
https://ntrs.nasa.gov/search.jsp?R=19680012922 2020-03-12T09:00:03+00:00Z



NASA CR-1041 

COATING SELECTION PROGRAM 

Theory 

By F r e d e r i c k  A. Costel lo ,  Thomas  P. Harper, and B a r b a r a  Aston 

Distribution of t h i s  r e p o r t  is provided i n  the in t e re s t  of 
information exchange. Responsibil i ty for the contents  
r e s i d e s  in  the  author or organization that p r e p a r e d  it. 

I ssued  by Originator  as Document No. 65SD526 

P r e p a r e d  under  Cont rac t  No. NASw-960 by 
GENERAL ELECTRIC CO. 

Phi  lade  lp hia  , Pa. 

for 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - CFSTI price $3.00 





ABSTRACT 

A rational and direct method has been developed for selecting the optical coating 
pattern for the external surface of a spacecraft, such that the spacecraft tempera- 
tures a re  as  close as  possible to the midpoint of their preselected ranges The 
temperature control is maintained passively by radiation and conduction, using 
no active control devices. The complete range in mission environments is con- 
sidered in the optimization procedure. 

The selection technique has been programmed for use on the GE 600 Series, 
IBM 7094, or any other computer that uses the standard IBM Fortran IV system. 
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FORWORD 

This document is a three-part final report on the Coating Selection Program. 
Part I describes the theory and basis for selection of: (1) the iteration scheme 
used to solve the heat balance equations; and (2) the optimization scheme. 
Part II describes the cqmputer program, including the details of each subroutine 
and the details of input and output. Part 11 therefore includes the user's manual. 
Part III presents the Program Listing. Parts I, 11 and 111 have been revised 
(Revision A) under a contract extension to incorporate descriptions of the first 
two month's usage, as well as a new Program Listing with improvements as 
found advisable during these two months. 

The work reported herein was sponsored by the National Aeronautics and Space 
Administration and was monitored by Mr. Conrad Mook, of NASA-Headquarters, 
and Mr. Robert Kidwel?, Jr., of NASA's Goddard Space Flight Center. 

The chief contributors to the work reported were Mr. Frederick A. Costello, 
Engineer, who developed the techniques, Mr. Thomas P. Harper, Analyst, who 
converted the techniques to computer form, both of the Re-entry Systems Depart- 
ment?s Thermodynamics Technology Component, and Miss Barbara Aston, Pro- 
grammer- Analyst, from the Spacecraft Department, who programmed the tech- 
nique for computer usage. 
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1.0 INTRODUCTION 

The use of optical coatings to control the temperatures of satellites has been 
exploited since the first successful orbital flight in 1958 (Explorer). Since then, 
coating materials have been developed to the point where coatings a re  available 
that give any desired emittance value between 0.1 and 0.9 for any desired absorptance 
value between 0.1 and 0.9. What has lagged, however, is the development of a sys- 
tematic approach to selecting coating patterns for the external surface of the vehicle, 
such that the satellite temperatures a re  passively maintained as close as possible 
to the optimum temperature. It was in response to this developmental need that the 
present work was undertaken. The work discussed in this report co titutes a 

(1) 

generalization of the work performed by Costello, Harper, and Cline h7 
For the uninitiated, an example may prove useful in illustrating the effect of proper 
coating-pattern selection. Figure 1 shows the environmental conditions for a typical 
satellite, as well as the optimum coating pattern and resulting temperatures. It is 
seen that using two different coatings rather than one narrows the temperature 
excursions from *7F0 to *5F0 from the desired 70°F. This result is not as 
dramatic as those obtained for more complicated shapes. Further improvement 
is still possible, but the point is adequately illustrated. 

The solution to simple coating selection problems, as shown in Figure 1, is indeed 
difficult, but the complexity and difficulty increase rapidly as the number of surfaces 
increases and as the number of critical components increases. For realistic satel- 
lite designs, it is usually necessary to include the entire conduction and radiation 
heat transfer networks; consequently, the selection process is obscured by the 
various interactions and by the number of degrees of freedom (twice the number of 
external surfaces). Such complexity demands the use of a high-speed computational 
device. From the beginning, then, the present work has been directed toward the 
development of an IBM 7094 digital-computer program that would assist the designer 
in the coating selection process. 

In the following sections, the coating-selection problem is formulated in mathe- 
matically precise terms. The mathematical development of the minimization 
scheme is presented in Sections 3.0, 4.0 and 5.0. Applications a re  considered 
in Section 6.0. The work is summarized in Section 7.0 and future areas for 
research are cited in Section 8.0. 

It should be recognized that operating experience is important to the efficient 
usage of a computer program. The present program has, as all programs do, a 
variety of input constants that affect such things as iteration procedures and opti- 
mization sequences. An extention to the original contract enabled a study of the 
input constants. The study was conducted by analyzing several vehicle designs, 
three of which are  shown in Esction 6. The operating experience obtained from 
the study along with recommended procedures for use of the program is 
summarized in the User's Manual. It is felt that the study, permitted by the con- 
tract extention, has enhanced significantly the benefits of the program. 
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2,0 PROBLEM STATEMENT 

A s  intimated in the Introduction, the purpose of the present work was to develop 
a computer program that would determine the optical coating pattern that minimizes 
temperature excursions from some preselected temperatures for all possible 
environmental conditions. re precisely, we define the excursion parameter, 
8, as 

'ik E [(Tu Tik - - TiU TJ; (Tiu - - TiJ] Tik 

th Where Tik is the temperature of the ith network element (node) in the k orbit, 
.th and Tiu and TIL are the upper and lower allowable temperature limits of the 1 

node, We wish to find the surface coating properties of infra-red emittance, F , 
and solar absorptance, a , such that 

= maxBik =min 
4 k 

subject to the constraints that 

From the above definitions, it 

(2.2) 

CY and e are within a preselected allowable range. 

(-1/2) is the absolute minimum value 
of Bikand 
limits e 

8 5 0 implies that all nodes are in their allowable temperature 

Physically, the above formulation implies that the coating system is selected to 
minimize the temperature excursion of the node that is furthest from the midpoint 
of its allowable temperature range. 

ssible Criteria 

The above criterion, Equation (2.2), was selected from a number of alternates, 
the most interesting of which were 

2 
y "  (s,) =min 1 

i, k 

subject to the additional constraints B i k  * 0 
Equation (2.3) was the most convenient from a mathematical viewpoint, but Y l  could 
be a minimum when one temperature was so far out of range as to make the solution 
ridiculous ,, 
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Equation (2.4) resembles a linear programming formulation and is physically the 
most satisfying. However, the equations are significantly non-linear, and the 
optimum may lie at large distances from the vertices of the restraint volume. 

Time-Dependent Solutions 

Inherent in the above problem statement is the assumption that the critical tempera- 
ture can be adequately calculated using time-averaged environmental heat fluxes. 
This is an important and restrictive assumption, complicated by the fact that the 
time constants of each node are different and vary non-linearly with the node 
temperature. In Section 8.0, further study is recommended in this area. In the 
meantime, however, the average-flux procedure should serve as a useful guide 
in selecting the optimum coating pattern. The average-flux analysis can be made 
quite accurate if the emittance is kept low and/or the node heat capacities kept 
high, so that all the time constants are significantly greater than, say, the orbit 
period, 

Development of Solution 

The solution to Equation (2.2) can be conveniently, but not completely, divided 
into two steps: (1) solving for the Tik's, given a set of 01's and c 's; and (2) select- 
ing new values of Q and Q to reduce B . The first problem is discussed in 
Section 3.0; the second, in Sections 4.0 and 5.0. 
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3,O SOLVING THE HEAT-BALANCE EQUATIONS 

The node temperatures are governed by the heat-balance equations: 
conduc tion radiation 

where 

-e 

Jk 
K. (T&- T. ) + 

j 
c iJ 

j 

- - 
incident incident 
solar albedo 
flux flux 

absorbed solar energy 

i, j = node numbers = 1, 2, . 

A - - - 
incident re-emission internal 
earth heat 
flux generation 

net absorbed IJ3 energy 

.., N + S  

k = orbit, or time-interval, number = 1, 2, . . . , q 

and where the nomenclature is described in Appendix D (Section 9.0). 

Equation (3.1) can be written in the more compact form 

M . . T  4 = a . S . + <  E - € . a  "Ti  4 +Qi 
1 1  i i  i i  A .. T. + 

c - 1 1  11 j 

(3.1) 

i = 1,2, ..., N 

where for convenience we have dropped the k (orbit number) subscript. In 
discussing solutions to Equation (3.2), it is frequently necessary to examine the 
symmetrically linearized form : 

Lij Tj = Ci 

j 

where 
- 2  - 2  

- -  
- K.. - 0 R.. (Ti -I- T.) (T + T. ) 

9 J J 

- 3  L.. = 
9 

9 
j = l  
j+ i 

(3.3) 

(3.4) 
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C, = ai (K& Si + KAIAi) + f i  (5 Ei + 3 ai o Ti - 4  ) %. Qi 
1 

where once again k has been dropped. 

Many methods for solving the linear system, Equation 3.31, have been devised. 

been adapted to the present set of equations and the speeds of convergence com- 
pared. In addition, two new matrix-inversion methods have been examined. In 
the following paragraphs, each method is described. All methods make use of the 
residual vector, ri: 

A convenient and up-to-date summary is given by Fox( 5 1. These methods have 

4 . a. a T + Qi - Si + Ei Ei - (n.) 
1 1  

r =  i 

(3.5) 

When the exact solution is obtained, ri = 0 for all values of "i". 

Gauss-Seidel Methods 

Applied to the linear system, Equation (3.3), the extrapolated Gauss-Seidel 
method gives: 

( 4  L .. T. ( n +  1) - 
L.. 

L .. T. 
9 3 

ci - 
f j < i  4 3 j >i - Ti - 

11 

In terms of the residual vector, this may be written 
(Symmetrically 

Gauss- 
Ti an ii Seidel) 

r (n)+ L 13 . . (T(n)- J T.(n+l)) 1 Linearized i j< i (n+') = + 

The factor an  is the extrapolation ( an < 1) or interpolation ( an > 1) factor. 

Equation (3.6) was used directly for the present non-linear case, with the 
residual vector defined by Equation (3.5). 

In the non-stationary iteration process, an is governed by the equation 

T (n+') - T O  
a n =  1 - 

T(n) - Tln-') 
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However, from the experience of ICa~lan(~), it is necessary to restrict CY between 
1/2 and 1 to obtain convergence for the heat-balance equations. For the hesen t  
case, an was taken as 1.0, a constant. 

Some saving in computation can be realized if the linearization process applied 
to Equation(3.2) takes a Taylor-series form: 

9 J A,. T. + M T 4 5  A . .  +4M.. T. ) T i  -3M..T. 
- - 3  

13 J i j  j 9 9 J 
J J J 

In this case, the iteration formula becomes 
b+')_ 

3 
r. [x.. + 4M.. ;.i"] [Tj 
1 j < i  9 1J = Ti (n) + 1 A.. + 4 M.. ?.3 1 

11 11 1 

Maximum Rate of Descent 

Applied to Equation (3.3), 
gives: 

L J 

(3.7) 

the maximum rate of descent method described by Fox (3 1 

r (n) 
i 

This was carried over directly, using Equation (3.5) to calculate r.. 

Conjugate Gradient Method 
J 

Fox gives for the linear s 

W. (n+l) = + 

Ti 1 

(3.8) 

(3.9) 

Once again, using Equation (3.5) to define r Equation (3.9) can be used in the 
non-linear case. j' 
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Newton-Raphson Method 

The Newton-Raphson method uses Equation (3 .5)  directly, taking 

Setting ri (n+l) equal to zero gives 

This method requires a matrix inversion at each iteration and was found slower 
than the matrix-inversion method described next. 

One way of alleviating the difficulty of inverting a matrix each time is to use an 
approximate inverse in the form 
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Matrix Inversion Methods 

A direct Matrix Inversion method of solving Equation (3.2) can be obtained simply 
by writing: 

where A'i. differs from X i j  in that a convergence factor, X. 
according%o the convergence criteria of Appendix B (Sectiok d. 0). Note that 
Equation (3.10) converges quite rapidly when the radiation terms are small. 

has been added, 

Using the residual vector, Equation (3.10) can be written in the form 

(n+') = + c Jf.. r (n) (Direct Matrix Inversion) (3.11) 
11 j j 

Ti 

where 

[Jfij/ = [Atij\ -l 

which is evaluated once per solution. 

One improvement to Equation (3.11) can be obtained by writing Equation (3.2) 
in the form 

and 
4 (0) )  = si+ ci - c. 0 a. T. 4 + 

1 1 1  (x.. T +M. .  T. +a T. 
11 j 1~ J i j  J 
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In terms of the residual vector 

(nt-1) = T(") + Jff . ,  r (n) (Linearized Matrix Inversion) (3.12) 
11 j j 

Ti 

Jffij is evaluated once per solution. 

Comparison of Methods 

It is beyond the scope of this development program to develop the system of 
theorems required to compare the rates of convergence of the above methods of 
solving the heat-balance equations. Such a task is rendered difficult by the 
heterogeneous character of the iteration schemes. However, it is practical and 
important to evaluate the schemes numerically for typical satellite-type heat- 
balance equations, The methods are compared in Tables I and II. 

There are several parameters that must be defined before the significance of the 
following numerical comparisons can be understood. Convergence is assumed to 
be completed if 

- g DT i = l ,  2, ..., N I Ti 

and 

r. i = l ,  2, . . . I  N 
1 

.. .. 
ose methods that use T, the linearizing temperature, update T (i. e. , ~ ~ ~ l t ~ ~ + 8  every time 

(n+l) i = l ,  2, ..., N Ti 

Those methods using the convergence parameter, X, calculate the value of X 
using TMAX and/or TSOL. 
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TABLE I.' SOLUTION T S FOR ITERATION SCHEMES Millisec 
((Nodes) '* 8(AT) 

PROBLEM 
B C - - A Iteration Scheme 

- 
1. Direct NlatriX Inversion 2.2 1.0 1.77 

2. Linearized lMatrix Inversion 1.8 1.1 1.27 

3. Expanded Inverse 4.2 2.0 3.32 

4. Linearized Gauss-Seidel 1. 3 1.3 1.79 

5. Symmetric Gauss-Seidel 

60 NIRD 

1.8 1.7 2.63 

2.7 2.7 3.19 

7. Conjugate Gradient 1.6 1.2 1.42 

NOTES 

1. Problems Used Were: 

ion (hrA 1.0 BTU/hr°F, between adjacent nose) 

3% 

C. Combined conduction/radiation; hrA M kA/x = 1.0 

In all cases, 8, 16, and 64 node problems were considered. The 
geometry was a cube broken into equally sized cubes. The 8 node case 
'used a 2 x 2 x 2 configuration; the 16, a 

conduction, except external surfaces which used pure radiation 
= 1.0) 

x 2 x 4; and the 64, a 4x 4 x 4. 

2. In general, DTR = DR = DT = 1.0 for the above cases. A 20% to 30% 
improvement was made in all methods but (1) and (2) by setting DTR = 0.0; 
that is, by not correcting the original linearization. 

Methods 1, 2, and 3 require specification of T m t o  assure convergence. 
The correlated time is good for T s 1.3 TSQL. A 20% increase in 

See Table I[ for actual running times and additional notes. 

3. 

running time was experienced for = 1.5 TSoL. 

4. 
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TABLE IL TIMING DATA FOR ITERATION SCHEWS 

Problem 

A 

B 

C 

D 

NOTES: 

1. 

2. 

3. 

4. 

5. 

Wllisec Iteration Scheme 
(AT)O* 

2 3 4  5 Nodes AT 
(%I 6 7 

8 2.6 1.68 1.40 3.08 1.13 
16 2.4 l ,6 l  1.28 3.37 1.21 
64 2.4 2.34 1.58 4.77 1.63 
8 15.6 1.45 1.18 2.89 0.92 

16 15.6 1.55 1.13 3.06 0.95 
64 15.6 2.25 1.63 4.56 1.45 

8 2.4 1.12 .84 1.96 1.12 
16 2.4 .563 .723 1.45 1.12 
64 2.4 .482 .633 1.49 1.61 
8 15.6 .66 .79 1.58 0.92 

16 15.6 .416 .68 1.36 1.02 
64 15.6 .446 .66 1.5 1.36 

8 2.4 1.68 1.40 3.08 1.68 
16 2.4 1.69 1.29 2.98 1,77 
64 2.4 2.19 1.41 4.24 2.42 
8 5.9 1.56 1.17 2.92 1.56 

16 5,9 1.50 1,17 2.90 1.56 
64 5.9 2.17 1.40 4.39 3.24 
8 15.6 1.58 1.18 2.76 1.32 

16 15.6 1.44 1.10 2.87 1.51 
64 15.6 2.13 1.39 3.96 2.05 

8 15.6 .526 .789 1.32 4.48'l) 
16 15.6 .378 ,642 1.28 6.65(2) 
64 15.6 .375 .673 1.39 7.63 (2) 

1.40 
1.77 
2.32 
1.18 
1.10 
1,70 

1.40 
1.69 
2.31 
1.05 
1.32 
1.83 

2.24 
2.81 
4.13 
2.14 
2.40 
3.36 
1.72 
2.04 
2.84 

(1) 
6. 97(2) 

1 2 0 3  (3) 1.9J 

2.52 1.68 
2.67 1.53 
3.08 1.73 
1.05 1. 32 
1,02 1.36 
1.19 1.55 

2.50 1.12 
2.56 1.12 
3.07 1. 30 
1.32 1.05 
1.29 1.02 
1.47 1. 15 

3.48 
3.70 
4.70 
3.30 
3.24 
4.46 
1.45 
1. 36 
1.53 

1.40 
1.37 
1.47 
1. 36 
1.28 
1.48 
1.45 
1.36 
1.53 

40 21(2) (l) 1.58 

2.15 2. 23(1) 8. 9 2 )  15.2 

For these runs, DT = 1.0 and DR = 0.5, but the converged solutions 
were 3 to 7OF in error. 

For these runs, DT = 1.0 and DR = 0.5, but the runs were terminated for 
being unsuccessful after 100 iterations. Solutions are normally obtained 
in 10-20 iterations. 

For this run, DT = DR = 1.0, but the converged solution was about 80°F 
in error. 

AT is the chaw% ( in %) in equilibrium temperature, based on the initial 
temperature in R, from the initial temperature to the exact final temper- 
ature (TmL). 

The geometry used was a cube broken into equally sized cubes, 
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Examination of Tables I and It reveals that Method (2) is the fastest in nearly every 
case. One notable exception is the conduction dominated case (B), where Method 
(1) was faster. The reasonfor this is that(2) used too conservative a stability factor 
for these particular cases, If the normal values had been used (see Appendix B), 
Method (2) would have shown the approximately 20% improvement over Method (1) 
that is evident in the other cases analyzed. 

One other case was studied that is not reported on the tables. This was a 67-node 
model of an ablative heat shield for a satellite/re-entry vehicle. For this problem, 
due to the peculiarities of the conduction matrix, xij, only Methods (1) and (2) con- 
verged, the times correlating well with those shown on the tables. The other methods 
were no more than 1% of the way toward a solution after 100 iterations, indicating 
that their convergence times would be a factor of one thousand greater than the times 
indicated on Tables I and It. 

The choice of methods, therefore, is clearly in favor of Method (2). 
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4.0 GEOMETRY OF THE 8 SURFACES 

Of paramount importance in the development of any optimization scheme is fore- 
knowledge of the geometry of the criterion surface. For example, if there is 
more than one minimum point, a method must be devised for first finding one 
minimum, then search for the second, and so on, to determine which point is the 
absolute minimum. In the following paragraphs, unimodality and other properties 
of the 8 -surface are examined. 

Monotonic 6 ,  

The first important characteristic of 8 is that it is composed of segments of mono- 
tonic surfaces. That it is composed of segments of surfaces can be seen from the 
definition of B (see Equation 2.2). That 8, is composed of two monotonic branches 
can be seen as follows: 

The heat-balance equation can be written: 
A..T. +C M ~ T ~  4 = Q ~ ( Q ~ s ~ + K ~ ~ A ~ )  + c i ~ i ~ i - u a i ~ $  
9 J j j 

4 This equation can be linearized in T according to the scheme 

+ %iQi 

(4.1) 

c A..T. = c A.. (Tj - Ti) + (Aii + x..) Ti 
j 13 J j#i XI j+i '3 

4 4  
m Tj - Ti  

(Tj + Ti) (T? + Tf) 
J 

T j  - T i =  N N #u u 

4 -4 - Ti - T i  Ti: T. + 
45 3 1 

i 
Then Equation (4.1) becomes 

N 

j=l 9 J 
N. .T4 = ai(I-$& + KAiAi) + ci(K;EiEi - uaiT$ + %iQi - @ - ~  + 

N+S N+S 



where 4 

Note that since N.. 
1J 

0 for i f j and Nii = -+ Nij, 
j#i 

{Nij}-l 2 0 ( 4 4 )  

-1 n J  8 u  

This property of (Niij} 0. 

Equation (4.2) carries on the right-hand side one term involving T i e  This term 
vanishes if (a) there is no conduction, or  (b) there a re  no constant-temperature 
nodes to which heat is conducted. 

Equation (4.2) gives 

holds regardless of the value of the T{S, since Ti 
Y 

4 a Ti 4 aT. 4 
J - 6i.e ( s i ~ i  - 0a.T.) - c i a i  

1 1  
2 N..-- 
j=l 1J 

4 

.e 

a Ti 
N.. ~ = 6 .  <]Ks.s. + K A - c.oai aa! 11 sat 1.e 1 1  Ai i 1 

4 N aT. 

j= 1 

(4 5) 

NtS Y 
N 

.s. + K .A.) -f ci(%i~i - uaiTi) 4 + % i ~ i  - 3 K.(T - T ~ )  + 
j= 1 4 J A i  1 j=N+l 1~ j 
CN..T~= ai<$, 

4 M..T. 
4 J 

N+S 

j=N+ 1 

Since N.. + c.6.. has the same properties of { 1J 1 1J 

-1 
{N..+ 4 c .9 . )  113 = {Pij} 2 0 

(4.7) 
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Therefore, from quation (4 6), T 4 is monotonically increasing with a&. To 
determine how Ti 4E varies with e&, define 

4 Yi = Qa.T. - %iEi 1 1  

Then 
4 

i a€& 
aYi aTi 
- -  - aa - 

and 

+ F.6. 1 1  ai(I(siSi+ KAiAi) - 

Therefore, from Equation (4.9) 

(4.10) 

Since ~ ~ i j }  2 0, Equation (4 11) indicates that Yk increases or decreases with 
depending on the signs of the right-hand-sides. 

Si + KAiAi) # 0 for all values of "ivv, then Equation (4.6) shows that no T. 4 - 
J surface has a horizontal point. If (K%q + K g A i )  = 0 for all "iff, Equation (4. l la)  

must be examined, along with the def ition (RHS)i, Equation (4 10). 
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(4, llb) 

Within the accuracy of the linearization, the expression for (RHS)i is a constant, 
independent of the values of a! and F . Its sign, therefore, will not change over a 
given Yk (or Tk 4 surface. Since {pk.4} is positive, - aYk also will not change 

The conclusion to be drawn from the above is that the Yk, and therefore Tk 
and Tk (see Equation (4.8)), have no extremes inside the boundaries of any given 
Yk surface. 

A similar analysis linearizing T4 into T leads to the same conclusion. Trying 
to solve the non-linear case directly is frustrated by the lack of an explicit 
expression for Yk in Equation (4.9). 

sign on the Yk surface. a €4 
4 

Consider next a composite surface, B ,  defined by 

ik /? =max p 
i ,k  

where 

,gik =max 

= max 

Define 

PikU = c1 Y* - c2 

Now the /?- 
EquationsTk6) and (4.11) imply that the minimum value of /?must occur at the 
intersection of at least two p ik surfaces. 

and P s u  have the same properties of the Yk's analyzed above. 
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Unimodality of 

The next objective is to show that the preceding properties lead to the conclusion 
that there can be only one relative minimum point. Suppose there were two, say 
8, and 4 2. Then around each of these points 

8 , 9 2  0 (4.12) 

Therefore there is a relative maximum, B 
path following the axes between Points 1 ani'2. Then around 83 

lying along a continuous but broken 

s s  g o  (4.13) 

Consider a line through Point 3 parallel to the x. axis. A variation in B along 
the axis is designated 8 &. Now the condition (4. i 3 )  implies that 

Although @is discontinuous at Point 3, the surfaces that intersect there are  sections 
of infinite, continuous, and monotonic surfaces, so that 

(e-)+ = ($) - 
m. 

Therefore, if 6 
cannot be two discrete minima. However, if 6g = 0, 
number of minima connected by a continuous path. 

> 0, 6 4  < 0, contradicting Equat 13). Therefore there 
may be an infinite 

Concavity of B 

A surface is simple or concave if for any two points on the 8 -  surface, 8 and 
29 

If we consider a line along the c . axis, Equation (4.11) shows that f j  
convex or  concave. 
that are  convex.  is therefore not strictly concave o r  convex. 

Therefore $has segments that are concave and 

Figure 2 shows a typical p .k surface, from which the 6 surface is constructed. 
Figure 3 shows a typical m%p for a one-node/one-external-surface problem. 
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b,= 

Figure 2. Section of a Typical 8 Surface ik 

Bik 

3 1/2 

Figure 3. Map of B Surface for One-Node Case 
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5.0 OPTIMIZATION SCHEMES 

Several optimization schemes were considered for use in the present program. 
These included: 

(a) Linear Programming 

(b) Pattern Search 

(c) Miguel's Poor-Man's Ridge Follower 

(d) Variational Methods 

(e) Hill-climbing (Maximum Rate of Descent, or MRD) 

Methods (b) and (c), which are described in Wilde's book: "Optimum Seeking 
Methods, '' can fail to find the minimum due to the extremely sharp ridges (dis- 
continuous derivatives) characteristic of the ,g - surfaces. 

Method (d), used in many trajectory optimization schemes, is frustrated by the 
fact that ,g has discontinuous derivatives. It is possible, however, to redefine 
,g and consider the independent variables to be ai, ci, and Ti, subject to the 
constraints 

TiL 5 T. sTiU 
1 

This leads to a rapid solution if the solution satisfies these limits within the 
constraints of the heat balance equation. 

The most severe disadvantage of the variational scheme is the number of compu- 
tations required if the constraints cannot be met. For example, a three-node 
problem, each with independent values of CY , c , and T, has N = 9 independent 
variables. Considering both upper and lower bounds on the variables, the heat- 
balance equation must be solved S times, where 

(N-1) 5 N! 
j = l  1- s = 2  

9!  
9 

j = l  (9-j) ! j ! = c 
= 13180 

In the MRD scheme, S is on the order of 100 to 200. Since most of the computation 
time is spent solving the heat-balance equation, the variational scheme need not be 
considered further. 



Method (a), although quite powerful in linear problems, depends on the accuracy of 
linearization for nonlinear problems. It is anticipated, on the basis of past ex- 
perience, that some of the external-surface temperatures will range from say 
300% to 500% due to orbit-to-orbit changes in the relative position of the sun. 
Linearization, therefore appears dangerous. In addition, if there is no feasible 
solution, a rather extensive sensitivity analysis would be necessary to determine 
what must be done to obtain a feasible solution. 

Suppose, however, that these objections were overcome. The linear-programming 
time per iteration would be on the order of 

Time (psec)  = 1000pN2 + 61 T? (1 +p)  + 400p q r 

(2 rp  + 2q) (2 rp  + 4q12 x lo3 
12 + 

where 

N = number of nodes 
p = number of orbits 
q = number of external nodes 
r = number of critical nodes 

For reasonably sized problems the last term dominates. In fact, one finds the 
time nearly proportional to (rp) , The following table gives some time estimates 
for q equal to 10. 

3 

- r - P Time (sec) 

5 5 25 
10 130 

10 5 200 
10 1060 

20 5 1570 
10 8450 

30 5 5300 
10 28500 

For problems of this general size, MRD would take an estimated 3,600 seconds. 

From the foregoing discussion, it may be concluded that the MRD approach appears 
most promising due to the highly non-linear character of the equations, the long 
running times for LP systems with no feasible solutions, and the comparable run- 
ning times between LP and MRD for systems of common complexity and with 
feasible solutions. Hence, MRD was selected for the present program. 

The MRD method is described in many texts(5). It involves selecting a starting 
point (a set of oli( s and 6;s) and calculating the criterion function ( p )  as well as 
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the values of andh O/a ci) at this point. Using the derivatives, the di- 
a maximum can be determined where 

Then for a given ( A s), A B  will be a maximum, and B will decrease more than if 
any other direction had been used (provided a s  is small enough). Thus a step-by- 
step procedure is used to decrease B ,  where each step is taken in the local maximum- 
rate-of-des cent direction. 

MRD converges to the optimum very slowly when it encounters a sharp ridge, such 
as are characteristic of the p -surface defined by Equation (2.1). Several ridge- 
following techniques are described in the literature, but these are  frustrated by the 
extreme sharpness of the present ridges. None use the ridges to assist in finding 
the solution. Therefore, a method called TREND was devised for the present problem. 

In TREND, use is made of the fact that the 

changes (or a switch from upper to lower bound occurs). If the ridge is immedigely 
re-crossed to, say Point 3, this indicates that the points being studied lie in a 
valley. A vector extrapolation from Point 1 through Point 3 gives an improved 
value of 8 (see Appendix A). Figure 4 illustrates the process. The vector P1, P3 
is in the downward direction of the valley and indicates the trend of the valley. In 
many test cases, it has been found that TREND results in a time saving of 1.5: 1 to 
1 O : l  over the conventional MRD methods. 

surfaces are monotonic, so that 
when a ridge is crossed, say from Point 1 to 8 oint 2, one of the subscripts of B 

The logic diagram for the computer program developdinthe present work, using 
the TREND procedures, is shown in Appendix C (Section 9.0). 

CY 

1 
€ 

Meth 
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6 . 0  APPLICATIONS 

FICTITIOUS SAT ELLIT E 

As an example of the use of the foregoing theory, the problem of optimizing the 
coating pattern of a cylindrical, horizontally stabilized earth satellite will be con- 
sidered. Figures 5 and 6 show the details of the satellite geometry, the orbits 
considered, and the arrangement of the coating patches. 

shows the heat fluxes (BTU/hr-ft2) on each patch for the range in solar 
angles shown on Figure 6. These are the average heat fluxes over one orbit 
period. 

The details of the input/output procedures and the actual computer program are 
shown in Section 5 of Part of this final report. The results, however, are  
summarized on Table IV. The importance of the optimization process is obvious 
on examination of Table IV. Even for an optimized single-coating pattern, the 
temperature excursions from the desired mean are 50% greater than can be attained 
with the multi-patch coating. 

NASA EPE-D 

A second example was supplied by Mr. Robert Kidwell of NASA-GSFC. This was 
a mathematical model of the NASA EPE-D (Explorer ) Satellite. The nodal 
breakdown is shown on Figure 7 and a photograph of the actual satellite is shown 
on Figure 8. The orbit of this satellite is such that the heat flux received from 
the earth is negligible. The significant parameter is the angle between the solar 
ray and the spin axis. In this case, instead of orbit number, the different sets of 
heat fluxes represent different angles between solar ray and spin axis. 

The engineers at GSFC had had some experience with the temperature response 
of satellites of this configuration. These investigators undertook a trial-and- error 
procedure using considerable engineering judgement to select a suitable coating 
pattern for the EPE-Do Mr. Kidwell estimates that at least 4 weeks and 4 hours 
of computer time were required to achieve the desired results. Table V shows the 
temperature ranges attained, along with the allowable ranges. Only the critical 
nodes are shown on this table. 

The challenge was to determine if the computer program could be used to improve 
on this design and the design procedure. The Coating Selection Program did de- 
vise two better coating patterns. The results of the one-week study are also 
summarized on Table V. A total of approximately 40 minutes of computer time 
was used. This shows that the program can reduce costs by a factor of four. 

NASA IMP-C 

A third example was again supplied by Mr. Robert Kidwell of NASA-GSFC. This 
was a mathematical model of the NASA IMP-C satellite. The nodal breakdown is 
shown in Figure 9, and a photograph of the actual satellite is shown in Figure 10. 
The Coating Selection Program devised a better coating pattern than the one de- 
vised by the engineers at GSFC. The study using the Coating Selection 
took one week and 50 minutes of computer time whichalso represents a significant 
gain over the original design procedure used at GSFC. The results are summarized 
in Table VI. 
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TABLE IV. RESULTS OF COATING-OPTIMIZATION STUDY 

Specifications: Allowable cy - F Range: 0.1 5 F s 0.9, 0.1 .s; s 0.9 
Allowable Temperature Range: 

Skin Temperatures: 2OO0R to 8OO0R 
Internal Temperature: 525OR to 545% 

Results : 

Node 

1 (External) 
2 (Internal) 

1 
2 
3 
4 

5 (Internal) 

1 
2 
3 
4 
5 
6 
7 
8 

9 (Internal) 

coating 
01 € 

Uniform Coating 
0,524 0.885 - 
4 Patches 

0.542 0.803 
0.544 0.796 
0.380 0.862 
0.381 0.863 - 
8 Patches 

0.362 0.862 
0.660 0.723 
0,652 0.727 
0.376 0.858 
0.314 0.878 
0.490 0.816 
0.492 0.814 
0.323 0.877 - 

6-4 

Temperature Range OR 

488.4 
552.5 

547.0 
548.5 
524.8 
524.8 
550.7 

529.8 
533.6 
531.9 
533.3 
527.2 
515,8 
516.3 
529.1 
546.0 

433.6 
517.5 (3 5O) 

340.0 
340.4 
414.8 
414.8 
519.4 (31.7') 

342.6 
364.0 
363.9 
342.8 
388.8 
436.3 
436.4 
388.9 
523.1 (22. go) 



k 
a2 
k 
0 

1 w 
W 

k 
0 
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TABLE V: SUMMARY OF EPE-D DESIGNS 

?ODE 

1 
6 
7 
8 

17 
18 
20 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 

YOTES: 
1. 

2. 

Allowable Limits 

420 - 564 
456 - 600 
456 - 600 
456 - 800 
492 - 546 
492 - 546 
474 - 582 

Allowable Limits 

Temperature Ranges 

Coatings Used 
By NASA 

o! E 

,278 .260 
,170 .112 
.170 .112 
.170 .112 
.320 .260 
.310 .240 
.310 .240 
.310 .240 
.970 .850 
,970 .850 
.970 .850 
,160 .110 
.310 ,240 
.350 .850 

Usir 
#1 

a! € 

,350 .849 
.121 .032 
.121 .034 
,123 .038 
.129 .040 
.236 -232 
.254 ,20 
-256 .179 
.946 .853 
.944 .859 
,941 .859 
.143 .lo8 
.123 ,039 
.123 .039 

Computer So 
#2 

a! € 

.152 .118 

.149 ,115 
,153 .116 
. i55 ,118 
.150 .119 
,167 ,196 
.168 .199 
.168 -198 
.207 .166 
.146 .123 
.170 .147 
.163 ,183 
.153 .123 
.144 .116 

tion 
#3 

01 € 

.97 .86 
,391 .826 
.424 .81 
.474 ,776 
.510 .768 
.561 .457 
.556 ,560 
.619 '574 
.902 .793 
.365 .667 
.75 ,644 

.705 .599 
,431 ,792 
.359 .764 

Computer solutions differed only in their starting points, which were as follows: 
Case 
1 ck0.35, €=O. 85 for node 1; ck0, 97, E=O. 86 for nodes 9,10,11; ck0. 12, €=O, 03 

for all other nodes. 
2 €=eo.  12 for all nodes 
3 ck0.97, E=O. 86 for node 1; -0.35, €=O. 85 for all other nodes 

The third computer case terminated without attaining an acceptable solution. It 
appears that if the step size had not beenreduced so rapidly, a better solution 
would have been attained. 
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Figure 9. Nodal Breakdown For IMP-C 

Figure 10. NASA's IMP-C 
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2 
3 
4 
10 
17 
18 
19 
20 
1 

1 
4 
5 
6 

9 
11 
13 
15 
23 
25 
27 
29 
31 
33 
34 

Allowable Limits 

501 
501 
49 2 
501 

50 1 
47 
50 1 

555 
555 
555 
555 
600 
555 
555 
56 
555 

I 1  I 1  I I  I1  

Temperature Ranges 
Predicted Limits 

Using Computer Solution I Using NASA 
Coatings 

499 539 
483 532 
474 526 
49 2 532 
528 59 1 
503 530 
503 553 
53 578 
496 53 7 

504 54 5 
50 5 529 
49 6 539 
50 5 534 
51 5 59 2 
505 530 
504 53 5 
53 8 560 
504 53 7 

Coatings Used 

By NAS I Using Computer Solution 

N € 

17 a 03 
e 25 85 
1.0 ,, 84 
.I8 .188 

0 21 03 
.22 .I88 

.81 
256 24 
0 74 .82 
.279 .636 
.22 .I88 
87 e 82 

,256 .157 
.32 .I88 
.35 e 84 

.35 e a4 

- 7  

N € 

.613 e 48 
.12 03 

.486 .387 
,299 .704 
.504 .364 
.247 .786 
.591 ,670 
.181 .415 
.724 ,598 
.244 .815 
.149 .218 
.745 .621 
-133 .111 
.188 .459 
.435 .718 
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7.0 CONCLUSIONS 

The theoretical foundation and a detailed logic diagram have been developed from 
which a digital computer program has been devised that will select a space-vehicle 
external-coating pattern in such a way that the internal temperatures of the vehicle 
can be maintained as constant as possible in a purely passive manner. 

The program has been demonstrated on several vehicle designs, three of which are  
shown in Section 6.0 of this report. It is seen that the gain of using a multiple- 
patch-external coating amounts to a factor of 2 in temperature variations from 
orbit to orbit. The coating pattern is derived in a direct method in a few minutes 
time on a digital computer with approximately 2-microsecond access time (such as 
an IBM 7094). The added expense of the enhanced design is seen to be quite small. 

The details of the program will be found in Part IC: User's Manual and Program 
Description 



8.0 RECOMMENDATIONS FOR FURTHER WORK 

The-Dependent Solutions 

The present work assumes that the critical temperatures can be calculated using 
average heat fluxes, that is, that the component temperature deviates liffle from 
the average temperature. This assumption is good if the node heat capacitance is 
high compared to the equivalent thermal conductance between the node and its en- 
vironment so that the time constant 

(see Equation 3.4) is much greater than the time interval, T, for which the average 
heat fluxes a re  calculated. 'If T~~ is much greater than one orbit period, no diffi- 
culties arise. 

For thin external surfaces, Tci is usually quite small, so that temperature devia- 
tions from the mean are  Large. It is therefore important to determine the true 
average temperatures and the magnitude of the deviation from the mean. 

For transient heat flow, Equation (3.2) becomes 

dTi 4 
(WCJi +c q j T j  + M..T4 1~ j = Di(e) - € . a d i  1 1  

j j 

where 

Di( e) = aisi .+ ciEi + Qi 

DefiningX=- X de, integration of Equation (8.2) gives 
1 -  0 eo 

If the temperature history is periodic of period rP, then, if 81 = eo + rp, the 
heat-capacitance term is zero. If, in addition, x. 3 0, the average fluxes Will 
give the true average T 's. If A # 0, then, since 

4 4 
ij 
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4 neither the true average T nor T are calculated. This is a problem that should 
be considered in future work One approach would be to devise form factors, 7 ,  
such that 

However, the development of this concept is beyond the scope of the present work. 

Convergence of Iterative Solution 

The heat-balance equation was solved for several numerical examples using seven 
iterative schemes. The fastest of the methods was then selected for the CSP, The 
rates of convergence should be investigated and compared on a more mathematical 
and rigorous basis. 

Sub-optimizations of each iteration scheme should also be conducted. For example, 
one could determine if X could be made smaller for iteration schemes (1) and (2) 
(Table I), o r  one might add X to the L matrix of method (7) to determine if this aids 
convergence in such cases as Problem I) (Table E). 

"Tmieal" Orbits 

In selecting the orbits used to obtain the optimum coating pattern, the usual approach 
is to take the extremes in, say, 8-angles (i e., the angle between solar ray and orbit 
plane), and then take a "few" orbits in between. This would give representative orbits 
for auniformly coated vehicle. However, when the coaking pattern is optimized for 
the particular orbits given in the input, it becomes questionable whether the particular 
orbits still represent extreme cases. 

For most spacecraft, the environmental heat fluxes can be expressed as a function 
of one or  two variables (8-angle, solar view-angle, orbit position, etc.), so a 
solution to the problem of properly selecting the orbits should be attainable, 

Program Enlargement 

The program is now limited to 34 nodes. For many satellites this is not adequate. 
The program can be enlarged if a LINK (chain) procedure is used, so that tape and 
drum storage is used, 

Tolerances 

The present program uses the nominal values of a! and F. The effects of tolerances 
in these values on the space vehicle temperatures must be calculated separately. 
This extra calculation could be incorporated in the optimization program. 

Heaters and Shutters 

The present program considers only those vehicles in which no auxiliary tempera- 
ture control device is used. As such, it determines the best control that can be 
attained without such devices. The next step in determining the optimum tempera- 
ture control system would be to include heaters and shutters (sometimes called 
louvres, vanes, o r  variable-surface-property devices#, 
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9.0 APPENDICES 

Appendix A. Mathematical Analysis of the TREND Step 

The mathematical basis for TREND can be stated as follows: 

Given two intersecting hypersurfaces, A and B. Given also a point 'a' on A and 
a point 'br on B. 'b' lies on the projection of the maximum-rate-of-descent line 
of A through 'aT, the projection being taken on the hyperplane A (x.) = 0. The 
projected distance from 'ar to 'bT is 'As', Given also a point '6' oh A having 
the same relationship to 'br as 'b' does to 'a', 

We wish to prove that A @ 
'd' is found using the maximum-rate-of-descent line from e, This process can be 
continued until a minimum value of A or B is reached. This will prove that the 
maximum-rate-of-descent method will converge to the minimum. For TREND, 
we must show also that A (e) s A(c), where 5 - c = [ (e - %)/ 16 - % I 1 As. 
Consider first the maximum rate of descent. The point b is given by 

A(G). If this is the case, then B (d) s B(b), where 

Axi (AS) 
bi = a. - 

1 

where the independent variables are taken as  xi. Also 

Bxi ( A s )  
C. = b. = - 
1 1  

i 

Therefore 

c. - a. = - AS 

i 

Now 

A(;) = A@) + Axi(S) 0 (ei - ai) + . . . 
i 

A(Z.) - 
i 



Therefore 

A(;) * A(i)  
Ad Bd 

+ 

from 'a', say 

Similarly 

Now 

e angle between U1 

or 

" 0  

= 1 + eose 2 e 2' 

Therefore A(c) * A(a), provided A s  is small enough that the first term of the 
Taylor's expansion is represenlative of the function A (no more than say 1/2% in 
emor). E€ the radius for which the single term expansion is adequate, is designated 
R, it is required that 1; - s R, or 
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The maximum value of the term inside the brackets is 4, so it is sufficient if 

A s s R = 0 . 5 R  z (A-2) 

In TREND, we wish to state also that A(;) s A(6), where 

Now if (AS) is chosen small enough 

A(;) = A(:) + EAxi(;) (ei - ai) + . . 

since 

e. - a. = e. - c. + c. - a. = (ci - ai) 
1 1 1 1 1 1  

Therefor e 

i 
which proves the validity of TREND. The (As) must be chosen such that 
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or 
(ei - ail2 s R 2 

i 

or 

but 

From Equation (A-1) 2 C (ci - ai) * 4 ( A s )  
i 

(ci - ai) 2 + 2(A s) d m +  (A s ) ~  s 4 ( h  sI2 + 4(A s ) ~  + ( ~ 3 s ) ~  = 9 (As) 2 
i 

Therefore, As must be such that 

As s i R =  0.333R (A- 3) 

It is seen by comparison between Equations (A-2) and (A-3) that TREND will  be 

approximately in the same direction. However, If ci 
MRD will move with net step sizes on A of E and convergence will be slow. TREND, 
under the same circumstances wi l l  proceed with a net step size of (e + As). 

if the Afi% equal the Bxirs; that is, if the two steps of MRD are 
2 2  ai, so that C(ci - ai) = E , 
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Appendix B. Convergence of the Inverse-Matrix Iteration Methods 

To analyze the convergence of the matrix inversion iteration schemes (Methods 
1 and 2 of Table I), it is necessary to linearize the radiation terms. Let 

.., 
- 0 R~~ ei +%.I (?if -+ T!) i # j 

(B-1) J 3 

"3 R.. + 4 a. e. U T. 
1J 1 1  1 

N +S 

j #i 

- 
- 
R.. 
13 

Then Equation (3.2) becomes 

N -i-S 
nij + Ri2 Tj = Ci 

j= 1 

where Ci is defined as in Equation (3.4). 

Method (1) solves this equation in the form 

Convergence of the iteration process depends, then, on the spectral radius# (Z), of 

Z = (X+ X)-l ( x  - Ti) (B -3) 

being less than one, 

Note that 
N 

j = l  

N 

2 -c x.. and X.. 5 0 i f  j 
1J 13 

(X+ x)ii 

x.. * 0 
11 

and X.. = 0 i # j /  
13 

The Katrix (X 
Xii * Rii, ( X - R) is positive so that, since 

is positive by virtue of Equations (B-4). If, in addition 

( X + i i )  = 

P ( Z )  = 

03-51 
- -1 (x+ X) - (X -E) with (x+ R) * 0, 

is a regular splitting of the matrix (A + R). Then by Theorem 
- -  

P [(x+ E)-' (X - R ) l  < 
1+P La+R) - -1 (X-R)] 

(B-6) 
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- 
so that convergence is assured if Xii = Rii. By Theorem 2.7 of Varga, it is 
evident that Xii = Rii gives the minimum value of P (Z) and, therefore, the most 
rapid convergence. 

Relating the foregoing to the non-linear equation shows that a sufficient condition 
for convergence is that 

- 

j f i  

and that most rapid convergence will  occur if 

2 3 u R.. (Ti+ T.) (Ti + T?) + 4 aiciUTi 
N+ S 

j=i 
= - 

9 J J xii 
j +i 

where 
approximated by using Ti  as Ti, solution. 

and Xii are evaluated at each iteration. This latter cr teria can 

violated. Although it has not been shown in a mathematically rigorous fashion, ex- 
perience with many numerical cases indicates that the criteria expressed in Equa- 
tion (B-7) can be relaxed somewhat so that convergence will occur if 

r i  -* - 1 -  I - - . - *  - .  - 1  - _. 
X.. = max A (R.. - A i i ) ; t I  A . I  - Aii;L(-Rij+Aij) - Aiij (B -9) l z  ll j+ i  iJ j # i 11 

-* - 
where R.. = R.. evaluated with Ti and T. at their maximum anticipated values. 

Combining Equations (B-8) and (B-9) gives the following criteria on Xii: 

1J 1J J 

i - 4  -k - - I -  I - - A  - - - 1  
X.. = max li @ii -Ai$ ; t lAi j  I -Aii; L(-R:.+A..) -Aii; RY. (B-10) 
11 j f i  j f i  9 1J 1 4  

(Method 1) 

-0 - where Rii = Rii evaluated with Ti and Tj at their anticipated solution values. 

The analysis of Method (2) follows the same pattern as for Method (1). The counter- 
part of Equation (B-10) is found by replacing R in  Equation (B-10) by i? - Bo. 

X.. = max 1; (Rii - RLi - Aii);LIAijI - A ii’jfi .L ( -R . .  11 + R:. 11 + A..) 11 - Aii; 0 
j #i 11 

(B-11) 
(Method 2) 
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LOGIC DIAGRAM FOR TREND 

1 Tsol 
RE- K. 11 9 R.. ,  13 Sik, Aik, Eik’ Q,, ai, e l ,  ui, Tiu, TiL, Aso,  Asmln, KS., SAi, si, KQi, w c limits, br,  AT, Tmax, 

1 
Let r = 1. g = 1; w - c limit no. 5 = v - < limit no. 1 

I 
t 

Start 

I 
Solve for T. ‘s. calculate Bik;s. select i. k. 1 such that tiikl = max Rikl. Let 5 = Bikl 

i. k. 1 MRD 1 Ik 

1 
LmZ= 1 a. = 0. F i g =  ci AS = ASo ALSir = ai  EPSir = c l  KS1 = k IS1 = i LSl = 1 

lxZ=i R m Z = k  16! 1 

1 
~ 

Calculate ..S w F  . BN. Bc Let Aa. = A n i  L e i n  = bc1 r = r + l  
1g 

Let ‘X. - f. 
1 I (g+l ,  *I = 1 k + l f  

Sol\e ‘or Tlk’s. Calculaie J*<s. Select i. k. 1. such that p,, = max 1.k. 1 ’&l 

1 
max k = Kmax. 1 = L max‘ Are I = I  

I 

NOTES 
Subsc.ipIs are  generally used as follows 

i designates Node Number 
k deslgnares Orbit 
g designates Iterarion 
1 designates MRD Point 
1 designates Gpper (2, or Lower , l  Limit 

G o  To Step g = 1 to EPSiQ = EPSip + 6i(g+l ,  - XXi I( r - 1 )  

Go To Tes! 
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I 1 Let I(Sr=k; IS = i ;  L S r = l  r 
Test 

t 1 
Does,KSr = KS LSr = LS ISr = IS. For j = r-1, r-2, . . . . , 1 

j ’  j ’  3 
1 I 

No Yes 

1 t 
Go To MRD 2 

Let j, for the first value of j for which IS. = Is,, equal q 
3 

I Let baig = ALS~, - ALS. ig = EPS~, - E P S ~ ~  I 1q ’ 

I 1 + 
Go To LIM 

4 
mLlx 

Solve for T. ‘s, calculate Bik<s, Select i, k, 1 such that Bikl = i, k, 
Let IT = i, KT = k, LT = 1 

Bik1 lk 
I 

NOTE: 

An Alternate Trend 2 
Yes No is given in Appendix D 

Go To BACK Go To ADVANCE 
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. . .  

8 
t 
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I1 r; 

a d" 
," 4 
* 
3 

! 

[-E- 

m 
N 

-6J. 

N 
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ADJUST 

I 
RETURN 
CHECK 

CHECK 

RETURN 
LIMl 

RETURN 
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Appendix I). Nomenclature (Excepted and Noteq 

Symbol 

A 

A 

C 

D 

E 

E.. 
4 

J 

- 

N 

KAi 

Ka 

Ksi 

KEi 

i j  
K 

L 

M 

N 

P 

Q 

R 

R. 
13 

(RHS) 

- 

S 

T 

0”Cp’i 
X 

Description 

incident albedo flux 

conduction matrix term 

defined by Equation (3.4) 

defined by Equation (8.2) 

incident earth flux 

(ari/aT.) J at T~ = Tj(0) 

inverse matrix of A 
multiplier of incident albedo flux for node (it 

multiplier of incident earth flux for node ,it 

multiplier of internal heat generation 

conductance from node ,it to node ?jt 

multiplier of incident solar flux for node ‘it 

defined by Equation (3.4) 

radiation-matrix term 

defined by Equation (4.3) 

inverse of N.. + e. 6.. 
9 1 1J 

internal heat generation 

defined by Equation (9.2.1) 

product of radiant interchange factor between 
nodes ‘if and 

defined by Equation (4.10) 

incident solar flux 

absolute temperature 

heat capacitance of node (if 

and area of node 9’ 

Suggested Units 

BTU/hr f t2  

B T U ~  OF 

BTU/hr 

BTUB 

B T U b  ft2 

BTU/hr OF 

hr OF/BTU 

ft2 

f t2  

BTU/watt hr 

BTU/hr OF 

ft2 

BTU/hr O F  

BTU/hr f t  ( R) 
0 4  BTU/hr ( R) 

0 4  hr ( R) /BTU 

watts 

BTU/hr O F  

2 0  4 

f t2  

B T U / ~  f t2  

BTUPF 

BTU/hr 

0 R 

stability parameter in  matrix inversion methods BTU/hr OF 
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Symbol 

Y 

% 
c 

d 

r 

Qf 

01 n 
B 

Y 

Y 

6 
iJi. 

E 

9 

x 
U 

7 ci 

Subscripts 

i 

iL  

iu 
k 

Description 
4 WiTi - KEBi  

re-radiating area for node 'it (external are=) ft" 

Suggested Units 

B T U ~  
r) 

- weighting factor, Equation (2.3) 

weighting factor, Equation (2.4) - 
residual vector (Equation 3.5) B T U / ~ ~  

- solar absorptance 

iteration scheme extrapolation parameter 

temperature deviation parameter 

criterion function, Equations (2.3) and (2.4) 

form factor, (T )/(%)4 

Kronecker delta (=I if i=j; =o if i#j) 

infrared emittance 

time 

interpalation parameter 

Stephen-Boltzmann constant (0.1713 x lom8) 

-4 

9-14 

usually node number 

corresponding to lower limit on Ti 

corresponding to upper limit on Ti 

usually orbit number 

Super script 

n itemtion number 

2 0  4 BTU/hrft ( R) 

hrS 
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