NASACONTRACTOR REPORT

NASA CR-1027

NASA CR-1027

> GPO PRICE S
\qquad
CFSTI PRICE(S) S \qquad

Hard copy (HC) \qquad
Microfiche (MF) \qquad

INVISCID FLOW FIELD INDUCED BY A ROTOR IN GROUND EFFECT

by Michael D. Greenberg and Alvin L. Kaskel

Prepared by
THERM ADVANCED RESEARCH, INC.
Ithaca, N. Y.
for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D.C. • MAY 1968

INVISCID FLOW FIELD

INDUCED BY A ROTOR IN GROUND EFFECT

By Michael D. Greenberg and Alvin L. Kaskel

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 1-6349 by THERM ADVANCED RESEARCH, INC. Ithaca, N.Y.
for Langley Research Center

INVISCID FLOW FIELD
 INDUCED BY A ROTOR IN GROUND EFFECT

By Michael D. Greenberg and Alvin L. Kaskel Therm Advanced Research, Inc.

SUMMARY

The inviscid flow field induced by a rotor in ground effect is calculated based upon an actuator disk model of the rotor, for the case of a constant circulation distribution over the blade radius. The governing nonlinear integral equations are solved by a systematic iterative scheme which is similar to the Newton-Raphson method for the solution of nonlinear algebraic equations. Numerical results are presented for both the ground-effect case and the out-of-ground-effect limit.

INTRODUCTION

Abstract

Several important problems arise in connection with a rotor hovering in ground effect, such as downwash impingement, and the effect of rotor-ground interference on the blade loading.

In the present paper, we are concerned with the problem of downwash impingement. Of the various aspects of this problem, we will confine our attention to the calculation of the inviscid flow field. This is of special importance since it is required as input for the subsequent calculation of the ground boundary layer and particle entrainment.

A numerical investigation of the inviscid flow field induced by a finitebladed rotor has been carried out at the Cornell Aeronautical Laboratory, over the past several years, by W. G. Brady, P. Crimi, F. A. DuWaldt, and A. Sowyrda. Initially, they represented the rotor wake by discrete (finite core) vortex rings released periodically from the edge of the rotor disk (References 1,2). More recently, they have used a wake model based upon distorted continuous helices emanating from the blade tips (Reference 3).

In contrast, we will consider the axisymmetric flow field associated with an actuator disk representation of the rotor. The governing nonlinear integral equations will be solved by a systematic iterative procedure which is based upon the Newton-Raphson method for the solution of nonlinear algebraic equations (Reference 4). The mathematical treatment is somewhat general and could, we believe, be applied to other nonlinear free-boundary problems.

The nonlinear actuator disk, in the absence of ground effect, has already been treated in an important paper by T. Y. Wu (Reference 5), although numerical
results are not yet available. The work of H. R. Chaplin (Reference 6) should also be noted, even though it deals with the shrouded disk, since that problem is fundamentally similar to the one treated here. Both Wu and Chaplin employ iterative schemes which differ appreciably from the one developed in the present paper.

The authors would like to thank their colleagues, Messrs. J. C. Erickson, Jr. and G. R. Hough, for many helpful discussions during the course of this work.

PRINCIPAL NOMENCLATURE

a_{j}	coefficients in expansion of slipstream vorticity
b_{j}	coefficients in expansion of slipstream radius
C	loading coefficient
C_{T}	thrust coefficient, thrust/ $/(\Omega R)^{2}\left(\pi R^{2}\right)$
f_{j}	matching functions for slipstream shape
F	function in dynamic equation, $c-c^{2} / 4 T^{2}(x)$
F_{∞}	F with $T(x)$ replaced by T_{∞}
g_{j}	matching functions for slipstream vorticity
G	Green's function for L, over the infinite domain $-\infty<x<\infty, r<\infty$
h_{j}	modified $\mathbf{f}_{\mathbf{j}}{ }^{\prime} \mathbf{s}$ for ground-effect case
L	linear differential operator, $\nabla^{2}-r^{-2}$
M	number of shape collocation points
n	iteration index
N	number of gamma collocation points
p	static pressure
q	fluid velocity, $\left(u^{2}+v^{2}+w^{2}\right)^{\frac{1}{2}}$
$Q_{ \pm \frac{1}{2}}$	Legendre functions of second kind and degree $\pm \frac{1}{2}$
t, T	slipstream radius, with arguments ξ and x respectively
u, v,w	x, x, θ fluid velocity components
U	free-stream speed

x, r, θ	cylindrical coordinates
X	x-location of ground plane
α, β	damping factors
$\gamma_{,} \gamma_{s}$	slipstream circulation per unit x -length and arc-length, respectively
$\boldsymbol{\gamma}_{\infty}$	asymptotic value of γ
Γ	blade circulation distribution
ζ	meridional velocity, $\left(u^{2}+v^{2}\right)^{\frac{1}{2}}$
λ	advance ratio, $U / \Omega R$
ξ, p	dummy x, r variables, respectively
$\widetilde{\rho}$	fluid mass density
Ψ	stream function
Ψ_{∞}	value of Ψ on the slipstream
$\widetilde{\omega}_{1,2}$	Legendre function arguments
Ω	blade rotational velocity, radians per unit time
()$^{\prime}$	prime denotes perturbational quantity
()$_{x}$	subscripted variable denotes partial differentiation with respect to that variable
()$^{(n)}$	$n^{\text {th }}$ iterate
$\sqrt{ }$	$d($ arc-length $) / d x,\left[1+(d T / d x)^{2}\right]^{\frac{1}{2}}$

NOTE: Prior to equation (21), all quantities are in dimensional form. Starting with equation (21), they are nondimensionalized as follows: lengths with respect to R; velocities, γ and γ_{s} with respect to ΩR; Γ with respect to ΩR^{2}; and Ψ with respect to ΩR^{3}. However, for notational simplicity we omit any explicit reminder of nondimensionalization, such as primes or asterisks.

```
Out-of-Ground-Effect Limit; Actuator Disk Theory
```

Governing Nonlinear Differential Equation. Let us consider a propeller of blade radius R and negligible hub radius, operating relative to a uniform free stream U. We consider the blade number to be infinite, the so-called "actuator disk" model, and view the steady axisymmetric flow from a Newtonian x, r, θ coordinate system; see Fig. 1 (where we have sketched only one of the infinitely

Figure 1. Coordinates and Geometry
many blades). The static actuator disk, i.e. for $U=0$, is equivalent to our hovering rotor out of ground effect. We will, however, retain an arbitrary U in our analysis since it presents no additional difficulty and, at the same time, extends the applicability of our solution from the static condition, up to the light loading limit (where $U \gg$ the perturbational velocities).

The flow field is defined by the x, r, θ velocity components u, v, w respectively, or - equivalently - by w and a stream function Ψ, such that

$$
\begin{align*}
& u=u+u^{\prime}=\Psi_{r} / \mathbf{r} \tag{1}\\
& v=v^{\prime}=-\Psi_{X} / \mathbf{r} \tag{2}
\end{align*}
$$

where the primed terms are perturbational quantities, and subscripts denote partial differentiation.

It has been shown by Wu (Reference 4), that Ψ must satisfy the following nonlinear partial differential equation,

$$
\begin{equation*}
\Psi_{r r}-x^{-1} \Psi_{r}+\Psi_{x x}=-\left(\Omega r^{2}+w r\right) d(w r) / d \Psi \tag{3}
\end{equation*}
$$

Briefly, this may be derived by computing the circulation about an elemental meridional area $d x d r$, in two different ways: According to stokes' theorem it may be computed as the θ component of vorticity, $v_{x}-u_{r}$, times the area dxdr , or, alternatively, as the line integral of " q • dr" around the circumference of the element. Equating these two results produces (3).

Conversion to an Integral Equation. It will be convenient to convert (3) to an integral equation. With $L \equiv \nabla^{2}-r^{-2}$ and $\Psi=U r^{2} / 2+\Psi^{\prime}$, we can express (3) in the form

$$
\begin{equation*}
L\left(\Psi^{\prime} / r\right)=-(\Omega r+w) d(w r) / d \Psi \tag{4}
\end{equation*}
$$

Noting that L is linear (the nonlinearity being confined to the right hand side) we apply the method of Green's functions: Specifically, we seek the Green's function G as the solution of the associated equation

$$
\begin{equation*}
L(G / x)=-\delta(x-\xi) \delta(x-\rho) \tag{5}
\end{equation*}
$$

with the δ 's denoting Dirac delta functions. Multiplying (5) through by $r J_{1}(\bar{r} r) \exp (-i \bar{x} x)$ and integrating on r from $0 \rightarrow \infty$ and on x from $-\infty \rightarrow \infty$, we obtain

$$
\begin{equation*}
\rho J_{1}(\bar{x} \rho) e^{-i \bar{x} \xi} /\left(\bar{x}^{2}+\bar{x}^{2}\right) \tag{6}
\end{equation*}
$$

as the Hankel-Fourier transform of G / r, where J_{1} denotes the Bessel function of the first kind and order one. Carrying out the Fourier inversion using the calculus of residues, and the Hankel inversion with the help of formula (2) on page 389 of Reference 7, we obtain

$$
\begin{equation*}
G(\xi, \rho ; x, r)=r^{\frac{1}{2}} \rho^{\frac{1}{2}} Q_{\frac{1}{2}}(\widetilde{\omega}) / 2 \pi \tag{7}
\end{equation*}
$$

where $Q_{\frac{1}{2}}$ is the Legendre function of second kind and degree $\frac{1}{2}$, with argument

$$
\begin{equation*}
\widetilde{\omega}=1+\left[(\xi-x)^{2}+(\rho-r)^{2}\right] / 2 \rho r \tag{8}
\end{equation*}
$$

This is equivalent to the forms given by Wu and Chaplin. Physically, we may identify G as the stream function induced at a field point x, r, θ by a ring

Figure 2. Interpretation of the Green's Function
vortex of unit strength, as shown in Fig. 2 .
With the Green's function in hand, we may re-express (3) in the form

$$
\begin{equation*}
\Psi(x, r)=u r^{2} / 2+\iint_{D} \frac{r^{\frac{1}{2}} \rho^{\frac{1}{2}}}{2 \pi} Q_{l_{1 / 2}}(\widetilde{\omega})(\Omega \rho+w) \frac{d(w \rho)}{d \Psi} d \rho d \xi \tag{9}
\end{equation*}
$$

This is a nonlinear integral equation in the two unknowns Ψ and D. The region D is clearly the slipstream, since w - and hence $d(w \rho) / d \Psi$ - is zero outside the slipstream, by application of Kelvin's theorem.

Reduction for Uniform Circulation Distribution. For the case of uniform blade circulation distribution we have

$$
\begin{array}{rlrl}
w \rho & =\text { constant }=-\Gamma / 2 \pi & & \text { inside } D \\
& =0 & & \tag{10}\\
& & \text { outside } D
\end{array}
$$

where Γ is the strength of the "hub" vortex, coinciding with the positive x axis. Converting the ρ, ξ integration variables to Ψ, ξ according to $d \rho d \xi=$ $d \Psi d \xi /(\partial \Psi / \partial \rho)$, the Ψ integration can be carried out explicitly since the $d(w \rho) / d \Psi$ term in the integrand is zero except at the hub and tip; $\rho=0, R$. of these two contributions, the hub portion is zero since $\rho^{\frac{1}{2}} Q_{\frac{1}{2}}=0$ at $\rho=0$. The resulting integral equation, then, is

$$
\begin{equation*}
\Psi(x, r)=U r^{2} / 2+\left.\frac{r^{\frac{1}{2}}}{4 \pi^{2}} \int_{0}^{\infty}\left\{\Omega \Gamma t^{3 / 2}-\frac{\Gamma^{2}}{4 \pi} t^{-\frac{1}{2}}\right\} Q_{\frac{1}{2}}\left(\tilde{\omega}_{1}\right) \frac{d \xi}{\partial \Psi / \partial \rho}\right|_{\rho=t} \tag{11}
\end{equation*}
$$

where $t(\xi)$ will denote the slipstream radius, and $\widetilde{\omega}_{1}$ is identical to $\widetilde{\omega}$, with ρ replaced by $t(\xi)$.

Vortex Sheet Interpretation. Although we can work directly with (11), we prefer to re-express the integral term in terms of an equivalent vortex representation of the slipstream; specifically, a distribution of ring vortices*, of circulation $\gamma(\xi)$ per unit ξ-length, over the slipstream surface $\rho=t(\xi)$.

According to our physical interpretation of the Green's function G, we can therefore express $\Psi(x, r)$ in the form

$$
\begin{equation*}
\Psi(x, r)=U r^{2} / 2+\int_{0}^{\infty} G(\xi, t ; x, r) \gamma(\xi) d \xi \tag{12}
\end{equation*}
$$

We can establish the equivalence between (11) and (12) as follows:
Applying the Bernoulli equation to streamline A (see Fig. 3) between the points " ∞ " and $\left(\xi, t^{+}\right)$, we have

$$
\begin{equation*}
p_{A}+\frac{1}{2} \widetilde{p}_{A}^{2}=p_{\infty}+\frac{1}{2} \widetilde{p}^{2}{ }^{2} \tag{13}
\end{equation*}
$$

where $\tilde{\rho}$ is the fluid mass density and $q^{2} \equiv u^{2}+v^{2}+w^{2}$.

Figure 3. Application of Bernoulli Equation

[^0]If we also apply it to streamline B, from ${ }^{\prime \prime} \infty$ " to ($0^{-}, R^{-}$) and then from $\left(O^{+}, R^{-}\right)$to $\left(\xi, t^{-}\right)$, we find that

$$
\begin{equation*}
p_{B}+\frac{1}{2} \widetilde{p} q_{B}^{2}=p_{\infty}+\frac{1_{2}}{\Sigma_{\rho}} U^{2}+\frac{1}{2} \tilde{p} w^{2}\left(O^{+}, R^{-}\right)+\Delta p \tag{14}
\end{equation*}
$$

where Δp is the pressure jump across the propeller plane at $\rho=R^{-}$. Now, the slipstream vorticity drifts freely so that we must have $p_{B}-p_{A}=0$. Subtracting (13) from (14), then,

$$
\begin{equation*}
0=p_{B}-p_{A}=\Delta p-\frac{1}{2} \tilde{p}\left(q_{B}^{2}-q_{A}^{2}\right)+\frac{1}{2} \widetilde{p}^{2}\left(0^{+}, R^{-}\right) \tag{15}
\end{equation*}
$$

The first and last terms on the right side are simply

$$
\begin{align*}
\Delta p & =d(\text { thrust }) / 2 \pi \rho d \rho \\
& =\tilde{\rho}(\Omega \rho-\Gamma / 4 \pi \rho) \Gamma d \rho / 2 \pi \rho d \rho \tag{16}
\end{align*}
$$

at $\rho=R^{-}$, according to the Kutta-Joukowski formula, and

$$
\begin{equation*}
\frac{1}{2} \tilde{\rho}^{2}{ }^{2}\left(O^{+}, R^{-}\right)=\frac{1}{2} \tilde{\rho}(\Gamma / 2 \pi R)^{2} \tag{17}
\end{equation*}
$$

according to (10). To evaluate the middle term in (15), we note that

$$
\begin{align*}
q_{B}^{2}-q_{A}^{2} & =\left(u^{2}+v^{2}+w^{2}\right)_{B}-\left(u^{2}+v^{2}+w^{2}\right)_{A} \\
& =\zeta_{B}^{2}-\zeta_{A}^{2}+\Gamma^{2} / 4 \pi^{2} t^{2} \tag{18}
\end{align*}
$$

where we have defined the "meridional" velocity, $\zeta \equiv\left(u^{2}+v^{2}\right)^{\frac{1}{2}}$, and have used the fact that $w_{B}=\Gamma / 2 \pi t$ and $w_{A}=0$ from (10). Finally,

$$
\begin{align*}
\zeta_{B}^{2}-\zeta_{A}^{2} & =\left(\zeta_{B}-\zeta_{A}\right)\left(\zeta_{B}+\zeta_{A}\right) \\
& =\left(\gamma_{s}\right)(2 \zeta)=2 \gamma u \tag{19}
\end{align*}
$$

where γ_{s} denotes the slipstream circulation per unit arc-length along the slipstream. Combining (15)-(19), we may express the force-free condition on
the slipstream in the simple form

$$
\begin{equation*}
\gamma u=\frac{\Omega \Gamma}{2 \pi}-\frac{\Gamma^{2}}{8 \pi^{2} t^{2}} \tag{20}
\end{equation*}
$$

If we solve (20) for γ, noting that $u=\Psi_{\rho} / \rho$ at $\rho=t$, we find that the integral term in (12) is, in fact, identical to the one in (11), thus establishing the validity of our vortex sheet representation.

The Final Integral Equations. First, let us non-dimensionalize as follows: lengths with respect to R; velocities, γ and γ_{s} with respect to ΩR; Γ with respect to ΩR^{2}; and Ψ with respect to ΩR^{3}. For notational simplicity we will omit any explicit reminder of nondimensionalization, such as asterisks or primes, in the remainder of the report. Equations (12) and (20), for example, may therefore be rewritten as

$$
\begin{align*}
& \Psi(x, r)=\lambda r^{2} / 2+\int_{0}^{\infty} G(\xi ; t ; x, r) \gamma(\xi) d \xi \tag{21}\\
& \gamma u=\frac{c}{2}-\frac{c^{2}}{8 t^{2}} \tag{22}
\end{align*}
$$

respectively, where we have defined an advance ratio $\lambda \equiv U / \Omega R$, and a "loading coefficient" $C \equiv \Gamma / \pi$.

Whereas the integral equation (21) contains both the kinematics and dynamics, we prefer to express these conditions separately. The kinematic condition on the slipstream is that it be a streamline (more precisely, an axisymmetric stream surface). Setting $r=T(x)^{*}$ in (21), we have

$$
\begin{equation*}
\Psi_{\infty}=\lambda T^{2} / 2+\int_{0}^{\infty} G(\xi, t ; x, T) \gamma d \xi \tag{23}
\end{equation*}
$$

where we have set $\Psi(0,1)=\Psi[\infty, T(\infty)] \equiv \Psi\left(\infty, T_{\infty}\right) \equiv \Psi_{\infty}$.
The dynamic condition is given by (22). Changing the independent variable from ξ to x, and noting that $u=\Psi_{r} / r$ at $r=T$, with Ψ_{r} obtained from (21), we obtain

[^1]\[

$$
\begin{equation*}
\left\{\frac{c}{2}-\frac{c^{2}}{8 T^{2}}\right\} \frac{T}{\gamma}-\lambda T=\int_{0}^{\infty} G_{T}(\xi, t ; x, T) \gamma d \xi \tag{24}
\end{equation*}
$$

\]

Equations (23) and (24), then, constitute two coupled nonlinear integral equations in the two unknowns γ and T, and are to be satisfied over the extent of the slipstream, $0<x<\infty$.

The kernels are as follows:

$$
\begin{align*}
G & =T^{\frac{3}{2}} \mathrm{t}^{\frac{1}{2}} Q_{\frac{3}{2}}\left(\widetilde{\omega}_{2}\right) / 2 \pi \\
& =0(\ln |\xi-x|) \quad \text { as } \quad \xi \rightarrow x \\
& =O\left(\xi^{-3}\right) \quad \text { as } \xi \rightarrow \infty \tag{25}
\end{align*}
$$

where $\tilde{\omega}_{2}$ is identical to $\widetilde{\omega}$, with ρ and r replaced by t and T respectively. Using the relation,

$$
\begin{equation*}
d Q_{\frac{1}{2}}(z) / d z=\left[z Q_{\frac{l_{2}^{2}}{}}(z)-Q_{-\frac{1}{2}}(z)\right] / 2\left(z^{2}-1\right) \tag{26}
\end{equation*}
$$

we may express

$$
\begin{align*}
G_{T} & =\left[A Q_{\frac{l_{2}}{}}\left(\widetilde{\omega}_{2}\right)+B Q_{-\frac{1}{2}}\left(\widetilde{\omega}_{2}\right)\right] /\left(\widetilde{\omega}_{2}^{2}-1\right) \\
& =0(\xi-x)^{-1} \quad \text { as } \quad \xi \rightarrow x \\
& =0\left(\xi^{-3}\right) \quad \text { as } \quad \xi \rightarrow \infty \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
& A=\left[T^{2}-t^{2}+(\xi-x)^{2}\right] / 8 \pi T^{\frac{1}{2}} t^{3 / 2} \\
& \mathbf{B}=\left[t^{2}-T^{2}+(\xi-x)^{2}\right] / 8 \pi T^{3 / 2} t^{\frac{3}{2}} \tag{28}
\end{align*}
$$

Finally, we point out that the integral in (24) is to be interpreted in the Cauchy principal value sense.

Asymptotic Behavior of the Unknowns. Before proceeding with the detailed solution of (23) and (24) let us examine the equations at $x=0$ and ∞.

As $x \rightarrow \infty$, it is known that $T(x) \sim$ constant $\equiv T_{\infty}$, say, and $\gamma(x) \sim$ constant $\equiv \gamma_{\infty}$. With these quantities constant at $x=\infty$, the integrals in (23) and (24) can be evaluated analytically. Instead of pursuing the details
of the integration, let us use the known fact (e.g. Reference 8) that an infinite solenoid of constant radius and constant vortex strength, T_{∞} and γ_{∞} in our case, induces a velocity field given by

$$
\begin{array}{rlrl}
\left(u^{\prime}, v^{\prime}, w^{\prime}\right) & =(0,0,0) & & r>T_{\infty} \\
& =\left(\gamma_{\infty} / 2,0,0\right) & , r=T_{\infty} \\
& =\left(\gamma_{\infty}, 0,0\right) & & r<T_{\infty} \tag{29}
\end{array}
$$

Now, since $2 \pi \Psi(\xi, \rho)$ is the mass flow through the disk $r<\rho$ at $x=\xi$, we see - by virtue of (29) - that (23) must reduce to

$$
\begin{equation*}
\Psi_{\infty}=\left(\pi T_{\infty}^{2}\right)\left(\lambda+\gamma_{\infty}\right) / 2 \pi=T_{\infty}^{2}\left(\lambda+\gamma_{\infty}\right) / 2 \tag{30}
\end{equation*}
$$

at $x=\infty$. Noting that (24) is merely a re-statement of (22), we see also that (24) must reduce to

$$
\begin{equation*}
\gamma_{\infty}\left\{\lambda+\frac{\gamma_{\infty}}{2}\right\}=\frac{c}{2}-\frac{c^{2}}{8 T_{\infty}^{2}} \equiv \frac{F_{\infty}}{2} \tag{31}
\end{equation*}
$$

at $x=\infty$, where we have introduced the quantity $F(x) \equiv c-c^{2} / 4 T^{2}(x)$ for convenience. Equation (31) can be solved for γ_{∞} in the form

$$
\begin{equation*}
\gamma_{\infty}=\left(\lambda^{2}+F_{\infty}\right)^{\frac{1}{2}}-\lambda \tag{32}
\end{equation*}
$$

It is interesting to note that (30) and (32) constitute two equations in the three unknowns $\Psi_{\infty}, T_{\infty}$ and γ_{∞} so that the final slipstream contraction cannot be computed (in terms of the operating conditions λ and C) simply by investigation of the asymptotic behavior, but must await the complete solution of the governing equations (23) and (24).

Now let us see what can be said about the behavior of the unknowns at the lip of the slipstream; i.e. as $x \rightarrow 0$ through positive values. Consider, first, the static case, where $\lambda=0$. Anticipating a flow field as sketched in Fig. 4, it is clear that the flow around the lip implies a square-root singularity in the circulation, so that $\gamma_{s}(x)=O\left(x^{-\frac{1}{2}}\right)$ as $x \rightarrow 0$. This singularity should be present even when $\lambda>0$, and will vanish only in the light loading limit where the slipstream-induced jet velocity is negligible compared to the free stream.

Figure 4. Flow Fleld for the Static Condition

Solution Based Upon the Newton-Raphson Method. With an exact solution of the highly nonlinear, coupled, integral equations (23) and (24) apparently out of the question, we will develop an iterative solution as follows. Starting with

$$
\begin{align*}
& T^{(0)}(x)=\text { constant }=1 \tag{33}\\
& \gamma^{(0)}(x)=\text { constant }=\gamma_{\infty}^{(0)} \tag{34}
\end{align*}
$$

we determine an improved slipstream shape, $\mathbf{T}^{(1)}$, from (23); with $\mathbf{T}=\mathbf{T}^{(1)}$ we then determine an improved vortex distribution, $\gamma^{(1)}$, from (24); with $\gamma=\gamma^{(1)}$, $T^{(2)}$ is then computed from (23), and so on, until suitable convergence is attained. Our notation is to be interpreted in the obvious way. For example, $\gamma_{\infty}^{(0)}$ is given by (32) with F_{∞} replaced by $F_{\infty}^{(0)}$ which, in turn, is defined according to the same formula as $F(x)$ but with $T(x)$ replaced by $T_{\infty}^{(0)}$.

In order to carry out the solution of (23) for $T^{(n+1)}$ at each step we linearize all the terms in (23) about the previous iterate, $T^{(n)}$. Similarly, to solve (24) for $\gamma^{(n+1)}$ we expand the nonlinear term about $\gamma^{(n)}$. Specifically,

$$
\begin{align*}
\Psi_{\infty}^{(n+1)} & =T_{\infty}^{(n+1) 2}\left(\lambda+\gamma_{\infty}^{(n)}\right) / 2 \\
& \approx\left[T_{\infty}^{(n) 2}+2 T_{\infty}^{(n)}\left(T_{\infty}^{(n+1)}-T_{\infty}^{(n)}\right)\right]\left(\lambda+\gamma_{\infty}^{(n)}\right) / 2 \tag{35}\\
T^{(n+1) 2} & \approx T^{(n) 2}+2 T^{(n)}\left(T^{(n+1)}-T^{(n)}\right) \tag{36}\\
G^{(n+1)} & \approx G^{(n)}+G_{T}^{(n)}\left(T^{(n+1)}-T^{(n)}\right)+G_{t}^{(n)}\left(t^{(n+1)}-t^{(n)}\right) \tag{37}
\end{align*}
$$

in (23), where $G^{(n)}$ denotes $G\left(\xi, t^{(n)} ; x, T^{(n)}\right)$, and

$$
\begin{equation*}
1 / \gamma^{(n+1)} \approx 1 / \gamma^{(n)}-\left(1 / \gamma^{(n)}\right)^{2}\left(\gamma^{(n+1)}-\gamma^{(n)}\right) \tag{38}
\end{equation*}
$$

in (24). This "stepwise linearization" is, basically, analogous to the NewtonRaphson method for the solution of algebraic equations (Reference 4). We emphasize that (35)-(38) tend to equalities as the (presumably convergent) iteration proceeds, and therefore in no way compromise the full nonlinearity of (23) and (24).

Whereas the two "correction" terms in (38), for example, are supplied automatically by the mathematics, it is instructive to interpret them physically. Multiplying (23) through by 2π, for convenience, and taking $n=0$ for definiteness, the integral term is expanded, according to (38), in the form

$$
\begin{align*}
2 \pi \int_{0}^{\infty} G^{(1)} \gamma^{(0)} d \xi \approx & 2 \pi \int_{0}^{\infty} G^{(0)} \gamma^{(0)} d \xi+2 \pi \int_{0}^{\infty} G_{T}^{(0)}\left(T^{(1)}-T^{(0)}\right) \gamma^{(0)} d \xi \\
& +2 \pi \int_{0}^{\infty} G_{t}^{(0)}\left(t^{(1)}-t^{(0)}\right) \gamma^{(0)} d \xi \equiv \text { (1) + (2) + (3) } \tag{39}
\end{align*}
$$

Now, (1) is easily identified as the mass flow rate induced through the disk AB (see Fig. 5) by $\gamma^{(0)}$ on $t^{(0)}$, whereas we really want the flow induced through $A C$ by $\gamma^{(0)}$ on $t^{(1)}$ if (23) is to be an equality at that particular

Figure 5. Interpretation of Correction Terms
value of x. The next term, (2), does in fact partially correct this by deducting (approximately) the flow through the annulus BC. To see this, let us re-express

$$
\begin{equation*}
\text { (2) }=\underbrace{-2 \pi T^{(0)}\left(T^{(0)}-T^{(1)}\right)}_{(1)} \cdot \underbrace{\frac{1}{T^{(0)}} \int_{0}^{\infty} G_{T}^{(0)} \gamma^{(0)} d \xi}_{(i 1)} \tag{40}
\end{equation*}
$$

where (i) approximates the area of the annulus BC, and (ii) is the x-velocity induced at B by $\gamma^{(0)}$ on $t^{(0)}$.

The last term, (3), supplies an additional correction which is not, however, as easily interpreted in physical terms.

To provide a measure of control over the convergence of the iteration we introduce "damping factors" α and β so that the right hand side of (37) is replaced by

$$
\begin{equation*}
G^{(n)}+\alpha G_{T}^{(n)}\left(T^{(n+1)}-T^{(n)}\right)+\beta G_{t}^{(n)}\left(t^{(n+1)}-t^{(n)}\right) \tag{41}
\end{equation*}
$$

Based upon numerical results, we have found that if $\alpha+\beta$ is too small, $T^{\text {(1) }}$ will be overcontracted and the iteration will diverge. An optimum is obtained, with regard to rapid convergence, when $\alpha+\beta$ is increased to approximately 1.8, independent of the disk loading. Curiously, the details of the iteration are quite insensitive as to how the "1.8" is divided between α and β. Consequently, we will take $\beta=0$, from here on, for simplicity.

Actually, it is not surprising that with $\beta=0$ the optimum $\alpha \approx 1.8$ since (ii) in (40) is the x-velocity computed right on the slipstream at B (Fig. 5) whereas the desired velocity just inside the slipstream is approximately twice as large**.

To proceed with the solution we expand

$$
\begin{align*}
T^{(n)}(x) & =1+\sum_{j=1}^{M}\left[f_{j}(x)-f_{j}(0)\right] b_{j}^{(n)} \tag{42}\\
\gamma^{(n)}(x) & =\sqrt{1+\left(d T^{(n)} / d x\right)^{2}} \gamma_{s}^{(n)}(x) \\
& =" \sqrt{(n)}^{(n)} \gamma_{\infty}^{(n)}\left\{1+\sum_{j=1}^{N} g_{j}(x) a_{j}^{(n)}\right\} \tag{43}
\end{align*}
$$

[^2]where the f_{j} 's and g_{j} 's are suitably chosen "matching functions" which tend to zero at infinity. The form of these expressions guarantees satisfaction of the required end conditions, $T^{(n)}(0)=1$ and $\gamma^{(n)}(\infty)=\gamma_{\infty}^{(n)}$. In addition, at least one of the $g_{j}^{\prime} s$ include an $x^{-\frac{1}{2}}$ factor, to ensure the required squareroot singularity at the lip.

Using the above expressions, our "kinematic" equation (23) can be re-written in the form

$$
\begin{align*}
& \int_{0}^{\infty}\left\{-G^{(n)}+\alpha\left(T^{(n)}-1\right) G_{T}^{(n)}\right\} \gamma^{(n)} d \xi+T_{\infty}^{(n)}\left(\lambda+\gamma_{\infty}^{(n)}\right)\left(1-T_{\infty}^{(n)} / 2\right) \\
& -\lambda T^{(n)}\left(1-T^{(n)} / 2\right)=\sum_{j=1}^{M}\left\{\alpha\left[f_{j}(x)-f_{j}(0)\right] \int_{0}^{\infty} G_{T}^{(n)} \gamma^{(n)} d \xi\right. \\
& \left.+\lambda T^{(n)}\left[f_{j}(x)-f_{j}(0)\right]+T_{\infty}^{(n)}\left(\lambda+\gamma_{\infty}^{(n)}\right) f_{j}(0)\right\} b_{j}^{(n+1)} \tag{44}
\end{align*}
$$

and our "dynamic" equation (24) can be expressed as

$$
\begin{align*}
& \left\{\frac{F^{(n+1)}\left(2 \gamma_{s}^{(n)}-\gamma_{\infty}^{(n+1)}\right)}{2 \sqrt{ }_{(n+1)}^{(n) 2}}-\lambda\right\} \frac{T^{(n+1)}}{\gamma_{\infty}^{(n+1)}}-\int_{0}^{\infty} G_{T}^{(n+1)} \sqrt{ }_{(n+1)} d \xi \\
& =\sum_{j=1}^{N}\left\{\frac{F^{(n+1)} T^{(n+1)} g_{j}}{2 \sqrt{ }_{(n+1)} \gamma_{s}^{(n)} 2}+\int_{0}^{\infty} G_{T}^{(n+1)} \sqrt{ }^{(n+1)} g_{j} d \xi\right\} a_{j}^{(n+1)} \tag{45}
\end{align*}
$$

where it is understood that the $" \sqrt{ }$ " terms are evaluated at ξ or x depending on whether they are under an integral sign or not, respectively; similarly for g_{j}, γ and γ_{s}.

Our solution proceeds as follows: starting with $n=0$, we require the satisfaction of (44) at M "collocation" points x_{1}, \ldots, x_{M}. This produces M simultaneous linear algebraic equations which are then solved for the unknown coefficients $b_{l}^{(1)}, \ldots, b_{M}^{(1)}$. Next, we require the satisfaction of (45) at N collocation points (which need not coincide with the M points used to solve (44)) and hence compute $a_{1}^{(1)}, \ldots$, $a_{N}^{(1)}$. The process is then repeated for $n=1,2, \ldots$ until suitable convergence is attained.

We point out that instead of solving (23) and (24) successively for T and γ, we could have solved them simultaneously, at each step. Although this might lead to convergence in fewer iterations, the overall computing time would almost certainly be greater, however, since it takes approximately twice as long to generate an $(M+N)$ th order set of linear algebraic equations as it does to
generate M and N th order sets separately.

Interpretation of the Loading Coefficient. Before discussing our numerical results, let us clarify the physical significance of our "loading coefficient", $C=\Gamma / \pi$. Defining the thrust coefficient C_{T} as the thrust divided by $\tilde{\rho}(\Omega R)^{2}\left(\pi R^{2}\right)$, we may use the Kutta-Joukowski formula to express

$$
\begin{equation*}
C_{T}=\frac{1}{\pi} \int_{0}^{1}\left\{r-\frac{\Gamma(r)}{4 \pi r}\right\} \Gamma(r) d r \tag{46}
\end{equation*}
$$

Now, in our analysis we have considered the blade circulation distribution $\Gamma(r)=$ constant $=\Gamma$ over $0<r<1$. For this case, the swirl term ($\Gamma / 4 \pi r$) in the integrand causes the integral to diverge. In reality, however, $\Gamma(r)$ will drop to zero at a finite radius, say ϵ, where $0<\epsilon<1$. Replacing the lower integration limit by ϵ, the integration in (46) may be carried out, to give

$$
\begin{equation*}
C_{T}=C\left[1-\epsilon^{2}+(c / 2) \ln \epsilon\right] / 2 \tag{47}
\end{equation*}
$$

For typical values of C and $\epsilon, \epsilon^{2}-(C / 2) \ln \epsilon$ is quite small compared to unity, so that the loading coefficient C is approximately twice the thrust coefficient C_{T}.

Numerical Results. As an illustration, let us consider the static case $\lambda=0$, with a loading coefficient $c=0.02$.

We define our collocation scheme by choosing $M=7$, with the corresponding "shape collocation points".

$$
x_{j}=0.03,0.1,0.25,0.5,0.9,1.5,2.5
$$

for $j=1$, ... , 7 respectively; and $N=9$, with the corresponding "gamma collocation points",

$$
x_{j}=0.02,0.05,0.1,0.18,0.3,0.5,0.85,1.4,2.5
$$

for $j=1, \ldots$. . 9 . We emphasize that there is little point in choosing collocation points further downstream than $x=2.5$, say, since (as we will see in the subsequent Figures) the flow at that station is essentially identical to that in the ultimate jet. In fact, it can be expected to lead to an illconditioned set of equations since our expression (43) for $\boldsymbol{\gamma}$ automatically satisfies the dynamic equation at infinity. As a final word of caution we note
that $x=0$ must not be included as a gamma collocation point since the dynamic equation is not satisfied at $x=0$.

As our "matching functions" we choose
$f_{j}(x)=e^{-j x}$
$g_{j}(x)=x^{-\frac{1}{2}} e^{-3 x} \quad, j=1$
$=x^{-0.84+0.51 j} e^{-3 x}, \quad j \geqslant 2$
as shown in Fig. 6. These were arrived at by trial and error, and appear to be equally suitable for all values $\lambda \geqslant 0$ and $c>0$.

Starting with $T^{(0)}=1$ and $\gamma_{s}^{(0)}=0.1411$ (from (31) and (32)), and setting the damping factor $\alpha=1.8$, the iteration is found to be rapidly convergent, as shown in Figs. 7-12. As our convergence criterion, we required the iteration to continue until $T^{(n+1)}$ and $\gamma_{s}^{(n+1)}$ agreed with their previous values, $T^{(n)}$ and $\gamma_{s}^{(n)}$, to within 0.6% at each of the x values listed in Figs. 8-12. Although it took five iterations to achieve this condition, it is seen that even the second iterate provides a fairly good uniform approximation to the solution.

However, it remains to show that the converged results do, in fact, represent the solution - since we only required satisfaction of the equations at several discrete collocation points. To settle this point, we have included a numerical check in the program (Appendix), which actually compares the left and right hand sides of the kinematic and dynamic equations (23) and (22). The results of this check indicate (Fig. 13) uniformly good agreement.

The flow field has also been computed, and is shown in Fig. 14 . It is important to note that for the static condition the streamline pattern is virtually independent of C, at least over the range of values which are of practical interest. To see this, consider the governing equations (23) and (24). For $\lambda=0$, the C dependence cancels out of (23) since both Ψ_{∞} and γ are proportional to γ_{∞} which, in turn, contains the C dependence. Turning to the dynamic equation (24), we see that if we discard the swirl term $c^{2} / 8 T^{2}$, γ will (for $\lambda=0$) simply be proportional to $c^{\frac{1}{2}}$. With the swirl term omitted, then, it follows that the streamline pattern will be completely independent of C although, of course, the velocities will be proportional to $C^{\frac{1}{2}}$. With the swirl term included, this result is no longer true in an exact sense. However, for practical values of $c, c^{2} / 8 T^{2} \ll c / 2$ in (24), so that our statement nevertheless remains true in an approximate sense. To verify this numerically, we re-computed our numerical example with C increased by eight times, i.e. with $c=0.16$, and found the streamlines to be virtually unchanged!

Figure 6. The Matching Functions

Figure 7. Successive Iterates for Numerical Example
Figure 8. Computer Print-Out for Numerical Example; Iteration No. 1

2

SLlpstrean slipstream circulation
左

unitorm accuracy of \quad ofogeo pereent is not attained for slipstream radius and circulation distributions.
at most a more iterationis) will be atiempted.
Figure 10. Computer Print-Out for Numerical Example; Iteration No. 3
ITERATION NO. 3
iterafion no. 4
Slipstream slipstream circulation

Figure 11. Computer Print-Out for Numerical Example; Iteration No. 4

Figure 12. Computer Print-Out for Numerical Example; Iteration No. 5
numerical cheek of dymamic（force－free）and kinfmatic istreamlines conditions on slipstagam
 Testceamn Example；

Figure 14. Resulting Flow Field for Numerical Example -0.6

Two points are of special interest with regard to Fig. 14 . First, we point out that at $x=1.2$ the (meridional) velocity inside the slipstream is almost constant, and is only about one percent smaller than its ultimate value at $x=\infty$.

Second, we see that the x-component of velocity is almost exactly constant over the actuator disk - out to about $r=0.9$ where it starts to drop off. As r increases further, the trend must reverse since the axial velocity must $\rightarrow \infty$ as $r \rightarrow 1^{-}$by virtue of the square-root singularity in γ at the lip. Now, it is known (e.g. Reference 8) that in the light loading limit (i.e. the linearized actuator disk theory), the axial component of the induced velocity is exactly constant over the disk radius. The fact that this result is born out over most of the disk radius in our example, which is at the other (nonlinear) extreme, leads us to wonder whether the axial component of the induced velocity is in fact exactly constant over the disk radius (for our case $\Gamma(r)=$ constant). for any condition between (and including) the lightly loaded and static limits.

If this were true, it would imply that our initial slipstream contraction must be purely radial: This follows immediately from the fact that the meridional velocity is infinite just inside the lip, due to the square-root singularity in γ. Its inclination must therefore be radial if the axial velocity is to remain constant at $x=0$ as $r \rightarrow 1^{-}$.

Flow visualization studies (References 9,10) (for a finite blade number, of course) do indicate a strong radial flow in the tip region. Instead of purely radial flow, in fact, Reference 10 reports a slight upstream inclination of the flow at the tip, so that a reverse flow exists over approximately the outer 5% of the blade radius. We must note, however, that the existing $\Gamma(r)$ in Reference 10 is undoubtedly quite unlike our prescribed distribution, $\Gamma(r) \equiv$ constant , especially near the tip.

On the other hand, if the axial component of the induced velocity is not exactly constant over the disk radius then the strongly nonuniform axial inflow in the tip region is in fact correct, and may have a bearing on the well-known double bump in spanwise loading which has been observed near the tip of a number of helicopter rotors.

In any case, it seems clear that our results (Figs. 7-14) are quite accurate except, possibly, in the immediate tip region. The details in this region remain to be clarified.

Inclusion of the Ground Effect

The Integral Equations. Three changes are required in the integral equations (23) and (24) in order to accommodate the effect of a ground plane at $\mathbf{x}=\mathrm{X}$; see Fig . 15 . First of all they contain an arbitrary advance ratio λ,

Figure 15. Ground Effect Model
whereas in the ground effect case we limit ourselves to static hover, so that $\lambda=0$. In addition, we change the upper integration limits to X, and modify the Green's function so that it satisfies the additional boundary condition $u=0$ at the ground plane. Specifically, we now have

$$
\begin{equation*}
G=T^{\frac{1}{2}} t^{\frac{1}{2}}\left[Q_{z_{2}}\left(\widetilde{\omega}_{2}\right)-Q_{3_{2}}\left(\tilde{\omega}_{2}\right)\right] / 2 \pi \tag{50}
\end{equation*}
$$

where $\tilde{\omega}_{2}$ is identical to $\tilde{\omega}_{2}$. with $(x-\xi)^{2}$ replaced by $(x-2 X+\xi)^{2}$. Interpreted in terms of a vortex model, this amounts to adding an image system as indicated by the dashed lines in Fig. 15 .

Analogous to equations (27) and (28), we now have

$$
\begin{equation*}
G_{T}=\left[A Q_{\frac{1}{2}^{2}}\left(\tilde{\omega}_{2}\right)+B Q_{-\frac{1}{2}}\left(\tilde{\omega}_{2}\right)\right] /\left(\tilde{\omega}_{2}^{2}-1\right)-\left[\tilde{\tilde{A}}_{\frac{1}{2}^{2}}\left(\tilde{\omega}_{2}\right)+\tilde{B}_{-\frac{1}{2}}\left(\tilde{\omega}_{2}\right)\right] /\left(\tilde{\omega}_{2}^{2}-1\right) \tag{51}
\end{equation*}
$$

where \tilde{A} and $\widetilde{\widetilde{B}}$ are identical to A and B, with $(x-\xi)^{2}$ replaced by $(x-2 X+\xi)^{2}$.

We observe that as $X \rightarrow \infty, \tilde{\omega}_{2}$ and $Q_{ \pm \frac{1}{2}}\left(\widetilde{\omega}_{2}\right)$ all tend to zero so that we do recover our previous out-of-ground-effect equations.

Asymptotic Behavior Near the Ground Plane. As $x \rightarrow X^{-}$, we see from (19) and (22) that $\gamma_{s} \zeta \sim c / 2$ since $t \rightarrow \infty$ in the denominator of the last term in (22). In addition, we must have $\zeta \sim \gamma_{s} / 2$, the drift velocity induced on the slipstream by the image vortex sheet. Combining these results, it follows that $\gamma_{s} \sim c^{\frac{1}{2}}$.

To obtain the asymptotic behavior of T, we apply the continuity equation at an arbitrary station $A A$, as shown in Fig. 15 . The "control area" is $(2 \pi T)(X-x)$ and the velocity through it is $\sim \gamma_{s} ; \gamma_{s} / 2$ due to the slipstream vorticity, and $\gamma_{s} / 2$ due to the image vorticity. Continuity therefore requires that $\gamma_{s}(2 \pi T)(X-x)=$ constant and, recalling that $\gamma_{s} \sim c^{\frac{1}{2}}$, it follows that $T(x) \sim \underset{8}{\mathrm{O}}(\mathrm{X}-\mathrm{x})^{-1}$.

In order to incorporate this behavior explicitly, we expand

$$
\begin{align*}
& T^{(n)}(x)=1+\sum_{j=1}^{M}\left[h_{j}(x)-h_{j}(0)\right] b_{j}^{(n)} \tag{52}\\
& \gamma^{(n)}(x)=\sqrt{ }^{(n)} \gamma_{s}^{(n)}(x)=\sqrt{ }^{(n)} c^{\frac{1}{2}}\left\{1+\sum_{j=1}^{N} g_{j}(x) a_{j}^{(n)}\right\} \tag{53}
\end{align*}
$$

where $h_{j}(x)=f_{j}(x) /(X-x)$ and the $g_{j}{ }^{\prime s}$ tend to zero as $x \rightarrow X$; c.f. equations (42) and (43) for the out-of-ground-effect limit.

The Final Equations. Linear algebraic equations analogous to (44) and (45) can be obtained almost exactly as before. The only difference is in the expression of $" \Psi_{\infty} "$. Since $2 \pi \Psi_{\infty}$ is the mass flow rate through any disk BB (see Fig. 15) it is also, by continuity, the flow rate through the asymptotic station AA : namely, $\gamma_{s}(2 \pi T)(X-x)$. Instead of (35), therefore, we have

$$
\begin{equation*}
\Psi_{\infty}^{(n+1)}=c^{\frac{1}{2}} \sum_{j=1}^{M} f_{j}(X) b_{j}^{(n+1)} \tag{54}
\end{equation*}
$$

Using $\beta=0$ again, we find that our kinematic equation can be reduced to

$$
\begin{align*}
& \int_{0}^{X}\left\{-G^{(n)}+a\left(T^{(n)}-1\right) G_{T}^{(n)}\right\} \gamma^{(n)} d \xi \\
& =\sum_{j=1}^{M}\left\{a\left[h_{j}(x)-h_{j}(0)\right] \int_{0}^{X} G_{T}^{(n)} \gamma^{(n)} d \xi-c^{\frac{1}{2}} f_{j}(X)\right\} b_{j}^{(n+1)} \tag{55}
\end{align*}
$$

for $n=0,1, \ldots$, and for the dynamic equation we obtain

$$
\begin{align*}
& {\left[\frac{\gamma_{g}^{(n)}}{c^{\frac{1}{2}}}-\frac{1}{2}\right] \frac{T^{(n+1)} F^{(n+1)}}{\sqrt{(n+1)}_{(n)}^{(n) 2}}-\int_{0}^{X} G_{T}^{(n+1)} \Gamma^{(n+1)} d \xi} \\
& =\sum_{j=1}^{N}\left\{\frac{T^{(n+1)} F^{(n+1)} g_{j}}{2 \sqrt{(n+1)}^{(n)} \gamma_{s}^{(n) 2}}+\int_{0}^{X} G_{T}^{(n+1)} \Gamma^{(n+1)} g_{j} d \xi\right\} a_{j}^{(n+1)} \tag{56}
\end{align*}
$$

Our procedure is the same as it was with equations (44) and (45); starting with $n=0$ we compute the $b_{j}^{(1)}$'s by satisfying (55) at M collocation points, the $a_{j}^{(1) ' s}$ by satisfying (56) at N collocation points, and so on, in turn, until convergence is attained.

Numerical Results. Let us consider, for example, the case where $X=1$ and $\mathrm{c}=0.02$.

We fix our collocation scheme by choosing $M=6$, with the corresponding shape collocation points
$x_{j}=0.03,0.1,0.25,0.45,0.65,0.9$
for $j=1$, 6 respectively; and $N=1$, for simplicity, with the corresponding gamma collocation point $x_{1}=0.1$.

As our matching functions we choose

$$
\begin{array}{ll}
\mathbf{f}_{j}(x)=x^{j} & , j=1, \ldots, 6 \\
g_{j}(x)=x^{-\frac{1}{2}}(X-x)^{2} & , \quad j=1 \tag{58}
\end{array}
$$

The form of g_{1} ensures the satisfaction of both end conditions; $\gamma_{s}=O\left(x^{-\frac{1}{2}}\right)$ as $x \rightarrow 0$ and $\gamma_{s} \sim c^{\frac{1}{2}}$ as $x \rightarrow X$.

Starting with $a_{1}^{(0)}=0, b_{2}^{(0)}=0.1$ and $b_{j}^{(0)}=0$ for $j \neq 2$, the iteration is found to be more slowly convergent than in the out-of-ground-effect case. The streamline pattern and slipstream shape corresponding to the eighth iterate, which appears to have settled down to within about one percent, are shown in Fig. 16; the shape collocation points are indicated (on the slipstream) by dots. The corresponding slipstream vorticity is defined by the value $a_{1}^{(8)}=0.022$, so that

$$
\begin{equation*}
\gamma_{\mathbf{s}}^{(8)}=c^{\frac{1}{2}}\left[1+0.022 x^{-\frac{1}{2}}(1-x)^{2}\right] \tag{59}
\end{equation*}
$$

Figure 16. Resulting Flow Field for Numerical Example

Qualitatively, the results in Fig. 16 appear to be quite reasonable compared with the smoke visualization studies of Fradenburgh (Reference 1l) except for the absence of a dead-air dome beneath the hub, predicted by Heyson (Reference 12) and observed by Fradenburgh. This is to be expected, however, since our blade circulation is assumed to be constant all the way down to $r=0^{+}$, so that there are no trailing vortices of reverse strength emitted over the inboard portion of the blades.

Quantitatively, we hesitate to claim a level of accuracy comparable to that obtained in the out-of-ground-effect case since only a single gamma collocation point was used. We did, in fact, run cases with $N=6$ or more, but unsatisfactory "wiggles" began to appear in both γ_{s} and T. We attribute this to our inability to prescribe a sufficiently "natural" family of g_{j} matching functions.

We point out that our previous statement "For the static condition the streamline pattern is virtually independent of C ", pertaining to the out-of-ground-effect case, is equally valid for the ground-effect case.

CONCLUSIONS

The inviscid flow field induced by a rotor in ground effect is found, based upon an actuator disk model with a constant circulation distribution. The governing nonlinear integral equations are solved by a systematic iterative scheme which is similar to the Newton-Raphson method for the solution of nonlinear algebraic equations.

First, the out-of-ground-effect limit is considered in detail. The iteration is found to be rapidly convergent and the results are shown to be quite accurate, except possibly in the immediate neighborhood of the blade tips. Specifically, there is some question as to whether or not the axial inflow should be constant over the blade radius or, equivalently, whether or not the initial slipstream contraction should be purely radial. This point is of some importance because of the square-root singularity in the slipstream vorticity at the "lip" of the slipstream. That is, the axial inflow (which is crucial from the point of view of blade design) through the tip portion of the blade will be bounded if the initial contraction is purely radial, and unbounded if it is not: In any case, it seems clear that our results are quite accurate except, possibly, in the immediate neighborhood of the blade tip.

Results for the ground effect case look entirely reasonable compared with the flow visualization studies of Fradenburgh (Reference ll), although we cannot claim a level of accuracy as high as in the out-of-ground-effect case.

In either case, in ground effect or not, it is shown that for the static condition the streamline pattern is virtually independent of the thrust coefficient

More precisely, it is exactly independent of the thrust coefficient - if the effects of swirl are neglected.

REFERENCES

1. Sowyrda, A., and DuWaldt, F. A., Representation of Wakes of Propellers in Ground Effect by Ring Vortex Systems, Cornell Aeronautical Laboratory Report No. BB-1665-S-1, April 1963 (DDC No. AD 602 988).
2. Brady, W. G., and Crimi, P., Representation of Propeller Wakes by Systems of Finite Core Vortices, Cornell Aeronautical Laboratory Report No. BB-1665-S-2, February 1965 (DDC No. AD 612007).
3. DuWaldt, F. A., Representation of Propeller Wakes by Systems of Finite Core Vortices, Cornell Aeronautical Laboratory Report No. BB-1665-S-3, November 1966.
4. Scarborough, J. B., Numerical Mathematical Analysis, Sixth Edition, Johns Hopkins Press, Baltimore, 1966.
5. Wu, T. Y., Flow Through a Heavily Loaded Actuator Disk, Schiffstechnik, vol. 9, No. 47. pp. 134-138, 1962.
6. Chaplin, H. R., A Method for Numerical Calculation of Slipstream Contraction of a Shrouded Impulse Disc in the Static Case With Application to Other Axisymmetric Potential Flow Problems, DTMB Aero Report 1077, 1964.
7. Watson, G. N., A Treatise on the Theory of Bessel Functions, Second Edition, Cambridge University Press, 1958.
8. Hough, G. R., and Ordway, D. E., The Generalized Actuator Disk, Developments in Theoretical and Applied Mechanics, Vol. II. Pergamon Press, Oxford/ London/Edinburgh/New York/Paris/Frankfurt, 1965.
9. Taylor, M. K., A Balsa-Dust Technique for Air-Flow Visualization and its Application to Flow Through Model Helicopter Rotors in Static Thrust, NACA TN 2220. 1950.
10. Adams, G. N., Propeller Research at Canadair Limited, Proceedings of CAL/ USAAVLABS Symposium on Aerodynamic Problems Associated with V/sTOL Aircraft (Buffalo, New York, June 1966), Vol. 1.
11. Fradenburgh, E. A., Flow Field Measurements for a Hovering Rotor Near the Ground, Paper presented at the American Helicopter Society Fifth Annual Western Forum, Los Angeles, September 1958.
12. Heyson, Harry H., Induced Velocity Near a Rotor and its Application to Helicopter Problems, Proceedings of the 14 th Annual National Forum, American Helicopter Society, April 1958.

APPENDIX

Listing of the Computer Codes

On the following pages are Fortran listings of the two computer codes, ROTORIGE (for the in-ground-effect case) and ROTOROGE (for the out-of-groundeffect case). Actually, the ROTORIGE code is presented for the special case where $N=1$, to be consistent with the numerical example in the text, and does not apply for $\mathrm{N} \geqslant 2$.

Of the input variables (see the Common statements in ROTORIGE) only "ACC" requires further description. If, for example, ACC $=0.01$ the iteration will proceed until both $T^{(n+1)}$ and $\gamma^{(n+1)}$ agree with their previous values, $T^{(n)}$ and $\gamma^{(n)}$, at each of the print-out x's (e.g. Fig. 8) to within one percent or better - or until $n=$ "NITER" , whichever occurs first.

Regarding the speed of the calculation, we point out that for the numerical examples presented in the text the machine time per iteration (on the CDC 1604) was 30 seconds for ROTORIGE, and one minute and 30 seconds for ROTOROGE.

```
    PROGRAM ROTORIGE
C
    ROTOR IN GROUND EFFECT (NAS1-6349)
    FORMULATION USES ONE (1) COLLOCATION POINT FOR THE
    DYNAMIC (GAMMA) EQUATION.
    DEFINITION OF INPUT VARIABLES
        IM = MONTH OF YEAR IN INTEGER FORM.
        10 = DAY OF MONTH IN INTEGER FORM.
        IY = LAST TWO DIGITS OF YEAR IN INTEGER FORM.
        MM = NO. OF COLLOCATION POINTS FOR SHAPE EQUATION.
        NN = NO. OF COLLOCATION POINTS FOR GAMMA EQUATION.
        NITER = MAXIMUM NO. OF ITERATIONS TO BE ATTEMPTED.
        CC = LOADING COEFFICIENT.
        CAPX = NON-DIMENSIONAL DISTANCE FROM GROUNO PLANE TO PROPELLER PLANE.
        ACC = CONVERGENCE CRITERION IN PERCENT/100
            XS = NON-DIMENSIONAL AXIAL COOROINATES OF SHAPE COLLOCATION POINTS.
            XG = NON-DIMENSIONAL AXIAL COORDINATES OF GAMMA COLLOCATION POINTS.
            R = INITIAL SHAPE COEFFICIENTS.
            A = INITIAL GAMMA COEFFICIENTS.
    EXTERNAL FJ
    TYDE RFAL LHS
    COMMON/ADDED/FZ(5O)
    COMMON/COEFS/A(50),B(50)
    COMMON/INPUT/CC, ALPHA,CAPX
    COMMON/INTGND/NGEES.TT,ZZ.N.K
    COMMON/MATRIX/RHS(50,50),LHS(50.1)
    COMMON/NUMBERXS/NXS.NXG
    COMMON/PRINT/XS(50),XG(50),XP(50),SR(50),SC(50),ITER,IM.ID,IY
    COMMON/SAVE/NP,INDEX,SRS(50),SCS(50)
1000 FORMAT(415)
1010 FORMAT(10F8.5)
10ZO FORMAT(1HO.2&HINITIAL CONDITIONS - AT MOST.I3.14H ITERATION(S) .
    * 18HWILL BE ATTEMPTED.'
1030 FORMATI1HO.19HUNIFORM ACCURACY OF.F8.5.16H PERCENT IS NOT .
    * 47HATtained for slipstream radius and circulation.
    * 14HDISTRIBUTIONS../.8H AT MOST,I3.19H MORE ITERATION(S) ,
    * 18hwill bF ATTFMDTED.)
1040 FORMAT (1HO.19HUNIFORM ACCURACY OF.F8.5.12H PERCENT IS .
    * 47HATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION *
    * I4HDISTRIBUTIONS.*/*2SH ITERATION IS TERMINATED.)
105O FORMAT IHO.IGHUNIFORM ACCURACY OF,FB.S.IGH PERCENT IS NOT ,
    - 47HATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION .
    * 14HOISTRIRUTIONS.•/.25H ITERATION 1S TERMINATED.)
        RFAD 1000,IM.IN,IY
    10 RFAD 1000.MM.NN,NITER $ IF (MM) 150.150.20
    2O READ 1010.CC.CAPX.ACC
        READ 10:0.(XS(1).1=1.MM) क READ 1010.(XG(1),1=1,NN)
        NXS=MM $ NXG=NN
        READ 1010.(B(I),I=1,NXS) $ READ 1010.(A(I),I=1,NXG)
        ALPHA=1,8
        DO 30 i=1.NXS
        FZ(1)=FJ(0.0.1)
    30 CONTINUE
        ITER=0 $ ACCP=100.0*ACC
        INDEX=1 $ CALL OUTPUT
        INDFX=2 S PRINT 102O.NITER
        DO 120 ITER=1.NITER
        N=NXS
```

```
        00 40 1=1,N
        ZZ=XS(I) & CALL TOPBOT(ZZ)
        CALL LIMITCHK $ CALL BEONS(I)
4O CONTINUE
    CALL MATINV(RHS,N.LHS,1,DET)
    DO 5O J=1.N
    B(J)=LHS(.'1)
5 0 ~ C O N T ~ I N U E ~
N=N\timesG
0060 1=1,N
ZZ=XG(I) $ CALL TOPBOT(ZZ)
CALL LIMITCHK S CALL AEONSPI'
6 0 ~ C O N T ~ I N U E ~
CALL ACOEFS
    CALL OUTPUT
    DO 90 1=2.NP
    CACC=ACC*SC(1) s TACC=ACC*SR(1)
    IF (ABSF(SC(I)-SCS(1))-CACC) 80.80.100
    80 IF (ABSF(SR(I)-SRS(I))-TACC) 90.90.100
    90 CONT INUE
    GO TO 1.30
100 LEFT=NITER-ITER $ IF (LEFT) 140.140.110
110 PRINT 1030.ACCP.LEFT
12O CONTINUE
130 PRINT 1040.ACCP $ GO TO 10
140 PRINT 1050.ACCP $ GO TO 10
1&O ENO
```

```
SUBROUTINE ACOEFS
```

SUBROUTINE ACOEFS
COMMON/ASPEC/AJ(2),AK(2),AL(2),FZZ,GZZ,AZZ,BZZ
COMMON/ASPEC/AJ(2),AK(2),AL(2),FZZ,GZZ,AZZ,BZZ
COMMON/COEFS/A(50),日(50)
COMMON/COEFS/A(50),日(50)
TOP=-AK(1)+SORTF(AK(1)**2-4.0*AJ(1)*AL(1))
TOP=-AK(1)+SORTF(AK(1)**2-4.0*AJ(1)*AL(1))
BOT=2.O*AL(1) \$ A(1)=TOP/ROT
BOT=2.O*AL(1) \$ A(1)=TOP/ROT
END
END
subroutine aegns (I)
EXTERNAL AJINT,AKINT,ALINT
EXTERNAL GJ
COMMON/ASPEC/AJ(2),AK(2),AL(Z),FZZ,GZZ,AZZ,BZZ
COMMON/COEFS/A(50).R(50)
COMMON/INPUT/CC.ALPHA.CAPX
COMMON/INTGND/NGFES,TT,ZZ.N.K
CALL SHAPE (ZZ.TT) \& CALL FACTOR(ZZ.FZZ)
GZZagJ(ZZ) \$ FFF=CC-(CC/(2.0*TT))**2
AJ(1)=-FF*TT/(2.0*CC*FZZ) $\quad * A K(I)=A L(I)=0.0$
CALL ONEINTGL(AJINT.AJ(I)) s CALL ONEINTGL(AKINT.AK(1))
CALL ONEINTGL(ALINT.AL(I))
END

```
```

FUNCTION AJINT(Z)

```
FUNCTION AJINT(Z)
COMMON/ASPEC/AJ(2),AK(2),AL(2),FZZ.GZZ.AZZ.BZZ
COMMON/ASPEC/AJ(2),AK(2),AL(2),FZZ.GZZ.AZZ.BZZ
COMMON/INTGND/NGEES.TT.ZZ.N.K
COMMON/INTGND/NGEES.TT.ZZ.N.K
CALL SHAPE(Z.T) $ CALL FACTOR(Z.FFZ)
CALL SHAPE(Z.T) $ CALL FACTOR(Z.FFZ)
CALL GEES(1,TT,T,ZZ.Z*G*GTT) S AJINT=GTT*FZ
CALL GEES(1,TT,T,ZZ.Z*G*GTT) S AJINT=GTT*FZ
ENO
```

ENO

```
```

FUNCTION AKINT(Z)
EXTERNAL GJ
COMMON/ASPEC/AJ(2),AK(2),AL(2),FZZ,GZZ,AZZ,AZZ
COMMON/INTGNO/NGEES.TT,ZZ,N,K
CALL SHAPE(Z.T) \$ CALL FACTOR(Z,FZ)
CALL GEES(1,TT,T,ZZ,Z,G,GTT) \$ AKINT*GTT*FZ*(GZZ+GJ(Z))
END
FUNCTION ALINT(Z)
EXTFRNAL GJ
COMMON/ASPEC/AJ(2),AK(2),AL (2),FZZ,GZZ,AZZ,BZZ
COMMON/INTGND/NGFES.TT,ZZ,N.K
CALL SHAPE(Z.T) \$ CALL FACTOR(Z.FZ)
CALL GEES(1,TT,T*ZZ,Z,G*GTT) s ALINT=GTT*FZ*GZZ*GJ(Z)
FND
SUBROUTINE BEONS (I)
EXTERNAL BINT.FJ
TYPE RFAL LHS
COMMON/ADDFD/FZ(50)
C.OMMON/INPUT/CC.ALPHA,CAPX
COMMON/INTGND/NGFES,TT,ZZ,N,K
COMMON/MATRIX/RHS(50.50),LHS(50.1)
NN=N+1 S CALL SHAPE(ZZ,TT)
GTTG=GGM=0.O
NGEES=1 S CALL ONEINTGL(BINT,GTTG)
NGEES=3 \$ CALL ONEINTGL(EINT.GGM)
DO 30 J=1,NN
K=J \$IF (J-NN) 10.20.20
10 TERM=FJ(ZZ,K)/(CAPX-ZZ)-FZ(K)/CAPX
RHS(1,J)=-SQRTF(CC)*FJ(CAPX:J)+ALPHA*TERM*GTTG
GO TO 30
20 RHS(1.J)=GGM+ALPHA*(TT-1.0)*GTTG
30 CONTINUE
LHS(I|I)=RHS(I|NN)
FND
FUNCTION BINT(Z)
EXTERNAL FJ
COMMON/ADDFD/FZ(50)
COMMON/INPUT/CC,ALPHA,CAPX
COMMON/INTGNO/NGEFS,TT,ZZ,N,K
CALL SHAPE(Z,T) \$ CALL VORTFX(Z,GAM)
CALL FACTOR(Z.FAC) \& GAM=FAC*GAM
CALL GEES(NGEFS.TT,T,ZZ,Z,G,GTT)
GO TO (110.30.20), NGEES
1O BINT=GTT*GAM \$ GO TO 30
20 RINT =-G*GAM
30 END

```
```

SUBROUTINE FACTOR(X,FAC)

```
SUBROUTINE FACTOR(X,FAC)
FXTERNAL FJ.FPJ
FXTERNAL FJ.FPJ
COMMON/COEFS/A(50),B(50)
COMMON/COEFS/A(50),B(50)
COMMON/INPUT/CC,ALPHA, CAPX
COMMON/INPUT/CC,ALPHA, CAPX
COMMON/NUMBERXS/NXS ONXG
COMMON/NUMBERXS/NXS ONXG
TP=0.0 $ BOI=CAPX-X
TP=0.0 $ BOI=CAPX-X
no 10 I=1,NXS
no 10 I=1,NXS
TP=TO+B(1)*(FPJ(x.I)/BOT+FJ(X.I)/BOT**2)
TP=TO+B(1)*(FPJ(x.I)/BOT+FJ(X.I)/BOT**2)
10 CONTINUE
10 CONTINUE
FAC=SQRTF(1.0+TP**2)
FAC=SQRTF(1.0+TP**2)
ENO
```

ENO

```
```

 FUNCTION FJ(X:J)
 FJ=X**J
 END
    ```
    FUNCTION FPJ(X,J)
    IF \((J-1) 10.10 .20\)

30 END
SUBROUTINE GEFS(NUM.TT.T.ZZ.Z.G.GTT)
COMMON/INPUT/CC, ALPHA, CAPX
DI=3.1415927
1) \(x=(Z Z-Z) * * 2\) s \(\cap T=(T T-T) * * 2\)
\(D Z=(Z Z-2 \cdot 0 * C A P X+Z) * * 2\) \& TERM=SQRTF (TT*T)
\(A R G A=1.0+(D T+D X) /(2.0 * T E R M * * 2)\) \$ CALL OPMHALF(ARGA,QPA, QMA)
\(A R G B=1.0+(D T+D Z) /(2.0 * T E R M * * 2) \$\) CALL QPMHALF (ARGB. QPB. QMB)
GO TO (10.20.10), NUM
10 DT \(\pm T T^{* * 2-T * * 2 ~ s ~ B O T=8.0 * P I * T E R M ~}\)
ROTA \(=A R G A * * 2-1.0 \quad\) \$ BOTE=ARGB**2-1.0
\(A A=(D X+D T) * G P A /(B O T * T) \quad \$ B B=(D X-D T) * Q M A /(B O T * T T)\)
\(E E=(D Z+D T) * Q P B /(B O T * T)\)
\(\$ B B=(D X-D T) * Q M A /(B O T * T T)\)
\(\$ D D=(D Z-D T) * Q M B /(B O T * T T)\)
\(G T T=(A A+B E) / B O T A=(E E+D D) / B O T B \quad \$\) GO TO \((30,20,20)\), NUM
\(20 G=T E R M *(O P A-\cap P A) /(2.0 * P I)\)
30 END

FUNCTION GGG(Z)
COMMON/INTGND/NGEES,TT,ZZ,N•K
CALL SHAPE (Z,T)
    \$ CALL VORTEX \((Z, G)\)
CALL FACTOR(Z,FAC)
\$ G=FAC*G
CALL GFFS(2,TT.T.ZZ,Z.GG.OUM)
GGG=GG*G
FND
FUNCTION GJ(X)
COMMON/INPUT/CC.ALPHA,CAPX
\(G J=(C A P X-X) * * 2 / S Q R T F(X)\)
END
SURROUTINF LIMITCHK
COMMON/LIMITS/TOP(5), BOT(5),NGD(5)
ก० \(40 \quad 1=1,5\)
IF (BOT(1)-TOP(1)) 40.40 .10
10 IF \((1-5) 20.30 .30\)
\(20 \operatorname{BOT}(1+1)=\) BOT (1)
20 BOT \((1+1)=B O T(1)\)
\(30 \operatorname{BOT}(1)=\operatorname{TOP}(1)\)
40 CONTINUE
END
```

 SUBROUTINE MATINV(A.N.B.M.DETERM)
 DIMENSION IPIVOT (50),A(50.50),B(50.1),INDEX(50.2),PIVOT(50)
 DETFRM=1.0
 DO 1O J=1,N
 IPIVOT(J)=0
 10 CONTINUE
no 200 I=1.N
AMAX=0.0
nO 60 J=1,N
IF (IPIVOT(J)-1: 20.60.20
20 no 50 K=1.N
IF (IPIVOT(K)-1) 30.50.240
30 IF (ABSF(AMAX)-ABSF(A (J.K))) 40.50.50
40 IROW=J \$ ICOLUMEK
AMAX=A(J,K)
5O CONTINUE
60 CONTINUE
IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1 \$ IF (IROW-ICOLUM) 70.110.70
70 NFTFRM=-DFTFRM
OO \&O L=1.N
SWAP=A(1ROW,L) S A(IROWILL)=A(ICOLUM*L)
A(ICNLUM,L)=SWAP
BO CONTINUE
IF (M) 110.110.90
ON nO 100 L=1.M
SWAP=B(IROW\&L) S B(IROK'L)=B(ICOLUM\&L)
R(ICOLUM\cdotL)=SWAD
100 CONTINUE
110 INDEX(1,1)=1ROW
INDEX(I.2)=1COLUMए \$ PIVOT(I)=A(ICOLUM.ICOLUM)
DETERM=DETERM*PIVOT(1) \& A(ICOLUM.ICOLUM)=1.0
DO 1?O L=1.N
A(ICOLUMOL)=A(ICOLUM,L)/PPIVOT(I)
120 CONTINUE
IF (M) 150.150.130
1.30 DO 140 L=1.M
B(ICOLUM•L)=B(ICOLUM.L)/PIVOT(I)
140 CONTINUF
150 no 200 LI=1.N
IF(L1-ICOLUM) 160.200.160
160T=A(L1.ICOLUM) \$ A LI , ICOLUM)=0.O
OO 170 L=1.N
A(LI,L)=A(L1.L)-A(ICOLUM.L)*T
17O CONTINUF
IF (M) 200.200.180
1RO NO 1OO L=1.M
B(L1,L)=B(L1,L)-B(ICOLUM,L)*T
100 CONTINUE
200 CONTINUE
O\cap 230 I=1,N
L=N+1-1
IF (INDEX(L.1)-INDEX(L.2)) 210.230.210
21C JROW=INDEX(L.1) \$ JCOLUM=INDEX(L,2)
DO P?O K=1.N
SWAP=A(K,JROW) \& A(K,JROW)=A(K,JCOLUM)
A(K,JCOLUM)=SWAP
220 CONTINUF
230 CONTINUF
240 RETURN
END

```
```

 SUBROUTINE NGAUSS(B,A,FX,NTIME,INTEGRAL)
 TYPE REAL INTEGRAL
 DIMENSION R(5).U(5)
 DATA (R = 0.1477621124.0.1346333597.0.1095431813.0.0747256745B.
 * 0.03333567215).
 * (U=0.0744371695.0.2166976971.0.3397047841.0.4325316833.
 * 0.4869532643)
 INTEGRAL =0.0
 DO 20 J=1.NTIME
 XL=A+(J-1)*(B-A)/NTIME & XU=B-(NTIME-J)*(B-A)/NTIME
 D=XU-XL S S=(XU+XL)/2.0
 TEMP=0.0
 DO 10 K=1.5
 TEMP=TEMP+R(K)*(FX(S+D*U(K))+FX(S-D*U(K)))
 1O CONTINUE
 TEMP=TEMP*D S INTEGRAL = INTEGRAL+TEMP
 2O CONTINIJE
 FND
 SUBROUTINE ONEINTGL(FA,A)
 COMMON/LIMITS/TOP(5).BOT(5).NGD(5)
 DO 20 I=1.5
 IF (ABSF(TOP(1)-BOT(1))-0.0000001) 20.20.10
 1O CALL NGAUSS(TOP(1),BOT(1),FA,NGD(I),AA)
 A=A+AA
 2O CONT INUE.
END
SUBROUTINE OUTPUT
COMMON/ADDED/FZ(50)
COMMON/COEFS/A(50),B(50)
COMMON/INPUT/CC.ALPHA,CAPX
COMMON/INTGND/NGEES,TT,ZZ,N\&K
COMMON/NUMBERXS/NXS,NXG
COMMON/PRINT/XS(50).XG(50), XP(50),SR(50),SC(50).ITER,IM.ID.IY
COMMON/SAVE/NP, INDEX,SRS(50),SCS(50)
1000 FORMAT(1H1.25X,32HR O TOR I N GROUND,
* 35HE FFEC T INAS 1-6 3 4 9,.5X.1H(.12.1H/.I2.
* 1H/(IP.1H))
1010 FORMATIIHO.35X,29HDAMPING COEFFICIENTS. ALPHA =.F5.2.9H . BETA =.
* 4H 0.0.1.36X.
* 24HLOADING COEFFICIENT, C =,F7.4./.36X.
* 16HHUB RADIUS = 0.0)
102C FORMAT(1HO,21X,29HSHAPE COLLOCATION POINTS. M =. 13,12X.
* 29HGAMMA COLLOCATION POINTS. N =.13./1
1030 FORMAT(1H . 2BX.5HX SUB.I3.2H =.F8.4.26X.5HX SUB.13.2H =.F8.4)
1040 FORMAT(1H , 72X.5HX SUB.13.2H =,F8.4)
1O5O FORMAT(1H.28X.5HX SUB.13.2H = \&FR.4)
1CSO FORMAT (1HO.13HITERATION NO..13./)
1070 FORMAT(IH .79X.35HSLIPSTREAM SLIPSTREAM CIRCULATION./.7X.
* 1RHSHAPE COEFFICIENTS, 14X,IBHGAMMA COEFFICIENTS.IIX.IHX.
* 11\times.3OHRADIUS, T GAMMA SUB S./1
1071 FORMAT(1H .4X.1OHB SUB 1=,F12.4.1OX.1OHA SUB 1 =.F12.4.8X.
* 4H.000.11X.6H1.0000.F18.4)
1072 FORMAT(1H .4X.1OHR SUB 1=,F12.4.1OX.1OHA SUB 1 =,F12.4.8X.
* 4H.000. 11X.5H1.0000.10X.8HINFINITY)
108O FORMAT(1H ,4X.5HB SUB,13.2H=,F12.4,10X,5HA SUB,13,2H=,F12.4.
* F12.3.F17.4.F18.4)
1C9O FORMAT(1H , 4X,5HE SUB.13.2H=,F12.4.10X,5HA SUB,I3.2H=,F12.4.
* GHCAP X=,FG.3.9X,8HINFINITY,F18.4)
1100 FORMAT(1H,4X,5HB SUB,I 3,2H=,F12.4,10X,5HA SUB,I3.2H =.F12.4)
1110 FORMAT(1H , 4X.5HB SUB.13.2H =,F12.4.32X.F12.3.F17.4.F18.4)

```
```

112C FORMAT(1H .4X.5HB SUB,13.2H =,F12.4.32X.
* GHCAP X=.F6.3.9X.8HINFINITY.F18.4)
1130 FORMAT(1H .4X.5HB SUB,I.3.2H =,F12.4)
114O FORMAT(1H, 36X,5HA SUB,13.2H=,F12.4,F12.3.F17.4,F18.4)
1150 FORMATtIH , 36X,5HA SUB,13.2H =,F12.4.
* GHCAP X=,F6.3.9X.8HINFINITY.F18.4)
1160 FORMAT(1H . 36X.5HA SUB.I3.2H =,F12.4)
1170 FORMATR1H,59X,F12.3.F17.4.F18.4)
1180 FORMAT(1H .58X.GHCAP X=,F6.3.9X.8HINFINITY,FF18.4)
NP=26
NO 60 1=24NP
GO TO (5.4), INDEX
4 SRS(I)=SR(I)
s SCS(I)=SC(I)
GO TO 50
5 IF (I-5) 20.20.10
10 IF (I-22) 30.30.40
20 J=2*I~3 \$ XP(1)=0.01*J
GO TO 50
30 J=1-4 s XP(1)=0.05*J
GO TO 50
40 J=1-22 s xP(I)=0.9+0.02*J
5 0 ~ C A L L ~ S H A P E (X P (I) . S R (I)) ~ \$ ~ C A L L ~ V O R T E X (X P (I) , S C (I) : ,
60 CONTINUF
65 PRINT 1000.1M.10.IV \$ PRINT 1010.ALPHA,CC
PRINT 102O.NXS.NXG \& IF (NXS-NXG) 70.70.80
70 M=NXS
\$ GO TO 90
8 0 M = N X G
90 PRINT 1030.(1.XS(I).1.XG(1),I=1.M)
M=N4+1 S IF (NXS-NXG) 100.120.110
100 PRINT 104O.(I*XG(I),I=M,NXG)
110 DRINT 10\&N.(1,XS(1),1\#M.NXS)
120 PRINT IO60.ITER
\$ PRINT 1070
IF (NXS-NXG) 130.140.140
130 IF (NXG-NP) 150.150.160
140 1F (NXS-NP) 150.150.170
150 M=NP+1 \$ GO TO 180
160 M=NXG \$ GO TO 180
170 M=NXS
180 KOUNT=1 S IF (ITER) 181.181.182
181 TEMPISORTF(CC) S PRINT 1071.8(1),A(1),TEMP
GO TO 18.3
19P DRINT 1072.B(1).A(1)
183 DO 300 I=2,M
IF (I-NXS) 190.100.220
190 IF (I-NXG) 200.200.210
200 IF (I-NP) 250.250.260
210 IF (I -NP) 290.290.300
220 IF (I-NXG) 230.230.240
230 IF (I-NP) 330.330.340
240 IF (I-NP) 370.370.380
250 PRINT 1080.I.B(I),I.A(I).XP(I),SR(I),SC(I)
GO TO 390
260 60 TO (270.280).KOUNT
270 PRINT 100O.I.S(I).I,A(I).CAPX.TFMP
KOUNT=2 S GO TO 390
280 DRINT 1100,I.B(II.I.A(I) S GO TO 390
200 pRINT 1110.1.R(1), XP(I),SR(I),SC(I)
GO TO 390
300 60 TO (310.320).KOUNT
310 PRINT 1120.1.B(I)*CAPX.TEMP
KOUNT=2 \$ GO TO 390
320 PRINT 1130.I.B(I) \$ GO TO 390
330 PRINT 1140.I,A(I),XP(I).SR(I),SC(I)
GO TO 390
340 GO TO (350.360).KOUNT

```
```

350 RRINT 11GO,I,A(T),CAPX,TFMP
KOUNT=?
\$ GO TO 390
\$ GO TO 390
360 PRINT 1160.1.A(1)
370 PRINT 1170.XP(I),SR(I).SC(I)
3RO PRINT 11QO.CAPX,TEMP
390 CONTINUE
END
SUBROUT INF OPNFH,\&F(Z,(OPH,QMH)
TYPF RFAL KPRIMFFCQ,K
KPRIMESO=1.O-(?.O/(Z+1.0)) \$ AI=KPRIMMFSO
AZ=A1*A1
A4=A?*A?
s A?=AP*A1
\$ ALO=LOGF(1.0/KPRIMESQ)
K=SQRTF(2.0/(Z+1.0)) \$ E=SORTF(2.0*(Z+1.0))
ELE=1.00000000000+.44325141463*A1+.06260601220*A2
* +.04757383546*A3+.01736506451*A4+
* (.24998368710*A1+.09200180037*A2+
* .04069697526*A3+.00526449639*A4)*ALO
ELK=1.38629436112+.09666344259*A1+.03590092383*A2
* +.0374256.3713*A3+.01451196212*A4+
* 1.50000000000+.12498593597*A1+.06880248576*A2
+.03328355346*A3+.00441787012*A4)*ALO
QPH=Z*K*FLK}->B*FLE क OMH=K*EL
F:%
SUS,MIUTINE SHADE(X.S)
EXTERMAL FJ
COMMON/ADDFD/FZ(50)
COMMON/COEFS/A(50),B(50)
COMMON/INPUT/CCC,ALPHA,CAPX
COMMON/NUMBERXC/NXS.NXG
S=1.0 \& ROT=CAPX-X
n< 1O J=1,NXG
S=S+(FJ(X,J)/BOT-FT(J)/CAPX)*R(J)
IO RONTINIJE
FND
SURROUTINE TORMOT(ZZ)
COMMON/INPUT/CC. ALPHA CADX
COMMON/LIMITS/TOP(5), BOT(5).NGO(5)
TFMP=CAPX-0.12
nO 10 1=1,5
TOP(1)=BOT(1)=0.0 \$ NGD(1)=1
10 CONTINUS
IF (ABSF(ZZ)-0.0000001) 70.70.20
20 IF (7Z) 70.70.30
.30 IF (ABSF(ZZ-0.12)-0.0000001) 120.120.40
40 IF (ZZ-0.12) 80.120.50
50 IF (ABSF(ZZ-TEMP)-0.0000001) 120.120.60
60 IF (ZZ-TEMP) 120.120.130
70 TOP(1)=BOT(2)=0.1
TOP(3)=CAPX \& NGO(2)=2
Gn TO 170
80 IF (77-0.07) 90.00.100
90 FOS=>2 \& GO TO 110
100 FOC=0.02
110 TOP(1)=8OT(2)=ZZ-EPS \& TOP(2)=ROT (3)=ZZ +EPS
TOP(3)=POT(4)=CAPX-0.1 \& TOP(4)=CAPX
NGD(2)=3
s TOP(2)=BOT(3)=CAPX-0.1
\$ GO TO 170

```
```

12O TOP(1)=8OT(2)=0.10
TOP(3)=BOT (4)=ZZ+0.02
TOP(5)=CAPX
GO TO 170
1.30 IF (TEMP-0.02) 140.140.150
140 FPS=TEMP
1a\cap FOS=0.0?
160 TOP(1)=BOT(2)=0.1
TOP(7)=ROT(4)=27+FPS
NGO(3)=3
170 END
SUBROUTINE VORTFX(X,V)
EXTERNAL GJ
COMMON/COEFS/A(GO), R(50)
COMMON/INPUT/CC.ALPHA.CAPX
V=SQRTF(CC)*(1.O+A(1)*GJ(X))
ENO
FNO ROTORIGE
FINIS

```
\(\$ \operatorname{TOP}(2)=B O T(3)=Z Z-0.02\)
\(\$ \operatorname{TOP}(4)=\operatorname{BOT}(5)=C A P X-0.1\)
s NGD (3) \(=3\)
s GO TO 160
\$ TOP (2) = BOT (3) = ZZ-EPS
\(\$\) TOP(4) \(=C A P X\)
```

 PROGRAM ROTOROGE
 C
C ROTOR OUT OF GROUND EFFECT (NAS1-6349)
C
FXTFRNAL FJ
TYPF RFAL LHS.LAMRDA
COMMON/ADDED/FZ (50).TI
COMMON/COEFS/A(50).B(50)
COMMON/INPUT/LAMBDA,CC.ALPHA,BETA
COMMON/INTGND/NGEES,TT,ZZ,N*K,GI
COMMON/MATRIX/RHS(50,50).LHS (50.1)
COMMON/NUMBERXS/NXS.NXG
COMMON/PRINT/XS(50),XG(50), XP(50),SR(50),SC(50),ITER,IM,ID,IY
COMMON/SAVE/NP,INDEX,SRS(50),SCS(50)
1000 FORMAT (4:5)
1010 FORMAT(1OFB.5)
1O2O FORMAT(IHO, 2BHINITIAL CONDITIONS - AT MOST.I3.I4H ITERATION(S) ,
IAHWILL RE ATTFMOTFN.I
103O FORMAT (1HO.IGHUNIFORM ACCURACY OF.FB.5.16H PERCENT IS NOT.
4 47HATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION .
* 14HOISTRIBUTIONS../.BH AT MOST.I 3.19H MORE ITERATION(S).
* 18HWILL BF ATTEMPTED.)
104O FORMAT(IHO,4THRESULTS OF THIS ITERATION INDICATE AN IMPROPER,
* 4ZHSTREAMLINE SHAPE - ITERATION IS TERMINATEDI
1O5O FORMAT(IHO,4THRESULTS OF THIS ITERATION INDICATE AN IMPROPER.
* SOHCIRCULATION DISTRIBUTION - ITERATION IS TERMINATEDI
1060 FORMAT (1HO,19HUNIFORM ACCURACY OF.F8.5.12H PERCENT IS .
* 47HATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION.
* 14HOISTRIBUTIONS.)
1070 FORMAT (IHO.19HUNIFORM ACCURACY OF,F8.5.16H PERCENT.IS NOT .
* 47HATTAINED FOR SLIPSTREAM RADIUS AND CIRCULATION .
* 14HDISTRIBUTIONS.)
1OBO FORMAT (IH ,4THITERATION IS TERMINATED. DYNAMIC AND KINEMATIC .
* 41HCONDITIONS ON STREAMLINE WILL BE CHECKED.)
RFAD 1000.IM.ID.IY
10 READ 1000,MM,NN,NITER
2O READ 1010.CC.LAMBDA,ACC
READ 1010.(XS(1),I=1,MM)
NXS=MM
\$ NXG=NN
ALPHA=1.8 \& BETA=0.0
0O 30 1=1.NXS
B(1)=0.0
\$ F7(1)=FJ(0.0.1)
30 CONTINUE
DO 40 1=1.NXG
A(1)=0.0
4O CONTINUF
CALL SHAPE (2.0.0.T1)
\$ FI=CC-(CC/(2.0*TI))**2
GI=SQRTF(LAMRDA**2+FI)-LAMBDA
ITER=0
INDEX=1
\$ ACCP=100.0*ACC
\$ CALL OUTPUT
M=NP+1
I NDEX*2
\$ SC(M)=SCS(M)=GI
DO 130 1TER=1,NITER
T1S=TI
nO क0 I=1.N
ZZ=XS(1) \$ CALL TOPBOT(ZZ)
CALL. LIMITCHK \$ CALL BEQNS(I)
5O CONTINUE
CALL MATINV(RHS.N.LHS.1.DET)
0O 60 J=1.N

```
```

 B(J)=LHS(J.1)
 60 CONT INUE
CALL SHAPE(2.0.0.TI) SFI=CC-(CC/(2.0*T1))**2
GI=SORTF(LAMBDA**2+FI)-LAMRDA \$ N=NXG
OO 70 1=1,N
ZZ=XG(1) \$ CALL TOPBOT(ZZ)
CALL LIMITCHK \$ CALL AEQNS(I)
70 CONTINUE
CALL MATINV(RHS.N.LHS.I,DET)
DO 8O J=1.N
A(J)=LHS(J.1)
8O CONTINUE
CALL OUTPUT
CALL SHAPE(1.0.05.TTEST) \$ IF (TTEST-1.0) 90.140.140
90 CALL VORTEX(0.01.GI *GTEST) \$ IF (GTEST-GI) 150.150.100
100 SR(M)=TI
SR(M)=TI
CACC=ACC*SC(I) \$ TACC=ACC*SR(I)
IF (ABSF(SC(1)-SCS(I))-CACC) 101.101.110
101 IF (ABSF(SR(I)-SRS(I))-TACC) 102.102.110
102 CONTINUE
GO TO 160
110 LEFT=NITER-1TER \$ 1F (LEFT) 170.170.120
120 PRINT 1030.ACCP.LEFT
130 CONTINUE
140 PRINT 1040 S GO TO 10
150 PRINT 1050 \$ GO TO 10
160 PRINT 1060.ACCP \$ GO TO 180
170 PRINT 107O.ACCP \$ GO TO 1RO
18O PRINT 108O S CALL DYKICHCK
GO TO 10
190 FND

```
    SUBROUTINE AEQNS(1)
    EXTERNAL GJ
    TYPE REAL LHS•LAMBOA
    COMMON/INPUT/LAMRDA,CC, ALPHA, BETA
    COMMON/INTGND/NGEES*TT*ZZ,N\&K\&GI
    COMMON/LIMITS/TOP(7), BOT(7),NGD(7)
    COMMON/MATRIX/RHS(50.50),LHS(50.1)
    DIMENSION XI(400).GTTR(400)
    DIMENSION R(5).U(5)
    DATA \((R=0.1477621124 .0 .1346333597,0.1095431813 .0 .07472567458\).
    * 0.03333567215).
- \(\quad U=0.0744371695 \cdot 0.2166976971\). 0.3397047841 .0 .4325316833 ,
    * 0.4869532643)
    CALL SHAPE (1,ZZ.TT) \$ CALL FACTOR (ZZ.FAC)
    CALL VORTEX(ZZ,GI,GAM)
    s CON=2.O*GAM**2*FAC
    \(F F=C C-(C C /(2 \cdot O * T T)) * * 2\)
    \(\mathrm{NN}=\mathrm{N}+1\)
    \(K K=0\)
    nO \(70 \mathrm{~J}=1.7\)
    IF (ABSF (TOP (J)-BOT (J)) -0.0000001\() 70.70 .10\)
10 NTIME = NGD(J)
    \(R=T O P(J) \quad 5 \quad A=\) BOT (J)
    DO \(60 \quad 11=1\), NTIME
    \(X L=A+(11-1) *(B-A) / N T I M E \quad s \quad X U=B-(N T I M E-I I) *(B-A) / N T I M E\)
    \(D=X U-X L \quad\) S \(\quad S=(X U+X L) / 2.0\)
    DO 50 L=1.10
```

 KK=KK+1
 IF(L-5)20.20.30
 20 JJ=L $ XI(KK)=S+D*U(JJ)
 GO TO 40
 30 JJ=11-L $ XI(KK)=S-D*U(JJ)
 40 CALL SHAPE (1. XI(KK),T)
CALL FACTOR(XI(KK),ROOT)
CALL GEES(1,TT,T.ZZ.XI(KK),G.GT.GTT)
GTTR(KK) = D*R(JJ)*GTT*ROOT
5O CONTINUE
6 0 ~ C O N T I N U E ~
7O CONTINUE
DO 140 J=1.NN
K=J S IF (J-NN)RO.90.90
80 RHS(I.J)\#FF*TT*GJ(ZZ.J)/CON \$ GO TO 100
90 RHS(I|J)=TT*(LAMRDA+FF*GI/CON-FF/(FAC*GAM))/GI
100 DO 130 L=1.KK
IF(J-NN)110.120.120
110 RHS(I!J) = RHS(I.J)+GTTR(L)*GJ(XI(L)!J)
GO TO 130
120 RHS(I.J) = RHS(I.J)+GTTR(L)
130 CONTINUE
140 CONTINUF
LHS(I,1)=-RHS(I,NN)
END
SURROUT INF RFQNS (I)
EXTERNAL BINT*FJ
TYPE RFAL LHS.LAMBDA
COMMON/ADDED/FZ(50), TI
COMMON/INPUT/LAMBDA,CC.ALPHA,PETA
COMMON/INTGNT/NGEES,TT,ZZ,N,K,GI
COMMON/MATRIX/RHS(50,50),LHS(50.1)
NN=N+1 S CALL SHAPE(1,ZZ,TT)
GTTG=GGM=0.O
NGFES=1 \$ CALL ONEINTGL(BINT,GTTG)
NGEES=3 S CALL ONEINTGL(BINT.GGM)
ADD=GGM +ALPHA* (TT-1.O)*GTTG
no 30 J=1.NN
K=J \$ IF (J-NN) 10.20.20
10.CON=FJ(フZ.J)-FZ(J)
RHS(I:J)=LAMBDA*TT*CON+(LAMBDA+GI)*TI*FZ(J)+ALPHA*CON*GTTG
GO TO 30
20 RHS(I|J)=(LAMBDA+GI)*TI*(1.0-0.5*TI)-LAMBDA*TT*(1.0-0.5*TT) +ADD
30 CONTINUE
LHS(1,1)=RHS(1,NN)
ENO
FUNCTION BINT(Z)
FXTERNAL FJ
COMMON/ADDED/FZ(5O).TI
COMMON/INPUT/LAMBDA,CC,ALPHA,BETA
COMMON/INTGND/NGEES,TT,ZZ,N*K.GI
CALL SHAPE(1,Z,T) \$ CALL VORTEX(Z,GI.GAM)
CALL FACTOR(Z,FAC) \$ GAM=FAC*GAM
CALL GEES(NGFES,TT,T,ZZ,Z,G*GT,GTT)
GO TO (10.30,20),NGEFS
10 RINT=GTT*GAM s GO TO 30
2O BINT=-G*GAM
30 FND

```
```

 SUBROUTINE DYKICHCK
 EXTERNAL GTG,GGG
 TYPE REAL LAMBDA
 COMMON/INPUT/LAMBDA,CC,ALPHA,BETA
 COMMON/INTGND/NGEES,TT,ZZ*N,K*GI
 COMMON/NUMBERXS/NXS.NXG
 COMMON/PPRINT/XS(50), XG(50), XP(50),SR(50),SC(50),ITER,IM,ID,IY
 IIMENSION X(19)
 DATA (}X=0.01,0.02.0.03,0.04,0.05,0.10.0.15,0.20.0.30.0.40.0.50.
 * 0.75,1.00,1.25.1.50,2.00,3.00.5.00,10.001
 1000 FORMAT(1HI.22X.4OHR OTOR OUT OF GROUND, ,
* 35HEFFECT INAS 1-6 34 9 1.5X.1H(.12.1H/.12.
* (H/,12,1H))
1010 FORMAT(1HO.35X,29HDAMPING COEFFICIENTS. ALPHA =.F5.2.9H , BETA =.
* F5.2./.36x.
* 24HLOADING COEFFICIENT, C =.F7.4./.36X.
* 23HADVANCE RATIO, LAMBDA =.F7.4./.36X.
* 36HNO. OF SHAPE COLLOCATION POINTS, M m.13./.36X.
* 36HNO. OF GAMMA COLLOCATION POINTS. N =.I3./.36X.
* 16HHUB RADIUS =0.0)
102O FORMAT(1HO.//.45H NUMERICAL CHECK OF DYNAMIC (FORCE-FREE) AND -
* 47HKINEMATIC (STREAMLINE) CONDITIONS ON SLIPSTREAM.//)
1030 FORMAT(1H .50X.8HOYNAMIC..25X,1OHKINEMATIC..///.54X.
* 2OHU*GAMMA SHOULD EQUAL,11X,19HTOTAL (CAP) PSI ON .
- 1OHSLIPSTREAM, /.9X.36HTOTAL X-VEL. SLIPSTREAM VORTICITY,
* 18X,3HF/2,15X,36HSHOULD EQUAL ITS VALUE AT X=INFINITY,
* /.8X.36HON SLIPSTREAM. PER UNIT X-LENGTH..9X.8H---------.
* 14H--------------.5X,31H---------------------------------------
* 7H-------,/,4H X,9X,4HU(X),14X,8HGAMMA(X).17X,3HLHS,11X,
* 3HRHS.17X.3HLHS.13X.3HRHS./)
1040 FORMAT(1H .F5.2.F12.5,F2O.5.F22.5.F14.5.F2O.5.F16.5)
1050 FORMAT(1H ,5H INF.,F12.5.F20.5.F22.5.F14.5.F20.5.F16.5)
DRINT 1000,IM,ID,IY
PRINT 1010.ALPHA.BETA.CC.LAMBDA,NXS.NXG
DRINT 1020 S PRINT 1030
CALL SHAPE(2.0.0.T1) S CB=0.5*TI**2*(LAMBDA+G1)
DO 60 1=1.20
IF (1-20) 20.10,10
10 U=LAMBTA+0.5*GI S GAM=GI
CA=0.5*(CC-(CC/(2.0*T1))**2)
DSI=CA \& GO TO 30
80 ZZ=x(1)
CALL VORTEX(ZZ.GI.GAM) \$ CALL FACTOR(ZZ,FAC)
GAMIFAC*GAM \$ CALL TOPBOT(ZZ)
CALL LIMITCHK
\$ U=LAMBDA
PSI=0.5*LAMBDA*TT**2 \$ CALL TWOINTGL(GTG.GGG.U.PSI)
30 UG=U*GAM
\$ IF (I-20) 40.50.50
40 PRINT 1O4O.ZZ.U.GAM.UG.CA.PSI.CB
GO TO 60
50 PRINT 1050,U,GAM,UG,CA,PSI,CB
6 0 ~ C O N T I N U E ~
END

```
    SUBROUTINE FACTOR(X,FAC)
    EXTFRNAL FPJ
    COMMON/COEFS/A(50),R(50)
    COMMON/NUMBERXS/NXS,NXG
    \(T P=0.0\)
    no \(10 \quad 1=1\), NXS
    \(T P=T P+B(1) * F P J(X, 1)\)
    10 CONTINUE
    FAC=SORTF (1.0+TP**2)
    FND
```

 FUNCTTION FJ(X,J)
 FJ=FXPFF(-J#X)
 END
 FINCTION FPJ(X,J)
 FPJ=-J*FXPF(-J*X)
 ENO
 SUBROUTINE GEES(NUM,TT.T.ZZ,Z.G*GT*GTT)
 PI=3.1415927 S TERM=SQRTF(TT*T)
 DEL=(ZZ-Z)**2 & ATOP=DEL+TT**2-T**2
 BTOP=DEL+T**2-TT**E S ABOT=8.O*PI*TERM*T
 BBOT=8.O*PI *TERM*TT
 A=ATOP/ABOT $ R=BTOP/BROT
 ARG=1.O+((TT-T)**2+(ZZ-Z)**2)/(2.O*TT*T)
 CALL QPMHALF(AQG.OPH.QMH) S GO TO (30.20.10).NUM
 O G=TERM*OOH/(2.O*PI)
 20GT=(B*OPH+A*OMH)/(ARG**2-1.0)
30 GTT = (A*QPH+B*QMH)/(ARG**2-1.0)
FND
FUNCTION GGG(Z)
COMMON/INTGND/NGEES.TT,ZZ,N.K.GI
CALL SHAPE(I,Z,T) \$ CALL VORTEX(Z.GI,G)
CALL FACTOR(Z.FAC) \$ G=FAC*G
CALL GEES(3.TT.T.ZZ.Z.GG.DUM.D(JMM)
GGG=GG*G
FND
FUNCTION GJ(X.J)
IF (J-1) 10,10,20
10 GJ=FXPF (-3.0*X)/SORTF (X) S GO TO 30
20GJ=X**(-0.84+0.51*J)*EXPF (-3.0*X)
30 FND
FUNCTION GTG(Z)
COMMON/INTGND/NGEES,TT,ZZ,N,K,GI
CALL SHAPE(I,Z,T) \$ CALL VORTEX(Z,GI,G)
CALL FACTOR(Z•FAC) \& G\&FAC*G
CALL GFES(1,TT,T,ZZ,Z,DUM,DUMM,GTT)
GTG=GTT*G/TT
F.ND
SUGROUTINE LIMITCHK
COMMON/LIMITS/TOP(7),BOT(7),NGD(7)
00 40 1=1.7
IF (BOT(I)-TOP(I)) 40.40.10
10 IF (I-7) 20.30.30
2O BOT(I+1)= ROT(1)
3O ROT (I)=TOP(1)
4 0 ~ C O N T I N U E ~
END

```
```

SUBROUTINE MATINV(A,N,B.M,DETERM)
DIMENSION IPIVOT (50), A (50.50), B(50.1). INDEX(50.2) •PIVOT(50)
DETERM $=1.0$
no $10 \mathrm{~J}=1 \mathrm{IN}$
IPIVOT (J)=0
10 CONT 1 NUE
DO 200 I $=1 \cdot N$
$A M A X=0.0$
no $60 \mathrm{~J}=1, N$
IF (IPIVOT(J)-1) 20.60 .20
$200050 \mathrm{~K}=1$, N
IF (IPIVOT(K)-1) 30.50 .240
30 IF (ABSF (AMAX)-ABSF (A(J.K))) 40.50.50
40 IROW=J \$ ICOLUM=K
$A M A X=A(J, K)$
50 CONTINUE
60 CONTINUE
IPIVOT (ICOLUM) =IPIVOT (ICOLUM)+1 S IF (IROW-ICOLUM) 70.110.70
70 DETERM $=-$ DETERM
DO $80 \mathrm{~L}=1 \mathrm{~N}$
SWAP=A(IROW•L) S A(IROW•L)=A(ICOLUM\&L)
A(ICOLUM*L) $=$ SWAP
80 CONT INUE
IF (M) 110.110.90
90 DO $100 \mathrm{~L}=1 \mathrm{M}$
SWAPzB(IROW•L) s B(IROW•L) \quad B(ICOLUM•L)
$B(I C O L U M, L)=S W A P$
100 CONTINUE
110 INDEX(1.1)=1ROW
INDEX(I.2) $=1$ COLUM \quad S PIVOT(I)=A(ICOLUM•ICOLUM)
DETERM=DETERM*PIVOT(I) SA(ICOLUM, $($ COLUM $)=1.0$
NO 1 ? $\mathrm{L}=1, \mathrm{~N}$
A(ICOLUM L) $=A(I C O L U M \cdot L) / P I V O T(I)$
120 CONT INUE
IF (M) 150.150 .130
130 DO $140 \mathrm{~L}=1$, M
B(ICOLUM•L)=B(ICOLUM•L)/PPIVOT(I)
140 CONTINUE
150 DO $200 \mathrm{LI}=1 \cdot \mathrm{~N}$
IF(L.1-ICOLUM) $160,200,160$
160 T=A(L1.ICOLUM)
s $A(L 1 \cdot I C O L U M)=0.0$
DO $170 L=1$. N
A(LI•L) $x A(L 1, L)-A(I C O L U M \cdot L) * T$
170 CONT INUE
IF (M) $200.200,180$
$18000190 \mathrm{~L}=1 . \mathrm{M}$
B(L1,L)=B(L1,L)-B(ICOLUM•L)*T
190 CONTINUE
200 CONT INUE
DO 230 1:1.N
$L=N+1-1$
IF (INDEX(L.1)-INDEX(L.2)) 210.230.210
210 JROW=INDEX(L,1)
\$ JCOLUM=INDEX(L, 2)
DO 220 K표:N
$S W A P=A(K, J R O W) \quad \$ A(K, J R O W)=A(K \cdot J C O L U M)$
$A(K$. JCOLUM) $=$ SWAP
220 CONTINUE
230 CONTINUE
240 RETURN
END

```
```

 SUBROUTINE NGAUSS(B,A,FX,NTIME,INTEGRAL)
 TYPE REAL INTEGRAL
 DIMENSION R(5).U(5)
 DATA (R=0.1477621124.0.1346333597.0.1095431813.0.07472567458,
 *
 * (U=0.0744371695.0.2166976971.0.3397047841.0.4325316833.
 * 0.4869532643)
 INTEGRAL=0.0
 DO 2O J=1 |NTIME
 XL=A+(J-1)*(B-A)/NTIME S XU=B-(NTIME-J)*(B-A)/NTIME
 D=XU-XL $S=(XU+XL)/2.0
 TEMP=0.0
 no 10 K=1:5
 TEMP=TEMP+R(K)*(FX(S+D*U(K))+FX(S-D*U(K)))
 10 CONTINUE
 TEMP=TEMP*D S INTEGRAL=INTEGRAL+TEMP
 2O CONT INUE
END
SUBROUTINE ONEINTGL(FA,A)
COMMON/L.IMITS/TOP(7).BOT(7).NGD(7)
DO 20 I=1.7
IF (ABSF(TOP(1)-BOT(I))-0.0000001) 20.20.10
10 CALL NGAUSS(TOP(1).BOT(1),FA,NGD(1),AA)
A=A+AA
2O CONTINUE
END
SUBROUTINE OUTPUT
TYPE RFAL LAMBDA
COMMON/ADDED/FZ(50).TI
COMMON/COEFS/A(50),B(50)
COMMON/INPUT/LAMBDA,CC,ALPHA,BETA
COMMON/INTGNO/NGEES,TT,ZZ,N,K,GI
COMMON/NUMBERXS/NXS.NXG
COMMON/PRINT/XS(50), XG(50),XP(50),SR(50),SC(50),ITER,IM,ID,IY
COMMON/SAVE/NP, INDEX,SRS(50),SCS(50)
1000 FORMAT(1H1.22X,4OHR OTOR OUT OF GROUNO.
* 35HEFFECT (NAST1-63 4 9,1.5X.1HI,I2,1H/.12.
* iH/.12,1H)!
101O FORMAT (1HO.35X,29HDAMPING COEFFICIENTS. ALPHA =,F5.2.9H . BETA =.
* F5.2./.36X.
* 24HLOADING COEFFICIENT. C = FF7.4./.36X.
* 23HADVANCE RATIO. LAMBDA =9F7.4./.36X.
* 16HHUB RADIUS = 0.01
1O2O FORMAT'IHO,21X,29HSHAPE COLLOCATION POINTS. M =, I3,12X.
* 29HGAMMA COLLOCATION POINTS. N =.13./)
1030 FORMAT(1H, 28X,5HX SUB,13.2H =,F8.4.26X.5HX SUB.13.2H =.F8.4)
1040 FORMAT(1H,72X,5HX SUB,13.2H=,F8.4)
1050 FORMAT(1H, 28X,5HX SUB,I3.2H=,F8.4)
1060 FORMAT(1HO.13HITERATION NO..13./)
1070 FORMAT(1H , 79X,35HSLIPSTREAM SLIPSTREAM CIRCULATION./.7X.
* 18HSHAPE COEFFICIENTS, 14X.18HGAMMA COEFFICIFNTS.11X,1HX.
* 11X.3OHRADIUS. T GAMMA SUB S./)
1071 FORMAT\&IH .4X.1OHE SUB 1=.F12.4.10X.1OHA SUB 1 m.FI2.4.8X,
* 4H.000.11X.5H1.0000.F18.4)
1072. FORMAT(IH,4X.1OHB SUR 1 =.F12.4.1OX,1OHA SUB 1=.F12.4.8X.
* 4H.000.11X.6H1.0000.10X.8HINFINITY)
1OBO FORMATIIH,4X,5HB SUB,13,2H=,F12.4.1OX,5HA SUB,I3,2H =.F12.4.
* F12.3.F17.4.F18.4)
1090 FORMATG1H,4X,5HB SUB, 13.2H=,F12.4.10X.5HA SUB,13.2H=,F12.4.5X,
* BHINFINITY,FI6.4,F18.4)

```
```

1100 FORMAT(1H ,4K.5HB SUB,13.2H =,F12.4.10X,5HA SUB,13,2H =,F12.4)
11:O FORMAT(1H , 4X,5HB SUB,13,2H =,F12.4,32X,F12.3.F17.4,F1\&.4)
112O FORMAT(IH , 4X,5HB SUB,13,2H =,F12.4.37X,RHINFINITY,F16.4.F18.4)
1130 FORMAT(1H , 4X, बHR SUR, 13.2H=,F12.4)
1140 FORMAT(1H , 36X,5HA SUB,I3,2H =,F12.4,F12.3.F17.4,F18.4)
1150 FORMAT(1H, 36X.5HA SUB,I3.2H*,F12.4.5X.8HINFINITY.F16.4,F18.4)
1160 FORMAT(IH , 36X,5HA SUB,13.2H =.F12.4)
1170 FORMAT(1H ,58X,F12.3.F17.4.F18.4)
1180 FORMAT(1H .63X.8HINFINITY,F16.4:F18.4)
NP=30
00 60 I=2.NP
GO TO (5.4), INDEX
4 SRS(1)=SR(I)
\$ SCS(I)=SC(I)
GO TO 55
IF (1-5) 30.30.10
10 IF (1-10) 40.40.20
20 IF (I-17) 45.45.25
25 IF (I-25) 50.50.51
30 Jェ?*I-.? s xp(1)=0.01*J
GO TO 55
40 J=I-4
GO TO 55
45 J=1-7
GO TO 55
50 J=1-13
GO TO 5s
51 J=I-2?
5 5 ~ C A L L ~ S H A P E (1 , X P (I) , S R (1)) ,
60 CONTINUE
65 PRINT 1000.IM.ID.IY S PRINT 10IO,ALPHA,BETA,CC.LAMBDA
PRINT 1020.NXS.NXG \$ IF (NXS-NXG) 70.70.80
70 M=NXS
\$ GO TO 90
80 M=NXG
90 PRINT 1030.(I.XS(I),1.XG(I):I=I,M)
M=M+1 \$ IF (NXS-NXG) 100.120.110
100 PRINT 1040.(I,XG(1),IxM,NXG) \$ GO TO 120
110 PRINT 1O5O.(I.XS(1),IIMM,NXG)
120 PRINT 1060,ITFQ S PRINT 1070
IF (NXS-NXG) 130.140.140
130 IF (NXG-NP) 150.150.160
140 IF (NXS-NP) 150.150.170
150 M=NP+1 \$ GO TO 18O
160 M=NXG S GO TO 180
170 M=NXS
180 KOUNT=1 \$ IF (ITER) 181.181.182
181 PRINT 1071.B(1).A(1).GI \$ GO TO 183
182 PRINT 1072.B(1),A(1)
183 DO 390 1=2,M
IF (1-NXE) 190.190.220
190 IF (I-NXG) 200,200.210
200 IF (I-NP) 255.250.260
210 IF (I-ND) 290.290.300
220 IF (I-NXG) 230,230,240
230 IF (I-NP) 330.330.340
240 IF (I-NP) 370.370.380
250 PRINT 1080.I.B(I).I.A(1).XP(1),SR(1),SC(1)
GO TO 390
260 60 TO (270.2R0),KOUNT
270 PRINT 1090.1.B(I),I.A(1),TI,GI
KOUNT=2 \$ GO TO 390
280 PRINT 1100.I.B(I).I.A(1) \$ GO TO 390
290 DRINT 1110.I.B(I).XP(I).SR(I).SC(1)
GO TO 390
30n GO TO (310.370), KOUNT
310 PRINT 1120.1.R(I).TI,GI
KOUNT=2 \$ GO TO 390

```
```

320 PRINT 1130.I.B(1) \$ GO TO 390
330 PRINT 1140.1.A(1).XP(I).SR(I).SC(I)
GO TO 390
340 GO TO (350.360).KOUNT
350 RRINT 1150.I.A(II.TI.GI
KOUNT=2 \& GO TO 390
360 PRINT 1160.I.A(1) \$ GO TO 390
370 PRINT 1170.XP(I).SR(I).SC(I) \$ GO TO 390
3RO DRINT 11RO.TI.GI
390 CONTINUF
END
SUBROUTINE OPMHALF(Z.OPH,OMH)
TYPE RFAL KPRIMESQ.K
KPRIMESO=1.0-(2.0/(Z+1.0)) \& AI=KPRIMESO
AR=AT*A1 \& AT=AP*A1
A4=AZ*AZ
ELE=1.00000000000+.44325141463*A1+.06260601220*A2
* +.04757383546*A3+.01736506451*A44
* (.24998368310*A1+.09200180037*A2+
.04069697526*A3+.00526449639*A4)*ALO
ELK=1.38629436112+.09666344259*A1+.0.359009238.3*A2
+.03742563713*A3+.01451106P12*A4+
* (. +.03742563713*A3+.01451106212*A4
+.03328355346*A3+.00441787012*A4)*ALO
OPH=Z*K*ELK-B*ELE \& QMH=K*EL.K
END

```
    SUBROUTINE SHADF (KODF * \(x\), \(S\) )
    EXTERNAL FJ
    COMMON/ADDFD/FZ (SO).TI
    COMMON/COEFS/A(50), B(50)
    COMMON/NUMBERXS/NXS,NXG
    GO TO (10.30).KODF
\(10 \mathrm{~S}=\mathrm{T}\) T
    no \(20 \quad J=1\). NXS
    \(S=S+R(J) * F J(X, J)\)
20 RONTINIJF
    GO TO \&O
\(30 s=1.0\)
    กO 4 ก J=1.NXS
    \(5=S-A(J) * F Z(J)\)
40 CONTINUE
50 FND
    SURROUTINE TODROT(ZZ)
    COMMON/LIMITS/YOP(7), BOT(7),NGП(7)
    DO \(10 \quad 1=1.7\)

10 CONTINLIE
    NGT (4) \(=3\)
    IF (ABSF (ZZ)-0.0000001) B0.80.20
20 IF (ZZ) 70.80 .30
30 IF (ABSF (ZZ-0.2)-0.0000001) 100.100.40
40 IF (ZZ-0.2) 100.100 .50
50 IF (ABSF (ZZ-3.0)-0.0000001) 140.140 .60
60 IF (ZZ-3.0) \(140,140,150\)
7 N NGD \((4)=? \quad\) क \(F P S=0.1\)
    GO TO Qn
RO \(F P S=0.0=\)
```

90 TOM(4)=BOT(55)=EPS
\$ TOP(5)=8OT (6)=1.0
TOP(5)=BOT(7)=10.0
\$ TOP(7)=100.0
GO TO 180
100 IF (ZZ-0.05) 110.110.120
110 EPPS=ZZ
120 EPS=0.05
130 TOP(3)=BOT(4)=ZZ-EPS
GO TO 170
140 TOP(2)=BOT(3)=0.15
GO TO 160
150 TOP(1)=BOT(2)=0.15
TOP(3)=BOT(4)=ZZ-0.05
160 TOP(4)=BOT (5)=ZZ+0.05
170 TOP(5)=BOT (6)=ZZ+1.0 \& TOP(6)=BOT(7)=ZZ+10.0

```
    SUBROUTINE TWOINTGL (FA,FB•A,B)
    COMMON/LIMITS/TOP(7), BOT(7).NGD(7)
    กO \(20 \quad 1=1.7\)
    IF (ABSF (TOP (1)-BOT(1))-0.0000001) 20.20.10
10 CALL NGAUSS(TOP(I), ROT (1),FA,NGD(!),AA)
    CALL NGAUSS(TOP(i),BOT(I),FB,NGD(i),BB)
    \(A=A+A A \quad \$ P=A+R B\)
20 CONT INUE
    END
    SUBROUTINE VORTEX(X,GI•V)
    EXTERNAL GJ
    COMMON/COEFS/A(50),B(50)
    COMMON/NUMBERXS/NXS,NXG
    \(V=1.0\)
    \(0010 \mathrm{~J}=1\), NXG
    \(V=V+A(J) * G J(X \cdot J)\)
10 CONTINUE
    V=G1*V
    END
        END ROTOROGE
    FINIS

\begin{abstract}
"The aeronaticall and space actitities of the United States shall be conducted so as to contribute. . to the expansion of biman knowledge of phenomena in the atmorphere and space. The Administration whal provide for the widut praticable and appropritte discemination

\end{abstract}
- National Afronautics and Space Act of 1958

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS}

TECHNICAL REPORTS: Scicntific and tcchnical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

\section*{SPECIAL PUBLICATIONS: Information} derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Tuchnology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

\section*{SCIENTIFIC AND TECHNICAL INFORMATION DIVISION}```


[^0]:    * There will also be a distribution of vortices, over the slipstream surface, which are oriented axially. These contribute to $w$ but not to $\Psi$, and will not directly concern us.

[^1]:    * It will be convenient to express the slipstream radius as $t$ or $T$ depending on whether the argument is the integration variable $\xi$ or the field point $x$, respectively.

[^2]:    * Recall from (29) that at $x=\infty$, $u^{\prime}$ inside the slipstream is exactly twice as large as it is on the slipstream. This is, in fact, a good approximation for finite $x$ as well.

