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I

Introduction

In many applications, it is either costly or difficult to
secure a large random sample from a given statistical population.
Consequently, it is often efficacious to use some kind of numerical
simulation, or Monte Carlo Method. This usually requires a source
of so-called "random numbers.’' Producing these ramdom1 numbers can
be an inexpensive, simple process, thus facilitating the solution of
one's problem or investigation.

It is the purpose of this paper to present several convenient
methods for generating random numbers representing several of the
fundamental statistical distributions. Most of the methods to be
shown here are readily adapted to automated computation, and several
will be given which are suitable for manual computation, where only a
moderate sample size is required. It will be seen, however, that most
of the methods require a supply of random numbers having a uniform
distribution over the interval [0,1).

Several convenient methods for the generation and testing of
uniformly distributed random numbers have been developed. These
methods are described elsewhere [2,3,10] in detailz, and so the balance
of this paper will be devoted to methods for generating random numbers

from other distributions.

1) These numbers are, strictly speaking, pseudo-random, because some
sort of deterministic process generates them.

2) The generation, testing, and application of random digits are
described in [9].



II
Methods for Generating Random Numbers

Since it is a relatively simple matter to generate uniformly
distributed random numbers, it would be worthwhile to consider
methods for transforming them into random numbers from other distri-
butions. That is, one seeks a transformation T which utilizes a

set U= {ul,u ,...,un} of independent, uniform variates to produce
aset X=T(U) = {xl ,xz,...,xm} of independent variates from some

other distribution. The transformation T 1is often found by equating
the distribution functions of X and U. |

Suppose Y is a random variable with distribution function H,
and suppose one seeks a random variable Z = z(Y) which will have

distribution function K. That is, one requires that

K(z) = H(y) (1

s Al e

for every admissable value of Y, so that
-1
z(Y) = K “[H(y)] (2)

is the desired transformation. Thus, if one can invert the distri-
bution function K, it is possible to find a function of the random
variable Y which will have the desired distribution.

As an example, suppose it is desired to produce a random

variable X with an exponential density function,




k(x) = 0e”%X, (3)

where x > 0 and o > 0, The distribution function of X is, therefore,

K(x) = 75 k(t)dt =1 - e X (4).

Here, let Y denote a random variable with a uniform distribution over

[0,1), so that the density function of Y is

h(y) =1, 0 <y <1, (5)
and the distribution function of Y is

H(y) =y (6).

To find the desired function z so that X = z(Y) will have the

exponential distribution, let

K(x) = H(y)
or 1 - e-m =y (7)
so that x = z(y) = 3- In(1 - y) (8).

If one wishes to use (8) many times, the time saved by using u,

rather than 1 - u, could be considerable. For this reason, it is



interesting to note that u and 1 - u are identically distributed.
This is seen from a comparison of the Moment Generating Functions of
u and 1 - u, respectively. That is, the Moment Generating Function

of u is

M (1) = B[e""] = sf "t au = (eF - 1)/t,

where, for some h > 0, it is required that -h < t < h, Then, for

1l -u,

M, (© = E[ed79%) = glet (D]

t-l e -1
-t t

te

= et Mu(-t) = e

SO Mh(t) = Ml_u(t), and therefore u and 1 - u are identically

distributed. Thus, (8) can be rewritten as

~
0
o/

X = - %-ln u.

It is to be noted that inverting the distribution function is
not always efficacious. As an example, suppose one seeks to use a
uniform variate u to produce a standard normal variate X. As in

(7), one equates the distribution functions,

A et

VZr

X
f e dt =u



Clearly this does not provide a simple way to write X = x(u). One must
turn to numerical methods for such a case as this. (A numerical method
has been described [8] to solve the above; it requires a fairly elabo-
rate set of Chebyshev polynomials and requires more computation time than

the methods to be given here.)




ITI

The Generation of Normal Variates

The normal distribution plays a fundamental role in the theory
of statistics. A random variable X having this distribution, with

mean u and variance cz, has desnity function

£(x) = é_—exp[-(x - W @D, =< x <o,

3

With -® <p <o and o2

> 0. A very useful variate occurs for u = 0

and 02 = 1 and is said to be standardized. It is easily shown

[7, p.124] that if X is a standardized normal variate, then Y = oX + u

is a normal variate with mean yu and variance 02. Consequently, if one

can generate a standardized normal variate, it is a simple matter to

secure a normal variate with mean u and variance 02, and so no loss

of generality will occur in considering only standardized normal variates.
Since one is often interested in producing normal variates in the

most expedient way, the central limit theorem has great appeal. It can

be stated as follows [7, p.149]:

"Let f(x) be a density with mean u and finite variance 02.

n

Let &-l/nz X,

1=1 1

be the mean of a random sample of size n from f£f(x). If the random

variable Yn is defined by

Yy = —5— " (11)



then the density of Yn approaches the normal with mean zero and unit
variance, as n increases without bound.'" Consequently, for sufficiently
large sample size n, one can produce standardized normal variates (11)
from any variates X with mean u and finite variance oz. If u is

2

a uniform variate with density function (5), then u =1/2 and o" = 1/12,

and (11) becomes
u - 1/2

Vo= A&

1//1Z

n
= /3m (2] u,

L% - n) (12)

so that for large n, rzl uy has a normal distribution with mean n/2
and variance n/12. It 111: been noted [8] that n = 12 is a convenient
choic‘el, because then the desired unit variance would occur easily.
Testing [8], however, has shown that this value is too small; while for
n > 50 it has been observed that the form of f(x) 1in the central limit
theorem has little effect on the fidelity of the approximation. The

figure below illustrates the distribution of 100 samples of size n = 10

from the uniform distribution (5).

1) In [8], it is noted that the IBM 704 requires about five milli-
seconds to produce a single normal variate from twelve uniform
variates using this method.




Because of its time consumption and poor accuracy, the central
limit theorem does not find wide application in the generation of
normal variates. For those who require only moderafe sample size,

’ however, it can be very useful, or one can consult tables such as [9].

One can approach the problem of securing normal variates from

( uniform ones in a more elegant and accurate manner than that shown

above.

Suppose that (ul,uz) denotes a pair of independent, uniform

variates with density function (5). Consider the circle

xi +X,=p,
X, = pCoso
with
= pSine,

e
0N
|



' so that 8 = Arctan X,/x;.
Let p=-21n ) (13)
and 8 = 2n u,
so that u = e /2
and u, = 8/2n .

The density function of p 1is

#(p) = h(u ) |du/do|

-0/2
1](-1/2) &®/?] = &

L @/D-1 o2
2412 1(2/2)

so that p has a Chi-Square distribution with two degrees of freedom.

. 2 2 _ _ .
Now, since Xyt X, =p = Zlnu1

and Arctan )cz/x:l =9 = 2r u,
it follows that x, = (-2 In )1/ 2 Cos 27 u
1 Y 2
and x, = (-2 In up™? sin 21 u,, (14)
so that u, = e [-1/2()(2 + xz)]
1 - &XP 17 %
and u, = 1/(2%) Arctan xz/x1 .




10

From this, it follows that the joint density function of X, and X,

f(xl,xz) = h(ul,uz) J(ul,uz/xl,xz)
aul/ax1 aul/ax2

= 1010
auZ/ax1 auz/ax2

2. 2 2 2
-(x7 + x5)/2 -(x3/2) -(x5/2)
T X/ (x;

X I /I

so that Xy and X, are independent, standardized normal variates.

The method (14) shown above was originally proposed by Box and
Muller [1]; and if one's computing facilities can accurately and
speedily evaluate the square root, logarithm, and trigonometric
functions needed, the method is very satisfactoryl. This method is
especially valuable to one who needs only a few normal variates and
proposes to use published tables and a calculator. Note also that
this method is accurate in the tails of the normal distribution.

by now, it has been observed that the standardized normal
population is not easily simulated. There are, however, distributions
which are relatively easy to simulate, such as the familar uniform
distribution (5). It would be very helpful if there were some way

to decompose a complicated distribution, such as the standardized

1) In [8] it has been observed that the IBM 704 would require about
6.6 milliseconds to produce a normal variate with this method.

Note that Xq and X, can be combined so that Z = 2'1/2

(-2 1Inu 1/2 Sin(ﬂ/4)(8u2+1) is a standardized normal variate.

1)

(x *x,) =



11

normal one, into a set of simpler ones, for then one could simulate any
complicated distribution by simulating its simpler c:omponents.1
Let U denote the set of all distribution functions, with X

some random variable,
U= {Gi(x)|i=1,2,...,m,...} ,
and let R denote a set of real numbers
R = {ailai = P[X"g.x)]} ,

where X ~ gi(x) means ''X has density function gi(x) and distri-
bution function Gi(x)." Thus, a; >0 and ajta t..ta b, = 1.

Thus, if FeU is some distribution function of X, then

F(t)

P[X < t]

= IPX<t, X" g ()]
1

= D PX < t[X " g;(x)]-PIX ~ g;(x)]
1

=3 a. G.(t)
;1

and thus the density function of X can be W'ritten2 as

£ = F () = L a; 6;0) =L a g (15)
1 1

1) See [4,5] for additional information on this subject.

2) In the case of a discrete random variable, one would use a
difference g(xi) = G(xi) - G(xi_l) instead of the indicated

differentation to produce the same result (15).
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In practice, one tries to select the elements of U which will allow
there to be more than a single non-zero a;. This will be done below,

where (15) will be used to approximate the standardized nommal density

function

o~ 2/2)

m

fx) = , 1x] > 0. (16)

Figure 1 is a sketch of the graphs of f(x) and gl(x), where

(3-x%)/8, x| > 1
£,00 = ¢ G-[xD¥16, 1< x| <3 an
0, x| >3

and gl(x) is the density function of
X = 2(1,11*-u2+u3 - 1.5) , (18)

where u;,u, and u; are independent, uniform variates with density
function (5). Note that g; (x) closely approximates f(x) for
-3 < x < 3, It is clear, however, that (18) is not a true normal

variate; some sort of correction is needed.
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Since (18) is generated easily, it is desirable that it be used as
often as possible. That is, one desires a; in (15) to be as large as

possible. One seeks the largest ay such that
25 - a8 ]dx > 0

is minimized. This reduces to minimizing
£(x) - a,g,(x) 2 0

for -3 < x < 3, That is, since (19) implies that

a; < £(x)/g; (%)

one simply finds the minimal value of the ratio f(x) /g1 (x) and gives

this value to ay.

f(x) [g'CX) + xg, (x)]
d (£ \. . 1 1
Note that a)—( (gl (X)) gi (x) (o}
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for |x| = 0,1,2. The minimum value of the ratio occurs for |x| = 2,

- 16¢ 2

a
1

so that = 0,86385 54642 ,

and one can use (18) about 86% of the time to simulate a standardized

normal variate. The correction will be necessary with probability

/Ir - 1662

l-a, =
1 Vs

= 0,13514 45358 ,

or about 14% of the time.

Note that ffw[f(x)-algl(x)]dx = 1-a1

f(x) “318; (x)
1

so that

can be called a '"'residual" density function. The graph of

f(x)-algl(x) is sketched in Figure 2. Note that the ''residual"

density function can be well approximated by gz(x), the (triangular)

density function of X = 1.5(uy*u,-1),

(6-4 x )/9, 0 < |x| <1.5
where gz(x) =
, |x| > 1.5
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Note that (19) is easily generated. As with (18), one would like
to use it as often as possible. It is therefore desirable to find a,

so that
f(x) - algl(x) - azgz(x) 10

is minimized for -1.5 < x < 1.5. That is, one must find the minimal

value of

£(x) - 3;8, ()

g x)

and assign it to a,- To find x such that -1.5 < x < 1.5 and

o [f0 - g @)
& gz(x) ’

it is expedient to use a numerical method to find that |[x| =
0.87386 312884, 2.0. The first value provides the minimum, and so
a, = 0.11081 79673; and (19) can be used about 11% of the time as a
standardized normal variate.



16

Figure 3 is a sketch of f(x) - algl(x) - aZgZCx). Note that
STIE®) - ag (X)) - a,g,(x)]dx = 1-a;-a,

= 0.02532 65685

so that one now has the ''residual" density function

f(x) - a,g,(x) - a,8,(x)
I-al-a2

k g3(x) =

As gz is multimodel, it would be tedious to search for one or more
simple variates whose densities would satisfactorily approximate gz
over the interval -3 < x < 3. Consequently, a rejection technique will

be employed to simulate gz over this interval.
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Over the finite interval -3 < x < 3, note that the maximum value
of gs(x) is approximately 0.3181471173, and therefore if x = 6u1-3
and y = 0.3181471173 u,, (x,y) is distributed uniformly over the rectangle
(with area A = 1.9088827038) enclosing the relevant portion 8- Moreover,
of the points (x,y) comprising the rectangle, x can be taken as a
variate with density function g3 only if y < gz (x); because only those
points (x,y) lying on and under the curve g3 contribute to valid probability
statements about X. Consequently one generates the points (x,y) until
Yy < gs(x) , and then with probability ag, one lets X = x.1
The probability a, associated with generating x 3 is
relatively small, a, = l-al-a2-33 = 0.02532 65681 - as. (20)
Consequently, it is reasonable to use (14) for the tails of the

distribution. Since the variates secured by (14) are independent,

standardized, normal variates

we
a, = PLIX| 23] =2

R

0.00269 97960 63
so that from (20) one obtains

a; = 0.02262 677245 .

Thus, for |X| > 3, one generates x; and x, according to (14) until at
least one of them has absolute value ‘greater than or equal to three,

and then the appropriate one is taken as X. The probability that a pair

1) as will be calculated later. Note that the probability that a pair
(x,y) will provide an acceptable X is (1.908882704) " = p, =

0.5238666566, or about two uniform variates will be needed for each
acceptable X when this rejection technique is used.
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and then the appropriate one is taken as X. The probability that a pair

(u,u,) will provide at least one normal variate |X| > 3 1is
a4(2-a4) = 0.00539 2421227,

so that one can expect to produce about 185 pairs (u1 ,uz) to secure
at least one standardized normal variate X when (14) is used.

According to (15), then, £(x) can be written as
f(x) = algl(x) + azgz (x) + asgs(x) + a4g4(x),

and the desired variate X is generated according to the following rule:

1.  With probability a, = 0.08638554642, let

X=2 (u1+u2+u3-1.5)

2.  With probability a, = 0.1108179673, let

X= 1.5(u1+u2-1)

3.  With probability as = 0.02262677245, generate pairs (x,y) until

y < gs(x), and then let X = x, where x = 6u1-3 and

y= ().3181471173u2 with

2
X2 4263583239 (3-x%) -1.944694161 (1.5~ |x|)

15.75192787e
for |x| <1
g5(x) = 15.75192787e'x2/2-2.1317916185(3-|x|)2-1.944694161(1.s-|x|)
for 1 < |x| < 1.5

-x2/2

15.75192787¢ -2.1317916185(3-|x|)?, for 1.5 < |x|] <3

0, for |x| >3
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4. With probability a, = 0.002699796063, generate pairs (xl,xz)
wntil either |[x;| or |x,| is greater than or equal to three,

and then let that one be X, where

1/2

X, = (-21nu Cos 2n u,

1)

1/2

and 5:2 = (-2 In u)™* Sin 2r u,.

To obtain some idea of the efficacy of this technique it is
helpful to calculate the expected number E[N] of uniform variates
needed to produce a single normal variate. To do so, let n, denote
the number of uniform variates one expects to use in the ith step

of the process, i =1,...,4. Then

E[N]

[}
~
®
=

3a1 + Za2 + Aa3 + a4/a4(2-a4)

1

4.079381839,

so that one can expect to generate about four uniform variates for
each normal variate produced.1

The above technique has been shown in detail, applied here to
the standardized normal distribution. In theory, it can be applied to
any distribution. It can be seen, however, that one would find it
handy to compile a catalogue of density functions of relatively easily
generated variates, such as those used in steps 1 and 2 of the above

technique.

1) One could compute the expected computing time for each normal variate
by replacing n; with t., the expected computing time for the

ith process.
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IV

Other Distributions

1. The Chi-Square Distribution
If X is a random variable with the Chi-Square Distribution with

n degrees of freedom, it has density function

(@/2)-1 _-x/2
r(n/2) 24

f(x) = (21)
where x>0 and n=1,2,... [7, p.226]. This is a special form of
the Gamma Distribution [7, p.126].

For this distribution, there are several special cases of n to
observe before moving to an asymptotic distribution.

Recall that in obtaining (14) it was found that X = -2 1In u

had a Chi-Square Distribution with n = 2. Consequently, if
X= -2 1n(u1u2...um) (22)

then X has a Chi-Square Distribution with n = 2m {7, p.244]. Thus,
(22) can be used to generate chi-square variates with even degrees of
freedom.

The square of a standardized normal variate has a Chi-Square
Distribution with n =1 [7, p.243]. Thus, if Y 1is a standardized
normal variate which is independent of Up,Upsees,l, then using (22),

X+ Y2 has a Chi-Square Distribution with 2m + 1 = n and can be used

to generate chi-square variates with odd degrees of freedom.
If one has a supply of standardized normal variates Y, there is

a convenient method for generating chi-square variates X having fairly
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large degrees of freedom n. It is the so-called Wilson-Hilferty

transformation [6,11]:

1/3 1/2

Y= [(X/n)™"" +2/(%9n) - 1] [9n/2]7"", (23)

or X = n[YWIT(m) + 2/(%n) + 1]°. (24)

It has been found [6] that (23) converges to a normal variate for

smaller n than the familiar transformation1
Y = /2X - /2n-1T

or (25)
X = 1/2[Y = /&T}2

which is often seen given for n > 25. In the case of (23), a numerical
investigation [6] has shown that for n > k the maximum absolute error

|E| between the standardized nommal distribution function and that of

(23) is:
k |E]
1 0.03443
2 .01218
3 .00692
5 .00353
10 .00148
12 .00119
13 .00109
14 .00103
15 .00092

From consulting the table, one can decide at which value of n

he will cease using (22) and use (23).

1) See: Fisher, R. A. Statistical Methods for Research Workers
(Tenth Edition), Oliver & Boyd, London (1948), p.8l.
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2. The Beta Distribution

If X is a random variable having the Beta Distribution, with

parameters p and q, then X has density function

r 2
209 = [y F - 0

where 0 <x<1,p> -1, and q> -1 [7, p.129]. To generate X compute

s= e+ D/E+qs HYETD (26)
and t=[ur@+ 2@
until s+t<l,
and then X =s/(s + t) 27)

has the desired Beta Distribution.

To verify (27), let z=s + t so that

and t=12z2(01 - Xx)

from which one can obtain

=r(p+q+3) p+1l p+1

q+l q+1
=2 a_-x
arld uZ = T(q + 2) .
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To find the desired joint distribution of X and Z, it is necessary to

compute J (u1 ,uz/x,z), where

aul/ax aul/az
Iy, ,u,/x,2) =
auz/ax auz/az

=I(p+g+3) p+a+1l.pq .l
—(%_%)_ﬁ)'l‘ T DT * z xF(1 - x)
so that the joint density of X and Z is

h(x,2) = ¢ (up,up) - [3(0y ,up/x,2) |

= J(ul,uz/x,z) .

Restricting 0 < Z <1 according to (26), the density function of X is
£) = L hix,z)dz
0 ’

e _T(p+q+3 Pq.pd A, pra+l
Tp + DT(q + x(1 - x) foz dz

T + + 2
rp(+ rq+) P - 0% 0<x<1,

which implies. X has the proper Beta distribution.

3. The F Distribution:
If X is a random variable having the F distribution, with

m and n degrees of freedom, then X has the density function

M n)/2) omyz x™ 7 B2
29 = Raygrar " T
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where x>0, m> 0, and n > 0. (In practice, m and n are positive
integers.)

There is a well-known transformation [7, p.244]:

Y " T (28)
where y 1is a Beta variate with parameters p = (m/2) - 1 and
= (n/2) - 1, and x has the F distribution, with m and n degrees

of freedom.

Since a method for generating Beta variates has been given, it is

convenient to rewrite (28) as

x = ny/m(1 - y). (29)
Referring to (27), (29) can be written as

(n/m) 1 f/:sf; 9 )

o]
]

ns/ (mt)

u,rp + 2)
n/m [F(p+q+3)

11/(P + 1) [uzl‘(q + 2)]'1/(q + 1)

2/m

u
or  x = n/mlrrR BB M [r(m + /DT g G0)
u

2

Consequently, subject to x + t <1 in (26), or equivalently

wr(m+2)/2) 5.

2/n
a7 )

+ [u,r((n + 2)/219" < 1,

X has the F distribution with m and n degrees of freedom.
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4, Student's t Distribution:

If X 1is a random variable having Student's t distribution, with

n degrees of freedom, then X has density function

fox) = L@+ 1)/2) 5, (2,00 + 1)/2
YZr T(n/2)

where -» < x <o, and n > 0, (In practice, n 1is usually a positive
integer.) [7, p.233].
It is easy to show that if X has Student's t distribution,

z has the F distribution with one

with n degrees of freedom, then X
and n degrees of freedom [7, p.233]. Therefore, if Y has this

F distribution, then the desired t variate X can be generated by
X =Y (31).

The generation of the F distribution was discussed in the

previous section, and so, referring to (30), Y can be generated by

nr(w,u, -1/ 1, 2
Y= 7 7 G2
[(n ‘5 1)r((n +1)/2)}1" [(n/2)r(n/2)]
mu nu,T(n/2)
) 1 N 2 }Z/n <1 (33).
subject t0 (; 4 1)%[r((n + 1)/2)]° 2 =

Consequently, the desired variate x is given by (31), or equivalently,
-1/n
/nw wu,
=% o+ D@+ 1)/2) [(0/2)T(0/2)]

1/n (34),

subject to (33).
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To assign the proper sign to (34), it is necessary that it be

positive with probability 0.5. Referring to (5), it is seen that

P[us > 0.5] = 0.5

so that P[u3 - 0.5 > 0] = 0.5
[u3 - 0.5
or p o, 03" + 1] = 0.5
u3 .
u, - 0.5

3 .
= P[m— = '1]

so that multiplying (34) by (ug - 0.5)/|u; - 0.5 will affix the
proper sign.

Recall that the three distributions in this section are derived
from the Beta distribution, and each of the generation methods
essentially requires that s + t <1 in (26). Consequently one would
desire the probability that a point (u1 ,uz) would provide a valid

variate. For the case of the Beta variate (27) this probability is,

from (26),
P[s + t < 1] =P[u1_§_w]
= 5L M1 au duy = g W du,,
where W= P(pI‘qu:Z?) A-[u,r(q + 2)]1/(q ¥ 1)):

Consequently, after some rearranging, this becomes

P[x+t_<_1]=1‘(P+q+ 3) [r(q+2)]1/(q+1)

T(q + 1)T(p + 2) I 23(1-2)P"dz (35)
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and it is to be noted that, for various values of p and q, (35) has
been tabulated, because the integral is essentially the density function
for the Beta distribution, with parameters q and p + 1.1

To generate the F distribution, with m and n degrees of
freedom, referring to (28) and (35), p= (Mm/2)-1 and q = (n/2)-1

so that (35) becomes

pls + ¢ < 1) = Lm0+ 2/2) ,(Er((n+2)/2)]Z“Z(n-Z)/z(l_z)m/de

_ @ r(m+n)/2) [o/2rn/2)]H"

(1-2)/2 (4 /2
TNCARGA) . Z (1-2)™“az, (36)

which is associated with the Beta distribution, with parameters
(n/2)-1 and m/2.

The Student's t distribution, with n degrees of freedom, is
obtained from the F distribution, with one and n degrees of freedom.

Consequently, m=1 in (36), and

for the Student's t distribution. Here (37) is associated with the
Beta distribution, with parameters (n/2)-1 and 1/2, so that a published
table could be consulted for this case as well as the preceding two,

(35) and (36).

1) This distribution has been extensively tabulated as ''The Incomplete
Beta" distribution, so (35) can be evaluated with the aid of a table.
See: Biometrika Tables For Statisticians, Vol. I (E. S. Pearson and

H. 0. Hartley, editors), Cambridge University Press, London,
(1954), pp. 142-156.
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In certain cases, at least one of the parameters in the Incomplete
Beta integral is an integer, and this can simplify an integral of the

fom

2
g; : g); (q)+ o a0 a. (38)

_T
P=3

When q is a positive integer, it is helpful to note that

a-vf=:1 (Hen®

=M 0

=0

so that (38) can be written as the finite series

K
_rp*+tq+2) p+19 g )"
P-llrard X (0
r'(p + 1)q. K=0(K)p+ +
If it occurs that p is a positive integer, repeated integration

by parts will yield the following finite series:

P -
P=1-: +3+nx@-x0PraT1-K
K=0
If, however, both p and q are positive integers, the repeated

integration by parts can be used to find that

pq+l
P=1 (p+§+1)xK(1-x)p+q+1+K
K=p+1
For nonintegral values of the parameters, one will have to devise an

appropriate technique for (38), or perhaps a published table will be
helpful.
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5. The Gamma Distribution:

If the random variable X has a Gamma Distribution with parameters

A and k, then X has density function

£(x) = -I'_(%- ok - 1 eXX (39)

where x > 0, k> 0, and » > 0. Note that for k =n/2 and X = 1/2,
this becomes the Chi-Square Distribution (21) with n degrees of
freedom. The distribution (39) can be characterized by its Moment

Generating Function [7, p.129)], where t < i,
M (t) = B[eX] = @ - H7F. (40)

Recall that if Y is a random variable having the Exponential
Distribution with mean E[Y] = 1/A, then Y has density function (3),
or

h(y) = eV

where y >0 and A > 0. This distribution is characterized by the

following Moment Generating Function [7, p.119]:
M) =@ -9t (a1)

If Y1 ’YZ"' .5y are k independent random Vafiabies, each having

density function h(y) above, then the Moment Generating Function for

X=1 Yi is given by [7, p.121]:
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k
M () = 1 (t)
X Y
k
= I (l - E.) -1
i=1 A
=a-H*,

which is exactly (40). Consequently, this X has density function (39).

Recall that if u, has the Uniform Distribution over [0,D , then

Y.
i

1
Y In uy . 9

has the Exponential Distribution with density function h(y) above.
Thus, where UpsUysees Uy are k 1independent random variables, each

having the Uniform Distribution over {[0,1], it follows that

k L.k
X=1 Y. =-zlnl u (42)
i=1 i=1

is a gamma variate with parameters A and k.
6. The Poisson Distribution:

If the random variable K has the Poisson Distribution, then
K has density function
k
£(k) = e IAET (43)
where A >0 and k is a non-negative integer. Here, then,

£(k) = P[K = k].
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It is to be recalled that for some positive integer k
k

Y, =I X
kg 17

where Xl""’xn are independent random variables identically dis-

tributed according to (3) with parameter A, has the Gamma Distribution

(39). It is interesting to note the distribution of K, where K is

defined according to

K K+1
Y = X. <1<zt X. . 44)
K 171 j=1 1

If H 1is the distribution function of K, then

H(k) = P[K < k] , (45)
and the density function of K is found by

h(k) = H(k) - H(k-1) , (46)

where (45) is found from (39) according to

PK > K]

[1 k-1

. A(Az! : e Y dy

1-Hk-1) .

k
Thus H(k) = r"—(%)—e‘*Y dy , and
, K

h(k)

Iw Ak+l yK oMY K yK-l e~y

1( f x-Or Y




L« -] _ K_ _
-k ], e Y 0 e o
K (o
I\ d . -Ay
wl FeM e
K K
K - ).
h(k) = -y e™] = A0 - 18 e
y=1
K
-
= e I’\(_'_

so that K has the Poisson Distribution. Thus, to generate pseudo-
random numbers from (43), one can compute Yk in (44), where it is

to be recalled that

= 1 :
Xi- Tlnui

has the distribution (3), where uy is an easily generated uniform
variate. Thus, (44) is
k

- 1
Yk— -)-‘-1n2=1ui_<_1 <Yk+1

and then k is distributed according to (43). This can be somewhat

simplified to yield k of the form

k+1 - k
I u <e” < Il u; . a7
i=1 i=1

7. The Binomial Distribution:
If the random variable X has the Binomial Distribution, then

X has density function [7, p.64]

f(x) = (?() px a - p)n—x ,

32
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where x = 0,1,...,n, and 0 < p < 1. The distribution function of X

is

X X
Fx) =] £(t) =]
t=0

@ Pt @ -p""

n
=1-] (2)pt(1-p)“t,
t=x+1

where it is to be noted that F(x) = P[X < x], and f(x) = P[X = x].

Since X can take on only a finite number of values, it is feasible
to evaluate the distribution function F for each admissable value, and
for each value of X, 0 < F(x) < 1. This suggests a simple technique
for the generation of pseudo random numbers from the Binomial
Distribution.1

Let u denote a random variable having the Uniform Distribution

over [0,1). Then for every u, there exists some value of X such that
F(x - 1) <u < F(x)

so that letting X = x will provide the desired pseudo random number.

1) It will be noted that the technique can be applied to any random
variable which can take on only a finite number of values.
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