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INVISCID FLOW FIELD
INDUCED BY A ROTOR IN GROUND EFFECT

By Michael D. Greenberg and Alvin L. Kaskel
Therm Advanced Research, Inc.

SUMMARY

The inviscid flow field induced by a rotor in ground effect is calculated
based upon an actuator disk model of the rotor, for the case of a constant
circulation distribution over the blade radius. The governing nonlinear inte-
gral equations are solved by a systematic iterative scheme which is similar to
the Newton-Raphson method for the solution of nonlinear algebraic equations.
Numerical results are presented for both the ground-effect case and the out-of-
ground-effect limit.

INTRODUCTION

Several important problems arise in connection with a rotor hovering in
ground effect, such as downwash impingement, and the effect of rotor-ground
interference on the blade loading.

In the present paper, we are concerned with the problem of downwash im-
pingement. Of the various aspects of this problem, we will confine our attention
to the calculation of the inviscid flow field. This is of special importance
since it is required as input for the subsequent calculation of the ground bound-
ary layer and particle entrainment.

A numerical investigation of the inviscid flow field induced by a finite-
bladed rotor has been carried out at the Cornell Aeronautical Laboratory, over
the past several years, by W. G. Brady, P. Crimi, F. A. DuWaldt, and A. Sowyrda.
Initially, they represented the rotor wake by discrete (finite core) vortex
rings released periodically from the edge of the rotor disk (References 1,2).
More recently, they have used a wake model based upon distorted continuous
helices emanating from the blade tips (Reference 3).

In contrast, we will consider the axisymmetric flow field associated with
an actuator disk representation of the rotor. The governing nonlinear integral
equations will be solved by a systematic iterative procedure which is based
upon the Newton-Raphson method for the solution of nonlinear algebraic equations
(Reference 4), The mathematical treatment is somewhat general and could, we
believe, be applied to other nonlinear free-boundary problems.

The nonlinear actuator disk, in the absence of ground effect, has already
been treated in an important paper by T. Y. Wu (Reference 5), although numerical



results are not yet available. The work of H. R. Chaplin (Reference 6) should
also be noted, even though it deals with the shrouded disk, since that problem
is fundamentally similar to the one treated here. Both Wu and Chaplin employ

iterative schemes which differ appreciably from the one developed in the present

paper.

The authors would like to thank their colleagues, Messrs. J. C. Erickson, Jr.

and G. R. Hough, for many helpful discussions during the course of this work.

PRINCIPAL NOMENCLATURE

coefficients in expansion of slipstream vorticity

coefficients in expansion of slipstream radius

loading coefficient

thrust coefficient, thrust/B(QR)e(wRe)

matching functions for slipstream shape

function in dynamic equation, C-C2/4T2(x)

F with T(x) replaced by T_

matching functions for slipstream vorticity

Green's function for L , over the infinite domain -w<x<ow , r<ow
modified fj's for ground-effect case

linear differential operator, Ve--r'2
number of shape collocation points
iteration index

number of gamma collocation points

static pressure

(u2+ v+ we)!’5

fluid velocity,
Legendre functions of second kind and degree +t%
slipstream radius, with arguments £ and x respectively

X,x,6 fluid velocity components

free-stream speed
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cylindrical coordinates

x-location of ground plane

damping factors

slipstream circulation per unit x-length and arc-length, respectively
asymptotic value of 7Y

blade circulation distribution

meridional velocity, (u2+ va)l’i
advance ratio, U/QR

dummy x,r variables, respectively
fluid mass density

stream function

value of ¥ on the slipstream

Legendre function arguments

blade rotational velocity, radians per unit time

prime denotes perturbational quantity

subscripted variable denotes partial differentiation with respect to
that variable

nth iterate

d(arc-length)/dx , [l-i-(dT/dx)g]}i

Prior to equation (21), all quantities are in dimensional form.
Starting with equation (21), they are nondimensionalized as follows:
lengths with respect to R ; velocities, Y and 7, with respect to
QR ; I’ with respect to QR? ; and ¥ with respect to QR® . How-
ever, for notational simplicity we omit any explicit remindexr of
nondimensionalization, such as primes or asterisks.




THEORETICAL DEVELOPMENT

out-of-Ground-Effect Limit; Actuator Disk Theory

Governing Nonlinear Differential Equation. Let us consider a propeller of
blade radius R and negligible hub radius, operating relative to a uniform free
stream U . We consider the blade number to be infinite, the so-called "actuator
disk" model, and view the steady axisymmetric flow from a Newtonian x,r,6 co-
ordinate system; see Fig. 1 (where we have sketched only one of the infinitely

Figure 1. Coordinates and Geometry

many blades). The static actuator disk, i.e. for U=0 , is equivalent to our
hovering rotor out of ground effect. We will, however, retain an arbitrary U
in our analysis since it presents no additional difficulty and, at the same
time, extends the applicability of our solution from the static condition, up
to the light loading limit (where U >> the perturbational velocities).

The flow field is defined by the x,r,0 velocity components u,v,w re-
spectively, or - equivalently - by w and a stream function V¥ , such that

[+
[}

U+tu’ =¥ /r ()

v = -Yx/r (2)

<
[]

where the primed terms are perturbational quantities, and subscripts denote
partial differentiation.

It has been shown by Wu (Reference 4), that ¥ must satisfy the following
nonlinear partial differential equation,



b4 -t

r v +¥_ = - (x4 wr) d(wr)/ay (3)

Briefly, this may be derived by computing the circulation about an elemental
meridional area dxdr , in two different ways: According to Stokes' theorem it
may be computed as the 6 component of vorticity, Ve =Y. times the area
dxdr , or, alternatively, as the line integral of "g +dr" around the circum-
ference of the element. Equating these two results produces (3).

Conversion to an Integral Equation. It will be convenient to convert (3)

to an integral equation. With L = Va-r'2 and Y = Ur2/2+ ¥’ , we can express

(3) in the form

L(Y'/xr) = - (Qr+w) d(wr)/ay (4)

Noting that L is linear (the nonlinearity being confined to the right hand
side) we apply the method of Green's functions: Specifically, we seek the
Green's function G as the solution of the associated equation

L(G/x) = -8(x-£)6(x-p) (5)

with the 6's denoting Dirac delta functions. Multiplying (5) through by
rJl(fr)e.xp(-i;cx) and integrating on r from O-+» and on x from -w-o ,
we obtain

pay (Fp)e e /(324 £2) (6)

as the Hankel-Fourier transform of G/r , where Jl denotes the Bessel function
of the first kind and order one. Carrying out the Fourier inversion using the
calculus of residues, and the Hankel inversion with the help of formula (2) on
page 389 of Reference 7, we obtain

G(€1P7xlr) = r%p!iQ;i(a)')/Q'lT (7)
where Q% is the Legendre function of second kind and degree % , with argument
B =1+ [(6-x)2+ (p-r)?1/2pr (8)

This is equivalent to the forms given by Wu and Chaplin. Physically, we may
identify G as the stream function induced at a field point x,r,0 by a ring



Figure 2. Interpretation of the Green's Function

vortex of unit strength, as shown in Fig. 2 .

With the Green's function in hand, we may re-express (3) in the form

k3%
~ d
¥(x,r) = Ur2/2 + // IP g (@) (p +w) Mdpde (9)
or % ay
D
This is a nonlinear integral equation in the two unknowns ¥ and D . The

region D is clearly the slipstream, since w - and hence d(wp)/d¥ - is zero
outside the slipstream, by application of Kelvin's theorem.

Reduction for Uniform Circulation Distribution. For the case of uniform
blade circulation distribution we have

wp = constant = -['/2r , inside [

=0 , outside D (10)

where T is the strength of the "hub"® vortex, coinciding with the positive X
axis. Converting the p,£ integration variables to V¥, according to dpdf =
dvda¢é/(d¥/op) ., the V¥ integration can be carried out explicitly since the
d(wp)/dY term in the integrand is zero except at the hub and tip; p=0,R .

Of these two contributions, the hub portion is zero since p Q;5 =0 at p=0 .
The resulting integral equation, then, is

o

] 2
- r 3/2 _ 7 % ~ oy %
vluz) = or/e Y2 0 {Ql“t "I © }Q;i(wl) B‘I’/SPIP=t (1)



where t(f£) will denote the slipstream radius, and @, is identical to & ,
with p replaced by t(¢) .

Vortex Sheet Interpretation. Although we can work directly with (11), we
prefer to re-express the integral term in terms of an equivalent vortex repre-
*
sentation of the slipstream; specifically, a distribution of ring vortices , of
circulation 7Y(€) per unit £-length, over the slipstream surface p = t(£) .
According to our physical interpretation of the Green's function G , we

can therefore express V¥(x,r) in the form

o«
¥(x,x) = Ur/2 +f G(€,tsx,x) v(E) at (12)
0
We can establish the equivalence between (11) and (12) as follows:

Applying the Bernoulli equation to streamline A (see Fig. 3) between the
3 L) " +
points "e»" and (£,t ) , we have

P, + HBA5 = b, + ¥pU° (13)

o0

where § is the fluid mass density and q2 = uC+ vo+ we .

Figure 3. Application of Bernoulli Equation

* There will also be a distribution of vortices, over the slipstream surface,
which are oriented axially. These contribute to w but not to ¥ , and will
not directly concern us.



If we also apply it to streamline B , from "=" to (07,R”) and then
from (0T,R") to (£,t”) , we find that

py + %Pas = p, + 5pUZ + HpWS(0%,R7) + ap (14)

where Ap is the pressure jump across the propeller plane at p= R™ . Now,
the slipstream vorticity drifts freely so that we must have Pg ~Pp = 0O . Sub-
tracting (13) from (14), then,

~r 2 ~ 20+ o=
0 = py-p, = Ap - ¥p(d5 -a]) + ¥w (0",R) (15)
The first and last terms on the right side are simply

Ap = d(thrust)/2mpdp

= p(Qp - I'/4wp )rap/2npdp (16)
at p=R  , according to the Kutta-Joukowski formula, and
%pwP(0*,R7) = yp(r/emr)? (17)
according to (10). To evaluate the middle term in (15), we note that

2_2

2
9 ~9

(B4 v 2

2 2 2
+w)B—(u+v +w)A

=2 -2+ r2 /unet? (18)

where we have defined the "meridional" velocity, ¢§ = (u2+ vz)k ., and have used

the fact that w, = r/2rt and w, = 0 from (10). Finally,

25-15 = (Lg-C)(Lg+2y)

(7,)(28) = 2yu (19)

where ‘Ys denotes the slipstream circulation per unit arc-length along the
slipstream. Combining (15)-(19), we may express the force-free condition on




the slipstream in the simple form

Yu =L - Fz
2m 81r2t2

(20)

If we solve (20) for Y , noting that u=Y¥ /p at p=t , we find that the
integral term in (12) is, in fact, identical to the one in (11), thus estab-
lishing the validity of our vortex sheet representation.

The Final Integral Equations. First, let us non-dimensionalize as follows:
lengths with respect to R ; velocities, 7Y and ‘Ys with respect to QR ; T
with respect to QR2 ; and Y with respect to QR3 . For notational simplicity
we will omit any explicit reminder of nondimensionalization, such as asterisks
or primes, in the remainder of the report. Equations (12) and (20), for example,

may therefore be rewritten as

¥(x,x) = )\r2/2 +/ G(E:t:x,xr) Y (&) at (21)
0
2
=& _.c_ 22
T2 TR (22)

respectively, where we have defined an advance ratio A = U/QR , and a "loading
coefficient" C =I'/m .

Whereas the integral equation {21) contains both the kinematics and dynamics,
we prefer to express these conditions separately. The kinematic condition on the
slipstream is that it be a streamline (more precisely, an axisymmetric stream
surface). Setting r=T(x)* in (21), we have

v =12 +f (6, tix,T) ¥ & (23)
0

where we have set ¥(0,1) = ¥[w,P(x)] = ¥(=,T ) =¥ .

The dynamic condition is given by (22). Changing the independent variable
from ¢ to x , and noting that u = ‘Yr/r at r=T , with ‘l'r obtained from
(21), we obtain

* It will be convenient to express the slipstream radius as t or T depending
on whether the argument is the integration variable € or the field point x ,
respectively.



3%._-‘3_2}1 - AT =/ Go(6,t:x,T) v &t (24)
0

Equations (23) and (24), then, constitute two coupled nonlinear integral
equations in the two unknowns Y and T
extent of the slipstream, O0< x< o .

, and are to be satisfied over the

The kernels are as follows:

(9]
]

T;it;iQ;E(ZIig )/om

{
»

O(4n|€-x]|) as ¢

o(¢~3) as £ - o (25)

where 52 is identical to & , with p and r replaced by t and T re-
spectively. Using the relation,

do, (2)/dz = [20,(2) - Q_;i(z)]/E(zg—l) (26)
we may express

G

o = [80,(8,) + Bo . (&,)1/ (83-1)

0(&-x)'1 as £ - x

0(5-3) as £ » (27)
where

A= [T°- 2+ (x)2]/ 8nT %372

w
n

[t~ 72+ (g-x)a]/81r'r3/2t;i (28)

Finally, we point out that the integral in (24) is to be interpreted in
the Cauchy principal value sense.

Asymptotic Behavior of the Unknowns. Before proceeding with the detailed
solution of (23) and (24) let us examine the equations at x=0 and « .

As x -~ o , it is known that T(x) ~ constant = T_ , say, and Y(x) ~
constant = ‘Ym . With these quantities constant at x=«o , the integrals in
(23) and (24) can be evaluated analytically. Instead of pursuing the details

10




of the integration, let us use the known fact (e.g. Reference 8) that an infinite
solenoid of constant radius and constant vortex strength, T, and 7Y_ in our
case, induces a velocity field given by

[]

(u’,v’',w’) (0.,0,0) , T>T

(v,/2, 0,0) , T=T

(’ywlolo) . r<f?T (29)

Now, since 21r‘i'(§,p) is the mass flow through the disk r<p at x=£€ , we
see - by virtue of (29) -~ that (23) must reduce to

¥ = (nT2)(A+Y_)/om = TE(A+Y,_)/2 (30)

at x=w . Noting that (24) is merely a re-statement of (22), we see also that
(24) must reduce to

2 F
\ +__§=9~_C - (31)
2 8T§ 2

nm

at Xx=o , where we have introduced the quantity F(x) = C -~ C2/’+T2(x) for
convenience. Equation (31) can be solved for Y, in the form

Y, = (2+F )% o (32)

It is interesting to note that (30) and (32) constitute two equations in the
three unknowns Yw B Tm and “Ioo so that the final slipstream contraction can-~
not be computed (in terms of the operating conditions A and C ) simply by
investigation of the asymptotic behavior, but must await the complete solution
of the governing equations (23) and (24).

Now let us see what can be said about the behavior of the unknowns at the
1lip of the slipstream; i.e. as x - O through positive values. Consider,
first, the static case, where X =0 . Anticipating a flow field as sketched
in Fig. 4, it is clear that the flow around the lip implies a square-root sin-
gularity in the circulation, so that ‘Ys(x) = O(x';s) as x- 0 . This singu-
larity should be present even when XA >0 , and will vanish only in the light
loading limit where the slipstream-induced jet velocity is negligible compared
to the free stream.

11



Figure 4. Flow Field for the Static Condition

Solution Based Upon the Newton-Raphson Method. With an exact solution of
the highly nonlinear, coupled, integral equations (23) and (24) apparently out
of the question, we will develop an iterative solution as follows. Starting
with

7 (x) = constant = 1 (33)

v®(x) = constant =y (34)
we determine an improved slipstream shape, T , from (23); with T=T?" we
then determine an improved vortex distribution, ¥ , from (24); with v =Y®

T? jg then computed from (23), and so on, until suitable convergence is attained.
Oour notation is to be interpreted in the obvious way. For example, Y is given
by (32) with F_ replaced by FO‘:’ which, in turn, is defined according to the
same formula as F(x) but with T(x) replaced by To‘o‘” .

In order to carry out the solution of (23) for T at each step we lin-
earize all the terms in (23) about the previous iterate, T . Similarly, to
solve (24) for 7Y™V we expand the nonlinear term about 7Y™ . Specifically,

(ns1) _ (n01)2 (n)
FAREIEI SR O N R A V7~

=~ [T;"2+ T (1o - )} (A + YD )/2 (35)
pD2 L @24 op® (pe) _p)) (36)
g g™ + G,f[:') (T(n.u) ~T™) + Gg)(t‘"") -t™) (37)

12



in (23), where G™ denotes G(¢,t™;x,T™) , and
T/ I (1 )2(7(1\&1) — ) (38)

in (24). This "stepwise linearization" is, basically, analogous to the Newton-
Raphson method for the solution of algebraic equations (Reference 4). We empha-
size that (35)-(38) tend to equalities as the (presumably convergent) iteration
proceeds, and therefore in no way compromise the full nonlinearity of (23) and
(24).

Whereas the two “"correction” terms in (38), for example, are supplied auto-

matically by the mathematics, it is instructive to interpret them physically.
Multiplying (23) through by 27 , for convenience, and taking n=0 for defi-
niteness, the integral term is expanded, according to (38), in the form

[+ o0 -]
o / G(l) -y(O) dg ~ 21 / G(O) —7(0) dg + o1 f G.‘I?) (T m T(O) ),Y(O) dg
0 0 0

+27r/ G:)(t“) -t(°’)’y‘°)dﬁ = @ + @ + @ (39)
0

Now, @ is easily identified as the mass flow rate induced through the disk
AB (see Fig. 5) by ¥ on t® , whereas we really want the flow induced
through AC by Y on t if (23) is to be an equality at that particular

e
"
»

Figure 5. Interpretation of Correction Terms

value of x . The next term, @ , does in fact partially correct this by
deducting (approximately) the flow through the annulus BC . To see this, let
us re-express

13




00

@ = - 27T® (T©@ ~1M)e }0)/ G‘,]‘:’,’Tw’d& (40)
T

0

— -\ —
Y

(1) (11)

where (i) approximates the area of the annulus BC , and (ii) is the x-velocity
induced at B by Y® on t©

The last term, @ , supplies an additional correction which is not, how-
ever, as easily interpreted in physical terms.

To provide a measure of control over the convergence of the iteration we

introduce "damping factors" a and B so that the right hand side of (37) is
replaced by

Gm) + aG'J(.‘n)(T(nol) - T(n)) + BGtt:n)(t(nol) - t(n) ) (41)

Based upon numerical results, we have found that if a+fp is too small, TV
will be overcontracted and the iteration will diverge. An optimum is obtained,
with regard to rapid convergence, when o+ B is increased to approximately
1.8, independent of the disk loading. Curiously, the details of the iteration
are quite insensitive as to how the "1.8" is divided between a and B
sequently, we will take pB=0 , from here on, for simplicity.

. Con-

Actually, it is not surprising that with pB=0 the optimum a = 1.8 since
(ii) in (40) is the x-velocity computed right on the slipstream at B (Fig. 5)

whereas the desired velocity just inside the slipstream is approximately twice
*
as large .

To proceed with the solution we expand

M
TP (x) =1+ D [£,(x) - £5(0)]07 (42)
j=1
T (x) = yf 14 (ar /ax)? v (x)
N
="y U ; 1+ z:l gj(x)a;-"’s (43)
J=

*# Recall from (29) that at x=« , u’ inside the slipstream is exactly twice
as large as it is on the slipstream. This is, in fact, a good approximation
for finite x as well,

14



where the f£ j's and gj's are suitably chosen "matching functions" which tend
to zero at infinity. The form of these expressions guarantees satisfaction of
the required end conditions, T (0) =1 and Y™ (w) =7v!™ . 1In addition, at

least one of the gj's include an x~ factor, to ensure the required square-
root singularity at the lip.

Using the above expressions, our "kinematic” equation (23) can be re-written
in the form

m ) n) ((:}) (n) ) (n)
/ 3-G" +a(T" -l)GT ;v ag + T A+, Y- /2)

M

- XT‘"’(l - T‘")/Q) = Z {a[fj (x) - fj(o)] / G‘;"y‘"’ at
j=1 0
+ATV£,(x) - £5(0)] + T (A4 v )£ (0) ; by (4)

and our "dynamic" equation (24) can be expressed as

F("”)(Z‘Y‘") --'Y“"") me1) ©
; s) 020 _ xi T _f G(;u)r(nn) at
(n+1) .. (N) (n+1)
24 ’Ys Y 0
N (m‘)T(“”) . o0
Z { — ; + f (nu)r(rm) g. dﬁ} (1) (45)
j=l 24_" )‘y(n) 0

where it is understood that the "y~ " terms are evaluated at £ or x depend-~

ing on whether they are under an integral sign or not, respectively; similarly
for gj , Y and ‘YS .

Our solution proceeds as follows: Starting with n=0 , we redquire the
satisfaction of (44) at M ‘"collocation" points X + .-+ s Xy - This produces
M simultaneous linear algebraic equations which are then solved for the unknown

coefficients b]‘_” ) een s bﬁ” . Next, we require the satisfaction of (45) at

N collocation points (which need not coincide with the M points used to solve
(44)) and hence compute a]f" ' eee & a.b;" . The process is then repeated foz
n=1, 2, ... until suitable convergence is attained.

We point out that instead of solving (23) and (24) successively for T and
Y , we could have solved them simultaneously, at each step. Although this might

lead to convergence in fewer iterations, the overall computing time would almost
certainly be greater, however, since it takes approximately twice as long to
generate an (M+ N)th order set of linear algebraic equations as it does to

15



generate M and Nth order sets separately.

Interpretation of the Loading Coefficient. Before discussing our numerical
results, let us clarify the physical significance of our "loading coefficient",
C =T'/n . Defining the thrust coefficient Cp as the thrust divided by
I (QR)2(7rR2) , we may use the Kutta-Joukowski formula to express

1
/ { = _M}P(r) dr (46)
o Ynr

Now, in our analysis we have considered the blade circulation distribution
F(r) = constant =" over O<r<1l . For this case, the swirl term (I'/lnr)
in the integrand causes the integral to diverge. In reality, however, TI(r)
will drop to zero at a finite radius, say € , where O<e<1l . Replacing the
lower integration limit by € , the integration in (46) may be carried out, to
give

0
n
N

Cy =c[1-€¢%+(c/2)enel/2 (47)

For typical values of ¢ and ¢ , e2— (c/2)fne is quite small compared to
unity, so that the loading coefficient C 1is approximately twice the thrust

coefficient CT .

Numerical Results. As an illustration, let us consider the static case
A=0 , with a loading coefficient C = 0.02 .

We define our collocation scheme by choosing M=7 , with the corresponding
"shape collocation points"”,

x5 = 0.03, 0.1, 0.25, 0.5, 0.9, 1.5, 2.5
for j=1, ..., 7 respectively; and N=9 , with the corresponding "gamma
collocation points”,

xj = 0.02, 0.05, 0.1, 0.18, 0.3, 0.5, 0.85, 1.4, 2.5
for j=1, ..., 9 . We emphasize that there is little point in choosing
collocation points further downstream than x = 2.5 , say, since (as we will see
in the subsequent Figures) the flow at that station is essentially identical to
that in the ultimate jet. 1In fact, it can be expected to lead to an ill-
conditioned set of equations since our expression (43) for <Y automatically
satisfies the dynamic equation at infinity. As a final word of caution we note

16




that x=0 must not be included as a gamma collocation point since the dynamic
equation is not satisfied at x=0 .

As our "matching functions" we choose

-jx

£5(x) = e (48)
g;(x) = x"te™3% . =1
= x0-84+0.515,-3x ;.5 (49)

as shown in Fig. 6 . These were arrived at by trial and error, and appear to
be equally suitable for all values A>0 and C>0 .

Starting with T =1 and 7;°’ = 0.1411 (from (31) and (32)), and setting
the damping factor « = 1.8 , the iteration is found to be rapidly convergent, as
shown in Figs. 7-12 . As our convergence criterion, we required the iteration to
continue until T™" and Y;"" agreed with their previous values, T‘™ and 'Yg’ .
to within 0.6% at each of the x values listed in Figs. 8-12 . Although it took
five iterations to achieve this condition, it is seen that even the second iterate
provides a fairly good uniform approximation to the solution.

However, it remains to show that the converged results do, in fact, repre-
sent the solution - since we only required satisfaction of the equations at
several discrete collocation points. To settle this point, we have included a
numerical check in the program (Appendix), which actually compares the left and
right hand sides of the kinematic and dynamic equations (23) and (22). The
results of this check indicate (Fig. 13) uniformly good agreement.

The flow field has also been computed, and is shown in Fig. 14 . It is
important to note that for the static condition the streamline pattern is vir-
tually independent of C , at least over the range of values which are of

practical interest. To see this, consider the governing equations (23) and
(24). For X=0, the C dependence cancels out of (23) since both ¥~ and
Y are proportional to Vw which, in turn, contains the C dependence. Turn-
ing to the dynamic equation (2U4), we see that if we discard the swirl term
02/8'1‘2 . Y will (for A =0 ) simply be proportional to C!5 . With the swirl
term omitted, then, it follows that the streamline pattern will be completely
independent of ¢ although, of course, the velocities will be proportional to
C* . With the swirl term included, this result is no longer true in an exact
sense. However, for practical values of C , C2/8'1‘2 << ¢/2 in (24), so that
our statement nevertheless remains true in an approximate sense. To verify
this numerically, we re-computed our numerical example with C increased by
eight times, i.e. with C=0.16 , and found the streamlines to be virtually
unchanged!
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Two points are of special interest with regard to Fig. 14 . First, we
point out that at x=1.2 the (meridional) velocity inside the slipstream is
almost constant, and is only about one percent smaller than its ultimate value
at x=o .,

Second, we see that the x-component of velocity is almost exactly constant
over the actuator disk - out to about r=0.9 where it starts to drop off. As
r increases further, the trend must reverse since the axial velocity must
- o as r - 1 by virtue of the square-root singularity in < at the lip.
Now, it is known (e.g. Reference 8) that in the light loading limit (i.e. the
linearized actuator disk theory), the axial component of the induced velocity
is exactly constant over the disk radius. The fact that this result is born
out over most of the disk radius in our example, which is at the other (nonlinear)
extreme, leads us to wonder whether the axial component of the induced velocity
is in fact exactly constant over the disk radius (for our case I'(r) = constant ),
for any condition between (and including) the lightly loaded and static limits.

If this were true, it would imply that our initial slipstream contraction
must be purely radial: This follows immediately from the fact that the merid-
ional velocity is infinite just inside the lip, due to the square-root singu-
larity in 7Y . 1Its inclination must therefore be radial if the axial velocity
is to remain constant at x=0 as r - 1" .

Flow visualization studies (References 9,10) (for a finite blade number,
of course) do indicate a strong radial flow in the tip region. Instead of
purely radial flow, in fact, Reference 10 reports a slight upstream inclination
of the flow at the tip, so that a reverse flow exists over approximately the
outer 5% of the blade radius. We must note, however, that the existing TI'(r)
in Reference 10 is undoubtedly quite unlike our prescribed distribution,

I'(r) = constant , especially near the tip.

on the other hand, if the axial component of the induced velocity is not
exactly constant over the disk radius then the strongly nonuniform axial inflow
in the tip region is in fact correct, and may have a bearing on the well-known
double bump in spanwise loading which has been observed near the tip of a numbexr
of helicopter rotors.

In any case, it seems clear that our results (Figs. 7-14) are quite accurate
except, possibly, in the immediate tip region. The details in this region remain
to be clarified.

Inclusion of the Ground Effect

The Integral Equations. Three changes are required in the integral equa-
tions (23) and (24) in order to accommodate the effect of a ground plane at
x =X ; see Fig. 15 . First of all they contain an arbitrary advance ratio A ,
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Figure 15. Ground Effect Model

whereas in the ground effect case we limit ourselves to static hover, so that
A=0 . In addition, we change the upper integration limits to X , and modify
the Green's function so that it satisfies the additional boundary condition
u=0 at the ground plane. Specifically, we now have

G = T!st;’[Q;s(“Bg) -05(82)]/2'" (50)

where 52 is identical to 82 , with (x-&)2 replaced by (x-2X+§)2 .
Interpreted in terms of a vortex model, this amounts to adding an image system
as indicated by the dashed lines in Fig. 15 .

Analogous to equations (27) and (28), we now have
Gy = [ (B,) + B 4 (&,)1/(®]-1) - [A0y(&,) + Ba_,(8,)1/@]-1) (51)

where A and B are identical to A and B , with (x-€)2 replaced by
(x-2X+£)2 .

We observe that as X -+ « , 32 and Q+;§(§)’2) all tend to zero so that
we do recover our previous out-of-grou.nd-eff;ct equations.
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Asymptotic Behavior Near the Ground Plane. As x - X~ , we see from (19)
and (22) that 7. [~ C/2 since t -~ « in the denominator of the last term in
{(22). 1In addition, we must have { ~ ‘78/2 , the drift velocity induced on the
slipstream by the image vortex sheet. Combining these results, it follows that

~ Ct
Yg~ C* .

To obtain the asymptotic behavior of T , we apply the continuity equation
at an arbitrary station AA , as shown in Pig. 15 . The "control area" is
(2nT)(X-x) and the velocity through it is ~ Vg i ‘Ys/2 due to the slipstream
vorticity, and Y s/2 due to the image vorticity. Continuity therefore requires
that 78(2n'r)(x-x) = constant and, recalling that Y_ ~ o , it follows that
T(x)~ O(X-x)'l .

In order to incorporate this behavior explicitly, we expand

M
T(x) =1+ ) [n(x) -h(0)] BY (52)
i .
YOR) = YRx) = 01+ Y g 0 a ) (53)
=1

where h,(x) = £.{x)/(X~-x) and the gj's tend to zero as x -+ X ; c.f. equa-
tions (42) and (ft3) for the out-of-ground-effect limit.

The Final Equations. Linear algebraic equations analogous to (44) and
{(45) can be obtained almost exactly as before. The only difference is in the
expression of "‘!'m" . Since 27r‘17°° is the mass flow rate through any disk BB
(see Fig. 15) it is also, by continuity, the flow rate through the asymptotic
station AA ; namely, vs(en'r)(x-x) . Instead of (35), therefore, we have

M
yo o c’ E £,(X) bf]-"'" (54)
=1

Using B=0 again, we find that our kinematic equation can be reduced to

X
f { -G + (T -l)Gfl'." }’Y"" ag
0

M X
= jzl {a[hJ(x)- hj(O)] -[) G v df -c”fj(x)} b‘j"") (55)

for n=0, 1, ... , and for the dynamic equation we obtain
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j=1 24—- () ,Y(Bn O

Our procedure is the same as it was with equations (44) and (45):; starting
with n=0 we compute the b{’'s by satisfying (55) at M collocation points,
the aJ‘."'s by satisfying (563
until convergence is attained.

at N collocation points, and so on, in turn,

Numerical Results. Let us consider, for example, the case where X=1 and
c=0.02 .

We fix our collocation scheme by choosing M=6 , with the corresponding
shape collocation points

xy = 0.03, 0.1, 0.25, 0.45, 0.65, 0.9

for j=1, ... , 6 respectively; and N=1 , for simplicity, with the corres-
ponding gamma collocation point X = 0.1 .

As our matching functions we choose

%xJ

fj(x) . J=1, ..., 6 (57)

n
-

g (x) = xHx-0% (58)

The form of g, ensures the satisfaction of both end conditions; Vg = O(x_;i)
as x-+ 0 and ‘)‘S~C;5 as x-+X .

starting with a” =0, b)” = 0.1 and b3°) =0 for j # 2 , the itera-
tion is found to be more slowly convergent than in the out-of-ground-effect
case. The streamline pattern and slipstream shape corresponding to the eighth
iterate, which appears to have settled down to within about one percent, are
shown in Fig. 16; the shape collocation points are indicated (on the slipstream)
by dots. The corresponding slipstream vorticity is defined by the value
a‘l" = 0.022 , so that

e = 1+ 0.022x~%(1-x)2] (59)
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Figure 16. Resulting Flow Field for Numerical Example
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Qualitatively, the results in Fig. 16 appear to be quite reasonable com-
pared with the smoke visualization studies of Fradenburgh (Reference 11) -
except for the absence of a dead-air dome beneath the hub, predicted by Heyson
(Reference 12) and observed by Fradenburgh. This is to be expected, however,
since our blade circulation is assumed to be constant all the way down to
r = 0+ , so that there are no trailing vortices of reverse strength emitted
over the inboard portion of the blades.

Quantitatively, we hesitate to claim a level of accuracy comparable to that
obtained in the out-of-ground-effect case since only a single gamma collocation
point was used, We did, in fact, run cases with N=6 or more, but unsatis-~
factory "wiggles" began to appear in both Vs and T . We attribute this to
our inability to prescribe a sufficiently "natural" family of gj matching
functions.

We point out that our previous statement "For the static condition the
streamline pattern is virtually independent of C ", pertaining to the out-of-
ground-effect case, is equally valid for the ground-effect case.

CONCLUSIONS

The inviscid flow field induced by a rotor in ground effect is found, based
upon an actuator disk model with a constant circulation distribution. The gov-
erning nonlinear integral equations are solved by a systematic iterative scheme
which is similar to the Newton-Raphson method for the solution of nonlineax
algebraic equations.

First, the out-of-ground-effect limit is considered in detail. The itera-
tion is found to be rapidly convergent and the results are shown to be quite
accurate, except possibly in the immediate neighborhood of the blade tips.
specifically, there is some question as to whether or not the axial inflow should
be constant over the blade radius or, equivalently, whether or not the initial
slipstream contraction should be purely radial. This point is of some importance
because of the square-root singularity in the slipstream vorticity at the "lip"
of the slipstream. That is, the axial inflow (which is crucial from the point
of view of blade design) through the tip portion of the blade will be bounded
if the initial contraction is purely radial, and unbounded if it is not! 1In
any case, it seems clear that our results are quite accurate except, possibly,
in the immediate neighborhood of the blade tip.

Results for the ground effect case look entirely reasonable compared with
the flow visualization studies of Fradenburgh (Reference 11), although we cannot
claim a level of accuracy as high as in the out-of-ground-effect case.

In either case, in ground effect or not, it is shown that for the static
condition the streamline pattern is virtually independent of the thrust coefficient
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More precisely, it 1s exactly independent of the thrust coefficient - if the
effects of swirl are neglected.

10.

11.

12.
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APPENDIX

Listing of the Computer Codes

On the following pages are Fortran listings of the two computer codes,
ROTORIGE (for the in-ground-effect case) and ROTOROGE (for the out-of-ground-
effect case). Actually, the ROTORIGE code is presented for the special case
where N=1 , to be consistent with the numerical example in the text, and does

not apply for N 22 .

Of the input variables (see the Common Statements in ROTORIGE) only "AcCC"
requires further description. If, for example, ACC = 0.01 the iteration will
proceed until both T™" and V™" agree with their previous values, T and
Y™ , at each of the print-out x's (e.g. Fig. 8) to within one percent or
better - or until n = "NITER" , whichever occurs first.

Regarding the speed of the calculation, we point out that for the numerical
examples presented in the text the machine time per iteration (on the CDC 1604)
was 30 seconds for ROTORIGE, and one minute and 30 seconds for ROTOROGE.
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PROGRAM ROTOR!GE1

ROTOR IN GROUND EFFECT (NAS1-6349)
FORMULATION USES ONE (1) COLLOCATION POINT FOR THE
DYNAMIC (GAMMA)Y EQUATION,

DEFINITION OF INPUT VARIABLES
IM = MONTH OF YEAR IN INTEGER FORM,

ID = DAY OF MONTH IN INTEGER FORM,.
1Y = LAST TWO DIGITS OF YEAR IN INTEGER FORMe
MM = NOos OF COLLOCATION POINTS FOR SHAPE EQUATION.
NN = NOes OF COLLOCATION POINTS FOR GAMMA EQUATION.
NITER = MAXIMUM NOe OF ITERATIONS TO BE ATTEMPTED.
CC = LOADING COEFFICIENT,
CAPX = NON-DIMENSIONAL DISTANCE FROM GROUND PLANE TO PROPELLER PLANE.
ACC = CONVERGENCE CRITERION IN PERCENT/100
XS = NON-DIMENSIONAL AXIAL COORDINATES OF SHAPE COLLOCATION POINTS.
XG = NON-DIMENSIONAL AXIAL COORDINATES OF GAMMA COLLOCATION POINTS,
B = INITIAL SHAPE COEFFICIENTS,
A = INITIAL GAMMA COEFFICIENTS,

EXTERNAL FJ
TYPE RFAL LHS
COMMON/ADDED/F2 (50)
COMMON/COEFS/A(S50)+B(50)
COMMON/ INPUT /CC ¢ ALPHA+CAPX
COMMON/ INTGND/NGEES« TTeZ2Z ¢NoK
COMMON/MATRIX/RHS(S0+450 ) +LHS (504 1)
COMMON/NUMBERXS/NXS « NXG
COMMON/PRINT/XS (S0) v XG(S0)1XP(S50)+SR(S0)+SC(SO)s ITERsIMeIDs 1Y
COMMON/SAVE/NP ¢« INDEX SRS (50)+SCS(50)
1000 FORMAT(415)
1010 FORMAT(10F8e5)
1020 FORMAT(1HO+28HINITIAL CONDITIONS = AT MOSTe13+14H [TERATIONI(S) o
* 18HWILL BE ATTEMPTED.)
1030 FORMAT(1HO19HUNIFORM ACCURACY OF 4FBeSe16H PERCENT 1S NOT
* 47HATTAINFD FOR SLIPSTREAM RADIUS AND CIRCULATION
* 14HDISTRIBUTIONS 44 /48H AT MOSTe13+19H MORE [TERATION(S)
* 1BHWILL BF ATTEMRPTED,)
1040 FORMAT (1HO ¢ 19HUNIFORM ACCURACY OF +F8e¢54¢12H PERCENT 15
* 47HATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION
* 14HDISTRIBUTIONS ¢ +/¢25H ITERATION IS TERMINATED.)
1050 FORMAT(1HO s I9HUNIFORM ACCURACY OF +FBeSs16H PERCENT IS NOT o
L ATHATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION
* 14HODISTRIBUTIONS¢/+25H ITERATION 1S TERMINATED,)
RFEFAD 10004 IMeIDSIY
10 RFAD 1000 +sMMNNINITER $ IF (MM) [50,150420
20 RFEAD 1010+CCeCAPXeACC
READ 10704 (XS(1)elI=1sMM) 5 READ 10104 (XG(I1)s1=14NN)
NXS=MM NXG=NN
READ 10104(B(I)sI=14NXS) READ 1010« (A(1)e1=14NXG)
ALPHA=1,8
DO 30 1=1sNXS
FZU1)2FJ(0e0e 1)
30 CONTINUE

%
%

1TER=0 $ ACCP=10040%ACC
INDEX=1 $ CALL OUTPUT
INDEX=2 $ PRINT 1020+NITER
NO 120 ITER=1«NITER

N=NXS

35



36

40

50

60

80
90

100
110
120
130

140
150

NO 40 I=1N
2Z=XS(1)

CALL LIMITCHK
CONT INVE

CALL MATINV(RHSeNeLHS+1DET)
DO S0 Jm=1 N
B(JUy=LHS(.'e 1)
CONT INUE

N=NXG

00 60 1=l N
ZZ=XG(1)

CALL LIMITCHK
CONT INVE

CALL ACOFFS
CALL OUTPUT

DO 90 1=2.NP
CACC=ACC#SC(1)

CONT INUE

GO TO 170
LEFT=NITER-ITER
PRINT 10304ACCPJLEFT
CONT INUE

PRINT 10404ACCP
PRINT 10504ACCP

ENN

SUBROUTINE ACOEFS

]

CALL TOPBOT(ZZ)
CALL BEQGNS (1)

CALL TOPBOT(2ZZ)
CALL AEQNSI(I)

$ TACC=ACCH*SR(1)
IF (ABSF(SC(1)~SCS(1))=~CACC) 80+804100
IF (ABSF(SR(1)=SRS(1))=TACC) 90+90,100

S
$

IF (LEFT) 14041404110

GO TO 10
GO TO 10

COMMON/ASPEC/AU(2) s AK(2) ¢ AL (2) sFZZGZZvAZZBZ2Z

COMMON/COEFS/A(SC)«B(50)

TOP=~AK (1 )4+SORTF (AK (1 ) #%#2=4,0%AJ (1 )%AL (1))

BOT=2.0#AL (1)
END

SUBROUTINE AEQGNS(1)
EXTERNAL AJINT,AKINT ALINT
EXTERNAL GJ

s

A(1)=TOP/RBROT

COMMON/ASPEC/AJ(2) s AK(2) ¢AL(2) sFZZ¢GZZ4AZZBZZ

COMMON/COEFS/A(SC)eB(50)
COMMON/ INPUT /CC +ALPHA 4 CAPX
COMMON/ INTGND/NGFESe TTeZZ «NeK
CALL SHAPE(ZZTT)

G2Z=2GJ(Z2)
AJ(I)=—FF#TT/(2.0%CCH*FZZ)
CALL ONEINTGL (AJINT AJ(]))
CALL ONEINTGL (AL INT<AL(I))
END

FUNCTION AJINT(Z)

$
$
$
S

CALL FACTOR(ZZ+FZZ)
FE2CC=(CC/(240%TT))*%2
AK(1)=AL(1)=0.0

CALL ONEINTGL (AKINTsAK(I1))

COMMON/ASPEC/AJ(2) ¢ AK(2) s AL (2)sFZ22Z+GZZ41AZZB2Z

COMMON/ INTGND/NGEESsTT 4 ZZ +Ne K
CALL SHAPE (Z.T)

CALL GEES(14TTeTeZZeZeGeGTT)
END

$

CALL FACTOR(ZFZ)
AJINT2GTTHFZ
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FUNCTION AKINT(Z)

EXTERNAL GJ
COMMON/ASPEC/AJ(2) e AK(2) s AL (2)FZZ+sGZZ+AZZ+RZZ
COMMON/ INTGND/NGEFES e TTeZZiNeK

CALL SHAPE(Z.T) $ CALL FACTOR(Zs+FZ)
CALL GEES(14TTeTeZZeZeGeGTT) $ AKINT=2GTTXFZ¥(GZZ+GJ(Z))
END

FUNCTION ALINT(Z)

EXTERNAL GJ
COMMON/ASPEC/AJ(2)sAK(2) 4 AL(2)FZZ+GZZ1AZZ4+BZZ
COMMON/ INTGND/NGFES e TTe2ZZ yNaK

CALL SHAPE(Z,T) $ CALL FACTOR(Z.F2Z)
CALL GEES(19TTeT+ZZ4Z1GsGTT) S ALINT=GTTHEZXGZZHGI(Z)
END

SUBROUT INE BEQGNS (1)

EXTERNAL BINTFJ

TYPE RFAL LHS

COMMON/ADDFD/FZ (50)

COMMON/ ITNPUT/CC + ALPHA « CAPX
COMMON/ INTGND/NGFES ¢ TTeZZ«NeK
COMMON/MATRIX/RHS (50450 ) « LHS (5041 )

NN=N+ 1 $ CALL SHAPE(ZZ+TT)
GTTG=GGM=0,0

NGEES=1 $ CALL ONEINTGL(BINT«GTTG)
NGEES=3 $ CALL ONEINTGL(BINTsGGM)
DO 30 JU=1+NN

KsJ $ IF (J=NN) 10420420

TERM2FJ(ZZK)/(CAPX=ZZ )=FZ(K)/CAPX

RHS (14 J)=2=SQRTF (CCINFI(CAPX s J)+ALPHARTERMREGTTG
GO TO 30

RHS(1¢J)aGGM+ALPHAR (TT=140)%GTTG

CONT INUE

LHS(1+41)1=RHS(1+NN)

FND

FUNCTION BINT(2Z)

EXTERNAL Fu

COMMON/ADDEDN/FZ (S0)

COMMON/ INPUT/CC « ALPHA + CAPX

COMMON/ INTGNN/NGFEFS e TT e ZZ N K

CALL SHAPE(Z.T) $ CALL VORTEX(Z+GAM)
CALL FACTOR(Z FAC) $ GAMz=FAC*GAM
CALL GEES(NGEESeTTeTeZZ4ZeGoGTT)

GO TO (10430,20) NGEES

BINT=2GTT*#GAM $ GO TO 30
BINT=2=GR#GAM

END

SUBROUT INE FACTOR(XeFAC)

EXTERNAL FJsFPY
COMMON/COEFS/A(S0)«B(50)

COMMON/ INPUT/CC s ALPHA s CAPX
COMMON/NUMBERXS /NXS «NXG

TP20,0 $ BOi=CAPX=X
NO 10 1=1.NXS
TPxTP+B(1)I#(FPJU(Xe1)/BOTH+FJI(Xe1)/BOT*#%2)
CONT INUE

FAC=SQRTF (10+TP#%2)

END
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FUNCTION FJU(Xs )
FJ=X %%
END

FUNCTION FPJ(XeJ)
1F (J-1) 10410,20
FPJ=1e0

FoJa JEXER(J—-1)
END

$ GO TO 30

SUBROUT INE GFFS(NUMTTeTeZZeZsGeGTT)H

COMMON/ INPUT /CC e ALPHA W CAPYX
P1=341415927

IXE(ZZ=Z ) %2
DZ=(Z2Z=2+ 0% CAPX+Z) %#%2
ARGA=21e04+ (DT4HDX) /(2. O TERM#*X2)
ARGB=1e 04 (DT+DZ )1/ (20%TERM**2)
GO TO (10420410)4NUM
DT=TTH*¥2=-Tx%2

BOTAzARGA%*%2~1,0

AA= (DX+DT)IXQPA/ (BOTH*T)
EE=(DZ+DT)*QPB/(BOT*T)

GTT= (AA+BB)/BOTA-~(EE+DD)/BOTHB
G=TERME (OPA=OPR) /(2. 0%P 1)

END

FUNCTION GGG(Z)

COMMON/ INTGND/NGEES s TT ¢ 2Z4NeK
CALL SHAPE(Z.T)

CALL FACTOR(Z +FAC)

CALL GFFS(2¢TTeTeZZeZeGGsDUM)
GGGEGG*G

FND

FUNCTION GJ(X)
COMMON/ INPUT /CCs ALPHA 4 CAPX
GJ= (CAPX=X)%%2/SQRTF (X )
END

SURRAUT INF LIMITCHK

COMMON/L IMITS/TORP(S)sBOT(S)4NGD(SF)

NO 40 1=145

IF (BOT(1)Y-TOP(1)) 40,40,410
IF (1-5) 20430,30
BOT(1+41)=BOT (1)
BOT(1)=TOP(])

CONT INUE

END

B ]mw

LR NI

DY (TT-T)%%2
TERM=SQRTF(TT*T)

CALL QPMHALF(ARGA +QPA,QMA)
CALL QPMRALF (ARGB+GPB«QMB)

BOT=8+0%PI*TERM
BOTR=ARGB¥*#2~1.0

BBz (DX~DT)IX*QMA/(BOT*TT)
OD=(DZ~-DTI*QMB/ (BOTH*TT)
GO TO (30¢20420)NUM

CALL VORTEX(Z+G)
G=FAC*G
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170
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SUBROUT INE MATINV(AJNBMDETERM)
DIMENSION IPIVOT(S0)+A(50+50)4B(S50¢1 )¢ INDEX(S5042)4PIVOT(50)
DETERM=1,0

DO 10 Js=14N

IPIVOT(J)=0

CONTINUE

PO 200 1=14N

AMAX=20,40

NO 60 J=1eN

1F (IPIVOT(JY~1' 20,60.,20

NO 50 K=1N

IF (IPIVOT(K)=1) 30,550,240

IF (ABSF(AMAX)=ABSF(A(JesK))) 40450450
IROW=J $ JCOoLuUM=K
AMAX=A(JK)

CONT INUE

CONT INUE

IPIVOT(ICOLUM)=IPIVOT (ICOLUM)+1 $ [F (JIROW-ICOLUM) 704110470
NETERM= ~DETFRM

DO 80 L=1N

SWAP=A(TROW.L) S A(IROWLI=A(ICOLUM,LL)
ACICHLUML Y =SWAP

CONT INUE

IF (M) 1104110,90

PO 100 L=1¢M

SWAP=B(IROWsL ) $ B(IROWSL)I=B(ICOLUMIL)
RIICOLUML Y =SWAP

CONT INUE

INDEX(141)=1ROW

INDEX(142)=1COLUM $ PIVOT(I)1=A(ICOLUM,ICOLUM)
DETERM=DETERM*PIVOT (1) ® A(ICOLUMIICOLUM)=140

DO 120 L=1N

ACICOLUMLI=SA(ICOLUMILY/PIVOTI(I])

CONT INUE

IF (M) 15041504130

DO 140 L=1¢M

BICOLUML)I=B(ICOLUM L) /PIVOT(I)

CONT INUF

NO 200 LizteN

IF(L1=-1COLUM) 16042004160

T=A(L1+s ICOLUM) $ A(L1+ICOLUM)=0e0
DO 170 L=1eN

A(LLoLISALT4L)=A(ICOLUM L I#T

CONT INUE

IF (M) 200,200,180

NO 100 LL=1«M

BL1 L)=BL1sL)=-BI(ICOLUM L I*T

CONT INUE

CONT INUE

DO 230 f=1«N

L=N+1=1

IF CINDEX(Ls1)=INDEX(L+2)) 21042304210

JROW=INDEX (Lo 1) $ JCOLUM=INDEX(L+2)
DO 7220 K=14N

SWAP=A (K¢ JROW) £ A(Ks JROW)=A(KsJCOLUM)
A(KesJCOLUM)=SWAP

CONT INUF

CONT INUFE

RETURN

END
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SUBROUTINE NGAUSS(BesA+FXNTIME « INTEGRAL )

TYPE REAL INTEGRAL

NDIMENSION R(5)4U(5)

DATA (R=0Ce1477621124+041346333597+041095431813+0407472567458+

» 0.03333567215)
* (U=0,0744371695+002166976971¢04339704784140¢4325316833
* 04485895326473)

INTEGRAL =040
NO 20 Jz1 «NTIME

XL2zA+(J=1)%¥(B=~A)/NTIME € XU=B-~ (NTIME=J)}#* (B8~A)/NTIME
DeEXU-XL $ S (XU+XL)/20
TEMP=0e0

DO 10 K=145

TEMP=zTEMP+R (K ) # (FX(S+D*U(K) I+FX(S=DRU(K)))
10 CONTINUE

TEMP=TEMP *D $ INTEGRAL=INTEGRAL+TEMP
20 CONTINUFE

END

SUBROUTINE ONEINTGL (FAsA)

COMMON/L IMITS/TOPRP(S5) +BOT(S5) +NGD(5)

DO 20 1=1+5

IF (ABSF(TOP(1)-BOT(1))-040000001) 20420410
10 CALL NGAUSS(TOP(1)+BOT(1)FAJNGD(1)sAA)

A=zA+AA
20 CONT INUE

END

SUBROUT INE OUTPUT
COMMON/ ADDED/FZ (50)

COMMON/COEFS/A(50)4B(50)

COMMON/ INPUT/CC s ALPHA s CAPX

COMMON/ INTGND/NGEES s TTe2ZZ sNsK

COMMON/NUMBERXS /NXS s NXG
COMMON/PRINT/XS(50) ¢ XG(50) ¢ XP(S0) ¢ SRIS0)sSC(S0) e ITEReIMeID1Y
COMMON/SAVE/NP + INDEX SRS (850)+SCS(S50)

1000 FORMAT(1H1+25X+s32HR O T O R I N GR OUND .
* 3SCHE F F EC T (NA S 1 =6 389 )eSXelH{(s12¢1H/ 0120
* 1H/«1241H))
1010 FORMAT(1HO 35X+ 29HDAMPING COEFFICIENTSs ALPHA =24F5,2:9H ¢+ BETA =,
* 4H OO /436X
* 24HLOADING COEFFICIENTs C =eFT70484¢/436X0
* 16HHUB RADIUS = 0.0)
1C2C FORMAT(1HO 21X+ 29HSHAPE COLLOCATION POINTSe M =+13,12Xs
* 29HGAMMA COLLOCATION POINTSs N =413¢/)

1030 FORMATI(1IH +28Xe5HX SUBeI3¢2H T eFB8e4 426X +SHX SUBsI3¢2H =¢F8e4)
1040 FORMAT(1H ¢72Xe5HX SUBsI3¢2H =4F8.4)

1050 FORMAT(1IH ¢2BXeSHX SUBeI1342H =eFBe4)

1060 FORMAT(1HD W 13IHITERATION NOss134/)

1070 FORMAT(1H +79X¢3SHSLIPSTREAM SLIPSTREAM CIRCULATIONe/+7Xs

* 18HSHAPE COEFFICIENTS 14X 18HGAMMA COEFFICIENTSe11Xe 1HX e
* 11X +30HRADIUS, T GAMMA SUB Sé/)

1071 FORMAT(1H «4Xe10HB SUB 1 243F1264410Xe10HA SUB 1 =4F12e4¢8%0
* AHe 0001 1Xe6HL e 0000 F1844)

1072 FORMAT(1H «4Xe10HR SUB | ZsF124410Xe10HA SUB 1 =4F12e448Xe
* 4He 0004 1 I1Xe6H] e DO0D 10X e SHINFINITY)

1080 FORMAT(IH +4X+SHB SUBsI342H =eF1264410X+SHA SUBII3,2H =¢F12e4,
* F12¢34F17e44F18e4)

1C90 FORMAT(1H +4X+8HB SUB+I342H =eF12e4¢10XsSHA SUBI3+2H =4F1244,
* EHCAP Xz ¢F6e3¢9X+8BHINFINITYsF18e4)

1100 FORMAT(1H +4XeSHB SUBeI342H =4F12e¢4+10X¢5HA SUB1342H =¢F1264)
1110 FORMAT(1IH +4XeSHB SUBeI[3¢2H =eF1264+32XeF12e3¢F17e4+F18Be4)




112C

*

1130
1140
1150

1160
1170
1180
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40
50
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70
80
90

100
110
129
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140
150
160
170
180
181

182
183

190
200
210
220
230
240
250

260
270

280
290

200
310

320
330

340

*

FORMAT (1H «4XeSHB SUBI342H =4F12e4432X0

BHCAP X=eFEe3¢9X +8HINFINITY+F1844)
FORMAT(1H +4XeSHB SUB+I34¢2H =4F12e4)
FORMAT(1H +36XeSHA SUBeI3¢2H 29F1264¢F126¢3¢F17e4+F18e4)
FORMAT(IH ¢386XeSHA SUBe13¢2H = 4F12e40

SHCAP Xz 9F6e3+9XeBHINFINITY«F18e¢4)
FORMAT(1H +36Xe5SHA SUBeI13¢2H =4F1264)
FORMAT(1IH +S8XeF12e63¢F17644F18648)
FORMAT (1H +S8XeSHCAP X=eF6e3¢9XeSHINFINITY F18.4)
NP=26
NO 60 1=2.NP
GO TO (S+4)+INDEX

SRS(1)=SR(1) $ SCS(1)Y=SC(1)

GO TO 50

IF (1=5) 20420410

IF (1-22) 30,30.40

J=2# 1 ~3 $ XP(1)=0,01%Y

GO To 50

Jzl=-8 S XP(])x0,05%)

GO To sO

Jel=22 € XP(1)1=0,9+0,02%0

CALL SHAPE(XP(I1)eSR(1)Y) $ CALL VORTEX(XP(I)eSC(1))
CONT INUE

PRINT 100041IMsIDstY € PRINT 1010+ALPHALCC
PRINT 1020 NXS«NXG $ IF (NXS=NXG) 704+70480
M=NXS $ GO TO 90

M=NXG

PRINT 10304 (TeXS(I)eTaXG(1)eIm] eM)

M=M4 1 $ IF (NXS=NXG) 100+1204+110
PRINT 1040:(1e¢XG(1)s1=2M¢NXG) $ GO TO 120

PRINT 1050 (T1eXS(1)e12MiNXS)

PRINT 1060.1TER $ PRINT 1070

IF (NXS=NXG) 130,140,140

IF (NXG=NP) 15041504160

IF (NXS=NP) 150,150,170

MNP+ 1 $ GO TO 180

M=NXG $ GO TO 180

M=NXS

KOUNT=1 $ IF (ITER) 1811814182
TEMR=SORTF (CC) $ PRINT 1071+B(1)+A(1)sTEMP
GO TO 183

PRINT 1072.M(1)sA(1)

DO 200 1=22¢M

IF (1=NXS) 19041004220

IF (1~-NXG) 200,2004210

IF (1=NP) 250,250,260

IF (1~NP) 290+4290,300

IF (1=NXG) 23042304240

IF (I-NP) 33043304340

IF t1=-NP) 3704+370+380

PRINT 1080¢14B(I)sT+A(T)IeXPII)eSR(IISC(])
GO TO 390

GO TO (2704280 sKOUNT

PRINT 1000,148(1)e14A(1 )¢ "APXsTEMP

KOUNT=2 $ GO TO 390
PRINT 110041¢BCI1¢14A(1) $ GO TQ 390
PRINT 1110414B(1)eXP(1)«SR(TI)eSC(])

GN TO 390

GO TO (3104320)KOUNT
PRINT 1120414B(1)+CAPXs TEMP

KOUNT =2 $ GO TO 390
PRINT 113041+8(1) € GO TO 390
PRINT 114041 ¢A(T)eXP(1)eSRIIIeSCH])

GO To 390

GO TO (3F04360) KOUNT
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360
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380
390

1o

10
20

a0
=0
&0
-0

89
S0
100
110

PRINT 115041, A(1)sCAPXsTEMP

KOUNT=2 € GO TO 390
PRINT 1160¢14AC1) $ GO TO 390
PRINT 11704XP(1)sSR(IYeSCHI) $ GO TO 390
PRINT 1180+sCAPX s TEMP

CONT INUE

END

SUBROUT INF QPMEALF (Z e QPH+QOMH)
TYPF RFAL KPRIMFCOQ,K

KPRIMESN=140=(2eN/(Z24+1e0)) € A1=KPRIMFSQ

AP=A1%¥A1 € AT=ADRA1

A4=ADP#A2 $ ALO=LOGF (1.0/KPRIMESQ)
KaSQRTF (240/(Z+140)) $ B=SORTF(2,0%(Z+1.0))
ELE=1.000000000004.44325141463%A14,06260601220%A2

* +eNATSTIBIGLUERAZ+,01 736506451 #¥A4+

» (e 2499836831 0%A1+409200180037%A2+

» ¢ 04069€9TS26%#A3+,00526449639#A4 ) #ALO
ELK=16438629436112+.09666344259%#A14,03590092383%A2

* +403742563713%A3+.01451196212%A4+

* (+S0000C0000004+12498593597%A1+,06880248576%#A2

* +003328355346%A3+.00441 78701 2%A4 ) *¥ALO
OPH=Z¥K *ELK~B*FLE $ QMHEK*ELK

£ 9

SUErOUT INE SHAPRE (X S)

EXTERMAL FJ

COMMON/ADDED/F2 (50)
COMMON/COEFS/A(S0)48(50)
COMMON/ INPUT /CC s ALPHA s CAPX
COMMAN/NUMBERX S /NXS s NXG

S2140 $ ROT=CAPX=X
nO 10 Uzl oNXS

SeS4+ (FJIXeJ) /ROT=FZ(J)Y/CAPXIXB(J)
CONT INUE

FND

SURROUT INE TOPROT(ZZ)
COMMON/ INPUT /CC e ALPHA +CAPX
COMMON/L IMITS/TOP(S)eBOT(S5) «NGD(5)
TFMP=CAPX=~0412

NO 10 1=1458

TOP(1)=BOT(1)=0e0 $ NGD(1)=1

CONT INUF

IF (ABSF(ZZ)=-0,0000001) 70470420

1F (7Z) 70470430

1F (ABSF(ZZ-0e12)=040000001) 1204120440

IF (2Z-0412) 804120450

IF (ABSF(ZZ-TEMP)}=0,0000001) 120+120+60

IF (ZZ2-TEMP) 12041204130

TOP(1)=B0T(2)=0,1 € TOP(2)=B0T(3)=CAPX=0.1
TOP( 3)=CAPX $ NGD(2)=2

GH TH 170

IF (27-0402) 90,490,100

FPS=72 $ GO YO 110

DC=20,02

TOP(1)=BOT(2)=2Z~-EPS $ TOP(2)=BOT(3)=ZZ+EPS
TOP(3)=BOT(4)=CAPX~0s1 $ TOP(4)=CARPX

NGD(2)=17 $ GO TO 170




120

120
140
10
160

170

TOP(1)=B0T(2)=0.10
TOP(3)=BOT (4)=ZZ+0402
TOP(&)=CAPX

G0 TO 170

IF (TEMP=0,N2) 140,140,150
FPS=TEMP

FPS=z0e02
TOP(1)=BOT(2)=0s1
TOR(3)zBOT (4 )=2Z7+FPS
NGD(3)=2

END

SUBROUTINE VORTEX(XsV)
EXTERNAL GJ
COMMAN/COEFS/A(S0) R (50)
COMMON/ INPUT /CC + ALPHA 4 CAPX
VSQRTF(CCI* (1 4 0+A(1)I#GI (X))
FND

END ROTORIGE

FINIS

$®

TOP(2)=BOT(3)=Z2-0.02
TOP(4)=BOT(S)=CAPX=0s1
NGD(3)=3

GO TO 160

TOP (2)=BOT (3)=ZZ-EPS
TOP (4)=CAPX
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[eNe Nel

[ PROGRAM ROTOROGE |

ROTOR OUT OF GROUND EFFECT (NAS1=6349)

FXTERNAL FJ

TYPF RFAL LHS«LAMRDA
COMMON/ ADDED/FZ(50)sT1
COMMON/COEFS/A(50)48(50)

COMMON/ INPUT/LLAMBDA+CCeALPHAWBETA
COMMON/ INTGND/NGEES ¢ TTeZZ«NeKe Gl
COMMON/MATRIX/RHS(50+450) «LHS(5041)

COMMON/NUMBERXS /NXS ¢ NXG

COMMON/PRINT /XS (S0) e XG(S50) ¢+ XP(S0)eSR(S50)¢SC(SO)+ITERIMeIDs1Y

COMMON/SAVE/NP+ INDEX SRS (50) ¢ SCS(50)
1000 FORMAT (415)

1010 FORMAT(10F845)
1020 FORMAT (1HO+28HINITIAL CONDITIONS = AT MOST+13+14H ITERATION(S)

18HWILL BF ATTEMPTFN,)

1030 FORMAT(1HO s ISHUNIFORM ACCURACY OF +FBeSe16H PERCENT IS NOT
4THATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION
14HDISTRIBUTIONS s e/ ¢BH AT MOST,413+419H MORE ITERATION(S)

L]
[ ]
*

18HWILL BE ATTEMPTED.)

1040 FORMAT(1HO+47HRESULTS OF THIS

*

*

42HSTREAML INE SHAPE -

ITERATION
1050 FORMAT (1HOW47HRESULTS OF THIS ITERATION INDICATE AN
SOHCIRCULATION DISTRIBUTION -

ITERATION INDICATE AN IMPROPER
IS TERMINATED)
IMPROPER

ITERATION IS

1060 FORMAT (1HO+ 19HUNIFORM ACCURACY OF ¢+FBeSs12H PERCENT IS
47HATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION o

*
*

14HDISTRIBUTIONS,)

1070 FORMAT (1HO+19HUNIFORM ACCURACY OF ¢F84S+16H PERCENT IS NOT
4THATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION

1080 FORMAT(1H

10
20

30

40

50

*
*

*

14HDISTRIBUTIONS, )
+4THITERATION

READ
READ

10004 IMsIDe 1Y

1000 «MM¢NNeNITER
READ 1010+CC+LAMBDALACC
READ 10104(XS(1)elIx1eMM)
NXS=mM

ALPHA=R] .8

DO 30 1=14NXS

B(13=040

CONT INUE

DO 40 1=1¢NXG

A(1)=0,60

CONT INUF

CALL SHAPE(24:040+T1)
G1=SARTF (LAMBNA®X2+F 1) ~LAMBNA
1TER=O

INDEX=1

M=NP+1

INDEX=22

DO 130 ITER=1NITER
TIS=T!

NO =0 T=1eN

ZZ=XS(1)

CALL LIMITCHK

CONT INUE

CALL MATINV(RHSeNsLHS+1+DET)
DO 60 J=1eN

IS TERMINATED.
41HCONDITIONS ON STREAMLINE WILL BE

DYNAMIC AND KINEMATIC
CHECKED e )

$ [F (MM) 1904190420

READ 1010+ (XG(1)el=14NN)
NXG=NN

BETA=0e0

"o

$ FZ(1)=FJ(04041)

®

FI=CC=(CC/(2.0%T])) %2

ACCP=10060%ACC
CALL OUTPUT
SC(M)=SCS(M)=GI
PRINT 1020sNITER

LR ]

L]

N=NXS

CALL TOPBOT(ZZ)
CALL BEQGNS(1)

[N

TERMINATED)

.

.



690

70

80

90
100

101
102

110
120
130
140
150
160
170
180

190

B(J)=LMS(Je1)

CONT INUVE

CALL SHAPE(2+¢040.:T1)
GI2SORTF(LAMBDA®®24F 1) ~-LAMRBDA
NO 70 1=1N

2Z=XG(1}Y

CALL LIMITCHK

CONT INUE

CALL MATINV(RHS «NeLHSe1+DET)
DO 80 J=14+N

ACJIZLHS (Je1)

CONT INUE

CALL OUTPRUT

CALL SHAPE(140,05TTEST)
CALL VORTEX(0e01 4Gl +GTEST)
SR(M)=T1

NO 102 1=2+M

CACC=ACCH5C(1)

1IF (ABSF(SC(1)=SCS(1))=CACC)

$ FISCC=(CC/(2.0%T1))%%2
$ N=NXG

$ CALL TOPBOT(ZZ)
$ CALL AEQGNS (1)

$ IF (TTEST-140) 9041404140
1IF (GTEST=G!) 150+150+100
$ SRS(M)Y=TIS

&

$ TACC=ACCH*SR(1)

10141014110

IF (ABSF(SR(1)=SRS(1))=TACC) 102+102.110

CONT INUE

GO TO 160
LEFT=NITER~ITER
PRINT 1030+ACCPLEFT
CONT INUE

PRINT 1040
PRINT 1050
PRINT 1060+ACCP
PRINT 1070.ACCP
PRINT 1080

GO TO 10

END

SURBROUTINE AEQNS(1)
EXTERNAL GJ
TYPE REAL LHSLAMBDA

$ IF (LEFT) 17041704120

GO TO 10
GO TO 10
GO TO 180
GO TO 180
CALL DYKICHCK

L B A I

COMMON/ INPUT/ILAMBDA +CCoALPHABETA

COMMON/ INTGND/NGEES e TT ¢ ZZ «NeKa Gl

COMMON/L IMITS/TOP(7)¢BOT(7)eNGD(7)
COMMON/MATRIX/RHS(50¢50) +LHS (S04 1)

DIMENSION XI(400)¢GTTR(400)
DIMENSION R(S)U(5)

NATA (R=0,147762112440,134633359740,109543181340407472567458

(U2040744371695+1002166976971¢063397047841+4004325316833

* 0403333567215) s
®
* 0e4869532643)

10

CALL SHAPE(1+¢ZZTT)
CALL VORTEX(ZZ+G1l+GAM)
FF=CC—=(CC/(20%TT))%%2
NN = N+1

KK = 0

NO 70 J=1.7

$ CALL FACTOR(ZZFAC)
$ CON=2,0%GAMEX2XFAC

IF(ABSF(TOP(J)=BOT(J))=0+0000001)70¢70410

NTIME = NGD(J)
R = TOP(J)} L3
NO 60 11=1.NTIME
XL = A4+ (11-1)%¥(B=A)/NTIME $

A = BOT(J)

XU = B=(NTIME-~11)%(B=A)/NTIME

D = XU=XL 3 S = (XU+XL)I/20

DO S0 L=1410
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20

30
40

50
70
80
90
100
110
120

130
140

10

20
30

10

30

KK 3 KK+1
IF(L=5)20420,430

JJ o= L $ XI(KK) = S+D¥U(CJIJ)
GO TO a0
JJ o= 11-L % XI(KK) = S=D*U(JIJ)

CALL SHAPE (1+XT(KK)sT)

CALL FACTORI(XI (KK)4+ROOT)

CALL GEES(1eTTeaTeZZeXI(KK)sGeGT«GTT)
GTTR(KK) = D®¥R(JJ)I*¥GTT*ROOT

CONT INUE

CONT INUE

CONT INVE

DO 140 JU=1eNN

K = J s IF(JU=NN)IB0 90430

RHS(T1 s JISFFETTRGU(ZZ+J)/CON % GO TO 100
RHS( 14 J)=TTH(LAMBDA+FF#G1 /CON=FF/ (FACRGAM) ) /GI]
DO 130 L=t+KK

IF(JU=-NN)>11041204120

RHS(TeJ) = RHS(T+NI+GCTTRILI*¥GI (XTI (L)Y s J)

GO TO 130

RHS({1eJ) = RHS(1+JI+GTTR(L)

CONT INUE

CONT INUF

LHS(1+1)=2=RHS(TsNN)

END

SURRNOUT INF RFONS (1)

EXTERNAL BINTFJ

TYPE RFAL LHS« AMBDA
COMMON/ADDFED/FZ (8014 T1

COMMON/ INPUT /LAMBDA+CC e+ ALPHALRETA
COMMON/ INTGNN/NGEES s TTeZZeNeKa GI
COMMON/MATRIX/RHS(50+50) ¢ LHS (500 1)

NN=N+1 S CALL SHAPE(14ZZ+TT)
GTTG=GGM=0,60

NGEES=1 $ CALL ONEINTGL(BINTGTTG)
NGEES=13 $ CALL ONEINTGL(BINT«GGM)

ADD=GGMFALPHA® (TT-1,0)1%GTTG
NO 120 J=1+NN
K=J $ IF (J~NN) 10420420

CCONREI(ZZ7 ¢ SV =FZ ()

RQHS (14 J)=LAMBDA*TTH*CON+ (LAMBDA+GI I ¥TIHFZ(J)I+ALPHA¥CON®GTTG
GO TO 30

RHS(1¢J)= (LAMBDA+GI I ¥TI%#(1e0-~0e5*T)~LAMBDA#TT*#(1+0~0S*TT)+ADD
CONTINUE

LHS(1+1)=RHS(14NN)

END

FUNCTION BINT(2Z)
EXTERNAL FJ

COMMON/ADDED/FZ (50)«T1

COMMON/ INPUT/LLAMBDA+CC+ALPHA +BETA

COMMON/ INTGND/NGEES s TTsZZ ¢NeK s G1

CALL SHAPE(14Z4T) & CALL VORTEX(Z+GI+GAM)
CALL FACTOR(Z«FAC) $ GAM=FAC*GAM

CALL GEES(NGFESsTTsTe2ZeZsGeGTCTT)

GO TO (10430,20) NGEES

RINT=GTT*GAM $ GO TO 30
BINT=-G*GAM
FND




SUBROUTINE DYKICHCK

EXTERNAL GTG4GGG

TYPE REAL LAMBDA

COMMON/ INPUT /LAMBDA s CC+ALPHABETA

COMMON/ INTGNND/NGEFES+sTTeZZeNeKaG 1

COMMON/NUMBERXS/NXS s NXG

COMMON/PRINT /XS (50) e XG(S0) ¢ XP(S0)eSRI(S0)1+SC(S0)e ITERIIMsID LY
NDIMENSION X(19)

DATA (X=20601¢0602¢0603¢040440,054041040415¢0620¢06300044040¢50+

* 0e75416000162501450424000¢3600+5,00+¢190400)

1000 FORMAT(1H]+22X+40HR O T O R oOuUT o F GROUND .
L 3SGHE F F EC T (NAS 1 -~ 6349 1eSXelH{eI2¢1H/ 4120
* 1H/+1241HY)

1010 FORMAT(1HO 35X+ 29HDAMPING COEFFICIENTSs ALPHA =+F5,2¢9H + BETA =,
FSe29/¢36X0

24HLOADING COEFFICIENTe C =eFT7el804/¢36X0

23HADVANCE RATIOs LAMBDA =¢F7e40¢/¢36Xe

36HNOe OF SHAPE COULILOCATION POINTSe M =¢13¢/¢36X0

36HNOe OF GAMMA COLLOCATION POINTSe N =¢13¢4/¢36Xe

16HHUB RADIUS = 040)

1020 FORMAT(1HO+//¢45H NUMERICAL CHECK OF DYNAMIC (FORCE~FREE) AND
ATHKINEMATIC (STREAMULINE) CONDITIONS ON SLIPSTREAM.//)
1030 FORMAT(1IH +SOX+BHDYNAMIC ¢ 25X+ 10HKINEMATICs /7 054X

* k Kk k Xk kK

*

THem—mwee—=y /94H XoeOXe4HUI(X) ¢ 14X e BHGAMMA(X ) ¢ 17X e 3HLHS 11X
3HRHS s 1 7X e 3HLHS s 13X ¢ 3HRHS ¢ /)

1040 FORMAT(1IH sFS5e24F12¢5¢F20e51F22e5+F184,5:¢F20454F1645)

1050 FORMATI(IH +s5H INFesF12e51F20e5¢F22e¢5sF14:54F20e5+F165)

PRINT 1000.IMeIDsIY

PRINT 10104ALPHA+BETA«CCoLLAMBDA 4 NXS +NXG

PRINT 1020 $ PRINT 1030

CALL SHAPE(240404T1) S CB=O.SHTI*#*2% (LAMBDA+G1)

DO 60 1=1.20

IF (1-20) 20,10410

* 20HUXGAMMA SHOULD EQUAL+11Xe19HTOTAL (CAP) PSI ON

[} 10HSLIPSTREAMs /¢ 9X e 36HTOTAL X=VELe SLIPSTREAM VORTICITY,
* 18X +13HF /24 15X+ 36HSHOULD EQUAL ITS VALUE AT X=INFINITYs

* /+8X+36HON SLIPSTREAM, PER UNIT X=LENGTHs 19X 48Hm===meaa,
* 14H=~ === ———————— 15X ==~ ——————— e ——————

*

*

10 U= _AMBNA+0,5%G1 $ GAM=G]1
CA=0sSH(CC=(CC/(20%#T1))#%2)
PS1=CB $ GO TO 30

2P0 ZZax(1) $ CALL SHAPE(14ZZ+7TT)

CAZ0¢S# (CCm(CC/(2s0%TTHI)R%2)
CALL VORTEX(ZZ+G1+GAM)
GAMzFAC*GAM
CALL LIMITCHK
PSI=0eS*LAMBDAX*TTH#2

30 UG=U#GAM

40 PRINT 10404ZZ+UsGAMIUGICA+PSIHCB
GO TO 60

50 PRINT 1050+:UsGAMsUGCAWPST «CB

60 CONTINUE
END

CALL FACTOR(ZZ.+FAC)

CALL TOPBOT(2Z)

U=L AMBDA

CALL TWOINTGL (GTG+GGGsUsPSIT)
IF (1=20) 40450450

I

SUBROUTINE FACTOR(XWFAC)
EXTFERNAL FPJ
COMMON/COEFS/A(S50)4B(S0)
COMMON/NUMBERXS /NXS « NXG
TP=0,0
NO 10 1=1+NXS
TRP=TP+B(1)*¥FPJ(Xs])

10 CONTINUE
FACzSAQRTF (1 e 04+TP%%2)
FND
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10

a0

10
20
a0

10
20
20
40

FUNCTION FJ(XeJ)
FJUEEXPF (=J#X)
END

FUNCTION FPJ(X4J)
FPJz = J*EXPF (=J#X )
END

SUBROUTINE GEES(NUMeTTeTeZZeZeGeGT+GTT)

P1=3e1415927 € TERM=SORTF(TT*T)
DEL=(2ZZ-Z)%%2 S ATOPwDEL4TTH#E2-TH¥%2
BTOP=DEL+THX2-TT#¥Z $ ABOT=8,0%PI*TERM®T
BBOT=B+O#PIXTERM*TT

A=zATOP/ABOT $ R=BTOP/BROT

ARG= 1004+ C (TT=TIRR24(ZZ=Z)R%2 )/ (2s0%TTHT)

CALL QPMHALF (ARG +GPH ¢ QMH) $ GO TO (30+20410)¢NUM

G=TERM*QPH/(2+0%#P1)

GT= (BROPHHAROMH )/ (ARG##2~140)
GTT= (A¥QPH+B*QMH )/ (ARG¥*#2-140)
FND

FUNCTION GGG(Z)
COMMON/ INTGND/NGEES s TTeZZ eNs Ko G

CALL SHAPE(14ZeT) $ CALL VORTEX(Z+GI4G)
CALL FACTOR(ZWFAC) t G=FAC %G

CALL GEFS(3¢TT4TeZZeZeGGeNUMDUMM)

GGCGnGG*G

FEND

FUNCTION GJ(XeJ)
IF (U=1) 10,10,20

GJ=EXPF (=3 ,0%X)/SORTF (X)) $ GO TO 30
GJEX#R(=0e84+0s51%J)REXPF (=3,0%#X)
FND

FUNCTION GTG(2Z)
COMMON/ INTGND/NGEES e TTeZZsNeK 4G

CALL SHAPE(14Z«T) $ CALL VORTEX(Z+G1+G)
CALL FACTOR(Z FAC) $ G=FACHG

CALL GFES(1+4TTeTeZZeZeDUMDUMMGTT)

GTG=GTTHG/TT

END

SUBROUT INE LIMITCHK
COMMON/LIMITS/TOP (7)4BOT(7)eNGD(T)
DO 40 1=147

IF (BOT(1)=TOP(1)) 40440410

IF (1=7) 20430.,30

BOT(T+1)=MOT (1)

ROT(1)=TOP(1)

CONT INUE

END




10

20

30
40

%0
&0

70

80

90

100
110

120
130

140
150

160

170
180

190
200

210

220
230
240

SUBROUT INE MATINV{(AINeBMDETERM)

DIMENSION IPIVOT(50)+A(S50+50)¢B(S50¢1)eINDEX(S5042)¢PIVOT(50)
PDETERM=1 40

PO 10 U=t N

1PIVOT(JU)=0

CONT INUE

DO 200 1=14N

AMAXE0e0

NO 60 J=i N

IF (IPIVOT(J)=1) 20+60.20

DO %0 K=1«N

IF (IPIVOT(K)=1) 30+50+240

IF (ABSF(AMAX )=ABSF (A(JsK))) 4045050

IROW=J $ ICOLUM=K

AMAX=zA(JeK)

CONT INUE

CONT INUE

IPIVOT(ICOLUM)I=IPIVOT(ICOLUM)+1 & IF (IROW=ICOLUM) 70+110470
DETERM=~DETERM

DO 80 L=1 N

SWAP=A(IROW.L) $ A(IROWIL)I=ZA(ICOLUMLL)
A(ICOLUML )=mSWAP

CONT INUE

IF (M) 1104110490

NO 100 L=peM

SWAP=B{IROWL) $ B(IROW+L)=B(I1COLUML)
BICOLUML)=SWAP

CONT INUE

INDEX (141 )=IROW

INDEX(1+2)=]1COLUM $ PIVOT(1)=A(ICOLUM, ICOLUM)
DETERM=DETERM*PIVOT( 1) $ A(ICOLUMLICOLUM)I=1,40

NO 120 L=1eN

ACICOLUMILISA(TICOLUMLI/PIVOT ()

CONT INUE

IF (M) 1S04180,130

DO 140 L=14M

BCICOLUMLI=B(ICOLUML)I/PIVOT ()

CONT INUE

DO 200 Lix1eN

IF(L1=-1COLUM) 16042004160

TaA(L1+I1COLUM) $ A(L14ICOLUMYIZ0.0
DO 170 L=1eN

A(LLeLI=A(LTLI-A(ICOLUMGL I¥*T

CONT INUE

IF (M) 200,200,180

DO 190 L=1¢M

BL1+L)=B(LYsL)-B(ICOLUM L I*T

CONT INUE

CONT INUE

DO 230 I=] N

LEN+1~1

IF (INDEX(Ls1)=INDEX(Ls2)) 210+4230.210

JROW= INDEX (L +1) $ JCOLUME INDEX(L+2)
DO 220 K=1 4N

SWAP=A(KeJROW) £ A(KsJROW)IZA(KsJCOLUM)
A(Ke JCOLUM)IE=SWAP

CONT INUE

CONT INUE

RETURN

END
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SUBROUT INE NGAUSS(BesA+FXsNTIME « INTEGRAL)

TYPE RFAL INTEGRAL

DIMENSION R(5)U(S5)

DATA (R=0.14776211244+0,13463335974041095431813+0.07472567458,

» 0.03333567215)

* (U2040744371695+062166976971¢06339704784140.4325316833
» 0.,4869532643)

INTEGRAL =040

DO 20 JUm] «NTIME

XLsA+(J-1)#(B=-A)/NTIME $ XU=B=(NTIME=J)*(B~A)/NTIME
D= XU—-XL $ S (XU+XL)/20
TEMP=0,0

NO 10 K=145

TEMP2TEMP+R(K IR (FX{S+DRU(KII+FX (S=DRU(K) )
10 CONTINUE

TEMP=TEMP#D $ INTEGRAL=INTEGRAL+TEMP
20 CONT INUE

END

SUBROUT INE ONEINTGL(FA.A)

COMMON/L IMITS/TOP(7) +BOT(7)eNGD(T7)

DO 20 I=x1e7

IF (ABSF(TOP(1)=-BOT(1))=0,0000001) 20420410
10 CALL NGAUSS(TOP(1)+BOT(1)+FAJNGD(I)4AA)

AzA+AA
20 CONT INVE

END

SUBROUT INE OUTPUT
TYPE RFAL LAMBDA
COMMON/ADDED/F2(50)+T1
COMMON/COEFS/A(%50).B(%0)
COMMON/ INPUT /LAMBDA+CC+AL.PHALBETA
COMMON/ INTGND/NGEES«TTe2ZeNeKeG1
COMMON/NUMBERXS /NXS ¢« NXG
COMMON/PRINT/XS(50) e XG(50) ¢ XP(S0)+sSRIS0)I«SC(S0)+ITERIMeID1Y
COMMON/SAVE/NP 4+ INDEX SRS (50) +SCS(50)
1000 FORMAT(1H]I +22Xs40HR O T O R ouT o F GROUND .
* 35SHE F F EC T (N A S 1 =6 389 1eSXelH(sI2¢1H/120
1H/+e1241H))
1010 FORMAT(1HO+35X+29HDAMP ING COEFFICIENTSs ALPHA 3.FS5¢2+9H « BETA =,
FSe2¢/036Xe
24HLOADING COEFFICIENTs C =sFT7e4¢/¢36X0
23HADVANCE RATIOs LAMBDA =sFT7e404/¢36X0
16HHUB RADIUS = 040)
1020 FORMAT(1HO+21Xs29HSHAPE COLLOCATION POINTSe M =413,12Xe
* 29HGAMMA COLLOCATION POINTSs N 41234/
1030 FORMAT(IH +28XsSHX SUBsI3+2H = 4FBe8¢26X+¢SHX SUBe13,2H =¢F8ae4)
1040 FORMAT(IH +72X+sSHX SUBsI3¢2H = +F8e4)
1050 FORMATIIH +28XsSHX SUBsI3¢2H =4F8e4)
1060 FORMAT(1HOWI3HITERATION NOes 13+/)
1070 FORMAT(1IH +79Xs35HSLIPSTREAM SLIPSTREAM CIRCULATIONs/+7X

*

* k %k %k

* 18HSHAPE COEFFICIENTS 14X+ 18HGAMMA COEFFICIFNTSe11X e 1HX
» 11 Xe30HRADIUSs T GAMMA SUB Se/)
1071 FORMAT(IH +4X+«10HB SUB 1 S4F12.4+10X410HA SUB 1 ®meF126448Xs
* 4He000411Xe8H1.00004F18,44)
1072 FORMAT(IH +4Xe10HB SUB 1 24F12.4+10Xe10HA SUB 1 =e¢F12e448Xs
* QHe 000411 Xe6H1 q0000410X «BHINFINITY)
1080 FORMAT(IH +4X+sSHB SUBWI3+2H =eF12e¢4+10Xs5HA SUBeI3¢2H =3F12e4
* F12¢3¢F17s4+F18e4)
1090 FORMAT(1IH 14X +SHB SUBeI342H =4F12e4410XeSHA SUBe13¢2H =9F12e445X
* BHINFINITYsF16444F1804)




1100
1110
1120
1130
1140
1150
1160
1170
1180

a5
50

51
35
60
65

70
90

100
110
120

130
140
150
160
170
180
181
182
183

190
200
210
220
230
240
2s0

260
270

280
290

30n
310

FORMAT(1H 4% +SHE SUBsI3+2H =¢F1244+10X+B3HA SUBWI392H =+F1244)
FORMAT(1H +4XeSHB SUBs1342H =4F12e4+:32XeF12¢34F17e4¢F18.4)
FORMAT(IH +AXsSHB SUBe1342H =4F1264¢37XsBHINFINITY F16644F18,44)
FORMAT(1IH +8XeRHR SURBe 1342H =4F12,4)

FORMAT(1H ¢36Xe5HA SUBGI342H =4F12.44F12e3¢F17e44F18e4)
FORMAT(1H +36XeSHA SUBe I3¢2H 24F12.4+5X+8HINFINITYF16e44F1844)
FORMAT (1M ¢36X+SHA SUBs13+2H =24F12,4)

FORMAT(IH +58XeF12¢3+F17+4+F1844)

FORMAT (1H +63X8HINFINITYF16:44F1844)

NP=30

DO 60 1=2.NP

GO TO (S5e4)¢INDEX

SRS(1)=SR(1) $ SCS(1)=28C(I)

GO YO 5%

IF (1=5) 30430410

IF (1-10) 40,40,20

IF (1=17) 45:45,:25%

IF (1=25) 50450451

Jerxl=2 € XP(1)=0,01%y

GO YO 5%

J=l-a $ XP(1)1=0,05%y

GO TO S5

J=l=7 € XP(1)=0,10%J

GO TO 5%

Jxl=13 € XP(1)=0,25%J

GO TO 5%

J=1=2p S XP(1)=1,0N%y

CALL SHAPE(1+XP(I)sSR(T1Y) € CALL VORTEX(XP(I)1+Gl14SC(1))
CONT INUE

PRINT 1000¢IMsIDWtY $ PRINT 10104ALPHALWBETACC+LAMBDA
PRINT 1020+NXS«NXG $ IF (NXS-NXG) 70470480
MENXS $ GO TO 90

mM=NXG

PRINT 10304 (T eXS{IIeleXG(TYolxt M)

M=M4 1 € IF (NXS-NXG) 100,120,110
PRINT 10404 (1 4XG(I)eI=MINXG) € GO TO 120

PRINT 10504 (1 eXS(1)s1=MNXS)

PRINT 1060,I1TFR $ PRINT 1070

IF (NXS=NXG) 13041404140

IF (NXG-NP) 150,150,160

IF (NXS=NP) 15C+150,170

MaNP+1 $ GO TO 180

M=NXG $ GO TO 180

M=NXS

KOUNT=] $ IF (ITER) 181,181,182
PRINT 1071¢B(1)+A(1)4+G1 $ GO TO 183

PRINT 1072B(1)sA(1)

NO 390 1=2.M

IF (1=NXS) 190,190+220

IF (1=NXG) 200,200,210

IF (1=NP) 25042504260

IF (1=NP) 29042904300

IF (1=NXG) 230,2304+240

IF (1=NP) 330,3304+340

IF (1=NP) 37043704380

PRINT 10804¢14B(I)elsA(I)IeXP(I)eSR(1)eSC(])
GO TO 390

GO TO (2704280)«KOUNT

PRINT 1090¢1+4B(I1)s14A(1)aT1,+G1

KOUNT=2 € GO TO 390
PRINT 1100414B(1)el1eAC(T) $ GO TO 390
PRINT 1110414B(I)eXP(1)4SRIIIeSC(])

GO To 390

GN TO (3104320) ¢ KOUNT
PRINT 112041¢B(1)¢T14G1
KOUNT =2 $ GO TO 2390
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320
330

340
350

360
370

380
290

10

20

a0

40
&0
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PRINT 1130s1e8(1) $ GO TO 390
PRINT 11401 4A(I)eXP(1)eSR(I)eSCI(I])

GO TO 390

GO TO (350¢360)+KOUNT

PRINT 11501 ¢A(T1)eT1GI

KOUNT=2 $ GO TO 390
PRINT 1160¢T¢A(T1) GO TO 1390
PRINT 1170eXP(T)e4SR(I)e¢SC(]) GO TO 360
PRINT 1180.T1.61

CONT INUF

END

LR

SUBROUT INE GPMHALF (Z ¢ QPH 4 QMH )
TYPE RFAL KPRIMESQ.K

KPRIMESO21e0=(2.0/(Z+160) ) & Al=KPRIMESQ

AZ=A1%#A1 S AI=APRAL

AA=ADRAD $ ALO=LOGF (1.0/KPRIMESQ)
KZSORTF(2.0/(Z+1.0)) S BaSORTF(2.0%(Z+1.0))
FLE=1.00000000000+,44325141463%A1+,06260601220%A2

. +.04757383546#A3+. 01736506451 #Ad+

» (2849987368310 %#A1+,09200180037#A2+

» «04069697526%A34,00526449639#A4 ) ¥ALO
ELK=1e386294361124.09666344259#A1+,03550092383%A2

» 400374256371 3#A3+,01851 10621 2%A4+

. («S0000000000+4,12498593597#A1+4+,0688024B576%A2

» 4.03328355346%#A3+,00441787012%#A4 ) #ALO
OPHxZ¥K#ELK-B#*ELE $ QMH=K®ELK

END

SUBROUT INE SHAPF (KODF ¢ X+ S)
FXTERNAL FJ

COMMON/ ADDFD/FZ(%0)«T1
COMMON/COEFS/A(S0)+B8(50)
COMMON/NUMBERXS /NXS ¢ NXG

GO TO (10430)4kODF

SaT1

NO 20 J=:1 eNXS
S=S+RIJIRFIINe )

CONT INUF
GO To =0
Sx140

NO 40 J=1.NXS
S=S=R(JVI¥FZ ()
CONT INUE

FND

SUBRNOUT INE TOPROT(Z2Z)

COMMON/L IMITS/TORP(7)«BOT(T7)«NGD(T)

nO 10 1=t1.7

TOP(1)=BOT(1)=04.0 $ NGD(1)=1
CONT INUIE

NGD(4)=1

IF (ABSF(2Z)~0,0000001) B0+80,20

IF (ZZ) 70480430

IF (ABSF(ZZ~042)~0.0000001) 1004100440

IF (ZZ-042) 1004100450

IF (ABSF(ZZ-3.0)~0,0000001) 140,4140,60

IF (ZZ-340) 14041404150

NGD(4)=2 $ FPS=0,1
GO TO a9n

FPS=0405
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90

100
110
120
130
140
150

160
170

180

10

10

TOP(4)=BOT (S )=EPS
TOP(6)=2BOT(7)=10.0

GO TO 180

IF (ZZ-0405) 11041104120
EPS=22Z

EPS=0405

TOP(3)=BOT (4)=ZZ-EPS
GO To 170
TOP(2)=BOT(3)=0.15

GO To 160
TOP(1)=BOT(2)=0.,15
TOP(3)1=BOT(4)=ZZ=0,05
TOP(4)=BOT(5)1=2Z+0.05
TOP(S)=BOT(6)=22Z+10
TOP(7)=2Z4100,0C

FEND

SUBROUTINE TWOINTGL(FA'FBeAB)
COMMON/LIMITS/TOP(7)+eBOT(T7)NGD(7)

NO 20 12147

TOP(%5)=BOT(6)=10
TOP(7)=100.0

GO TO 130
TOP(4)=BOT(S)=ZZ+EPS
TOP(3)=80T(4)=2ZZ~-0.05

TOP(2)=B0T(3)=ZZ~1.0

TOP(6)=BOT(7)=ZZ+10.0

1IF (ABSF(TOP(1)~BOT(1))~0+0000001) 20420410
CALL NGAUSS(TOP(TI)+BOT(1)«FANGND(T1)4AA)
CALL NGAUSSI(TOP(1)¢BOT(1)+FBINGD(])+BB)

AzA4AA
CONT INUE
END

SUBRNUT INE VORTEX(XsGleV)

EXTERNAL GJ
COMMON/COEFS/A(S50).B(50)
COMMON/NUMBERXS /NXS ¢ NXG
V=le0
DO 10 JU=1..NXG
VEV4A(JIRGII(XeJ)
CONT INUE
vaGlay
END
END ROTOROGE
FINIS

CR-1027

% P=RA+RB
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