THEORETICAL CHEMISTRY INSTITUTE

THE UNIVERSITY OF WISCONSIN

MADISON, WISCORSIK

reduction of the two-electron breit equation *

by
Penny G. Estabroaks
University of Wisconsin Theoretical Chemistry Institute Madison, Wisconsin

Abstract

By means of a partitioning method similar to that applicable to the one-electron problem, the sixteen-component two-electron Breit equation is reduced to a four component equation, involving only the "large" (i.e., positive energy) components of the wave function. The equation obtained by this method is compared to the results of a $F-W$ transformation on the two-electron Hamiltonian.

[^0]The Breit equation can be written as

$$
\begin{equation*}
\Omega \Psi=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega=E-\frac{e^{2}}{\sigma}-H^{I}-H^{I}+B \\
& H^{I}=-e \phi\left(r^{I}\right)+\beta^{I} m c^{2}+c \alpha^{I} \cdot T^{I} \\
& E=\text { total energy }=i t h / o t \text { for non-stationary states } \\
&-E=\text { charge of the electron. }
\end{aligned}
$$

Superscripts I, II refer to electrons I, II respectively,

$$
\begin{aligned}
& I=I^{I}-E^{I}=\text { interelectron distance, } \\
& \mathbb{T}^{I}=f^{I}+\frac{e}{c} A^{I}\left(E^{I}\right)
\end{aligned}
$$

Q, A are the scalar and vector potentials of the external electromagnetic field; α^{T}, β^{I} are direct products of 4×4 Dirac matrices for electron I with the four-dimensional unit matrix for electron II, and

$$
B=\frac{e^{2}}{2 r}\left[\alpha^{I} \cdot \alpha^{I I}+\frac{1}{r^{2}}\left(\alpha^{I} \cdot \underline{I}\right)\left(\underline{\alpha}^{I I} \cdot r\right)\right]
$$

is the Breit approximation to the relativistic interaction between two electrons ${ }^{2}$ (neglecting quantum field effects), and, for weak external fields, is a good approximation to first order in perturbation theory.

The wave function $\Psi=\Psi\left(\Gamma^{\Gamma}, \Sigma^{I}\right)$ depends on the positions of the two electrons and has sixteen spinor
components. Ψ can be considered as a direct product of two
one-electron, four-component spinor wave functions, $\Psi^{I}\left(\Sigma^{ \pm}\right)$and $\Psi^{\text {II }}\left(\right.$ II $^{\text {I }}$.
i.e., $\Psi\left(\Xi^{T}, E^{I}\right)=\underline{I}^{I}\left(\Sigma^{I}\right) \otimes \Psi^{I I}\left(5^{I I}\right)$
and

$$
\begin{array}{r}
\Psi_{i j}=\underline{\Psi}_{i}^{I}\left(r^{I}\right) \psi_{j}^{I I}\left(r^{I I}\right) \\
i, j=1,2,3,4
\end{array}
$$

Each of Ψ^{I} and $\Psi^{I I}$ can be partitioned into large (u) and small (ℓ) components:

$$
\Psi^{I}\left(I^{I}\right)=\binom{\Psi_{u}^{I}}{\Psi_{\Omega}^{I}} \quad \text { where } \Psi_{u}^{I}=\binom{\Psi_{1}^{I}}{\Psi_{2}^{I}} ; \Psi_{\rho}^{I}=\binom{\Psi_{3}^{I}}{\Psi_{4}^{I}}
$$

Consequently, $\Psi\left(r^{\Gamma}, r^{I I}\right)$ can be partitioned as follows:

$$
\underline{\alpha}^{I}=\left(\begin{array}{llll}
0 & 0 & \sigma^{I} & 0 \\
0 & 0 & 0 & \sigma^{I} \\
\sigma^{I} & 0 & 0 & 0 \\
0 & \sigma^{I} & 0 & 0
\end{array}\right), \quad \underline{\alpha}^{I I}=\left(\begin{array}{cccc}
0 & \sigma^{I I} & 0 & 0 \\
\sigma^{I I} & 0 & 0 & 0 \\
0 & 0 & 0 & \sigma^{I I} \\
0 & 0 & \underline{\sigma}^{I} & 0
\end{array}\right)
$$

where 1 is the (4×4) unit matrix and $\underline{\sigma}^{I}, \underline{\sigma}^{I I}$ are spin operators acting on electrons I, II respectively:

$$
\underline{\sigma}^{I}=\left(\begin{array}{cccc}
\hat{k} & 0 & \hat{\imath}-i \hat{\jmath} & 0 \\
0 & \hat{k} & 0 & \hat{\imath}-i \hat{\jmath} \\
\hat{\imath}+i \hat{\jmath} & 0 & -\hat{k} & 0 \\
0 & \hat{\imath}+i \hat{\jmath} & 0 & -\hat{k}
\end{array}\right), \quad \underline{\sigma}^{I}=\left(\begin{array}{ccc}
\hat{k} & \hat{i}-i \hat{\jmath} & 0 \\
\hat{i}+i \hat{\jmath} & -\hat{k} & 0 \\
0 \\
0 & 0 & \hat{k} \\
\hat{c}-i \hat{\jmath} \\
0 & 0 & \hat{\imath}+i \hat{\jmath}
\end{array}\right)
$$

where $\hat{i}, \hat{j}, \hat{k}$ are unit vectors in the x, y, z directions.
With this notation,

$$
\begin{aligned}
& \Omega=E+e \phi-\frac{e^{2}}{r}-2 m c^{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\left(\begin{array}{llll}
0 & 0 & 0 & I \\
0 & 0 & I & 0 \\
0 & I & 0 & 0 \\
I & 0 & 0 & 0
\end{array}\right) \tag{2}
\end{align*}
$$

where

$$
I=\frac{e^{2}}{2 r}\left[\underline{\sigma}^{x} \underline{\sigma}^{\pi}+\frac{1}{r^{2}}\left(\underline{\sigma}^{I} \cdot r\right)\left(\underline{\sigma}^{I I} r\right)\right] \equiv \frac{e^{2}}{2 r} J
$$

Equation 1 can now be written as four equations involving only (4×4) matrices and four-component spinors:

$$
\begin{aligned}
& \left(w+e \varphi-\frac{e^{2}}{r}\right) \psi_{u_{0} u}-c\left(\sigma^{r} \pi^{r}\right) \psi_{l, u}-c\left(\sigma^{\pi} \cdot \pi^{m i}\right) \Psi_{u, l}+I \Psi_{l, l}=0 \quad(3, a) \\
& \left(2 m c^{2}+W+e \phi-\frac{e^{2}}{r}\right) \psi_{n, l}-c\left(\sigma^{x} \cdot \pi^{x}\right) \psi_{B, Q}-c\left(\sigma^{I I} \cdot \pi^{I I}\right) \psi_{u, u} \\
& +I \psi_{B_{0, ~}}=0 \\
& \left(2 m c^{2}+W+e q-\frac{e^{2}}{\sigma}\right) \Psi_{Q, u}-c\left(\sigma^{I} \cdot \pi^{r}\right) \Psi_{u, s}-c\left(\sigma^{\pi} \cdot \pi^{I I}\right) \Psi_{\ell, \ell} \\
& +I \psi_{n, 8}=0 \quad(3, c) \\
& \left(\psi_{m c^{2}}+W+e \varphi-\frac{e^{2}}{r}\right) \psi_{2, l}-c\left(\sigma^{3} \cdot \pi^{r}\right) \psi_{w, ~} \|=c\left(\sigma^{I} \cdot \pi^{I}\right) \psi_{l, n} \\
& \text { where } W \equiv E-2 \mathrm{mc}^{2} \quad+I \psi_{\text {2. } \ell=0} \quad(3 . d)
\end{aligned}
$$

If we write $\quad \lambda=1 / 2 m c^{3}$ and define operators
$g_{1}=\left[1+\lambda(\omega+e \rho)-\lambda e^{2} / r\right]^{-1}, d=\left[1-\lambda^{2} I^{2} g_{1}^{2}\right]^{-1}$ \therefore
and $g_{2}=\left[1+\frac{\lambda}{2}(w+e \phi)-\frac{\lambda}{2} \frac{e^{2}}{r}\right.$
$-\frac{\lambda}{4 m}\left\{\left(\sigma^{5} \cdot \pi^{5}\right) \lg g_{1}\left(\sigma^{3} \cdot \pi^{3}\right)+\left(\sigma^{\text {II }} \cdot \pi^{\text {II }}\right) \operatorname{l} g_{0}\left(\sigma^{\text {II }} \cdot \pi^{I I}\right)\right\}$
$+\frac{\lambda^{2}}{4 m}\left[\left(\sigma^{3} \cdot \pi^{3}\right) \& I g_{i}^{3}\left(\sigma^{I} \cdot \pi^{\pi}\right)\right.$
$\left.\left.+\left(\sigma^{I I} \cdot \pi^{I I}\right) \& I g_{0}^{2}\left(\sigma^{5} \cdot \pi^{5}\right)\right\}\right]^{-1}$,
then equations 3,5 and $3, c$ can be solved formally for $\psi_{u, l}$ and $\psi_{l, u}$ in terms of $\psi_{u, u}$ and $\psi_{\ell, \ell}$. If these are substituted into equation $3, d$, an expression for $\psi_{l_{1} \ell}$ as a function of $\quad \Psi_{u, \mu}$ is obtained, and hence $\psi_{u, Q}$ and $\Psi_{l, u}$ can also be expressed in terms of $\Psi_{u, u}$. Substitution of these expressions into equation $3, a$ yields an equation involving only
$\Psi_{u, u}$, name ty

$$
\begin{equation*}
H^{\prime} \Psi_{u, u}=\left(w+e \phi-\frac{e^{2}}{r}\right) \psi_{u, u} \tag{4}
\end{equation*}
$$

Since the Breit equation is a good approximation only to first order, it is sufficient to include only those terms in H^{\prime} which involve $\boldsymbol{\lambda}$ and I to zeroth or first order. In this approximation:

$$
\begin{align*}
& H^{\prime}=\frac{1}{2 m}\left(\sigma^{x} \cdot \pi^{x}\right) \lg _{1}\left(\sigma^{x} \cdot \pi^{x}\right)+\frac{1}{2 m}\left(\sigma^{\pi} \cdot \pi^{I I}\right) \ell_{g_{1}}\left(\sigma^{\pi} \cdot \pi^{I I}\right) \\
& +\frac{1}{16 m^{3}} c^{2}\left[\left(\sigma^{\mathrm{I}} \cdot \pi^{x}\right) \lg _{1}\left(\sigma^{I} \cdot \pi^{I I}\right) g_{2}\left(\sigma^{\mathrm{T}} \pi^{\mathrm{I}}\right) \lg _{1}\left(\sigma^{I I} \cdot \pi^{I I}\right)\right. \\
& +\left(\sigma^{I} \cdot \pi^{I I}\right) \lg _{1}\left(\sigma^{x} \cdot \pi^{x}\right) g_{2}\left(\sigma^{\text {II }} \cdot \pi^{\text {II }}\right) \lg _{1}\left(\sigma^{\mathrm{I}} \cdot \pi^{x}\right) \\
& +\left(\sigma^{x} \cdot \pi^{x}\right) \ell_{g_{1}}\left(\sigma^{\text {II }} \cdot \pi^{\text {II }}\right) g_{2}\left(\sigma^{\text {II }} \pi^{\text {II }}\right) \lg _{1}\left(\sigma^{\text {I }} \cdot \pi^{I}\right) \\
& \left.+\left(\sigma^{I} \cdot \pi^{\text {II }}\right) \lg _{1}\left(\sigma^{x} \cdot \pi^{x}\right) g_{2}\left(\sigma^{x} \cdot \pi^{x}\right) \lg _{1}\left(\sigma^{\text {II }} \cdot \pi^{\text {II }}\right)\right] \\
& -\frac{1}{4 m^{2} c^{2}}\left[\left(\sigma^{\mathrm{I}} \cdot \pi^{\mathrm{I}}\right) \ell I g_{2}^{2}\left(\sigma^{I} \cdot \pi^{I I}\right)+\left(\sigma^{I I} \cdot \pi^{I I}\right) \ell \operatorname{Ig}_{1}^{2}\left(\sigma^{\mathrm{I}} \cdot \pi^{\mathrm{I}}\right)\right] \\
& -\frac{1}{8 m^{2} c^{2}}\left[\left(\sigma^{I} \cdot \pi^{x}\right) \lg _{1}\left(\sigma^{I I} \cdot \pi^{I I}\right) g_{2} I+\left(\sigma^{\text {II }} \cdot \pi^{I I}\right) \lg _{1}\left(\sigma^{x} \cdot \pi^{I}\right)_{g_{2}} I\right. \\
& \left.+I_{g_{2}}\left(\sigma^{3} \cdot \pi^{5}\right) g_{g_{1}}\left(\sigma^{I I} \cdot \pi^{I I}\right)+\operatorname{Ig}_{2}\left(\sigma^{\pi} \cdot \pi^{I I}\right) \lg _{1}\left(\sigma^{5}, \pi^{T}\right)\right] \tag{5}\\
& + \text { higherorder terms involving } \lambda I^{2}, \lambda^{2} I, \lambda^{2} I^{2} \text {, and } \lambda^{3} I^{2} \text {. }
\end{align*}
$$

As would be expected, 'H' is symmetric with respect to interchange of the two electrons, and is a hermitian operator.

$$
\text { If } F \text { is any arbitrary operator, then }{ }^{3}
$$

$$
\left[F, g_{1}\right]=g_{1}\left[g_{i}^{-1}, F\right] g_{1}=\lambda g_{1}\left[\left(w+e q-\frac{e^{2}}{r}\right), F\right]_{1}
$$

Since all terms in H^{\prime} involving g_{2} are already multiplied by λ, then $\left[\mathrm{F}, \mathrm{g}_{2}\right]$ need only be considered to zeroth order in λ, and, to this order, $\left[F, g_{2}\right]=0$. To first order in λ, $[F, l]=0$. Then, to first order in λ and I, for stationary states, equation 5 reduces to:

$$
\begin{align*}
& H^{\prime}=\frac{1}{2 m} \lg _{1}\left(p^{5^{2}}+p^{I^{2}}\right)+\frac{e^{2}}{2 m c^{2}} \lg _{1}\left(A^{x^{2}}+A^{I^{2}}\right) \\
& +\frac{a}{m c} \lg _{1}\left(A^{5} \cdot p^{I}+A^{\Gamma} \cdot p^{I}\right)+\mu_{B} \lg _{1}\left(\underline{s}^{T} \cdot H^{I}+g^{I} \cdot H^{\text {I }}\right) \\
& -i \frac{\mu_{B}}{2 m c} \quad \lg _{1}{ }^{2}\left(\varepsilon^{I} \cdot p^{I}+\varepsilon^{I} \cdot p^{I I}\right) \\
& +\frac{\mu_{B}}{2 m c} \ell g_{1}^{2}\left[\sigma_{0}^{I}\left(\varepsilon^{5} x p^{5}\right)+\sigma^{I} \cdot\left(\varepsilon^{I I} x p^{I I}\right)\right] \\
& -\frac{e \mu_{B}}{2 m c} \frac{l g_{B}^{2}}{r^{3}}\left[\sigma^{I} \cdot\left(I x p^{I}\right)-\sigma^{I} \cdot\left(E x p^{I}\right)\right] \\
& +\frac{i a \mu_{8}}{2 m c} \frac{\lg _{1}\left(2 g_{1}+g_{2}\right)}{r^{3}} \quad \Gamma \cdot\left(p^{I}-p^{I I}\right)+\frac{1}{4 m^{3} c^{2}} l^{2} g_{1}^{2} g_{2} p^{x^{2}} p^{2} \\
& +\frac{e \mu_{B}}{2 m c} \frac{\lg g_{1}\left(g_{1}+g_{2}\right)}{r^{3}}\left[\sigma^{I}\left(\Sigma x p^{I}\right)-\sigma^{\text {I }} \cdot\left(\Gamma \times p^{T}\right)\right] \\
& +\mu_{B}^{2} \frac{\lg _{1} g_{3}}{r_{3}}\left[\sigma^{5} \sigma^{I I}-\frac{3}{r^{2}}\left(\sigma^{I} \cdot 5\right)\left(\sigma^{I} \cdot r\right)\right] \\
& \left.+4 \mu_{B}{ }^{2} \lg _{1} g_{2} \pi \delta(\sigma)\left[1-\sigma^{I} \cdot \sigma^{I}\right)\right] \\
& -\frac{e^{2}}{(2 m c)^{2}} \lg _{1}\left(g_{1}+g_{2}\right)\left[\frac{p^{5} p^{\pi}}{r}+\frac{1}{r^{3}} 5 \cdot\left(r \cdot p^{T}\right) p^{I I}\right] \\
& +H^{\prime 8} \tag{6}\\
& \text { where } \underline{E}^{i} \text { and } \underline{H}^{i} \text { are the electric and magnetic fields at } \\
& \text { electron } i \text {, } \\
& i=I_{7} \text { II; }
\end{align*}
$$

$$
\begin{align*}
& \mu_{B}=\frac{e \hbar}{2 m c} \text {, } \\
& H^{\prime \prime}=-\frac{e^{2}}{(2 m c)^{2}} \lg _{1}\left(g_{1}-g_{2}\right)\left\{\frac { \hbar } { r ^ { 3 } } \left[\sigma^{I}\left(\varepsilon \times p^{I}\right)\right.\right. \\
& \left.-\sigma^{\text {II }} \cdot\left(\underline{I} \times p^{\text {II }}\right)\right]-\frac{i \hbar}{r^{3}}\left(\sigma^{\text {I }} \cdot \sigma^{\text {II }}\right)\left[0\left(p^{I}-p^{\text {II }}\right)\right. \\
& -\frac{1}{r}\left(\sigma^{\text {I }} \cdot p^{\text {II }}\right)\left(\sigma^{\text {II }} \cdot p^{\text {I }}\right)+\frac{1}{\sigma}\left(\sigma^{\text {I }} \cdot \sigma^{\text {II }}\right)\left(p^{\text {I }} \cdot p^{\text {II }}\right) \\
& +\frac{i \hbar}{r^{3}}\left[\left(\sigma^{x} \cdot \underline{r}\right)\left(\sigma^{I} \circ p^{T}\right)-\left(\sigma^{I I} \cdot r\right)\left(\sigma^{I} \circ p^{I I}\right)\right] \\
& \left.+\frac{1}{r^{3}} \sigma^{I} \cdot\left(E \times\left[\sigma^{\text {II }} \cdot\left(E x p^{I I}\right)\right] p^{I}\right)\right\} \tag{7}
\end{align*}
$$

I. Consider the case where both electrons are a large distance, i.e., $\gg \lambda e^{2} \equiv r_{0}=1.409 \times 10^{-13} \mathrm{~cm}$. from any point sources. In this case, φ is a well-behaved function (no singularities), and the operators g_{1} and g_{2} can be expanded as follows: ${ }^{5}$

$$
g_{1}=\left[g_{0: 1}^{-1}+\lambda(w+e \infty)\right]^{-1}
$$

where $\quad g_{01} \equiv\left(1-\lambda \frac{e^{2}}{r}\right)^{-1}$.
Using the operator identity: ${ }^{4}$

$$
(A-B)^{-1}=A^{-1} \sum_{n=0}^{\infty}\left(B A^{-1}\right)^{n} \text {, }
$$

this becomes $\quad g_{1}=g_{01} \sum_{n=0}^{\infty}\left[-\lambda(w+e d) g_{01}\right]^{n}$.
For stationary states, $\left[(w+e \rho), g_{00}\right]=0$, so that,

$$
\begin{aligned}
& \text { to first order in } \lambda, \\
& g_{1}=g_{01}-\lambda g_{01}^{2}(W+e \rho)
\end{aligned}
$$

To zeroth order in $\lambda, g_{2}=g_{02} \equiv\left(1-\lambda \frac{e^{2}}{2 r}\right)^{-1}$.
These substitutions yield equation 6 with g_{1} and g_{2}
everywhere replaced by g_{01} and g_{02}, and the additional term:

$$
-\frac{1}{(2 m c)^{2}} \lg _{01}^{2}(W+e d)\left(p^{T^{2}}+p^{I^{2}}\right)
$$

A. For $r \gg r_{0}$,

$$
\begin{aligned}
& g_{01}=\left(1-\lambda \frac{e^{2}}{r}\right)^{-1}=1+\lambda \frac{e^{2}}{r} \quad \text { to first order in } \lambda \\
& l=1
\end{aligned}
$$

and $g_{02}=1$ to zeroth order in λ. Also, to zeroth order

$$
\text { in } \lambda, H^{\prime}=\frac{1}{2 m}\left(p^{x^{2}}+p^{I I^{2}}\right)=W+e \phi-\frac{e^{2}}{r} \text {. }
$$

so that:

$$
\begin{aligned}
& \frac{1}{2 m}\left(p^{I^{4}}+p^{I 4}+2 p^{I^{2}} p^{I^{2}}\right)=\left(w+e p-\frac{e^{2}}{r}\right)\left(p^{I^{2}}+p^{I^{2}}\right) \\
& +i e \hbar\left(\varepsilon^{I} \cdot p^{I}+\varepsilon^{I I} \cdot p^{I I}+p^{5} \cdot \varepsilon^{I}+p^{I I} \cdot \varepsilon^{I I}\right)
\end{aligned}
$$

$$
-2 i \frac{e^{2} t}{r^{3}} \text { 上. }\left(p^{I}-p^{I I}\right)
$$

Substitution of these values for g_{1}, g_{2}, l, and $P^{T^{2}} P^{I^{2}}$
into equations 6 and 7 yields:

$$
H^{\prime \prime}=0 \text {, }
$$

$$
\begin{align*}
& H^{\prime}=\frac{1}{2 m}\left(p^{r^{2}}+p^{I^{2}}\right)+\frac{e^{2}}{2 m c^{2}}\left(A^{r^{2}}+A^{I^{2}}\right) \\
& +\frac{e}{m c}\left(A^{I} \cdot p^{I}+A^{\text {II }} \cdot p^{\text {II }}\right)+\mu_{B}\left(\sigma^{I} \cdot H^{I}+\sigma^{\text {II }} \cdot H^{\text {II }}\right) \\
& +\frac{i e \mu_{B}}{2 m c} \frac{r}{r^{3}}\left(p^{I}-p^{I}\right)-\frac{e \mu_{B}}{2 m c} \frac{1}{r^{3}}\left[\sigma^{I} \cdot\left(r \times p^{I}\right)\right. \\
& \left.-\sigma^{I I} \cdot\left(\leq \times p^{I I}\right)\right]+\frac{i \mu_{B}}{2 m c}\left(p^{I} \cdot \varepsilon^{I}+p^{I I} \cdot \varepsilon^{I I}\right) \\
& -\frac{1}{8 m^{3} c^{2}}\left(p^{I^{4}}+p^{I I}\right)+\frac{\mu_{B}}{2 m c}\left[\sigma^{I} \cdot\left(\varepsilon^{I} \times p^{I}\right)+\sigma^{I I} \cdot\left(\varepsilon^{I I} \times p^{I I}\right)\right] \\
& +\frac{e \mu_{B}}{m c} \frac{1}{r^{3}}\left[\sigma^{I} \cdot\left(r \times p^{I I}\right)-\sigma^{I I} \cdot\left(\Sigma \times p^{I}\right)\right] \\
& +\frac{\mu_{B}^{2}}{r^{3}}\left[\sigma^{5} \cdot \sigma^{\pi}-\frac{3}{r^{2}}\left(\sigma^{5} \cdot r\right)\left(\sigma^{I I} \cdot r\right)\right] \\
& +4 \pi \mu_{B}^{2} \delta(r)\left[1-\left(\sigma^{I} \cdot \sigma^{I I}\right)\right]-\frac{e^{2}}{2(m c)^{2}}\left[\frac{p^{I} \cdot p^{I I}}{r}\right. \\
& \left.+\frac{1}{r^{3}} r \cdot\left(r \cdot p^{T}\right) p^{\pi}\right] \tag{8}
\end{align*}
$$

This agrees with the results obtained using the FoldWouthuysen (FW) transformation, ${ }^{6,7}$ except that in the FW method, the terms involving I^{2} were not neglected. The $F W$ transformation also led to a term of the form $\delta(\underline{r})$ r. $\left(p^{I}-p^{I I}\right)$ which was not obtained using this partitioning method, and, according to Barker and Glover ${ }^{7}$, the term involving $\delta(\underline{r})\left(\sigma^{T} \cdot \sigma^{\pi}\right)$ should be multiplied by a factor of $2 / 3$.
B. For $\quad F \quad \ll r_{0}$,

$$
\begin{gathered}
g_{01}=\left(1-\frac{r_{0}}{r}\right)^{-1} \approx r_{0} \\
g_{02}=\left(1-\frac{r_{0}}{2 r}\right)^{-1} \approx 2 r_{0} \\
\text { and } \quad l=\left(1-\lambda^{2} I^{2} g_{1}^{2}\right)^{-1} \approx\left(1-\frac{J^{2}}{4}\right)^{-1}
\end{gathered}
$$

Therefore, in the limit as . $\quad \mathrm{r} \rightarrow 0$, the leading term in H^{\prime} is:

$$
2 \mu_{B}^{2}\left(1-\frac{J^{2}}{4}\right)^{-1} \frac{1}{r_{0}^{2} r}\left[\left(\sigma^{5} \cdot \sigma^{\pi}\right)-\frac{3}{r^{2}}\left(\sigma^{I} r\right)\left(\sigma^{\pi} \cdot r\right)\right]
$$

The terms involving the delta function of r do not contribute to H^{\prime} in this limit, as they contain a factor of

$$
\lg _{1} g_{2} \rightarrow 2 \frac{r^{2}}{r_{0}^{2}}\left(1-\frac{J^{2}}{4}\right)^{-1}
$$

C. For r of the order of r_{0} :
$g_{01}=\left(1-\frac{r_{0}}{r}\right)^{-1}$ is we11-behaved (as a function of r), except in the neighbourhood of $r=r_{0}$;

$$
\begin{aligned}
& g_{02}=\left(1-\frac{r_{0}}{2 r}\right)^{-1} \text { has a pole at } r=\frac{r_{0}}{2} ; \\
& \text { and } \quad l=\left(1-\frac{r_{0}}{4 r^{2}} J^{2} g_{01}^{2}\right)^{-1}=\left(r-r_{0}\right)^{2} L_{0} \text { where } \\
& L \equiv\left[\left(r-r_{0}\right)^{2}-\frac{J^{2}}{4} r_{0}^{2}\right]^{-1} \quad \text { is well-behaved except } \\
& \text { at } \quad r=r_{0} \pm \frac{J}{2} r_{0}
\end{aligned}
$$

Thus, the weighting factors of the various terms of equation 6 are well-behaved functions of r for $r \gg r_{0}$ or for $r \ll r_{0}$, but exhibit strange singularities when $r \simeq r_{0}$. This can be seen in the graphs of $l g_{0,1}, \lg _{0}{ }_{1}^{2,}$, etc.
II. Consider the case where the electrons are in the neighbourhood of a spinless nucleus of charge Ze . Then,

$$
\varphi^{i}=\varphi_{\text {int }}^{i}+\varphi_{\text {int }}^{i} \quad, \quad i=I \text { or II, }
$$

where $\mathscr{P}_{\text {int }}^{i}$ is the electric potential at electron i due to the nuclear charge, and $\varphi_{e x t}^{i}$ is the electric potential at i due to the external field.

$$
\varphi_{\text {int }}^{I}=\frac{Z e}{r^{I}}, \quad \varphi_{\text {int }}^{I}=\frac{z_{e}}{r^{I I}} .
$$

Then, in equation $6, \varepsilon^{\text {I }}$ is replaced by $\varepsilon_{\text {eat }}^{\boldsymbol{T}}, \varepsilon^{\text {II }}$ by $\varepsilon_{\text {ant }}^{\text {II }}$, and the following additional terms must be included:

$$
-i \frac{z e \mu_{B}}{2 m c} l g_{1}^{2}\left(\frac{1}{r^{3}} r^{I} \cdot p^{I}+\frac{1}{r^{I} 3} r^{I I} \cdot p^{I I}\right)
$$

$$
+\frac{z e \mu_{B}}{2 m c} \lg _{1}^{2}\left[\frac{1}{r^{3}} \sigma^{5} \cdot\left(r^{I} \times p^{T}\right)\right.
$$

$$
\left.+\frac{1}{r^{\text {II }}} \quad \sigma^{\text {II }}\left(r^{\text {II }} \times p^{\text {II }}\right)\right]
$$

Conclusions: It can be seen that, for interelectronic separations other than those of the order of $r_{0}=1.409 \times 10^{-13} \mathrm{~cm}$, this partitioning technique yields results which agree with the results obtained using the FW type transformation. Apart from
numerical factors multiplying delta functions and the non-occurrence of some delta functions in the partitioning method, the chief discrepancies are the singularities of the inverse operators at interelectronic separations of the order of r_{0}. It is not obvious what, if any, physical significance should be attached to this behaviour.

Acknowledgement

The author wishes to acknowledge the assistance of Dr. John E. Harriman.

References

1. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Oneand Two-Electron Atoms, Springer-Verlag, 1957.
2. G. Breit, Phys. Rev. 34, 553 (1929).
3. P. O. Lơwdin, J. Mo1. Spectroscopy, 14, 131 (1964).
4. P. O. Löwdin, J. Math. Phys. 3, 969 (1962).
5. J. E. Harriman, Technical Note 127, Uppsala Quantum Chemistry Group (1964).
6. Chraplyvy, Z. V., Phys. Rev. 91, 388 (1953); 92, 1310 (1953).
7. W. A. Barker and F. N. Glover, Phys. Rev. 99, 317 (1955).

[^0]: * This research was supported by Nationa1 Aeronautics and Space Administration Grant NsG-275-62.

