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ABSTRACT

The kinetic theoretic study of the interaction between a coherent

light wave and the polarized molecular beam at the near free molecular

flow region is presented. A theory corresponding to the weak signal

model is developed and the method of harmonic analysis is incorporated

to study the nature of the generation of higher harmonics caused by

non-linear interaction. Calculations of the first seven harmonics

including D.C. components, _w, _2w and ±3w and the time variation

of the amplitude of electric field intensity, governed by the integro-

differential equations are presented. The theory is applied to the

interaction of a linearly polarized wave, at near resonant frequency,

and a beam whose distribution function is near Maxwellian. The

condition for the self-sustained oscillation of the maser is obtained

in terms of the kinetic parameters and the electric conductivity of

the beam. The linear and non-linear susceptibilities are obtained

as a function of the plasma dispersion function. The dispersion

curves and the absorption coefficients, calculated at two different

densities, reveal that the reduction in the active medium density

leads to the reduction in the frequency interval for the self-

sustained oscillation and also the reduction in the coefficient of

negative absorption.



i. INTRODUCTION

Recent success in producing or amplifying the coherent light

beamin laser or maser technology has stimulated a great deal of

theoretical and experimental interest in the problem of the inter-

action betweenmatter and light. The theories of the optical

maser, and other related subjects, have been continuously refined

in response to the ever increasing degree of accuracy achieved in

the experimental measurement.

Nevertheless, the existing theoretical studies are primarily

concerned with homogeneousmedia, thus completely or partially

ignoring the molecular interaction at the kinetic level. Some

authors introduce certain statistical factors to account for the

collective behavior of the molecular beam, yet such a phenome-

nological treatment renders no accurate information for the maser

operating at certain critical stages where the interaction be-

tween molecules begins to inhibit maser action.

Experimental evidence seemsto indicate that the practical

maser beamis of an intermediate nature between free molecular

and viscous flow, in which the effect of intermolecular collisions

and molecular acceleration could alter the nature of the light and

matter interaction. Further experiments reveal the ultimate

collapse of the maser oscillation at higher pressure, presumably

caused by the enhancedintermolecular collisions, indicating a

coupling between light and matter at the kinetic level for which

conventional theory is powerless. Unfortunately, no kinetic



theoretical study of the maser has been explored, and many experi-

mental results are greatly in need of theoretical support.

The purpose of the present paper is to develop a kinetic

theory of the maser at near free molecular flow. In particular,

our questions are concerned with (i) the response of the near free

molecular maser beam to an electric field at near resonant frequen-

cies (ii) the condition for the self-sustained maser oscillation,

(iii) the harmonic generation of light, and (iv) the susceptibility

of the near free molecular maser beam. The hydrodynamic approach

which requires independent treatment will not be included in the

present paper.

In the present study the molecular beam is assumed to obey

the classical Boltzmann equation in which the collision integral

is approximated by Krook's statistical model. The response of the

dipole moment of a molecule is calculated from quantum theory.

H.

In section II, the Maxwell, Schrodlnger, and Krook equations

are recapitulated, and the perturbation scheme for near free

molecular flow is discussed. In section III, the harmonic analysis

is used to solve the system of perturbed coupled equation. The

Maxwell Equations are deduced in the form of an integro-differentlal

equation. The analysis is carried out exclusively by a matrix

formalism which provides a particularly convenient way of investi-

gating harmonic generation due to non-llnear interaction. The

method of the calculation of the first seven harmonics, namely

the d.c. component, and _w, ±2w, _3w generated by the interaction



between maser and linearly polarized wave at frequency +w is

presented.

The application of the theory is demonstrated in section IV,

where the condition for the self sustained oscillation, the case

of stimulated emission, and the corresponding inverse dispersion

curves are presented. The response of the polarization and the

lowest order non-linear susceptibility are also discussed.



II MATHEMATICALFORMULATION

Weconsider a molecular beam consisting of, say, ammonia

molecules whose distribution function is f(x,u,t). The molecules

flow in a one-dimensional resonant cavity where they interact

with the coherent light wave at near resonant frequency.

The distribution function satisfies the Boltzmann equation

with the collision integral approximated by Krook's statistical

model

_f _f Fx _f I

_7 +_x +m _u=7 (Fm'f)
c

F is the local Maxwellian distribution function, and T is the
m c

characteristic time for collision, which will be assumed to be

constant for the sake of simplicity. The force F is the axialx

force acting on a molecule and is given as (1)

_x bFx = (V) = _x(PE)

p is the dipole moment, and E is the electric field intensity.

The Maxwell equation may be combined and written in the

form of the one-dimensional wave equation

_E bE _E _P
"_-/+ _o_ + _o_o_-V= " _o_-V

where P(x,t) is the macroscopic polarization density defined by

co

P(x,t) = f f(x,u,t) p(x,u,t)du

--CO

The dipole moment p(x,u, t) is to be calculated from the quantum

theory.

(z)

(2)

(3)

(4)

W.K.H. Panofsky and M. Phillips, Classical Electricity and

Magnetism (Addison-Wesley Publishing Company, Inc. Mass. 1956)



For matter interacting with the electric field, the system

is described by a wave function _ satisfying Schr_dinger Equation.

ih _t = (Ho'_E)_ (5)

where H is the liamiltonian of the non-interacting system and _tE
O

is the interaction potential.

It will be assumed that the molecule consists of two energy

levels W and %, and that the wave function _ is expressed by aa

linear combination of eigenfunctions _a and _b of the two stationary

states

= a(x,t), a + b(x,t)_ b (6)

The coefficients a(x,t), b(x,t) are to be determined from the

following equations

_--_ ffi (-Waa + _abEb) (7a)

_b i *

_-_ = _(-Wbb + _abEa) (Tb)

where _ab is the matrix element of the dipole moment defined as

_ab ffi_ba ffi dV (8)

v

The integration is taken over the configuration space of the

molecule. Note _aa _bb = O, if the energy levels are not

degenerate. The molecular dipole moment is given by

* .p = dV ffi_abab + _ba a b (9)

v

The dipole, moment p, can be calculated from Eqs. (7a), (7b),

(8) and (9) according to the time dependent perturbation theory

5



provided the electric field is known.

and as a matter of fact more convenient, to deal with the following

system of equations, which are derived from Eqs. (7a), (7b), (8)

and (9)

 cxu =+  ( cxu

where R(x,u,t) ffi a(x,u,t) e . b(x,u,t) _

_h "I
and 0uab (Wa" Wb )

However, it is also possible_ 2)

(10)

(ll)

(12a)

(12b)

Eq. (i0) represents the response of the dipole moment to the

electric field whereas Eq. (ii) governs the change of the proba-

bility for a molecule to occupy the active state. Note that the

b
time derivative _, originally appearing in Eqs. (5), (7a), and

b _ (2)(7b) are replaced by total time derivative_-_+ u . The

system of Eqs. (I), (3), (4), (i0), (Ii) and other related aux-

iliary equations are non-linear coupled equations. By virtue of

the near free molecular assumption, we consider a perturbative

scheme corresponding to a small deviation of the distribution

function from the initial function. In as much as the acceleration

term is proportional to the interaction potential pE, which would

be regarded as a perturbation quantity, it is natural to treat the

acceleration as a small quantity.

A.N. Oraevskii, "A Theoretical Study of the Frequency Stability

of Maser", in "Soviet Maser Research" Ed. by D.V. Skobeltsyn

Transactions of P.N. Lebedev Physics Institute; Vol. XXI. (1963)

[English Translation Consultant Bureau, N.Y. 1964]
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III EXPANSIONIN HIGHERHARMONICS

(A) Free molecular approximation:

According to previous discussion, the following type of

solutions will be assumed

f(x,u,t) - fo(X,U,t) + 7--fl(x,
C

u,t) + f_ (x,u,t) + ...

1 +
p(x,u,t) * po(X,U,t) + _ (x,u,t) + p_ (x,u,t) + ...

C

R(x,u,t) = R(x,u,t) +_-R t (x,u,t) + Rl (x,u,t) + ...
C

E (x,t) Z°
C

+ F_ (x,t) + ...

P(x, t)
1

= Po(X't) + _'-P1 (x,t) + P1 (x,t) + ...
C

To zeroth order free molecular approximation, we have

_3f _f
___2o o
at +_-x =°

_z BE _E _P
O O O O

-_-V-+%o_-+ %_o_-V-=-%_-V -

co

Po(X't) = I Po(X'u't) fo(X,U,t)du

--CO

+x)+ Po + e = R(babPo ¥ Eo o

_ _ _ _ m / _0 _Po_

"_-+ _ = _ _ot_-'C+ _;-_/

where y = -2_ abh'li_ab , = 2h "I'I
ab "

(13a)

(13b)

(13c)

(13d)

(13e)

(14)

(15)

(16)

(17)

(18)



One important fact in the maser oscillation is the harmonic

generation by non-linear interaction, characterized by non-linear

coupling terms appearing in Eqs. (17) and (18). Thus when lineary

polarized light wave, such as Aexp i(kx-wt) + A exp [-i(kx+wt)],

shines on the maser beam, certain higher harmonics will also be

created. Anticipating such a non-linear response, we assume the

following type of solution

co

I (t,u)exp in (kx-wt) (19a)
(n)

Po(×'t,u) -- _o
n.-_.co

0o

(n)
I (t,u)exp in (kx-wt) (19b)Ro(x't'u) = _o

n---co

oo

(x, t) = _ _ (n) (t)exp in(kx-wt) (19c)
Eo L_ o

n---co

co

(X, t) = _i T (n) (t)expPo o in (kx-wt) (19d)

n_-co

Two further remarks concerned with the solutions (19a)-(19d)

are in order. Firstly, the non-linear nature of the interaction

between matter and light inevitably changes the amplitude of the

oscillation as time increases.

Thus by investigating the physical factors contributing to

the time wise variation of the electric field and the dipole moment,

one could adequately control the maser oscillation by proper ad-

justment of those physical parameters.



Secondly, the harmonic solutions (19a)-(19d) contain both right

(n) (t,u) = A(t, u)exp2inwt,
and left running wave. For example, if I']o

where A(t) is non-periodic function of time, then Po has a non

vanishing left running wave at the nth harmonic. The detailed

investigation of these two points will be presented in section IV.

As already mentioned we shall employ matrix formalism in the

ensuing analysis.

We will write, for example, the molecular dipole moment in

the following matrix form.

Po (x, t,u) = (expN_)?]o (t, u), (20a)

where _ = i (kx-wt) (20b)

o( (n-l) (1) (-1) (-n)Po is an column vector (p n), Po ' Po 'Po ' Po ' and N

is a diagonal matrix defined as

N _

n 0

0 n-i .

0

0 0

i 0 0 0

0 0 0 0

0 0-I 0 0

- (n-l)

0 0 0 0 -n

(20c)

On substituting Eq. (20a) and other similar expressions for

E and R into Eqs. (17) and (181 we obtain
o o

+ + +  aJ) o = (o)_;o(O1+  o;o (21a)

@

Y_o + q)N_o = _(_'O_o + c_oN_o) (21b)

where _ = i(ku-wl, I is an unit matrix, dot ( ) denotes time differentiation.

In general 60 is a (2n+l)x(2n+l), non-diagonal matrix. The

appearance of these off-diagonal elements, evidently implying



non-linear interaction, is thus responsible for the higher

harmonic generation.

In the present analysis we shall limit out calculation to

the first seven harmonics, namely the d.c. componentand harmonics

at +w, ±2w, +3w. Under such circumstances, _o(t) reads

_o (t) =

_(o) (i) (2) (3)
o _o _o _o 0 0

_o(-i) _ (o) (1) (2) (3)So _o _o _o 0

_(-2) (-i) (o) (1) (2) (3)
o _o _o _o _o _o

o _o _o _o

0 _o_-__o_-__o_-__o_O__o_

0 0 _o_-__o_-__o_-__o_O_

0 0 0 _o_-__o_-__o_-_

0

0

0

g(3)

o

go(2)

g (1)
o

go(°)

The matriX_o(t), for the case of more harmonics than presently

considered, can be readily constructed.

Equa_ons (21a) and (21b) are coupled non-linear equations.

This coupling is resolved under the circumstances prevailing in

the practical maser amplifier, that is the case of _ << i. This

corresponds to slow changes in the probability matrix _o' which we

shall assume in the following analysis.

We write

(21c)

OO

PO (x, t,U) = _ _l (exp_N)_o,l

£;0

(t, u) (22a)

i0



nm

%(_,t,u)- _. _ (e_p_)¢o,_'(t,u)
L=O

(22b)

OD

Eo(X,t) " _- _' (exp_N)_o,p,(t,u) (22c)

eo(X, t) = _ 13p (exp_N)_'o,_ (t,u) (22d)

Substituting Eqs. (22a)-(22c) into (21a) and (21b) we obtain for

the _-th approximation

_o,p+_o,_ + (__bl)_o,_ . (o). + Y_ 80 '_ __, (23a)= Y_o _o,_ ,,_ o,_

• -I (r,o(-_o,_ + _NCo,_ ,_' _o,_-_'-l_o,L-_'-I

_o,_ is the matrix obtained by replacing -o_(j) in F.q. (21c) by

_o(j) Since the right hand side of Eq. (23b) contains terms Of the
j_e

lower order perturbative quantities, the particular solution is

(23b)"

formally given as

_,-i t

_°,_ (t'u) =1_ J'exp[ ,_,(t' o,L_£,.l(t ,u) +

(24a)

The amplitude of the dipole moment is calculated from (23a) in

terms of the electric intensity matrix _o,L'

Ii



+ YI _ o,'_' (t')_O' _'_'(t''u))dt'

I=0

(24b)

where L(t-t',u) is a diagonal matrix given by

(t-t' ) exp (cpN+i_abI) (t- t' )_L (t- t', u) = exp _0N- i_0abI) -
(24c)

The electric intensity, which appears in the integrand of Eq. (24b),

will be calculated from the Maxwell equation (15). To do so, we

first calculate the macroscopic polarization matrix by multiplying

Eq. (24b) by the distribution function fo(U)

with respect to u.

and then integrating

tco

Po,_ <x,t) = (exp_N)Y_o(°) _ fo(u)L(t-t',U)_o, _ (t')dudt' +

where

qo,_(t) - Yl_J" fo(U)L(t't"u)_,_
l

-co

+ (expSN)qo, _ (t)

,(t')Co,_-_ ' (t', u)dudt'

Substituting Eo, 1 (x,t) and Po,l

(15), the following integro-differential equation for _o,J,

obtained.

(x, t) in Maxwell's equation

(t) is

(25a)

(25b)

_o,_ (t) + I-_-(_o_1-2£_o(o00N)_o, _ (t) + _ (k2_,2)b_-_oO00N +
 oCo  oeo

t

+ I_oH(O)]_o,_ (t) " j'K(t-t')_o,_ (t')dt' + II'o, X
(t) (26a)

12



where the kernel K(t-t'), Do,%

K(t- t') ,,

(t), and H(o) are given by

_i_(°) _

2'oWab ; ([ _N-IWabl)2"2_N_0N'i_abl)_)_ D_ ]exp _N-iw abl) (t-t ')
--CO

[ (_0N+f_abI)2 -2b_N (_0S+_t_abI)_ 2N]exp _N+_ ab I) (t- t' )}fo (u)du (26b)

1

Ho,_ (t) = - _o[qo, i (t)-2_Nqo,_ (t)_ 2 D_ qo,_.(t)]

co

H(o) = lira 7_o(O)_ fo(U_t(t'tl'u)du = YCo(°);fo(u)Tdu

The integral expression that appears in the right hand side of Eq.

(26a) is a convolution of K and _o,_" Hence the method of Laplace

transform appears to be most convenient.

Let

Oo

_o,_ (s) =' ;_0,_, (t)e'Stdt

0

The application of the Laplace transform to Eq. (26a) gives

_o,L(s)= {s_I (%oz-2i%,o_N),+ (k2-_P)_-i_o_WN+

+ _oH(O) - K(s)}'l=[ no,_.

(26c)

(26d)

(27a)

(s) + __ .(o)+[I--!--(_ oz-21_, ,,,N)+szT_ . (o)}
u,,r LIJ.oC O O O O .J o,,&

(27b)

The inverse transform of (27b) yields the amplitude of the oscil-

lation of the electric field vector

1
_o,_ (t) = _ ;eS_o,_ (s)_ds

C

(27c)

13



The dipole moments _o,I' and macroscopic polarization are subse-

quently calculated from Eqs. (24b) and (25a).

(B) Effect of molecular collisions:

The molecules inter collide during their motion, causing the

distribution function, macroscopic polarization and the electric

field intensity to change accordingly. Assuming the collision

frequency is independent of fluid properties, the first order

approximation for the distribution function at steady state is

governed by the following equation

b._xf+ = F° (u)- fo (u) (28)

where F is the Maxwellian distribution function defined by the
O

+
zeroth approximation, fl is given by single quadrature as

x

--2 -
The first order perturbation equations are

_z+ _ +" +,_o°_%-+ _o'o_ = " _o_ (30a)

._+_x,_ -__+_x,u,_o_U_+_o_,u,_;_u,_l,. _0_

_ + + (Zo_++ _+zo) (30c)

__._+ U._x . _[Zo(._t._t+ ._ ÷'_Po _Po,__t + -dx/ + F_<_ + U_-x] _ (30d)

Assume a harmonic solution in matrix form.

14



(31a)

,_.(t,u)+ _x,e(t, u)} (31b)

(31c)

P+(x, t)

After substituting Eqs. (31a),

equating the sum of the terms

(31b) into (30c) and (30d)and

containing x and x° to be zero

respectively the following equations result

_°(t,u) + 2cpN_(t,u) + _eN_+_abI)rl¢t,u )

@

C(t,u) +c0N_(t,u) = S(t,u)

= y_o(°)g (t) + a(t,u)

Eqs. (32a) and (32b) are applicable for the calculation of

_,_, ,_, and CI,£ , ,_ respectively. The proper inhomogeneous

_ and s for_1 andterm J in the calculation of _,_ and _,_, ,_

_,_ is given in appendix A. The solution for _ ,_, _ ,_, _I ,_

and_1,_ are also given in the appendix A.

The total macroscopic polarization within this approximation

is calculated to be

t_

P+ (x,t)" exp, N_I,_

+ u_Fo(u)-fo

(Appendix A)

fo (u)L (t- t',u_Y_o(°)(x_1 ,_

O -co

cu>) o,,

(31d)

(32a)

l

(32b)

(t')_ ,_ (t')) +

(33)

15



+

By substituting Pl ,_,(x, t) into Maxwell's equation, the

following integro-differential equation yields

÷ ÷ ÷

t

J'K(t-t';u)_(t')dt' + _ ÷ W (34)
S

o

This is the same type of equation previously obtained in Eq.

(26a) except a minor change in the inhomogeneous term. The

inhomogeneous term H appearing in q. (34) and (26a) is of the

quantum electric nature, whereas W is caused by the change in

the distribution due to the intermolecular collision.

Eq. (34) is used in the calculation of _I._ and _i._" The

corresponding inhomogeneous terms are given in appendix A.

The integro-differential equation (34) is again solved by

the Laplace transform as was previously done.

_ and nulcroscopi6 polarizationThe dipole moment _ ,L' _ ,_'

7_ ,L and _ are calculated from eqs. (33d) (33f) and (34a) ini,_

appendix A.

(C) Effect of molecular acceleration:

The dipole acceleration create the direct interaction between

radiation and the molecules at kinetic level.

The system of equations are

af_ af_ i _, af
o o

a-_-+ _ = max Tu 05,)

where V (x,t) is given by
o

Vo (x, t)= I I I _ (expn,')(_o(n£) _o., -_(n-n'),,] (35b)

n n'_

16



co

The follo_rlng harmonic solutions are assumed,

(35c)

(35d)

(35e)

(350

(t,U) (36a)

lh (x, t, u) = _.i _ (exPd/N)T1t ,L

L

(t, U) (36b)

I_ (x,t,u) = (36c)

(_. t) = _ _L(e_p_,)_ ,_(t) (36d)

(t)

Substituting (36a) into (35a) results in the following equation

gl ,_ (t,u) ÷ cpNg:t ,L

_fo
(t.u) - " _ _ _ _o._' (t)_o._-_' (t.u)

(36e)

(37)

(t,u) is calculated to be

17



(t, u)_,_

ik _f _ t

_'=0 o

(38)

_]1,%(t'u)' and _1,_(t,u) are governed by the equations similar to

(32a) and (32b) respectively, except that the proper inhomogeneous

functions J and S are substituted in those two equations.

The macroscopic polarization is affected by the changes in

the dipole moment and the distribution function.

too

P1,_(x't) " (exp_N)ff fo(u)L(t't';u)YCo(°)_1,L

O-oo

(t')dudt' +

+ (exp_N)%,

_I --CO•

, (t,U)_o._._, (t, u)du (39)

O_1,_(t,u) is the matrix given as that Oleo(t), except that

each element _0(j) that appears in Eq. (21C) is replaced by f1(! ) (t,u).,

With proper modification of the inhomogeneous terms in F4s. (32a),

(32b), (33) and (34), the amplitude _I ,I (t), the.dlpole moment, and

the macroscopic polarization can be similarly calculated.

The system of the perturbed equations preserve a property

that (-n)th harmonic of any physical quantity is the complex

conjugate of nth harmonic, provided this relation is satisfied

initially.

To prove the property mentioned above, we shall use the

mathematical induction.

Preparatory remarks about notation are due. In Eqs. (19a)-

(19d) the superscripts such as _(n) .(-n) designate the nth
' _0 ' 50

and -nth harmonic. The appearance of negative indices is awkward

if not prohibited. Hence for this section only, we shall use the

18



index inside the bracket such as

(n) (m)

rlo,_ _ rlo, _ '
re=l, 2... 7 (40)

The index in the bracket designates the component in the order of

decreasing harmonics starting from the highest harmonic;

(3) _(t) _(2) _(2) _(1) _(3)
_o,,_ ffi Tto,_' Tlo,_' = Tlo,,f," 'rto,,_ = 'r'lo,,_ "'"

_(-3) _(7)
o,_. ffi 'r!o,._

If the (-n)th harmonic of _o,_'

nth harmonic of _o,I" then we have

Io e°

is the complex conjugate of

_o,,_ ' (n) = -rlo,£, (8-n) nfl,2,... 7 (41)

The n mth element of the matriX_o,l Eq. (21c) is similarly

written as

&o,£(n m)... n-1,2...7m=1,2...7
(42)

The first index represents the raw, and the second index the

column. Inspection of the matrix _(t) reveals that if

_o,_'('n) = _o,p,'(n)* for _' < _ then

_o,_' (n m) = _o,_' (8-n 8-m) (43)

We shall first prove that _o,_ (-n) = Co,_

and _o,_,(-n) = _o,_,(n)* for £' < £.

From Eq. (24a) we have

(n)* if _o,_ ,(-n) - _o,£,(n)*

£-I t

' (8"n'm)'_o,_-_ '-I (m) -

_,-I t

!

,(_D-m)_,_.%_l(8-m>+

19



by virtue of (41) and (43). Since 8-m appears as a dummy index,

we replace it by m' to have

L-I t

1
I

*,_.,(n,m' )_o,_-_ '-1(m') +

* * * )}dt' ffi (n)* (44)+ (_,on) _o,_' (nni')'l'lO,,9.._'_l (m' d_o, _

The proof for _o,_ (-n) ffi_o,_ (n)*, is accomplished by proving that

_o,_ (-n) =_o,_ (n). We first prove the following relations

*8L(n_n) ffi L ( -n, 8-n)

K(n_) = K (8-n d8-n)

(45)

(46)

too

qo,£('n) = qo,_(8"n) ffi y_f fo(U)L(8-n, 8-n)_o,L,(8-njm)_
I

COD

" fo(U)L (nn)_o, L, (n 8-m)_o,__ _, (8-m)dudt ffi qo,L

_1 --00

o,_-_
, (m)dudt

(47a)

_o,_
1

, (-n) ffi Ho,g (8-n) ffi - _qo,g' (8-n) + 2tVn qo,L' (8-n) +
0

- w2n2qo,_ (8-n) = *' Ho,g (n) (47b)

From the above four relations together with the initial conditions

_o,_ (-n, t=O) = go,_ (n, t=O) (48a)

_o,_ (-n, t=0) = "*_o,L (n, tffiO) (48b)

it is immediately apparent from Eq. (27b) that _o,L (-n) - _ o,_ (n).

The proof of _o,_ (-n) ffi _o,_ (n)*, 7o,_ (-n) - 7 (n)* are also
o,_

easily made by similar procedure.
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When J, 0 (-n) (n)* (-n) . (n)* .. (-n) . (n)* O,
= "_o,o = _o,o ' _o,o = 5o,o _o,o " _o,o =

except for _o,o(O) = const, hence by mathematical induction we

obtain the required property for all L.

The cases of the higher order perturbation can be proven

similarly and hence will not be carried out further.
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IV SELF-EXCITATION, STIMULATED DIISSION AND NON-LINEAR SUSCEPTIBILITY

To illustrate the method developed, we consider a linearly

(l>
polarized wave Eo,o(1) = _o, oeXp i(kx-wt) + _* oeXp-i_x-wt)O,

at near resonant frequency, incident on a molecular beam whose

distribution function is Maxwellian.

The amplitude _o,o' and its time derivative _o,o are initially

prescribed. As is pointed out previously, the amplitude of the

oscillation changes as a result of matter-light interaction.

From the point of view of energy conservation, the emitted

radiant energy must be greater than the energy loss which arises

as a result of finite conductivity, or often referred to as

cavity loss.

To provide quantitative criterion, we define the maser self-

excitation to be the oscillation in which the amplitude of electric

intensity dipole moment and macroscopic polarization do not decay

as time increases.

It is often advantageous to investigate the index of refraction

(n) of a maser beam. The curves of ne-i versus frequency is referred

to as dispersion curves. In the quantum theory the negative dispersion

which was unheard of in classical theory could take place. The nega-

tive dispersion arises as a result of transition of a molecule from

a higher energy level to a lower one, i.e. stimulated emission. In

the later part of this section the curves of dispersion, and the

negative dispersion are studied at various kinetic parameters.

We also calculate the non-linear susceptibility to the lowest

order.
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The calculation is straight forward, nevertheless, it is

extremely labourous. Hence our illustrative calculation is

limited within the rarefied gas assumption.

We first write the response of the dipole moment and the

macroscopic polarization at the same frequency as the incident

electric field.

From Eqs. (24b) and (24c) we obtain

_(1)'t u"
O,O _ ' J =

t

iYCo(°) leiku(t-t')[e-i(w+w&b ) (t-t')
2Wab

0

" e"i(w'wab) (t't_)]_ (1)o(t')dt'
O_

(49a)

CoD

)(t,u) i_Co(o)
o,o (I ffi2Wab ff Ae "bu_+iku(t-t )[e-i(W+Wab )(t't')

O-CO

- i (w-Wab ) (t- t' )]go,- e (i) (t')dudt' (49b)
O

where f (u) is replaced by the Maxwellian distribution Ae "b(u-u)_ .
O

U is the mean velocity of the molecular beam.

The Maxwell's integro-differentlal equation is now given

explicitly by

_'o(1) (t) + (a/_ _..-(1) (t) + [n_-w _ + ¥_o(O)_ _bc +,0 O'_lW)_o, 0 0

t

0

(50a)

where _ ffi k_U.oC o, w is in general a number close to n, i.e. _ -_ w.

23



Kernel K(t-t') is calculated to be

"iY_(o °) J_A[rk4 k2 k_7 i_ (t-t'

K(t-t') = 2(obWa b %L%-_z(t-t')_- i_(_-w)(t-t')-(+w) 2- _Je )

"kS t t ''2 "ke ke_ i_ (t-t')] _(t-t'k_ )e
- L_5 ( - ) - z_-(t_-w)(t-t')-(t_-w) 2o _-_Je _e"

with _ = kU - (W_Wab)

= kU - (W-Wab)

The solution of (50a) is given, as was shown in (21c), by

(50b)

(50c)

(50d)

_0,0

C+i_

i I(t) -- 2-_l(P)

c- io_
s_+@ leo-2iw)s+© _-¢ -icwleo.yCo (o)_ A/be o)-K(s)

(50e)

The exact evaluation of the inverse transform (50e) is extremely

complicated by the appearance of K(s). Nevertheless, the integral

shall be evaluated based on the following reasoning.

When both conductivity and the polarization parameter are

negligibly small, Maxwell's wave equation admit two solutions,

undistorted right running and left running waves. The existence

of two wave solutions in Eq. (50e) are readily demonstrated by

equating _,Co(O) and K(s) to be zero. The integrand, with

O,Co(a), K(s) all zero, has two simple poles, one located at s = 0,

giving rise to a right running wave, the other at s = 2iw, a left

running wave.

For a finite, but small conductivity and polarization parameter,

the amplitudes of the right, and left running waves changes.
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In order to be able to examine the time wise variation of

amplitude, which would give us the quantitative criterion of the

self-sustained oscillation, we shall assume both the conductivity

and polarization parameter to be of the same order small quantity.

This assumption permits us to assume the following type of series

solution in order to find the location of two poles.

!

s = s + s +... (51)
0

Substitute (51) in the algebraic equation appearing in the denominator

of the integrand of Eq. (50e), equating the terms of zeroth, and

first order to be zero yields

se - 2iws + _e _ w_ = 0
O O

(52a)

2(So-iW)s' = _(So) YCo(°)_ A/be o - a(So-iW)/e ° (52b)

Hence

s (+) = i (wT-n)
0

(52c)

, C_ <So (+))'Y_ o (o)_/_ A/be o
s (_) =---+

2eo 2(So (+)-iw)

(52d)

Thus the denominator of the integrand of Eq. (50e) is replaced by

{s-__o<+)+_'_,)l_,-E"o(-)+_'<-)l} (53a)

The electric field intensity is then calculated to be

E_+<O-o_'_>_/_l_._')_o)+-'_o,o_)_o_/_w
E(l.(x,t)__-'_ J o,o
o,o l+i[s'(+) + s" (-)]12w

i (kx-wt)+i (w-_)t+s'(+)t
e

, . (1) .. (l)
_ i[°/c_ +s (-)J-_o,o (o) + So,o (o)

_,,{,.+,._,'(+)+s.'(-)_/_,,}
i (kxSwt)+i(w-_)t+s'(-)t

e (53b)
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Since w - _, the first term on the right hand side of Eq.

(535) represents right running wavewhereas the second term is the

left running wave.

It is important to point out here that the order of magnitude

of the right running wave is

_(i)o(O) expRe s'(+) (53c)

and that of the left running wave is

_. (I) (o) expRe s' (-) (53d)
w 0,0

Evidently, aside from the exponential factor, the amplitude of the

left running wave is of the first order small quantity as is

physically expected.

We now look into the time wise variation of the amplitude of

the right running wave, or the condition of maser self-sustained

oscillation.

For the amplitude of the electric intensity not to decay

exponentially, Res' (Jr), and Res' (-) must not be negative numbers.

Accordingly from Fqs. (52c), and (52d), we set the condition of

self-sustained oscillation to be

° o Ki(So (+))

Res' (+) ffi 2_ 2w > 0 for right running wave (54a)

0 Ki(So (-))

Res' (-) = - 2--_ + 2Q > 0 for left running wave (54b)
o

where Ki(So) is the imaginary part of K(So).

We shall investigate these two conditions by examining the

approximate value of KiCso(+) ) andKi(So(-) ).
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Eq. (50b) is found to beThe Laplace transform of K(t-t'),

K(s) 2/2b kWabe °

-i.__ + '_ r

(_ D_3 (_)+b_V__ (_)+b_ D_I (_})

where

• bs

+e

(55a)

as = b3 = k2F(3)/2b (55b)

aI ffi-[(_-w) _ + k21zb] bI = -[(_-w) 2 + l_12b_ (55d)

where D (z) is the parabolic cylinder function, related with
P

Nhittaker's function as follows

D
P

1 p

(z) ffi 2_ + 2W1 ({)

_+_2' .!4

Now in order to calculate _i(So (+))

(55f)

Iim

S -_0
0

D (_), must be evaluated.
P

It is evident that

lim

S -_0
0

ffi _i(o),_ the value of lim D (z_),
8"*0 P

0

iIm

S -*0
0

Dp (z_) = Dp{±£J2b [U- (W_Wab)/k]}

P

(55g)

(SSh)
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Remembering b is the factor appearing in Maxwellian distribution,

_b quantity proportional to the thermal speed a of the
is the

s

medium, hence the order of magnitude of the arguments of (55g) and

(55h) are

lira zI = + 2b [u-(W+Wab)/k ] = _iO(c/as) (56a)
s -_o
o

lira _ = +i_2b [u- (W-Wab)/k ] = ±iO[ (U-Ac)/as] (56b)
s -_o
o

In a more refined approximation, it can be shown that the

argument of zl+ and z_ lies in the sector with hatched lines as

shown in fig. la and fig. Ib respectively.

Since O(c/as)>>l , the asymptotic approximation for D (z_)
p

is given as follows (3)

_ b

So-'° p 2D[U-(W+Wab)/k ] I- p(p-l)2(z_)e
+ 0(z_)"4 +...}

_/2_2_ q=ipr[ 2_[ U- (W+Wab)/k]e

- i-,(_p)e e

The expression of Dp(_) differ from that of Dp(Z_) when the

±
absolute magnitude of z_ is smaller than unity, i.e. ze =

(57a)

(U-_c)/a <<l.
s

p +_2 i(
S --*0 P

0
(57b)

l.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Product

(Academic Press, New York and London 1965) pp. 1064-1066.
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It is important to observe the following fact. By substituting

Eqs. (57a) and (57b) into (55a), the terms associated with as, ae, al,

etc. are multiplied by the number which are of the order of

e" (C/as)2 (as/C)S<<l , e- (C/as)e (as/C)_<<l, and e- (C/as)e (as/C)<<l

whereas the term associated with _, be, bl, etc. are multiplied by

the number of the order of e"[ (U'Ac)/as]e _ 0(i) provided U-_c _ O(as).

It is relevant to point out that those first three smaller terms

which appeared with al, ae, as are associated with Ol = kU - (W+Wab),

and the later three terms with Oe ffikU - (W-Wab). As we shall see

later OI occurs in the so called non-resonant term whereas Oe appear

in the resonant term. We conclude that ki(So(+)_\/ which appeared in

Eq. (54a) primarily depends on the resonant term.

Thus neglecting non-resonant parts in (55a), we obtain

e
2_b Wabk¢ ° _2 + _/2 r (3/2)

Substituting Eqs. (58) into (52d)yield

+% +0(C)+0 (z_)+."

(58)

. b[u- (W-Wab)/k]e
s'(+) = - _ + Be

2c
o

where

• b

(59a)

B = _2_ A_o(O)_abWabk
ke bw

o

And for the self-sustained oscillation, i.e. Re(s' (+)) > O, the

(59b)

following equality must be satisfied

m

2N_ o (o) l-t_bWabk./_.m._ 4_bT'[U" (w-Wab)/k]2

_hw _kbZ e _
(60)
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3

where we replaced A bY _2--_T)_ and b by 2_T , respectively, kb is

the Boltzmann's constant.

Note that since _ > 0, the condition of self-sustained oscil-

lation _0) requires that _o(O) > O. This implies that more mole-

cules should be in higher energy level than in lower one. Eq. _0)

thus give the threshold active molecule's density for a sustained

oscillation for a given conductivity.

The dipole moment is calculated by substituting Eq. (53b) into

i (kx-wt)
(49a) and multiply by e

p(1) (x,t) _ _So,o (o)/2w

I

['<ku-(W-Wab))-s' (+)

i

i_ku- (W+Wab))- s ' (+)]

ei (kx-wt)+i (w-_)t+s' (+)t +

.(l)(Ol o+S' (-))So, ° (o) + "-o,o (o)
+i

2_l+i(s'(+) - s'(-))/2w]

i

i[ku- (W-Wab)- (w°_Q)]-s '(-) -

. i , ]jei (kx-wt)+i (w4_) t+s '
(-)t

i[ku- (W+Wab)- (wdQ)]-s (-)

The first two terms are the right running waves, and the

second two terms are the left running waves, the ratio of the

amplitude of the left running wave to that of the right running

wave is o/2¢oW, which is small compared with unity. There are

two terms appearing in the right running waves. The first of

which is the resonant term and the second one is the non-resonant

term. Two terms in the right running waves are all non-resonant.

30



In calculating macroscopic polarization, we take account of the

right running wave resonant term only. The other three non resonant

parts are multiplied by the factor of exp - (C/as)e<<ll , and is

properly neglected.

_(I), t) = ab t_'0,0 iX,

_b (u_U)e

(kx-wt)+i (w-Q)t+s' (+) t}_ e du.w-w ,. s (+)

-oo U-[----_+i" k

yCo(O " (1)(x,t) -.. w-w .s'(+)h 7
= )=o,o ZIJb (" _'ab - U - ,_---)J (61a)

2 kw a b

where Z_) is called the plasma dispersion function whose numerical

value is tabulated. (4)

(i)
The linear susceptibility _ is defined as

o,o

(z) _(1)p(1)(x,t) = K (x,t)
O, 0 O, 0 O, 0

(61b)

Comparing Eqs. (61a) and (61b), we obtain

(I) YCo(°)_ N m 3 . "w-wab

 o.o= (61c)

(1)
K

o,o
may also be written in terms of complex index of refraction n

(1) 1

_o, o = _[ (n-ik)S-l] (61d)

where n is the index of refraction, k is the extinction coefficient.

The physical meaning of the real and imaginary part of the suscepti-

bility is clear.

n-I "r_ 2_ Re K (1) (61e)
o,o

k _ 2_ Im a (1) (61f)
o,o

4 B.D. Fried and S.C. Conte, The Plasma Dispersion Function, The Hilbert

Transform of The Gaussian. (Academic Press, New York and London 1961).
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To show the nature of oscillation we plot the real part of s'(+)

versus frequency for two different numerical values of parameter B.

This is shown in fig. 2 in which the calculation has been made for

U =_/b, c/2¢ ° = 0. i, with B = 0.2, and B = i. Observe that as B

decreases the frequency band for sustained oscillation is reduced.

This is primarily attributed to the reduction in the number density

of active molecules. Note also that when w differs greatly from

the characteristic frequency, the population of molecules is negli-

gibly small. The oscillation is practically damped.

In fig. 3, we present the curves of dispersion and absorptions

at the operating conditions previously described. A marked difference

is observed in the nature of the absorption at B = i, and 0.2. For

example the medium exhibits negative absorption at all frequency

for B = 0.2. For larger B, say B = 1.0, a small positive absorption

is observed at k_U lW-Wabl > 1.0. The peak of the positive absorption

is expected to increase as the parameter B increases. The dispersion

curve has a rather sharp peak for larger B compared with smaller B.

It has been proved previously that

_(-n) (t) (62a)
(n)*

m,_ = _m,_ (_"

T (-n) (t) = T (n)* _, (62b)
m,_ m,_ (L_

provided these relations are compatible with the initial conditions.

The validity of the above relations will be assumed for the sake of

simplifying the ensuing analysis. The nature of the oscillation and

the linear susceptibility are practically the same as those of the

oscillation at frequency w and thus will not be reproduced here.o
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The fundamental harmonics at the next perturbative analysis will

be presented in the subsequent section.

We first calculate " (2) from Eq. (24a) The result is
_o,I

_o,1(2)(t'u)_ e'2_(t-t')_(1)(t')r-o,ok_o,o(1)(t'u)_o,o(1)(t'u)]dtj

Y_o (°) _(1)e (o)e2S '
(+)t

--_ 010

4Wabk {u-[ (W-Wab)-is' (+)]/k_ (63)

Here only the resonant part of the right running wave is taken

in the calculation.

Substituting Eq. (63) into Eq. (24b), the amplitude of the

dipole moment is given by

t

_o,o(I)(t,u) _ 2wabiYC_l)_ei[kU-(W+Wab)] (t-t')_ei[kU-(W-Wab)] (t- t' )i_o,I(I)(t')dt'

yeC (o) _ (i) . (i)*_= (i) e[2S' (+)+s' (+)*It

• o Oiu 

e[ 2s' t i

u-[W-Wab-i (2s" (+)+s" *(+1)]/k_
(64)

The last two terms are the near resonant part induced by the combined

oscillations of the electric field and the probability of the molecules

in the active state.

The macroscopic polarization is obtained by multiplying Eq. (64)

by the distribution function f (u) and then integrating the resulting
o
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equation with u to yield

iY_o(°)JTTA i(kx-wt) t

Po,1(1)(x't) -_ 2__bbWa ° e _Lr_e-
i(W+%h) (t-t')

-i (t- t' )}eikU (t- t' kee (W'Wab) )- _(t-t' )e. (i) (t _)dt _
5o,1

i_¥2_o(O)f_(l).._ (-l) t _ (l)k_O,o[t)_o,o ( ))So,o (t)

8k_ ab s' (+) + s'*(+)

(_z)e[2s'(+)+s*(+)] t+i (kx-wt)
(65a)

(65b)

Assuming 5o,1"(I)(o) = _o,i(i)(o) = O, and taking the resonant part of

the right running wave, the electric field is calculated from the

integro-differential equation as follows:

i_ -(o)(_(1)_(1)*_ (t)
E(1)(x,t) _ Ye%o \_oao_o_ o /So,o ....

o,z 8k_ab s'(+) + s'(+)* A(AZ)L2s (+)+s'*(+)-iw]e

e[2S' (+) + s' (+)*It s _ (+)t

{c e
s'(+)+s'*(+)][2s'(+)+s'(+)*-So(-)-s'(-)7+ [s'(+)+s'*(+)][s° (-)+s' (-)-s' (+)'1

s
o

eEso(-) + s'(-)]t lei(kx_wt)
(-)+s"(-)-s'(+)][2s'(+)+s'*(+)-So(-)-s'(-)]J

(66)

where AZ is given by (65b).

Note that there are three distinct components for " (I)(t).
"_o,I

The first component increases exponentially as exp 3[Res ' (+)]t.

The other two terms increase as exp [Res' (+)]t, and are multiplied

by the factor of (s'(+)w) -I respectively. The first two components
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are right running waves whereas the third component is the left

running wave.

The dipole moment and macroscopic polarization are calculated

by taking only the leading component of E (1)(x,t) given in Eq. (66).
O,I

The result is

°_ (_ _.)_ , ,/TTy_ 0)2 gO,OgO, O go,oA(AZ)(2S (+)+s *(+)-iw)
(i) (t,u)

i_16ekZ_ab [s'(+)+s'(+)*]Z[2s'(+)+s'*(+)-So(-)-s' (-)]Do,z

eE2s' (+) + s'*(+)]t

u-(W-Wab)/k + iE2s' (+) + s'*(+)]/k

iy_.(O) (F (1)F (1) *hF (1) e[2S' (+) + s' (+)*It
%0 \_oj o_o. o /_o.oF

8k_ab s' (+) + s1*(+)lu - (W-Wab)/k+isl (+)/k

e[2S' (+) + s' (+)*It

u- (W-Wab)/k+i[2s' (+) + s>*(+)]/k_

._ Co(O)_(_ (1)_ (1)*__ (1)_ .... ' (+)+_' *(+)-iwy...= _,_o,o_o,o )._o,o_C (AZ)LZs
P (1)(to,z , x) Zl6e k_ _a b is1_ (+)+s,. (+)]_ [ 2s. (+)+s, .(+)_ So (_)_ s--(_)]

Z(_/b[w-wab)/k- i[2s' (+)+s' *(+)]/k-U]}e [2s' (+)+s' *(-)]t

. (o)u (, (1)= (1)*%_(1)
iYe_o _ \=o,o_o,o 7_o,o. - [2s'(+)+s'(+)*]t+i(kx-wt)

" 8k_b 's' (+)+s'*(+) a(_Z)e

or

"_o.__x.,___o,__r.,__o.o_'_o_'o*(__)_o<f_o(__o__x_

where _ (I) is the non-linear susceptibility.
O,I
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_. CONCLUDING REMARKS

The interaction between light and a molecular beam is studied

within the rarefied gas approximation. The theory is free from the

use of phenomenological statistical factor in the calculation of

macroscopic polarization by introducing the distribution function

governed by the classical Boltzmann equation with the collision

integral replaced by Krooks model. It is possible to consider the

quantum Boltzmann equation, nevertheless the quantum effect is

expected to be small at the density range where the maser operates.

It is shown that the intermolecular collision generates higher

harmonics which are in general distorted. The degree of distortion

of the wave depends on the nature of the collision integral employed,

but the qualitative behavior is believed to be similar to what is

obtained in the present study.

The general reasonableness of the results obtained, such as

the curves of dispersion and the extinction coefficient, strongly

suggest the possibility of useful extension of the method to study

other limiting case, namely thehydrodynamic model.

The method developed here is presumably applicable in non-

linear optics where the optical properties of the medium are

believed to be affected by the kinetic behavior of the medium.
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APPENDIXA

to be

(_)

The inhomogeneous terms J and s appearing in (32a) and (32b) are easily

identified by comparing Eqs. (32a) with (AI), (32b) with (A2) respectively.

•" .(o)

(A3)

+_ ,_' _o,_-_'-_ _N_o,_-_ _,
(A4)

The solutions for _ ,%

N

and _ ,_ are given by

t

o

, (t')(_ ,___,__(t'u),0N_ ,___

- C+_ ,_'{t')_o._-_'-_(t', u)a_01_o,__ _ ,_,

(_5)
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t

o

_-1

I

1

_i ._ (t') +

,(t' )_
.u I ._

Similarly_l. % are given by

, (t')_o,__ _ ,(t'. u))dt' (_)

t

o _'

, (t',u) +
,I-_ -1

+ _0N_I ._-_ '-i (t' .u))+ _ .% , (t')<_qo,%-_ '-I (t', u)4t0NDo,%_9 ',
.u dr'

-I

(A7)

t

o

(t'. u)-2_._
(tt,u)

,(t' ,u))}dt' (AS)

The total macroscopic polarization within this approximation

is calculated to be

t_ . (o)

O-co

(t'. u)}dudt'+x (exp _,N)_I ._'(t) +

t_

+ exp ¢ fo(u)L(t_t,,u ) Y_ o) _l,%(t,)_2u_%

O--CO

- 2U_01_ ,_ (t', u)}dudt' % (exp _N)_ z ,% (t)

(t',u)

(Ag)
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"where
too

IJ-- fo(u)L(t-t"u)
!

_, O-OO

,(t',u) +

+ _,_,(t')_O,_.9,(t',u)}dudt' (AIO)

(t) is given similarly as the expres_on for _ ,% except that

and _i,%(t) appearing in Eq. (AI0) are replaced by_l,p ' and

respectively.

An integro-differential equations for _i ,_ (t) is Bq. (34)

o@

where

(t) + l--!---_ OI-2i_ocoWN)_l,%
_o_o o (t) + _ (ke-_)_-i_o_.WN4_oH(O)_ 1 ,%

t

= K(t't''u)_l,_(t')dt' + _1,9 (t) + ,%(t) (All)

O

oo

w (t) ffi- Fo(u)-fo(u) _o,_
0

t_

(t', u) }dt'du (AI2)

O--GO

(t)

_5,% (t) is given similarly to that of _o,_ (t), except that qo,_ (t)

and their derivatives appearing in (26c) are replaced by _ ,_(t) etc.

and
_1,_ is governed by Eq. (34) with inhomogeneous terms_,_

% ,P" _1 ,£ is obtained from Eq. (26c) with qo,_ replaced by _1 ,_"

W is given by
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(t)w,L

too

0
O-VO

(t', u)_oNT_, (t' )), U dudt'

oo

+ uf o(u)_(o, ,L
-00

(t, u)+at_, _,

too

O'OO

(_,_ (t', u)_ ,p

too

O'oo

The integro-differential equation (34) is solved by Laplace

transform, g'_l,L(t), for example, is given by

replace a_ go,_ bY_ I ,_,(s) which is given by

F_q. (27c) where we

-i

(AI4)
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