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ABSTRACT 

It i s  shown how t o  construct shock-like time independent 

solutions of the electrostatic Vlasov and Poisson Equations i n  one 

dimension. 

The electrostatic potential i s  assumed t o  increase monotonically 

through the shock from zero t o  a constant value. 

feature of the solution i s  a population of trapped electrons i n  the 

shocked plasma. 

f lu id  equations, there i s  no upper limit on the amplitude of the 

shock. 

The positive ions are assumed t o  be at zero temperature. 

The most important 

I n  contrast t o  time-independent solutions based upon 

PFiECEDING PAGE BLANK NOT FILMED. 
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I INTRODUCTION 

The subject of collisionless shocks occupies an extensive 

l i t e ra ture  i n  plasma physics. A review and bibliography are  given 

by Sagdeev [1g661. 

situations i n  which the r a t io  of magnetic t o  mechanical s t ress  is 

sufficiently large that the magnetic f ie ld  m q y  be taken to  be basic 

t o  the shock structure. Here, we shal l  be concerned with a different 

l i m i t ,  the purely electrostatic one, which involves no magnetic f i e ld  

or  net e lectr ical  currents at all. 

M a n y  of the treatments have been concerned with 

I s t i n g  electrostatic shock theories are divided by 

Sagdeev into two types, "laminar" and "turbulent". In the "laminar" 

theories, one starts with a time-independent se t  of solutions t o  

whatever dynamical equations axe being used. 

obtains i n  th i s  way a shock profile which osci l la tes  indefinitely 

with space. 

uniform s ta te  a t  infinity.  

of a s m a l l  dissipation (e.g., collisions) on a somewhat -- ad hoc basis. 

"Turbulent" shock theories rely on a high degree of random 

Characteristically one 

The oscillations must be damped i f  one i s  t o  obtain a 

Typically, this is  done by the addition 

oscil lation within the shock f'ront t o  provide a dissipative mechanism, 

thereby at one stroke providing a very appealing physical picture 

of the shock, but also putting most of the detai ls  of the shock's 
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structure outside the boundary of those phenomena which are l ike ly  

t o  be analytically manageable i n  the foreseeable f'uture. 

remark i s  predicated on the belief that a satisfactory analytical 

theory of plasma turbulence w i l l  be a t  l ea s t  as hard to  come by as 

the corresponding theory for hydrodynamic turbulence has proved t o  be.) 

( T h i s  

The most detailed and convincing turbulent shock theory t o  

date i s  probably that of Tidman [19671 . 
Mott-Smith distribution f o r  the incoming and outgoing plasmas, the 

ion-wave ins tab i l i ty  is regarded as the origin of a spectrum of 

electrostatic waves which effects the t ransi t ion from the upstream 

t o  the downstream s ta te  of the  plasma. 

dynmical eqyations results,  however, and except for the 1ead.ing 

edge of the shock, one can only conjecture properties of their 

solutions. 

Proceeding from an assumed 

A very complicated se t  of 

"he present paper attempts nothing so ambitious as a 

definitive theory of a collisionless shock transition, or even t o  

decide i n  favor of the laminar or  turbulent concept. 

here how laminar solutions, which lead t o  different upstream and down- 

stream spatially uniform states, can be constructed entirely within 

the time-independent Vlasov framework, without the introduction of 

any dissipative mechanism per se. We find that the presence of a 

population of trapped electrons (electrons with negative t o t a l  energy, 

We simply show 
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re la t ive  t o  the zero of e lectrostat ic  potent ia l )  w i l l  permit the 

construction of a wide class of shock-like solutions t o  the time- 

independent Vlasov-Poisson system. 

It has been realized for  several years [Bernstein, Greene, 

and Kruskal, 1957; H a r r i s ,  19571 that trapped pa r t i c l e  distributions 

provided considerable freedom t o  construct different  time-independent 

but spat ia l ly  varying solutions t o  the Vlasov-Poisson system. These 

resul ts ,  however, have been t o  a great extent on a formal level, and 

it has been feared that the required trapped par t ic le  distributions 

m a y  be negative or otherwise physically unrealist ic.  We show that, 

at  l ea s t  i n  the present case, such fear i s  groundless. 

We use, for  the gross properties of our shock, experimental 

indications provided by the measurements of Andersen, D'Angelo, 

Michelsen, and Nielsen [1967] (an ear l ie r  and somewhat l e s s  clear-cut 

experhent i n  spherical geometry was due t o  Koo~pnan and T i b a n  [1967]). 

Both th i s  experiment and calculations on nonlinear ion acoustic waves 

[Montgomery, 19671 indicate that the shock i s  most likely t o  be present 

when the plasma electrons are  very hot re la t ive  t o  the  ions. 

the ion temperature equal t o  zero. 

vided by a monotonically increasing electrostat ic  potential  (see 

Figure l a ) .  

higher density. 

W e  se t  

We model the f i e l d  as that pro- 

The downstream (x - - =) plasma i s  assumed t o  be at the 
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For present purposes, our problem w i l l  be taken t o  be 

determining what sor ts  of time-independent solutions t o  the  electro- 

s t a t i c  collisionless plasma equations exist ,  subject t o  the following 

restr ic t ions : 

(1) The electr ic  field, E(x)  = -cp'(x), and the pa r t i c l e  

distribution functions depend o n l y  on one spa t ia l  coordinate (x, s q r ) .  

(2) The electrostatic potential, cp(x), i s  non-negative, 

-* 0 as x - + QD, and + cpo > 0 monotonically as x -, - =. 

(3) The positive ions me cold (have no spread in  velocity) 

and the electrons are  at a f in i t e  temperature. 

(4) The number densities of electrons and (singly-charged) 

posit ive ions are e m  at x = + = and at x = - m, but are larger at 

x = - QD (downstream from the shock) than at  x = + =. 

( 5 )  The shock amplitude (po i s  not strong enough t o  turn 

around any of the ions, but a population of "trapped" (negative t o t a l  

energy) electrons may exist. 

Three separate facets of the problem must be considered, the 

ion dynamics, the electron dynamics, and Poisson's equation. These are 

taken up i n  the following sections. 

solutions are  summarized i n  Section V. 

The general properties of the 



11. ION DYNAMICS 

We assume that the  electrons and ions both pour i n  from 

x = -with number density no and pazt ic le  current - novo. 

velocity ui(x) and number density n,(x) satisfy 

The ion 

ni(x) u,(x) = const. = - n 0 v 0 '  (1) 

by the ion equation of continuity. 

velocit ies,  the 'velocity ui m a y  be related t o  Vo and p(x) by con- 

servation of energy 

Since there i s  no spread i n  ion 

where is the ion mass and e =  I e 1 i s  the  charge. 
2 We assume (mi Vo /2) > e To, so the  ions pass on across 

t h e  shock t o  the l e f t  and have a velocity -Vo(l-2 e 'po/mif) 8 
at x = - QD. 

The chazge density of the ions is, from Equations (1) and 

(2) J 

(3) e ni(x) = e no( l  - 2 e cp(x)/mi v0 2 ) -* . 



a 

The schematic form of the potential  cp(x) is shown i n  

Figure la, and the corresponding ion orbi t  i n  the ion x, v phase 

space i s  shown i n  Figure lb. 
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111. ELECTRON DYNAMICS 

The electron thermal energy w i l l  be treated as of the same 

so i n  general both "free" and "trapped" electrons order as e cp 

will be involved. 

the t o t a l  energy 

0' 

By f ree  andtramed, we mean electrons for  which 

i s  posit ive or negative, respectively. For cp(x) of the form chosen, 

posit ive energy electrons w i l l  never reverse the i r  sign of v, nega- 

t i v e  energy electrons will reverse it exactly once. The separatrix 

between the trapped and untrapped parts of the electron phase plane 

(shown i n  Figure 1c ) i s  the pair of curves v = &d- . 
"he electron distribution function f e  will hereafter be 

divided into "free" and "trapped" parts: 

where fef = 0 i f '  c < 0 and fet = 0 i f  C > 0. Both fef and fet w i l l  

be f'unctions of C only [ Bernstein, Greene, and Kruskal, 19571. 

fef can be determined by giving i t s  value at X = + a~, ahead of the 

shock. It appears t o  be one of the irreducible ambiguities i n  the  

O n l y  
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collisionless shock problem [ see, e.@;. , Morawetz, 19621 that there 

remains a degree of arbitrariness i n  the trapped par t ic le  population. 

We s h U  see l a te r ,  however, t h a t  th i s  arbitrary trapped par t ic le  

population i s  what permits shock-like solutions t o  exist, and tha t  a 

wide variety of such solutions can exist with restr ic t ions on the 

trapped par t ic le  distribution which are not at a1 severe. 

For fef, it is  na tu ra  t o  assume a Maxwellian at x = + 0 : 

Expressing v i n  terms of C, this means that at f i n i t e  X, we will have 

where the upper and lower expressions apply t o  the regions v > 0 

and v < 0 respectively. Equation (6) reduces to  Equation ( 5 )  as 
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cp .=% 0, and is clearly a function only of the constant of the 

motion C. 

The free charge density is, for the electrons, 

(4 = ef - e n  

* (J’+ vo)2} 

- e no (*&) J+ i v  exp 

+ $- 

- e no i2&)* s -me e w  {+(JT- v ~ ) ~ }  

- a  

The v-integrations in Equation (7) are complicated but 

We anticipate that are simplified by the following observation. 

Vo w i l l  be of the order of the ion acoustic speed, 4 me/% In 

fact, we set 

2 V t  = M We/% , 
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where we expect the %Mach number" M t o  be somewhat greater than unity, 

but not vastly greater. 

from regions of v where me( J-i 2 v,) i s  of the order of 

The integrals i n  Equation (7) come largely 
2 

Thus most of the contribution comes from a region 

We can then ignore the f Vo i n  Equation (7) to  a first approximation, 

and write 

up t o  terms of o ( M e  
The distribution functions of the free  and trapped electrons 

a re  shown schematically i n  Figure 2a. 

unspecified at this point. 

electron charge density i s  given by 

We purposely leave fet(C) 

The contribution of fet(C) t o  the 

- e n (x), where e t  



It i s  cleax that since fet(C) - > 0, net i s  alms a non-negative 

non-decreasing function of ecp, as shown i n  Figure 2b, and that  

n (0) = 0. 

and only then, net w i l l  vanish for 8J.l (9. 

In the special. case when there axe no trapped electrons, e t  

It is c lew that, i n  fact, ni, n and n are  all f'unctions ef e t  
of the scalax potential. 'p alone, once the distribution functions are 

given. 
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IV. POISSON'S EQUA!I!ION 

The remaining problem i s  the sat isfact ion of Poisson's 

Equation, which, collecting the results of Equations (3), (g), and 

(lo), becomes 

cp"(x) = - 4 TI e no(l  - 2 ecp/mi v0 2 ) -4 

It i s  convenient t o  reduce Equation (10) t o  dimensionless 

form by defining 

2 

- (Debye length)' ' 
X 

2 4n n e 

me 
52 E 0 x2 = 

and 



- - -  = - 62 
2% - 2 

2 -  M2 
“iVo 

(we expect 62 < 2).  

With these definitions, Poisson’s equation becomes 

It i s  convenient to  rewrite (12a) as 

where 

and 

Y 

0 
1 - 621y)* - d0(l - erf 6) e’ , (13) 

Y 
A(Y) I a(’) de . 

0 
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Note tha t  U(0) = 0, U'(0) = 0, and U"(Y) = O(Y-$ for  f 

A(Y) i s  the trapped electron contribution t o  s m a l l  and positive. 

U, and i s  undetermined at t h i s  point. 

Equation (la) i s  now formally the equation of motion of 

a f i c t i t i ous  "particle" of "position" Y moving i n  a "potential" 

V(Y). The dimensionless length 5 plays the ro le  of the %me". 

The solution t o  t h i s  equivalent mechanics problem i s  well known, 

and i n  what follows we sha l l  use language appropriate t o  it, 

bearing i n  m i n d  the  just-described mathematical correspondences 

with the problem at hand (this device appears t o  have been in- 

troduced by Davis, L k t ,  and Schlcter [ 19581 ). 

Equation (12) has an "energy" integral: 

*[s) + V(Y) = const. L n, s v .  

This reduces at once t o  the quadrature 

Solutions t o  Equation (14) i n  which Y remains bounded are 

clearly only possible i f  V(Y)  = II at the upper and lower bounds of Y 



( i n  our problem, at Y = 0 and Y = Yo > 0); otherwise Y will grow 

without bound i n  one direction or the other. 

(see Figure 3a) that V(Y) must be less than II i n  the interval  

0 < Y < Yo. 

It i s  equally clear 

Thus the requirements 

v(0) < V(Y), 0 < Y < Y o  9 

follow only from the requirement of boundedness. 

As noted by Sagdeev [1966], most of the solutions Y(5) 

which result from Equations (14) and (15) a re  periodic functions of 

5 with f i n i t e  interval  of periodicity. Since we are  trying t o  con- 

s t ruc t  solutions i n  which Y goes monotonically from zero t o  Yo > 0 

as 5 goes from + m t o  - m, these are of no use. 

The only exception t o  t h i s  statement occurs when the 

horizontal l i ne  V = Is intersects V(Y) at loca l  maxima. Examination 

of the behavior of Y near these turning points readily reveals that  

f o r  t h i s  situation, the interval of periodicity i n  5 becomes inf in i te .  

The waq t o  get Y t o  go from zero t o  Yo > 0 monotonically as 5 goes 

from + m t o  - w i s  t o  have th i s  i n f in i t e  periodicity requirement 

f u l f i l l e d  at  both end points of the motion; i.e., t o  reqylre i n  
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addition t o  Equation (15), that: 

(1) V ( 0 )  and V(Yo) are loca l  maxima; and 

Then i f  Y( 5 = + a) i s  positive and arbitrclrily small, Y 

will approach Yo > 0 monotonically as 5 -. - OD, and we w i l l  have our 

shock-like solution. This state  of affairs i s  summarized i n  Figure 3b. 

We have now t o  consider what res t r ic t ions we imposed on 

the  trapped electron distribution by the requirement that V(Y) have 

the  shape shown i n  Figure 3. 

there even exist  values of fet(C> such that  V(Y) w i l l  have the  

appropriate form. 

It i s  not obvious at  t h i s  point that  

To t h i s  end, it is  useful t o  consider U(Y), which i s  

what V(Y) would be i f  there were no trapped particles.  

p lo t  of U(Y) f o r  various values of 62 - < 2 i s  shown i n  Figure 4. 

can be proved with complete r i g o r  tha t  U(Y), U'(Y), and U"(Y) are 

a l q s  positive i n  the interval 0 < Y 5 6 This shows first of 

all that no solutions of the type we are seeking exist for  the 

case of - no trapped particles;  trapped electrons are essential. 

A numerical 

It 

-2 . 

Attention now focuses on A(Y), the trapped par t ic le  

contribution t o  V(Y). 

off from U(Y) i n  such a way that 

A(Y) i s  positive, and must be subtracted 



(1) A(Y) - U(Y) > 0, 0 < Y < Yo < 6-2, 

(2) A'(Yo) = Ut(Yo) .  

We already have A ' ( 0 )  = 0. If A(Y) can be found which meets these 

two requirements, it i s  clear 

have the form shown i n  Figure 

As seen i n  Figure 5 

obvious that q such A(Y) 's  

that  V(Y) = U(Y) - A(Y) wi l l  i n  fact  

3, and thus lead to  the desired solution. 

for  a typical u(Y), it is geometrically 

(an i n f in i t e  number,in fact)  can be 

- - _._ 

constructed for which the above two conditions are  fulf i l led.  It is 

important a l s o  t o  note that these A ( Y ) ' s  m a y  be drawn such that 

A' (Y)  > 0 and A"(Y) > 0 

The fact  that  A(Y) has positive curvature wi l l  l a t e r  be shown t o  lead 

t o  the guarantee that fet(Z) be positive semi-definite. 

for 0 < Y < Yo = the point of intersection. 

Given any such A(Y), it i s  now a simple matter t o  f ind the 

trapped particle distribution which w i l l  support it. 

a(Y)  = A'(Y) ,  and writing Equation (10) i n  dimensionless variables, 

Taking 

where e E dKTe, p(Y) P A'(Y)  no q-. As Bernstein, Greene, 

and Kruskal pointed out, Equation (17) is  just  &el 's  equation, i f  

we choose t o  regard it as an integral equation for  the trapped electron 

distribution fet. Its solution i s  
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for  

O > e = C > - Y  = %  . 
me e 

By vir ture  of the positive definiteness of A"(B) noted 

above, Equation (18) shows explicity tha t  the trapped electron 

distribution is non-negative. (The requirement that  A" be 

posit ive i s  s t i l l  even unnecessarily stringent, and can be relaxed 

considerably. ) 

Since the dynmical equations and Poisson's equation have 

both been solved and the resulting quantities shown t o  sa t i s fy  the 

vazious physical rewrements,  th i s  completes the problem. 

in f in i t e  number of solutions exist which will take us monotonically 

from 0 t o  cpo as x goes from + Q) t o  - Q) , and they differ only i n  the  

f'unctional form of cp(x) that  connects the  two end points. 

* 
An 

%e should note one last requirement on A(Y), which i s  of l i t t l e  or 

no consequence. In order that  V(Y) lead to  in f in i t e  periodicity at 

the end points, V(Y) must as the sqpare of the quantities 1 Y 1 
and I Yo-Y 1 , respectively, a t  the two end points. This implies that  
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near Y = 0, A(Y) must contain a term which - $/2 t o  cancel off 

the leading term i n  U(Y)  which also - $I2. It can be readily 

shown that this requirement leaves f well-behaved. e t  
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v. SUMMARY 

It has been the purpose of the foregoing calculation t o  

demonstrate the existence of shock-like electrostat ic  solutions t o  

the  Vlasov equations and Poisson's equation for cold ions and hot 

electrons. 

these solutions - such as their  s t ab i l i t y  and the  means by which 

they might be formed experimentally - have not been touched. 

vir tue which the solutions may have probably l i es  i n  their tract- 

ab i l i t y  and i n  the  fac t  that they require no -- ad hoc or  unmanageable 

dissipative mechanisms t o  bring the plasma from i t s  upstream s t a t e  

t o  i t s  downstream state. 

The more d i f f i c u l t  and profound questions associated with 

Any 

The essential  features of the solutions m a y  be summarized 

as follows: 

(1) There i s  a, downstream population of negative energy 

electrons, with number density 

n (- m) = no Y (ao) e t  
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(2) The anplitude vo may have any value up t o  

, where M i s  the Mach number i n  -- -2 me ~2 e'Po - Y o < 6  , o r ( ~ ~ < - -  e 2  
m e  
units of the upstreem ion acoustic speed. 

(3) There i s  no limitation on the Mach number f'rm above, 

which contrasts sharply with the "laminar" solutions based on the 

moment equations, which always do have such an amplitude limitation 

at  relatively low values of the  Mach number. 

The second of the above restr ic t ions could perhaps be 

relaxed by allowing for trappedions, but this  has not been attempted. 

It should be noted t h a t  the specific entropy current, 
+ 
Js = C 
i s  no production of specific entropy i n  the sense of classical  gas 

v' f In f d v' , i s  the same upstream as downstream, and there 

dynamics. 

I 
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FIGURE ClCLpTIONS 

FIGURE la. General shape of the the-independent elecbrostatic 
potential  for the shock. 
detailed shape of cp(x), 

We do not specify the 

FIGURE lb. Trajectory i n  the ion x, v phase plane. 
slowed down, but not turned around, by cp(X). 

The ions a re  

FIGURE IC. Trajectories i n  the  electron x, v phase plane. Negative 
I t  energy, or trapped", electrons, are confined t o  the  

shaded area. The separatrix i s  v = f (2e9/me) 9 . 
FIGURE 2a. The electron distribution as a f'uncthon of electron 

energy. 
determined a t  x = + -, but the  trapped distribution 

f e t  
or may not be continuous at C = 0. 

The f ree  electron distribution fef is 

i s  not. We do not specify fet i n  detail.  f e  may 

FIGURE 2b. The trapped electron charge density as a f'unction of 
scalar po ten t id .  n (ev) must obey Equations (20) of 
the text, but i s  not completely determined by them. 

e t  

FIGURE 3a. A "potential" V(Y) which leads t o  periodic potential  
waves with f in i te  periodicity. The amplitude of the 
waxes i s  determinedby the intersections of V = ll 
with V(Y).  This V(Y) wi l l  not lead t o  shock-like 
solutions. t 

, 



FIGURE 3b. The required form V(Y) must have i f  Y i s  t o  go mono- 
tonically from Y = 0 t o  Y = Yo > 0 as 5 goes from + - 
t o  - OD. 

local  maxima, and be epual. 
than 6-*. 

It i s  important that both V(0) and V(Yo) be 

Yo can be any number less 

FIGURE 4. Plot of U(Y) for different values of 62. 

U(Y), U'(Y) and U"(Y) are a l w s  > 0 far 0 < Y < 6'*. 
Note that 

FIGURE 5.  Drawing of a possible A(Y) for  a typical U(Y). A(Y) 

can be any function which i s  > U(Y) i n  0 < Y < Yo < 6-2, 
and which has A' (Y)  and A"(Y) posit ive i n  0 < Y < Yo. 

A(Y) must have the same value and slope as U(Y) at 
Y = Yo, and U(Y) - A(Y) must go as a negative constant 
times 8 near \y = 0; A(") is otherwise arbitrary. 
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FIG. (2b) 
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FIG. (3b) 
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FIG. (5) 


