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CALCULATED COLLISION INDUCED ABSORPTION SPECTRUM FOR He-Ar\a/
by
D. A. McQuarrie
Theoretical Chemistry Institute, University of Wisconsin and
Science Center, North American Rockwell Corporation,
Thousand Oaks, California
and

R. B. Bernstein
Theoretical Chemistry Institute and Chemistry Department
University of Wisconsin, Madison, Wisconsin

ABSTRACT

Computations (exact within the classical framework) are
presented of the translational absorption spectrum for a model
system of dissimilar rare gas atoms chosen to simulate the He—Ar
pair. The treatment makes use of the classical theory of Levine and
Birnbaum. However, the procedure takes proper account of the non-
linear collision trajectories (evaluated on the basis of a realistic
interaction potential derived from beam scattering experiments) and
the theoretical form of the dipole moment function (i.e., the ab
initio computations of Matcha and Nesbet). The calculations reproduce
the experimental (Bosomworth and Gush) line shape for He-Ar fairly
well,provided the "dipole range parameter' is altered by some 7%

from its ab initio wvalue.
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I. Introduction

Translational absorption spectra or collision-induced absorption
(CIA) curves were first observed in rare gasg mixtures in the infrared
by Kiss and Welsﬁ@/in 1959. They correctly attributed this absorption
to the transient electric dipole moment formed during a close
encounter between two dissimilar rare gas atoms. They observed only
the high frequency wing of the absorption band ( 2 3530 cm-l). The
complete band was later seen by Bosomworth and Gush:@/working in the
far infrared. They were able to observe absorption for heliumfargon
and neon-argon mixtures, but for helium-neon the absorption was too
weak to be observed. The CIA curves are broad bands starting at very
low frequencies and extending over a range of several hundred wave
numbers, with a broad maximum occurring in the region 100f200 cm_l.

The first detailed theoretical discussion of collision induced
(or "translational") absorption ié that of Poll and van Kranendonk}é/
who have derived expressions for the integrated absorption
coefficients in terms of a quadrature involving the intermolecular
potential and the induced dipole moment. Theif work did not yield
a detailed line shape, however. This was first done by Tanimoto}é/
who employed a quantum mechanical formulation éf abgsorption, the
dipole moment matrix elements taken between scattering state wave
functions. He used an exponentially decaying radial dependence
both for the intermolecular potential and induced dipole moment.

Since he did not solve the radial Schroedinger equation analytically,



he resorted to several approximations, of uncertain validity. 1In
addition, the only data available for analysis were the less accurate
high frequency wing results, so his evaluation of the parameters
was such that the computed overall line shape was unreliable. In
principle, however, he completely solved the line shape problém.
This work was followed by the independent work of Levine and
Birnbau%é/who calculated the line sh%pe classically, employing
classical radiation theory to determine the emission spectrum and
converting this to absorption by means of Kirchoff's law. By
using a simple modified gaussian-type radial function to déscribe
the induced dipole moment function, and assuming straight-line
trajectories, an analytic expression was obtained for the entire
spectrum which could be well-fitted to the experimental data.
Thus, they were the first to be able to reproduce the complete
line shape. This work was followéd by Futrelle)é/who studied the
dependence of the CIA (particularly, frequency moments of the
absorption band) on the repulsive part of the interaction potential.
He found that the temperature dependence of the absorption is a
much more sensitive probe into the atomic potential than some of
the more conventional techniques (e.g., the second virial
coefficient or transport properties). He also emphasized the
important qualitative difference in sensitivity between virial and
transport data and CIA observations. In the former, the measurements
contain substantial contributions from like atom interactions, and

it is difficult to obtain by '"subtraction" of suitable combinations



of data information on the unlike atom interaction Cvab)a Since

it is the Va that contributes to the CIA, this method has the

b
possibility of being a direct probe into unlike interactions.

The only other experiments yielding this information are elastic
scattering of atomic beams and thermal diffusion coefficients.

All of the above assumes that the dipole moment function is
known. This function can in principle be obtained from a quantum
mechanical calculation; within the Hartree-Fock approximation this
has been done by Matcha and Nesbet}j/ They found that‘/AA(r) can
" be well-fitted by an exponentially decaying radial function. This
form has been uséd in all the theoretical investigations except
that of Ref. 5. Even though the numerical values of the Hartree-
Fock evaluated /Ak(r) are approximate, the functional form
(exponential) is probably quite realistic. Thus, if the interatomic
potential were known, the CIA data could yield the parameters of
the expotential function for /Ai(r). FutrelleV hgs studied the
dependence of various moments of the absorption data on both/Aj(r)
and the potential and has shown how to separate the effect of these
two unknown quantities. Most recently, Okada, Kajikawa, and
Yamamotgg/have calculated agbsorption curves for a hard-sphere
potential and an exponentially decreasing dipcle moment function..
This was done by way of the dipole moment asutocorrelation function
approachxlg/

In view of the above, it seems desirgble to carry out an

exact computation of a2 line shape for a realistic dipole moment



function and interatomic potential, using the classical electrodynamic
method of Levine and Birnbaum but employing exact classical
trajectories. ‘Many of the integrals that appear are similar to

those studied by Bernstein and Kramegﬁ;/in the application of the
sudden approximation to the rotational excitation of molecules by
atoms. The present paper thus reports line shape calculations for

an exponential dipole moment function and a Lennard-Jones (12,6)
interaction potential. The dependence of the line shape on the
various parameters of the system is explored. The results can

serve as an exact '"model calculation" against which various approxi-

mate theories may be compared.

IT. General Relations

The starting point of Levine  and Birnbaum“gé/analysis is
Kirchhoff's law, relating the absorption coefficient A(ew) to the
_power due to spontaneous emission per unit frequency interval per

unit volume of sample I(w) :

AlD) = T(w)/c ulw) (1)

where c¢ is the speed of light and u(w) is the density of black
body radiation. Levine and Birnbaum argue that the Rayleigh-Jeans
law is the appropriate form of w{w) to be used; despite the

fact that Aw/kT is not << | over much of the range of the



experimental data; thus:

W)= AT/ 7 (2)

>

The quantity I(W) can be written as an average over power

from various classes of collisions,

T(w) = f[N(lé,E) f(w,l; E) A AE (3)

where N(b,E)dbdE is the number of collisions per unit volume per
unit time with impact parameter in the range b,b + db and relative
energy in the range E,E + dE; assumed known from kinetic theory.
. A .
The emission intensity I (w,b,E) 1is obtained from Larmor's
, ; \12/
formula for the power emitted by an accelerating charge. In

terms of the induced dipole moment /f (w,b,E} is given by

_{: 2
I(w LE)= 3 e jlt ﬁ‘w/u(/(r E t) @)

where /(A(b,E’t) is the transient dipole moment of the colliding
pair. It is assumed that the dipole moment is directed along the

internuclear axis and a function only of the scalar m.agnitudebf

the distance, i.e. (,‘: = ,



It is through «r thatl/A depends upon t,b, and E, i.e., through
the dynamics of the collision. It is here, of course, that the
interaction potential exerts its influence.

A convenient coordinate system in which to decompose/&&(r(t))
is the cartesian system shown in Fig. 1. Noting the angle @(t)

in Fig. 1, one writes

/{Ax[ﬁ) -_—/u[r(t)) cos plt) )

My (¢) = (r(e)) sin Ple) (6)

In terms of more conventional angles used in classical collision
theory,

Ple)= T -6 +06(0=0(6)+ X%

2

here 90 is the angle between the apse line and the x' axis
(incoming trajectory) and ’]f is the angle of deflection. The
zero of time is taken to be that at which r assumes its minimum
value, ro o With this choice of the origin of time, /0&(t) and

/AAy(t) are odd and even functions of time, respectively, and so
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I{w4 E) = ¥ w } At w (t) sen wt

0
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8)
At this point the functional form of the dipole moment function
must be .introduced. -Computationgz/showed that /A&(r) can be
fitted closely by a simple exponential function over the entire

range of interatomic separations considered, viz. 2.0 <r < 5.5 a.u.

/(_,([r)'—‘/zlo eKI’("”/F} (9)

7
Matcha and NeSbeQV/report values of /ué and ‘P for the rare

gas pairs He-Ne, He-Ar, and Ne-Ar. Substituting Eq. (9) into

Eq. (8), letting ¥ = M)t , one obtains

-
where

T = fdff“sd«qv f(ﬂ (11a)

\-_\
H

2

) fdfr cos™ £ (1)

(11b)



and

flr)= e cos @ (1) (122)

{6;

£ (1)

i
™
£
AS N
3

(12b)

The time evolution of fi(Q') and ‘f2(7”) is determined
by the collision dynamics of the colliding pair. From classical

collision theory one has

/
oly) = [ 4/ F(y) Y

and

y
f[g)z(l“%)ifd}/yz F/J) (14)

In Egqs. (13) and (14), m is the reduced mass of the colliding

pair, y = 4%/4‘ , and
Flyy= L1-97- v/E | - )

where E 1is the collision energy and V(y) is the potential
energy function; Yo is given by the inner root (corresponding

to the outer turning point) of F(yo)'= 0.



The interatomic potential is not known with great precision
even for rare gas atoms. Matcha and Nesbet have calculated V(r)
for the rare gas pairs in the same Hartree-Fock basis used for
/&&(r); although it would perhaps be more consistent to use this
V(r) in the present calculation, it is well known that such
potentials (obtained in the Hartree-Fock approximation) are purely
repulsive. However, direct atomic beam scgttering measurements at
thermal energies have indicated the need for attractive "tails",
and so the standard "experimental' Lennard-Jones (1Z,6) potential
may be more realistic and preferable in the present application.

Thus it is assumed that

Vir) = 4e [[EY - (€)]

(16)
= e [ﬂﬁ- (_})

where (§ and € ‘have their usual meanings. To reduce the
lengths and energies that appear in the calculation,quantities
. s * %
are defined such as b "= b/ , e = f’/(T‘ , E = E/Ee ,
= V/€ . In terms of these reduced quantities, Eq. 14

becomes

by (7
T(y) = wo‘.é-”-é-) - Ty, EX47)



where
.#
o ie £ [4/5F4E)
,7»

Eqs. 13 and 18 now express 8(y) and 7 (y) as functions of the
reduced impact parameter b* and the reduced energy E* - These
can be inverted to give y(9-) or () and 8{7) or @(7“)1,
which are used to evaluate f (7‘) and £ (ﬂ”)g then Iy and I2 5
and finally I(W ‘6-¥ ¥) A quantity o< (w,b* E%) is defined by

X (w ¥ EY) = 3mc’ I(w'g' E") (19)
Sur w®

The total power emitted per unit frequency interval per umit

volume is

T(w) = ffN(Jr,*E‘*) ?C(W,'@fc’:’*)owiw% (20)

where

%‘% ‘-é?;%jﬁ*
N(ﬁ E) F iy N T (ZC (21)

7~%3é.

In Eq. 21, 7% and /nB are the numbers of meolecules per unit

volume of the two colliding species and T%}E kT/e& . Finally

then, by Eqs. 1, 2, 19, 20, and 21:

10



34 IRV
, 64 N —EVT
A(M)): 3T *5/1 / E)%ffo((w z@ E )E (ol (}*}{‘AE*
(22)

Assuming that the rare gas mixtures are ideal at 0°C and 1 atms.,
then
11
m = 2.687x 10 AAB(mde)

AB s (23)

and the quantity presented experimentally by Bosomworth and Gusﬁe//

is

11

30 2 _EJTT
A(w) . 2.861x1p Mo ﬁ(@&*E")E*a /Géuill:’*

Qe » 5
Ay dg 2em)* T ot

where dA and dB are densities expressed in amagats. The
calculation of /%(LO) and particularly the calculation of

% %
o ( M),b*, E" ) and its integral over b* and E  will be

discussed in detail in Sec. III. It is also of some interest to

consider a relationship due to Poll and wvan Kranendonk}g/Qiz.

/5’2’ = E,Lr'rfo([w)dw

= L“;’j::B ﬁ(%ﬂ%#];ﬁ) rrAr

(25)
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Here g(r) 1is the radial distribution function, which for the
present case is simply exp [-/5 u{r)] . Poll and van Kranendonﬁel
and Futrellsﬁ/have derived and used expressions for other moments

of the spectrum.

ITI. Summary of Computational Procedures

The input parameters for the program are E* 5 fﬁQ, W,
defined by u)GTm/;Lé})%’ and tables of predetermined values yg(b*,E*)
and 7((b*,E*). Tables of F(y), 6(y), and J(y) are constructed,
the latter two being evaluated by trapezoidal rule. For a "typical®
case (W= 32.4 and ID* = 0,125), the interval size used in the
integration was 0.001 (same for all values of E%). The
construction of these three tables is done only once (for the first

value of W) since they are independent of w , and stored for

subsequent use. Using Eq. 17,

’i"{;ds WJ'[y) : (26)-

Incrementing ‘I~ by AT and interpolating for the corresponding
values of J and y (and hence 6(y)) yields the y(7) and

8(7T) to be used in the evaluation 'of I, and I

1 2



T, = [dr et cos[ O6r)+ Ko ] sin T @70)

o

:  PO ___ i'y; * p ) { S T I A R B “«g"i‘. SR
T = 'ﬁ@’r“ e e J [T w“w[@(v')e + X/ 9—] eas T (27)
A : y
depe o b o R o NI . i b E o

R

’The”intérbbIéﬁfbﬁ7féférfeﬂ3foiabbveﬂi§‘the(Ai%kbnfmethUdynﬁzmw ol

T . o .

typically using four points.  “Ihe “intégrals -in Eq&:27 aress gsoige s
“evaluated By ‘trapezoidal ‘tule, ‘the Gpper: kifmnit Peing determined .

such that the change in the value of R ,

B S S TC A S T B
« SRS
R = L*(I.*Iz) (28)
S I A L SR T B E I [RAPIEE BN S

for the last two consecutive values of the uppéralimiiﬁi@.less i
than or equal to 2% of the value of R. (see Fig. 5). The program
) L N o T k%
next determines the limit b nax of ‘the integration of R(b , E )
. .
over b . This integral is

. B
4

max

i

DIE™)

The maximum value of R(i.e., Rmax) is searched out and the
e R & P ST st 1 ML AR T SRR o R S A I N & za

maximum‘ailowable error is'éet)fovﬁe )253 of “qung‘ The upper

e

- . ¢
B

11m1t of b is se&ected such that R(b x) 177 of R ;x‘.'” .

A

The mesh size of 77 in Eq 27 1s lelded by 5 and the 1ntegrals
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%
are recomputed at the value of b giving Rmax . This is done up

to three times until Rmax changes by less than 2 7Z . If the original
mesh size is satisfactory the values of A already calculateé are used
in Eq. 29, otherwise the calculation is redone with a finer mesh.
This‘fécomputation requires obtaining again the necessary F(y),

0(y) , and J(y) wvalues for each W,b* , and E* , but this ﬁas seidom
necessary. After a reliable R 1is obtained the program proceeds to
the evaluation of D(E*) .. This is done by trapezoidal rule with a

&
typical mesh size of 0.1l. The last step is the integration of D(E )

*
over E  to give the absorption (to within a multiplicative constant):
o '
_EYT*
0

. ) . S %
It is convenient to transform the variable of integration from E

d
to z-= AmE , Lo give

I =/ :9&) Az

where

M

0@[2) D e"[’[ -% * zz] (31)

%
p(gfz) is calculated at all the values of E (viz., 1,2,3,5,10,20,

30,50 and 100); intermediate values are computed from an interpolation

polynomial, which is then integrated to give T s the line shape
I e T B e b T T N RSTC i ; £

S a & 3 I ¥ giaim s
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except for the multiplicative constant.
Figures 2-8 illustrate typical behavior of the various inter-

mediate quantities defined above, starting with the integrands of Il

and 12 of Eq. 27 vs. ‘7" and ending with I in Eq. 30. Figs.

2a and 2b show the integrands of Il and 12 vs. T~ , i.e. the

fl(ﬁ‘) sin?™ and fz(q‘) cos~ of Eq. 12 vs. 77 for the parameters

* & % ) : .
b" = 0.7, E 10.0 , and f? = 0.125., Fig. 2a is for W = 16.2

il

and 2b for W 32.4. Next in the progression of the program is the

2
2

* % %
parameters b = 0.7 and E = 10.0. The three curves for ~F = 0.110,

quantity A = I% + I, vs. W which is shown in ¥Fig. 3 for the
0.117, and 0.125 show increasing maxima. Figs. 3a and 3b show A wvs. b
% *
for E = 10.0 , ‘F = 0.125 and W = 16.2 and 32.4, respectively.
%
Next shown is R = b A vs, b in Figs. 5a and 5b, again for
* %
E = 10.0 , ‘f = 0.125 and W= 16.2 and 32.4 . The integral of
* %* %
R over b , D(E ), vs. E is shown in Figs 6a and 6b for
%
f = 0.125 , and W = 16.2 and 32.4 , respectively.

Until now the temperature has not entered the calculation. "It
first appears in the energy integration (through the distribution of
relative velocities), and Figs 7a and 7b show the integrand aé%fz)

% *
plotted for P = 0.125 , T = 11.6 (295°K) , and W = 16.2 and 32.4 .
Lastly, Fig. 8 shows the result of the energy integration, i.e.
% % ] o o
I vs. W for f = 0,125 and T = 11.6 (295 K). This series of
figures displays the progress of the computation as one proceeds to

the complete line shape.
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IV. Results

In this section the results of the calculations (Eq. 24) are
presented, particularly their dependence on several of the input
parameters. These are 'f , the range parameter of the dipole
moment overlap function; /ﬁ% ; the strength of the dipole moment
function; and ({} and &, the L.-J.(12,6) potential parameters.
For the dipole moment function I/LL[r)'é//Koéﬁvb[wrz?) - for He-Ar ,
the constants were takeé@/ﬁo be /A% = 33.7 debyes and f1= 0.359x10¢8 cm.
The potential parameters were taken from the molecular beam
measurements of Duren et a%&g{ Crij = 3,07 x 10_8 em., & =3;50x10;15
ergs. For this quartet of parameters, ‘P*E f’/U?;r==Oall7 and the
reduced temperature at which the data where obtained (2950K) is
T* = 11.6 . TFig. 9 shows curves of A wvs. G’(cmﬂl) for the 'range
ratio" _P* = 0.110, 0.117, and 0.125. Comparison of the lowest
curve with the experimental data of Fig. 11 shows that the A({F)
values calculated with fﬁ = 0.110 are too small by nearly an
order of magnitude. However, A(¢g") is extremely sensitive to ‘F*,
as seen in Fig. 9. The highest curve, for _P* = 0.1275, was not
actuadly computed, but obtained by a short extrapolation of A(G‘)
vs? ‘f* for each frequency, in an attempt to obtain the best fit
to the experimental data. (In view of the uncertainty in extra-
polation, the JO# = (0.1275 curve must, of course, be considered
only approximate). It can be seen from Figs. 11 that the calculated

(extrapolated) results peak slightly to lower frequencies than the

experimental data. Since the extrapolations were of a short range,



i.e. from 0.110-0.125 to 0.1275, they should be quite reliable.
This is even more substantiated in Figs. 10 and 12, where the
quantity ?;(Vﬂ = A(g)/0~ is considered. Fig. 10 shows this
function for the three values of Ja* for which computations were
performed and the one extrapolated curve. In this case the value

_JD* = 0.1257 (a much smaller extrapo}ation) seemed to give the
best fit to the data; the comparison is shown in Fig. 12. In
neither Fig. 10 nor 12 was any parameter other than jg* changed.
It would, of course, be possible to adjust the potential somewhat
to achieve a better fit, but the main purpose of the present study
was not to "parametrize to a best fit' but to present a series of -
exactly calculated results for a given set of dipole and potential
functions against which approximate theories of CIA may be tested.
Figs. 13 and 14 show the behavior of A(Qg™) and X?CT) for
T = ZOOOK, 2950K, and 400°K for the optimum value of J5*a (As
before, these curves were obtained by a slight extrapolation of the
three curves computed for ‘f* = 0.110, 0.117, 0.125.) 1In Fig. 15
are presented a set of computed curves of A(J) for a series of
temperatures, for f? = (0.125. (These curves did not involve
extrapolation.)

It should be emphasized that even though qZI has been

maintained fixed and .f* varied (and hence Jo itself), one could
equally have fixed .F and varied Jpy . However, since the factor

in front in Eq. 24 contains only CTZ , the overwhelming effect

*
comes from the ‘f dependence of the integral. Tt seems that f

17
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can be found quite independently of the potential by taking the

ratio of the first two moments of the line shape}lé/ viz. EJ(O)—l

and Eq. (25), and so perhaps fD can be considered better known than
OZJ° In view of the uncertainty of the functional form of both

//bL(r) and W (r) however, this point is probably not worth

belaboring.

V. Summary and Discussion
A number of curves of collision induced absorption line shapes
have been computed in the spirit of the classical formulation of
Levine and Birnbaum\?/ These have been calculated for a dipole
moment overlap function suggested by the Hartree-Fock calculations
of Matcha and Nesbegg/;nd a Lennard-Jones (12,6} interatomic
potential obtained from the scattering measurements of Duren et alFli/
The results are presented in figures showing not only the final
absorption curves, but also a number of intermediate quantities which
might be of interest in connection with any approximate theories.
The results are found to be very sensitive to 50* , the ratio of
the '"ranges'" of the dipole moment function and the interatomic
potential. From Figs. 13, 14 and 15 it is seen that the results
are only moderately sensitive to the value of the temperature, or to
& . It is also obvious (even without calculations) that the
dependence 011./(,4_o is simple quadratic. The drastic dependence on
‘fD* , shown in Figs. 9 and 11, indicates that a small change in

P* , from 0.110 to 0.125, i.e. &7 10 7. , gives rise to a change
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in the absorption by nearly a factor of ten. Such a sensitivity is
quite important and has heretofore not been noted. This implies
that the experimental CIA results constitute an extremely sensitive
method of deducing 'P* ; on the other hand, however, it suggests
that present ab initio calculations of jﬂ -are not quite accurate
enough to be practical input for calligion induced absorption
computations. Regarding the accuracy of the rare gas dipole moment
calculations,vMatchéléjgas stated that the main source of probable
error in jD is the lack of correlation terms in the electronic
wave function. . Adding such terms should increase the repulsion
between electrons on separate atoms and thus heighten the distortion
effect, tending to increase the induced dipole moment. All factors
considered, an error of ca. + 5% is not at all surprisinge\ly All
of this uncertainty does not even take into account the possible
long range contribution to /A&(r)u The exponential form results
from the short-range, non-correlation, calculation, but it is well-
known that there should exist a long-range part similar to the long-
range R—6 contribution to the potential (obtained from second order

\te/

s s . , : -7 ,
vanishing term in this long-range part goes as R , but this has

perturbation theory. BuckinghaQéZ/gas shown that the first non-
not been further considered.
The severe sensitivity to Ja is also seen in the integrated
: *
absorption, Eq. 25. Changing f> in this quantity from 0.117 to
*
0.125 changes ,/52 by a factor of ca. 2 . The value of O = 0.125

was chosen such that/g2 agreed with the measured integrated absorption.



The fact that the maximum in the line shape curve for this .f* was
lower than for the experimental data seems:.to indicate that the
calculated high frequency "tail' would be higher than experimental.
Unfortunately, computations were not carried out at frequencies
greater than ca. 240 cm-l due to slow convergence of some of the
integrals; however, the results are expected to be high, since aVSO%
discrepancy in /62 must be accounted for. A similar behavior was
found by Okada, Kajikawa. and Yamamotég/in their recent ca1Cu1atiQns
based on a rigid sphere model.

In conclusion, the present paper has presented classical
computations of the translational absorption spectrum for a model
system (approximating He-Ar) taking account of the non-linear
collision trajectories (based on experimental scattering studies)
and the theoretical form of the (exponentially decaying) dipole
moment function. With a change of only 7% in the value of the
fange of the dipole function from the ab initio value of Ref. 7
the experimental line shape was fairly well reproduced, confirming

the essential correctness of the overall procedure.
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Figure Legends

Typical trajectory and coordinate system in which
computations were performed.

% %
I, and I, vs. T for p*=0.7, E = 10.0, P =0.125,

and'W = 16.2.

5 %

I, and I, vs.T for b = 0.7, E

W= 32.4.

il

K3
10.0, £ = 0.125, and
AD¥, E*, p*, W) vs. W for b* = 0.7, EX = 10.0, and

P* = 0.110, 0.117, and 0.125.

&

AGY, E¥, f"‘, W) vs. b* for E¥ = 10.0, p* = 0.125,

and W= 16.2.

A®*, EX, p¥, ) vs. b¥ for £ = 10.0, % = 0.125, and
W= 32.4.

R vs. b* for E¥ = 10.0, f* = 0.125, and W = 16.2.

R vs. b for EX = 10.0, f’* = 0.125, and W = 32.4.

D(E*, f*,‘W') vs. E*¥ for W= 16.2.

D(E*, f*,W) vs. E* for W = 32.4.

LE, p*, W) vs. E¥ for W=16.2,

DB’(E*, SD*, W) vs. E* for W= 32.4,

I vs W at 295°K.

A(g-) vs o for values of ‘f* = 0,110, 0.117, 0.125, 0.1275.
The maximum of A(¢g~) increases with increasing P*.

(K(CI‘) = A(a‘)/qr vs.U" for values of f* = 0,110, 0,117,
0.125, 0.1275. The maximum of A(Q ) increases with

. . %
increasing f .
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Figure Legends (cont'd)

Comparison of calculated vs. experimental A(g")

for §>”‘ = 0.1275 (extrapolated) and T = 295°K.
Comparison of calculated vs. experimental de‘) for

Y* = 0.1257 (extrapolated) and T = 295°K.

ACT) vs. O for F* = 0.1275 (best value) for T = 200°K,
295°K, and 400°K. The maxima increase and move toward
higher frequencies with increasing temperature.

(o) vs. T for e"‘ = 0.1257 (best value) for T = 200°K,
295°K, and 400°K. The maxima decrease with increasing
temperature.

A(T) vs. & for various temperatures and §>* = (0,125,

These curves are computed (i.e., not obtained by

extrapolation).
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