Made of the state of the state

GPO PRICE \$ \_\_\_\_\_

ff 653 July 65

ON THE LOCAL STRUCTURE OF HYPERBOLIC POINTS IN BANACH SPACES

bу

J. Palis\*

Center for Dynamical Systems
Brown University
Providence, Rhode Island

| 8        | <u>N68-21729</u>              |            |
|----------|-------------------------------|------------|
| 8        | ACCESSION NUMBER)             | (THRU)     |
| Ö        | Y                             |            |
| CILITY F | (1-940 98                     | (CÓDE)     |
| FΑ       | (NASA CR OR TMX OR AD NUMBER) | (CATEGÓRY) |



This research was supported in part by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. AF-AFOSR-693-67, and in part by National Aeronautics and Space Administration under Grant No. 40-002-015.

On the local structure of hyperbolic points in Banach spaces.

by J. Palis

It has been proved by Hartman [2,3], answering a question raised by Peixoto, that a diffeomorphism or a flow on R<sup>n</sup> with a hyperbolic fixed point is locally topologically equivalent to its linear part.

This fact, basic for the generic theory of flows and diffeomorphisms was also proved independently by Grobman [1].

In this paper we extend this theorem for Banach spaces.

We shall make use of a key idea presented by Moser in [5], where he gave a new proof of the structural stability of the Anosov diffeomorphisms (see also [4]). As in the finite dimensional case, we do not need to assume the existence of invariant manifolds associated to the fixed point.

I wish to thank M. Hirsch, I. Kupka and M. Shub for helpful conversations.

## 2. Preliminaries.

<u>Definition 1</u>. Let E be a Banach space and L:  $E \to E$  be a linear map. L is called hyperbolic if its sprectrum is disjoint from the unit circle  $S^1$  in the complex plane.

<u>Definition 2.</u> Let  $O \in E$  and V be a neighborhood of O in E. A diffeomorphism  $f: V \to E$  has O as a hyperbolic fixed point if  $(Df)_O$  is hyperbolic.

<sup>\*</sup>After the completion of this paper, I received a manuscript by C. Pugh proving the same result.

Lemma 1. Let L be a hyperbolic linear isomorphism in E,E with norm  $\| \cdot \|_1$ . There exist subspaces  $\mathbf{E_s}$  and  $\mathbf{E_u}$ , invariant under L, and a norm  $\| \cdot \|_2$  equivalent to  $\| \cdot \|_1$  in E such that  $\mathbf{E} = \mathbf{E_s} \oplus \mathbf{E_u}$ ,  $\| \mathbf{L}/\mathbf{E_s} \|_2 < 1$  and  $\| \mathbf{L}^{-1}/\mathbf{E_u} \|_2 < 1$ .

<u>Proof.</u> The existence of  $E_s$  and  $E_u$  is given by showing that

$$P = -1/2\pi i \int_{S} 1^{R} \gamma^{d} \gamma$$

is a projection map.  $R_{\gamma}$  is the resolvent transformation for L (see [6] for more details). Define  $E_s = \{z \in E \mid P(z) = z\}$  and  $E_u = \{z \in E \mid P(z) = 0\}$ . The spectrum of  $L_s = L/E_s$  has radius  $r_s < 1$ . So there exists a positive integer p and a real number a,  $r_s < a < 1$ , such that  $\|L_s^p\|_1 < a^p$ . From the convergence of  $\sum_{n=0}^{\infty} a^{-pn} \|L^{pn}\|_1$  we get the convergence of  $\sum_{n=0}^{\infty} a^{-n} \|L_s^{-n}\|_1$ . Set on  $E_s$ :

$$\|\mathbf{v}\|_{2} = \sum_{n=0}^{\infty} \mathbf{a}^{-n} \|\mathbf{L}_{s}^{n}\|_{1}$$

Clearly  $\| \ \|_2$  is equivalent to  $\| \ \|_1$  and  $\| \ L_s \|_2 <$  a. The procedure for  $L_u = L/E_u$  is similar. The lemma is proved.

Lemma 2. Let  $\phi: V(0) \to E$  be a  $C^1$  map,  $\phi(0) = 0$  and  $(D^{\phi})_0 = 0$ . Given any  $\epsilon > 0$ ,  $\phi$  restricted to a smaller neighborhood of 0 can be extended to all of E, the extension being bounded and having a global Lipschitz constant less than  $\epsilon$ . <u>Proof.</u> From the continuity of  $D^{\phi}$ , we can find  $\rho > 0$  so that  $\|(D^{\phi})_{\mathbf{Z}}\| < \epsilon/3$  for  $\|\mathbf{z}\| < \rho$ . Let  $\alpha$  be a real  $\mathbf{C}^{\infty}$  function satisfying  $0 \le \alpha(\mathbf{t}) \le 1$ ,  $\alpha(\mathbf{t}) = 1$  for  $|\mathbf{t}| < 1/2$ ,  $\alpha(\mathbf{t}) = 0$  for  $|\mathbf{t}| \ge 1$  and  $|D\alpha| \le 2$ . Define

$$\widetilde{\Phi}(z) = \alpha(\|z\|/\rho) \Phi(z)$$
 for  $\|z\| \le \rho$   
 $\widetilde{\Phi}(z) = 0$  for  $\|z\| > \rho$ 

Then  $\widetilde{\phi}(z) = \phi(z)$  for  $||z|| \le \rho/2$  and  $\widetilde{\phi}$  has Lipschitz constant less than  $\epsilon$ . The lemma is proved.

## 3. The main result

Theorem 1. Let  $0 \in E$  and V be a neighborhood of 0 in E. Let  $f \colon V \to E$  be a  $C^1$  diffeomorphism having 0 as a hyperbolic fixed point. There exist a neighborhood U of 0 in V and a homeomorphism  $h \colon U \to E$  such that hL(z) = fh(z) for all  $z \in U$ , where  $L = (Df)_{O}$ .

<u>Proof.</u> Let  $f = L + \phi$  be the local expression of f. Extending  $\phi$  to  $\widetilde{\phi}$  as in lemma 2, we shall look for a homeomorphism  $h : E \to E$  satisfying  $hL = (L + \widetilde{\phi})h$ . Let  $C_b^O(E)$  denote the Banach space of continuous bounded functions from E into E with the sup norm. Writting h = Id + v, where Id means the identity map in E, the above conjugacy becomes:

$$(Id + v)L = (L + \widetilde{\phi})(Id + v)$$

or equivalently

$$vL - Lv = \widetilde{\phi}(Id + v)$$
 (1)

We now show that (1) has a unique solution in  $C_b^O(E)$ , if the Lipschitz constant of  $\widetilde{\phi}$  is small enough.

Consider the operator  $\mathcal{L}\colon C_b^O(E)\to C_b^O(E)$  defined by  $\mathcal{L}(v)=vL-Lv$ .  $\mathcal{L}$  is an isomorphism. This is a consequence of the fact that the operator  $\mathcal{L}^*\colon C_b^O(E)\to C_b^O(E)$ , defined by  $\mathcal{L}^*(v)=LvL^{-1}$  is hyperbolic. To see this we write  $\mathcal{L}_s^*=\mathcal{L}^*/C_b^O(E,E_s)$  and  $\mathcal{L}_u^*=\mathcal{L}^*/C_b^O(E,E_u)$  and notice that  $\mathcal{L}_s^*$  and  $(\mathcal{L}_u^*)^{-1}$  have norm less than one, since from lemma 1 we may assume that this is the case for the norms of  $L_s$  and  $L_u^{-1}$ . Thus  $\mathcal{L}^*=\mathcal{L}_s^*\oplus\mathcal{L}_u^*$  is hyperbolic.

To solve the equation (1) is equivalent to find a fixed point for the map  $\mu\colon C_b^o(E)\to C_b^o$  defined by  $\mu(v)=\pounds^{-1}\widetilde{\phi}(\operatorname{Id}+v)$ . If the Lipschitz constant of  $\widetilde{\phi}$  is less than  $\varepsilon$  and  $\max(\|L_s\|,\|L_u^{-1}\|)<$  a < 1 we get

$$\|\mu(v) - \mu(w)\| \le \epsilon (a-1)^{-1} \|v-w\|.$$

Thus taking  $\epsilon(a-1)^{-1} < 1$  we have, by the Contraction Principle, a unique solution  $v \in C_o^b$  for (1).

Reversing the argument we get a unique solution for the equation:

$$(\mathrm{Id} + \mathrm{u})(\mathrm{L} + \widetilde{\phi}) = \mathrm{L}(\mathrm{Id} + \mathrm{u}) \tag{2}$$

Finally, we notice that from (1) and (2) we have

$$(Id + u)(Id + v)L = L(Id + u)(Id + v)$$

and from the uniqueness above (Id + u)(Id + v) = Id. Therefore Id + v is a homeomorphism and the theorem is proved.

## 4. Local Stability.

Theorem 2. Let f be a local  $C^1$  diffeomorphism as in Theorem 1. There exists a neighborhood N of f,  $C^1$  topology, such that for each  $g \in N$  there is a local homeomorphism in E satisfying gh = hf.

Proof. It is a consequence of Theorem 1 and the following two lemmas:

Lemma 3. Let f be as in Theorem 1. Then there exist a neighborhood N of f,  $C^1$  topology, a neighborhood U of O in E and a continuous map  $\gamma \colon \mathbb{N} \to \mathbb{U}$  such that  $\gamma(\mathbb{T}) = 0$  and for each  $g \in \mathbb{N}$   $g(\gamma(g)) = \gamma(g)$ .

<u>Proof.</u> Consider the map  $\psi: C_b^1(V,E) \times V \to E$  defined by  $\psi(g,x) =$ 

g(x)-x. Clearly  $\psi(f,0) = 0$  and  $(\partial \psi/\partial x)_{(f,0)} = (Df)_0$ -Id is an isomorphism for  $(Df)_0$  is hyperbolic. The lemma is then proved, using the Implicit Function Theorem.

Lemma 4. In the Banach space of linear transformations of E into E the set of hyperbolic maps is open.

 $\underline{\text{Proof.}}$  From the fact that the set of linear isomorphisms is open and  $S^1$  is compact.

5. The flow case. We now extend Theorem 1 to the case of flows in Banach spaces. Let  $\phi_t$  be a  $C^1$  flow in E having 0 as a critical point.  $\phi_t$  is hyperbolic at 0 if the induced diffeomorphism at time  $t=1,\,\phi_1$ , has 0 as a hyperbolic fixed point. If this is the case, we claim the existence of a local homeomorphism H taking trajectories of  $\phi_t$  into those of  $L_t$ ,  $L_t$  being the associated linear flow. Using a device appearing in [7], we set

$$H = \int_{0}^{1} L_{-t} h \phi_{t} dt$$

where  $L_{-1}h\phi_1=h$  as in Theorem 1. We verify now that  $L_{-s}H\phi_s=H$  for all  $s\in R$ . It is enough to consider  $s\in [0,1]$ .  $L_{-s}H\phi_s=L_{-s}(\int_0^1 L_{-t}h\phi_t dt)\phi_s$  or  $L_{-s}H\phi_s=\int_0^1 L_{-s-t}h\phi_{t+s} dt$ . Taking u=t+s-1, the left hand side becomes  $\int_{-1+s}^s L_{-u-1}h\phi_{u+1} du=\int_{-1+s}^0 L_{-u}L_{-1}h\phi\phi_u du+\int_0^s L_{-u-1}h\phi_{u+1} du$ . And finally, making v=u+1 in the second summand

we get

$$\int_0^s L_u h \varphi_u du + \int_s^1 L_v h \varphi_v dv = H.$$

In particular,  $L_{-1}^{H\phi}_{1} = H$  and from the uniqueness of solution of this equation in  $C^{O}(E)$  at finite distance from the identity map, we have H = h. The assertion is proved.

## References

- [1] D. Grobman, Topological classification of the neighborhood of a singular point in n-dimensional space. Mat. Sb. (N.S.) 56 (98) (1962).
- [2] P. Hartman, A lemma in the structural stability of differential equations, Proc. Amer. Math. Soc. 11 (1960) 610-620.
- [3] P. Hartman, Ordinary differential equations, Wiley, New York 1964.
- [4] J. Mather, Anosov diffeomorphisms, appendix in Differentiable dynamic systems, by S. Smale, Bull. Amer. Math. Soc. 73, November, 1967.
- [5] J. Moser, On a theorem of V. Anosov, to appear.
- [6] F. Riez and B. Nagy, Functional Analysis, Ungar, New York, 1955.
- [7] S. Sternberg, On the structure of local homeomorphism in Euclidean n-space II, Amer. Jour. of Math. 80, 1958, pp. 623-631.