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ABSTRACT 

Time-optimal rendezvous maneuvers a re  studied. The system 

. .  considered i n  t h i s  report cons is t s  of two space vehicles namely, a 

t a rge t  vehicle (non-maneuvering vehicle) and an interceptor vehicle 

(maneuvering vehicle) under the influence of the  ear th  gravi ty .  An 

interceptor vehicle has propulsive j e t  systems which can produce a 

var iab le  th rus t  (pos i t ive  o r  negative) independently i n  three per- 

pendicular direct ions.  The case where the ta rge t  vehicle i s  i n  the  

e l l i p t i c  o r b i t  is  mainly considered and some ana ly t i ca l  d i f f i c u l t i e s  

involved i n  the  c i r cu la r  o r b i t  case a re  discussed. Several time-optimal 

t r a j e c t o r i e s  f o r  d i f f e ren t  configurations are shown. 

PRPCEDING PAGE ELANK NOT FILMEU. 
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SUMMARY 

Time-optimal t r a j e c t o r i e s  have been generated f o r  the e l l i p t i c  

o r b i t  rendezvous problem. A multiple engine control  system which 

can apply a var iab le  thrus t  (posi t ive o r  negative) independently i n  

three  perpendicular d i rec t ions  i s  used. The optimal control  l a w  i s  

found using Pontryagin's maximum principle.  

then used t o  f ind  the  i n i t i a l  values of the  ad jo in t  var iab les  which 

a r i se  i n  the  use of t he  maximum principle.  

forms t h e  two-point boundary value problem i n t o  one of maximizing a 

function where t h e  locat ion of the maximum i s  the  optimum adjoint  

i n i t i a l  condition, and the  value o f  the function a t  t he  maximum i s  

the  optimum (minimum) t i m e .  The Fletcher-Powell modification of 

Davidon's method is  used t o  f ind the  maximum of the function. 

Neustadt's method i s  

Neustadt's method trans- 

A comparison is  made of the  multiple engine cont ro l  system used 

i n  t h i s  inves t iga t ion  and the  s ing le  engine control  system f o r  which 

the  magnitude and d i rec t ion  of the thrust  vector are found as a 

function of t i m e .  

A computer program has been developed which w i l l  solve the  t i m e -  

optimal control  problem f o r  an n-dimensional time-varying l i n e a r  

system with r cont ro l  var iables ,  r 5 n, with the  control  cons t ra in t  

luil 1, i = 1, 2,  ..... , r ,  o r  
r 
c u: 2 1. 

i=l 
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I. INTRODUCTION 

A v i t a l  part of space missions today is  the  rendezvous 

maneuver. I n  the  United S t a t e s  manned lunar  mission, t h e  Apollo 

program, the  LEN vehicle, a f t e r  leaving t h e  moon, must rendezvous 

with the Apollo vehicle  before re turning t o  Earth. I n  many space 

missions, minimizing t h e  f u e l  consumption during t h e  rendezvous 

maneuver will be desirable.  However, i n  a rescue mission, minimizing 

t h e  time duration of t h e  rendezvous maneuver will be of utmost 

importance . 
The rendezvous maneuver i s  usual ly  separated i n t o  three phases 

as follows: 

1. The ascent or launch phase i n  which t h e  maneuvering 

vehicle, hereaf te r  ca l led  the  in te rceptor  vehicle, 

is launched i n t o  some parking orb i t .  

2. The terminal phase i n  which the  in te rceptor  i s  

maneuvered f r o m  t h e  parking o r b i t  t o  t h e  immediate 

neighborhood (possibly a f e w  hundred f e e t )  of the  

non-maneuvering or t a r g e t  vehicle, which i s  moving 

i n  a known Keplerian o rb i t ,  30 t h a t  t h e  docking 

maneuver can take  place. 

2 



3. The docking phase i n  which the  t w o  vehicles are 

brought together . 
In  t h e  last  several  years many papers have appeared i n  the  

The ear ly  literature on all phases of the  rendezvous maneuver. 

investigations of the  terminal phase were terminal control problems, 

i n  other  words, they were concerned with guidance schemes which 

were not optimal but would complete the  rendezvous maneuver. 

guidance schemes were of two types: 

These 

1. 

2. 

Impulsive guidance schemes based on o r b i t a l  mechanics. 

Continuously burning rockets usually based on 

proportional navigation. 

I n  the impulsive guidance schemes one o r  more impulses are 

imparted t o  the interceptor  so t h a t  it w i l l  m e e t  the  t a rge t  vehicle 

a t  a prescribed point i n  space. Another impulse i s  then applied t o  

reduce the  r e l a t i v e  velocity between the  two  vehicles t o  zero. 

However, t he re  is one drawback t o  t h i s  scheme; instantaneous velocity 

changes are not possible. 

of t i m e ,  and la rge  e r ro r s  can occur i f  t hese  burning times are not 

short  enough t o  va l ida te  the assumption of an instantaneous veloci ty  

change. This has been shown by Stapleford (1962). Impulsive 

guidance schemes have been studied by Clohessy and Wil t sh i re  (1960), 

Hornby (1962), Eggleston (1962), and Bender (1963) 

The rockets must burn f o r  a f i n i t e  period 

3 



I 

I n  proportional navigation t h e  th rus t  function i s  determined 

so that  the angular velocity of t h e  r e l a t ive  veloci ty  vector is  

proportional t o  the  angular veloci ty  of t he  l i n e  of s igh t  vector. 

By controlling the  angular ve loc i t ies  of these two  vectors i n  t h i s  

manner the  two vehicles w i l l  be brought together at  some l a t e r  time. 

A study u t i l i z i n g  proportional navigation was performed by Cicolani 

(1961) . Harrison (1963) investigated the  rendezvous maneuver using 

col l is ion course and pursuit course guidance, which a re  forms of 

proportional navigation. 

With the  basic rendezvous maneuver well established, the next 

s t e p  is t o  develop guidance schemes which w i l l  achieve rendezvous, 

but will also be optimal wi th  respect t o  some c r i t e r i a ,  i.e., fuel ,  

energy, t i m e .  

t o  one of optimal control. 

zation studies has been minimization of fue l  consumption. 

of t h i s  type have been performed by Goldstein e t  

Tschauner and Hempel (1964), Tschauner (1965 ) , Hedit ch and 

Neustadt (1963), and Kaminski (1966) . Kaminski' s study was a lso  

minimurn time because of t h e  constraint  of a continuous, constant 

th rus t  . 

This changes t h e  problem from one of terminal control 

The object of most rendezvous optimi- 

Studies 

al. (1963), 

Although minimizing fuel consumption during rendezvous is 

important, another area of importance is minimizing t h e  time required 

t o  complete the  rendezvous maneuver. 

4 
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importance i n  a rescue mission. 

rendezvous was performed by Kelley and Dtvln (1%3), but no synthesis 

procedure was developed. Paiewnsky and Woodrow (1965) investigated 

time-optimal rendezvous with l i m i t e d  f u e l  when t h e  t a r g e t  vehicle 

is i n  a c i r cu la r  orb i t .  

vous have been performed when t h e  ta rge t  vehicle is mving i n  an 

e l l i p t i c  orbi t .  

Paiewonsky and Woodrow (1965) and Kelley and Dunn (1963) is one with 

a s ingle  engine, and t h e  a t t i t ude  of t h e  th rus t  vector with respect 

t o  some reference is found as a function of time so t h a t  rendezvous 

i s  completed i n  t h e  minianrm possible tine. Harever, r a the r  than 

having a single engine, the propulsion system may be one which can 

apply d l  t h r u s t s  independently i n  t h e  longitudinal and t h e  two 

transverse directions.  

type. 

vehicle was perfornmd by Stapleford (1963), but t h e  maneuver was 

not an optimal one. 

An invest igat ion of time-optimal 

However, no s tudies  of time-optimal rendez- 

The maneuvering vehicle i n  t h e  s tud ies  by 

The G e d n i  vehicle is an example of t h i s  

A study of the rendezvous maneuver with this type of space 

The object of this investigation is t o  f ind  t h e  control o r  

guidance law, subject t o  cer ta in  constraints,  which will bring the  

interceptor  i n t o  coincidence w i t h  the t a rge t  vehicle with zero 

r e l a t i v e  ve loc i ty  when the  ta rge t  vehicle is mving  i n  a known 

e l l i p t i c  o rb i t ,  and will perform t h i s  maneuver i n  t h e  dninnUn 

possible time. The interceptor  vehicle considered w i l l  be one which 

5 



can impart a variable  thrus t  independently i n  three perpendicular 

directions. 

(positive o r  negative) of t he  three th rus t  values so t h a t  t he  

Thus, t he  problem is t o  f ind the  magnitude and d i rec t ion  

rendezvous maneuver is completed i n  the  minimum possible time. 

The equations of motion are wr i t ten  with respect t o  a moving 

coordinate system whose or ig in  i s  located at the  t a r g e t  vehicle and 

which rotates with the  angular veloc i ty  of the  radius vector f romthe  

e a r t h t s  center t o  t h e  ta rge t  vehicle. Using t he  t r u e  anomaly of t h e  

t a r g e t  vehicle o r b i t  as the  independent variable and the  r a t i o  of 

t h e  difference-coordinates t o  t h e  length of t he  radius  vector from 

t h e  earthcs center t o  t h e  t a rge t  vehicle as the  dependent variables, 

a system of l i n e a r  d i f f e ren t i a l  equations with periodic coef f ic ien ts  

is obtained. The l inear iza t ion  of t h e  equations i s  va l id  i f  the  

distance between the  two vehicles is sxnall compared t o  the  length of 

the radius vector from t h e  earthvs center t o  t h e  t a r g e t  vehicle. 

This l inear izat ion allows t h e  equations of motion describing motion 

i n  the  plane of t h e  t a rge t  vehicle o r b i t  and those describing motion 

normal t o  t h e  o r b i t  plane t o  be decoupled. Thus, the  two  problems 

can be handled separately. 

simple osc i l l a to r  where t h e  coef f ic ien t  of the  forcing function i s  

The out-of-plane motion is that of a 

periodic 

The optimal control l a w  is found by application of Pontryagincs 

maxinnUn principle. 

.6 
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t h e  adjoint var iables  f o r  which t h e  init ial  conditions are unknown. 

An i t e r a t i v e  procedure developed by Neustadt (1960) i s  then used t o  

f ind  t h e  in i t ia l  conditions of the  adjoint variables. 

procedure transforms the  two-point boundary value problem i n t o  one 

of maxjmiaing a function where the  location of t h e  maxirmun is t h e  

desired adjoint  initial condition, and t h e  value of t h e  function a t  

t h e  maximm is t h e  optimwn (minimum) time. A convergence technique 

developed by Fletcher and Powell (1963) i s  used t o  f i n d  the  maximum 

of t h e  function. 

Neustadtcs 

O p t h u m  rendezvous t r a j e c t o r i e s  for  various i n i t i a l  conditions, 

maximum allowable accelerations, and values of t h e  t a r g e t  vehicle 

o r b i t  eccent r ic i ty  are presented. 

control  and multiple engine control  is also given. 

A comparison of  t h e  s ingle  engine 

7 



11. MlRMULATION OF THE PROBLPi 

In  this section t h e  derivation and t h e  solution of t he  equations 

of motion f o r  the terminal phase of t h e  rendezvous maneuver are pre- 

sented. 

Several assumptions are made i n  the analysis,  however, these 

are standard assumptions i n  rendezvous studies. The assumptions are: 

1. The ear th  i s  spherical. Any perturbing forces  due 

t o  a non-spherical ear th  are not considered. 

2. The distance between t h e  two vehicles  i s  s m a l l  

r e l a t ive  t o  t h e  distance of t h e  t a rge t  vehicle  

from the  ear th 's  center. 

3. The interceptor  i s  a point mass. The a t t i t u d e  

s t a b i l i t y  of t he  vehicle i s  not considered. 

4. The or ien ta t ion  of t h e  in te rceptor  is such t h a t  the  

direct ions of the  three independent components of 

thrus t  coincide with t h e  x, y, z direct ions shown 

i n  Figure 1. 

A. Derivation of Equations of Motion. 

The problem is t o  describe t h e  r e l a t i v e  motion between a 

reference body ( ta rge t  

8 

vehicle)  moving i n  a known e l l i p t i c  o r b i t  of 



eccent r ic i ty  e and another body (interceptor) which i s  i n  t h e  

neighborhood of t h e  reference body. A moving coordinate system 

centered at t h e  t a rge t  vehicle and rotat ing with t h e  o r b i t a l  angular 

ve loc i ty  of t h e  t a rge t  vehicle  is employed as shown i n  Figure 1. 

x-axis is  directed outward along the radius  vector f romthe  ea r th ' s  

center t o  t h e  t a rge t  vehicle;  t h e  y axis is  perpendicular t o  t h e  

x axis, l i e s  i n  the  t a rge t  vehicle o r b i t  plane, and is directed i n  

the  d i r ec t ion  of motion of t h e  target vehicle; t h e  2; ax is  is normal 

t o  t h e  t a rge t  vehicle o r b i t  plane, and its d i rec t ion  i s  such t h a t  a 

right-handed coordinate system is formed. 

The 

The equation of motion of t he  target  vehicle  i s  

II Id2i?t P 2t 
dt2  rt3 

r E - = - -  

Id(  1 where = ( ) denotes d i f fe ren t ia t ion  with respect t o  time i n  

an i n e r t i a l  reference frame, et is t h e  vector from t h e  ear th ' s  

center t o  the  t a rge t  vehicle, and p is t h e  grav i ta t iona l  constant. 

The equation of m t i o n  of t h e  interceptor  i s  given by 

where ?i is t h e  vector from t h e  e a r t h ' s  center t o  t h e  interceptor,  

T i s  t h e  th rus t  vector, and m i s  t h e  mass. 
-L 
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"he pos i t ion  of t h e  in te rceptor  r e l a t i v e  t o  t h e  t a r g e t  vehicle 

.. . i s  

(2.3 1 - 5 . A  2 
p = ri - rt = xFil + y 3 2  + z 3 ,  

and 

From equation (2.3) we have 

(2.5 1 A ri = (rt + x) el + y Ti2 + z fi3 . 
1 Now consider t h e  term - 

ri3 

Equation (2.6) is now expanded i n  a Taylor series, and the  assumption 

t h a t  the dis tance p between t h e  two vehic les  is small relative t o  

t h e  distance rt of t h e  t a r g e t  vehicle  from t h e  ea r th ' s  cen ter  allows 

higher order  terms t o  be neglected. Equation (2.6) becomes 

1 1 
ri3 rt 3 (2.7 1 

Subst i tut ion of equations (2.5) and (2.7) i n t o  equation (2.4) 

gives  

10 



Now consider t h e  d i f f e ren t i a t ion  of p with respect t o  time i n  an 

i n e r t i a l  reference frame. 

d t  d t  

denotes d i f f e ren t i a t ion  with respect t o  time i n  t h e  Rd$ where - 
d t  

ro t a t ing  reference frame and i s  given by 

A w, which is  given by 

- ; = e % ,  

(2.10) 

(2.11) 

is t h e  orb i t& angular ve loc i ty  of the t a rge t  vehicle. 

a t i ng  equation (2.9) once more gives 

Different i -  

After subs t i t u t ing  equations (2.10) and (2.11) i n t o  (2.12) and 

equating (2.8) and (2.12), t h e  scalar  equations of motion a r e  

obtained: 

11 



.. 2cI TX x - * - & - ( 6 2 + - ) , , ,  
m rt3 

T h i s  is  a set of l i n e a r  d i f f e r e n t i a l  equations with periodic 

coeff ic ients  since rt, 6,e  are periodic with a period equal t o  the  

o r b i t a l  period of t h e  t a rge t  vehicle. However, one obtains a much 

simpler form of t h e  equations i f  t h e  t rue  anomaly 8 is  used as t h e  

independent variable, and i f  

"he following i d e n t i t i e s  are 

one makes t h e  transformation 

Y 2 
q = - , C * -  . 

rt rt 

obtained by different ia t ion:  

. e 6 s i n  e 
l+e cos €3 

8 rt - x -  x ,  

where ( ) '  denotes d i f f e ren t i a t ion  with respect t o  t h e  true anomaly 0. 

12 



The scalar equations of motion become: 

Also, 
1 B: (1+e)2 

- x  

(2.18a) 

(2.1Sb) 

( 2.18~)  

where R is the perigee distance of the  target vehicle orbit. P 
For computational purposes it is advantageous to make the 

following transformations: 

13 



and 
Tx 
rn"'B(e> ux * 

where L is an a rb i t r a ry  length whose magnitude is chosen so t ha t  

= 0(1), i = 1, 2, ......, 6 .  A reasonable value of L is 

L2 = 1;2(to) + &to) + 22(t0) (2.22) 

U- is t h e  m a x i m u  allowable thrus t  per uni t  mass, and p(e) is t h e  

r a t i o  of t h e  mass of t h e  interceptor  t o  t h e  ini t ia l  mass. The con- 

trol functions I+ us, uz, are r e s t r i c t e d  t o  

\ua\ 5 1 , a = x, y, z . 
Using matrix notation, t h e  equation of motion becomes 

- ~ ' ( 0 )  = A ( 8 )  5 (0) + B(8) 2 (e) 

where Z(Q)  is t he  s t a t e  vector defined by 

x =  - (2.25) 
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- u(9) i s  t h e  control vector defined by 

u(e) = - 
uX 

u 
Y 
U z 

and 

A =  

0 1 

3 0  
i+e COS e 

0 0 

0 -2 

0 0 

0 0 

2 
B =  .. 

U-LRp (l+e) 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 
- 

# 

0 

2 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

-1 

- 
0 

0 

0 

0 

0 

1 
- 

0 

(2.26) 

(2.28) 

From equations (2.13) o r  (2.18) one sees t h a t  the equations 

governing motion i n  the  o r b i t  plane of the  t a rge t  vehicle are de- 

coupled from t h e  equations governing motion normal t o  t h e  o r b i t  

plane, t hus  the  one problem can be broken up i n t o  two completely 

independent problems. 

* 
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B. Solution of Equations of Motion. 

The problem under consideration is t h e  solut ion of t h e  set of 

n first order l i n e a r  d i f f e r e n t i a l  equations 

- xl(Q) = A(e) ,x (0) + B(0) 2 (0) (2.29) 

where A(O + 2x)  = A(0) .  

it i s  known t h a t  t h e  homogeneous par t  of (2.29) is  reducible, that 

is, by a l i n e a r  transformation 

From l i n e a r  system theory (see Appendix A )  

- = Q(e> J! (0) (2.30) 

where Q(6) is  a n x n nonsingular matrix, the  system (2.29) can be 

reduced t o  the  form 

- Y W  = D - Y (0) (2.31) 

where D is a n x n constant matrix. 

(2.29) and (2.31) are kinematically equivalent. 

possesses t h e  state t r a n s i t i o n  matrix 

It is sometimes said t h a t  

The system (2.31) 

y(9, eo) = exp [(e - 90) D] (2.32) 

Substi tution of (2.30) i n t o  t h e  homogeneous port ion of (2.29) gives 

Q ' Y + Q ' = A Q Z  - - 9 

and since Q(e) is nonsingular 

- Y' = Q-' (AQ - QO 

D = Q - ~  (AQ - Q I )  . 
. 

Hence, 
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The matrix Q ( Q )  is called a Lyapunov transformation. E3y another 

linear transformation 

the system (2.31) can be transformed into its Jordan canonical form: 

where 

The state transition matrix of the system (2.29) is then given by 

where 

The matrix P'l(8) has been obtained by Tschauner and Hempel 

(1965) and the following specific form is obtained from Lange and 

Smith (1965). 
- 

0 

0 

C P 1/3 -92 

- 2q 1 + ept -w 0 -1 

0 0 
e si& - l+e cos0 e cos0 

2 2 2 
-- 

0 e sin9 2+e cos43 
-7- 2 0 3- case 

-Y 
0 0 0 0 1 

0 
- 

0 0 0 0 

17 



C 

where: 

c = &[1 - (1+2 e 2 ) m ]  s i n  0 - (2+3 e cos 8 + e2)sin-’A (2.42) 
e 

p = - 4 (1 + 3 -1- - 1 [l - (1-e 2 312 3 cos e 
3e 

p = sin e (l+e COS e) (2.46) 

l+e cos 8 

The Jordan canonical form of I) i s  

- 

0 0 0 0 0 0  

0 1 0 0 0  

O I  
0 0 0 1 0 0  

0 0 - 1  0 0 0 
s 

0 0 0 0 - 1  0 

0 0 0 0 0  ’1 - 

(2.47) 
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and the  state t r ans i t i on  matrix exp (e - eo) A is  given.by 3 
1 @-eo> 

0 1 

0 0 

0 0 

0 0 

0 0 
- 

- 
0 0 0 0 

0 0 0 0 

cOs(e-8,) s i n ( W o )  0 0 

-sin(+e,) cos(e-eo) 0 0 

0 0 COS (&eo ) s in (  &eo) 
0 0 -sin(e-eo) cos( ~8,) 

(2.49) 

The canonical form (2.48) corresponds t o  three decoupled second-order 

systems: 

with a natural period equal t o  tha t  of the  o r b i t  period. 

plant may be interpreted physically a s  motion i n  a s imilar  coplanar 

coaxial e l l i p s e  with higher o r  lower t o t a l  energy. 

o s c i l l a t o r  corresponds t o  motion i n  a coplanar e l l i p s e  with the  same 

period, but 

The other harmonic osc i l l a to r  corresponds t o  the  out-of-plane 

motion and can be interpreted physically as motion i n  an e l l i p s e  

2 a pure i n e r t i a  o r  1/s plant and two harmonic o s c i l l a t o r s  

The l/s2 

One harmonic 

1 with d i f fe ren t  eccentr ic i ty  and/or orientation. 

wi th  t he  same period but with different inclination. 

1 
This in te rpre ta t ion  was obtained from Lange and Smith 1965). 
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The solution 

- x(Q) = 

where IC., is t h e  in i t ia l  value of t h e  state vector, and 

x(e,eo) = p(e) exp [(e - eo) n3 p-l(e0) . (2.51) 

Also, X-’(0,tl0) is given by t h e  r e l a t ion  

xol(e,eo) = x(eo,e) . (2.52) 

Summarizing, t he  problem is: 

t h e  solution given by (2.50), f i nd  t h e  control %(e) among a l l  ad- 

missible controls, Le., s 1, a = x, y, z, which brings t h e  

system from its initial state ~ ( 0 , )  t o  t h e  origin,  i.e., z (0f )  = 2 , 
i n  t he  minimum possible t i m e .  

given t h e  system governed by (2.24) with 

I 
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111, THE OPTIMAL CONTROL PROBLEN 

I n  this section t h e  basic optimal control problem is stated. 

This i s  followed by a synopsis of Pontryagincs mazimum principle  

which i s  then applied t o  t h e  rendezvous problem, Finally, Neustadtcs 

method, an i t e r a t i v e  procedure f o r  computing the  in i t ia l  value of t h e  

ad jo in t  vector whlch arises i n  t h e  use of t h e  principle,  is 

presented 

A. Statement of t h e  Problem, 

The motion of t he  system t o  be controlled i s  assumed t o  be 

described by the  set of n first order d i f f e r e n t i a l  equations.' 

( i )  - x ( t )  i s  an n-dimensional vector called t h e  state 

vector which a t  any i n s t an t  describes t h e  state 

of t h e  system; 

( i i )  - u ( t )  is an r-dimensional, r 5 n, vector ca l led  t h e  

control input t o  the system. The magnitudes of 

t h e  components ul(t), u2( t ) ,  ....., u ( t ) ,  of t he  

I n  t h e  discussion of t he  general problem t i s  used as t h e  inde- 

r 

pendent variable but when t h e  rendezvous problem is discussed, 8 i s  
t h e  independent variable,  
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control  vector - u ( t )  are limited by t h e  physical 

bounds of t h e  system. This i s  stated mathematically 

as 

y E U  (3.2) 

where U i s  a closed set i n  t h e  r-dimensional space 

and i s  ca l led  t h e  control  constraint  set .  The con- 

t r o l  functions ui( t ) ,  i = 1, 2, ..... r, are assumed 

t o  be piecewise continuous. 

piecewise continuous and satisfies (3.2) i s  ca l led  

Any control  which i s  

an  admissible control. 

( i i i )  f(x, 3 t )  i s  an  n-dimensional vector function. 

The optimal control problem i s  t o  f i n d  t h e  control function 

- u( t ) which 

(i) is admissible, 

( i i )  brings t h e  system from its i n i t i a l  state _x(to) t o  

s o m e  prescribed final state &( t f ) ,  and 

( i i i )  minimizes t h e  performince index o r  cost  function J 

of t h e  system where 

J = /-- g(& 3 t )  d t  . (3 .3 1 

A control i ( t )  which satisfies these three requirements i s  ca l l ed  an 

optimal cont ro l  . 
22 



The t o t a l  t r a n s i t i o n  t i m e  ( t f  - t o )  may be e i t h e r  an  unknown 

quant i ty  o r  a prescribed constant, depending on t h e  problem. 

t h e  minimum-time problem the  t o t a l  time i s  t o  be minimized, hence 

g(2, E, t )  = 1. 

final time tf i s  specified,  and g(5, 2, t) = h(u), - where h(u) - i s  the  

r e l a t i o n  between t h e  rate of flow of f u e l  and t h e  control  s ( t ) .  

For 

When t h e  performance index i s  f u e l  consumption t h e  

B. Pontryagin's Maximum Principle  . 
Pontryagint s maximum pr inciple  furnishes  a necessary condition 

However, t h e  existence and uniqueness f o r  a control  t o  be optimal. 

of an optimal control  must be determined by o ther  means. 

presented here i s  t h e  statement of  t h e  maximum pr inciple  and its 

appl ica t ion  t o  the  rendezvous problem. 

maximum principle  can be found i n  Pontryagin e t  al. (1962). 

geometric proof has been provided by Halkin (1963). 

To be 

The o r ig ina l  proof of  t h e  

A 

Consider t h e  function' 

(3.4) 

where H i s  ca l l ed  the  Hamiltonian due t o  i t s  s imi l a r i t y  t o  t h e  

Hamiltonian i n  c lass icd l  mechanics. The components of t h e  vectors  

Note that min(J) = - max(-J). Hence, i f  one wanted t o  maximize 
t h e  performance index J, equation (3.31, + g ( 3  ;, t )  would appear 
i n  t h e  Hamiltonian ra ther  than -g(& 2, t ) .  

2 3. 



p ( t )  and x(t )  sa t i s fy  t h e  d i f f e ren t i a l  equations - - 

and 

dPi aH 

axi 
, i = 1, 2, ...., n , -=,- 

d t  

, i = 1, 2, ...., n . dxi aH 
w e e  - 
d t  a P i  

Note that no boundary conditions a r e  given f o r  p( t ) ,  hence equation 

(3.5) does not define a unique vector function. The vector p ( t )  is 

cal led the adjoint  o r  cos ta te  vector. 

- 
- 

Pontryagincs maximum principle states: 

Let - u*(t) be some admissible control and le t  - Xk(t) be 

t h e  corresponding trajectory.  

control then there exists a vector p*(t) sa t i s fy ing  

(3.5) such t h a t  at every in s t an t  t, to 5 t 2 tf, 

If - u*(t) is an optimal 

- 

with respect t o  a l l  admissible controls. 

T h a t  is, the  optimal control function g*( t )  i s  t h a t  control  function 

which maximizes t h e  Hamiltonian f o r  aw given state. 

The maxinwn pr inc ip le  i s  now applied t o  the  minimum-time 

rendezvous problem. The governing d i f f e ren t i a l  equation with 8 as 

t h e  independent var iab le  is 
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..- d e )  = A@) ,x (e) + B(Q) 2 (e) (3.9) 

where A and B are defined by equationa (2.27) and (2.28). 

state of the  system is  t h e  origin, Le., z ( e f )  = 2. The control  

constraint  set is the  unit hypercube, i.e., lual 5 1, a = x, y, z. 

The final 

The cost  function J is  

ref 
The Hamiltonian becomes 

The optimal control  e(e) is given by 

Thus, t h e  system always operates at &munn power, and the  components 

of * ( e )  have t h e  value +1 or  -1. 

control  problem. 

This is t h e  so-called bang-bang 

The governing d i f f e ren t i a l  equation for t h e  adjoint 

vector  is 

Et(@ - - AT(@> 
The solut ion of (3.14) is 

(3.14) 



The optimal control (e) becomes 

The components of the optimal control function g ( e )  are1 

+ e A0 s in  0(l+e cos e)]  + p2(e0) [-e s i n  0(l+e cos e) 3 
- 1, p3(o0) cos ~0 (l+e cos e)  

- k p (eo) s i n  AQ(l+e cos 0) 

2 

2 4  
(3.17) 

+ p (0,) s i n  A0(2+e cos 0) - 

- p4(G0) cos A0 (2+6 cos 0) , 

2 3  

(3.18) 

(3.19) 
} 1 

u; = sgn [- p5(e,) sin ~0 + p6(8,) c o s  

The canonical form of the equations of motion has been used for 
t h i s  calculation. 
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where 

1 + e cos 0 

A Q = ~ - C I ,  . ( 3 . W  

When t h e  vehicle i s  controlled by a s ingle  engine f o r  which t h e  

d i rec t ion  of t h e  thrus t  i s  t o  be found t h e  control constraint  set i s  

t h e  un i t  hypersplere. The optimal control then takes  t h e  form 

Thus, t h e  engine operates a t  maximum power, and the  direct ion cosines 

of the thrust  vectoz are given by equation (3.22). 

The optimal control, equation (3.16), is not specified uniquely 

since t h e  i n i t i a l  value of t h e  adjoint vector p(6,) is not known. 

Thus, t h e  calculat ion of t h e  optimal control requires t h e  determination 

of p(8,). 

dimensional systems, t h i s  problem can be solved by running t h e  system 

backwards, that is, replace t with -t, start a t  t h e  or ig in  and invest i -  

gate  t h e  solution. 

switching surfaces, on which t h e  components of t h e  control vector 

change sign. 

of the  state of t h e  system, i.e., a feedback control system. 

- 

I n  l i n e a r  two-dimensional systems and some simple three- - 

This procedure gives surfaces, commonly ca l led  

Thus, t h e  optimal control function i s  known as a function 

Since 

27 



t h i s  can only be done i n  t h e  simpler cases some other  procedure must 

be used fo r  t h e  more complicated problems. 

been developed by Neustadt (1960). 

One such procedure has 

C. Neustadt's Method. 

1. Theory 

Under consideration i s  t h e  determination of t h e  control 

which will bring a given system from its i n i t i a l  state z ( t o )  

t o  t h e  o r ig in  i n  the  minirmun possible time. 

system i s  assumed t o  be described by t h e  set of n first order 

The m t i o n  of t h e  

linear d i f f e r e n t i a l  equations 

- k ( t )  = A(t) - x ( t )  + B(t) 2 ( t )  (3.23) 

where g(t) i s  an rdimensional  piecewise continuous function of 

time and is constrained t o  a compact, convex set U which contains 

t h e  origin; i n  this particular case t h e  unit  hypercube, Le., 

luil 5 1, i = 1, 2, ..., r. The mlu t ion  of (3.23) is  given by 

where & = x(t0) .  

Define r ft - 1 
X-'(r,to) B(T)U(T) - d.rt U(T)  

\ 

C(t) is ca l led  the set of reachable events and cons i s t s  of those 

2 8 



points  which can be t ransferred t o  t h e  o r ig in  i n  t i m e  ( t  - to) ,  

using an admissible control. The boundary of C(t)  is  a surface 

of constant optimal t i m e .  

boundary of C(t)  f o r  some t i m e  to 

t o  t h e  surface directed toward C(t) i s  t h e  optimal initial value 

Each point is a point on t h e  

A t  t h e  point 3 t h e  normal 

of t h e  adjoint  vector. 

par t icular ,  Halkin (1963). 

This has been shown by many authors, i n  

These surfaces are continuous but 

they are not necessarily smooth; corners may d s t  as shown i n  

Figure 2. 

Since u i s  a compact, convex set, C(t1) i s  contained i n  

C(t), i.e., C(tf)CC(t), for t @ <  t. 

t, t*, f o r  which & E C(t*), i.e., there i s  a control  which 

Thus, there i s  a smallest 

t r a n s f e r s  & t o  t h e  o r ig in  i n  t h e  minixmu possible time. 

& is a boundary point of C(t*). 

Also, 

Use of Neustadtls method requi res  that the  control  system 

be a - normal control s y s t e m .  This  requirement is satisfied f o r  

our woblem and discussed i n  Appendix B. 

Define 



The problem now is t o  f ind  a vector JI which will map t h e  - 
vector g(t, $) into 5 , 

procedure which performs t h i s  mapping. 

Neustadt's method is an i t e r a t i v e  - 

Consider t h e  function 

f ( t ,  - *; = * - [$t, *I - - 51 (3.29) 

L e t  t he  domain of \k be r e s t r i c t e d  t o  those q f o r  which J/ 

This makes no r e s t r i c t i o n s  on t h e  problem since C(t)  is convex 

and t h e  optimal k, p, is t he  vector normal t o  C(t*) a t  & and 

directed away from C(t*). Hence, 

> 0, - - - 

For \cI # 0 it can be shown t h a t  f ( t ,  +; &) i s  a continuous, 

s t r i c t l y  monotonicaUy increasing function of to 

convex 

- - 
Since C(t)  i s  

* - Z(t ,  0 $1 - JI y f o r  a l l  - YEC(t), - Y # &, $1 - (3.30) 

as shown i n  F igure  3b, Therefore, i f  s( t* ,  $) # 5 - 

Since f(to, $; s) is  negative and f(t*,  .JI; s) is  posit ive,  - 
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at some time 

which t h e  g t r a j e c t o r y  passes through the  hyperplane which 

t*, f(x,  JI; 15) = 0. This is t h e  time f o r  - 

passes through ,x with normal 9 as shown i n  Figure 3a. This JI 

is t h e  optimal JI f o r  t h e  point z(<, JI), hence it i s  normal t o  

t h e  boundary of C(%). 

- 0 

0 
- - 

Define F($; 5) as - 

Therefore, to< F(JI; s) 5 t*. Also, F($; - 5)  = t", t h e  optimum 

time, i f ,  and only i f  g(t*, q)  = +, i n  which case s ( t ,  J I )  - is  t h e  

optimal control  which t r ans fe r s  & t o  t h e  o r i g i n  i n  the  t i m e  

(t*- to). The va l id i ty  of these statements can be seen from 

t h e  convexity of C(t) ,  

0 

- 

It was shown that 

for a l l  yEC(F(9; s). But, by def in i t i on  of F(JI; &) - - 

cannot l i e  in s ide  C(F(q; s)) 
Since C(t*) is convex and 

Therefore, if Z(F(*;%>~T># 5,s - 
and must l i e  outside of C(F(JI; - &)). 



... 

Therefore, the goal i s  t o  f ind  a value of \k which will maximize 

t h e  function F(\k; s), where the  maximum value of F(q; 15) i s  

t h e  optimum (mi-) time, and t h e  locat ion of t h e  maximum 

determines t h e  optimal control. 

I 

- - 

One aspect of Neustadt 1s method which makes it extremely 

useful  i s  that the  gradient of F(9; 16) with  respect t o  Jr is 

proportional t o  t h e  "error vector"[;(F(*; s), J / )  - 4, 
- 

- - 
2. Computation 

The i t e r a t i v e  procedure f o r  finding the  maximum of t h e  

function F(*; IC+,) w i l l  now be presented, 

The i t e r a t i v e  procedure i s  started by making an i n i t i a l  

guess f o r  $, designated by A reasonable guess i s  the  unit 

vector para l le l  t o  t he  in i t ia l  state vector, i.e., 
- 

Let  $. be the  i - th  guess, 

as a function of time u n t i l  

The function g ( t ,  $ ) is then generated 
-1 -i 

f ( t ,  q& ; = $& [&, - 24 = 0 

T h i s  time is F(*i; s), and t h e  gradient i s  given by 
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ar 
a t  where ( - ) i s  a non-negative function. 

made t o  & and t h e  procedure repeated with 

A correct ion is now 

JI = J I + + $ .  (3 035 
i+ l  * -1 

Computation is stopped when t h e  magnitude of the  e r r o r  vector is  

l e s s  than some small value E : 

Since t h e  gradient i s  known t he  method of steepest  ascent can be 

used f o r  t h e  correction, i.e., the correct ion is made i n  the  

d i r ec t ion  of t h e  gradient of F: 

It can then be shown ( i f  K2 is su f f i c i en t ly  small) t h a t  

Hence, t h e  i t e r a t i o n  method w i l l  converge t o  a value of $ which 

w i l l  define t h e  time-optimal control - u ( t ,  %), and w i l l  maximize 

t h e  function F($; - G). However, Neustadt and Paiewonsky (1963) 

have shown that finding t h e  optimum 

- 

may be d i f f i c u l t .  I n  many - 
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cases t h e  function F(%; 15) is  a very f l a t  furiction of - Jr ,  i n  

which case a small change i n  JI - f romthe  optimum creates  a very 

small change i n  F(&; 5) but a large displacement i n  t h e  tra- 

jectory 

Because the  function F(&; a) i s  so f la t  the  method of 

steepest  ascent converges slowly. 

more rapid convergent method. 

t h i s  study was developed by Fletcher and Powell (1963). 

verges rapidly and is also easy t o  program. 

modification of t h e  var iable  metric method developed by 

Davidon (1959). The Fletcher-Powell method has second order 

convergence, i.e., t h e  procedure converges i n  n i t e r a t i o n s  when 

t h e  function i s  a quadratic of n variables. The correct ion 6% 

is not made i n  the  d i rec t ion  of t he  gradient (method of s teepest  

ascent ), but i n  a modified direct ion defined by 

A search was made t o  f ind a 

The convergence method used i n  

It con- 

This method is  a 

62.i E H i  OF(&; 5) (3.39) 

where Hi i s  a posi t ive def in i te ,  symmetric, n x n matrix. 

description of  t h e  Fletcher-Powell method is given i n  Appendix C. 

The convergence rate of t he  Fletcher-Powell method f o r  a 

I n  t h i s  example t h e  

A 

rendezvous problem is  shown i n  Figure 4. 
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c r i t e r i a  for  terminating t h e  computation was 

I[z(F(*; s), 2)  - 311 .= Fif teen optimum steps’ requiring 

70 i t e r a t ions  Were required for convergence. 

stopping t ime (time at which f ( t ,  - $5 &) = 0) increases  each step, 

t h e  magnitude of t h e  error vector [z(F(*; 15). 5) - 31 does not 

necessarily decrease each step. I n  fac t ,  it generally does not 

decrease much u n t i l  t h e  optimum t i m e  i s  established, a t  which 

time it starts t o  decrease rapidly each step. I n  t h e  example 

shown i n  Figure 4, t h e  magnitude of t he  error vector is la rger  

after 57 i t e r a t i o n s  than a f t e r  t h e  first i te ra t ion ,  but it then 

decreases three  orders of magnitude i n  the  next 13 i t e ra t ions .  

This same example w a s  worked using t h e  method of s teepest  ascent 

with optimum steps. A comparison of t h e  two methods i s  given i n  

Figure 5.  

s t eps  the  optimum t i m e  w a s  not obtained after 300 i t e r a t i o n s  as 

compared t o  the  70 i t e r a t ions  required t o  obtain t h e  optimum 

t i m e  using the  Fletcher-Powell method. 

Although t h e  

Using t h e  method of steepest ascent with optimum 

’ See Appendix C f o r  a description of an optimum step. 
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I V .  CIRCULAR ORBIT 

If the control system is normal (see Appendix B) t he  optimal 

control,  i f  it exists, is  unique. 

is not normal t he re  may be more than one optimal control. 

will be an optimal control  which is  bang-bang, but there  may be 

o thers  which a r e  not bang-bang. 

e l l i p t i c  t h e  normality condition is  sa t i s f i ed ,  but when it is 

c i r cu la r  t h e  control system is  not normal. 

r e s t r i c t ed  t o  normal control  systems, therefore  the  c i r c u l a r  o r b i t  

However, when the  control  system 

There 

When t h e  t a r g e t  vehicle o r b i t  i s  

Neustadt’s method is  

problem must be given fu r the r  consideration. 

The optimal control  equations (equations (3.17) and (3.18)) 

f o r  a c i rcu lar  t a rge t  vehicle o rb i t  a r e  

Now l e t  p1(8,) = p3(€lO) = p,+(eo) = 0, p2(e0) # 0, and t h e  optimal 

control becomes 

uX * = sgn [o] , (4.3) 

and 
(4.4) 

Sgn LO] i s  undefined, hence ux* is  not uniquely defined; it can 

36 



take on any value between +1 and -1. However, i f  t he re  i s  more 

than one optimal control a t  least one w i l l  be bang-bang. 

no genera l i ty  i s  l o s t  i f  ux* i s  r e s t r i c t ed  t o  +1 and -1. 

of control  i s  ca l led  sinRular control. 

Therefore, 

This type 

A requirement f o r  t h e  use of Neustadtts method is t h a t  t he  

control  system be normal. 

control systems Neustadt's method will  not give a wrong solution. 

It may not give a solut ion but i f  it does, t he  solut ion is  optimal. 

It will now be shown t h a t  f o r  non-normal 

An example w i l l  then be given t o  illustrate t h e  s ingular  control 

problem. 

L a  S a l l e  (1960) has shown t h a t  the s e t  of reachable events C( t )  

i s  convex. 

found which will bring the  system from i ts  i n i t i a l  state & t o  t he  

o r ig in  it is  an optimal control.  

boundary of C(t) .  The normal t o  t h e  boundary of C( t )  a t  ~ 0 ,  i f  it 

edsts, d i rec ted  toward C( t )  i s  the  optimum i n i t i a l  adjoint  vector. 

The d i r ec t ion  of the  normal, i f  it exists,  i s  unique. Therefore, a 

unique so lu t ion  i s  defined by the  normal t o  C(t)  except when t h e  

Therefore, i f  an admissible control  sa t i s fy ing  (3.16) i s  

A t  some t 5 is  a p i n t  o n  the  

- 

d i rec t ion  of t h e  normal i s  such t h a t  the  s ingular  control condition 

sgn(0) 

The s e t  of reachable events cons is t s  of two subsets: 

points which can be reached by non-singular control,  and 2) 

occurs, i n  which case the  optimal cont ro l  i s  not unique. 

1) t h e  s e t  of 

the  

set of points  which can be reached only by s ingular  control. I f  

x i s  a point which can be reached by non-singular control Neustadtrs --o 
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method w i l l  give the  solut ion s ince the  d i rec t ion  of t he  normal t o  

C(t)  is  unique. 

singular control Neustadt's method w i l l  not give t h e  solution. 

optimal control i s  defined by sgn (0) and t h i s  i s  not defined. 

enough i t e r a t ions  are made Neustadtcs method will give a value of 

t h e  optimum time which is  less than but a good approximation of t h e  

optimum time, and it will give a value of t h e  i n i t i a l  adjoint  

vector which is close t o  t h e  optimum in i t ia l  adjoint  vector. 

init ial  values of the  adjoint  var iables  which define singular con- 

t r o l  i n  t h i s  investigation a r e  p (0 ) = p3(e0) = ph(eo) = 0, and 

p2(e0) # 0. 

by singular control are hyperplanes since t h e  normal t o  t h e  boundary 

at each p i n t  has the  same direction. 

a l l  singular control problems. 

When 5 is  a point which can be reached only by 

The 

If 

The 

1 0  
The portions of t h e  boundary of C( t )  which are defined 

However, t h i s  i s  not t r u e  i n  

Theoretically, t h i s  s ingular  control problem could be circum- 

vented by using a very small value of t h e  t a r g e t  vehicle o r b i t  

eccentr ic i ty  e. 

control i s  unique. 

would be defined by singular control  f o r  a c i r c u l a r  o rb i t  are very 

flat, and it may be d i f f i c u l t  t o  obtain a solution. 

accuracy would be required t o  obtain a solution, and double precis ion 

would probably have t o  be used i n  t h e  computer program. 

The control system i s  then  normal, and the  optimum 

However, t h e  portions of t h e  boundary which 

Extreme 
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Now consider t he  example 

X l  = x2 + u1 

x2 = u2 
(4.5 1 

with t h e  constraint  

The optimal control  functions found by applying Pontryagint s 

maxim principle  are 

u~ = sgn [ P ~ < O ) ]  (4.7) 

(4.8) 

Therefore, i n  non-singular control  u1 i s  constant and u2 switches 

a t  most once. I n  singular control, q ( 0 )  = 0, u2 i s  constant and 

u1 can be any value between +1 and -1. 

Optimal isochrones (boundary of C( t ) )  and optimum t r a j e c t o r i e s  

are shown i n  Figure 6. The boundary of C(t)  f0r.t = 1.5 i s  given 

by t h e  curve ABCDA. 

t h a t  portion of the  plane t o  t h e  r ight of t h e  curve BOC and the  

portion t o  t h e  l e f t  of the  curve AOD. 

of t h e  curve BOC, f o r  example p o i n t  E, t h e  optimal control  is  

i n i t i a l l y  u1 = -1 and u2 = -1. 

curve OC 

The optimum i n i t i a l  values of t h e  adjoint variables f o r  t h i s  region 

The region defined by non-singular control is  

For any point t o  t h e  r igh t  

When the  t ra jec tory  in t e r sec t s  t he  

u2 switches t o  +1 and the t r a j ec to ry  goes i n t o  t h e  origin.  
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are ~ ~ ( 0 )  .= 0 and p2(0) .= 0. 

region t o  t h e  l e f t  of AOD. 

example point F, t h e  optimal control  is i n i t i a l l y  u1 = 1 and u2 = 1. 

When the t r a j e c t o r y  in t e r sec t s  t h e  curve OA u2 switches t o  -1. The 

optimum in i t i a l  values of t h e  adjoint  var iable  i n  t h i s  region a re  

p1(0)== 0 and p2(0)> 0. 

pl(0) = 0 and pz(0) # 0. 

The region defined by singular control  i s  t h e  a rea  bounded by t h e  

curve AOB and t h e  a rea  bounded by COD. 

singular control  region, point G. 

ways t o  reach the  o r ig in  from point G. 

1) I n i t i a l l y  l e t  u1 = -1 and u2 = -1. 

GHO as shown. 

u l  from - l t o  +1. 

jectory is  the  curve GJO. 

OB switch u1 from +1 t o  -1. 

t ra jec tory  w i l l  go d i r ec t ly  t o  the  o r ig in  without any switching 

being required as shown by t h e  curve GO. 

condition i s  %(O) = 0 and pz(0) # 0 t h e  portionsof the  boundary of 

C(t)  defined by s ingular  control  a r e  f la t  as shown by t h e  curves AB 

and DC. The curves OA, OB, OC, and OD a r e  ca l led  switching curves. 

Similar  conditions exist f o r  the 

For any point i n  t h i s  region, f o r  

The s ingular  control condition i s  

Thus, u1 = sgn (0) and u2 = sgn (p2(0)). 

Now consider a point i n  t h e  

There a re  an i n f i n i t e  number of 

Three ways will be given: 

The t r a j e c t o r y  i s  the  curve 

When t h e  t r a j ec to ry  in t e r sec t s  t h e  curve OA switch 

I n i t i a l l y  l e t  u1 = 1 and u2 = -1. 2) The tra- 

When the  t r a j e c t o r y  reaches t h e  curve 

3 )  L e t  u1 = - 0.08 and u2 = -1. The 

Since the  s ingular  control 
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V. DISCUSSION OF RESULTS 

A. In-plane Motion. 

Because of the  large number of parameters involved, thrust 

level ,  o r b i t  eccentricity,  in i t ia l  value of t h e  t r u e  anomaly, i n i t i a l  

conditions, it is impractical t o  present r e s u l t s  of a general nature. 

However, so t h a t  some ins ight  of the time-optimal maneuver can be 

obtained, t he  ini t ia l  conditions are chosen i n  t h e  following manner: 

a t  .a separation distance p of 150,000 fl f t .  with a r e l a t ive  veloci ty  

AT of 100 0 ft./sec. three  s i tuat ions a re  considered as shown a t  

point c i n  t h e  f igure below. the interceptor  moving away from 

t h e  t a r g e t  vehicle along the  l i n e  of s ight  ( Arl), 2) the  in te r -  

ceptor moving perpendicular t o  the l i n e  of s ight  i n  t h e  clockwise 

d i rec t ion  ( AT2), and 3) 

t h e  l i n e  of s ight  i n  the  counterclockwise d i rec t ion  ( A ~ J ) ;  these 

three s i tua t ions  are considered a t  four points i n  t h e  x - y plane a s  

shown i n  the  following figure; 

1) 

t he  interceptor moving perpendicular t o  
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i n i t i a l  values of t he  t rue  anomaly considered are 0' (perigee), 

90°, 180° (apogee), 2700 as shown i n  the  following figure;  

O0 180' 

goo 
an o rb i t a l  eccent r ic i ty  of 0.5 and a perigee distance of 4100 miles 

are used. Only points i n  the  upper half  of t h e  x - y plane have 

been considered since the  optimal control function E* for t h e  

ini t ia l  condition -5 is j u s t  t he  negative of t h e  optimal control  

function f o r  t h e  ini t ia l  condition 5. I n  t h i s  invest igat ion the  

maximum allowable thrus t  accelerat ion i s  assumed t o  be constant . 
Inclusion of t h e  effect  of a var iable  mass i s  not d i f f i cu l t .  How- 

ever, including t h i s  e f fec t  makes the  presentation of any concise 

results d i f f i c u l t  i f  a range of spec i f ic  impulse i s  considered. 

The t o t a l  t h rus t  acceleration , hX, considered i n  the  above cases 

i s  0.25 ft/sec2. 

then considered f o r  t he  above conditions only with 8, = 0' (perigee). 

1 

Total t h r u s t  accelerations of 0.5, 0.75, 1.0 are 

Optimum rendezvous t r a j ec to r i e s  f o r  t he  above conditions are 

presented i n  Figures 7 - 26. 

This is t h e  t o t a l  th rus t  acceleration, hence t h e  value of the  
fi 

=&'-io components i s  hx 
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In  Figures 7, 10, 12, 14, 16, 19, 22, 24 optimum rendezvous 

t r a j e c t o r i e s  are given f o r  t h e  s i tuat ion when t h e  interceptor  i s  

i n i t i a l l y  moving away f romthe  target  vehicle along t h e  l i n e  of 

sight. 

counterclockwise direction. 

t he  s i t u a t i o n  when the  interceptor  is  i n i t i a l l y  moving perpendicular 

t o  t h e  l i n e  of s ight  i n  t h e  counterclockwise d i rec t ion  are  given 

i n  Figures 9 ,  18, 21, 26. 

continues t o  move i n  the  counterclockwise direction. 

rendezvous t r a j ec to r i e s  are presented i n  Figures 8, 11, 13, 15, 17, 

20, 23, 25 f o r  t h e  s i t ua t ion  when the  interceptor  i s  i n i t i a l l y  

moving perpendicular t o  t h e  l i n e  of  sight i n  t h e  clockwise direction. 

Ekcept f o r  t h e  case when 8, = 1800 (apogee) t he  interceptor  must 

reverse d i rec t ion  and move i n  the  counterclockwise direct ion before 

rendezvous occurs. Hence, t h e  t i m e  duration of t he  rendezvous 

maneuver when the  interceptor i s  i n i t i a l l y  moving i n  the  clockwise 

direct ion is greater  than the time duration when the  interceptor  i s  

i n i t i a l l y  moving i n  the  counterclockwise direction. For instance, 

consider t h e  example when the interceptor i s  i n i t i a l l y  above t h e  

interceptor  and %lax = 0.25, 8, = OO. 

is required t o  complete t h e  rendezvous maneuver when t h e  interceptor  

i s  i n i t i a l l y  moving i n  t h e  clockwise direct ion (Figure 8, case b) 

and 1/2 of an o r b i t  is required when the  in te rceptor  i s  i n i t i a l l y  

I n  a l l  of these examples t h e  interceptor  moves i n  the  

Optimum rendezvous t r a j e c t o r i e s  for 

I n  each of these cases the  interceptor  

Optimum 

Sl ight ly  more than one o r b i t  
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moving i n  t he  counterclockwise direct ion (Figure 9 ,  case b). 

the  case when the ta rge t  vehicle i s  i n i t i a l l y  a t  apogee (eo = 1800) 

For 

t h e  gravity force is much smaller, and the interceptor  does not need 

t o  reverse direct ion t o  complete the  rendezvous maneuver i n  the  

minimwn possible time. The e f f ec t  of the  gravi ty  force on t h e  

maneuver can a l so  be seen by comparing the t r a j e c t o r i e s  of t h e  

examples when t h e  interceptor  i s  above (below) the  ta rge t  vehicle 

and forward (behind) the t a rge t  vehicle. 

t r a j ec to r i e s  given i n  Figure 7. 

150,000 fi f ee t  from t h e  t a r g e t  vehicle and i s  moving away a t  a 

velocity of 100 fl ft/sec. 

t h e  target  vehicle (case b) t h e  m&mum excursion from the  t a rge t  

vehicle is  3,500,000 f ee t  as compared t o  250,000 f e e t  when it is  

i n i t i a l l y  i n  f ront  of t h e  t a rge t  vehicle (case d). 

of these two maneuvers i s  2/3 of an o rb i t  and 1/3 of an orb i t .  

As an example consider t he  

The interceptor  i s  i n i t i a l l y  

When the  interceptor  is  i n i t i a l l y  above 

The time duration 

Optimum rendezvous t r a j e c t o r i e s  f o r  d i f f e ren t  maximum allowable 

The r e l a t ion  of the  thrus t  l eve ls  are presented i n  Figures 2'7 - 30. 

optimum time t o  t h e  t h rus t  l e v e l  f o r  t he  examples presented i n  

Figures 27 and 28 is  given i n  Figure 31. 

Figure 2 8 t h e r e  i s  a tremendous difference i n  t h e  t r a j ec to r i e s  as 

t h e  t h r u s t  l eve l  increases from 0.25 t o  0.5 ft/sec2. The difference 

i n  the  t r a j ec to r i e s  shown i n  Figure 27 i s  not as great.  

i s  a l so  seen by an inspection of t he  curves given i n  Figure 31. 
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optimum t i m e  decreases more rapidly f o r  t he  example shown i n  Figure 

28 than f o r  the  one shown i n  Figure 27. 

O p t i m u m  rendezvous t r a j ec to r i e s  for various in i t ia l  values of 

t h e  true anomaly 0 are presented i n  Figures 32 - 34. These tra- 

jec tor ies  are a l so  given i n  Figures 1 - 26 but are presented i n  t h i s  

manner so t h a t  t h e  effect of t h e  s ta r t ing  point on t h e  o rb i t  can be 

seen bet ter .  

The effect of t he  o rb i t  eccentr ic i ty  on the  optimum rendezvous 

t ra jec tory  is shown i n  Figures 35 and 36. 

chosen are a separation distance of 200,000 feet with t h e  in te r -  

The init ial  conditions 

ceptor moving away from the  target vehicle a t  a veloci ty  of 

150 ft/sec. 

t a r g e t  vehicle and i n  Figure 36 it is i n i t i a l l y  i n  f ront  of t he  

I n  Figure 35 t h e  interceptor i s  i n i t i a l l y  above t h e  

t a r g e t  vehicle. The e f fec t  of t h e  o r b i t  eccent r ic i ty  on the  tra- 

jec tory  is grea te r  when t h e  interceptor  is i n i t i a l l y  above t h e  

t a r g e t  vehicle. 

ceptor is i n i t i a l l y  fornard of t h e  t a r g e t  vehicle t he  e f fec t  of 

The basic reason f o r  t h i s  is t h a t  when the  in te r -  

g rav i ty  on the  r e l a t i v e  motion of the two vehicles is less than when 

t h e  interceptor  i s  i n i t i a l l y  above t h e  ta rge t  vehicle. Hence, a 

change i n  t h e  grav i ty  force because of t he  eccent r ic i ty  of t he  

o r b i t  does not have as much ef fec t  when the  interceptor  is forward 

of t h e  t a rge t  vehicle. Another contributing f ac to r  is t h a t  t he  t i m e  

duration of t h e  rendezvous maneuver when the in te rceptor  i s  i n i t i a l l y  
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forward of the  t a rge t  vehicle i s  less than the  t i m e  duration when 

the  interceptor is i n i t i a l l y  above t h e  ta rge t  vehicle. Since the  

t i m e  duration of t h e  maneuver i s  less , the  change i n  the gravi ty  

force due t o  t h e  eccent r ic i ty  i s  less. 

I n  f igures  37 and 38 a comparison of the  multiple engine 

control  t o  t h e  s ing le  engine control is  given. 

acceleration i s  t h e  same f o r  both cases. 

rendezvous using multiple engine control  w i l l  always be greater  than 

o r  equal t o  the t i m e  required f o r  rendezvous using single engine 

control. 

control  the control constraint  set  U i s  the  hypersphere ( i n  two 

dimensions a c i r c l e ) ,  and t h e  optimum control is some point on t h e  

surface of t h i s  hypersphere. 

control  constraint  set i s  the  hypercube (square i n  two dimensions), 

and t h e  optimum control is one of t h e  ver t ices  of t h i s  hypercube. 

Hence, the optimum control i n  t h e  multiple engine case i s  r e s t r i c t e d  

t o  one of t h e  four  points on the  c i r c l e  as compared t o  any point on 

t h e  c i rc le  i n  t h e  s ing le  engine control. I n  t h e  examples considered 

t h e  minim t i m e  required f o r  rendezvous using single engine control 

w a s  5 percent - 20 percent less than t h e  time required using multiple 

engine control. However, inspection of t h e  optimumthrust angle VS. 

t i m e  curve shows t h a t  there  i s  a rapid change of 120° t o  1800 i n  t h e  

optimwn t h r u s t  angle. 

The t o t a l  th rus t  

The t i m e  required f o r  

The reason f o r  this i s  very simple. I n  the  single engine 

In  the  multiple engine control  the  

I n  r ea l i t y ,  t h i s  rapid change may be very 
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d i f f i c u l t  t o  obtain, and large errors could result .  

th rus t  angle VS. time plots  given i n  Kaminski (1966) and Paiewonsky 

and Woodrow (1965) show t h i s  same character is t ic ,  

The optimum 

As was s t a t ed  i n  Chapter I V  when t h e  ta rge t  vehicle is  i n  a 

c i rcu lar  o rb i t  there  are cer ta in  i n i t i a l  conditions f o r  which the  

optimal control  i s  not unique. 

Neustadt's method w i l l  not y i e ld  a solution. 

in i t ia l  conditions t h a t  were investigated f o r  t h e  e l l i p t i c  o r b i t  

case were invest igated f o r  the c i rcu lar  o r b i t  case. Solutions were 

obtained and optimum rendezvous t r a j ec to r i e s  f o r  t h e  case when the  

interceptor  i s  i n i t i a l l y  moving away f romthe  t a r g e t  vehicle are 

given i n  Figure 39. 

nates of a point i n  the  singular region were found by integrat ing 

the  equations of motion i n  backward t i m e  from t h e  o r ig in  using 

s ingular  control. 

i n t o  the  computer program as i n i t i a l  conditions. 

not be obtained. 

w a s  very close t o  the  ac tua l  optimum time, and t h e  i n i t i a l  value 

of t h e  adjoint  vector was approaching t h e  optimum one. 

t i m e  was 1.57 and the  optimum time computed by Neustadt's method 

after 129 i t e r a t ions  was 1.53. The optimum adjo in t  in i t ia l  con- 

d i t i ons  were b(Q0) = p3(0,) = p4(€lo) = 0 and pz(0,) -0. 

adjoint  i n i t i a l  conditions obtained by Neustadt's method were 

For these in i t ia l  conditions 

The same set of 

To investigate t h e  s ingular  region t h e  coordi- 

The coordinates of t h i s  point were then input 

A solution could 

The optimum time calculated by Neustadt's method 

The optimum 

The 
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pl(eo) =-4 x p3(e0) = 3 x p4(e0) - 5 x and 

p2(8,) = 2. 

conditions are being approached, but a so lu t ion  cannot be obtained 

f o r  t h e  singular control  condition u n t i l  they are matched ident ical ly ,  

Thus, one can see t h a t  t h e  optimum adjoint  i n i t i a l  

and t h i s  is impossible using a d i g i t a l  process. An eccen t r i c i ty  of 

0.01 was  then used, but a solut ion could not be obtained. A unique 

so lu t ion  exis ts ,  however, t o  obtain the  accuracy t h a t  would be 

needed t o  ge t  a solut ion double precision would have t o  be used. 

B. Out-of-Plane Motion. 

The out-of-plane motion is t h a t  of a simple o s c i l l a t o r  with a 

period equal t o  the  period of t he  target vehicle  orbi t .  

(3.19) shows tha t  u 3  is always +1 o r  -1 and switches between these 

two values every x units of time, except f o r  t h e  first and last 

Equation 

in t e rva l s  of time which may be less than R as shown i n  the  following 

f igure  . 

Generally, only one switching will occur s ince less than 1/2 of an 

o r b i t  i s  usually required t o  nu l l i fy  t h e  out-of-plane motion. The 

coeff ic ient  o f t h e  control  function uz is periodic except when the  
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target vehicle o rb i t  is circular ,  i n  which case it becomes constant. 

When this coeff ic ient  i s  constant a switching surface can be d e t e r  

mined f o r  u z  as shown i n  Figure W .  This problem was  first solved 

by Bushaw (1958). 

Typical out-of-plane motions are shown by the z - i p l o t s  i n  

The ini t ia l  conditions are z = 100,OOO feet and Figure 40. 

i? = 100 ft/sec. 

together. This suggests t h a t  a n  approximate switching surface could 

be used by assuming t h e  coefficient of uz t o  be constant and using 

t h e  switching surface from Bushaw's problem. 

The curves for e = 0 and e = 0.5 are very close 
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VI CONCLUSIONS 

The rendezvous maneuver w i l l  be a very important par t  of space 

missions in the  future .  I n  a rescue mission, minimizing the t i m e  

duration of t h e  rendezvous maneuver w i l l  be of utmost importance. 

This invest igat ion i s  a study of t he  time-optimal rendezvous 

maneuver when the  ta rge t  vehicle i s  moving i n  a known e l l i p t i c  

o rb i t .  The propulsion system of the  maneuverable o r  interceptor 

vehicle i s  a multiple engine system which can impart a var iab le  

thrus t  independently i n  three perpendicular direct ions.  It i s  

assumed that the  or ien ta t ion  of the  in te rceptor  i s  such t h a t  the 

direct ions of t he  three  independent t h rus t  components are: 

1) perpendicular t o  the  o r b i t  plane of the  ta rge t  vehicle ,  

2) along the  radius vector from the  center  of the  ear th  t o  the  

t a rge t  vehicle, and 3) perpendicular t o  the  radius  vector from 

the  center of the ear th  t o  the  t a rge t  vehic le  and i n  the  o r b i t  plane 

of the  target  vehicle.  The a t t i t u d e  s t a b i l i t y  of t h e  vehicle is  not 

considered i n  t h i s  study. 

The equations of motion are wr i t t en  with respect  t o  a moving 

coordinate system whose o r ig in  is  located a t  t he  t a rge t  vehicle and 

which ro ta tes  with an angular ve loc i ty  equal t o  the  angular ve loc i ty  

of the radius vector from the  center  of t he  ea r th  t o  the  t a rge t  vehicle. 

The t r u e  anomaly of the ta rge t  vehicle  o r b i t  i s  used as the  independent 
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var ib les ,  and the  r a t i o  of t he  difference coordinates t o  the  distance of 

t h e  t a rge t  vehicle from the  center  of the ea r th  are the  dependent 

var iables .  

vehicles i s  s m a l l  compared t o  the distance of the  t a rge t  vehicle from t h e  

center of the  ea r th  a system of l i n e a r  equations with periodic coef f ic ien ts  

is  obtained. This l inear iza t ion  allows t h e  equations of motion describing 

motion i n  the  o r b i t  plane of the target  vehic le  t o  be decoupled from the  

equations describing motion perpendicular t o  the  o r b i t  plane. Thus, t he  

two problems can be handled separately.  

By making the  assumption that t he  distance between the  two 

Pontryagin's maximum pr inc ip le  is  used t o  f ind  the  optimal control  

l a w .  U s e  of t he  maximum pr inc ip le  introduces the  ad jo in t  var iab les  f o r  

which the  i n i t i a l  conditions are unknown. Neustadt's method is  used t o  

f ind  these  i n i t i a l  conditions. Neustadt's method transforms the  two- 

point boundary value problem in to  one of maximizing a function where t h e  

loca t ion  of the  maximum i s  the  desired ad jo in t  i n i t i a l  condition, and t h e  

value of the function a t  the m a x i m u m  i s  t h e  optimum (minimum) t i m e .  The 

Fletcher-Powell modification of Davidon's var iab le  metric method is  used 

t o  f ind  t h e  maximum of the  function. 

Optimum rendezvous t r a j e c t o r i e s  f o r  various i n i t i a l  conditions, 

maximum allowable th rus t  accelerations, and values of the  t a rge t  vehic le  

eccen t r i c i ty  are presented. 

0.25 t o  1.0 f t / s e c  are considered. Orbital  eccen t r i c i t i e s  from 0 t o  

0.6 are investigated. 

Maximum allowable th rus t  accelerations from 

2 

A comparison i s  made of the  multiple engine control  system used i n  
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t h i s  investigation and the  s ing le  engine control  system f o r  which the  

magnitude and d i rec t ion  of t he  thrus t  vector are found as a function 

of t i m e .  

takes  less t i m e  than the  multiple engine control  system. However t h e  

difference is  very s m a l l  compared t o  the  tota1,optimal t i m e .  

comparison a l s o  shows the  d i f fe rence  between the  degrees of complexity 

f o r  handling the interceptor  vehicle (maneuvering vehicle) .  I n  the  

s ing le  engine control  system, the  vehicle needs t o  be ro ta ted  almost 

This comparison shows t h a t  t h e  s ing le  engine control  system 

This 

180' i n  a shor t  period of t i m e .  On the  other  hand, i n  the  multiple 

engine control system, the  a t t i t u d e  of t he  in te rceptor  needs t o  be 

changed in a similar way as the  t a rge t  vehicle whose a t t i t u d e  changes 

very smoothly and slowly. 
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I '  target vehicle  \I/ 
I 

i n t  erteptor / 

/ target vehicle  orbi t  / 
x-axis i s  directed along radius vector from 
center of the earth 

y-axis i s  perpendicular t o  x-ads i n  orbit  plane 
and directed i n  increasing 8 direction 

z - a d s  i s  perpendicular t o  orbit plane such that 
a right-handed coordinate system i s  formed 

Figure 1. Coordinate system 

-5 8 



X 2 

C,( t )  - ~oundary of C ( t )  

Figure 2. Optimal isochrones 
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APPENDIX A 

REVIEW OF LINEAR SYSTEN THEORY 

I n  t h i s  appendix a review of t h e  theory of l i n e a r  d i f f e r e n t i a l  

equations is  given. 

Consider t he  s e t  of n first order l i n e a r  d i f f e r e n t i a l  equations 

where A(t) is an 

an r dimensional vector. 

Theorem: 

t h e  d i f f e r e n t i a l  equation 

n x n matrix, B(t) is an n x r matrix, and - u ( t )  is 

L e t  X(t, t o )  be t h e  n x n matrix which is t h e  so lu t ion  of  

and i f  t h e  elements of A(t) a r e  continuous functions of time, then 

t h e  so lu t ion  of ( A l )  i s  

ft 

1 The matrix X ( t ,  t o )  is ca l led  the  s t a t e  t r a n s i t i o n  matrix. 

1 

(A2) i s  ca l led  a fundamental matrix. 
init ial  condition X(t, t o )  = I it is called t h e  state t r a n s i t i o n  
matrix. 

Any nonsingular matrix which satisfies t h e  d i f f e r e n t i a l  equation 
If it a l so  s a t i s f i e s  t h e  
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- Proof: Subst i tute  (A3) i n t o  ( A l ) .  

The state t r a n s i t i o n  matrix X(t, t o )  possesses the  following 

3 3 )  det  X(t2, t l )  = exp [ [trace A ( s j  d 

4) If, f o r  a l l  t A(s) d7 and A(t) 

commute then 

It follows t h a t  i f  A i s  a constant matrix 

where a, 

Now consider t h e  free motion of t h e  system ( A l )  where A i s  

periodic of period T, i.e., A(t + T) = A(t). 

X(t + T, t o )  is  a fundamental matrix of ( A l ) .  

Observe t h a t  

This is e a s i l y  verified. 

i ( t  + T, t o )  = A(t + T )  X ( t  + T, to> 

But A(t + T)  = A(t), then 
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Thus, .X(t  + T, t o )  i s  a fundamental matrix of (Al). 

Theorem: The state t r a n s i t i o n  matrix of ( A l )  where A(t + T) = A(t) 

can be wr i t ten  as 

where Q(t, t o )  is a nonsingular periodic matrix of period T, and D is 

a constant matrix. 

- Proof: The columns of X(t + T, t o )  a r e  n l i n e a r l y  independent 

so lu t ions  of t h e  homogeneous portion of ( A l ) ,  therefore each of these 

columns is given by f$k = X(t, t o )  Ck  where Ck is  an n x 1 column 

matrix of constants. Let C be t h e  n x n matrix whose columns are 

Define D by 

exp (TD) s C , 

Define 

Q( t ,  t o )  i s  nonsingular since X(t, to> and exp [-(t - tO)D] a re  non- 

singular.  Also, Q(t, to) is  periodic of period T s ince 
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Q(t + T, t o )  = X(t + T, t o )  exp [-(t + T - t o ) d  

Q(t + T, t o )  X(t, t o )  exp (TD) exp (-TD) exp [-(t - to)D] 

Hence, Y(t, t o )  i s  t h e  state t r a n s i t i o n  matrix of t h e  system 

which is a d i f f e r e n t i a l  equation with constant coeff ic ients .  Observe 

t h a t  the vector y is re l a t ed  t o  t h e  vec tor  4 by - 

Hence, t he  inves t iga t ion  of the motion of a system w i t h  periodic 

coeff ic ients  can be reduced t o  the  study of t h e  motion of  a system 

w i t h  constant coeff ic ients .  

which can be transformed i n t o  a system w i t h  constant coef f ic ien ts  is 

Any system w i t h  time varying coef f ic ien ts  

s a id  t o  be reducible. 

format ion. 

The matrix Q is ca l led  a Lyapunov t rans-  

Substi tution of (Al7) i n t o  t h e  homogeneous part of (Al) gives 

102 



Comment: 

coef f ic ien ts  can be transformed i n t o  a system with constant co- 

e f f i c i e n t s  t he re  is no general method f o r  determining t h e  matrix Q. 

Although it has been proved t h a t  a system with periodic 

By another transformation 

t h e  system ( U 6 )  can be transformed in to  i t s  Jordan canonical form 

where 

z = A 2  

A = R - ~ D R  . 
The state t r ans i t i on  matrix of t h e  system ( A l )  is  then given by 

However, 

exp [(t - t o )  A 3 = R-l exp [(t - to)D] R (A24) 

Subst i tut ion of (A24) i n t o  (A22) gives 

X(t, t o )  = P( t )  R-l  exp [(t - to)D] RP-l(t0) (A25) 

Comparison of (A25) and (A10) gives 



Q(t ,  to> = P(t> R - l  

Q(t ,  to> = P ( t >  P-’(t0) ( A 2 7  1 

Equation (A22) is the  form of the s t a t e  t r a n s i t i o n  matrix used. 
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APPENDIX B 

EXISTENCE AND UNIQVENFSS CONDITIONS 

I n  t h i s  appendix t h e  existence and uniqueness conditions f o r  a 

solut ion of t h e  t i m e  optimal control problem as set fo r th  by La S a l l e  

(1960) are given. 

The equation of motion of t h e  system is 

- i ( t )  = A(t) z(t) + B(t) g ( t )  . (B1) 

The optimal control  found by applying Pontryagincs maximum principle 

i s  

- u* (t> = sgn[ - pT(to) x-'(t, to> B(t)] . (B2) 

L e t  
Y(t) = X-'(t, t o )  B(t) , 

then (52) becomes 

Definitions: 

Controllable System 

A system is sa id  t o  be controllable if f o r  each ini t ia l  

state 

t o  t h e  equilibrium state i n  f i n i t e  t i m e .  

t he re  i s  an admissible control t h a t  will bring the  system 

105 



Completely Controllable System 

A system is said t o  be completely controllable i f  fo r  

each i n i t i a l  s t a t e  5 and i f  there  i s  no r e s t r i c t i o n  on the  control 

function it i s  always possible t o  bring the  system from i ts  i n i t i a l  

s t a t e  t o  any other s t a t e  5 at any given time t. 

Proper Control System 

A control system is  sa id  t o  be proper i f  - pT(to) Y ( t )  = 0 

on a n  i n t e rva l  of posit ive length implies - p(to) = 9. 

Asymptotically Proper Control System 

A control system is  sa id  t o  be asymptotically proper i f  

(B5 1 

Normal Control System 

A control system is said t o  be normal i f  no component of 

- pT(to) Y(t), p( t0)  #0, i s  ident ica l ly  zero on an in t e rva l  of 

posit ive length.  Note t h a t  a l l  normal control  systems are proper 

but not every proper system i s  normal. 

Theorem 1. Proper control systems of the  form (Bl) are 

completely controllable . 
Theorem 2. Asymptotically proper control systems of the  

form ( B l )  a r e  controllable. 

Therefore, i f  a control system is  asymptotically proper there  is  a 
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control  function which will transfer t h e  system from any initial 

state & t o  the o r ig in  i n  f i n i t e  time. 

Theorem 3. The optimal control function, i f  it exists, 

of a normal control  system i s  uniquely determined 

by 032). 

For t h e  non-normal control  systems t h e  most t h a t  can be said 

is t h a t  i f  a solut ion exists then there is an optimal control  

funct ion of the  form (E), but there  may be an infinite number of 

optimal control functions. 

I 
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APPENDIX C 

FLETCHER-POWELL METHOD 

I n  t h i s  appendix a br ie f  descr ipt ion of t h e  Fletcher-Powell 

method w i l l  be given. 

or ig ina l  papers by Davidon (1959) and Fle tcher  and Powell (1963) 

should be consulted, 

For a complete description of t h e  method t h e  

The problem under consideration i s  t h a t  of finding a l o c a l  

maximum1 (or  minimum) of a function f(xl, 9, ....., %) of several  

variables xl, x2, ....., 5, 

m i n i m )  t h e  second-order terms dominate. 

t i v e  procedure t o  converge quickly f o r  a general function it must 

have guaranteed rapid convergence f o r  a general quadratic. 

method i s  the  Fletcher-Powell method, a modification of  Davidon's 

var iable  metric method. 

w i l l  f ind  the  m a x i m u m  (or minimum) of a quadratic of n var iab les  i n  

n i terat ions.  Use of t h e  method requires  t h a t  the function and i ts  

gradient be known a t  any point. 

I n  t h e  neighborhood of a m a x i m u m  (or  

Therefore, f o r  an itera- 

Such a 

It i s  an i terative gradient technique which 

The presentation here will be t h a t  of f inding a maximum. It will 
d i f f e r  s l i gh t ly  from t h e  presentation found i n  Davidon's and Fletcher 
and Powell's papers s ince they were wr i t ten  f o r  t he  minimization of a 
function. 
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Consider t h e  

some point 5. 

Taylor s e r i e s  expansion of a function f ( 5 )  about 

where and ~0 , 
vectors  5 and s. 

i 

(c1) 

i = 1, 2, ...., n, are the  components of t h e  

L e t  g(x) be t h e  gradient of f (x) ,  - and l e t  G(x) - - -  
be t h e  n x n matrix whose components a r e  given by 

! 

The matrix G i s  ca l led  the  Hessian. I n  matrix notation, equation (C1; 

becomes 

Now l e t  x+, be t h e  maximum point and consider t he  maximization 

of a quadratic. Equations (C3) and (C4) become 

and 
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Note t h a t  G i s  a symmetric, negative d e f i n i t e  matrix. 

From equation (C6) we see t h a t  t h e  d i rec t ion  toward t h e  maximum 

is not necessar i ly  i n  the  d i rec t ion  of t he  gradient. 

(a - 5)  and g will be i n  t h e  same d i r ec t ion  only i f  (a - - x )  is an 

eigenvector of the Hessian matrix G. If the r a t i o s  between the  

corresponding eigenvalues a re  l a rge  the re  will probably be con- 

siderable difference i n  the d i rec t ions  of the  two vectors.  

The two vectors 

- 

If the  Hessian matrix is  constant and known it i s  obvious t h a t  

t he  maximum can be found i n  one step. However, i n  general, G i s  not 

constant and may be unknown. The Fletcher-Powell modification of 

Davidon's method i s  an i t e r a t i v e  procedure which searches f o r  t h e  

point where g = 0 and t h e  Hessian matrix i s  negative def in i te .  

i n i t i a l  guess is made f o r  H(H = -G), and 

the  b a s i s  of t h e  changes i n  ~f and - g(_x). The init ial  value of H i s  

usually chosen t o  be the  uni t  matrix, i.e., t h e  in i t ia l  s t e p  i s  i n  

t h e  direct ion of steepest ascent. 

An - 
H i s  modified each set on 

The procedure at  thei-th s t e p  i s  as follows where t h e  subscript  

indicates  t he  

1. 

stage of the  i t e r a t i v e  procedure. 

Set 

-1 S* = H i  5 ((7) 

Find t h e  optimum step' i n  t he  d i r ec t ion  9. That is, 

1 The method 
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f ind  ai, ai > 0, such t h a t  f ( 3  + ai s i )  i s  a maximum 

wi th  respect t o  h along 3 + A%. 

- 

2. Set 
u.  = ai si . 
-1 

3. With 
E - X i  + Z i  

evaluate f ( a + l )  and &($+l). 

orthogonal t o  gi, Le., 

Note t h a t  gi+l is 

u . = O .  %+I -1 

Ir. Set 

y . = s - g  . 
-1 i+l  

5. Modify H by 

where 

6. Set i = i + 1 and repeat. 
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APPENDIX D 

METHOD FOR DETE;RMINING AN OPTIMUM STEP 

I n  t h i s  appendix t h e  method f o r  obtaining the  maximum along a 

l i n e  is given. 

Fletcher and Powell (1963) found sa t i s fac tory ,  but t h i s  procedure 

was not s a t i s f ac to ry  i n  t h i s  problem. 

Davidon (1959) suggested a cubic in te rpola t ion  which 

The problem is  t o  f ind  the  &ximum of  a function f ( 5 )  of n 

A plot  of t h i s  variables i n  a given d i rec t ion  2 + A 2, h "0. 

function i n  a specif ied d i rec t ion  i s  given i n  the  f igure  below. 

When the function f ( 5 )  and i t s  gradient g(x) a r e  not known ana- 

l y t i c a l l y  but have t o  be computed d i g i t a l l y  t h e  maximum point cannot 

be found exactly. 

hence several i t e r a t i o n s  a re  required f o r  each optimum step. 

- -  

An i t e r a t i v e  procedure is used t o  f ind  t h i s  point, 

h=O a x 
The slope of t he  function a t  t h e  initial point (point A) 

i s  denoted by g,, where 
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This slope i s  posi t ive s ince H is posit ive def in i te .  The function 

f ( 2 )  and its gradient g(2) are then calculated a t  a point z on t h e  

l i n e  - x + h ~ , h  -0. 

where 

- - 
The slope a t  t h i s  point i s  denoted by gzs 

(D2) T 
g,, = Q (2) - 

The value of A u s e d k  h=a 

is  used. 

point has not yet been reached. 

except for  t h e  first s t e p  when h = 1 i-1 
A t  t h e  point - z i f  g,, i s  posi t ive (point B) t he  maximum 

An estimate f o r  t h e  loca t ion  of 

t h e  maximum is then made by l i nea r ly  extrapolating t h e  slopes gxs 

and gzs. 

t h e  next point will be on t h e  other s ide  of the maximum, i.e., t h e  

The length of t h i s  s t e p  is  then increased by 1.25 so t h a t  

slope w i l l  be negative. 

is continued using t h e  previous two points t o  estimate t h e  next 

point u n t i l  a point is found f o r  which t h e  slope is  negative (points 

D, E, o r  F). 

next guess i s  made using a l i n e a r  interpolat ion of t h e  s lopes of two 

I f  the s l o p  is  not negative t h i s  procedure 

When a p i n t  i s  found where t h e  slope i s  negative the  

points,  t he  one w i t h  a posi t ive slope c loses t  t o t h e  maximum and the  

one with a negative slope nearest  the maximum (points C and D). 

This process is continued u n t i l  the  optimum s t ep  i s  found, o r  u n t i l  

t h e  maximum allowable number of i t e r a t i o n s  per s t e p  i s  exceeded. 
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When t h e  maximum allowable number of i terat ions  per s tep  i s  exceeded 

the last step is used as the optimum step. 

i n  t h i s  problem as the maximum number of i terat ions  per step. 

cr i ter ia  for  a point 2 to  be the maximum point i s  

Twelve was usually used 

The 

A value of 0.01 for p was usually used i n  t h i s  study. 
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