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ABSTRACT

Stability of the discrete, homogeneocus, linear, minimum
variance estimation formulas is investigated. Sufficient con-
ditions for uniform asymptotic stability in the large are de-
rived., The conditions, if satisfied, also imply stochastic
controllability and observability of the plant.
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I. Introduction

Stability of the minimum variance linear estimation for-
mulas is essential in cases for which the estimation takes
place over extended periods of time, For continuous systems,
Kalman [2] has provided conditions which insure stability of
the homogeneous filter equations. It appears however, that
a similar treatment of the discrete estimation formulas is not
available in the control literature. 1In a recent paper,
Sorenson [4] derives upper and lower bounds on the discrete
error covariance matrix, but does not consider stability.

It is the purpose of this paper to derive the conditions which
insure that the discrete minimum variance estimations formulas
are uniformly, asymptotically stable in the large.

Before proceeding to the derivation, it is necessary to
define certain notation. The matrix norm IIA!\ is ATA. Matrix
I is the unit matrix., Given two symmetric matrices B and C, of
equal dimension, the inequality B>C implies that the difference
B-C is non-negative definite., Similarly B>C implies that B-C is
positive definite. Finally, it is tacitly assumed that all

matrices are bounded from above in norm.



' II Filter Equations and Conditions for Stability

Consider a discrete time stochastic process whose state
vector x(k) satisfies the recursion relation

x(k+l) = ®(k+1,k)x(k) + G(k)v(k) : ll@(k+l.k)|l2§11>0
(2-1)
where v(k) is a white random vector sequence with
Blvik)] =0 Elv)vi(3)] = 8 0(k) ; Q(k) 2 ¢,1>0 (2-2)

and Akj is the Kronecker delta. Linear measurement vectors z(k)

'~ are available as outputs and the z(k) are defined as

z(k) = H(k)x(k)+w(k) (2-3)

where w(k) is a white random vector sequence with
E[w(k)] =0 Elw(k)wT ()] = b RUK) J R(k) 28,10 (2-4)

For the system (2-1) through (2-4) the discrete minimum variance

linear estimate of x(k) is determined by equations

2(k) = p(k)[p (k) Tk, k-1)R (k-1)+uT (k)R (k) "Lz (k)] ; %(0)=E[x(0)]
(2-5)

p(k) = [p' (k) L+aT()R(K) LH(K)ITY ; P (0)=E[x(0)xT(0)) (2-6)

P (k+l) = ®(k+1,k)P (k)@ (k+1,k)+G(k)Q(k)G" (k) (2-7)

where ﬁ(k) is the minimum variance estimate, P(k) is the esti-
mation error covariance matrix after processing the measurement
z(k) and p'(k+l) is the extrapolated error covariance matrix.

Now the system
y(k) = PP (k) ek, k-1)y(k-1) (2-8)

represents the homogeneous part of (2-5), If there exist real
scalar functions V(y(k),k), Yl(l‘Y(k)‘l), Y2(||Y(k)|') and
y3(||y(k)‘|) such that for some finite N > 0 *

Defining these conditions over N steps is equivalent to Kalman's
definitions, over a finite interval, in the continuous case [2]
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0 < vyly) 1) < viy(k),k) < vy(lly) ) yik) #0 (2-9)

V(y (k) ,k)-V(y(k-N) ,k-N) < yy(lly(k)1]) <0 k>N,y(k)#0 (2-10)
and in addition
v1(0) = v,0) =0 M y(el=e (2-11)

then the system (2-8) is uniformly asymptotically stable in
the large [3].

In the sequel it will be shown that if there are real
number s o, Qy, Bl’BZ such that the conditions

¢(k,i+1)c(i)Q(i)GT(i)¢?(k,i+1)za21 0<a,, @<=  (2-12)

k
BIS T &7, KH (R TH(S(L, k)BT 0<B), By<w  (2-13)
i=k-N

hold for all k > N, then the function Vb(y(k),k) defined as

1

v, (Y (k) k) = yT (k)P (k) "ty (k) (2-14)

satisfies conditions (2-9), (2-10) and (2-11). Thus if the
system (2-1) through (2-4) satisfies conditions (2-12) and
(2-13), the homogeneous system (2-8) is uniformly asymptotically
stable in the large. Note that (2-12) and (2-13) imply that the
system is stochastically controllable and observable [1].

III. A _Lower Bound

Since Q(k) given by (2-5,6,7) is the minimum variance
linear estimate, the estimate Q(k) defined as *

-
I

~ |k T 0, -1
x(k) = P(k)l z & (i, k)H (i)R(1) z(iiJ k>N (3-1)
| i=k-N
-1
~ k o, o -1 \
P(k) =| £ @ (i,k)H (L)R(i) "H(1i)®(i, k) k>N (3-2)
—~i=k-N J

* It can be shown that g(k) is the maximum likelihood estimate
for the x(k) system with no process noise (Q(k)=0), and ignoring
all data before k-N.
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~ has an error covariance matrix satisfying the inequality

cov{;(k)-x(k)} = E-{[;(k)—x(k)][;(k)-—x(k)]T} > P(k) (3-3)

Now, with (2-1) and (2-3), the measurement z (i) may be written
as

k-1
z(i)=H(1)®(i, k)x(k)+w(i)-H(i)®(i k) T &(k,j+1)G(F)v(]) (3-4)
j=i

where, as usual, the state transition matrix has the properties

&o(k,i)=P(k,k-1)®(k-1,k-2)....9(i+1,1)
-1 .

Combining (3-4),(3-3) and (3-1) yields
" .N k
cov {x(k)-%(k)§ =cov§\P(k)Z @T(i,k)HT(i)R(i)—lw(i)§ (3-6)
t i=k-N

5’“ k T T .y =1 k-1 z
+cov{P(k) L " (i,k)H (i)R(i) "H(i)®(i,k) T &(k,3+1)G(3)v(3)*

U i=k-n j=i )
Adding non-negative definite terms on the right of (3-6), by
altering the lower limit of j, produces the inequality

. N ~ k
cov{x(k)-;(k)§ < covSP(k) > ¢F(i,k)HT(i)n(i)’1w(i)} (3-7)
l i=k-N
{~ k T T -1 k-1 1
tcoviF (k) T #T(L,k)HT(RE) THEIK) T (K, +1)E(3)v(H)]
 i=k-N i=k—N )
X -
= T ¢m(i,k)HT(i)R(i)-lH(i)@(i,k{J
: i=k-n
k-1 T T
+ T ®(k,i+l)G(i)o(i)eT (1)@ (k,i+l)
i=k-N

Applying (2-12), (2-13) and (3-3) obtains an upper bound on P (k)

k
P(k) < [ £ &% (i, x)uT (1)R(1) tH(1)®(i, k)] L (3-8)
i=k-N

k-1 - T 1
+ %  &(k,i+l)G(i)Q(i)Gc (i)® (k,i+l) < ( 5 + al)I
i=k~-N Bl

and thus a lower bound on Vb(y(k),k) is

—-4-



B
v 2 (gag) Hvoo 112 = PULTCITIS

1

vp(y(k).k)=yT<k)p<k)‘

IV. An Upper Bound.

Define the inverse of P (k) as W(k) and from (2-6)

1 -1, T

w(k)=p (k) "t=p ' (k) "L+uT (k)R (k) "TH(K) | (4-1)

Similarly, define wl(k) and Wl'(k) as

Wy (k) = wik)-u" (k) R(K) Tr(k) =B (k)7 (4-2)

1 1

Wi(k+l) = T (k+1,k) " TW(k)®(k+l,k) " (4-3)

and with the help of (2-6) and (2-7), (4-2) and (4-3) become
Wy (k) =y (k) 46 (k-1 (k-1)e” (k-1)1 71 (4-4)

Wy (k+1) = @7 (kt1, k) Ty (k)@ (k+1, k) "LedT e, ) LT (k) R (K) L -

1

H(k)®(k+1l,k) (4-5)

By noting the similarity between (4-4), (4-5) and (2-6), (2-7)
it is seen that Wl(k) may be interpreted as the estimation error
covariance matrix for a system described by the equations

x (k+1) = &F (k+1,k) Yx (k) +@% (k+1,k) “1uT (k) s (k) (4-6)
z(k) = G (k-1)x(k)+m(k-1) (4-7)
Elst)]l =0 Els)s(9)] = s R0 7" as)
Elmk)] =0 Elm)nT(1)] = 8 0007
Applying the results of Section III to this system, it is clear that
K
WO [T 86076 (-he-1eT @-0eT 0 T (4-9)
i=k-N
k-l o -1, 1T -1 -1 -1
+ T T (k,i+l) 1T (i+1,1) HT(L)R(1) “TH(i)®(i+1,1) "To(k,i+1)
i=k-N



—————

or

ko1 T, :\aT -1
wy(k) <[ = ®(k,i+1)G(i)Q(i)G (1)@ (k,i+1)] (4-10)
i=k-N-1

k-1
+ 3 & (i,k)HT(i)R(i)~
i=k-N

lai) @, x)

and according to (4-2)

k-1 T T -1
wk) <[ T @&(k,i+1)G(i)Q(i)G (i)® (k,i+1)] (4-11)
i=k-N

k
+ T 0T WRE) TH@eGE,K) <{ -+ 32) :
i=k-N “2

Therefore an upper bound on Vb(y(k),k) is

v (y(k),k)=yT(k)W(k)y(k)5(—l— + B, Iy () |22y, (I ly@a) | ])
p a, 2) 2 (4-12)

To this point, it has been shown that Vp(y(k),k) satisfies
conditions (2-9) and (2-11). Condition (2-10) is yet to be
satisfied.

V. A Relevant Control Problem

Consider the system

y(k) = ®(k,k-1)y(k-1)+u(k) (5-1)
where u(k) is a control input., If the cost function J is de-
fined as

k
3= T [yT () ET(LRE) THE) y(2)+uT (1)p' (1) Tu(i)) (5-2)

1=K-N

then it will be useful to determine the optimal control sequence
u*(k) which minimizes (5-2), Define large vectors Y and U as

y(k) | u(k) |
y (k-1) u(k-1) (5-3)
Y =| - ; u=| -
|y (k-3 | | u(k-N)
and matrices M,B,L thus (5-4)
R(k) 0 P* (k) o | [HK) 0
M = R(k-1) + B= P (k-1) L= H(k-1)
L0 "R (k-N) 0 p'(kN) Lo H(k-N)



so the cost J may be written as

J = vyiLTm trv+uTs Ly (5-5)

Further, if matrices C and D are

| & (X, k-N-1) I ®(k,k-1) ®(k,k-2) .. &(k,k-N) | (5-6)
®(k-1,k-N-1) I &(k-1,k-2) . ®(k-1,k-N)
C= . D= I .
) 0 . )
| ®(k-N,k-N-1) i -1 )

and the initial condition is defined as

Yo = y(k-N-1) (5-7)
then

Y = cy, + DU | (5-8)
and

g = [uTDT + ygcT]LTM"lL[CyO+DU] + v Ly (5-9)

The first and second‘derivatives of J with respect to U(gradient

vector and hessian matrix)are

%% = 2[UTDT+ngT]LTM-1LD+2UTB-1 (5-10)
2

873 _ 37l s (5-11)
oU

Controls u(k) are unconstrained so (5-10) and (5-11) provide
necessary and sufficient conditions for the optimal control
sequence U*, Setting (5-10) equal to zero obtains

_ 1.-1 -
u* = -[pTLTM 1o+~ 1) T pTLTM lLCy0 (5-12)

and substituting into (5-9) yields the minimum cost

- - _ -1 =1 -1.-1 -
J*=ngTLT[M Lol n T in4pT 17 1p"1) Ty l]LCy0
= ygcTLT[M+LDBDLT]—lLCy0 (5-13)
Now, from the definitions of L, C, M and condition (2-13)
B I < T e < B,I (5-14)

Because R(k) in Eq. (2-4) is bounded below, from (5-14)
there exists a real number 53 such that

Hzeygll 2 Byl 1yl 0 <py <o (5-15)

-7-
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Also, because the norms of R(k), &(k,k-1), P'(k), and H(k) are
bounded above, it follows that there are real numbers 64 and
BS such that

T
B4I < M+LDBDL < BT 0 < B, Bs < (5-16)
and therefore

-1

By I 2 [m+pBDLT] 7t > 65'11 . (5-17)

Equations (5-13), (5-15) and (5-17) combine to establish that
the minimum cost is positive if the initial state is non-zero

g* = yoc'nT(muoepL”] Loy, > 82871 |y (k-n-1) | |2 (5-18)

VI. Stability

In order to use the results of Section III to prove sta-
bility, the homogeneous equation (2-8) is written as two equations

y(k) = y'(k)+u(k) (6-1)

y'(k) = ®(k,k-1)y(k-1) (6-2)
where u(k) is considered as a control input and

u(k) = [P(k)p' (k)-Ily"' (k) (6-3)
Applying (6-1) and (6-2), the function Vﬁ(y(k),k) becomes

vp(y(k),k)=yT(k)P(k)'ly(k>=yT<k)[p-(k)’1+aT(k)R(k)‘1H(k) ly (k)
=y' T(k)p (k) Ly* (k) -yT (k)ET (k)R (k) “tH(K) y (k)
+2yT () [p (k) "T-p (k) Ty ) +yT (k)P (%) Ly () -yt k)R (k) "Ly (k)
=y T(k)p (k) Ly' (k) -yT (K)HT (K)R(k) " H (k) y (k)

[y k) -y ()1 (k) My k) -y (k)]

T T T -1
=y' " (k) [®(k,k-1)P (k-1)®" (k,k-1)+G(k-1)Q(k-1)G" (k-1)] y"* (k)

~yT ) ET ()R (k) “2H(K)y (k) -uT (k)P (k) "tu(k)

=yT (k-1) [P (k-1)+@(k-1,k) G (k-1)Q(k-1)G" (k-1) & (k-1,k) ]~y (k-1)

1

—yT )T ()R (k) “HH (k) y (k) -uT (k)P (k) "Tu(k)



1

- < yT(k-1)P (k-1) "Ly (k-1)-yT (k) HT (k)R (k) " H (k) y (k) -uT (k)P (k) “Tu(k)
(6-4)
hence
yT ()P (k) "Ly (k) -yT (k-1)P (k-1) "Ly (k-1)
<~yT) BT (k)R (k) “2H (k) y (k) -uT (%) P * (k) "Tu(k) (6-5)
whence
yT (k)P (k) "Ly (k) -y (k-N) P (k-N) ~Ly (k=N)
k
< -t [yT@ETERE) THE) y @)+t (1)pe (1) "Tu(i)]
i=k-N (6-6)
and from definitions (2-14) and (5-2)
vp(y(k).k)— vp(y(k-N).k-N) < -3 (6-7)
Since J* is the minimum cost, and satisfies (5-18)
v, (¥ (k) k) =V (y (k-N) ,k-N) S-0<-0+<-B3B. " | |y (k-n-1) | |2 (6-8)

Now define a matrix transformation 6(k,k-N-1) as
6 (k,k-N-1)=[P (k)P ' (k) 1&(k,k-1)][P (k-1)P* (k-1) “t&(k-1,k-2)]...

ee.[P(k-N)P' (k-N)®(k-N,k-N-1)] (6-9)

From (2-8) and the fact that all matrices in the product
on the right of (6-8) are non-singular and bounded below in norm

Iy Ge-5-1)] [=[j6 (k, k-5-1) "y (k) | |28, 1 1y (k) ||
Finally (6-8) yields

2, 2
v, (y (k) k) -V, (v (k-N)  k-N) <385 B | [y (o) | 1 2=y, (1 Iy 00 [ 1) (6-10)
and since Y3(||y(k)||) is negative for all non-zero vectors y(k),
the system (2-8) is uniformly asymptotically stable in the large,

Conclusions

It has been shown that if a linear stochastic system is
stochastically observable and controllable, then the corresponding
discrete homogeneous minimum variance estimation equations are
uniformly asymptotically stable in the large.
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