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ABSTRACT

A review of close satellite theory as applied to determine
geopotential from the orbital motion of artificial earth satellites is
given. The most recent dynamical solutions (as of June, 1966) for
geopotential coefficients obtained from the optical and Doppler tracking
of satellites are used to compute the earth's anomalous gravity field
in terms of geoidal undulations and gravity anomalies with respect
to the various reference ellipsoids. A 'mean solution,' obtained from
a linear combination of three of the available solutions, is also
used for the same purpose. The maximum departure of the geoid from
the surface of the international reference ellipsoid is much greater
than that usually obtained from surface gravity data. As expected,
the shorter wavelength component seems to be most poorly represented
in the satellite data.



Introduction

This report is composed of three sections. In the first section
we present a summary of the theory of the method used to determine the
geopotential coefficients from orbital perturbations.

In the second section we describe, very briefly, the process of
determining geoidal undulations and gravity anomalies from a known set
of geopotential coefficients. We explain the various assumptiors that
are usually made in the actual computational procedures and explore their
influence on the results.

In the third section we describe the results we obtained and tabu-
late the data used in the computation of the results.

One purpose of this report is to provide a readily available
reference to the students of satellite geodesy at this Institute.

Perturbed Equations of Motion

Let the rectangular coordinates of a system of particles be expressed
by x,, y., 2, where 1 = 1, 2,...1. Let these coordinates be functions
of independe%t quantities q , (s = 1, 2,...) and possibly of time t.
The q are called the generalized coordinates and as noted above, are
the minimum number of independent coordinates required to define the
system. We consider only holonomic systems. A system in which arbitrary
infinitesimal changes in the coordinates describing it are possible is
said to be holonomic. The time derivatives of the generalized coordi-
nates are called generalized velocities and are customarily denoted by
q_ . Denote the Lagrangian function of the system by L. Then with the
lfmitation that the potential energy V is not a function of velocities,
we obtain the Lagrangian equations of motion in the form (Becker, 1954,
p. 331)

d oL |_ 3L
= (£ - £~=0, s = 1,2,3 (1)
dt \aqSJ qu
where
T = kinetic energy of the system
V = potential energy
L=T-V
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Define a new set of variable p, given by

= 9L
Pg © 3q (2)

P, is called generalized momentum corresponding to q, or the momentum
conjugate of P

If in the system under discussion, the explicit dependence upon
the generalized velocities enters through T only, then the above defin-
ition of P reduces to (Becker, 1954, p. 335)

Py = 58 3)

In the expression for Lagrangian L, the potential energy V depends
on position and hence is a function of q ¢ only, while the kinetic
energy T is a function of both qg and Qg - Hence we can write L as

L=1L(q, 4, t) 8= 1,...r. )
Then
r
- L 3L .. 3L
dt. = 2;1 9q dag + Bﬁs dag) + 3¢ dt (3)

. d oL SL
po= =5 = = (6)
s dt qu aqs
Substituting Eqs. (3) and (6) in (5) we get
L L
L = ). (b, dq_ + p, d3.) + 3¢ dt (7

s=1



which can be readily rearranged as

r r L
d(}j quS—L) = ) (4, dp - dq) -3ode (8)
s=1 s=1
Now define a quantity H such that
H=) p d, -L (9
s=1
Then Eq. (8) becomes
r JL
dH = S; (4, dpg - by dq ) - 57 dt (10)

The quantity H, defined by Eq. (9) is called the Hamiltonian
function of the system and is H = T + V for the system under discussion.

Although L is an explicit function of q ., és and t and hence is
expressible as

L = L(qs, ds’ t), s = 1l,...r
the Hamiltonian function H, for the same system can be expressed as
H = H(qs, Py> t),s=1,...r (11)

This conversion is done by the elimination of the generalized
velocities with the help of Eq. (2).

Differentiation of Eq. (11) yields

dH=Z Sq—dq +a—:dps+—dt (12)
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Comparison of Eqs. (1C) and (12) gives

oH . oH _ .
o~ ds and 2q_ = P (13)

These equations are called Hamilton's canonical equations of motion.
Our problem now is to choosec those values of the canonical variables p
and q , with the help of which the Hamiltonian equations of motion can
be transformed in terms of the Keplerian elements. Meny sets of values
exist for these variables and each has its own suitability under dif-
ferent conditions. A commonly used set is (Smart, 1961, p. 169) that of
Delaunay variables:

V N .
G=Vpa (1 - ¢7) = P, g=w=gq, (14)

In case of a centrsl icvce field the force F can be expressad as
gradient of a scalar U, c¢-»lind the potential, i.e.,
F= VU
where
u=L (15)

The earth's gravity field is, however, non—pentral so that the
actual potential departs from the form given in Egq. (15) by, say, R and
assumes the form

U=}rJ—+R (i5a)



The small departure R from the spherical form is known as the
disturbing potential.

The kinetic energy T of a particle of unit mass moving with a
velocity v is given as

T = %-v (16)

The energy equation (Sterne, 1960, p. 9) is given by

v’ = “(’Zr‘ - %) (16a)

The Hamiltonian function for the type of system being considered
here, can be written as

H=T+V
or in the sign convention of geodesy, as

H

T-U (16b)

The mean motion n is given by

1-3
n = u2 a2 {16¢c)

Substitution of Eqs. (16) and (16a) in Eq. (16b) along with the
first member of Eq. (14), gives the Hamiltonian function H in the form

me X _ g (16d)



With the help of (14), (16c), and (16d), the equations of motion
in terms of the Keplerian elements are (Smart, 1961, p. 69) as follows:

. 2 a
a = /— —

na JdM
é = ; a - 2) R _ 1]1 _ e2 3R

na e oM Jw

— 1-e?>3 2 R
B =n-=>F——-==

na e de na da
(17)

& - 1 3R

;52 i1 - ez)2 sin i da

V1] - e2 aR cot i IR

;aze de ;az ;l - ez o1

e

dR ., oR
-—-=:ﬁ cot 1 — - cosec i —
dt na” V1l - e ow N

Where a, e, Q, w, i, M are the usual orbital elements and n the
mean motion is also defined as

where T is the epoch of perigee passage.
In Egqs. (17), R has been regarded as the disturbing gravity

potential but the above equations are also valid when R is the general
disturbing function.

Conversion of Spherical Harmonic Disturbing Potential to Keplerian Elements

In terms of spherical harmonics the gravity potential V of the earth
at an external point can be expressed as



V=—|1+ }: }: ( ) cos mA + Snm sin mA)an(sin¢)(18)

n=2 =0

The disturbing potential R is then

R =— E: }: ( ) S mA + Snm sin m}) an (sin¢)| (19)

and a general term of R is

GM

R = —
nm
r

;—J (Cnm cos mA + Snm sin mA) an (sin¢) (20)

In the above expressions a, is the equatorial radius of the earth
and the other notations have the usual meaning.

We wish to express the general term R of the disturbing potential
in terms of the Keplerian elements.

To do this, first consider the spherical triangle formed by the
orbit, the equator, and the satellite meridian.

From well-known formulas of spherical trigonometry, we obtain

sin i _ sin u
sin ¢ sin §

(Smart, 1965, p. 10, Formula B) (21a)

Which gives sin ¢ = sin 1 sin u
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Also

-

cos u = cos (a - ) cosd + sin (a - Q) sin¢g cos s

(Smart, 1965, p. 7, Formula A)

COsS u

Which gives cos (a - Q) = cos ¢

(21b)

Again from the same spherical triangle, we can get

»

sin u cos i = cos¢ sin (a - ) - sin¢g cos (a - Q) cos s

(Smart, 1965, p. 10, Formula C)

sin u cos i

which gives sin (a - Q) = c0s ¢

(21c)

Now let

6 = the Greenwich sidereal time

then

6+ A=a or A=a -0

Write

mA = m(a = 8) = m(o - Q) + m(Q - 8)
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then

cos mA = cos m{o - Q) cos m(Q - 8) - sin m(a - Q) sin m(Q - 8)
and (22)
sin mA = sin m(a - Q) cos m(Q - 8) + cos m(a - Q) sin m(Q - 0).

Further, if in the complex variable notation, we mean that

Re = the real part of a complex expression
then
cos m x = Re(cos m x + 7 sin m x) = Re(cos x + 7 sin x)m
(23a)
m - s
= Re }J (m) 1% cos™ ° x sin® x
s
s5=0
and similarly
. . m
sin mx = Re {-t(cos Xx + 7 sin x) ]
(23b)

m
Re}j (m) is_l cos™ ° x sin® x
s=0 s

Where (2) is the binomial coefficient and

(7] = oy and 7 =\[-1 (24)

! (m - s)!
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Applying Eqs. (21b), (21c), (23a), and (23b) to Eq. (22) we get
(after a little algebraic simplification)

s 8y sins u cosS i
cos m\ = Re }J ( m) - [cos m(Q - 8)
s=0 cos ¢
(25)
+ 7 sin m(9 - 6)]
m u sinS u coss i
sin mA = Re 5? (m) i8 [sin m(2 - 6)
s=0 ° cos™ ¢
(26)

~ 17 cos m(2 - 8)]

Pm (sin ¢) is defined to be (Hobson, 1931, p. 91)

cosrn ¢ dn+m

Pom (sin ¢) = (sin2 ¢ - D"

2"a!  d(sin ¢)"™

Expanding (sin2 ¢ - 1)n by binomial theorem, we get

m

cos ¢ . 20-2t
p__ (sin ¢) = (- 1) ¢
m znn: d(sin ¢)n+m >J ( )

and by successive differentiation

cos ¢ . (2n-2t)! o
SR T A s S LY IS
2 n! (n-m-2t) !
t=0
where k = SE%EL ,» for (n-m) even
(n-m-1)

=~~~ , for (n-m) odd
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Using Eq. (21la) we obtain

P, (sin ¢)
(27)
m k ' t
a cos” ¢ Y;‘ (2n-2t). (-1) ny . n-m2t, n-m-2t
=~ /. — (t\ sin i sin u
2 t=0 (n-m-2t) ! n!
Substituting Eqs. (25), (26), and (27) in Eq. (20) we obtain
6M ja " 1 K (n-20)! (-DF
R =— —E) — — (n) sinn—m-Zti
nm r T 2" t=0 (n-m-2t)! n! t
. Re[(Cnm -1 Snm) cos m(f2 - 8) + (’LCnm + Snm) (28)

m
. - -m-2t+
* sin m(Q - 8)] }i: (2) 2% cos®i cos™ Su sin™ ™ 2t Su
s=0

Digress for a moment to consider the identities

X X
cos x = = + e
2
1x -1x . . .
sin x = S——& = L (¥ _ %
27 2
Then
A ix . —ixP
.. a b -, ix -ix e+ e
sin“x cos x = —5-(e -e ) 5

Expanding the exponential expressions in the brackets by binomial
theorem and applying a little algebraic simplification, we obtain
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a

b
s a —
sin®x cosbx = (aii }: }_, (i)‘g) (-—1)c [cos(atb-2c-2d) x
2 c=0 d=0

(29)

+ 7 sin(atb-2¢c-2d) x]

where use has been made of the identity

imx .
e = cos mx + 7 sin mx

Now, applying Eq. (29) to the underlined part of Eq. (28), we get

n i (2n-2¢)! (-1

22n—2t

n) Sinn-m-2ti

t

GM a,
an=*7(“‘
b o T

_—me ||(
=0 {n-m-2t)! n!

. Re[(Cnm -1 Snm) cos m(Q - 68) + (2 Cnm + Snm) sin m(Q - 08)]}

m n-m-2t+s
E: tz\ cos®i (_l)n—m—2t+s(i)n—m—2t+25 E: (30)
s=0 c=0
m-s
2{: (n—m—§t+S) (m;s) (-1°€ [cos(n-2t-2c~2d)u + 7
d=0

sin(n-2t-2c-2d)u]

Now apply the usual identities for the products and summations of
the trigonometrical functions to that part of Eq. (30) which contains the
products of the trigonometrical functions of (@ - 6) and u. Further,
since an is real, all the terms containing odd powers of 7 will cancel
out. To elaborate:
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for n-m even,
in—m—2t+23 _ 2

and as stated above,né%l other terms containing 7 to the first power will

—— - tts
2 will be multiplied by (_l)n-m—2t+s and (—1)t,

3/2 (n—m)—Z(t—s)= (-l)k,

drop out. Thus (-1)

and the final result will be (-1)
For n-m odd, the factor in—m—2t+25 will reduce to *Z and hence the
terms containing an additional 7 will have Z to an even pogg§+ifter
- t+s
2

multiplication with this factor, i.e., in-m—2t+25 7 = (-1)

and will thus be retained, while the terms that do not contain an additional
7 will now have odd powers of 7 (after mu%g%g}ication with this factor)

- t+s
and hence will drop out. The factor (-1) 2 will be multiplied,

as before, w&th (-1)t and (_l)n—m—2t+s- The final result in this case

will be (-1) .
All the above considerations applied to Eq. (30) give, after some

albegraic simplification

n k (2n-2t) ! m

fg) }“ (n‘ Sinn—m—2ti 2:(nj
r - 22n—2t. 2t)! n! t) s

t=0 e ’ s=0

GM
R = —
r

n-m-2t+s m-s

‘(—l)k cosSi j{: (n—m-it+s) (m;s (_l)c
c

=0 d=0 (31)
r C n-m even
ol | nm cos[(n-2t-2c-2d)u + m(Q - 0)]
nm/ n-m odd
S n-m even
4| DM sin[(n-2t-2¢c-2d)u + m(Q - 6)]

Cnm n-m odd

Now let t + ¢ + d = p and replace the dJd-summation with a new p-
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summation, which is to be placed before t-summation so that like arguments
can be combined. The limits of various summations are then changed as
follows:

p-summation:

oO<p<n

c-summation:

p-t<m-s, o0 n-m-2t+s, p-t > n-m-2t+s

me”

< ¢ <
p-t>m-s, p-t-ms p-t, p-t < n-m-2t+s

t-summation:

csesPl TN

fvia

With these notations, the general term of the disturbing function
can be written as

GM ae)n i Cnm n-m even
R =—({— F () cos[(n-2p)u
nm r r p=0 nmp Snm n-m odd
(32)
om| AT even _
+ m(Q - 0)] + sin[ (n-2p)u + m(Q ~ 6)]
nm/ n-m odd
where
~2t)! n
Foo(4) = ). 2n-2i2n © (:) sin® 2% Z (2)
nmp 2 (n-m-2t) ! n!

t

o (—l)k cos®1i Z (n-m;2t+s)(pr_n-t-ic) (-1°¢

C
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In order to make Eq. (32) consistent with Eq. (17), we now have to
replace r and v (v = u-w) by a, M, ande, 1i.e., tc transform the following
part of Eq. (32) as follows:

1 . 1 — R
sin sin
o+l [cos] [(n-2p) (wtv) + m(Q - 0)] = a1 }A anq(e) [cos]
q=-
(33)

[(n=-2p)w + (n-2p+q)M + wm(Q - 9) ]

where q is a new summation parameter to be defined later.

The development of the coefficients G for long-period terms is

as follows: consider the equation of the eqilpse with origin at the
center

2 2
X
_2_+
a

o] <

Caange it tQ polar coordinates by letting x = r cos v, y = r sin v, and
(1-e”). Then solution of the resulting equation gives

a(l-e)

14+e cos v

or

1 1+e cos v

T a(l—ez)

or

1
n-1

14e cos v n
(34)

a(l-ez)



~-18-
From the law of conservation of angular momentum and from Keppler's
equation, it can be shown that

r2dv
dM

1 (35)

a2(l_e2)2

Now take Eq. (32), substitute Eq. (34) into it, apply the binomial
theorem to the factor (l+e cos V)™~ , apply the results of Eq. (29),
change the products of the trigonometrical functions to summations
wherever possible, integrate from 0 to 27 with respect to the mean
anomaly M, making use of the relationship between the mean anomaly and
true anomaly v, given by Eq. (35), and then divide by 2w. This gives
(we write below only that part of Eq. (32) which is affected by these
changes) :

2n
! L sin
— j =1 (5] 1n-2p) (whv) + (2 - 6)] a
27 r
0
2n n-1 b
=.1__ j 1 1 z (n-l)ebl_ Z (b)
2n an+1(1_e2)n— 2 b 2b d

1 .
) (ot ooz + na - o0
2

| [(n-2p)u + (n-2p+2d-b)v + m(a = ©)] ) dv

(sin
cos

and since for long-period terms the coefficient of v should vanish,
the above expression reduces to

1

sin
;;;I an(2p—n)(e) lc ) [(n-up)w + m(2 - 8)]

{COs

where
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1 p-1 o \0+2d-2P
c (e) = 1 Z n-1 n+2d—2f>)(_)
np(2p-n) (l_eZ)n— 7 n+2d-2p d 2
=0
n
p=p for p < —
2
and
n
p = n-p for p > —

For short-period terms, the terms in the true anomaly v, do not
drop out, i.e., n-2ptq = 0 and the development of Gn becomes rather
complicated. The resulting expressions are, however?qof the form

2 n E' o
E e e
¢ (&)= (-DI|1+——r| | ——F— ZP
nPd 1 +VieH?| {1 +Vie? =0 npqk
2k

e

- Q
mpak |5 /12

where

b (n-2p+4) (1 +\/1-e2)] T (-n°t

p _ E: (2ﬁ—2n
npgk h-r '
P 2 r.

=0

and

. - Lof-2p)| -2t (1 + VieH | 1
npqk E: 2-r 2 r!
r=0 \
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where
q = |qf
= k+§ for § > O
h
=k for § < 0
=k for 4 >0
2
= k-4 for 4§ < 0O
P =p p = %p
for p 5_%- and for p >-%
4 =q q=-q

Now substitute the transformation (33) in Eq. (32), denote anpq as
Cnm n-m even
Z (w,m,Q,0) = cos[(n-qp)w + (n-2p+q)M + m(Q - 8)]
nmpq -S
nm n-m odd

(35a)

Snm n-m even
+ c sin[(n-2p)w + (n-2p+q)M + m(Q - 8)]
nm 4 n-m odd

and obtain Eq. (32) in the final form

o

n
= € .
an - nt+l Z anp(i) Z anq(e) znmpq(w’M’Q’e) (36)

Thus we have succeeded in transforming the general term of the
disturbing function from spherical coordinates to orbital coordinates.
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Denote one term of R in Eq. (36) by R . Then
nm nmpq

GMaen
anpq = an+1 anp(t) anq(e) anpq(w,M,Q,e)w (36a)
Differentiate R with respect to various orbital elements and

substitute the resul%mgg Eq. (17). This would give the time rate of

change of orbital elements. The reduced equations of motion would then
be

-

cMa " F Gz
nmpq _ e nmp npq nmpq
de nan+3(1-e2)2 sin i
1
dw o (1—e2)2 . cot i . an
—nmpq _ oMa | — F G -——3F_ G —
dt e o nmp npq 2.7 nmp npq Eén+3
(1-e™)
i Ma"F G 2z
nmpq _ € __omp qu DP9 {( n-2p) cos i-m] (37)
de ;én+3(l—e2)2 sin 1
da 26Ma " F__G__ Z
nmpq _ e nmp npq mmpg  (,_5niq)
dt - n+2
na
e GMa " F G Z 5 2%
nmpq _ e  nmp npg OMPY (1 %) (n-2p+q) - (1-e”)“ (n-2p)]
dt — nt+3
na e

Ma “F 2z
nmpq _ e _nmp mmpq 541G _
dt — 3 npqe P4
na

l—e2
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In the foregoing expressions:

Q = right ascension of the ascending node
a = semi-major axis of the satellite orbit
n = mean motion
e = eccentricity
w = argument of perigee
1 = inclination

% t

M = perturbation of the mean anomaly =4[ n dt-n(t-T)

and T
T = time of perigee passage.
Functions F , G , and Z are as defined earlier in the text,
nmp- npq nmpq
and
- dF
= —.Amp
nmp di
and
P dGn
G = DP9
npq de

and Z is the derivative of Z with respect to its argument.
nmpq nmpq

Eq. (37) gives the time rate of change of various orbital elements
due to one term anpq of the disturbing potential.

If it is now assumed that the dominant perturbations of the orbital
elements are secular (this assumption will be valid for most of the
geodetically useful satellites), it is possible to integrate the
equations of motion to obtain the integrated changes in the orbital
elements caused by a certain perturbing function. To get the expressions
for the integrated changes, substitute Eq. (36a) in the equations of
motion, i.e., Eq. (17), integrate with respect to time and get
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F_ G z°
AQ = GMa " ~—3—1TP 1pg nmpq
nmpq e Py . . . .
— nt+
na" 3(1- 2)2 sin i[(n~2p)w + (n-2p+qQ)M + m(Q2 - 0)]
1 21
e l(1-e?)2 F ¢ -cot i(1-e®) %F ¢ 12°
Aw - cMa ® nmpfnpq nmp npq  nmpq
nmpq e — 43 . . .
na {((n-2p)w + (n-2p+q)M + m(Q - 0)]
F G n-2p)cos i-m}Z
AL - cMa ™ nmginpq[( p)cos i-m] nmpq
nmpq e = . . .
™3(1-e%? sin i[(n-2p)d> + (n-2p+q)M + m(Q - 6) ]
(38)
2F n-2
Aa - cMa ® nmp nngnmpq( pta)
nmpq e _ 4 . . .
na [(n—2p)& + (n-2p+q)M + m(Q - 0)1]

1

[(l—e ) (n~2p+q) - (1l-e ) (n-2p) ]

= GMaen anp gpqﬁnmpq

Ae =
nmpq
nan+ e[(n-2p)o + (n-2p+tqg)M + m(Q - 6)]
CFZh [2mtD)6 - (l-eDe T 6]
AM — CMa p’nmpq npq npq
nmpq e 43 . . .
na [(n-2p)w + (n-2p+q)M + m(Q - 0)
where z° = the integral of Z with respect to its argument
The above development closely follows that of Kaula (1961) We
y G , and Z .
Pq nmpq

include below a few remarks about the functions Fn
For long-period variations, the coefficient of M in Eq. (35a)

must vanish, i.e.,
n-2ptq =

= 2p-n

and is now independent of

With this condition Z becomes Z
nmpq nmp(2p-n)
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the terms in M. Further, if we are interested only in the effect of
zonal harmonics, we have m = 0 and for long-period effects of zonal
harmonics, the function anp becomes:

CnO cos(n-2p)w, n even

ZnOp(Zp—n)

CnO sin(n-2p)w, n odd

For long-period effects, Gn becomes G While computing

np(2p-n)°
G, considerable labor can be saved by remembering that

Cap(2p-n) = Cn(n-p) (n-2p)

In the case of zonal harmonice, m=0 and anp becomes

(2n-2t) ! _ _
Faop * L Ty 1) T 0F L L o
Cc

t

The last binomial coefficient will be non-zero only if p-c-t = 0
or ¢ = p~t. Thus for a particular p, there is only one value of ¢
corresponding to every t and the c-summation can then be substituted
by that value. Thus FnOp finally becomes

(2n-2t) !
. n-2 -2 —t
Faop = ) Icar (3] ™ n* (T3 P
P 2 (n-2t) !n! P
t

Now examine Eq. (37). Let m=0, for convenience of discussion.
Then the expressions for @ and & can be written as

=}

do . ~2

— (=) = Y;' C X X cos j w] j and n even
.

4 n0 1In" 1nj [sin j wj j and n odd (39)
t 0

=

=2j

and
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d

_3 (=0) = C X. X cos j w j and n even

dt n0"2n"2nj sin j w j and n odd
n=2 j=0

where the X's can be obtained by comparing these expressions with the
original Eq. (37).

Similar expressions can be written for the time-rate of change of
other orbital elements and their integrated changes.

It can be verified easily that X1 and X2 , the coefficients of
the term sin w, contain a factor 1/sinni. Alsoni 1° the coefficient
of sin w in the expression for ®, contains 1l/e. ﬁgnce the equations in
the form given in (37) break down for sin 1 = 0 or Z = 0 and e = 0.
Different sets of equations are available for use under such special
circumstances.

The physical explanation is simple. For zero inclination, the
position of the ascending node and for circular orbits, the position
of the perigee cannot be defined.

All expressions in Eq. (38), for the case of secular or long-
period effects of zonal harmonics, contain & in the denominator. The

expression for & for the particular case of 020 is

_ 2, 3 .2
o =K CZO(l + cos i - ) sin"1)

where K 1s independent of 7. For & = 0, ¢ is roughly 63° 26'. This value
of 7 is called the critical inclination. Thus the equations for
integrated changes (in the form given above) are not valid for orbits

with critical inclination,

Note that in Eq. (39), the X coefficients represent the amplitudes
of different perturbations of 2n/j wavelength., For j = O,cos j w =1
and hence the perturbations are secular. Note also that it is only
for even values of n that the secular terms appear in the expressions.

For odd values of n, the expressions contain only long-period
terms.

Similar remarks can be made for other orbital elements.
To sum up, the even zonal harmonics give rise to:

1. secular and long-period changes in €, w, and M.
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2. long-period changes in e and <.
3. no change in a.

The odd zonal harmonics produce long-period perturbations in Q,
1, e, w, and M.

In practice, the even zonal harmonics are determined from the secular
motion of the right ascension of the ascending node and argument of
perigee, and the odd zonal harmonics, from the long-period changes in
inclination and eccentricity.

The actual procedure of computation involves considerable detail.

Determination of the Anomalous Gravity Field of the Earth

After having determined the geopotential coefficients from the
variation of the orbital elements, we now discuss formulas for
finding the gravity anomalies and geoidal undulations.

Gravity anomalies and geoidal undulations are referred to some
standard surface. One such standard surface is the international
reference ellipsoid. Since gravity anomalies computed from surface
gravity measurements are always referred to the international reference
ellipsoid, it will be necessary for us to also refer the satellite-
computed gravity anomalies to the same standard surface for purposes of
comparison.

In the case of geoidal undulations, however, there has been no
consistency in reference to a standard surface. Most of the satellite-
computed geoidal undulations are referred to an ellipsoid whose C,, and
C,., are equal to the observed ones. Since there is some variation in
the observed values of C,, and C, ., depending upon the nature, quality,
and quantity of the observations used and the methods of computation
adopted, each set of geoidal undulations refers, in theory at least,
to a different reference ellipsoid. For purposes of comparison,
therefore, it becomes necessary to refer each of these sets to the same
standard ellipsoid. Further, since the geoid obtained from surface
gravity measurements is usually referred to the international reference
ellipsoid, it is desirable to refer our satellite-computed geoid to the
same surface. This refinement, however, may not be significant in view
of the present accuracy of the satellite results,

In order to compute gravity anomalies and geoidal undulations with
respect to any reference ellipsoid, we need to compute the 02 and C

coefficients for the reference ellipsoid in question. 0 40

Geopotential Coefficients of a Reference Ellipsoid

The polar equation of an oblate ellipsoid of revolution is
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N[ =t

r - b(l—e2 cosz¢) (40)

where
b = semi-minor axis
¢ = goecentric latitude
e = eccentricity
Now let
f = flattening of this ellipsoid
a, = its semi-major axis
then
e2 = f - 2f2
and
b = a, (1-£)

Substituting these relations in Eq. (40) above, we obtain

1
r = ae(l—f) [l-(2f-f2) COSZ¢] 2

Using the binomial theorem to expand the underlined expression,
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we get

r = a_[1-f sin’y - % £2 sin + % £2 siny + 0(£%)) (40a)
and hence

4q 3 .2 2 1.2 4 3

—-=1+(f+-2—f)sin¢-—2-f sin ¢ + 0(f7) (41)

Lo

1f we square both sides of (40), we get

r2 = ae2{1-2f sin2¢ - 3f2 sin2¢ + 4f2 sin4¢ + 0(f3)] (42)

The symbol 0(f3) in (40), (41), and (42) means that we have ignored
terms containing cubed or higher powers of f.

The reference gravitational potential V, of an ellipsoid of
revolution, symmetrical with respect to the equatorial and polar diameters,
can be written to the order of accuracy required here, as

2 4
a
e e

GM a 3
V=—[1+ C20 (;—) on(sin¢) + C40 (;—) P40 sind + 0(£f7)]

r

(43)

In the above equation

(3 sin2¢ - 1)

[T

P20 (sin¢)

(35 sin4¢ - 30 sin2¢ + 3

]
o=

P40 (sin¢)

Now, the gravity force on the surface of the earth arises from
(1) potential V, due to attraction of mass M, of the earth

(2) potential of the centrifugal force due to the rotation of
the earth.
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Let this combined potential be denoted by W, then

1 2 r? (1-sin?y) (44)

W=V+5

where
w = rotational velocity of the earth.

The condition that a surface be equipetential is

W = constant. (45)

Now the condition that the surface described by r of Eq. (40) or
(42), i.e., the surface of the oblate ellipsoid of revolution, be an
equipotential, is obtained by substituting the value of r from (40a) in
(44) and then applying the condition (45). Also since we are developing
onlg a second-order theory, we will neglect all the terms with magnitude
0(f7). To be more prﬁcise, ye will neglect terms containing such
factors as C, .f, C, f°, C,.f", etc. With this in mind then, we have from
Eq. (42) 40 40 20

\
, 2
1+ 2f sin" ¢

<\
———
= | W
)
———
N
I

\ ) (46)

_____
~ ‘ W
o
e
B~
"
[

\ /

Substituting (41) and (46) in (43), reEaining th% terms to O(f3)
only, and combining the coefficients of sin ¢ and sin ¢, we obtain
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cM 1 3 3 3 15

, 2 2
ve—4{ (1~-—C..+—-C, )+ [f+—f +—(-f)C,, ~— C,,] sin" ¢
a , 20 ¢ 40 9 9 20 4 40
e
1 9 35
+ [- — f2 +—fcCc.. +—2¢C,_.1 sin4¢ + 0(f3) (47
2 2 20 40

Substituting the value of r2 from (42) in the second term of Eq.
(44), we get

1 1
—-w2 r2 (l—sin2¢) = —-wz aez[l—sin2¢ (l+2f+3f2) + sin4¢ (2f+7f2)

2 2

+ 0(£3)]

If we now introduce a quantity

which is of the order of f such that m f2 B f3, the above expression

becomes 1
1 GM m
Z w2 22 (1 - sin2e) = — « —L [1 = (1426) sin®s + 2f sin’¢ + 0(£7)]
2 ae 2
(48)

Substituging (47) and (48) in (44), and combining the coefficients of
sin"¢ and sin ¢, we now get

GM 1 3 m 3 m

We— (L= Cpy+=Cpg+—D + [£+= £ - =% (1426)
ae 2 8 2 2 2

3 15 1 9

— ¢, sin’e + [~ — £2 + mf+ = £ Cpy  (49)
2 4 2 2
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35
¢, ] sin’s + 0(£%)
5 Cao

The imposition_of conditzon (45) on Eq. (49) means that the
coefficients of sin ¢ and sin ¢ should vanish, that is

3 2 my 3 15
f+—f" - — (1+2£) +— (1 - f)C20 - — Cl’O =0
2 2 2 4
and
1 2 9 35
- —f " +mf+-£fC,.+—C,_ =0
2 1 9 20 8 40
which gives
2 1 2 m 3 3
Chp = -~ —f+—f +— - —mf + 0(f7)
3 3 3 7
(50)
4 4
C40 = —-f2 - —-mlf + 0(f3)
5 7

In case we introduce a parameter m such that

where ro is the mean radius of the earth, my becomes

19 2
m1=m(1+f+—l—§f)

and the Eqs. (50) reduce to the form
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2 1 .2 m 2 3
= - =< = - - < + 0(f
Cy0 3f+3f + 3 21mf (£7)
(50a)
4 2 4 3
C40 = §'f -3 mf + 0(f7)

Eq. (50) or (50a) gives the formulas for determing 020 and C['0 for
an ellipsoid whose f and m are known.

In the following discussion, we will refer to the coefficients C20

and C40 of the reference ellipsoid as reference C20 or reference C40.

Gravity Anomalies

The gravity anomaly Ag, is the departure of the observed gravity
value reduced to the geoid from the corresponding theoretical gravity
value on the reference ellipsoid. It is given by

LR, 2R
Ag = T + - (51)

where

R = the disturbing potential.

Substituting the value of R in terms of spherical harmonic expansion
in (51) and assembling similar terms, we get

© n n+2
GM ae
Ag = - E: }E: [(n-D)]|— (c cos mh + S sin mA)P (sin¢)]
a . nm nm nm
€ = =
n=2 m=0 (52)
Where r should be obtained from Eq. (40), and C,, and C,. should be

20 40
replaced by A020 and AC40 where

AC = observed C20 - reference C

20 20

AC40 = observed C40 - reference C40
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Theoretically, ACnm should be substituted for every C. in Eq. (52),
where Acnm is the difference between the observed Cnm and the corres-
ponding reference Cnm' But since for our reference ellipsoid, the only
non-zero C are C and C,,., we have to consider this substitution

m 29 40
only for these two terms.

Note that if the value of a particular reference C is taken
equal to the observed value, the corresponding AC vaniShes. We have
used this fact to define the best-fitting satel1ite spheroid as given
in section III.

Geoidal Undulations

The geoidal undulation N, is given in terms of the disturbing
potential R, by

Assume g constant over N and equal to the theoretical gravity Bg»
on the reference ellipsoid, then

Substituting the spherical harmonic expansion of R in the foregoing
relation, we get

M e
aegO

n=2 m=0 (53)

n+l

(Cnm cos mA + Snm sin mA)an (sin¢)

a
e
r

where AC and AC should be substituted for C and C, , as already
. 50 . 20 40
discussed for the case of gravity anomalies.

Computational Procedures and Discussion of Results

The zonal harmonic coefficients of the geopotential are given in
Table 1 and the tesseral harmonic coefficients, in Table 2. Since some
of the higher degree zonal harmonic coefficients and most of the tesseral
coefficients given in these tables show considerable discrepancies from
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TABLE 1. Normalized Zonal Harmonic
of the Geopotentials

Coefficients C
n0

Smith Kozai King Hele et al.
(1963, 1965) (1964) (1965)

¢ ,107° cnolo"6 cnolo'6
-484,172 -484.,174 -484,172
0.923 0.963 0.967
0.567 0.550 0.507
0.054 0.063 0.045
-0.202 -0.179 -0.158
0.077 0.086 0.114
0.112 0.065 -0.107
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Normalized Tesseral Harmonic Coefficients

of the C_, S
nm’® “nm

of the Geopotential

Anderle (1966) Guier & Newton Gaposhkin (1966)
(1965)
m o S C S C S
nm nm nm nm nm nm

1076 1076 1070 1076 1076 1070
2 2.45 -1.52 2.38 -1.20 2.38 -1.35
1 2.15 0.27 1.84 0.21 1.94 0.27
2 0.98 -0.91 1.22 -0.68 0.73 -0.54
3 0.58 1.62 0.66 0.98 0.56 1.62
1 -0.49 -0.57 -0.56 -0.44 -0.57 -0.47
2 0.27 0.67 0.42 0.44 0.33 0.66
3 1.03 -0.25 0.84 0.00 0.85 -0.19
4 -0.41 0.34 -0.21 0.19 -0.05 0.23
1 0.03 -0.12 0.14 -0.17 -0.08 -0.10
2 0.64 ~-0.33 0.27 -0.34 0.63 -0.23
3 -0.39 -0.12 0.09 0.10 -0.52 0.01
4 -0.55 0.15 -0.49 -0.26 -0.26 0.06
5 0.21 -0.59 -0.03 -0.67 0.16 -0.59
1 -0.08 0.19 0.00 0.10 -0.05 -0.03
2 0.13 ~0.46 -0.16 -0.16 0.07 -0.37
3 -0.02 ~0.13 0.53 0.05 -0.05 0.03
4 -0.19 -0.32 -0.31 -0.51 -0.04 -0.52
5 -0.09 -0.79 -0.18 ~0.50 -0.31 -0.46
6 -0.32 ~0.36 0.01 -0.23 -0.04 -0.16
1 0.33 0.08 0.13 0.09 0.20 0.16
2 0.35 -0.19 0.46 0.06 0.36 0.16
3 0.32 0.04 0.39 -0.21 0.25 0.02
4 -0.47 -0.24 -0.14 0.00 -0.15 -0.10
5 0.05 0.02 -0.06 -0.19 0.08 0.05
6 -0.48 -0.24 -0.45 -0.75 -0.21 0.06
7 0.09 -0.14 0.06 0.10
1 -0.15 -0.05 -0.08 0.07
2 0.09 -0.04 0.03 0.04
3 -0.05 0.22 -0.04 0.00
4 -0.07 -0.04 -0.21 -0.01
5 0.08 0.00 -0.05 0.12
6 -0.02 0.67 -0.02 0.32
7 0.17 -0.07 -0.01 0.03
8 -0.15 0.09 -0.25 0.10
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solution to solution, a "mean solution' has been obtained from the threc
sets of zonal harmonic coefficients given in Table 1 and the three

sets of tesseral coefficients in Table 2. These '"mean coefficients'" are
given in Table 3.

C2 and C o Parameters of the international reference have been
computeg from éq. (50). The results, fully normalized, are:

~488 + 375 x 10°°

@]
il

20

- 0.804 x 107°

@]
|

40

Computation of Geoidal Undulations

Eq. (53) is the basic equation used in our computations. We have
simplified it further by assuming that:

GM

and

on the surface of the earth.

The equation thus reduced to

o n
N=a §: E: [C  cos m + S sin m\)P (sing) ] (54)
e 5 .o Dm nm nm

It is this form of the basic equation which has been used to compute
the different sets of geoids reported here.

Let us examine the errors, if any, arising from the above assumptions.
The first of the two assumptions introduces a maximum error eys of
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TABLE 3. Normalized Spherical Harmonic
Coefficients of the Geopotential Cnm’ S

(Mean Solution)

nm

S C
nm nm nm nm
m 1070 107° n m 107 1076
0 -484.173 — 6 3 0.15 -0.02
2 2.40 -1.36 4 -0.18 -0.45
5 -0.19 -0.58
0 0.951 _— 6 -0.12 -0.25
1 1.98 0.25
2 0.98 -0.71 7 0 0.092 —
3 0.60 1.41 1 0.22 0.11
2 0.39 0.01
0 0.541 — 3 0.32 -0.05
1 -0.54 -0.49 4 -0.25 -0.11
2 0.34 0.59 5 0.02 -0.04
3 0.91 -0.22 6 -0.38 ~0.31
4 ~0.22 0.25 7 0.07 -0.02
0 0.054 - 8 0 0.024 -
1 0.03 -0.13 1 -0.11 0.01
2 0.51 -0.30 2 0.06 0.0
3 -0.33 0.0 3 -0.04 0.11
4 -0.43 -0.02 4 -0.14 -0.02
5 0.11 -0.62 5 0.01 0.06
6 -0.02 0.49
0 -0.180 - 7 0.08 -0.02
1 -0.04 0.09 8 -0.20 0.09
2 0.01 -0.33
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+ 0.5%. The error is defined as positive if, to obtain the corrected
value, the correction to be applied to the computed value is negative.
This error turns out to be dominantly positive.

To examine the error introduced by the second assumption, then,
let

where Ar is the departure which r has from the value of a, in its
total range of variation. Then

a n+l c -(n+1) Ar -(n+1) Ar
(—9-’ =(——) 1-— = 1+ (n+l) —
r ae a a

e e

and the error introduced in the nth term by assuming ae/r =1, is

Ar 2
(n+l) — x 107%

a
e

Since a_ > r, the correction arising from this factor should be
added to theecomputed value of geoidal undulation to obtain the correct
value. The correction, however, is not significant in view of the present
accuracy of satellite results.

Neither of the above errors is significant in view of the present
accuracy of the satellite results.

Computation of the Gravity Anomalies

Eq. (52) was simplified by assuming that a, =r. Eq. (52) then
reduces to the following form

M =,
bg = —, zg: §> [(n—l)(Cnm cos M\ + Snm sin mX)an(sin¢)] (55)
yA—

3e
n=2 m=

This simplified equation was used for computing the different sets
of gravity anomalies given in this report.
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As pointed out earlier in the case of geoidal undulations, the
error arising from the above assumption is negligible in view of the
present accuracy of the satellite results.

Discussion of Results

Geoidal Undulations

Table 4 summarizes the magnitude and location of the maximum
elevations and depressions of the different geoids obtained using the
different sets of geopotential coefficients given in Tables 1 to 3.

It should be noted that Table 4 is made up of three sections. In the
first section each geoid is referred to a reference ellipsoid whose

C 0 and C, parameters are those defined by the set of zonal coefficients
tﬁat are used to compute the individual geoid under consideration.
Although each set of geoidal undulations was thus derived from a dif-
ferent reference surface, this difference is not significant because

the C and C 0 values for the different sets of zonal coefficients are
in fairly gooé agreement. Figures 1 to 4 show the geoidal undulations
obtained in this manner using the various sets of geopotential coeffi-
cients given in Tables 1 to 3.

In the second section each derived geoid is referred to the
international reference ellipsoid. Figures 5 to 7 are plots of the
geoids determined on this basis. For comparative purposes data are
also given for a geoid derived using the mean coefficients and best-
fitting satellite-derived reference spheroid with a polar flattening
value of 1/298.25. This solution is shown in Figure 8. A similar
geoid obtained from Gaposhkin's(1966) tesserals is shown in Figure 9.

In the third section comparative geoidal data are given as obtained
by Kaula (1966), Uotila (1962), and Zongolovich (1952).

Kaula (1966) used a combination of satellite and gravimetric data
to obtain his results (see Fig. 10). Uotila (1962) and Zongolovich (1952)
both used surface gravimetric data. For comparative purposes, Uotila's
(1962) geoid is shown in Figure 11 and Zongolovich's (1952) geoidal
map is shown in Figure 12.

From an inspection of Table 4 it is seen that broadly speaking, the
area of maximum geoidal depression defined by each geoid has much the
same location, although there is some variation in magnitude values.

The significantly lower magnitude found with the gravity solutions,
Uotila (1962) and Zongolovich (1952), can be attributed to the paucity
and poor distribution of the available gravity data. 1In the case of
the area of maximum geoidal elevation there is a significant dependence
on the reference ellipsoid used. However, the scatter is restricted to
one or two areas—--the Solomon Islands-New Guinea region and the North
Atlantic area immediately south of Iceland. This would suggest the
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Comparison of Geoidal Undulations in Different Representations

Ref. of the Ceo-

Maximum Height
Above the Reference

Maximum Depression
Below the Ref.

potential Coeff. Ellipsoid Ellipsoid Total Parameters
used to compute Range of the
the Geoidal Magnitude Location Magnitude Location in Reference
Undulation in Meters Long. Lat. in Meters Long. Lat. Meters Ellipsoid
Keozal (1964); 140° 0° 75° 0° c20 & cl‘0
+81 to to -98 to to 179 of
Gaposhkin (1966) 150° 5°N 80° 10°N Table 1 (col. 2)
Smith (1963, 65); 350° 55°N 75° 10°N C20 & CloO
Guier & +65 to to -91 to to 156 of
Newton (1965) 355° 60°N 80° 15°N Table 1 (col. 1)
King-Hele (1965); 140° 0° 70° 5° Cog & Cuq
+83 to to -98 to to 181 of
Anderle (1966) 150° 5°N 80° 10°N Table 1 (col. 3)
Table 3: Mean 145° 5°Ss 75° 3°N C.o0 % Cup
Coefficlents +70 to to -95 to to 165 “Tof
155° 5°N 80° 10°N Table 3
Kozai (1964); 360° 60°N 75° 0° International
+94 to to -128 to to 222 reference ellip-
Gaposhkin (1966) 355° 70°N 80° 10°N soid
Smith (1963, 65); 345°  60°N 75° 5°N
Guier & +101 to to -118 to to 219 -do-
Newton (1965) 355°  65°N 80° 10°N
Mean Coefficients 340° 60°N 75° 50°N
+99 to to =125 to to 224 —do-
355° T0°N 80° 10°N
Mean Coefficients 135° 50°S 65° 0° Best fit Satel-
+69 to to -93 to to 162 lite Spheroids
165° 15°N 75° 20°N Polar Flattening
= 1/298.25
Other Results
Uotila's geoid 130°  10°s 60° 10°N Ellipsoid with
(1962) obtained +60 to to -60 to to 120 flattening =
from free air 150° 10°N 80° 40°N 1/298.24
gravity anomalies
Kaula's map (1966) 135° 15°S 65° 10°s Ellipsoid with
obtained from a com- +76 to to -90 to to 166 flattening =
bination of satellite 165° 5°N 85° 10°N 1/298.25
and gravimetric data.
(Geopotential coef-
ficients for this
case not given)
3 locations
of equal value
Zongolovich Geoid 120° 3°s 55° 0 Rugsian ellip-
based on surface +80 to to ~60 to to 140 soid
gravity data 140°  12°N 80°  22°N
300° 18°s
to to
340°  20°N
235° 12°s
to to
265°  35°s
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gravity anomaly in the two areas is of similar magnitude. Actually

the available data indicate the free-air anomaly values in the Solomons
area is considerably higher than in the North Atlantic area. On a 22°
x 22° size area (corresponding to an 8th degree fit) the mean gravity
values, however, are not significantly different. A 15th degree fit of
the data presumably would give a consistent pattern, with the Solomons
region being the area of maximum geoidal rise.

It is to be noted that the geoidal undulations referred to the
'best-fitting satellite ellipsoid' (whose reference C,, and C,, are
equal to the observed ones) show a consistently diffe¥ent pattern from
those referred to the international reference ellipsoid. As the
equatorial radius and flattening of the 'satellite ellipsoid' are
smaller than the corresponding parameters of the international reference
ellipsoid, the geoidal undulations referred to the 'satellite ellipsoid’,
appear to show some accentuation of equatorial "highs" and damping of
polar "highs."  However, this argument may hold only for the general
pattern of these differences and not give a systematic change in
magnitude.

The data of Table 4 bring out one important point. Until recently
it had been believed on the basis of gravimetric data that the maximum
deviation of the geoid from the reference surface of the international
ellipsoid was not more than 30 to 40 meters. As seen, the differences
obtained for an 8th degree fit are of the order of 100 meters or more.

In connection with Figures 8 and 9 in which the geoidal undulations
are referred to a best-fitting satellite-derived spheroid the reference
geopotential (Vl) was defined by

o0

GM a (1
. Ze -
v, = 1+ Z (r ) C P (sing)
n

e
=2

where C_ are the zonal harmonic coefficients and Pn (sin¢) the Legendre
polynom?als. As is obvious, it is an axially symmetrical surface but
not an equatorially symmetrical one, The maximum geoidal deviations are +69

meters and -93 meters in the case of Figure 8 and are of the same

magnitude as those computed by setting both CZO and C40 equal to zero.

Gravity Anomalies

Figures 13 to 15 are the free—air anomaly maps obtained from the
mean coefficients and referred to the international gravity formula.
Figure 16 is a similar map obtained by Kaula (1966) from a combination
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of surface gravity data and satellite gravity information and referred
to the international gravity formula. Although these maps show broad-
scale agreement on gsome features, there are significant differences on
others. At long. 140° and lat. 5°, Figure 13 shows positive values
ranging from 10 to 15 milligals; Figure 14, negative values of -2 to

-6 milligals; and Figure 15, again positive values of 4 to 8 milligals.
At long. 165° and lat. 15°S, the gravity anomaly is 0 milligal, according
to Figure 13; -17 milligals, according to Figure 14; and about -1 to

-2 milligals, according to Figure 15. To the SW of Australia, at long.
115° and lat. 35°S, Figure 13 shows a gravity anomaly of -27 milligals;
Figure 14, -17 milligals; and Figure 15, -23 milligals.

The magnitude and position of the negative anomaly over and around
Ceylon in the Indian Ocean agrees within reasonable limits on the three
maps.

At the west coast of the North American continent around lat. 50°N,
Figure 13 shows an anomaly of 3-5 milligals; Figure 14, 8 to 10 milligals;
and Figure 15, 7 to 9 milligals.

Now compare these maps with the gravity anomaly map given in
Figure 16. Considerable discrepancies in the locations and in the sizes
of the gravity anomalies can be seen at once. These differences can
be related to the difference in input data and the fact that some of
Kaula's coefficients were for a l4th degree fit.

The short wavelength component of the gravity field which is of
interest to the geophysicist, is the one most poorly represented in
these results, for as indicated earlier, with an 8th degree fit the
results represent average values for areas 22° x 22° in size. They
therefore can only outline regional areas of anomalous gravity. That
they do accomplish this purpose is shown by a comparison of these
results with the available surface gravity information expressed as
free-air anomalies. Figure 17 shows a free-air anomaly map for the
North Atlantic Ocean which takes in a portion of the gravity "high"
defined south of Greenland and the gravity "low" defined in the eastern
North Atlantic Ocean on both Figure 15 and Figure 16. Figure 18 shows
regional variations in free-air anomaly values in the Pacific Ocean
in terms of areas having anomalies > +20 mgals or > -20 mgals, and with
no dominant sign. The agreement of the satellite-derived maps with the
surface-gravity anomaly maps is on the whole good, and as would be
expected, Kaula's map (Fig. 16) appears to be somewhat better, especially
in the Atlantic Ocean, since his map was derived using both the available
surface gravity data and coefficients for a higher degree of fit.

There appears to be little question about the application of satel-
lite data for determining areas of anomalous mass associated with the
earth, or in the use of satellite data in using Stokes' theorem for defin-
ing the gravity field for areas remote from a point.

The significance of the anomalous areas of gravity, however, is
not too clear. Because of the long wavelengths portrayed, the anomalous
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mass could be deep seated or represent the integrated effect of a

number of shallow mass anomalies located in the upper mantle or crust.
In either case there would also be a contribution from surface topography.
The fact that the topographic effect only appears to be of secondary
importance stresses the need for geophysical investigations in these
areas. Some of them such as the positive anomaly area over the Mid-
Atlantic Ridge are known to be characterized by anomalous geophysical
relations: a sub-normal mantle velocity, pronounced magnetic anomalies,
high heat flow along the crest of the ridge but sub-normal heat flow
along the flanks. However, it is difficult to reconcile these observa-
tions with the anomalous gravity field which conforms closely with the
regional topographic relief and which the Bouguer anomalies indicate

is compensated without postulating that the sub-normal mantle velocity
values are indicative of higher than normal density values or that there
is deeper, as yet undiscovered, layering in the upper mantle. Worzel
(1965) has shown three possible theoretical mass distributions, all

in the upper 30 km of the crust to explain the observed gravity relations
over the Mid-Atlantic Ridge. Cook (1962) has postulated that the
apparent sub-normal mantle velocities are due to a mixture of crustal
and mantle materials as a result of convection with attendant high

heat flow. While eminently reasonable for the Mid-Atlantic Ridge,

these explanations do not explain the relations in the Indian Ocean

area where the satellite data define a broad negative anomaly area

that appears to be related to a stable ocean basin region lying between
a narrow volcanic ridge and a rise (of the Mid-Atlantic Ridge type)
which has many of the geophysical associations noted for the Mid-
Atlantic Ridge.

It is this lack of consistency between gravity and other geophysical
relations on a regional scale that raises doubts as to interpretations
that have been placed on the data and point up the need for more exten-
sive geophysical studies in areas of anomalous gravity. It is only
after such extensive geophysical data have become available, that a
sophisticated statistical analysis will give meaningful results.
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Fig. 18.

Regional variations in free-air gravity anomaly values in the

Pacific Ocean.




