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Chapter I 

INTROw(TrI0N 

Sensit ivity testing is a term associated with tests characterized 

by a sample specimen being subjected t o  a stimlus of known intensi ty  

and the specimen e i ther  "responds" to  the stimulus o r  does not "respond" 

t o  the stimulus depending on whether some critical physical threshold 

has o r  has not been exceeded for that par t icular  sample specimen. 

That is, for  some "stimulus-subject systems" quantitative measurement 

of the response attr ibuted t o  the action of the stimulus is impossible 

o r  almost impracticable. For example i n  tes t ing the explosives a common 

procedure is t o  drop a weight on specimens of some explosive mixture 

from various heights and observe whether it explodes o r  not. There 

are heights a t  which some of the specimens w i l l  explode and some of 

them w i l l  not. 

explode would explode i f  the weights were dropped from a suff ic ient ly  

high level. 

I t  is assumed tha t  the specimens which w i l l  not 

Therefore we suppose that there is a critical height 

associated w i t h  each specimen and there w i l l  be "response" o r  %on 

response" depending on whether the critical level is o r  is not 

exceeded by the intensity imposed by the weight dropped. Thus the 

population of the specimen is characterized by a continuous variable 

whose critical height can not be measured [7]. 

This s i tuat ion arises in  many f ie lds  of research. For example 

insecticides are assayed by assigning batches of insects t o  standard 

test preparations and analyzing the relationship between the death rate 
I* 
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and the dose; that  is, t o  observe whether the critical dose for  the 

insect is less than or  greater than the selected dose. 

culty arises i n  pharmacuetical research dealing with germicides, 

anesthetics and similar drugs, i n  explosives, propellants, detonation 

devices and armor-piercing projectiles. Perhaps i ts  earliest imple- 

mentation w a s  i n  biological studies of dosage mortality and response 

t o  drugs [ X I .  

The same d i f f i -  

Although the application has been diverse, the sensi t ivi ty  

experiments have many characteristics i n  comnon. In true sens i t iv i ty  

experiments it is not possible t o  take more than one observation 

on a given specimen. The measurement at  any point i n  the scale destroys 

the specimen so tha t  a new specimen is required fo r  each measurement. 

Neither the insect that  has died or weakened, nor the explosive 

having been packed can be used again as a sample. That is, once a 

test has been made the specimen is al tered and so a bonafjde resu l t  

can not be obtained from a second test. A c o m n  procedure i n  t h i s  

type of experiment is t o  divide the sample into several groups (usually 

but not necessarily of the same size) and t o  test one group a t  a 

chosen level,  and a second group a t  a second level and so on. 

There are several methods of obtaining and analyzing the above 

described data. 

The basis of t h i s  method is the linear transformation of the normal 

curve , with 

One of the oldest methods is the "probit method." 
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being considered as giving percentage response a t  the level x. The 

"probit" y is obtained by adding 5 t o  x i n  order t o  avoid 

negative value i n  the use of transformation. 

makes it possible to  represent the relation between the percentage 

response and the dose as a l inear  relation, and reduces the problem 

t o  one of l inear regression [Zl]. This was  developed by Bliss [4] 

and Fisher [ l l ] ,  

formation of precentage effects ,  what he called,"nomal equivalent 

deviations" (n.e.d.), one can plot an "S" shaped curve. 

interesting t o  note tha t  the history of the "Probit method" goes 

back t o  1860. 

essent ia l ly  Gaddum's n.e.d. t o  express the proportion of trials [Zl]. 

This transformation 

In 1933 Gaddum has showed that  with the trans- 

I t  is 

Fechner, a physiologist used a method which is 

In l a t t e r  years a number of other methods were developed 

t o  handle the sensi t ivi ty  data w i t h  or  without transformation. Some 

of the well known methods are the Spearman-Karber method, the method 

of extreme effective doses, the Reed-Wench method, the Dragsted- 

Behrne's method and the Moving average method. A re la t ively new 

technique called the "up-and-down method" was developed during World 

War I1 and is used in  explosives research. A.method t o  obtain and 

analyze the sensi t ivi ty  data using up-and-down technique was  given by 

Dixon-and-Mood [7] e 

But most of these commonly used methods are applicable only 

i n  special  cases and are based on various assumptions concerning 

the distribution of the estimators, especially i f  the confidence 
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limits are desired. 

considers the logarithm of the tolerance as being approximately 

distributed according to a normal density. We define the tolerance 

distribution as follows 

For example in the Spearman-Karber method one 

Definition 1. - Let Y(x) be a random variable defined on the closed 

interval [ a, b 1, then we say that the function y = M(x) 

is a regression curve of y - on x if and only if 

where E[*] denotes the expectation of [e]. 

Definition 2. The regression curve M(x) is said to be a response 

curve if 

M(x) is continuous on [ a,b 3 

0 < M(x) e 1 

1 
p H[Y(x)]dY = 1 for each x on [ a,b ] 

- 

- 
0 

where H[Y(x)] denotes the family of density functions which 

depends on the parameter x. 

A response curve is sometimes called a tolerance distribution 

by applied statisticians [XI. 
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That is, in Spearman-Karber method 

where z = log x, and x is the stimulus level. 

The Reed-Wench, Dragsted-Behrens and the Moving average methods 

can be applied only when M(x) is symmetrical. Dixon-and Mood's 

method also considers that 

where z = log x or some function of x (where there must be a 1-1 

qorrespondence between z and x) , and x,  the stimulus level. 

these methods are relatively effective only when the goal of the tests 

is to estimate the mean (50 percent-point) or the median. 

much attention has been given to the problem of.estimating the portions 

of "tails" of the response curves, i.e., to estimate the stimlus levels 

with either very small or very large response probabilities. 

the response probability as follows: 

Most of 

Recently 

We define 

Definition 3: The statement that y is the probability of response 

at the stimlus level x means that Y(x) is assigned unity when a 

response occurs, that is -- 

y = Pr [ Y(x) = 1 I ,  
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- o r  equivalently, 

y = E [ Y(x) ] = M(x). 

where P r  [ * ]  should be read "probability that  the event [ - 3  occurs ." 
In many instances, the experimentor has no clear notion of the 

structure of the regression curve he wishes t o  study. 

2s not advisible t o  permit a hypothesis as t o  the precise shape of 

the regression curve nor t o  describe possibly various distribution fea- 

tures ,  Moreover incorrect assumptions can have serious effects on the 

design and analysis of the method. Unlike some other types of designs 

(e.g. factorial)  and analysis (e,g,, regression) , sensit ivity procedures 

depend c r i t i ca l ly  on the accuracy of the distribution assumptions. 

Thus, fo r  example, i f  it is assumed tha t  a response function is 

cumulative n o m 1  when it is really, say, uniform, then the design 

and analysis chosen w i l l  be satisfactory only when the median response 

(that is, the 50 percent stimulus level) is of primary interest .  

other regions, corresponding to  small o r  large response probabilities, 

highly x e i f i c i e n t  designs and inaccurate analysis w i l l  result .  Thus, 

generally speaking, a parametric approach should be selected only after 

an extensive amount of previous experience and complete data analysis 

are available. 

sensi t ivi ty  data are not consistent with the classical  response 

function forms, and it becomes necessary t o  employ distribution - free 

(or non-parametric) methods t o  analyze the sensi t ivi ty  data. 

In these cases it 

In 

But often th i s  is not the case, since many sets of 
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Fortunately, several distribution-free methods have been 

developed. Most of these methods i n  general assume only tha t  the 

response function is nondecreasing with increasing stimuli. This 

is the case i n  general although there are occasional instances i n  

which non-monotonic behavior has been noted. J. B. Gayle [13] has 

investigated th i s  property by carrying out a larger number of repl i -  

cate tests t o  permit a statistical analysis of data. The resu l t s  

indicated that  over a considerable range of stimulus levels the 

frequency of response decreased significantly with increasing stimulus 

levels. 

The most commonly encountered type of sensi t ivi ty  problem is 

tha t  of finding at  what level of the stimulus variable a given 

percent response w i l l  occur, 

often necessary t o  determine the  dose (called LD 50 or  ED 50) which is 

effectively the median of the distribution of responses. Often 

one is interested i n  

95 percent of the time. 

cerned with inverting the relation which gives the probability of 

response as a function of the stimulus. Thus it is also known as 

the "inverse response problem". 

For example, i n  biological assay it is 

the stress that  induces a detonation, say, 

In each of these si tuations one is con- 

In general the problem can be stated as follows. Let x 

be a stimulus level and let  the probability of response a t  x be 

M(x) . That i s ,  le t  a random variable y(x) take the value unity 

when a response occurs and zero when a response does not occur. 
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Hence, f o r  every x, a par t  M(x) of the population from which 

the sample specimens are selected w i l l  respond when subjected t o  a 

stimulus level x, and the remaining part  1 - M(x) w i l l  not. 

Definition 4. The value xa for  each value a such that 0 < a < 1 

is said t o  be the stimulus level of order a i f  and only i f  xa 

satisfies the regression equation 

M(x) = a 

Definition 5. The response curve M(x) is said t o  be a quantal 

response curve i f  and only if  the density function H [ y(x) ] is - 
a Bernoulli probability law [ [23] Parzen, p. 218 1 ,  that  is 

H[y(x)] = [ M ( x ) ] ~ ( ~ )  [ l -  M(X)] ' -~(~)  , y(x) = 0 ,  1 

= o  elsewhere. 

In 1951 a technique was developed by Robbins and Monro [24], 

in  which one can estimate xa f o r  a given a without any knowledge 

of M(x). 

Method". 

The method has been called the "Stochastic Approximation 

The estimation procedure is sequential and distribution free. 

In recent years work has been done t o  construct a confidence 

interval  of preassigned length a t  a given confidence level.  These 

techniques were developed by R. H. Farrell [lo] and P. L. Ode11 [22]. 

A generalization of the second technique is developed by the author 
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and it is described in Chapter 111, 

of the methods given by Spearman-Karber, Dixon-Mood, and Farrell 

is furnished. An empirical study of the sample size, fo r  a fixed confi- 

In Chapter I1 a brief description 

dence level and for  a preassigned length of the interval is made. I 

The results of the study and a discussion of the results are given 

i n  Chapters IV and V. 



Chapter I I 

SEVERAL EXISTING METHODS FOR ANALYZING 

SENSITIVITY DATA 

In order t o  gain a measure of efficiency of the method 

f o m l a t e d  i n  Chapter 111, with respect t o  those methods already 

available, three different methods were selected t o  base the comparative 

study. These methods are: 

T1 Spearman-Karber technique [12] 

T2. Dixon-Mood technique [7], 

T3. Farrell's technique [ l o ] .  

T1 and T2 are well-known methods, while T3 appears not 

so  well-known. A Fourth method formulated by Alexander [ X I ,  has 

appeared recently i n  an industrial  report; however, the theory is not 

available a t  t h i s  time hence the method could not be included i n  the 

comparison. Methods T2 and T3 involve a sequential technique for  

analyzing the up-and-down data, while method T1  is a fixed design. 

Farrell's analysis also includes a way t o  obtain confidence 

limits using stochastic approximation [ lo] ;  however, we have restr ic ted 

our study t o  up-and-down techniques anc the Spearman-Karber technique. 

A b r i e f  description of each of these techniques follow i n  th i s  chapter. 

2 .1  Notation and Preliminaries 

Though different authors used different notations i n  t h e i r  

works, a single notation is used throughout t h i s  dissertation t o  

facilitate reading and for  easier comparison of the results.  The 

10 
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notation i.5 presented as follqws: 

'he symbols xl, x2, . . e denote the stimulus levels a t  
3 :  

which the specimens are t o  be tested; y denotes the probability of 

response a t  a given stimulud level x., Then the random variable y takes 

on the value unity o r  'zero. That means, 

Y(x) = 1 i f  the specimen responds and 

Y(x) = 0 i f  the spe'hnen does not respond. 
(2 1) 

Also E [Y(x) 3 = M(x) , where M(x) is defined i n  Chapter I ,  and 

E [ e ]  denotes the expected value of [ a ]  . 

In a l l  the methods described below, the aim is t o  construct a 

confidence' interval for  various stimulus levels, that  is, fo r  a given 

a t o ' o b t d n  bounds L1 and L2 such that  

where B is the desired confidence coefficient, and P [A] denotes 

the Probability that  the event A occurs. Frequently we w i l l  le t  

P [AIB] denote the probability that  the event A occurs giMen that  

the event B has already occured. 

3 

2.2 Spearman-Karber Method 

Perhaps the oldest technique and for  years the most often used 

rc) I' 0 ~ t  imating xs0 

formulated i n  1908 by Spearman [26] 

The following are the assumptions which restrict the method: 

is the so-called, Spearman-Karber method, originally 
z 

later i n  1931 by Karber [18]. 
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A l .  There exist numbers a m d  b such that  a < b and 

1 1 

P [ Y ( x )  =, 0 I x  < a ]  = 1 - E  

P [ Y ( x )  = 1 I X  - > b ]  = 1 - E  

- 
I 1 

? 

where E > 0 is a rb i t ra r i ly  small and x = log x. 

1 f 

A2 ' The rcspr~irst. C I I ~ V :  i'.l(x ) = E [ Y (x ) 3 has the form of 

the cumulative normal d i s t r i b u t i o n  which can he w r i  ttcn 
I 

l 2  M(x') = P { 1/(2*)% '1 exp { (x - xs0) /2a2  1 dx' 
1 X . I  

-0 

t 1 1 

k t  x x 2, , . x be k equally spaced levels with I '  
? ' t  

x1 

tested.  Let 

x2 c . c . Y <  Xt such that at each level n specimens are t o  be 

.n 
i = 1, 2 ,  . . . , 1 1  ( 2 . 3 )  

1 

where Y. (x.) = 1 or  0, accarding t o  (2,1),  Hence ri is 

simply the  number of specimens which respond at the 

xi. 

J 1  

i t h  level,!  
- 1  1 1 

Then. xso is estimated by the s ta t is t ic  xs0 defined as 
\ P  
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stimulus levels. Neither Spearman nor Karber list any rules fo r  

selecting d. If the deviation of xs0 f r o m  the nearest xi is 
1 1 

selected at  r a n d o m  between d / 2  and -d/2, as is effectively. done when 

the experimentor begins withcut the laibwledge of xs0, then . 
1 

and 

k 
C 

i-1 
CI 2 (xso) -' &d2 Mi (1 - Mi) / n 

2 for  n > 4 ;  u (m) denotes the variance of the s t a t i s t i c  m a id  Mi 

denotes M(xi) i n  A2. Confidence 1i;Rits fo r  x are obtained 

by assmirig 

I 1 

A3. 

where - should be read as "distributed according to" and N ( 0 ,  1) 

skoul&?be:*ad as ttnormaily distributed with man zero anh variance 

one". 

.* 4 7 

'PT 

I t  is clear that the desired confidence l i m i t s  follow from 

the statement that 

[ 'k0 - k8/2 

denotes the value of k such tha t  
8/2 

where k 

and 

k. 

i=l 
2 '  2 2  

Q (?so) = [ d /n (n-1) ] [ E ri (11 . ri) (2 7) 
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2 an irnhiased estimate of u (xs0) given by Ervin and Qieesimn [17]. 

An alternative suggested by Gaddum is to  use the following formula 

(2 8) 
2 

CI (xso) ,564 od/n 

where CI is known and appears in  A2. Unfortunately t h i s  requires 

an aprLori information about M(x), and is a further restriction. 

Techniques are available [12]' for  estimating 

an estimate which can be used for  u i n  ( 2 . 8 ) ,  however in  the 

simulation (2 .7 )  w a s  used as. the true variance of is, 

u from the  data, giving 

1 

qnd not ( 2 . 8 ) .  

1 I 

The confidence interval I R  for  xs0 then follows from (2.5) 

and is 

Then one can convert these numbers into original stimulus units 

by taking 'hnti-logarithms giving the desired confidence l i m i t s  fo r  

xs0, those being 

1 

2 . 3  DixorikMood Mew -- 
Chronologically th i s  method is  one of the f i r s t  methods 

of the so called "up-and-down" tests, 

and-down testing one chooses an i n i t i a l  stimlus level,  say x 

best apriori  estimate of xs0), and a succession of levels XI, x2 . a . 

In order t o  perform the up- 

(the 
0 
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whose magnitudes exceed xo; and a succession of levels x - ~ ,  x - ~ ,  . . . 
whose magnitudes are less than xo. 

subjected t o  a stimulus level, xo. 

second specimen is subjected t o  a stimulus level xl. 

the 

order j, then the ( i  + 1) st specimen is subjected t o  a stimlus 

level of order j - 1 (j + 1).  

The first sample specimen is 

If the specimen responds the 

In general i f  

i t h  specimen responds (does not respond) t o  a stimulus level of 

I t  is  noted that  one would expect the 

number of responses t o  be approximately equal t o  the number of non- 

responses in  such tests. 

t o  apply th i s  method. 

One needs the following restrictions i n  order 

I t  1 I 

B1. If xo, x * ~ ,  xk2 ,  e . . are the levels such that x = g(x) 
1 

where there is a 1 - 1 correspondence between x and x then . 

B 2 .  One must be able t o  make a rough estimate of u prior  t o  

the expe riinent a t  ion. 

B3. The sample size should be large (about 40 t o  SO) i n  ordcr 

t o  apply the given analysis. 

il.ixoii and Mood f o m l a t e d  the following statistics to  cst.irnr:tc 

stirnul~is levels of order a and e. 

(2.11) 

1 where the (-$ is used i f  the number of responses is less than the 
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1 number of nonresponses and the (+z> is used if  the  number of nonresponses 

is less than the number of responses. 

NB - A" + .029 1. 7 S = (1.62) d [ (2 .12)  

* 
where the symbols d ,  A, B ,  N, ka and x are defined as follows: 

arid is  assunled t o  be the same for  all i = 0 ,  f 1, . . . 
If no, nl, n2, . . . "k are the observed frequencies a t  

various levels (in increasing order) a t  which the less frequent cvcirt 

occurs, and x is the lowest level a t  which the less frequent event 

occurs, then 

* 

k 
N = C  ni 

i-o 

k 
A = c ini  

i-o 

. 2  B = C i n i ,  
i=o 

(2.13) 

(2 .14)  

. (2.15) 

and k is the value of k such that a 

(2 16) 
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(2.17) 

(2.11) is valid only if  

NB - A2 -yr ’ O 3  

If (2.17) is not true,  then one can take the sample s ize  
‘k 

suff ic ient ly  large so that  (2.17) is true or  use the analysis 

given i n  [7]. 

of the estimator 

Dixon and Mood have shown that  the standard deviation 

A 
xs0 = x + dlW 
A t  * i )  

is approximately 

and can be estimated by 

(2.18) 

(2.19) 

In a similar way the standard deviation of s is estimated by 

A 

(I = ss = Hs / TN- 
S 

5 (2.20) 

where G and H are empirical values depending on d and u and 

are given here i n  the form of a graph i n  Fig. 2. I.. 

The variance of i: is given by var ( i i )  = var(x;,) + 2ka ~ov(x,,,s) (2.21) 

A t  
I t  can be shown that  cov(X~,, s) -.EL 0. Hence we approximate var(x ) by 

2 2 2  i2  = sm + ka sS 
a 

(2.22) 

where s, and ss are given by (2.19) and (2.20). In order t o  obtain 
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the confidence limits a further assumption is made, tha t  being 
0 . 1  1 

x - x  
1 % N (0, 1). a a 

U a 

Then the confidence interval follows by the statement t h a t  the 

(2 .23)  

(2 .24 )  

is defined i n  (2.6). 8/2 where K 

t 

Because of the 1 - 1 correspondence between x and x , the . .  
probability statement (2.24) can be written as 

which is the desired confidence interval. 

Farrellls Method. 

A relatively recent (1962) method which yields non paramettlc 

confidence l i m i t s  for  xa is given by Farrell [ lo].  In t h i s  method one 

does not make any distribution assumptions on M(x), the kesponse . 

M c t i o n ,  but needs only the following assumptions. 

C1. M(x) is a monotonic function of the stimulus level x. 

C2. There is an x such that 



. 

M(x) c a f o r  x < xa 

and 

M(x) > a f o r  x > xa. 

C3. There ex is t s  a family of distribution functions 

{ G(*, w), w E A 1, where A is the f i n i t e  o r  i n f in i t e  
1 

open real number interval. Certain knowledge of G is known t o  the 

experimentor. That is ,  G is an independent Bernoulli distributiQn in  

the case of up-and-down testing. 

C4. For a l l  x E (Q,  -), 

00 

M(x) = 1 x dG(x,w). 
Q 

The method is quite complicated and w i l l  b r ie f ly  be described as 

follows: 

such tha t  

desired width of the confidence interval, and l i m  I \ I = . Again 

M(x) 

level x. 

Let { 5, Q < n < QO } be the sequence of stimlus levels 

5+1 - 5 = A  > 0 for  all n,  an integer; where--& is the 

l n b  
is the probability of response when the testing is done a t  t@e 

The i n i t i a l  experiment is made at the level xo, and the 

where N(n+l) = (n+l)th experiment w i l l  be made a t  the level 

N(n) * 1 according as whether there is a non response, & .a respqse  a t  

the nth experiment. 

(n+l) ’ % 

This can be written i n  the form 
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where 

(2.27) 

and Zn is distributed uniformly on (0,  1). 
c 

A t  t h i s  stage, it seems desirable t o  quote a s l igh t  modification 

of the lema given i n  [lo].  

conpatability with our notation. 

The modification is made i n  order t o  a t t a in  

Lemma 2.1. Suppose A is an open real  number interval,  

C G(* w),  w E A 1 a munotonic family of distributions. 

a = Z Y dG(Y ,w) , Z x dG(x, w) c 0 0 ,  $ > 0,  then there ex is t  real 

P I f  w E A ,  
. . .  . .  

2 

number sequences { an, n 3 1 I , {  b , n 3 1 1 such that  an > b, ’ 

fo r  a l l  n 3 1, and 
n 

- 
n 

- a ,  - l i m  - - and l i m  - - 
n- 

bn 
n 

an 
n - 

n- 

where - 1 - $ is the desired confidence level.  

(2 28) 

(2.29) 

The sequences {an, n L 1) , { bn, n 3 1 1 can be constructed ax 

f 01 lows 
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4 = na + an log(n+l) 

4 

an 

bn = na - an log(n+l) , 

where a can be found such that  

21 

(2.30) 

Pr r l  sn - na I( an J5 log(n+l) ] > 1 - 1314 (2.31) 

Next one needs t o  construct two integer valued random sequences 

{c,.,, n > 11, {dn, n > 1 1 as follows 
h 1 >  .. 

c(1) = d(1) = 0 (2.32a) 

of m - > 1, c(m1) is the least integer n sua that 

(2.32b) 

and of m - > 1, d(m+l) is the l ea s t  integer n such that 

Then there exists two random numbers R and M where is the - 
least integer n such that 
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and M - is the least integer n such that  

and 

Then 

and 

(2.34) 

(2.35) 

(2 .36) 

(2.37) 

In order to  show the statements (2 .35 ) ,  52 .36) ,  (2 .87)  

are true,  a modified form of a theorem i n  [ lo ]  can be stated as follows. 

Theorem 2 .1  Let B > 0 be given and { an, n > 1) be a real number 

sequence defined as i n  (2.30). 

increasing sequence of real numbers such that l i m  'x,,, I= 0 0 .  

---- - I. I------ - - 
Suppose { xn, n > 1) be a s t r i c t l y  - 

Let 
n- 

{Yn, n > 1) be a sequence of mutually independent .-- __ and i d e n t i c a 9  - -- 
distributed Bernoulli random variables such that P r  [ Y = l  3 = a. 

with N not I_ Let N be the least integer n such that C Yi - > an 

existing i f  c Yi c an fo r  a l l  n > 1. Then i f  l i m  M(x) > a ,  then 
i=1 X-os 

- -- 

n 
_^__ ---. 

n i=l 

Pr [ X n ) X  ] > 1 - B/4 . and P i  [ N < -  1 = 1. a -  - 
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Let P be the to t a l  number of observation needed t o  get H, M, which 

can be given by the 

- 

Define the sequence P(i) 

N(O), N(l), N(2), . . ., N(P) takes the value i where i is 

restr ic ted such that  I < i J. 

as the number of times the sequence 

- -  

Also define the sequence M(i,j) as the least integer m such 

that  the sequence N(O), N(l), . . . , N(m) takes the value i exactly 

j times. Note it follows fmm [15] that  the sequence { h ( n )  1 

takes a l l  the values i inf ini te ly  often as n increases. 

Then for  i in  I i J, e i ther  - -  

or 

except perhaps f o r  one i. 

(2.38) 

(2.39) 

* 
Let I be the greatest i in I < i <,J satisfying (2 .39)  and 

e- - * 
J be the least i i n  I < i - J satisfying (2.38) 
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Then 

and 

* * 
P r [ ) J  - I ( < 2 ]  - = 1 .  
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Chapter I I I 

A NEW METHOD TO OBTAIN CONFIDENCE LIMITS ON 

X IN UP-AND-IXMN TESTNG a 

The purpose of th i s  chapter is t o  formulate another method 

t o  estimate Xu in  a confidence interval estimate such that 

D1. 

D2. 

D3. 

D4. 

The lower bound, 1 - 6, 

Confidence coefficient is  known apriori .  

where 0 2-B e 13 w x  L, of thc 

The upper bound 36, for  the length of the confidence interval 

is known apriori .  

A lower bound, C, of M (x) at x = xu is known . .  apriuri .  
l 

M(x) is an unknown distribution function such that 

al) M(x) = 0, x < a  - 
= E  [ Y(x) 3 ,  a < x b 

= 1, 

-. - 
x > b  - 

where a and b are known apriori  and Y(x) defined by ( 2 . 1 ) .  

a2) M(xa) = cc 

a3) ~ ' ( x )  = c > c > o I 

fo r  xu - 6/2  x xa + 6/2; that  is M(x) is l inear i n  

a neighborhood of xa, 

M (x) exists everywhere except perhaps ;it 

x = a o r  (and) x = b 

I 

a4) 

Suppose a t  each level xi the experimentor takes a sanrplc of 

size k. Then let  

k 
(xj) = C Yi (xj)/k , 

i- 1 
(3.1) 

where Yi is defined i n  (2.1) 

26 
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Corollary (3.11: The - xu which is the solution of M(x) = a 

is the same as the solution of E [p(x) ] - a. 

- Proof: Since the Yi are from an independent sanple 

= k E [Y(xj)] = E [ Y(xj)] 

j *  
and t h i s  is true for a l l  x 

That is, 

Therefore the value xa which is the solution of M(x) = a is also 

the solution of E [ P(x) J - a. 

Thus in  order t o  get a confidence interval for  xu the equation 

E [ P(x) ] = a can be s t a t i s t i ca l ly  solved instead of directly 

solving the equation M(x) = a. 

Corollary 3.2:  Let M(x) be monotonic non dccreasing. I.ct 

L1 (x) and L2 (x) be the upper and lower tolerance limit functions, 

such that 

- --,- _-- -I__-p I -- 
- -I_Iu_I1l----*_l---_- 

Pr [ L~ (x) < V(X) c L1 (x) I > 1 - ZB 

then L1 (x) and L (x) are also monotonic inmeas&. - _I_- 2 - - 

(3.3) 



Proof: We know that  - 
Pr [ Y = 1 ] = M(x) for  a l l  x 

The ref o re 

k 
Pr [ C Yi> - KL1 IM(x,) ] = B 

i=l 

If x2 > xl, then M(x ) > M(xl) and 
2 -  

therefore 

Now selecting KLl (xz) such that 

k 

i= 1 
P r  [ Yi - > KLl(x2) I M(x2) 1 = B 

(3.5) and (3.6) show that  L1(x2)z L1(x). 

Hence it can be concluded that  if x2 > xl9 then L1(x2 L1(xl) 

and therefore the tolerance function is monotonic non decreasing. 

In a similar way it can be shown that L2(x) is also monotonic 

non decreasing. Note that the ranges of L1(x) and L2(x) are 

f r o m  zero t o  unity. 

Theorem 3.1. There exis ts  an integer k such that  

where L1(xa) = a + 6 tan c 

(3.4) 



and 
CI 

and 6 ,  - 

Proof: 

Pr  [ Yi 

cally d 

L2 (x,) = a - 6 tan c 

C are defined i n  D2 and D3. 
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(3.9) 

By definit ion of Yi, Yi is a random variable such tha t  

(x) = 1 ] = M(x). That is ,  IYi) are independent and identi-  

str ibuted Bernoulli random variables, and therefore 
k 

i= 1 
fl = E Yi is distributed as 

which is the same as 

(3.10) 

which is the binomial distribution w i t h  parameters k and a ,  

when x = xu. I t  is important t o  note tha t  (3.7) can also be written as 

That is, 
K 

Pr  [kLZ - < c Yi - kL1 J - > 1 - 2~ 
i=l 

(3.11) 

K 

i=l 
since the distribution of E Yi is known. The particular k 

can be obtained as follows by using binomial probability tables: Select 



k such that  

(3.12) 

Since a and B are known constants i n  (3.12), k can always 

be found. 

In D4 it is assumed tha t  there exists two known real numbers 

a and b such tha t  

Y(x) = 0 

= 1  

if x < a  - 
if x > b  - 

which implies that  

if x < a  - M(x) = 0 

i f  x > b. - = 1  

Let the interval 

abutting intervals where 

(a,b) be partitioned into (n-1) equally spaced 

1 + 1  b - a  n =  [T 

where [z] denotes the largest  integer contained i n  z. Let 

the n states be defined as follows: 

30 

(3.13) 

(3.14) 
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Note that  S1 = a and S, = b. 

Theorem 3.2. There exists an i such that the value xu lies 

between Si Si+l where Si is defined i n  (3.14). 

- 

Proof: In Fig. (3.1) l e t  P1 and P2 be the points where the 

derivations o i  L1(x) and L2(x) from M(x) are maxim. Let 

Ll(xu) and L2(xa) be the points where the tangent l ines a t  
t I 

P, and P, intersect the l i ne  x = xa. Note that these tangents 
I L 

w i l l  be paral le l  

monotonic nature 

of P1 and P2. 

. intersect the line y = a. 

i n  a neighborhood of xa, because of the 

L1(x) and L2(x) and by the very construction 

and Q2 be the points where these tangents 

Let L1(xa) and L2(xa) be the points 

where L1(x) and L2(x) intersect the x = xa respectively. Through 

L1(xa) draw l ines  making an angle c with the x-axis. Let Q1 and 

Q2 

t t 

I 
be the points where these lines intersect the l i ne  x = xa. 

and 

obvious and indeed it is true that 

(3.15) 

(3.16) 

I 

(3.17) = tan c 
62 

t 

where c 

and 62  is the difference between M(x,) and Q 2 .  

is the true slope of M(x) which is unknown t o  the experimentor, 
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(3.18) 

From (3.17) and (3.18) one obtains that 

I 1 

since tan c - > tan c and since Mix,) - L2(xa) 2 M(x ) - L2(xa) 

it follows that 6 2  < 6. 

61 - e 6 ,  where b1 is the difference between Q1 and Mfx,). 

In a similar way it can be shown that  

Now consider the inequality 

By fixing Y = a,  one can solve the following equations. 

? 

M(x) - d2 tan c * a 

L2(x) a 

M(x) = a 

L1(x) = a 
I 

M(x) - 61 tan c = a , (3.19) 

Because of the monotonicity of the functions i n  (3,19) the i r  

solutions sa t i s fy  the following inequality that 
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x - d1 5 x(L1) 5 x < x(L2) 5 xa + 62 a a -  

since 62 < 6 and 6 1  < 6 ,  it follows that - - 

Therefore the interval I(xa) = I ( x a  + 62) - (xu - dl) 

a t  the most two s ta tes  and those two w i l l  be Si and Si+l, which 

shows that there exists an i such that 

can cover 

The experiment is restricted such that  it w i l l  be performed 

a t  levels x = S j = 1, 2,  . ., n. We c a l l  a t r i a l  as an 

experiment of sample size k a t  a particular (fixed) level S 

Before each t r i a l  is performed a decision is made to  select  the 

experimental level S by using the following three rules: 

j s  

j *  

j 
Rule 1. I f  P(S.) is greater than a ,  then the next t r i a l  w i l l  

3 
be performed a t  the level Sj-l. 

Rule 2.  I f  P(S.) is equal to a ,  then the next t r i a l  w i l l  be 
3 

performed a t  the level S 

Rule 3. I f  P(S.) is less than a ,  then the next t r i a l  w i l l  be 

performed a t  the level Sj+l. This procedure defines a sequence 

j ’  

J 

of experimental levels “N(j)’ where xN(l) 
estimate for  xa and { N ( j ) )  is defined as 

is the best a pr ior i  
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N(l) = 1, and fo r  j > 2 and j n 

N ( j  + 1) = N ( j )  + 1, i f  P(x.) < a 

N(j + 1) = N ( j )  , i f  P(x.) = a 

N(j + 1) = N(j) - 1, i f  Y(x.) > a 

3 

3 

3 

(3.20) 

Thus, the procedure described by (3.20) defines a random walk with 

reflecting barriers a t  the lower and upper limits. 

t h i s  fact a theory w i l l  be developed t o  construct the desired 

confidence interval. 

On the basis of 

Theorem 3.3. Let P be the transition matrix of the random walk - 
defined by (3.20). Then the elemnts of P can be defined as follows: 

(4) There ex is t s  an i, i=l, 2 ,  . . . n where x,.(Si, Si+l) 

and Pealnumbers 8 and n, 0 < 8 < n < 1 - 8 < 1 such tha t  - 



- Proof: We have already mentioned that L1(x) and L2(x) are 

the upper and lower tolerance equations such that  

and 

Pr  [ P(x) 2 L2(x) 1 1.1 - 8 

for  a l l  XE. (a,b) e 

Let I(xa) be the interval [ x(L1), x(Lz) 1. 

Pr  [P < a] = n and P r  [ y > a ] = 1 - n given x = x (3.22) a - Let 

where n is a real number i n  0 n c 1. From Fig. (3.1) it is 

easi ly  seen that 

P r  [ P(x) > a I XE I(xa) and x < xa 1 

= P r  [ V(x) > L1(x) 3 2 B 
P r  [ P(x) < a I xc I(xa) and x > xa ] 

P r  [ P(x) > a I XL I(xa) dnd x > xa ] 

(3.23) 

(3.24) 

= 1 - P r  [ V(x) > a I XE I(xa) and x < xa ] 1 - 6 (3.25) 

P r  [ Y(x) < a I XE I(xa) and x < x a ] 

= 1 - P r  [ P(x) e a I XE I(xa) and x > xa ] - > 1 - 8 (3.26) 



From Fig. (3.2) 

8 - < P r  [ P(x) > a I XE I(xa) and x < xa ] - < 1 - II 

8 - < Pr [ P(x) < a I XE I(xa) and x > xa ] - < JI 

1 - II - < Pr [ p(x) < a I XE I(x,) 

JI 5 P r  [ v(x) 

and x > xa ] - < 1 - 8 

a I XE I(xa) and x < xa ] - < 1 - 8 
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(3.27) 

(3.28) 

(3.29) 

(3.30) 

According t o  the rules 1, 2 and 3, when the experiment is a t  

a s t a t e  j a t  the n th  t r i a l ,  then it w i l l  be e i ther  a t  j-1 t h  

or  j th or  j+ l  s t  s t a t e  a t  the (n+l)st  t r i a l .  I f  we take the 

sample size k such that  it w i l l  satisfy (3.11) and # a, 

then 

it was  a t  S. a t  
the nth trial ’ 1  - 0 .  

the process w i l l  be a t  S 
a t  the (n+l)th trial 

Pr 

Let Pij 
j given it was  a t  the s t a t e  i, in  one t r i a l .  That is, 

be the probability that the process w i l l  be a t  the s t a t e  

it was at Si a t  = p.  .. 
the nth t r i a l  I lJ 

the process w i l l  be a t  S 
a t  the (n+l)th t r i a l  

Since Yi(x) = 0 when x - < a ,  P(x) = 0 when x - < a. 

Therefore, Ti(x - < a) = 0 < a. So by rule (3), PlZ = 1. 

Similarly since Y (x) = 1 for  al l  x - > b, P(x) = 1 for  a l l  

x - > b. 

which proves (1) i n  (3.21). 

Therefore P r  [ Y(x) > b ] = 1 > a. So by rule (1) , Pn,n-l = 1, 
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j-1 O r  S j+ l  Since the process w i l l  be either at S 

a f t e r  one t r i a l  given that  it w a s  a t  S before the t r i a l ,  the 
j 

= 0 if  t i - j  I # 1 which is (2) i n  (3.21). 'i,j 

By the definition of Pi ,j' Pi , i -1  > 0 and P i , i + l  > 0. 

Rewriting (3.23) . e . (3.26) i n  terms of Pij one gets 

< 8  where j = 2,  3, . . ., i-1 j , j - 1  - O < P  

< 8  where j = i + 2 ,  i+3, , . . , n-1 

1 - 8 < P  1 where j = i + 2 ,  i+3, . . ., n-1 

j , j+l  - O < P  

- j , j - 1  

1 - 8 < P  < 1 where j = 2 ,  3,  e ., i-1. - j , j+ l  

Thus the elements of P sa t i s fy  (3.21) and the existence of 

i, i '1, 2 ,  , . n such tha t  X ~ E  

In order t o  get the required 

desired confidence interval consider 

theorem [19]. 

(Si, Si+l) 
number of t r i a l s  t o  obtain the 

the following definitions and 

is shown i n  theorem (3.2) 

Definition 3.1: A f i n i t e  Markov chain is a stochastic process which 

moves through a f in i t e  number of s ta tes ,  and for which the probability 

of entering a certain state a f t e r  a single s tep depends only on 

the l a s t  s t a t e  occupied. 
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Definition 3.2: An ergodic s e t  of states is a se t  i n  which every s t a t e  

can be reached from every other s t a t e ,  and the crgodic se t  can not 

be l e f t  once it is entered. 

Definition 3.3: An ergodic chain is one whose state:. form a 

single ergodic s e t ;  o r  --equivalently-- a chain i n  which it is 

possible t o  go from any s t a t e  t o  every other s ta te .  

Definition 3.4: So, S1, S2 . e . is a divergent sequence and l e t  

n- 1 
tn = (l/n) c Si 

i = O  

if the sequence tl, t2, . . converges to  a limit t, then we 

say tha t  the sequence {Sn, n - > 0) i s  Cesaro-sumnable t o  t. 

Definition 3.5: A cyclic chain is an ergodic chain in  which 

each s t a t e  can be entered a t  certain Wriodic intervals. 

Definition 3.6:  A regular chain is an ergodic chain that is 

not cyclic. 

Theorem 3.4: - I f  P is an ergodic transition matrix, 

a) the sequence { P", n - > 0 1 (Note that n is a positive 

integer) is Cesaro-swmnable t o  A 

b) Each row of A is the same probability vector 
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c) the vector y is unique fixed probability vector of P. 

d) PA = AP = A (the matrix A is called the Ceasam- 

summable matrix). 

kt v W  is the fraction of times i n  the first n steps 

that  the process w i l l  mve t o  the s ta te  S 

numbers f o r  regular Markov chains can be s ta ted as follows. 

J 
The l a w  of large r 

Theorem 3.5: Consider a regular Markov chain with limiting vector 

y - (yl, y2 ,  . yn) For any ini t ia l  vector If, 

and fo r  every c > 0 

- as n tends to  inf in i ty ,  

The transit ion matrix P defined in  (3.21) has the necessary 

features such that  theorems (3.4), (3,s) can be applied. Therefore 

using theorem (3,4), the following theorem can be stated.  

Theorem 3.6: Let P be the transition matrix defined i n  (3.21), 

and l e t  the Ceasam-summable matrix be A = Jy where y = (yl, y2,  . e o ,  

yn) J = (1, 1 . e 1) are lxn vectors such tha t  

- 

T - 

YP = Y 

YJ = 1 

(3.31) 

(3.32) 
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16 + n2)* - (4 - n) , 
41 then for a l l  0 < 13 < min { ( --- 

i + 2  

jai-1 
c y j : l - s .  

Proof: On solving (3.31) i n  terms of y1 one obtains y1 - y1 

and for j = 2 ,  3, . ., n 

n 

j=1 
using (3.32) c y j  = 1. 

The aim is t o  find 
i+2  

jpi-1 
Y j  * 

Using (3.34) 

In order t o  eliminate y1 which is an unknown quantity, 

consider the following rat io  

(3.33) 

(3.34) 
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i+2 
I: Yj can be written as 
jti-1 

Using (3.33) 

which can be put in the f o n  

r is the ra t io  of (3.35) aid (J.3G) and thcrcfore i s  Free of y1 'icnce r 

can be written as 

* m  (3.37) 
L 
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i+2  
We want t o  get a lower bound for  c 

lower bound as a function of r , where r is such tha t  r > r . 
We w i l l  get th i s  

'j j-i-1 
* * * 

i + 2  

1 - c  
j = i - 1  

which implies that  

Since we do not know the values of P.. 
1J 

except P12 = 

elements by appropriate bounds. Therefore in  order t o  get a lower 

bound fo r  r, we w i l l  t r y  t o  minimize the numerator and maximize 

the denominator of (3.37) using (3.21). 

for  a l l  I i - j  I = 1 

= 1, it becanes necessary t o  replace these 'n,n-l 

Consider f i r s t  the numerator: 

nfi + n 
( 1 - n > ( 1  -S )  (1-n) (1 - B ) 1  

Numerator 2 l + r T  1 .  

> 1  1 n +  " since 1 
l-n - > l + r _ * r _ i i .  

1+(1-n) +n* nfi - 2 + n ~  
-l-n > - 1-II 
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Similarly, on considering the denominator it follows that  

i - 2  
+ Denominator 2 l-B 1 [ (n) 8 

n-1-2 
1 (1-8) *11°8 8 8 

* (1-8) (1-II) (1-8)  (1-8) [ 1 + (m)+ 0 . '  (-1 

0 1-8  + n0 
5 (1-8) m (1-II) (1-8) (1-28) 

X since - 8 1 and therefore (-) 8 1 where x is a 

positive integer. That is 
1 -8  1-8 

B + n8 Denominator e - (1-8) (1-2B) (1-8) (1-28) (1-II) 

Therefore 

B 
(1-8) (1-28) (1-11) 
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We want t o  find the range of 8 such that 

which implies that r > - 8 . That is, - 8  

o r  

(2 + ns) ( l  - 28) - 1 > 0 - 
or  

-zna2 - (4 - n)B + 1: 0 . 

Solving the above quadratic equation for 8 one obtains that  

(4 - n) $ (4 - n)’ + 8n 
8 2  -4n 

But 8 is positive; therefore 

(3.38) 

and it is obvious that 8 is real. Since we want 8 < n , the 

required range of 8 is 0 < 8 < min [ Y n 1 (3.39) 
(16 + 8)’ - (4 - n) 

4n 
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The bounds on 8 w i l l  not affect the usual selection of 
i + 2  

'j 
8 = 0.05 o r  8 = 0.10, Note that  the lower bound fo r  E 

j-i-1 

as f o m l a t e d  by (3.38) is independent of the size of the transit ion 

matrix, t ha t  is the number of states and the location of the i t h  

state o r  the location of xa. Therefore, i f  the value of 8 is 

such that  8 satisfies (3.39), Theorem 3.5 assures t ha t  there exists 

an M such tha t  
I 

I 

fo r  a l l  k and M > M , where yM 

element of p. That is, the proportion of times, in  the first M 

trials tha t  the process w i l l  move t o  a t  least one of the states 

is the kth r o w ,  j t h  column 
kj 

, given xae(Si, S. ) w i l l  be at least (1 - 8).  Si-19 S i ,  S i+ l ,  Si+2 1+1 
This can be interpreted as follows: If 

is a random interval and given Si 1. xu 5 Si+l then, 

P r  [ I covers xa I X ~ E  (Si, Si+l) ] 2 1 - 8. 

I t  is important t o  note that  the interval I 

i n  such a way t o  obtain the desired confidence interval. 

can then be constructed 

Since we 



choose I - si 12 6, I - Si-l I - < 36 is the desired bound for 

the length of the confidence interval. 

Let Mi be the power of P such that  

i+2  M1 

> 1- $ f o r  a l l  m = 1, 2 ,  . . ., n. 1 

ymj E 
jzi-1 

By repeating th i s  un t i l  

llumbers 

i exhausts its range we get a sequence of 

M I ,  %, 0 0 ,  s-1. 

Let 

Note that  M w i l l  give the desired number of trials. Therefore the 

to t a l  number of samples required is N = KM. 

for  xa and perform M t r i a l s  of K observations sequentially by 

Rules 1, 2 ,  and 3, 

Then the desired confidence interval for xa is given by 

Select an i n i t i a l  estimate 

The experiment ceases a t  the s t a t e  Sj (say). 

and 
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r 

I 
I 
I 
I 
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Figure 3.2 The behavior of the distribution ,Of ‘“Y(x) when xtI(,x,). 
Shaded area representei the probability that Y(x) i e  less  than OC. 
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Chapter IV 

EXPERIMENTAL PROCEDURE TO OBTAIN SAMPLE SIZES I N  

VARIOUS TECHNIQUES 

Due to  the number of uncontrollable parameters involved, 

perhaps the most practical  means available at  t h i s  time t o  study 

the sample size required t o  get  the desired confidence interval, 

is a "Monte-Carlo Procedure". 

"Monte-Carlo Procedures" are often useful i n  many probabilist ic 

problems. Suppose that  we want to study the mortality rate of a 

given population of insects. One can set up a model fo r  t h i s  by 

comparing random numbers with the response function. Using the random 

numbers such that  they w i l l  match w i t h  the required statistics, one can 

generate a random sample from the population which can be analyzed as 

i f  it w e r e  the data collected i n  the laboratory. In th i s  way one can 

obtain the required data without actually performing the experiment, 

which w i l l  be consistent with the real data. There are several ways t o  

generate the desired random numbers [16]. 

Recall that M(x) is the response function, a a constant such that 

0 a < 1, B the required confidence coefficient and A the desired 

length of the confidence interval. We considered A = . 2  and 6 = . lo .  

In practice the form of M(x) 

it is necessary t o  define the form of M(x) 

is unknown t o  the experimentor, but 

t o  perform the sampling scheme. 

49 
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In this study 6 forms of M(x) were selected arbitrarily, of which two 

are cumulative normal distributions. These are: 

= o  x < o  
2 = 4x 

2 Q < X < 1  
y (4 = 1 - 4/3 (1 - x) 

= 1  x < l  

= o  x > o  
O < X < %  = 2x 

% < x < 1  

2 

M2 00 2 = 1 - 2(1 - x) 
= 1  x >  1 

= o  x > o  

= 4/3 x 0 e x < 314 2 

3/4 e x e 1 M3 ( X I  2 = 1 - 4(1 - X) 

= 1  x > l  

= o  x < o  

= 3x 

= 1 - 3/2(1 - X) 1 / 3 < x < l  

0 x 1/3 2 

M4 (XI 

= 1  x > l  

2 M5(x) = 1 1/(2n)’ (02) exp {-$(t/=2) } dt 
X 

-(p x 
-QD 

2 X 
Mg(x) = 1 1/(2m)li(-3) exp{-+(t/=3) 1 dt - x Q) 

OD 



51 

Sketches of these M(x)'s are shown i n  Fig. 4.1 and Fig. 4.2. The 

values of xa for  a = .OS, .l, .5, .9, .95 are given i n  Table I. 

As the procedures to obtain the sample sizes vary fo r  each 

technique, the procedures are presented separately. 

The general procedure is briefly as follows: 

(1) Generate a sequence of random numbers 

f r o m  a uniform distribution on (0, 1). 

[ Zi,  i = 1, 2 ,  . . .]  

(2) Compute M(xi) given the stimulus level xi. 

(3) In order t o  decide whether there is a response or  a non- 

response at the level xi compare Zi with M(xi). 

(a) If M(xi) Z consider that  there is a nonresponse 
j' 

(b) If M(xi) > Zi, consider that there is a response. 

Spearman - Karber Method . 
II_- 

In th i s  method at  each level the experimentor is required to  

take n observations. Choose an i n i t i a l  level xi. Compare M(xi) 

with n random numbers Z j = 1, 2 ,  . . . , n. Let ri be the 

number of responses, and we know that  pi = rib. I f  pi > 0 ,  

t h i s  procedure is continued a t  levels below 

pi = 0,  and at levels above xi unt i l  we get pi = 1. We let 

the level at  which pi = 0 be xl, the lowest level of the  

experiment and the level a t  which pi = 1 as xk, t he  highest level 

of experiment. 

j' 

xi un t i l  we get 

An example of t h i s  is given in  Fig. 4.3. The confidence 

interval fo r  the 50 percent point is constructed for  two different values 
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of d ; ( l )  d < 2a and (2) d > 2a and for  values of n ranging from 

3 t o  6 .  

sample sizes and the range of sample values are given i n  Table 11. 

are obtained by l inearly interpolating between the sample sizes which 

give the width of the confidence interval s l igh t ly  larger than 0.2 

and s l igh t ly  smaller than 0.2. 

Each experiment is repeated ten times. The average of the desired 

They 

Dixon-Mood Method. 

Choose an arbi t rary level of experimentation. Let it be xo, 

If Z1 M(x& take a level above xo, that  is x + ~ ,  and i f  Z1 M(xo) 

take a level below xo, tha t  is x , ~ .  This procedure can be continued 

for  any number of t r i a l s .  

sample s izes  ranging from 20, 30, . . . fo r  two different xo (1) near the 

fifty-percent point and (2) away from the fifty-percent point; and for  

two different values of d (1) d < 2a and (2) d 3 2a. 

is repeated 5 times and the average of those values and the range of 

sample values are given i n  Table 111. These numbers are also obtained 

by l inear  

The confidence intervals are constructed fo r  

Each experiment 

interpolation as described i n  the Spearman-Karber method. 

Farrel l ' s  Method. 

In t h i s  method we choose an arbitrary level xo. By 

),  then N(2) = N(l) + 1 If z1 > M(XN(l) definit ion N(l) = 0. 

and if Z1 < M(x ) , then N(2) = N(l) - 1. In general the sequence 

N(n) is constructed as follows. N ( i  + 1) = N(i) t 1 according as 
N(1) 

Z i  > M(xN(i) ) or  zi < M(xN(~)). The sequences 

{cn, n > l}, idn, n > 1) are constructed as described i n  Chapter 11. 

{an, n > l l , Ibn ,  n > I), 
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The rest of the computation is the same as it is described i n  Chapter 11. 

This procedure is repeated fo r  various sets of random numbers and the 

empirical resul ts  are given i n  Table VI. 

is taken as the midpoint of the range. That is xo is taken as +(b - a)  

where a and b are such tha t  M(x) = 1 fo r  x > b and M(x) = 0 

In a l l  these experiments xo 

f o r  x e a. In the case of a normal curve a and b are taken as 

-4a, 4a, respectively. 

For the particular procedure given by the author, we compute 

M using (3.39) and k using theorem (3.1). Choosing an arbitrary 

s t a t e  S compare Z j = 1, 2 ,  . . . , k with M(xi). 
j’ j’ 

Y*(x.) = 0 i f  Z .  > M(xi) 
J 1  J 

Y.(x.) = 1 
3 1  

if Z .  J e M(xi) 

Compute 
k 

then the next t r ia l  w i l l  be made at the level 

the next t r ia l  w i l l  be made a t  

M times. 

(Sj-l, Sj+$ is the required confidence interval. These resul ts  are 

given i n  Table V I I .  

xi+l. I f  ? > a ,  then 

xi-l. This procedure is repeated 

I f  Sj is the level a t  the end of M trials, then 

Parts of the above described calculations were performed with 

the help of the computer, CDC 1604, The University of Texas 

Computation Center. 
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M a  .05 

M l  .1118 

M2 e 15811 

M3 19365 

M4 .12884 

M5 - 3290 

TABLE I 

x FOR VARIOUS a AND FOR DIFFERENT M(x) a 

.10 .50 .90 .95 

e 15811 .38713 .72614 .80635 

.22361 e 5000 .7764 84189 

27386 .61237 84189 .8882 

,18248 .4227 .7419 .8175 

- e 25632 0 25632 .3290 
~ 
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I 

1 
d < 2a 
x0 near the 50% pt. 

I I d < 2 a  
I ,M1  x0 f a r  from the 50% pt. 

i 
' d > 2 a  

I I I  - 
i f  

12 I 

1 1 d e 2a; x0 near the 50% pt. 
d < 2a; ~0 f a r  from the 50% pt.  

t 
1 d > 2 a  - I i d < 2 O  

x0 near the 50% p t .  

x0 fa r  from the 50% pt .  
" d < 2 a  

d > Za - 
d < 2a; x0 near the 50% pt.  
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. _--_ 
a=. 05 a=. 10 az.50 a=. 90 a= e 95 

2 0 0 3 5 

2 1 0 1 2 

0 3 0 0 0 

0 0 0 1 0 

1 4 0 0 1 
0 0 0 2 1 

3 4 0 1 1 

I 
I 
I 

I 

1 1 1 0  1 1 
2 2 I 0 1 t 2 I 

I 
I 

0 2 0 O !  3 

TABLE iV 

'' 

NUMBER OF TRIALS WHICH DOES NOT COVER - ---- 

d 20; x0 f a r  from the 50% pt.] 2 4 O !  3 r 3  1 
i o 1  o i o  

1 

1 E 
d - > 2a i o  0 

THE REQUIRED VALUE IN THE CASE OF - ----- 
NON NORMAL DISTRIBUTIONS - 
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AVEXAGE W E R  OF TRIALS WHICH DOES NOT COVER 

'TIE REQUIRED VALUE IN lHE CASE OF 

NON NORMAL DISTRIBUTHONS 
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M4 

M5 

M6 

TABLE VI1 

600 480 363 990 990 

1298 1102 926 1102 1298 

2600 2496 1664 2496 2600 

FIXED SAMPLE SIZES FOR TIE TATIKONDA MIHOOD --- 
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TABLE VI11 

A TABLE TO COMPARE MAXIMUM SAMPLE SIZES OF VARIOUS MElHODS -- --- 

M I x  Method b‘* 05 a=. 90 a= 95 

14782 

1100 1100 Fixed 

Fame 11 3771 

Tat ikonda E 473 371 437 

62 17 

30 

2456 25 

720 330 

53 21 

50 

-- 

-- 

M l  
Dixon-Mood 1 80 

I 

20712 Fame11 pa791 
I 

Tatikonda 
M 2  

M3 

M4 

53 I 96 1 
Spearman-Karf. -- 

I 
Farrell b4614 

I 
16282 

720 

4380 15659 

600 Tatikonda I 840 360 330 

54 75 I Dixon-Mood * 18 54 

46 

6772 24416 

990 990 

51 77 

2059 34551 

1102 1298 
M!i 

~ 

2296 1664 
M6 

Farrell * 4607 I 35835 I 

Dixon-Mood 1 146 
I - -  I - -  Spearman-Kad. - - 
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STIMULUS I;FvEL 

Figure 4.1 Non-normal Response Curves 
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O 2  

0 

Stimulus level No. of specimens No. of Responses Prob. of 
Xi Tested (n) (PI Response pi 

I O 0 0  1 0  0 0 0  0 2 12 

0 0 0 2 

023L!3 

1.0 5 5 1.0 

.8  5 3 0.6' 

TOTAL 

.6 5 2 0.4 

30 30 - 

,4 5 1 0.2 

.2  5 1 0.2 

0 5 0 0.1 
~ - -~ 

Fig. (4.3) EXAMl?LE OF A DATA FOR SPEARMAN-K#RBER ME?HOD 
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Chapter V 

CObMNTS ON 'IHE RESULTS OF "HE EMPIRICAL STUDY 

A significant resul t  of the empirical study seems to  be that the 

two nonparametric methods given by Farrell and the author involve large 

sample sizes especially when the tail points are of interest .  In the 

methods given by Spearman-Karber and Dixon-Mood, the sample sizes are 

not large but it is assumed that  some function of the stimulus has 

cumulative n o m 1  distribution, 

size increases with d, the difference between the normalized levels. 

In the Spearman-Karber method, the sample s ize  when d > 2a increased 

In these two methods the sample 

two t o  four times the sample s ize  when d < 2a. 

i n  Dixon-Mood's method and even though the sample s ize  required to  obtain 

Similar behavior is noted 

the desired confidence interval for the 50 percent point varies l i p l e ,  

there is significant increase in  the sample s ize  required a t  the t a i l  

pointsr. 

levels are chosen near the 50 percent level or away from the 50 percent 

level. 

The sample size does not vary significantly when the ' s ta r t ing  

Probably the reason f o r  t h i s  is as follows: When we choose a 

level far from the 50 percent level, the experimentation w i l l  be made 

at  steadily decreasing levels or increasing levels depending on 

whether the first experiment is IIIQde a t  a level larger than the 50 

percent level o r  smaller than the 50 percent point. 

the  process w i l l  continue as i f  the initial experiment is made near the 

50 percent point. In estimating closely the 50 percent point, one needs 

some additional experiments which are f i n i t e  i n  number and depend on the 

From then onwards 
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distance that  the i n i t i a l  level is from the true 50 percent point. 

the resul ts  given i n  Table 11, the i n i t i a l  level is chosen at  the 97 

percent level (that is ,  about p * 2a in the case of a normal curve). 

The restr ic t ion B3 in Chapter 11, which says tha t  the sample should be about 

40 t o  50 in order t o  use the method seems t o  be unnecessary, as the esti- 

mations obtained when the sample sizes are 20, 30 appeared reliable.  

This is also consistent with the results shown by Brownlee, Hodges, 

and Rosenblat [ 51 

In 

On studying the Tatikonda techniques it appears t ha t  an advantage 

is gained due t o  the distribution-free assumption, concerning the 

response curve M(x) , which may be important in  many experiments. 

Unfortunately, the sample sizes are very large compared t o  two of the 

methods. 

author seems to be better with respect t o  sample size than Farrel l ' s  

method. The analysis and computation are much simpler i n  the method 

proposed by the author when campared t o  that  given by Farrell. 

analysis is not as easy t o  understand as the other methods and the com- 

putation pmcess is a b i t  tedious. This method depends mainly on the 

fact tha t  the sequence N(O), N(l), . * ,  N(n) takes the value i 

inf in i te ly  many times as n inf ini te ly  large, which is a resu l t  

proved by Harris [15]. 

between the members i n  the sequences I c(n) , n > 1 1 , { d(n) , n > 1 1 

becomes very large, and thus makes the t o t a l  sample s i ze  large. I t  is 

sometimes noted that  the difference between two consecutive members of 

these sequences is  as large as 1000. 

Among the two nonparametric methods, the one proposed by the 

Farrell's 

But as the process proceeds the difference 
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In general the up-and-down method does not seem to be efficient 

for the end points, That is, it is not an efficient method for 

estimating the small or large percentage points unless the normality 

assumptions ape mde, Another obvious disadvantage of this general 

method is that each specimen s must be tested separately. This very well 

could be the reason why the method is not used in many quantal response 

experiments [S J 

prohibitive unless the response to the stimulus is inmediate, as for example, 

in sensitivity testing of explosives, But in tests of insecticides, for 

example, a large group of insects can sometimes be treated as a single 

The total time required for computation is likely to be 

one. 

method may be outweighed by the requirements of single test. 

In large experiments of this kind any advantage of the up-and-down 

It is not 

necessary that the total time required to run an up-and-down series is n 

times the time required to conduct some other non-sequential experiment 

with n trials, When the up-and-down is made sequentially for a sufficient 

number of times, it is possible to make an estimate for the required 

stimulus level with the guaranteed accuracy, regardless of the initial 

guess at that point (but in the case of normality it depends on the 

guess for a), 

some other methods, this need not be true for small size. 

The estimates in the up-and-down always exist, while in 

Considering the application of Spearman-Karber method and Dixon- 

Mood method to response firnetions which are non-normal, it seems that the 

analysis given by Spearman-Karber still holds for non-normal response 

functions, with the assumption A3, While considering the Dixon-Mood 
... 
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study sometimes the computed intervals did not contain the t rue value. 

These values are given in  Table IV. These numbers indicate the number 

of times the interval fa i led to  include the t rue value in  the to t a l  of 

5 trials, The average number of these fai lures  are  given in Table V. 

The interval always includes the 50 percent point, whether the response 

curve is cumulative n o m 1  or  not, From the resul ts  shown in  Table IV, 

it seems t o  be that the number of times the interval includes the 

desired point increases when d Za, The reason for  t h i s  may be the 

increase i n  sample size when d 2 Za, The average of the sample sizes 

required by different techniques is given i n  the form of a graph. Thq 

graph shows that  the sample size required by Dixon-Mood method and 

Spearman-Karber method is almost negligible compared to  the sample size 

required by Farrell ' s  method for  the end points. 

I t  is noted tha t  i n  th i s  particular 

- 

- 

The sample size 

required by the method given by the author is nearly a constant. That 

is, it does not vary mch from the 50 percent point t o  the end points. 

I t  depends strongly on the slope of the curve a t  the st inulus level 

being estimated, where as, in the other methods the sample sipe depends 

on the percentage point being estimated. 

mthod given by the author and the competing methods studies here, is 

tha t  i n  a l l  competing methods, the sample sizes are random numbers, 

while sample size associated with the author's method are fixed. 

Another difference between the 
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