that

mr 

=VXh+VX(rXF) - -- (rxV)xr 

= (V +	 ) x h + V X (r X F) 

(15)	 x ( —r x ) + V x ( —r x )
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The derivative of P, the semi-latus rectum, becomes 

dt m 

(16) 2h x— .	 2hr(	
. n 

From Equation (12) the derivative of I is found to be 

—sin I I	 x)x	 i 

	

(TT 	 •xi 

	

= -( x	 (-h sin i) 

	

€Xh	 €X€h	 - - 

	

1=	
2	

h=	 h	 •(rXF)
h 

	

= :.	 X	 X E
 r 

(17) 

Since the remaining orbit elements are expressed in terms 

Of €,	 will be introduced now, i.e., 

	

E d (ix) 	 ix iT	
- — ( hsinI) 

	

92
=
 dt h	 dt 

	

sin I	 h sin I 2	 . 2 h sin 1
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€ 
k X h 	 ,.-	 -	 - 

= h sin I - h sin I dt' X ii 

The derivative of an unit vector is perpendicular to the 

unit vector, hence k X h	 €, = 0, and 

	

2 = Ti sin I (x	
-	 • 

	

[ • ç X (	 x 

(18) =	 h sin I	 X 

Then from Equation (12) and Figure 4 

- sin ci ci = t ( ci	 h sin 1 x (x i)	 —E n X ? 

hs in I
x (i x i)	 (-i sin ci) 

•	 kx€ç2
h h sin I	 k  

€

	

ci	 I- - 

	

=	 •	 •rXF 
h sin I 

r sin u 
(19) 2	

h sin I	 h 

Also,
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- sin u u = €	 • € + €	 • € r	 r 

	

[•) x (	 x :j•)] : [sin u +  

h sin I 

Using the previous relationship for Q it can be seen that 

[xx] 

hsinl	 =k 

since it must be in the ± k direction. It follows then 

that

h 
U =	 -	 Cos I 

r 

Finally, from Equations (12) and (is) 

J= E	 +I • 

=Qk • E X e + E	 • 

= BQ cos I + E	 e 

= E e X E
h 

+ E Q X e • 

= -

 

AQ cos I + co •
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Using Equations (8) and (9) for r and V and Equation (15) 

for e, the following expressions can be obtained 

(20) A = Bn cos I 

r	
sin u	 + [A + (1 + 4') cos uj1)r 

(21) B = -	 eQs I 

+ .(- t cos u	 + [B + (1 + 4') sin u). ) r	 1 

The collected results, called the perturbation equations, 

are the following set of first order nonlinear differential 

equations:

paç .n 
1 

m 

I =	 cos u 

A = B cos I 

r	 - 
+ h 
- (4' sin u€ + [A + (1 + 41) cos u] 	 . ) r 

B = - Afl cos I 

r  
(22)	 + - (- 41 c Os Uc	 + [ B + (1 + 4') sin u ] . 3 r	 1
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r sin u (••	 .•;) 
- h sin I ' h 

=	 -	 eQs I 
r

3 

2 

	

-	 sin  
r 

Where

= 1 + A cos u + B sin u 

it is convenient to define 

	

R€rF	 C=c1F,	 W=€hF. 

The expressions R, C, and W are the components 

of the perturbing acceleration in the radial, circumferen-

tial, and normal directions respectively. They will be 

used in a subsequent discussion. An expression for the 

perturbing acceleration now will be developed. 

F. Potential Energy Function 

It is known from observations over the past one 

hundred years that the Moon can he approximated as a homo-

geneous triaxial ellipsoid, i.e., the Moon has three
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principle axes of inertia. To accurately simulate the 

motion of a satellite this triaxialty must be considered 

when defining the lunar gravitational potential. For a 

derivation of the potential energy function of a triaxial 

ellipsoid, see Reference 2, pages 115-125. 

The gravitational potential per unit mass of a 

point P at a distance r from the center of mass 0 of any 

rigid body of mass M is 

(23) v = - G(	
A1 + B1 + C1 

+	 )-•) 
m	 r	 2r3	

+o(
 r 

Where G is the universal gravitational constant, I' is the 

moment of inertia of M about the line segment OP, and Al.' 

B1 , C 1 are moments of inertia about the three principle 

axes of inertia (x',y',z'). Also, in the principle axis 

system,

(24) It	 A1()	 + B 1()	 + 

where 

-  r 2 = x ,2 + y	 + 

The higher order terms in 1r4 will be neglected.
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The Earth will be treated as a point mass for this 

analysis since the distance between the Earth and the satel-

lite remains large. Accordingly, the Earth's gravitational 

potential is approximated by the following expression 

XX + YY + ZZ e] 
(25) Ve = GM[ ---  -
	 e 

es	 r e 

The total potential energy function is then the sum of 

Equations (23) and (25). Using this relationship for the 

total potential function, V., the equations of motion for 

the satellite are given in Reference 7 as: 

	

GM	 GM
e 

— (26) = —3-(x - x)	 x -	 3 e 

	

r	 r 
es	 e 

± G [ H 2i --g (A1 a11 x' + B1 a21 	 + C1a31zt)] 

	

GM	 GM 
(27) =	 e -	 - -1; Y e 

	

r	 r 
es	 e 

/
+ G[H .- --- (A 1 a12x' + B1a22y' + C1a32z?)] 

r	 5 r

GM 
e (	 e 

z	 z	 z (28)
GM	

e	 e 

	

r	 r 
es	 e 

+ G[ H Z --- ( A 1 a 13x' + B1 a 23y' + C1a33z')] 
r	 5 r
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The radius vector of the satellite, r, is given by: 

r =	 + A cos u + B sin u) 

The components of the satellite's position vector are: 

x = r(cos u cos a - sin u sin Q cos I) 

y = r(cos u sin 0 + sin u cos f cos I) 

z = r(sin u sin i) 

From Figure 3 the expressions for x 
e	 e 
, y , z 

e 
are: 

Xe = re cos ee 

re sin 0e CO5 

Ze = re sin O e sin 

The aij are direction cosines which define the 

transformation between the inertial (x,y,z) coordinate 

system aLd the principle (x',y',z') axis system. The 

transformation matrix [A] is given by: 

cos U sin 0	 0 

[A] -	 sin e cos e	 0 

0 0 1
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The lunar force potential, H, is: 

Mm	 3 A1+ Bl+J 
(29)	 H—-	 4 

r	 r 

15 1 [A
	 + B y'
	

+ c 
1 r	 1 r	 1 r 

r 

In this study we are interested in only the per-

turbing accelerations which act on the satellites. Since 

A 1 , B1 , and C 1 are zero for a spherical body of uniform 
M 

mass distribution it is seen from Equation (29) that 

is the central force field contribution to the lunar force 

potential. If this term is removed, Equations (26), (27), 

and (28) will yield the components of the perturbing accel-

eration. The radial, circumferential, and normal components 

of the perturbing acceleration, H, C, and W, can be obtained 

from a coordinate transformation: 

(30) R = 5(cos u cos 0 - sin u sin Q cos I) 

+ y	 (ces u sin 92 +	 sin u cos	 0 cos I) 

+ (sin u sin I) 

(31) C = (-	 sin u cos 0 - cos u sin fl cos i) 

+ \ (-	 sin u sin 0 + cos u cos Q cos I) 

+ (cos u sin	 I)
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(32)	 W = JC (sin Q sin I) 

- ?(cos 0 sin I) 

+ (cos I) 

Equations (22), (26), (27), (28), (30), (31), 

(32), and the two body equations of motion to approximate 

the motion of the Earth, Equations (1), (2), (3), and (4), 

were programmed for numerical solution with the CDC 1604 

digital computer located in the computation center at The 

University of Texas.



III. COMPUTATIONAL PROCEDURE 

The computations for this analysis were per-

formed on the CDC 1604 digital computer utilizing a routine 

originally coded by D. S. Goddard to integrate Lagrangets 

Planetary Equations. This routine was revised to accom-

modate the equations and assumptions used for this study. 

A brief sketch of the routine will be given here; however, 

a more detailed description including a listing of the 

basic computer program is given in Reference 5. 

The numerical integration was carried out using 

a partial double precision Adams-Moulton integration scheme 

with a Runge-Kutta starter. In this scheme an initial 

integration interval and one initial condition is supplied 

for each orbit element. The Runge-Kutta subroutine cal-

culates three additional values. Control is then shifted 

to the Adams-Moulton subroutine which continues the Inte-

gration and calculates the single step error. Then the 

single step error is checked against prescribed limits 

set by the user. If the error becomes too large the inte-

gration Interval is halved, and control Is returned to the 

U

39
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Runge-Kutta subroutine for new "starting values." If the 

error becomes too small the integration interval is doubled, 

and control remains with the Adams-Moulton subroutine. In 

this analysis it was found that an integration step size of 

100 seconds resulted in an error within the bounds of 10- 6 

to 10 1 . A more complete description of this procedure 

is given in Reference 6 or in practically any numerical 

analysis text. 

In order to facilitate integration, all input 

data and constants containing a length dimension were 

divided by lO	 to force all independent variables to be 

of the same order of magnitude. 

Two modes of output were employed for this study. 

One prints the values of the orbit elements at specified 

time intervals for 3 revolutions and shows the short term 

variations of the elements. The other prints only the 

local maximum and minimum values of the elements over a 

period of 80 revolutions. The minimum and maximum values 

of the elements are obtained by comparing the absolute 

value of each calculated point with the absolute value of 

the two previous points. When a local minimum or maximum 

value is detected, it is stored by the computer. These 

results can be used to obtain an envelope for the variation 

in the orbit elements over long periods of time.
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On completion of the integration in both cases 

the results of each independent variable are arranged in 

column arrays. Each array is scanned for its maximum and 

minimum values, and then each element of the array is 

normalized. Hence, the maximum value of the array corre-

sponds to one and the minimum value to zero. The normalized 

values of each orbit element are then plotted against time 

by the digital computer.



IV. RESULTS 

A. Initial Values of Orbit Elements 

As stated previously, this analysis deals with 

circular, low altitude satellite orbits of near equatorial 

inclinations. Table l*presents initial input data for each 

of the twelve orbits considered here. Values of the orbit 

elements at the end of 80 revolutions are also shown, how-

ever, these will be discussed later. 

Based on current speculation that the Apollo orbit 

will be circular, approximately 100 miles in altitude, and 

inclined at 1700 to the lunar equator, initial altitudes 

of 50 miles (P = 1822.20 KM) and 150 miles (P = 1981.35 KM), 

and initial inclinations of 179.5 0 , 1700, 1600, .5 0 , 10 0 , 

and 20 0 were chosen for this study. For lack of any de-

finitive information on the initial longitude of the as-

cendirig node for the Apollo orbit, it was chosen arbitrarily 

for this study to lie on the Earth-Moon line on the side of 

the Moon opposite the Earth. 

Inclinations between 0 and 90 0 correspond to 

prograde orbits and inclinations of 90 0 through 1800 

*See page 50.

42
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correspond to retrograde orbits. Although the retrograde 

orbit has been confirmed for the Apollo mission, the prograde 

orbits were also considered to present a more complete 

picture of the orbital characteristics for near equatorial 

inclinations in this altitude range. 

Subsequently, a specific orbit will be referred 

to as orbit type 1 through 12, depending on its initial 

parameters as shown in Table 1. Note that orbit types 1 

through 6 are prograde, and orbit types 7 through 12 are 

retrograde. 

B. Graphical Results* 

1. Short Time Variations 

The variation with time of the orbit elements for 

three (3) revolutions of orbit types 3, 4, 9, and 10 are 

presented in Figures 5 through 13. Rather than show the 

multitude of plots necessary to present the short time 

variations of the elements for all cases, only the results 

for inclinations of 100 and 170 0 are shown since these 

results are typical. 

It is again pointed out that these are plots of 

the normalized values of the elements. Also note that the 

small normalizing difference used for this process results 

in a greatly enlarged scale. Consequently, a small change 

*See pages 51 through 67.
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in the value of the orbit element appears greatly exag-

gerated when plotted on this scale; however, this method of 

presenting the data facilitates analysis. 

Both the maximum and minimum values of the orbit 

element are shown on each plot. The maximum and minimum 

values correspond to the ordinate values of one and zero 

respectively. Consequently, the value of the element at 

any point on the plot may be determined. 

The plots of semi-atus rectum indicate that the 

time variation of P is practically independ'nt of rota-

tional direction for a given altitude over a period of 

three revolutions, i.e. the variation in P is identical 

for both direct and retrograde orbits of a given altitude. 

It is seen from Figures 5, 7, 9, and 11 that the 

oscillations in the inclination of the retrograde orbits 

of a given altitude are displaced by 90 0 from those of 

the prograde orbits. The amplitude of the oscillations 

are greater also for the retrograde orbits. The time 

variation for a given inclination varies only slightly with 

altitude changes between 50 and 150 miles. All orbits 

experience a decrease in inclination over a period of three 

revolutions. 

Figures 6, 8, 10, and 12, which present the time 

variation of the longitude of the ascending node, indicate
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that il increases with time for the retrograde orbits and 

decreases with time for the prograde. This is to he ex-

pected since the component of the perturing force normal 

to the satellite orbital plane, which cause3 the rotation 

of the line of nodes (Equation 22), will be in opposite 

directions for the two cases. It is noted also that the 

amplitude of the oscillations of 2 are considerably smaller 

than those of P or I. This effect is quite noticeable in 

the 80 revolutions plots. 

Figures 6, 8, 10, and 12 indicate that the varia-

tion of eccentricity is practically independent of altitude 

or inclination for three revolutions. Figure 13, which 

presents e cos w and e sin w for orbit 10, is shown only 

to give an example of their variation with time since the 

argument of perigee, W. is of little significance for near 

circular orbits. 

The variation with time of the angle u, between 

the lime of nodes and the satellite's radius vector, was 

found to be linear, indicating that the perturbing effects 

on it are negligible. Therefore, this angle will not be 

further considered. 

2. Long Time Variations 

Figures 14 through 19 present the envelope of varia-

tion which occurs in the values of the orbit elements for
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orbit types 1 through 12 during a period of 80 satellite 

revolutions. The envelopes shown for each orbit are the 

locus of points of The maximum and minimum values of the 

oscillations of the orbit elements. These are once again 

normalized values so that while the actual magnitude of 

the change may be small, it may appear to be quite signif-

icant on the plot. In order to reduce the number of plots 

and show more readily the effects of inclination for a 

given orbit altitude, the plots of P, 0, and e versus number 

of satellite revolutions are shown with three values of 

inclination on each plot. The maximum and minimum values 

of the elements are again shown on each plot as well as 

time ticks on the abscissa indicating time in days since 

injection into orbit. Figures 14 and 15 present P, 0, and 

e for orbit types 1, 3, 5 and 2, 4, 6, respectively. 

Figures 17 and 18 show the variations in these elements for 

orbits 7, 9, 11 and 8, 10, 12 respectively. Since normalized 

values of inclination would appear as three straight lines 

if plotted in this manner, this element was plotted using 

altitude as the varying parameter. Figure 16 presents the 

three inclinations corresponding to the prograde orbits 

(orbit types 1 through 6), and Figure 19 presents the 

corresponding retrograde cases (orbit types 7 through 12).
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It has been stated previously that the line of 

nodes progresses for retrograde and regresses for prograde 

orbits. This trend is again noted in Figures 14, 15, 17, 

and 18. The noticeable difference in each case between 

the results for the near equatorial inclinations, 0.5 0 and 

179.5 0 , and those for the two orbits of greater inclinations 

are attributed to the effects of the Earth and the sin I 

term in the denominator of the relationship for 	 in Equation 

22. From the initial orientation of the Earth-Moon system 

it can be shown from spherical trigonometry that the latitude 

of the Earth with respect to the lunar equator is +4.48 0 . 

Moreover, this angle will remain positive for 10.5 additional 

days. Consequently, the component of the perturbing force 

of the Earth normal to the orbit plane will be in the same 

direction for all prograde orbits throughout so revolutions, 

but the sin I term will tend to increase the absolute mag-

nitude of '2 with decreasing inclination as shown in Figures 

14 and 15. However, in the retrograde case the normal com-

ponent of the Earth's perturbing force on the 179.5 0 in-

clination orbits will be directed opposite to that for the 

orbits inclined at 160 0 and 170 0 to the lunar equator. 

Furthermore, as shown in Figures 17 and 18 this factor is 

significant enough to reverse the effect of the decreasing
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value of sin I and results in a smaller change in 0 for orbit 

types 7 and 8 than for orbit types 9, 10, 11, and 12. In 

brief the effect of the Earth is to cause a regression of 

the node for orbit types 1 through 8 and a progression for 

orbit types 9 through 12 throughout the time period considered 

here. This effect will be reversed when the latitude of 

the Earth with respect to the lunar equatorial plane be-

comes negative. The effects of the Earth are seen to in-

crease with orbit altitude as would be expected. 

The results for eccentricity indicate that this 

element oscillates in practically the same manner and with 

the same magnitude for all orbits. Harmonics which appear 

in Figures 14, 15, 17, and 18 begin after about 40 revolu-

tions and continue throughout 80 revolutions. Figure 20 

presents the variation with time of e cos w and e sin w 

for orbit 10. 

The component of the perturbing force normal to 

the orbit plane also determines the direction of the change 

in inclination. Here, as in case of 0, the effect of the 

Earth on orbit types 1 through 8 is opposite to the effect 

on orbit types 9 through 12. This phenomena is shown in 

Figures 16 and 19.
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Table 1 presents the initial values of the orbit 

elements as well as their values after 80 revolutions. 

Since n is the only element which varies appreciably with 

the inclination, the final value of 0 is shown plotted 

against I for both orbit altitudes in Figure 21.
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V. CONCLUSION AND RECOMMENDATIONS 

A numerical integration scheme was revised to 

integrate a set of differential equations which describe 

the time rates of change of the satellite orbit elements 

but which does not have the small eccentricity restriction 

of Lagrange's Planetary Equations. This scheme was used 

to predict the variation of the orbit elements of Apollo-

type lunar orbits over a period of 80 satellite revolu-

tions. Computation was carried out on the CDC 1604 digital 

computer.

The following conclusions are drawn from the 

results obtained from this study. 

1. All orbit types considered exhibit a high 

degree of stability for a period of 80 revolutions, and 

there is no indication of future instability. However, it 

should be noted that the time periods considered here are 

not suitable for answering questions about the long-term 

/behavior of the satellite. 

2. The inclination of the radius vector of the 

Earth to the lunar equator is such that the component of the 
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Earth's perturbing force normal to the plane of the satel-

lite's orbit on orbit types 1 through 6 (prograde) and 7 

and 8 (retrograde) is in the opposite direction from that 

on orbit types 9 through 12 (retrograde) throughout the 

time period considered here. Consequently, the effect of 

the Earth is to cause a regression of the node for orbit 

types 1 through 8 and a progression for orbit types 9 

through 12.

3. The line of nodes progresses for retrograde 

orbits and regresses for prograde orbits. The rate of 

change of ci decreases with altitude for a given inclination. 

It also decreases with increasing inclination for a given 

altitude.

4. Eccentricity and semi-latus rectum appear to 

oscillate with a relatively co'nstant amplitude for all of 

the orbit types considered here. 

5. A fairly complete picture of the variation 

of the orbit elements for an Apollo-type lunar orbit may 

be obtained from a study of the results presented here. 

Considerable additional work needs to be done 

in this area to determine more completely the characteris-

tics of lunar satellite orbits. The areas of interest are:



70 

1. Since satellites for future lunar exploration 

will undoubtedly be placed in orbits of widely varying alti-

tude, inclination and eccentricity, the effects of varying 

these parameters over a wider range than was considered 

here should be determined. 

2. Integration of the perturbation equations 

over a longer time period, preferably an entire month, , to 

more fully ascertain the effects of the Earth would be 

worthwhile.

3. The expansion of the computer program used 

here to include the effects of the Sun would give a positive 

indication of their relative importance. 

4. Since the amount of computer time required to 

integrate the perturbation equations for a given number of 

revolutions becomes prohibitive for orbits of high altitude, 

it is important that more sophisticated analytical solutions 

to the perturbation equations be developed. Results for 

existing closed form solutions should be compared with 

numerical solutions to determine their degree of accuracy 

and where needed more exact methods should be determined.
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