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This paper extends the notion of absolute stability to include - 9}53@
the parameter variations of the linear part of the system., A simple —

analytic procedure is proposed to calculate the regions of absolute <f1

stability in the parameter space. Then, a parallelpiped of maximum %tjg
volume is imbedded in the region to interpret its boundaries and éig; !
| N |
obtain readily the information about parameter variations which do ': §Z>\§ ;
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not affect the system stability. NG
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INTRODUCTION T09 WIO4 ALIIDVA

Stability and se:r.sitiv.cy are two essential properties of dynamic
control systems. While stability assures a proper “unctioning of the
system, the senistivity indicates the atility of the system to retain
required performance characteristics despite chang: s ‘n the operating

conditions.
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of physical systems deviate from their nominal values either because

of inaccuracies in the system components (time-invariant case), or

because the system parameters vary in time (time-varying case). There-

fore, a simultaneous consideration of stability and parameter sensitivity
in system analysis is desired.

The Lur'e absolute stability concept [1] and the related criterion
of Popov [2] are significant contributions to stability analysis of
dynamic systems. This is mostly because the absolute stability concept
is meaningful in a large class of closed-loop control systems, and the
Popov crite;ion provides a simple procedure to conclude that kind of
stability.

In the absolute stability analysis, the nonlinear characteristic
is not completely specified and it should only belong to a certain de-
fined class of functions. On the other hand, the parameters of the
linear part are specified numerically. This paper proposes an absolute
stability definition which will relax the conditions on.the linear part
and allow system parameters to deviate from their nominal values.

Then, a simple analytical procedure based upon the Popov criterion is
presented to determine in the parameter space the region of parameter
deviations which do not violate the absolute stability.

A graphical procedure for evaluation of the absolute stability

regions in the parameter plane was given in reference [3]. Under

certain conditions that technique which is based upon the envelope
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criterion can also be extended to considerations in the parameter space.

ABSOLUTE STABILITY IN THE PARAMETER SPACE

The Problem of Lur'e [1] is formulated for a class of closed-loop

control systems described by the equations
. T
x=Px+qé¢l(ag), 0 =rx (1)

where x, q, r are real n-vectors, P is a real n X n matrix, the pair
(P,q) is completely controllable, and ¢(g) is a real continﬁous scalar
function of the real scalar ¢ such that it belongs to the class

A, $(0) =0, 0 < a¢(o) < k6> . One asks: Is the equilibrium

state of the system (1) asymptotically stable in the large for any

¢(o) € AK , i.e., is the system abéolutely stable,

The most important solution of the Problem of Lur'e was given by

Popov [2] in terms of the frequency characteristic

x(2) = (P - AI)-lq - (2)

which is the transfer function of the linear part of the system (1)
from the input ¢ to the output (-0), and A =68+ Ju is the complex
variable. Yakobovich [U4] generalized the results of Popov and proved
that if ¢(0) € A and all the roots of |P - A\I| =0 are in the
half-plane Re A < § <0, and if there is a = real ~ number v such

that a Popov type inequality



n(8,0) = =+ Re(l + jwv) x(6 + jJu) > 0, Vo >0 (3)

a8 L

is satisfied, then there exist positive constants p and € such that,
for any solution x(t) of (1) and any t 3_t°,i'one has
|x(t)] < olx(t))] expl(s - e)(t -t )] .

Yakubovich [4] also treated the forced system

x = Px + q¢(c) + £(t), o = rix (4)

2

vhere ¢(o) € AK: ¢(o) =0, 0<o¢(o) < xo“, 0 < a¢' (o) < xo®

£(t) 1is a bounded function on the interval (-=, 4+=), and showed that

a modification of (3),

1

m(8,w) = + Re x(§ + juw) >0, Vu>o0 (5)

assures that there is a unique bounded solution xo(t) of (1) on

(~=, 4+») and that for any x(t) and t >t , one has

|x(¢) - x (t)] <p |x(t)) = x (¢ )] expl(s - e)(t ~t)]. In the seme
paper [L], Yakubovich treated the discontinuous functions ¢(c) and
showed that the absolute stability is based upon the same inequalities
(3) or (5).

In application of the system (1), the linear part of the system
contains parameters which may deviate from their nominal values. Then,
it is necessary to relax the conditions on the linear part of the system
and allow these parameteré to vary in some neighborhood of their nominal
values while preserving the absolute stablility of the system.

Let us assume that the transfer function x(A, PysPps *00s Dy ) is



a function of A and £ parameters (pl, Pps oe» pi), and let us
suppose that the solution x(t, Py» Pos «vos pl). of (1) is well-defined
(5] for parameter values in s certain region R of the t-dimensional
euclidian space (pl.pa,...,pz) . Then, the definition-.of absolute
stability for system (1) can be reformulated to include the parameter
variations.

The equilibrium state x = 0 of the system (1) is said to be

absolutely stable if it is asymptotically stable in the large for any

¢(a) € A_ and any set (_pl, Py +ees pz)_€ R .

When the s&stem (1) is spécified, one is interested to find: (a)
The greatest value of x and the largest region R; (b) A value of «
is given and the largest region R 1is to be determined. A graphical
solution of these problems was given in [3] where the region R was
determined by the envelope criterion as the largest set {(pl,p2,...,p£)€

Rl » >0, Vuw>01l.

In this paper, a simple analytical solution is presented which
first yields the region R in terms of a set of algebraic inequalities
involving parameters. Then, a rectangular parallelepiped of maximum
volume is imbedded in the region to yield a convenient interpretation
of the absolute stability region in the parameter space (this inter-
'pretaxion technique was proposed by George [6,7] for approximation of
finite regions of asymptotic stability and linear system analysis).

Assume the transfer function of the linear part to be a rational

function of the complex variable A
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X(A9 pl’ P2’ seey P,') = __n___ ’ n>nmn (6)
k
I v 2
k=0
in which the coefficients bk and c, are real functions of the
parameters pi(i =1, 2, ..., L) . Then, let us express
Eax +3y : (1)
Xy K -
vhere A = §+ juw , and
k k :
xk - Z (_1)V ‘2v)6k-2vm2v )
v=0 (8)

k / k
- Yk - Z (_l)v—l (;v _ ;\ 6k—2v+1 w2v-l
v=1

Functions Xk and Yk can be easily calculated using the recurrence

2 2
formulas: X ., - 2 X + (x1 + Yy )xk_1 =0, Y, -2XY +
2
)

Y, =0, X =1, X, 26, Y =0, ¥ Zu.

2
+ (7Y 1 °

1l
When & 1is specified in an absolute stability problem, and (T7), (8)

are substituted in (3) or (5), one obtains

2n
", s Pps oo Pz’iﬁo ak"’k >0,Vw >0 (9)

‘where the coefficients &, = ak(pl, Pos soes pl) are real functions of

the parameters. For convenience, in (9), 1/« and v of (3) are
considered as parameters. Note that v 1is not a physical parameter
and only its existence is required such that « > 0, Vw >0 .

From (9), one can readily conclude that the system (1), or (3), is

absolutely stable if the corresponding polynomial «* has no positive



real roots. For this to take place, it is sufficient that the following

set of algebraic ilnequalities

&

a, >0, a >0, (k=1,2, ..., 2n) | (10)

is satisfied.

For example, if the transfer function

2
A +p2l+p3

(s p1pry) = ST EYS) (11)

k=1, and § = 0 (A = ju) are specified, one obtains (9) as

m(w, Pys Ppo p3) z plw6 + (1hpl - p2 + 6)ml‘ + (hgpl +

(12) -
, 2
+ lp, - 6p3 - 6)u” + 36p1 + 6p3
Inequalities (10) are
6p1 + .p3 >0 )
49p, + 1lp, - épy - 6 > O (13)

lhpl - Pyt 6 >0
Py >0
vhich determine the boundaries of R .
Inequalities (10) specify a region R(R € R) of absolute stability
in the parameter space which may appear to be an overly strict region since
(10) are only sufficient conditions for = > 0, Vw > 0 . Conditions

(10), however, lead to a convenient interpretation of the stability regions.



INTERPRETATION PROCEDURE

After the inequalities (10) are specified, the problem of using
them in practical problems is essentially one of interpretation. Since
the practical problems may involve more than two parameters, an
interpretation procedure for multi-parameter analysis is desired.

In general, to interpret the absolute stability region, let us
imbed a parallelepiped N into the convex region R determined by
inequalities (10) which has sides perpendicular to the coordina?e axes
of the parameter space (pl, Pps «ves pz) and center at the known
stable point ﬁ(;i, Eé, coes S;) . Let the volume v of N be

defined as

v=2"p, - 5,)(p, - B) «or (3, - By ) (14)

Now, the function v should be maximized with respect to each inequality

(10) separately considered as a constraint. Thus, a constraint

ak(pl’ Pos sees Pz) =0 Tt (15)

may be represented as
pl = Pl(P2' P3’ ey pz) 4 (16)

Substituting (16) into (14) and extremizing, a necessary condition for
(p2°, p2°, cees plo) to occur at & maximum of v is that it be a
solution to

ov

E = p, (1=2,3, ..., 2) (17)



Standard sufficient conditions for this solution to be maximal are
given in ([8}.
o 0o oy .
Let the solutions (p, , D, s «eees P, ) » (k=0,1, ..., 2n)
1° P2 L 'y ‘
occur at maximum value of v subject to constraints (10), then the

desired parallelepiped 0N is given as
I ={(p,, P,y +eo» P,) €R| |Ip, - P.] < Min |p, - p,° }
1 F2? s ) l i i 1!’
(1=1,2, «coy 2) (18)

Since each vertex point of II is located in R containing the point
ﬁ(i’l, 5’2, cees '52), it follows that the parallelepiped N 1is -
completely imbedded in R, i.e., 1 € R .

In case of the above specific example, let us choose the stable

point M(0.2 3 0 ; 0) . The volumevfo be maximized is

v = 8(111 - 0.2)p2p3 | (19)
Maximization of v with respect to the constraint

Lgp, + 1lp, - 6p3 -6=0 - (20)

yields: p1° = 0.178, p2° = -0.123, pg° = 0.226 . According to

these values of parameters, the parallelepiped I is determined by
Ipl - 0.2] < 0.022, [p,| < o0.123, | p3| < 0.226 (21)

One éan readily check that all the vertex points of NI satisfy the rest
of the constraints of (13). Therefore, (21) is the solution of the

interpretation problem under consideration.




It should be noted that some of the constraintsin (10) may not
contain all the parameters, as it is clear from iﬁequalities (13).
Then, some of the parameters in inéomplete inequ;lities are arbitrary
and to make the maximization of v meaningful, one should consider the
arbitrary parameters as constants.

For example, the optimization of v in (19) with respect to the
constraint lhp1 -p, + 6 > 0 of (13) should be performed with
Py = ¢ (c # 0) . Then, the maximization of v = 8c(pl - 0.2)p2 gives
plo = -0.122, p, = 4.292. 1In applying équation (18) to determine the
parallelepiped 0, these values are discarded and T is given vy (21).

In case of time-varying parameters, by the arguments of reference [k]
one can use the inequality (5) and prove the stability of either system

(1) or (3). Then, as long as the parameters are varied inside the

determined region R (or l) the system is absolutely stable.
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