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Chapter I
INTRODUCTION

SenSitivity testing is a term associated with tests characterized
by a sample specimen being subjected to a stimulus of known intensity
and the specimen either '"responds' to the stimulus or does not ''respond"
to the stimulus depending on whether some critical physical threshold
has or has not been exceeded for that particular sample specimen.

That is, for some 'stimulus-subject systems' quantitative measurement
of the response attributed to the action of the stimulus is impossible
or almost impracticable. For example in testing the explosives a common
procedure is to drop a wéight on specimens of some explosive mixture
from various heights and observe whether it explodes or not. There
are heights at which some of the specimens will explode and some of
them will not. It is assumed that the specimens which will not
explode would explode if the weights were dropped from a sufficiently
high level. Therefore we suppose that there is a critical height
associated with each specimen and there will be ''response' or '‘non
response' depending on whether the critical level is or is not
exceeded by the intensity imposed by the weight dropped. Thus the
population of the specimen is characterized by a continuous variable

whose critical height can not be measured [7].

This situation arises in many fields of research. For example
insecticides are assayed by assigning batches of insects to standard

test preparations and analyzing the relationship between the death rate



and the dose; that is, to observe whether the critical dose for the
insect is less than or greater than the selected dose. The same diffi-
culty arises in pharmacuetical research dealing with germicides,
anesthetics and similar drugs, in explosives, propellants, detonation
devices and armor-piercing projectiles. Perhaps its earliest imple-
mentation was in biological studies of dosage mortality and response

to drugs [25].

Although the application has been diverse, the sensitivity
experiments have many characteristics in common. In true sensitivity
eicperiments it is not possible to take more than one observation
on a given specimen. The measurement at any point in the scale destroys
the specimen so that a new specimen is required for each measurement.
Neither the insect that has died or weakened, nor the explosive
having been packed can be used again as a sample. That is, once a
test has been made the specimen is altered and so a bonafide result
can not be obtained from a second test. A common procedure in this
type of experiment is to divide the sample into several groups (usually
but not necessarily of the same size) and to test one group at a

chosen level, and a second group at a second level and so on.

There are several methods of obtaining and analyzing the above
described data. One of the oldest methods is the '"probit method."
The basis of this method is the linear transformation of the normal

curve, with



being considered as giving percentage response at the level x. The
"probit" y 1is obtained by adding 5 to x in order to avoid
negative value in the use of transformation. This transformation
makes it possible to represent the relation between the percentage
response and the dose as a linear relation, and reduces the problem
to one of linear regression [21]. This was developed by Bliss [4]
and Fisher [11]. In 1933 Gaddum has showed that with the trans-
formation of precentage effects, what he called 'mormal equivalent
deviations'" (n.e.d.), one can plot an ''S'" shaped curve. It is
interesting to note that the history of the "Probit method" goes
back to 1860. Fechner, a physiologist used a method which is

essentially Gaddum's n.e.d. to express the proportion of trials [21].

In latter years a number of other methods were developed
to handle the sensitivity data with or without transformation. Some
of the well known methods are the Spearman-Kérbér method, the method
of extreme effective doses, the Reed-Muench method, the Dragsted-
Behrme's method and the Moving average method. A relatively new
technique called the '"up-and-down method" was developed during World
War II and is used in explosives research. A method to obtain and
analyze the sensitivity data using up-and-down technique was given by

Dixon-and-Mood [7].

But most of these commonly used methods are applicable only
in special cases and are based on various assumptions concerhing

the distribution of the estimators, especially if the confidence



limits are desired. For example in the Spearman-Kdrber method one
considers the logarithm of the tolerance as being approximately
distributed according to a normal density. We define the tolerance

distribution as follows.

Definition 1. Let Y(x) be a random variable defined on the closed

interval [ a, b ], then we say that the function y = M(x)

is a regression curve of y on x if and only if

E[Y(X)] = M),

where E[:] denotes the expectation of [-].

Definition 2. The regression curve M(x) is said to be a response

curve if

(Cl) M(x) is continuous on [ a,b ]

(cz) 0 <Mx) <1

1
(c3) r HY(x)]dY = 1 for each x on [ a,b ]
0.

where H[Y(x)] denotes the family of density functions which

depends on the parameter x.

A response curve is sometimes called a tolerance distribution

by applied statisticians [12].



That is, in Spearman-Kiarber method

t-u,2
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where z = log x, and x is the stimulus level.

. The Reed-Muench, Dragsted-Behrens and the Moving average methods
can be applied only when M(x) is symmetrical. Dixon-and Mood's

method also considers that

Z
Mz) = r

where z = log x or some function of x (where there must be a 1-1
correspondence between z and x), and x, the stimulus level. Most of
these methods are relatively effective only when the goal of the tests
is to estimate the mean (50 percent-point) or the median. Recently
much attention has been given to the problem of .estimating the portions
of '"tails" of the response curves, i.e., to estimate the stimulus levels
with either very small or very large response probabilities. We define

the response probability as follows:

Definition 3: The statement that y is the probability of response

at the stimulus level x means that Y(x) is assigned unity when a

response occurs, that is

y = Pr [Y(x)=1],



or equivalently,

y = E [YX) ] = MX).

where Pr [-] should be read 'probability that the event [:] occurs."

In many instances, the experimentor has no clear notion of the
structure of the regression curve he wishes to study. In these caées it
I's not advisible to permit a hypothesis as to the precise shape of
the regression curve nor to describe possibly various distribution fea-
tures. Moreover incorrect assumptions can have serious effects on.the
design and analysis of the method. Unlike some other types of designs
(e.g. factorial) and analysis (e.g., regression), sensitivity procedures
depend critically on the accuracy of the distribution assumptions.

Thus, for example, if it is assumed that a response function is
cumulative normal when it is really, say, uniform, then the design

and analysis chosen will be satisfactory only when the median response
(that is, the 50 percent stimulus level) is of primary interest. In
other regions, corresponding to small or large response probabilities,
highly inecficient designs and inaccurate analysis will result. Thus,
generally speaking, a parametric approach should be selected only after
an extensive amount of previous experience and complete data analysis
are available. But often this is not the case, since many sets of
sensitivity data are not consistent with the classical response
function forms, and it becomes necessary to employ distribution - free

(or non-parametric) methods to analyze the sensitivity data.



Fortunately, several distribution-free methods have been
developed. Most of these methods in general assume only that the
response function is nondecreasing with increasing stimuli. This
is the case in general although there are occasional instances in
which non-monotonic behavior has been noted. J. B. Gayle [13] has
investigated this property by carrying out a larger number of repli-
cate tests to permit a statistical analysis of data. The results
indicated that over a considerable range of stimulus levels the
frequency of response decreased significantly with increasing stimulus

levels.

The most commonly encountered type of seﬁsitivity problem is
that of finding at what level of the stimulus variable a given
percent response will occur. For example, in biological assay it is
often necessary to determine the dose (called LD 50 or ED 50) which is
effectively the median of the distribution of responses. Often
. one is interested in  the stress that induces a detonation, say,
95 percent of the time. In each of these situations one is con-
cemned with inverting the relation which gives the probability of
response as a function of the stimulus. Thus it is also known as

the "inverse response problem'.

In general the problem can be stated as follows. Let x
be a stimulus level and let the probability of response at x be
M(x). That is, let a random variable y(x) take the value unity

when a response occurs and zero when a response does not occur.



Hence, for every x, a part M(x) of the population from which
the sample specimens are selected will respond when subjected to a

stimulus level X, and the remaining part 1 - M(x) will not.

Definition 4. The value X, for each value o such that 0 < a < 1

is said to be the stimulus level of order a if and only if X,

satisfies the regression equation

M(x) = a (1.1)

Definition 5. The response curve M(x) is said to be a quantal

response curve if and only if the density function H [ y(x) ] is

a Bernoulli probability law [ [23] Parzen, p. 218 ], that is

Hiy@] = M ® - M1 7® |y =0, 1

= 0 elsewhere.

In 1951 a technique was developed by Robbins and Monro [24],
in which one can estimate X, for a given o without any knowledge
of M(x). The method has been called the ''Stochastic Approximation

Method". The estimation procedure is sequential and distribution free.

In recent years work has been done to construct a confidence
interval of preassigned length at a given confidence level. These
téchniques were develope& by R. H. Farrell [10] and P. L. Odell [22].

A generalization of the second technique is developed by the author



and it is described in Chapter III. In Chapter II a brief description
of the methods given by Spearman-Kirber, Dixon-Mood, and Farrell

is furnished. An empirical study of the sample size, for a fixed confi-
dence level and for a preassigned length of the interval is made. .

ﬁe resuits of the study and a discussion of the results are given

in Chapters IV and V.



Chapter 1I
SEVERAL EXISTING METHODS FOR ANALYZING
SENSITIVITY DATA

In order to gain a measure of efficiency of the method
formulated in Chapter III, with respect to those methods already
available, three different methods were selected to base the comparative
study. These methods are:

Tl. Spearman-Kirber technique [12]

T2. Dixon-Mood technique [7],

T3. Farrell's technique [10].

Tt and T2 are well-known methods, while T3 appears not
so well-known. A Fourth method formulated by Alexander [25], has
appeared recently in an industrial report; however, the theory is not
available at this time hence the method could not be included in the
comparison. Methods T2 and T3 involve a sequential technique for

analyzing the up-and-down data, while method T1 is a fixed design.

Farrell's analysis also includes a way to obtain confidence
limits using stochastic approximation [10]; however, we have restricted
our study to up-and-down techniques anu the Speérman-Kérber technique.

A brief description of each of these techniques follow in this chapter.

2.1' Notation and Preliminaries

Though different authors used different notations in their
works, a single notation is used throughout this dissertation to

facilitate reading and for easier comparison of the results. The

10
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notation is presented as follgws:

The symbols X15 Xp, ce X, denote the stimulus levels at
ér‘ - ‘ ‘ .' -
which the specimens are to be tested; y denotes the probability of
responée at a givenhstimuluéﬁievel x.. Then the random variable y takes

on the value unity or 'zero. That means,

Y(x) 1 if the specimen responds and

(2.1)

Y(x) 0 if the spehimen does not resﬁond.

Also E [Yx) ] = M(x), where M(x) is defined in Chapter I, and

E [+] denotes the expected value of [-].

. X 1
In all the methods described below, the aim is to construct a
confidence interval for various stimulus levels, that is, for a giﬁen

o to:obtéﬁn bounds 'Ll ‘and - L2 such that

L <X <L, ] > 1-8 (2.2)

where B is the desired confidence coefficient, and P [A]‘ denotes
Q. -Jr

the probability that the event A occurs. Frequently we will let

P [A|B] denote the probability that the event A occurs given that

the event B has already occured.

2.2 §pearman-K5rbervMethod

Perhaps the oldest technique and for years the most often used
for 8gtimating Xgq -is the so-called, Spearman-Kdrber method, oriéinally
formulated in 1908 by.Spearmah [26] and later in 1931 by Karber [18].

The following are the assumptions which restrict the method:
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Al. There exist numbérs a and b such that a <b and

1]
p—
[

[y}

P [ Y(x') = 0 | x <a]

P[Y(X)

i}
—
>

v
o

[

H
—

L]
™

|
where € >0 is arbitrarily small and x = log X.

] ]
A2. The response curve M(x) = E [ Y(x ) ] has the form of
the cumulative normal distribution which can be written

!
'

“y X oy ! ' ' \
M) = S {1/@20)% } exp { (x - xgp)%/,.2 )} dx

' ,
where o >0 and a < Xgq < b.

1 1 ]
Let x 1p Xge oo Xy be k equally spaced levels with
. ' . . oy -
X] S Xp S o <Xy such that at each level n specimens are to be

tested. Let

N = ' o -~
1 4a Y. (xl) i=1, 2, .. .,n (2.3)

t .
where Yj (xi) = 1 or 0, according to (2.1). Hence r. is

simply the number of spécimens which respond at the i th 1ével,?
' ’ 1 !
x;. Then- Xgg 1S estimated.by the statistic Xgo defined as

k SN
At '
= 2. ./
Xgq Xy ﬂ d/2-d iil ./ ‘ 2.4)
* 1
where X is the level such that T =, and RGN |

i=1,2,...k-1, the comfion difference betwecen the adjoining
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stimulus levels. Neither Spearman nor Karber list any rules for

1 )
selecting d. If the deviation of Xeq from the nearest X, is
selected ét random between d/2 and -d/2, as is effectively. done when

. !
the experimentor begins without the knbwledge of x4, then .

!
Elxgl = x5
and ”
2.0 .2 K
(Xeq) = d ZM(l-M)/n
50 -
i=1
for n > 4; 02 (m) denotes the variance of the statistic m and M.1

. ! ’ t b
denotes M(xi) in A2, Conf_idence limits for x 5o are obtained

by assuming

At a0 1
A3, gxso - XSO) / G(XSO) ~ N(0, 1)

where ~ should be read as "d15tr1buted according to'" and N(O 1)

shoul&”be Yead as "normally dxstnbuted with mean zero and var1ance
ﬂh

one". It is clear that the desued confidence limits follow from

the statement that

P [ %gg - krs/.z o (xg0) < x5 < " *+ kg/a G(XSO) 1> 1- 8 (2.5

where kB /2 denotes the value of k _such that

B k % 2
1-5/y= (1/27)% exp { -t°/2 } dt (2.6)
and
k
(xo)*[d/n - 10 vy (-] 2.7

i=] +
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an unbiased estimate of oz(xso) given by Ervin and Cheesman [17].

An alternative suggested by Gaddum is to use the following formula
2 At .'. -
g (xso) = ,564 od/n (2.8)

where o is known and appears in A2. Unfortunately this requires

an apriori information abéut‘ M(x), and is a further restriction.
Techniques are available [121 for estimating o from the data, giving
an estimate which can be used for o in (2.8), however in the

]
simulation (2.7) was used as. the true variance of ﬁSO and not (2.8).

The confidence interval IB for X;O then follows from (2.5)

and is
1 ~1 a oA a1 n
Ig = Ixgp - kg5 0 (Xg9)s X5y + Kg/p o (Xgp) | (2.9)

Then one can convert these numbers into original stimulus units
: ; 1

by taking anti-logarithms giving the cesired confidence limits for
Xeq) those being

IB = [ antilog (250 - kB/Z B (XSO) ), antilog ( x50 * kﬁ/l a(iso) ]

2.3 Dixori-Mood Methad

Chronologically this method is one of the first methods
of the so called "up-and-down" tests. In order to perform the up-
aﬁd-down testing one chooses an initial stimulus level, say X, (the

best apriori estimate of xso), and a succession of levels Xps X5 o o



whose magnitudes exceed x,; and a succession of levels X 1s X.gs + + o
whose magnitudes are less than X, The first sample specimen is
subjected to a stimulus level, X, If the specimen responds the

second specimen is subjected to a stimulus level Xq - In general if

the i th specimen responds (does not respond) to a stimulus level of
order j, then the (i + 1) st specimen is subjected to a stimulus
level of”order j-1( +1). It is noted that one would expect-fhe
number of responses to be approximately equal to the number of noﬁ-
responséé in such tests. One needs the following restrictions {n order

to apply this method.

1] t 1 !
Bl. If Xys Xyps Xyps o+ . aT€ the levels such that x = g(x)

L]
where there is a 1 - 1 correspondence between x and x then

' ' t-n 2
Mx) =

ésx

Y276

B2. One must be able to make a rough estimate of ¢ prior to
fhe experimentation. | |

B3. The sample size should be large (about 40 to 50) in order
to apply the given analysis.

Dixon and Mood formulated the following statistics to estimate

stimulus levels of order o« and 6.

¥

where the (-%9 is used if the number of responses is less than the

15

1 pcles :
R S (2.10)

) A 1 al
= X + d(N-f ZJ + ka S = X * kas (2.11)
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number of nonresponses and the (+%) is used if the number of nonresponses

is less than the number of responses.
s = (62 d [BA 4 029, (2.12)
N

_ * ,
where the symbols d, A, B, N, ku and x are defined as follows:

]
d = Jx; - x5, |

and is assumed to be the same for all i=0, +1, ...

If ng, ny, Ny, . . . My are the observed frequencies at
various levels (in increasing order) at which the less frequent evernt
‘ *
occurs, and x is the lowest level at which the less frequent event

occurs, then

k

N = ¢ n, _(2.13)
i=o ‘
k

A = ¢ ini (2.14)
i=o :
ko,

B =z i n, , .(2.15)
i=o :

and ka is the value of k such that

e dt = a. (2.16)
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(2.11) is valid only if

2
.N_'L'TA_ > .3 (2.17)

If (2.17) is not true, then one can take the §gpp1e size
)
sufficiently large so that (2.17) is true or use the analysis
given in {7]. Dixon and Mood have shown that the standard deviation

of the estimator
= x +ad+ )
is approximately

Go//N~ (2.18)

and can be estimated by

6gyp = Sp = Gs / N~ (2.19)

In a similar way the standard deviation of s is estimated by

~

o, = sg = Hs/ VN \ (2.20)

where G and H are empirical values depending on d and o and

are given here in the form of a graph in Fig. 2.1.
~! . at P ~1
The variance of x is given by var(xq) = var(xso) + 2kav§ov(x50,s) (2.21)

A' ~
It can be shown that cov(xso, s) = 0. Hence we approximate var(x') by

~2 2 2 2 S -
o, = sp* ka Sg (2.22)

whgre Sm and sg are given by (2.19) and (2.20). In order to obtain
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the confidence limits a further assumption is made, that being

i' . x!
(B4) 2 -2 ~ N (0, 1). (2.23)
g

[+

Then the confidence interval follows by the statement that the

L] ~t -

A' ~
Pr[xu 'Ke/Zoaixaixa+KB/2°a] > 1 -8 (2.29)

where KB/Z is defined in (2.6).

]
Because of the 1 - 1 correspondence between x and x , the

probability statement (2.24) can be written as
-1 At - -1, -
Pr [ g (xa-KB/Zoa)ixaf_g (xa+KB/zoa) 1>1-8, (2.25
which is the desired confidence interval.

Farrell's Method.

A relatively recent (1962) method which yields non parame'tric
confidence limits for X, is given by Farrell [10]. In this method one
does not make any distribution assumptions on M(x), the :“response ?

function, but needs only the following assumptions.

Cl. M(x) is a monotonic function of the stimulus level x.

C2. There is an x such that
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M(Xx) < «a for x < X,

and

M(x) > a for x> X,

C3. There exists a family of distribution functions

{ G(*, W), we A}, where A is the finite or infinite
) | ‘
open real number interval. Certain knowledge of G is known to the
experimentor. That is, G 1is an independent Bernoulli distributign in
the case of up-and-down testing.
C4. For all x e (=, ),
M(x) = s x dG(x,w).
The method is quite complicated and will briefly be described as
follows: Let Xpp ® <D< } be the sequence of stimulus levels
such that X4 " %, =8> 0 for alln, an intéger; where-—21- i;the

desired width of the confidence interval, and lllnln | X, | ==. Again
n|-=

M(x) is the probability of response when the testing is done at tlée

level x.

The initial experiment is made at the level x,, and the
(n+1)th experiment will be made at the level xN(n+1) , where N(nfl) =
N(n) + 1 according as whether there is a non response, or-a response at

the nth experiment. This can be written in the form

N(n+1) = N(n) + g(Z,, Flxy,)) ), (2.26)
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where

g(x,y) -1 if xgvy (2.27)

and

glx,y) = +1  if x>y

and Zn is distributed uniformly on (0, 1).

At this stage, it seems desirable to quote a slight modification
of the lemma given in [10]. The modification is made in order to attain

compatability with our notation.

Lemma 2.1. Suppose A 1is an open real number interval,

{ G(- w), we A} a monotonic family of distributions. }_f_ WeAd,

-

a=SY dG(Y,w), J xz dG(x, w) <=, and 8 > 0, then there exist real

number sequences { a,nz 11},{ bn’ n >1} such that ‘~an > bn‘

for all n >1, and

n
Pr [some , : Y.>a_ ] <Bg/4, if 1-ac<a (2.28)
. i n' - =
n>1 1i=1
n .
and Pr{some, I Y.g bn ] <8/4, if 1- a3 (2.29)
n>1 i=1 -~ :
a b
and lim % = lim = = o,
e D N

where 1 - 8 is the desired confidence level.

The sequences {an, n 1} ,{ bn’ n >1} can be constructed as

follows



V)
n

n na + an;i log(n+l)

b na - an;i log(n+l),

n

where a can be found such that

Pr [| S, - 1, |< an’t log(n+l) ] > 1 - g/4

Next one needs to construct two integer valued random sequences

{cn, n > 1}, {dn’ n.>1 1} as follows

c(1) = d(1) = 0

of m>1, c(ml) is the least integér n such that
N@) > N(c (m) ),
and n > c(m)
and of m> 1, d(m+l) is the least integer n such that

N(n) < N(d(m) ),
and

n > d(m)

21

(2.30)

(2.31)

(2.32a)

(2.32b)

(2.32¢c)

Then there exists two random numbers M and M where M is the

least integer n such that

1
7.5 ey ) Mo ) 2

(2.33)
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and M is the least integer n such that

%igl (-8 Byga) y» Moygeay y0) <by (2.34)
and

Pr[M<eo] = 1 (2.35)
Then

Pr [ Xp > X, ] <8/4 | | (2.36)
and

Pr[X;<X ]<8/4 '(2.37)
where I=NdM) ad J=(c(M).

In order to show the statements (2.35), (2.36), (2.37)

are true, a modified form of a theorem in [10] can be stated as follows.

Theorem 2.1 Let 8 > 0 be given and { a , n > 1} be a real number

sequence defined as in (2.30). Suppose { x_, n > 1} be a strictly

increasing sequence of real numbers such that 1im x |==. Let
N
{Yn, n > 1} be a sequence of mutually independent and identically

distributed Bernoulli random variables such that Pr [ Y=1 ] = a.
n ’
Let N be the least integer n such that ¢ Yi > a, with N not
n i=1
existing if ¢ Yi <a, for all n > 1. Then if 1lim M(x) > a, then
i=1 - X-¥00

Pr{X >X ]1>1-8/4. and Pr[N<= ]

[
—
.



23

Let P be the total number of observation needed to get M, M, which

can be given by the

Maximm [ d(M), c(M ] .

Define the sequence P(i) as the number of times the sequence
N(0), N(1), N(2), . . ., N(P) takes the value i where i is

restricted such that I <ic<J.

Also define the sequence M(i,j) as the least integer m -such
that the sequence N(0), N(1), . . . , N(m) takes the value i exactly
j times. Note it follows from [15] that the sequence {-N(n) '}

takes all the values i infinitely often as n increases.

Then for i in I<i<J, either

P(i) .
1 A
jil (1-g (ZM(i,j)’ F(x))) > 3 (i) (2.38)
or
1 P(? (1-g ( F(x;))) < by, | (2.39)
j=1 g ZM(i,j)’ 7’7 ZPp(d) .

except perhaps for one 1i.

Let I' be the greatest i in I <i <J satisfying (2.39) and

. :
J be the least i in I <i <J satisfying (2.38)



Then

and

Pr[X*iXaiX*]il-B
I J

PR
Prijd -1}{<2]) = 1.

24
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Chapter 111
A NEW METHOD TO OBTAIN CONFIDENCE LIMITS ON
Xu IN UP-AND-DOWN TESTING

The purpose of this chapter is to formulate anothe? method
to estimate X, in a confidence interval estimate such that
D1. The lower bound, 1 - B, where 0 4.8 < B wux < L, of the
confidence coefficient is known apriori.
D2. The upper bound 38, for the length of the confidence interval
is known apriori. '

' '.-.
D3. A lower bound, C, of M (x) at x = X, is known apriori.

D4. M(x) is an unknown distribution function such. that

al) M(x) =0, Xx<a
=E[YX ], a<x<b
=1, x>b

where a and b are known apriori and Y(x) defined by (2.1).

“

a2) M(xa)

1]
c >c>0

1
a3) M (x)
for X - 8/2 < x < x, + §/2; that is M(x) is linear in

a neighborhood of X .

ad) M'(x) exists everywhere exceﬁt perhaps at
x = a or (and) X = Db
Suppose at each level X; the experimentor takes a sample of
size k. Then let
k

Y (x) = 151 Y (x)/k (3.1)

where Y; is defined in (2.1).

26
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Corollary (3.1): The x = which is the solution of M(x) = «

is the same as the solution of E [Y(X) ] = a.

Proof: Since the Y; are from an independent sample

k . k
. - =1 ;
E [Y(Xj) 1 = E[ iil Yi(xj)/k 1= ¢ ii E[Y(Xj)]}
< 1 -
*Kr k E [Y(XJ)] = E [Y(XJ)]
and this is true for all xj.
That is,
E[Y) ] = ENX ] = MX (3.2)

Therefore the value X, which is the solution of M(x) = o is also

the solution of E [ Y(X) ] = a.

Thus in order to get a confidence interval for X, the equation
E[Y(x) ] =a can be statistically solved instead of directly

solving the equation M(x) = a.

Corollary 3.2: Let M(x) be monotonic non decreasing. lLet

L1 (x) and L2 (x) be the upper and lower tolerance limit functions,

such that

Pr [ L, (x) < Y(x) < L1 > 1-28 (3.3)

then L, x) and L, (x) are also monotonic increasing.




Proof: We know that

Pr{Y=1] = MXx) for all x

Therefore
k
Pr (izl Y;> KLy |M(x1) ] = 8 (3.4)
If X, > Xq, then M(xz) > M(xl) and
therefore
k
Pr | iil Yy z_KLl(x1)| M(x,) ] > 8 (3.5)

Now selecting I(L1 (xz) such that
k

(3.5) and (3.6) show that Ll(x2)3 Ll(x).

Hence it can be concluded that if x, > x;, then L,(x; > L;(x))
and therefore the tolerance function is monotonic non decreasing.
In a similar way it can be shown that Lz (x) 1is also monotonic

non decreasing. Note that the ranges of L1 (x) and Lz(x) are

from zero to unity.

Theorem 3.1. There exists an integer Kk such that

Pro[Ly(x) <V(x)) <Lj(x)12>1-28 (3.7

where Ll(xa) =a + 4§ tan C (3.8)
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L2 (xu) =q -6 tanc (3.9)
and 6, C are defined in D2 and D3,

Proof: By definition of Yi’ Yi is a random variable such that
Pr [Yi x) = 1] = M(x). That is, {Yi} are independent and identi-
cally distributed Bernoulli random variables, and therefore
K = ]; Y. is distributed as
i=1 !

&p (M 19T (1 - M 10K

which is the same as
& @ @ - 9F, (3.10)

which is the binomial distribution with parameters k and a,

when x = X . It is important to note that (3.7) can also be written as

Pr [k - L, (xa) < kY (xu) ikL1 (xa) ] >1 - 28.

That is,
K
Pr [KL, < £ Y. <kL, ]>1- 28 (3.11)
2—-.0, i=""11=
i=1
K
since the distribution of I Yi is known. The particular k
i=1

can be obtained as follows by using binomial probability tables: Select
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k such that

(KL,

i (k%}) @Y @ -k F 5 1z (3.12)
2

Since o« and B8 are known constants in (3.12), Kk can always
be found.
In D4 it is assumed that there exists two known real numbers

a and b such that

Y(x) = 0 if x<a
= 1 if x> b
which implies that
Mx) = 0 if x<a
= 1 if x> b.

Let the interval (a,b) be partitioned into (n-1) equally spaced

abutting intervals where

b-a
3

n o= [ ] +1 (3.13)

where [z] denotes the largest integer contained in z. Let

the n states be defined as follows:

S; = a+ (-1 G-a/nl, j = 1,2, ...,n (3.14)
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Note that S1 = a and Sn = b,

Theorem 3.2. There exists an 1 such that the value X, lies

between Si and S.

i+1 where Si is defined in (3.14).

Proof: In Fig. (3.1) let P1 and P2 be the points where the
derivations ox Ll(x) and Lz(x) from M(x) are maximum. Let

1
Ll(xu) and L;(xa) be the points where the tangent lines at

P and P, intersect the line x = X, Note that these tangents

will be parallel to M(x) in a neighborhood of X,» because of the
monotonic nature of M(x), Ll(x), and Lz(x) and by the very construction
of P, and P,. let Q and Q, be the points where these tangents

. intersect the line y = a. Let L,(x,) and Lz(xa) be the points

where Ll(x) and Lz(x) intersect the x = X, respectively. Through
Li(xa) draw lines making an angle c¢ with the x-axis. Let Qi and

' ‘ .
Q, be the points where these lines intersect the line x = X,

From Fig. (3.1) it appears obvious and indeed it is true that

Ly(x) < Ly(x) | (3.15)
and
LG) > Ly(x) (3.16)
Also
M - L '
Oo) 2a) = tan C (3.17)
52

]
where c is the true slope of M(x) which is unknown to the experimentor,

and §, is the difference between M(x ) and Q,-



M(x ) - L;(xa)

s

= tanc

From (3.17) and (3.18) one obtains that

M(x) - Lé(xa) M(x) - Ly(x_)
8

2 8

' )
since tan ¢ > tan ¢ and since M(xa) - L2 (xa) < Mix) - Lz(xa)
it follows that 6, < 6. In a similar way it can be shown that

8§ < &, where §; is the difference between Q; and M( X,)-

Now consider the inequality

M(x) - §,tan c' < Lz(x) < M(x) _<_L1(x) < M(x) + §,tan c'.

By fixing Y = a, one can solve the following equations.

M(x) -5 tanc' = q

Lz(x) = q

Mx) = a

Ll(x) = q
M(x) - 61 tan c' = a,

Because of the monotonicity of the functions in (3.19) their

solutions satisfy the following inequality that

32

(3.18)

(3.19)
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X - Glfx(l‘l) ixaix(Lz) <X, * 8,

since 6§, <6 and §; < ¢, it follows that

| (x, + 85) - (x, - §;) | < 2s.

Therefore the interval Ix,) = I()caL +6,) - (x, - §;) can cover

at the most two states and those two will be Si and Si . which

1’
shows that there exists an i such that

Pr[SiixaiSiﬂ] = 1.

e The experiment is restricted such that it will be performed
at levels x = Sj’ j=1,2, . . ., n. We call a trial as an
experiment of sample size k at a particular (fixed) level Sj‘
Before each trial is performed a decision is made to select the
experimental level S ; by using the following three rules:
Rule 1. If Y(SJ.) is greater than «, then the next trial will
be performed at the level Sj-l'
Rule 2. If Y(Sj) is equal to o, then the next trial will be
performed at the level S 5
Rule 3. If Y_(Sj) is less than a, then the next trial will be
performed at the level S 410 This procedure defines a sequence
of experimental levels {xN(j)} where XN(1) is the best a priori

estimate for x, and { N(j)} is defined as



N(1)

NG +1 = NG +1, if Y(XJ-) <a

34

= 1, and for j >2 and j <n

(3.20)

NG +1) = N(G) , 1if Y(Xj) = a
N(J +1) = N(J) -1, if Y(XJ) > a

Thus, the procedure described by (3.20) defines a random walk with

reflecting barriers at the lower and upper limits. On the basis of

this fact a theory will be developed to construct the desired

confidence interval.

Theorem 3.3.

Let P be the transition matrix of the random walk

defined by (3.20). Then the elements of P can be defined as follows:

1)
(@)
(3)
(4)

P12 = Php1 =1
P. . = 0 forall i and j such that |i - j| #1

1,)]

Pij-1>0 ad Py 5y>0
There exists an i, i=1, 2, . . . n where xae(Si, Si+1)

and real numbers 8 and N, 0 <B <N <1-8<1 such that

a) 1= Pl,2 _>_P2’3>__ .. ->-P:i-1,i >1-8 (3.21)
B) 1= Pin12Pnyna2c s 2P 5210 8

c) 0«< PZ,l _<_P3’2 <. .. ipi-l,i-z <8

D 0 <Py nPhan1S: - Piag ez 58

e) 1-H'<—Pi+1,iil-8

£) B <Py iap =T

8 M<Pjjqcl-®

h) g <P <1-1

- "1,i-1 -



Proof: We have already mentioned that L1 (x) and L2 (x) are
the upper and lower tolerance equations such that
Pr [Y(x)iLl(x) ] > 1-8
and
Pr [Y(x):Lz(x) ] >1-8
for all xe(a,b).

Let I(xa) be the interval [x(Ll), x(LZ) 1.
Let Pr[Y<al=0 and Pr[Y>a] = 1-1 given x=xa(3.22)

where 1 is a real number in 0 < I < 1. From Fig. (3.1) it is

easily seen that
Pr [ Y(X) > a | xe I(x,) and x <x ]

= Pr [ YX) > Ll(x) ] <8 (3.23)

Pr [ Y(X) < a | xe I(x,) and x>xa]
= Pr [Y(x) < Lz(x) ] <8 (3.24)

Pr [ Y(x) > « | xe I(x,) and x>xa]

= 1-Pr[Y(x)>u|er(xa) and x<xa]_>_1-8(3.25)
Pr[Y(x)<a|ch(xu) and x <x ]

= 1-Pr[Y(x)<a|XeI(xa) and x>xa]:l-s(3.26)




From Fig. (3.2)
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BiPr[?(x)>aIXeI(xa) and x<x ] <1-1 (3.27)

B<Pr[Y(x) <a| xe I(xu) and x>xa]:n (3.28)

1-n_<_Pr[Y(x)<a|er(xa) and x>x ] <1-8 (3.29)

II:Pr[Y(x)<a|xaI(xa) and x<x,]<1-8 (3.30)

According to the rules 1, 2 and 3, when the experiment is at
a state j at the n th trial, then it will be either at j-1 th
or j th or j+1 st state at the (n+l)st trial. If we take the
sample size k such that it will satisfy (3.11) and Y¥ q,
then

Pr [ the process will be at Sj it was at Sj at
at the (n+l)th trial / the nth trial = 0.

Let pij be the probability that the process will be at the state

j given it was at the state i, in one trial. That is,

Pr { the process will be at Sj it was at Si at = P.
at the (n+l)th trial the nth trial 1)

Since Y. (x) = 0 when x<a, Y(x) = 0 when x < a.

Therefore, Yi(x <a) = 0 <a. Soby rule (3), P, = L

Similarly since Y (x) = 1 for all x >b, Y(x) 1 for all
X > b. Therefore Pr [ Y(x) >b ] =1> a. So by rule (1), Pn

which proves (1) in (3.21).

,n-1 =

1,



Since the process will be either at Sj-l or SJ. +1

after one trial given that it was at S ; before the trial, the

P; 5 =0 if li-j| # 1 which is (2) in (3.21).
’

By the definition of Pi 0.
’

P..1>0 and P:.L

. . >
j’ "1,1- yi+l

Rewriting (3.23) . . . (3.26) in terms of Pi. one gets

J
0<Pj,j-1is where i=2,3 ...,1i-1
0<Pj,j+1-<-8 where j = i+2, i+3, . . ., n-1
l1-8 —-Pj,j-l < 1 where j = 1i+2, i+3, . . ., n-1
l-Bin,j+1<1 where i=2,3 ..., 1i-1.

Thus the elements of P satisfy (3.21) and the existence of

i, i=1, 2, .. ., n such that X,€ (Si, Si+1) is shown in theorem (3.2)
In order to get the required number of trials to obtain the

desired confidence interval consider the following definitions and

theorems [19].

Definition 3.1: A finite Markov chain is a stochastic process which

moves through a finite number of states, and for which the probability

of entering a certain state after a single step depends only on

the last state occupied.
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Definition 3.2: An ergodic set of states is a set in which every state

can be reached from every other state, and the ergodic set can not

be left once it is entered.

Definition 3.3: An ergodic chain is one whose states form a

single ergodic set; or --equivalently-- a chain in which it is

possible to go from any state to every other state.

Definition 3.4: So’ Sl’ SZ . . . 1is a divergent sequence and let

n-1
t = (/n) S

n . i
ji=0 1

if the sequence ty» t;, . . . converges to a limit t, then we

say that the sequence {Sn, n > 0} is Cesaro-summable to t.

Definition 3.5: A cyclic chain is an ergodic chain in which

each state can be entered at certain periodic intervals.

Definition 3.6: A regularAchain is an ergodic chain that is

not cyclic.,

Theorem 3.4: If P is an ergodic transition matrix,

a) the sequence { Pn, n >0} (Note that n is a positive

integer) is Cesaro-summable to A

b) Each row of A is the same probability vector

Y = (719 Yz "'Yn)'
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c) the vector y is unique fixed probability vector of P.

d) PA AP = A (the matrix A is called the Ceasaro-

summable matrix).

Let ngn) is the fraction of times in the first n steps
that the process will move to the state Sj . The law of large

numbers for regular Markov chains can be stated as follows.

Theorem 3.5: Consider a regular Markov chain with limitin&vector

Y = (¥y» 25 + + +» v,). For any initial vector T,

En [ vén) 1 +v

and for every ¢ > 0

Pr[|V§n)-Yj|>e]*0

as n tends to infinity.

The transition matrix P defined in (3.21) has the necessary
features such that theorems (3.4), (3.5) can be applied. Therefore

using theorem (3.4), the following theorem can be stated.

Theorem 3.6: Let P be the transition matrix defined in (3.21),

and let the Ceasaro-summable matrix be A = Jy where y = (yl, Yos coes

yn) and JT = (1, 1. ..1) are lxn vectors such that

(3.31)

"
— =

YJ (3.32)
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Z\%
then for all 0<g <mn (402 1) @ -0 ;5

i+2
l'. Y .>_ 1 e B . (3.33)
j=i-1 J
Proof: On solving (3.31) in terms of Yy, one obtains 17
and for j=2,3, .. .,n
Y=Y Pia Pps -« Pygy/ Py Py By (3.34)
n
using (3.32) © y. =1,
j=1
i+2
The aim is to find z Y oo
j=i-1 J
Using (3.34)
B2 P Pigaa , MPiePias | MPieeePiin
P £ il - 1 M ovwns Jumentiiian Suwwes
j=i-1 21°°° Fi-1,i-2 21°°M,i-1 21°°"Fi+li
. Y1P12: 0 Pig 540
P P. .
21°° 7 i+2,i+1

In order to eliminate 01 which is an unknown quantity,
consider the following ratio
i+2 i+2

r = z y: / (1- ¢ Yi )
j=i-1 J j=i-1 ]
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i+2
L Y can be written as

j=i-1 J
Mzt 1, 1, FhE ) Guelid i oo

Par-Piagge Fian o Pigar o Pig-rfiens Pii-1Pie1iliegiel
Using (3.33)

ig2
1- §=i_fJ itz e Y2 Y3t ¥ Ym

which can be put in the form
1P12- Py g <: 1 Pi-1,i-20Pa | , Gici-z ),

PareFicnicz (\Pi-1i Fi-z,icieta2 Pi.2,i-1

——

ii,_i-rl 1+2 ,i+3 1+3 it + p1+'5 i+4° pﬂ"lan \ (3.36)
Lol B P e, L . 3.
Pic1,iv Fie3 502 Piva 43 Piea i+3’ pn,n-l-—J

r 1is the ratio of (3.35) and (3.30) and therefore is frce of Yy Hence r

can be written as

[r 1, 1, Pha . P1 1+1P1+1 is2 i]
Pi-1,i 0 Piiar PBia1ilia, i Pi i-1Pi+1,ili02, is]

p—— Pini-z P 1 1,i-2 [’ i,i41°°" 1+2,i+3
1-1,1 Pi2,i-1"P12 Pi-2,i-1 Pi-1,iPi-3,102

P. . pP. copee P
{:1 R i+3,i+4 .. . i+3,i+4 nl,n] (3.37)

i+d,i+3 Piva,ie3 -Pn n-1




i+2
We want to get a lower bound for I v;:. We will get this
j=i-1

* * *
lower bound as a function of r , where r is such that r > r .

i+2
X Y-
. j=1-i J
T 7
1 -1 Y
j=i-1 J
which implies that
i+2 1 1
Zo 'Yj = T > T
j=i-1 1 += 1+ =
r r
Since we do not know the values of Pij for all |i-j| =1
except P12 = Pn n-1 T 1, it becomes necessary to replace these
’

elements by appropriate bounds. Therefore in order to get a lower

bound for r, we will try to minimize the numerator and maximize

the denominator of (3.37) using (3.21). Consider first the numerator:

1 1 Il I
Numerator > 1 * T—y * W@ E” * D T8I
1 I JI[¢] .
> 1 + S + 1T + T since T_—B' > 1

1+(1-1) +0+ I8 _ 2408
1-m 1-m

| v

42
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Similarly, on considering the denominator it follows that
Denominator < - [ & )1-2 + (1) ]
=15 b R e

(1-8).H'B B B
e (P ]

g 12 g N-i-1
18 1) R ng - =9
B

-8 18 1-(f5)  ama-e’ 1- £

ia

< B8 1-8 ng
- (T-8) 1-28 (1-m) (1-8) (1-28)
B B "
since < 1 and therefore (——) <1 where x is a
1-8 1-8

positive integer. That is

. B I8

Denominator < “BY(I-28 + (1T-8) (1-28) (1-1)

!

8 . 8
2 mmEzman (-] T T

Therefore

2 +108 (1-8)(1-28)(1-m)
(1-m) B

> (2+18) (1-28) (1-8)/ 8




We want to find the range of 8 such that

i+2
pX y; 21-8
j=i-1 J

l-28

which implies that r >

(2+me)(1-28)(1-8) , 1-8
- 7B
or
(2+1m8)(1-28)-1>0
or
2
-2mg“ - (4-me+1>0.

Solving the above quadratic equation for 8 one obtains that

(4-1m)+ V(4-m°+8n
8 .1}

But B is positive; therefore

4-m-/16+1 _ A6+ -(4-1) .
B < —m L ;

and it is obvious that B8 is real. Since we want B8 < I , the

5.4 -1)
a0 ’

2
required range of 8 is 0 < 8 < min [(16 + 1)

]
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(3.38)

(3.39)
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The bounds on 8 will not affect the usual selection of
B =0.05 or B8 = 0.10. Note that the lower bound for jgzlyj
as formulated by (3.38) is independent of the size of the transition
matrix, that is the number of states and the location of the ith
state or the location of X, Therefore, if the value of B8 is
such that B8 satisfies (3.39), Theorem 3.5 assures that there exists

]
an M such that

for all k and M > M', where Yrj is the kth row, jth column
element of PM That is, the proportion of times, in the first M

trials that the process will move to at least one of the states

S S S;4p» given x e(S;, S;,,) will be at least (1 - 8).

i-1° Si»

This can be interpreted as follows: If

i+l

is a random interval and given S; <X, <54

i+l then,

Pr [ I covers X, | X,e (85, 85, 121 - 8.

It is important to note that the interval I can then be constructed

in such a way to obtain the desired confidence interval. Since we
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choose | Sie1 = S5 | <6, | Si42 ~ Sj.1 | < 36 is the desired bound for

the length of the confidence interval.

Let Mi be the power of P such that

,1>1-B forall m=1, 2, . . ., n.

By repeating this until i exhausts its range we get a sequence of

numbers Ml’ MZ’ o o ey b%-l'
Let

M o= max [M, M, ...,M ] (3.40)

Note that M will give the desired number of trials. Therefore the
total number of samples required is N = KM. Select an initial estimate
for X, and perform M trials of K observations sequentially by
Rules 1, 2, and 3. The experiment ceases at the state Sj (say).

Then the desired confidence interval for . is given by

and

| s,

J+2 d Sj'l I _ﬁ 36.
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Chapter IV
EXPERIMENTAL PROCEDURE TO OBTAIN SAMPLE SIZES IN
VARIOUS TEQINIQUES

Due to the number of uncontrollable parameters involved,
perhaps the most practical means available at this time to study
the sample size required to get the desired confidence interval,

is a '"Monte-Carlo Procedure'.

"Monte-Carlo Procedures' are often useful in many probabilistic
problems. Suppose that we want to study the mortality rate of a
given population of insects. One can set up a model for this by
comparing random numbers with the response function. Using the random
numbers such that they will match with the required statistics, one can
generate a random sample from the pqpulation which can be analyzed as
if it were the data collected in the laboratory. In this way one can
obtain the required data without actually performing the expgriment,
which will be consistent with the real data. There are several ways to

generate the desired random numbers ([16].

Recall that M(x) is the response function, a a constant such that
0 <a <1, 8 the required confidence coefficient and A the desired

length of the confidence interval. We considered A = .2 and 8 = .10.

In practice the form of M(x) is unknown to the experimentor, but

it is necessary to define the form of M(x) to perform the sampling scheme.
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In this study 6 forms of M(x) were selected arbitrarily, of which two

are cumulative normal distributions.

Ml (x)

M, (x)

Mz (x)

M4 (x)

Mg (x)

Mg (x)

0

4x2

1-4/3 (1 - x)*

1

0

2x2

1-201 - 0

1

0
4/3 x2

1-401 - x)°

1

0

3x2

1 - 3/2(1 - x)*

1

X

These are:

3/4

0
1/3

X

;Y @n* (+2) exp (-45(t/-2)%) at

Ny

L St wl e

s < X <€

fx 1/(2")12(‘3) eXp{‘li(t/'S)z} dt -®» < x <w
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Sketches of these M(x)'s are shown in Fig. 4.1 and Fig. 4.2. The

values of X, for o = .05, .1, .5, .9, .95 are given in Table I.

As the procedures to obtain the sample sizes vary for each

technique, the procedures are presented separately.
The general procedure is briefly as follows:

(1) Generate a sequence of random numbers [ Z., i=1, 2, . . .]
from a uniform distribution on (0, 1).
(2) Compute M(xi) given the stimulus level X; -
(3) In order to decide whether there is a response or a non-
response at the level x; compare Z; with M(xi).
(a) If M(xi) < Zj’ consider that there is a nonresponse

(b) If M(xi) > Zi’ consider that there is a response.

Spearman-Karber Method.

In this method at each level the experimentor is required to
take n observations. Choose an initial level X; Compare M(xi)
with n random numbers Zj’ j=1,2, .. .,n. Let ry be the
number of responses, and we know that p; = ri/n. If p; >0,

this procedure is continued at levels below X3 until we get

p; = 0, and at levels above X4 until we get p; = 1. We let
the level at which p; = 0 be Xq5 the lowest level of the
experiment and the level at which p; = 1 as X} the highest level

of experiment. An example of this is given in Fig. 4.3. The confidence

interval for the 50 percent point is constructed for two different values
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of d;(1) d< 20 and (2) d> 20 and for values of n ranging from

3 to 6. Each experiment is repeated ten times. The average of the desired
sample sizes and the range of sample values are given in Table II. They
are obtained by linearly interpolating between the sample sizes which

give the width of the confidence interval slightly larger than 0.2

and slightly smaller than 0.2.

Dixon-Mood Method.

Choose an arbitrary level of experimentation. Let it be Xqge

1f Z1 > M(xo) take a level above Xg» that is X,q>

take a level below x,, that is x ;. This procedure can be continued

and if Z1 < M(xo)

for any number of trials. The confidence intervals are constructed for
sample sizes ranging from 20, 30, . . . for two different Xy (1) near the
fifty-percent point and (2) away from the fifty-percent point; and for
two different values of d (1) d < 20 and (2) d > 20. Each experiment

is repeated 5 times and the average of those values and the range of
sample values are given in Table III. These numbers are also obtained

by linear interpolation as described in the Spearman-Karber method.

Farrell's Method.

In this method we choose an arbitrary level Xge By
definition N(1) = 0. If Z1 > M(XN(l))’ then N(2) = N(@1) +1
and if Z1 < M(XN(I))’ then N(2) = N(1) - 1. In general the sequence
N(n) 1is constructed as follows. N(i + 1) = N(i) + 1 according as
Zi > M(xN(i)) or Zi < M(xN(i)). The sequences (an, n > 1},{bn, n > 1},

{c,, n>1}, {d,, n > 1} are constructed as described in Chapter II.




The rest of the computation is the same as it is described in Chapter II.
This procedure is repeated for various sets of random numbers and the
empirical results are given in Table VI. In all these experiments Xq

is taken as the midpoint of the range. That is X, is taken as %(b - a)
where a and b are such that M(x) = 1 for x>b and M(Xx) = 0
for x < a. In the case of a normal curve a and b are taken as

-40, 40, TrTespectively.

For the particular procedure given by the author, we compute
M using (3.39) and k using theorem (3.1). Choosing an arbitrary

state Sj’ compare Zj’ iji=1,2, ..., k with M(xi).

Yj (xi) = 0 if ZJ. > M(xi)

Yj (xi) = 1 if Zj < M(xi)
Compute

— k —

Y(xi) = jil Yj (xi). If Y < a,

then the next trial will be made at the level Xiy If Y> a, then

1.
the next trial will be made at X; 1+ This procedure is repeated

M times. If S:i is the level at the end of M trials, then

(Sj-l’ Sj +2) s the required confidence interval. These results are

given in Table VII.

Parts of the above described calculations were perfoﬁﬁed with
the help of the computer, CDC 1604, The University of Texas

Computation Center.




X, FOR VARIOUS o AND FOR DIFFERENT M(x)

TABLE I
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M .05 .10 .50 .90 .95

M1 .1118 .15811 .38713 .72614 .80635
M2 .15811 .22361 5000 .7764 .84189
M3 .19365 27386 .61237 .84189 .8882

M4 ;12884 .18248 .4227 .7419 .8175

M5 -;3290 -.25632 0 .25632 .3290

M6 -.4935 -.38448 0 .38448 .4935
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TABLE 1V

NUMBER OF TRIALS WHICH DOES NOT COVER

THE REQUIRED VALUE IN THE CASE OF

NON NORMAL DISTRIBUTIONS

a=.95

a=,05 a=.10 a=,50 a=.90
d < 20
x0 near the 50% pt. 2 0 0 3 >
_ d <2
Mli{ x0 far from the 50% pt. 2 1 0 1 2
L d> 20 0 3 0 0 0
o
% I d < 20; x0 near the 50% pt. 0 0
M2 | d < 20; X, far from the 50% pt) 1 4
i
—d3> 2 0 0
d < 2
x0 near the 50% pt. 3 4 0 1 1
M3 d < 20
x0 far from the 50% pt. 0 1
d > 2o 0 2
M d < 20; x0 near the 50% pt. 0 2 0 0 3
t
41 d < 205 x0 far from the 50% pt.| 2 4 0 3 3
d > 20 0 0 0 0 0




TABLE V

AVERAGE NUMBER OF TRIALS WHICH DOES NOT COVER
THE REQUIRED VALUE IN THE CASE OF
NON NORMAL DISTRIBUTIONS

o 05 .10 .50 90 95
{

.267 267 0 .267 .467

,067 .267 0 .200 .133

.534 467 0 ,200 .267

.133 .267 0 .133 .267
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TABLE VII

FIXED SAMPLE SIZES FOR THE TATIKONDA METHOD

Confidence Level = .10 Width of the Interval = .20

.05 .10 .50 .90 .95
Ml 473 371 473 1100 1100
M2 840 720 330 720 840
M3 840 720 600 360 330
M4 600 480 363 990 990
M5 1298 1102 926 1102 1298
M6 2600 2496 1664 2496 2600




TABLE VIII

A TABLE TO COMPARE MAXIMUM SAMPLE SIZES OF VARIOUS METHODS

61

M(x) Method =05 a=,10 a=.50 a=.90 a=.95 No,
Farrell 23771 5055 60 2812 14782 10
Tatikonda 473 371 437 1100 1100 Fixed

- Dixon-Mood 80 62 17 62 80 5
Spearman-K4rper - -- 30 -- .- 10
Farrell 7791 2456 25 7574 20712
Tatikonda 840 720 330 720 840

W Dixon-Mood 96 53 21 53 96
Spearman-Kdr, -- -- 50 -- --

Farrell 34614 16282 42 4380 15659
Tatikonda 840 720 600 360 330

W Dixon-Mood 75 54 18 54 75
Spearman-Kdn., -- -- 46 -- --

Farrell 16882 3308 33 6772 24416
Tatikonda 600 480 363 990 990

M Dixon-Mood 77 51 21 51 77
Spearman-Kdny. -- -- 51 -- --

Farrell 31998 2770 26 2059 34551
Tatikonda 1298 1102 926 1102 1298

* Dixon-Mood 81 51 17 51 81
Spearman-Kar}, -- -- 33 -- --

Farrell 39524 4767 37 4607 35835
Tatikonda 2600 2296 1664 2696 2600

ve Dixon-Mood 146 94 37 94 146

Spearman-Kiy. -- -- 123 -- --
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Figure 4.1 Non-normal Response Curves
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Stimulus Ievel No. of specimens No. of Responses Prob. ot
xi Tested (n) (r) Response pi
1.0 5 5 1.0
.8 S5 3 0.6
.6 5 2 0.4
.4 5 1 0.2
.2 5 1 0.2
0 5 0 0.1

Fig. (4.3) EXAMPLE OF A DATA FOR SPEARMAN-KARBER METHOD

No. | No.
of 1'sjof 0's
1.0 i 1 0
-8 o |1 ) 4 1
- Y T R A - I L 001 | 10 11 4
Allga ' 10 100 [N M) ol tr ot o 12 11
2l0__no. A L 000 ] O 0 00 O 2 12
0 (o) 0 0 2
TOTAL 30 30

Fig. (4.4) EXAMPLE OF A DATA FOR DIXON-MOOD METHOD




10G (AVERAGE SAMPLE SIZE)

AVERAGE SAMPLE SIZE

5 ; 100,000
4, - 10,000
3. F ~1000
20 — 100
1. 1 | 1 1 1 —1 I 1 10

0 0.5 1.0

PROBABILITY OF RESPONSE,

Figure 4.5 Sample size versus probability of response
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Chapter V
COMMENTS ON THE RESULTS OF THE EMPIRICAL STUDY

A significant result of the empirical study seems to be that the
two nonparametric methods given by Farrell and the author involve large
sample sizes especially when the tail points are of interest. In the
methods given by Spearman-Karber and Dixon-Mood, the sample sizes are
not large but it is assumed that some function of the stimulus has
cumulative normal distribution. In these two methods the sample
size increases with d, the difference between the normalized levels.
In the Spearman-Karber method, the sample size when d > 25 increased
two to four times the sample size when d < 20. Similar behavior is noted
in Dixon-Mood's method and even though the sample size required.to obtain
the desired confidence interval for the 50 percent point varies little,
there is significant increase in the sample size required at the tail
points. The sample size does not vary significantly when the starting
levels are chosen near the 50 percent level or away from the 50 percent
level. Probably the reason for this is as follows: When we choose a
level far from the 50 percent level, the experimentation will be made
at steadily decreasing levels or increasing levels depending on
whether the first experiment is mede at a level larger than the 50
percent level or smaller than the 50 percent point. From then onwards
the process will continue as if the initial experiment is made near the
50 percent point. In estimating closely the 50 percent point, one needs

some additional experiments which are finite in number and depend on the
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distance that the initial level is from the true 50 percent point. In

the results given in Table II, the initial level is chosen at the 97
percent level (that is, about u + 20 in the case of a normal curve).

The restriction B3 in Chapter II, which says that the sample should be about
40 to 50 in order to use the method seems to be unnecessary, as the esti-
mations obtained when the sample sizes are 20, 30 appeared reliable.

This is also consistent with the results shown by Brownlee, Hodges,

and Rosenblat [5].

On studying the Tatikonda techniques it appears that an advantage
is gained due to the distribution-free assumption, concerning the
response curve M(x), which may be important in many experiments.
Unfortunately, the sample sizes are very large compared to two of the
methods. Among the two nonparametric methods, the one proposed by the
author seems to be better with respect to sample size than Farrell's
method. The analysis and computation are much simpler in the method
proposed by the author when compared to that given by Farrell. Farrell's
analysis is not as easy to understand as the other methods and the com-
putation process is a bit tedious. This method depends mainly on the
fact that the sequence N(0), N(1), . . ., N(n) takes the value i
infinitely many times as n infinitely large, which is a result
proved by Harris [15]. But as the process proceeds the difference
between the members in the sequences { c(n), n>11}, {d(n), n>11}
becomes very large, and thus makes the total sample size large. It is
sometimes noted that the difference between two consecutive members of

these sequences is as large as 1000.
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In general the up-and-down method does not seem to be efficient
for the end points. That is, it is not an efficient method for
estimating the small or large percentage points unless the normality
assumptions are made. Another obvious disadvantage of this general
method is that each specimen s must be tested separately. This very well
could be the reason why the method is not used in many quantal response
experiments [5]. The total time required for computation is like—ly to be
prohibitive unless the response to the stimulus is immediate, as for example,
in sensitivity testing of explosives. But in tests of insecticides, for
example, a large group of insects can sometimes be treated as a single
one. In large experiments of this kind any advantage of the up-and-down
method may be outweighed by the requirements of single test. It is not
necessary that the total time required to run an up-and-down series is n
times the time required to conduct some other non-sequential experiment
with n trials. When the up-and-down is made sequentially for a sufficient
number of times, it is possible to make an estimate for the reqt‘lired
stimulus level with the guaranteed accuracy, regardless of the initial
guess at that point (but in the case of nommality it depends on the
guess for o). The estimates in the up-and-down always exist, while in

some other methods, this need not be true for small size.

Considering the application of Spearman-Karber method and Dixon-
Mood method to response functions which are non-normal, it seems that the
analysis given by Spearman-Karber still holds for non-normal response

functions, with the assumption A3. While considering the Dixon-Mood
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method the assumption B4 is basic. It is noted that in this particular
study sometimes the computed intervals did not contain the true value.
These values are given in Table IV. These numbers indicate the number
of times the interval failed to include the true value in the total of
5 trials. The average number of these failures are given in Table V.
The interval always includes the 50 percent point, whether the response
curve is cumulative normal or not. From the results shown in Table IV,
it seems to be that the number of times the interval includes the
desired point increases when d > 2o. The reason for this may be the
increase in sample size when d > 20. The average of the sample sizes
required by different techniques is given in the form of a graph. The
graph shows that the sample size required by Dixon-Mood method and
Spearman-Karber method is almost negligible compared to the sample size
required by Farrell's method for the end points. The sample size ‘
required by the method given by the author is nearly a constant. That
is, it does not vary much from the 50 percent point to the end points.
It depends strongly on the slope of the curve at the stimulus level
being estimated, where as, 1n the other methods the sample size depends
on the percentage point being estimated. Another difference between the
method given by the author and the competing methods studies here, is
that in all competing methods, the sample sizes are random numbers,

while sample size associated with the author's method are fixed.
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