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FOREWORD

This memorandum was prepared by personnel of the Thermal
Environment Section of the Lockheed Missiles & Space Company's
Huntsville Research & Engineering Center for the Aero-Astrodynamics
Laboratory of the NASA Marshall Space Flight Center. The work was
done under Contract NAS8-20082, (Subcontract NSL PO 5-09287)
under Schedule Order No. 76, Task B, Amendment 1. NASA technical
coordinator for this study was Mr. Homer Wilson of the Thermal
Environment Branch of the Aero-Astrodynamics Laboratory.
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SUMMARY

This Technical Memorandum presents the formulation of a
method for obtaining solutions to the radiation-coupled blunt body
flow problem. The primary objective of the study is to develop a
method for obtaining heating rate distributions about a blunt body
in a hypersonic flow field for the case where convective and radia-~
tive transport mechanisms are coupled. A numerical iteration
procedure is developed to obtain solutions to the system of non-
linear partial differential equations governing a thin shock layer
which is completely viscous and radiating, Initial results of a
digital computer implementation of the method are given with
convective heating rates being compared to heating rates found

in open literature.
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NOMENCLATURE

velocity profile coefficients
Planckian radiation intensity
velocity profile boundary conditions
radiant emission rate

exponential integral

velocity function, u/u‘S

" enthalpy function H/H6

total enthalpy

static enthalpy

integral of fz

integral of f

local radiation intensity
thermal conductivity
number density

static pressure

Prandtl number
convective energy flux
radiative energy flux
radius of curvature
Reynolds number, pb' OUoo R/ué’ 0

defined in Figure la
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temperature

freestream velocitly

velocity component paraliel to body
velocity in recétangular coordinate system
velocity component normal to surface
body-oriented coordinates

shock detachment distance

transformed shock detachment distance
difference between body and shock angle
Dorodnitzyn variable

body angle

body curvature

1 + Ky

absorption coefficient

direction cosine

viscosity

frequency

nondimensional x-coordinate

density

density ratio across shock, p‘;o /p6' 0
solid angle

optical depth at frequency »

shock angle

vorticity
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Subscripts

a

Superscripts

sea level quantities

wall quantities

quantities immediately behind the shock
freestream condition

stagnation line

normal component

tangential component

dimensional quantities
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Section 1
INTRODUCTION

A superorbital vehicle entering a planetary atmosphere encounters
severe convective and radiative heating. To survive in a high temperature
environment, an entry vehicle is usually designed with an ablative blunted
nose. Hence the job of the designer is to determine the magnitude of the

heating rates for a blunted nose entry vehicie and to determine what specific

blunted nose shape to use,

The purpose of this study is to formulate a method to calculate the
coupled convective and radiative heating rates for an arbitrarily shaped
axisymmetric blunted nose vehiclie in an arbitrary planetary atmosphere.

The regime of atmospheric flight was restricted to the laminar continuum
regime by starting with the basic steady Navier-Stokes equations and assuming
laminar flow. The steady Navier-Stokes equations were reduced to a form con-
sistent with the flow behavior around a blunted nose in a hypersonic stream by
assuming that the shock layer was thin, and the viscous layer and the shock
detachment distance were of the same order of magnitude. Further, this formu-
lation is confined to the flight regime where thermodynamic equilibrium can

be applied. This restriction can easily be released by adding a species con-

tinuity equation to the set of conservation equations,

This study provides a formulization of the approach Hoshizaki and co-

1,2, 3*

workers have taken in the solution of the viscous radiative coupled blunt

body problem. This method provides an advantage in calculating the radiative
coupling between the viscous and inviscid regions, The advantage of this
method is that it eliminates the necessity of matching the frequency depen-

dent radiation flux at a viscous-inviscid boundary.

*References - Page 40.




A numerical method, similar to the method used by Wilson and co-workers4,
has been developed to provide a solution to the viscous radiative blunt body prob-
lem. The momentum equation is solved using a modified Karman-Pohlhausen
integral method while the energy equation is solved using a successive approxi-
mation technique. The present formulation includes mass injections effects
while neglecting diffusion of chemical species. The solution yields the shock
shape, complete details of the shock layer structure, and more significantly,

convective and radiative heating rates to the body surface.
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Seclion 2
FORMULATION OF FEQUATIONS

The equations used in this analysis are a simplified set obtained from
the total conservation equations for a muiti-component continuum gas (Tsien5
and Scala6). In this analysis the shock layer is assumed to be in thermodynamic
equilibrium. This assumption is realistic for many blunt body hypersonic flow
problems. For the cases where a f{inite rate or quasi-equilibrium analysis is
necessary, an equation for conservation of species can easily be added to the
basic equations. The transformation and method of solution of the species

continuity equation is essentially the same as the energy equation.

The following assumptions are made in order to obtain a set of equations

for use in obtaining a solution to the viscous radiation-coupled biunt body problem.

e the shock layer is assumed to be thin, 6'/R'< <1

e the thickness of the viscous layer, and the shock
detachment distance are taken to be of the same
order of magnitude

The order of magnitude analysis of Hoshizaki and Wilsor\1 is used to reduce
the equations to a mathematically consistent system correct to the order of
the density ratio across the shock. Terms which are of 0(52) and higher
have been consistently neglected. In performing this order of magnitude
analysis, the variables are nondimensionalized according to the scheme
shown in Equation (5). At any point in this analysis where a term is neglected
by order of magnitude assumption, the variables are first nondimensionalized

using Equation (5). The equations in this analysis are thus valid for a thin,
completaly viscous shock layer




The equations are written in the body oriented coordinate system shown
in Figure la. The complete set of governing equations correct to O(p) can be

written as follows.

X-Momentum

%’_p.~|[u.__(%_;~(1_i+,’z'l y ou’ + K' ! v'}
w :
(1)
9 P ) r' ~2 ou' _
- ax' ay' [r' [} u'.a_y' K' u' u'}
Inviscid Y-Momentum
r! av! ov! K' 2 QP!
:TP'[“'—XT*V'—;{;‘-‘;- “']“37- (2)
w
Continuity
9 1 o y! 9 RUr' p! v') = 3
ax'(rp“)+7)—y7( r'p'v') = 0 (3)
Energy
x oH' |~ 9H'] __3 r' _u! ah']
r;v P! [u' ox' T K vt E)y'] oy [R" r:” Pr oy
(4)
_ _9 r U du't 9 - rt
= —ay' [(_r"” + 2K yl) ; ut ay'] By' [K' “| u' ] Kt r‘.” E!




Figure la - Body-Oriented Coordinate System

Shock
Wave

——

Vot v

Figure lb - Resolution of Velocity Components in a Body Oriented
Coordinate System




The problem now is to develop a mcthod for obtaining a solution to this
system of coupled nonlinear parabolic partial differential equations. The solu-
tion will be a complete dercription of the shock layer flow ficld including shock

shape, and convective and radiative heating to the body surface,

Solutions to the momentum equation will he obtained using an integral
method similar to the Karman-Pohlhausen technique for boundary layer
analysis. The momentum equation is integrated across the shock layer to
obtain a differential equation in one variable, The shock layer velocity pro-
file is then assumed to be representable by polynomials with sufficient bound-
ary conditions being specified to uniquely define this polynomial. This type
of method has been used by Maslen and Moeckel and by Hoshizaki and Wilson

and this analysis closely follows their work.

The energy equation will be solved by a finite-difference, successive
approximations technique. An initial guess is made for the dimensionless
shock layer enthalpy profile and an iteration loop set up to successively
approximate this profile until satisfactory convergence is obtained., Details

of the iteration procedure are given in Section 3,

The following scheme is used in performing the nondimensionalization

of Equations (1) through (4).

- X - X -l S A
(= w® YR R MR
- T 1 7.2
p p'é'o [ ”'6’0 6 R' 6 RrR!'
(p'v')
r' P
fTR K=« R  P= z PV, = o
p: Ul w0 "o
H! h' 'R
H=a_ h=g- EB=——ry H‘5=%U:,°2 (5)
J 6 p'(U. )




The conscrvation equations as stated in Equations (1) through (4) are in
the body oriented (x, y) coordinate system (Figure ta). They will actually be
solved in a dimensionless (£, n)coordinate system, where £ is defined in

Equation (5) and n is the Dorodnitsyn variable

T
/ e p' dy' y'
. .0 1 S
n = 5 = :—5'—'— P dy' . (6)
/ I p ay' 0 )
0 Tw

The introduction of this coordinate transformation has a two-fold purpose:

e it reduces the effects of shock layer density variations

® it allows the use of a shock layer coordinate which
ranges over the unit interval (0, 1).

The following two sub-sections present a mathematical analysis of the
conservation equations for the purpose of obtaining a system of equations
suitable for numerical solution on a digital computer, In Section 2.1, the x-
momentum equation is integrated across the shock layer and transformed to
dimensionless coordinates to obtain a form suitable for solution by a modified
Karman-Pohihausen integral technique, In Section 2.2, which begins on page
24, the energy equation is transformed and manipulated for solution by suc-
cessive approximations. The radiation flux term in Equation (4) is formulated
in terms of the local radiation intensity, Planckian intensity, spectral absorp-

tion coefficients and optical depth.




2.1 MOMENTUM EQUATION

To solve the momentum equation by a modified Karman-Pohlhausen
method, an integral of this equation is required. Before integrating across
the shock layer a more suitable form can be obtained by manipulation of

Equation (1).

From the continuity Equation (3) we have

0 r o r' -
ax. [T P “\'N] LTy [;-— "' p! V':lr'w

w

Expanding the left-hand side we have

dr' .
A r' 1 w r' & r' o~ )
ax [F— o “‘] Y oTa MW ot a—y"[r"“f""' (A-1)
w w w w _] .
Now note that
r' ou' r' 2 2 9 !
o e S T ai. [r. p'u’ ]— 't o= [;.L p' U'] (A.2)
w w wW .
Putting Equation (A.1) into Equation (A.2) yields
dr!
RPN -4 VN - I I oy, o 1w
o P ax' ox' [r{” p'u’ }+ r{v pr ! r' dx!
el r' -
+ u' 1 1 K' p' V‘] (A'3)
ay [rw .

Consider the left-hand side of Equation (1). Substituting Equation (A.3) into

Equation (1) we obtain




~ a r' 2 ~ r! 1 w
K' axl [rl p' u' ] + K' rl p' u‘ rl dxl
w w w
~ o r' o~ ~ 2 r' gu'
+ x'u' é—y—,' l:-r—,— K p' v‘:] + ' p' v T 5—}7,-
w w
~ r'
+ K' K’ pl ul Vl _r_
R W *
Now note that
~ r'  ou' r' r' 0 ~
1 1] 1 e e ] ] 1] 1 — - 1 | L] ]
K'p'v rlv oy + K'p u v r"” = p'v er 3y (K'u
Using this result in Equation (A.4) we get
dr!
~ 0 r' - YA & 1 W
X! __.aX' [——r| p'u + K'p'u o " e
w w w

Using the following identity

oy’

K 2 [_‘r_'_ 7‘[)' v‘] +?'p'v' i A (x'u') - __6‘_[_{"_'_ :’"zp'n‘v]

r
w

Equation (A.5) becomes

éx' | r'
w

P 0 [_‘E.'_ vuvz] + N xo 1 w p'u'z + —aYT [—E-:- ;'Zp' u' V'] (A.6)
w

(A.4)



By definition X' = 1 + «' y'. Equation (A.6) can thus be written

Combining these two identities yields the following:

, Il r' 2 , .r' 9 2 2 9
KY'E}T[}T\;‘p'“‘}:Y ._r_'_._a?_[xlp'ul].*.xlylp'uv E{.[

2 r' dk!

_ oyt [t A

p oy Y dx’
w

Putting this result into Equation (A.7) we obtain the following form for the

left-hand side of Equation (1).

ax" rr'_p'“'z"'y'] Y T e [x'p'u'2]+ Ky p'ur

10

rl

(A.7)

(A.8)




Substituting Equation (A.8) for the left-hand side of Equation (1) leads to the

following form of the x-momentum equation:

o r' o~ 2 oP!' I3) r' ~2 ou'
+ — X' p'u' v'| = - + - - K li' — -K'[J-'u|
oy [rw ox' oy T 3y

Now consider the right-hand side of the x-momentum equation [Equation (A.9)].
The y-momentum equation can be used to manipulate the pressure gradient

term into a form more convenient for integration.

The y-momentum equation [Equation (2)], correct to O(E) with respect

to terms in the x-momentum equation is

P! 2

ay' - Kl pl ul

Note the following identities, correct to O(p)
o | erl_ ep . | o |op
aY' [Y axv] - ox' + Y ayl ax'

op! R 2
= —é-;(—'— + Yl é_;'_ [Kl pl u' ]

oPp! r' (2] 2
ARl L

11

(A.9)



Thus,

opP' o op! ' ! ' 2
- g e

K' r' 2 dr o) r' 2
* o b dx' ¥ ay' | r! KCptu v'}
wow w
o |, op o | r ~2 . au
= Yy ol ol KT u T -k'p'u (A.11)
oY [ ax} oy [rw oy .

For consistency we now discard those terms of Equation (A.11) which are of
O(EZ) and higher. Performing this order of magnitude analysis leads to the

to the following form of the x-momentum equation.

~ dr'f
0 r' 2~l ¢ .2 dx! X' r' W 2
ox' [r' p'u -y plu dx! + r' r' dx’ p'
w w w
(A.12)
o r' ~2 o oP! ) r' ~2 au'
+ —= | == | 'yt 'l = 1 ] ' VTR ITL

Equation (A.12) is now in a suitable form for integration across the shock

layer. Performing the integration along a ray line from the body surface

(y'= 0) to the shock (y' = ¢') we obtain

12




W w rW '
0 y'=0
]y':a' y'=¢
ap' I" ~2 au'
- ! : 2 1 OV ' 1 [
: [‘/ o | + [r. LT " u] (A.13)
2y'=0 ¢ y'=0 .

Leibnitz's rule is now employed to interchange the order of integration and

differentiation in the first term of Equation (A.13). The following approxi-

. . . 1
mation is also introduced.

5" 5"

- ' . |

; f X' —-f— p' u'2 dy' ~ X ;I,;— p' \1‘2 dy'
fw o) Tw

Equation (A.13) then becomes

6' r' 6!
-—(-i— —I.l_ ' '2 ! __6_. [} |2 9_6,__'_ _(]_'(_' 1] ] '2 1
dx! r;v pu dy' - r\"v p{; u(S dx' ~ dx' y pu dy
0

- 1 opP' is__ = 2 ' _(211_’_ v 1 1 1 §E_'.
= § <6x|> + r' K(S ué <6y|>6"' K ué u6 - “W <ay'>w (A.14)
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The dimensionless variables, Equation (5), are now introduced into Equation

(A.14). In terms of these new variables, the x -momentum equation becomes

b r
. , 2 d r 2 Cin , 2 & 2 dé
(pb, 0 Uoo ) dz / r pu dy (06, 0 Uoo ) r ué d.{

o w w

o

X dr
2, dx 2 2, X w r 2
'(pls,oULo)dE/”p“ dy* s, 0Y) v GF / ; Pu dy
0 w oV
2, ~2 *5 2, . fopP
1 1 . 92 -
P50 U K5 Py s Ve T T P U (a'f') (A-15)
: 3

U’ “" r
076,00 ~2 6 du K Ju
R o b (5)6 T RHs, 0V M Vs T T R Hw (ay)w .

Now define

f= 2 (A.16)

divide byp"5 0 ULOZ , and perform the coordinate transformation defined in

Equation (6). Under this transformation Equation (A.15) becomes

1 1 n
d 2 [ 2 T 2 ds _de 2 2 [ 2 a7
f -5 a6 _dx £
af ua/ a7 v Ps%s ag "ag ° “6/ / p | an
w
0 0 0
kg dT . o ~/ 2 ~2 Tg -80, f[opP
+ — u é f dT] + X — u, V_pP, = F +
w7 e 6 T, e el my o)y

14




&% fes
3 w \an =0
For convenience we define
1
I, = 'S/ ¢ dn
0
and set
t ' 1 ]
—_ poo _ p&, 0 UOO R
p = —r y Re =
Ps o Hs, 0

Equation (A.17) can then be written

15
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(A.18)
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Rearranging Equation (A.20) we get the following final form of the momentum

integro-differential equation.

dl du u dr T
1 6 ~ o w 6 dé
4. — + 12 —2 + % I, = — p.u
6 d d 6 . dz 1 r 6 6 dz

Velocity Profile and Boundary Conditions

To approximate the velocity function by a fifth order polynomial

5

£(£,7) = }: a (&) n’ (A.22)

i=0

six boundary conditions are needed to uniquely determine the coefficients a..

The boundary conditions chosen are

e u=0aty=0

° zu, aty= 6

6

e Momentum equation evaluated at body surface
e Total mass balance
®e W= (.06 at Yy = 6 .

16
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The {irst three conditions transform directly to the (£, 77) coordinate system.

(1) £(0) =0
(2) 1(1)

(3) £'(1) = 0

1

Evaluating Equation (1) at the body surface we have

oP! /2] r' .2 au' )
0 + LR = —— | —— v - x!' Y 't .
(ax') , PV = By [r' wou ay'] &y [“ " ]

Transforming to (ff, 1) coordinates we have the following condition correct
to O(_ﬁ_).

P pRe 3 sing Replov )w]

" 1 [op - f0) & _
(4 10 = & (65)6 b, ou, ~ TO - [“ T iy

B, - B, £(0).

Forming an overall mass balance in the shock layer we have

o1 x'
1 2
] ] 1] 1 - = 1 1 ! 1 ' 1 1
/ ' ptutdy' = > pl Ul +rW/ p'v'), dx' .
0 : 0

Transform to (£, 77) coordinates to get the following condition

1 . | 2 1 '3
(S)f fan= & 5 (32) + 2 & / (pv),, 4¢ = B, .
0 6 w 6 6

¥ l1e]!

0
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Evaluating the vorticity behind a curved shock for the axisymmetric cased

we get

-2
' 1 - [
(6_‘1' P X u.) -y -0 X sing .
ay X 6 0 p Ka

In the (£, M) coordinate system, this expression becomes

r g -2 .
6 (1) = [=X\ X S 1 + (1-p) sing = B, .
(6) (1) <.;(,6><r6> P [ -5 u, 3

Applying the boundary conditions 1 - 6 to the polynomial defined in Equation

(A.22) we obtain a system of linear algebraic equations for the a.

ag = 0
a1+a2+a3+a4+a5 =1
2a2+ 6a3+ 12a4+20a5 =0
BO al + Zaz = B1
1/2a1+ 1/3a2+ 1/4a3+ 1/5a4+ 1/6a5 = B2
a; +2a2+ 3a3+ 4a4+ 5a5 = B3 (A.23)
The system (A.23) has the following solution:
al - 60 0 -1 120 12 1
az 0 30 60 -60 BO -6B0 BO
1
a3 = IZ-BO 480 -100 -12 180 B0-720 22 Bo- 120 B1
a, -660 105 10 960-180 Bo 180-25B0 B2
a5 252 - 36 - 3 60 BO-360 9BO-72 B3 (A.24)

18
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Thus the coefficients a, and hence the velocity profile, is expressed in terms

of quantities at the body surface and immediately behind the shock, and the

shock stand-off distance,

Shock Boundary Conditions

The shock boundary conditions chosen here are the Rankine Hugoniot

equations and when written in rectangular coordinates are:

3 2 ] 1 - 1 [}
Continuity o Voon = Py Ve (A.25)
Momentum
2 2
\i L 1] - 1 t t
{(normal) [ Voon + PQo = Pl Vén + P6 (A.26)
3 1 - !

(tangential) voot = Vét (A.27)
Ener v 2in alyv 4n (A.28)
ELULN A 4 Z 'on Y02 Yen T s - .

Using Figure lb, page 5, the above equations can be written in body oriented

coordinates, From geometry we have

[ 1 : - 1
vl = Vét siné€ Vén COS€ (A.29)
1 - 1 ' 1
ul = Vét cose + Vén siné€ (A.30)
where
Via~ U cos¢
] - A 1
Vin= P UL cos¢p

19




Substituting for V' , V!
wn

, and V' , we obtain
én ont

—_ . . - hong ' . .
v"5 = U!, sin¢ sin€ - p Uoo cosg sin€ (A.31)

uf = U! sing cose +P U cos P cose (A.32)

The pressure behind the shock can be obtained by using the normal momentum

equation and substituting for V' __and V' .
oon on

1 t 2 vt — A (A I 2 '
P, (U00 cosd)” + P =P (p v cosg)” + P6 . (A.33)

Non-dimensionalizing Equations (A.31), (A.32) and (A.33) and dropping a term

of order (fJ-)2 in Equation (A.33), we have the shock-boundary conditions.

Ve = sing sin€ - p cos¢ cose (A.34)

u6 = Sln¢ cos€ + b— COS¢ COS€ (A.35)
_ - 2

Pg=(1-p)cosg . (A.36)

Pressure Profile

A shock layer pressure profile is necessary in order to determine the
thermodynamic and transport properties of the shock layer gas. For this pur-
pose the inviscid y-momentum equation correct to 0(5) with respect to the
normal pressure gradient is used. The pressure profile is obtained by inte-
grating Equation (2) under the assumption of a linear variation in the normal

velocity component. The Rankine-Hugoniot equation (A.36) is used for evalua-

ting the pressure immediately behind the shock.

20
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Introduce the dimensioniess variables, definition (5), into Equation (2)

to obtain

=
Q
<

: X 2-— — .
?—plug)—é—+v-—-7u]v--p (A.37)

y
- £ [ L pulay . (A.38)
The following approximation is now introduced1

v = v677 . (A.39)

Using Equation (A.39) we can evaluate Equation (A.38) in (f, 1) coordinates to

obtain

1 2 1

7 ar Ve

P-P(S::-u&—a-&r T]de]+—_-’ r]pd?]

p p

n n
K u62 1
- — £ an (A.40)
D

n

21




A morec convenient expression for computing the pressure profile can be ob-

tained by employing the following relation

h . Ps0 (A.41)
H'{, p'
and in (£, 7) coordinates we have
H: =g - ué2 fz .
6
Thus
IL(:)"—O x~ g - ué2 £ ) .(A'42)

Substituting Equation (A.42) into Equation (A.40) we get the following expres-
sion for the shock layer pressure profile

1 2 1
~ v v
- s 0 0 —n___
p'P6+p‘“6 FY; /Tlfdn+ — / 2f2 dan
n P Jy &-Ys
Gul o
- — % dn . (A.43)
p

Shock Detachment Distance

The method adapted here is to determine the shock detachment distance
simultaneously with the solution of the momentum equation. A suitable expres-

sion for & in terms of the shock layer properties can be obtained from the
Dorodnitzyn transformation, Equation (6)

22




Y'
r' ' 1)
- P dy'.
w

Solving for y we get

tl
&
o+
=8
e
w

When 7= 1 we have y
1 r . .
~ w 6,
6 =6 / T T dn ., (A.44)

A more convenient expression can be obtained by employing the geometric

identity

= + i
r r,ty sin@

and manipulating to obtain the following relation for the shock detachment distance.

1 1
~ Ps, 0 sinf |~ Ps, 0
6 = 6 / T dnp - >r 6 -—p7—' dn . (A.45)
0 w

23




2.2 ENERGY EQUATION

The energy equation, Equation (4), will now be transformed to the
(£, m) coordinate system and manipulated into a form suitable for solution

by a successive approximations technique.

Before transforming, the following identity correct to O(p) is intro-
duced.

4 [-r-,'. b 20 yu] w2 (8.1)
w w

Using this identity, Equation (4) can be written

3 x! ay'

. 1
2 oot vn e ] o2 2]
W

(B.2)

o i~ r! du' 9 2 ~. r!
= L K!ul_ul—]-.—[xlulul]-xl E!
ay'[ r! ay!' ay! e .

For convenience, we will transform the left-band side and right-hand side of

Equation (B.2) separately and combine the results,

Consider the left-hand side of Equation (B.2). In terms of the dimension-

less variables, Equation (5), and upon division by the common term

1
] 1 mnte
'6,0U Hé us R {(B.3)
we have
r u g H v oH 1 0 K T 7 ah:l
— — + K — ] = —_— | — B.4
r [\16 FY; Usdy ] Re 0y [u6 r Pr 9y . ( )
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Transforming to (£, n) coordinates and employing the chain rule for differ-

entiation, Equation (B.4) becomes

I pujoH L oHOn| »r v 8H 9n
r Jy

r, Us |9  an of w U5 9N
(B.5)
I ?Luéﬁ__ma]_n_a.
Re 97 ug err n oy joy
For convenience, multiply (B.5) by
e, §
TP H, (B.6)
to obtain
= H ~u 9 H\ o0n ~ v 9 (H 9
a-‘é--f’-(——-)w-—- ( +?a——(-—>—1
uo ¢ H6 uc an HG’ X3 u on H(5 oy
.-L _9 K_r _u 0 h on
Re 917 U, Ty Pr 9on Hé oy
Define
H
g = H,~ (B.7)

and using definition (A.16), we get
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T o8 T2, rg X £,l88
6fa§ +[6f 3£+Ku6"1‘wp‘]3n
(B.8)
‘ oot U'Z
JL 2R x o u (28 2 o 08f)89],
Re onfuy ry Pr \9n 6 I—I:S on ) oy

A more convenient form can be obtained by elimination of the normal
component of velocity. A suitable form can be obtained by integrating the con-

tinuity equation. From Equation (3) we have

yl
~ '
K' pl rI; vi = = _1}_', f aax' [rl pl ul] dyl + (plvl)w
w W o .
Non-dimensionalization yields
y —
1 0 r u - P (pv)w
oo g— = - _/ [ po— (u r)]dy+—-
rWu‘.$ ug T, ) o r, g 6w us
Yy Yy
L [o ) =0 B [_r_ _U_J
= - — ju, r — p——dy - p dy
ue T 8¢ 6 wO r us o¢ r, Us
N plpvl,
Y

-'I‘i‘ansforming to (¢, n) coordinates and using the identity (A.16) we get

r v ~ " ~Mos P (pvl,
RPY - u, = "4,z BE [“arw] 6ffdn‘6f PE T T .

26




Define

n
I, = 3’/ f dn (B.9)

o

and obtain the following expression for the normal velocity component?" 3

oL, plpv)
'R‘p—E- v o_ __1 2 Trln w
r w s

d
e (r, us) I, - 5E 5 w (B.10)

u T

Substitute Equation (B.10) into Equation (B.8) to obtain

FT e NS LN
9¢ uérwag 6 w' 2 Us an

2 .
Lo f® r u f(og_ 2 gL ) 8n)
r Pr \dn 6H'6 on /) oy

Multiplication by (-Re u, 8)and manipulation yields the following form for the

left-hand side of the energy equation.

2 ol du u dr
2 low fx xog +’5'Re[u 2+( 6 8 W)IZ
on l'w

2 Ur &
B v, | 45 - Re B2 fi&--@-[w—(r) ¥ul g 121

Now consider the right-hand side of the energy equation [Equation (B.Z)] .




Introducing the dimensionless variables, Equation (5), and dividing out

the factor (B.3), we get

2
U' I.l.' UI pl ~
o 7 §,0 o [~ r du ) 2 o Moo K r
—_— K —_—u - -——(l( L u ) - E. (B.IZ)
Hy py Ru, [Oy( K T r)y) oy '} ] HYy 0% o U, T,

Transform Equation (B.12) to the (€,7n) coordinate system and obtain

2

' J t ' ~
U M5 0 ) (Ku—r-ua—u _F)_wl)ig__a_(xuuz)an _Uoo Po X ¢ E. (B.13)
Hy py o Rlug | r, "on By ) By " om ay | " H py o u, T,

Following the procedure for the left-hand side, we must now multiply by ex-

pression (B.6) to get

] 1
Uoo“'tS,o [8 E .
6

A N - B 2
Hy Py,0 RV 3’.'(?“r “8nay) on MKV

)]_U;opéo'k‘s'
w

1 1
H P P50V

and then manipulate as in Equation (B.11) to obtain the following form for the

right-hand side of the energy equation,

2 U g
__0 r 2 "o 9f o) 2
31 "p“(r ) us o f an]+1{' usg K om k)

5
(B.14)
ur 2
+?3‘2Re5(15->-——°,9—1~:
p ) Hy

Combine Equations (B.11) and (B.14) and we have the following form for the

transformed energy equation,
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2 u! 2
~2 0 9 ~ [ T 1 oo 2 o f
Re 3° u f—t%’-af e [(pu,)x(rw) (—-Pr 1)—}-{—,(;— ug f -—;] (B.15)
2 2
u! p Ut
+-I—_I16—-u661{ an([_l,f) K o Rep(p )—}T:S—-E
This equation has the form
or ar
3 1 9 1 og 4 5
L 9B 4 = =Mt — + =2 .
on [1"1 an] [1"1 an] FZ F3 on * on (B.16)
whe‘ré
2

\]
T
\l
w
o
e

2 =1 5 BE
r3=Re62u6f6Q§:+62Re75<%5> U;_{ E
A N

r, EP-;E,’;- ul Tk ouf (B.17)
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If the f'i were known as functions of the shock layer coordinate n, then Equa-

tion (B.16) could be formally solved. The formal solution in terms of the I"i is

n n n ,
g = 8, +/ I exp -[ I dn /(F:,-I}_Q-f‘zrs)exp L [ dn)dn
0 0 0

(B.18)

n ]
+11exp [ rzd; -r4(0)+r5ex\p ‘/’rzd_ﬁ + C, dn
0 0

where C1 is determined from the boundary condition g(l) = 1.

Convective Heating Rate

An expression for the convective heating rate to the body surface will

now be obtained in the (£, n) coordinate system,

The convective heat transfer rate to a wall is expressed by Fourier's
equation

= Q_T_'.
QL = - K, (a Y')w (B.19)

where k' is the total thermal conductivity,

Writing Equation (B.19) in terms of total enthalpy we get

T Jﬂ) <§§_'_) B.20
q = = < ( . )
c Pr w ay' w
where
CI ILI
Pr = —%_ . (B.21)
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In terms of the dimensionless variables we have

@ - - (&) HeoMs pem
c Pr R' oY
w w

Transforming to (£, 1) coordinates and using definition (B.7) we get

UIZ 1
q. = - (P 11) w Hs,0 (Q&) . (B.22)
© Pr W 2R'T M/

With the aid of definitions (A.19) we obtain the following form for the convec-

tive heating rate to the body surface

3
pLy U

q'c = - (pi‘l')
P/ 2%Rep \OM

Radiative Energy Flux

The radiative term E that appears in the energy equation, Equation (4),
represents the volumetric rate of emission or absorption of energy by the
shock layer gas due to radiation, Two assumptions are made here in order

to evaluate this term in a practical manner.

e the shock layer geometry is approximated by a semi-
infinite plane slab

e the shock layer is assumed to be locally one-dimensional
in that radiation transport iniluence is allowed in only one
direction

It has been shown that this one-dimensional plane slab model can be
useful in obtaining quantitatively valid re sults® Without the one-dimensional
approximation the integro-differential equations defining E are more diffi-
cult to evaluate and the conservation equations used in this analysis lose
their parabolic nature due to upstream feedback effects, This analysis
follows Vincenti and Kruger10 with the exception that the grey-gas approxi-

mation is not made here,
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on
-{]-r = - B :/ a, / I, daq - 4 B, | dv (B.24)
0

9]

where the inner integration is over a surface solid angle {l.

To carry out the solid angle integration we consider the intensity I, at
a fixed point y and in a direction defined by ¥ and {, the angle and direction

cosine of the direction of propagation., The eiement of solid angle is then

dQ} = - d¢ 4y

Envoking the one-dimensional plane slab model, the integration can be

readily carried out to yield
0 -1
- ¢ = - - B.ZS
E [ 2T a, / 1,de-47mB, | dv (B.25)
0 1
The local intensity I, is given by

T
Vv, s

IV = IV (TV, s) exp(-'ru)"i:/ B, exp(-'ry) dT, (B.26)
0

where IV(TV s) is a boundary value on the local intensity and T, is the optical
depth defined by
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In terms of the direction cosine £ and the optical depth Ty» Equation (B.26)

can be written

T," T
3 Ty Ty s
IV = IU (Ty, s) exp ( 7 )
TV, S TV -QII d¢V
- / B, exp <— 7 > 7 (B.27)
v

We have now to substitute Equation (B.27) into Equation (B.25) and formally
integrate with respect to £. To obtain the boundary values on I, we assume
that the body surface acts as a perfect absorber and that the gas outside the
shock does not emit, absorb, or reflect radiant energy. The integral in Equa-

tion (B.25) can now be written

-1 0 0 A
TV-QV a7y
Iy df = - B, exp - 7 7 df

1 1 Ty
-1 T A A
f'v, s T,- T dT
- B, ex - LA __y di
v p ¢ 7
0 Ty

. .1 .
Interchanging the order of integration 0 we can write

1 A
-1 y“Ty A
By / £ exp(— ——l—_> dg dT,
0
T 1 A
" s ! v>Tv) 4y af 2
- v exp (- 7 Ty (B.23)
T 0

4
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The exponential ihtegral function 61 can be defined as
1
€1(t) =/ ! exp(-t/) d? (B.29)
0 :

With this definition, Equation (B.28) becomes

1 T T,
v AL A v, 8 A A
I,df = - By, €1('ru--rv) dr, - / B, 81(7'”- v) 4Ty (B.30)
0 T

v

Substituting the result (B.30) into Equation (B.25) we obtain the following

expresgsion for the radiative flux divergence.

Ty

0
JAY 7Y
-E‘=f 27raV/ B, & (1, - 7)) dT,
0 0 |

-
v, s A A
+ / By & (T, - Tp) dT, - 2 By |dv (B.31)
Ty

This equation completes the formulation of the radiation-coupled hyper-
sonic flow problem, The conservation equations (1 through 4) can be solved
to yield convective and radiative heat transfer providing the thermodynamic,

transport and radiative properties of the gas are known.
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Section 3
NUMERICAL SOLUTION

The viscous radiation-coupled flow field equations are solved numerically
by means of a complex iteration scheme on a digital computer. The momentum
equation is solved by an integral method while the energy equation is solved by
successive approximations. The basic idea of the iteration is to assume sufficient
parameters to allow a solution to be computed, compare the computed param-

eters to the assumed values, and iterate until convergence is obtained.

The total iteration procedure is started by first obtaining a stagnation
point solution. Symmetry conditions plus the assumption of a symmetric con-
centric shock at the stagnation point provide necessary boundary conditions to
obtain a stagnation point solution. The procedure for obtaining a solution around
the body involves another iteration loop. An initial estimate is made for the
shock shape as a function of the streamwise coordinate ¢, With the shock shape
determined and the stagnation point solution known, the conservation equations
can be solved to obtain a new shock shape. The solution around the body can

then be obtained by iterating on the shock shape until convergence is achieved.

Stagnation Point Solution

The momentum and energy equations, Equations (A.21) and (B.15), take
a much simplified form at the stagnation point due to symmetry conditions.
At the body point ¢ = 0 we have

ol o1
_ 1 86 _ 2 _ og
ué—o " aé- - 0 , a? - 0 ’ af - 0 ) aé- ‘Oo

The stagnation point solution is obtained by means of a double iteration loop.
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A brief

1.

2.

3.

10.

outline of this procedure follows,

A total enthalpy profile is assumed known.

An initial estimate is made for the shock detachment
distance parameters, 6, 3.

The velocity profile boundary conditions B; can now be

determined and hence the profile coefficients aj [Equa-

tion (A.24)]. The shock layer velocity function f is then
given by Equation (A.22) .

The pressure variation through the shock layer is now
given by Equation (A.43) utilizing the Rankine-Hugoniot
relations [Equations (A.35) and (A.36)] .

The shock layer gas properties are now determined as
a function of enthalpy and pressure.

The momentum integral I} can be computed from Equa-~
tion (A.21). Note that this is reduced to an algebraic
equation for I] at the stagnation point due to symmetry
conditions.

The transformed shock standoff distance 6 is now deter-
mined from Equation (A.18). This computed value of 6 is
compared with the assumed value and the iteration loop
returns to ''3." until convergence is achieved.

The physical standoff distance 6 is now given by Equa-
tion (A.45),

Since all the parameters ["[Equation (B.l?)] are known,
the energy equation (B.18) can be evaluated to yield a
new total enthalpy profile. This computed value is com-
pared to "1." and iterated until the enthalpy profiles
agree to a specified numerical tolerance ,

The coupled convective and radiative heating rates are
now output from Equations (B.23) and (B.31).

Total Axisymmetric Solution

The solution procedure for x > 0 is similar to the stagnation point

iteration with the following exceptions.

A complete shock shape is assumed. An initial iterative
estimate is made for the shock curvature as a function
of the streamwise coordinate £, Hence Equation (A.45)
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is not evaluated during the downstream solution. This
relation is used to check the assumed shock shape after
each iteration cycle,

e The streamwise derivatives are now non-zero and are
computed using finite-difference approximations.

The outer loop on the numerical solution procedure is the shock shape itera-
tion. The approach of specifying boundary values at the body surface and be-
hind the shock allows a numerically stable solution to the system of parabolic
partial differentiai equattions.2 It should be noted that the accuracy of the solu-
tion for ¢ > 0 is based on the initial value solution at the stagnation point. This

solution assumes a symmetric concentric shock at the stagnation point,

The total solution to the conservation equations [Equations (1) through (4)]
thus yields a complete description of the shock layer structure with radiation-
coupling. The convective and radiative heating rates are obtained from Equa-
tions (B.23) and (B.31).
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Section 4
APPLICATIONS

This section provides a brief description of some feasible applications
of the method formulated in the preceding sections. It is hoped that from this
description the reader will better appreciate the wide range of problems that

may be solved using this blunt body technique.

The computational procedure presented in the Numerical Solution section
has been programmed using Fortran IV language. Initial results of stagnation
line solutions for'air are given in Appendix A. These stagnation line solutions
were obtained considering only convective heat transfer and assuming thermo-

dynamic equilibrium in real air with no diffusion or mass injection.

The formulated method can be used to solve blunt body flow field problems

in which any of the following capabilities are required,

a¥ Arbitrary axisymmetric blunt body
b* Stagnation line solutions

Total axisymmetric solutions (complete flow
field description)

d¥* Coupled convective and radiative energy flux
e. Arbitrary atmospheres

¥ Non-uniform initial flow field (plume application)

g¥ Mass injection of atmospheric species
h. Mass injection of ablation products
i. Binary or multi-component diffusion

j::‘ Complete thermodynamic equilibrium

k. Finite rate, quasi-thermodynamic equilibrium, or
frozen flow chemistry (including electron densities
and ionization effects)

*Capabilities included in the present computer program.
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To exercise some of the above capabilities, absorption cross sections, trans-
port properties and thermodynamic properties or reaction rates are needed
to a reasonable accuracy. If such data are available, the method presented in

this report can be used to solve a wide variety of blunt body flow problems.

The present plan is to incorporate the NASA/Lewis Thermochemical
code11 into the existing computer program. A digital code for calculation of
thermodynamic datalz, alsovdeveloped by the Lewis Research Center, is being
considered for use in providing necessary data for chemical species at high
temperature. This capability will allow the use of thermodynamic properties
for arbitrary gas mixtures and will provide a method of calculating species
number densities needed in the radiation flux calculations. A frozen flow
capability will also be available. Computer solutions will then provide a
means of developing heating flux correlation equations for various planetary
atmospheres of current interest. Future plans include development of the

additional capabilities stated above.
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INITIAL RESULTS USING THE FORMULATED METHOD




INITIAL RESULTS USING THE FORMULATED METHOD

Laminar stagnation point convective heating rates have been calculated
assuming no radiative losses using the method formulated in the main text,
Calculations were made for velocities from 10,000 to 50,000 ft/sec at an
altitude of 180 kft for comparison with existing methods. The present analysis
assumed equilibrium chemistry and used shock density ratios from Reference
A-1, viscosities behind the shock from Reference A-2, and equilibrium thermo-
dynamic and transport properties in the shock layer from Reference A-3,
Figure A-1 shows good agreement between values of the heating rate param-
eter, q\ﬂR—I_D?—P: , calculated using the present method and values of the
parameter both calculated (Reference A-4), and measured (References A-5
and A-6). The present theoretical calculations and the theoretical calcula-
tions of Fenster (Reference A-4) using equilibrium chemistry are shown in
Figure A-1 to agree well up to 40,000 ft/sec. Above 40,000 ft/sec the present

analysis provides better agreement with experimental data.
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