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Abstract

Let {Xn} be a Markov process with finite state space and
transition probabilities pij(ui’vi) depending on u, and v,. State
0 is the capture state (where the game ends; Po; = Soi), u = {ui}
and v = {Vi} are the pursuer and evader strategles, resp., and are
to be chosen so that capture is advanced or delayed and the cost

[oe]

u,v : . .. N

¢’ = E[% k(u(Xn),v(Xn),Xn)\Xo = i] is minimaxed (or max1m1ned),
where k(a,B,0) = 0. The existence of a saddle point and optimal
strategy pair or e-optimal strategy pair are considered, Recursive
schemes for computing the optimal or e-optimal pairs are given. The
lattice (and complete lattice) structure for the set of vectors

U Cu,v, U sup Cu,v’ U inf ¢V are given under the relevant partial
u,v u v v U

orderings.



I. Introduction

Receﬁtly, there has been some interest in the engineering
literature in stocﬁastic=games of pursuit and evasion [T]-[9], [11].
The approach of some of this work, such as that of [T7] for a stochastic
differential game, while obviously of importance for many reasons, has
the drawback that it is limited essentially to !'linear-quadratic!
problems whose analytic solutions of the complicated derived non-linear
partial differential equations can b§ obtained., A general theory con-
cerning the existence of a saddle point, € approximations to a saddle
point, or numerical procedures, does not yét exist. It is suggested,
then, that more abttention be given to the simpler, yet inadequately
treated, discrete state and time game problem. This paper is devoted

to a number of questions for this problem. Let XO’X be a Markov

100
process on the state space [0,1,...,N] of N+1 points. Let the
probability transition function pij(ui’vi) be indexed by two variables
us and v, taking values 1in sets Ui and Vi’ resp. The us and vy
may also be random variables (independent of uj and vj for j 4 i).
Stochastic games will be considered, where the vector u = (ul,...,uN)

is identified as the strategy of the pursuer and v = (vl,...,vN) as the
strategy of the evader. The game terminates when the (absorbing -- or
capture) state "0 is reached and we assume that poi(ogB) =0 for

i # 0. The cost, for any fixed uw and v (assuming, for the moment,

that it is well defined) is

’

o0
u,v _ - .
¢y = E[g k(u(Xn),v(Xn),Xn)lu and v used and X = i]



where k(o,B,0) =0 is assumed. The object is for the evader to
choose v so that ¢™7 = {C?’V, i= l,...,N}~ is maximized in some
sense, and for the pursuer to choose u so that Y is simultaneously
minimized in some sense. Write P(u,v) for the matrix {pij(ui’vi);
i=1,...,N; j = l,...,N}. Then one minus the sum of the entries
in the i'® row of Pn(u,v) is the probability of reaching state 0
in n steps, when starting in state 1.

In stochastic games, the fq}iowing questioné arisé. Are
the imposed conditions adequate to insure that the game will terminate
in a finite time w.p.1? Given any tw? strategies ul and u2, is

3 5 1

there a strategy v  so thatJr Sup Cu sV min[sgp Cu.,v,sgp Cu :V]?

1A

Vj%

For any two strategies v:L and v2, is there a v5 so that iaf o™
u vl u,v
max{ inf C™ inf ¢ 77 1?2 Are the infima or suprema attained by ad-
u 7

. s . . . u,v
missible strategies? Does the expression sup 1ﬁf c™ make sense,

and does it equal i%f s%p Cu’v? Is the value s%p iﬁf Cu’V =

. u,v . - ,
1%f sup c™’ attained at some w =u and v =v; i.e., is there a

saddle point (or solution) for the game? For any e >0, is there

a pair u(e) and v(e¢) so that, for i = 1,...,N, inf sup Cz’v—

(), v(e)
1

€ =

[1IAY

. u,v S
sup inf €, + €? Can Wu,v, u(e) and v(e) and the
corresponding costs be computed J:'ecUrrS:‘Lvel;y"?whr If so, how?

The theorems answer these questions under given conditions.

Two types of conditions are considered. The first is that PN(u,v)

TmaX(A,B) or A £ B refers to the maximum or inequality, component by
component. The sup A (or inf A) is also the vector of the suprema
(or infima) of the Somponents. "

TTThe discrete time and state results are highly relevant to the continuous
state and time problem, since finite difference schemes for solving the con-
tinuous time problem often involve a reduction (deliberate or unintentional)

to an equivalent discrete time and state problem., See [1] and [2] for a
fuller elaboration of this point for the control problem.



is a contraction map (from N-space to N-space) uniformly in (the pure
strategies) wu and vy, i.e. the row sums of PN(u,v) are less than
1l-¢, where € >0 is independent of u and v. The second is that

there is some pure strategy U so that PN(E,V) is a contraction

uniformly in v and inf k(0,B,i) 2 & >0. The first condition is

‘ i,o,pB
not unusual in examples, The condition asserts that, no matter what
strategies are used, the probability that the game will end in N
steps. is no less than . e; the condition is implied if, for each  u . .
and v and initial state i, there is some chain of different states
leading to state 0, and the probability of the chain is z €' >0, where

€' 1is independet of i,u and v. If state O is reachable in some
number of states, then it is reachable in N states (see [11-[L]).

1f P'(w,v) is a contraction for some n = 1, then it is a contrac-
tion for n = N. Generally, PN(u,v) would be a contraction, but
P(u,v) would not. Under somewhat stronger conditions (k is constant
and P(q,v) itself is a contraction uniformly in wu and v) some

of the results were obtained by Zachrissen [5].

The secoﬁd condition is also quite natural, In fact, the
condition on PN(E,V) for some pure strategy G, is a necessary con-
dition for the existence of a pure strategy saddle point for the game,
For, otherwise, for any wu, there is some v so that the game may
not terminate for some initial state i, (Similarly, a necessary con-
dition for the existence of a random saddle point, is that the ?N(E,v)
be a coﬁtraction, wuniformly in v for some random strategy E.) The

~s
second condition (concerning u) is weaker and somewhat more natural

than the first condition, since, in any game, there may be useless or



self-defeating strategies open to the pursuer -- but he would not
select them. Yet, within the context of proofs (known to the authors)
under the first conditioh, it is often difficult to eliminate such
useless strategies (for which the first condition would not hold).

The proofs of some of the statements, under the first condi-
tion, canlbe had by a straight forward extension of the arguments in

[5]. The second condition is more subtle, and requires a more

elaborate proof; hence, for economy,-the methods for the proo%iﬁﬁdé;
the second conjition are also used for the proof under the first con-
dition. The proof is motivated by that, for the control situation,
given in [4].

Most of the results are extendable to suitabls formulations
of the discrete time and continuous space case, The results may also
be applied to the numerical solution of the non-linear difference
equations arising when the process is a diffusion, much as is done

in [1] or [2] for the control situation.

TI. Discrete Markov Games

The development proceeds roughly in the following way., Lemma 1
gives some critéria under which products of ceftain matrices are con-
tractions, and will be used often in the sequel. Theorem 1 is concerned
with conditions which actually assure that a saddle point exists and with
numerical procedures for its computation. The proof is written so that
the proofg of subseguent results will be facilitated without undue

repetition of arguments. The proof, although not hard, is somewhat long.



Corollaries 1 and 2 are concerned with both cases when a saddle point
actually exists, and when it can only be approximated within €, in a

given sense, Approximét;on results are proved and the lattice structure

is given (e.g., for any ul,ug, there is a u5 so that Cu5,v =

ul,v’cug,v
uﬁ vl ul'V u? v

syp-C~ 7" = min [sup C” 7 ,sup C~ 7], etc.) Such results assure the

min [C ], where the minimum is component by component, or

exigtence of a suitable 'e€-approximate' saddle point. Theorem 2 is con-
cerned with the numerical procedure for the computation of the €-approximate

saddle point.

Lemma 1. A. Let PN(u,v) be a contraction operator, uni-
1

¢]

formly in v. TLet Yo = s P(u,v)Y" + K(u,v). Let M2z Y 2 -M> -,

and let the components of K(u,v) be uniformly bounded. Then the "

are bounded uniformly in n,v and v, Iet! N%mP(u,vl) be a contraction
2= ans == 7 25 2 ZonLTatbibh

1

uniformly in m, and Y < P(u,vn)Yn + K(u,v"). Then, under the other

conditions on Y° and K(u,v), the " are uniformly bounded.

& n+1 '
B. Let wo>YzY z P(u,v)Yn + K(u,v) and suppose that the components

of the K(u,v) are bounded from below by a positive number B, uniformly

in u and v. Then PN(u,v) is a contraction, uniformly in all wu,v for

which the inequality Eplds.

A

C. Assume (B) éxcept that o> Y

1\

L P(uﬂ,vn)Yn + K(un,vn . Then'

o« [o0] . .
L mPR@,v) <M <
n=0 i=n
n n =
Proof. From (A), ¥ s P (u,v)Y + 2 P (u,v)K(u,v), and the
0

%‘P(ul,vl) = P(uz,vz) xr P(uk,vk .
k



first statement of (A) follows since PN(u,v) is a contraction, uni-

formly in v, The second statement follows from the second hypothesis

n
n+l n 1,0 n
end Y = 7 B(u,v)Y + j25 .

i J4 .
lzj +1P< u, vnzﬁ( u, v ) . (B) follows

from the evaluation ¥ 2z Y = Pﬁ(u,v)Y + 2 P (u,v)K(u,v), and the
o]
strict positivity of the components of K(u,v).

Similarly (C) follows from the evaluation

o n+l n i di..0 3 i j 3
Yy “zT Plu,v )Y + 5L izj+lP(u ,VYKR(u,v)

(vhere the product is taken in the obvious order), and the strict pos-
itivity of the components of K(u,v). Q.E.D.

The proof of Theorem 1 is written so that the proofs of the
corollaries and of Theorem 2 are either contained in it or follow
easily from it. An adnissible uw and v are any vectors so that
u; € Ui and v, € Vi’ where Ui and Vi are part of the problem
statement,

“Theorem 1. Let sup |k(e,B,1)| < ». Assume either (A-1):

i,0,p
PN(u,V) is a contraction uniformly in the admissible pure strategies u

and v or (A-2). inf k(¢,B,i) = &> 0, and there is some pure strategy

0,8, 1
u so that PN<ﬁ,v) is a contraction uniformly in the admissible .
. — N ' N
Assume (A-3)! sup inf [ L pi.(ogﬁ)qj + k(o,B,1)] = inf sup [ 2 pij((x,B)qj +
B o =179 o B =1

k(o,B,i)] fTor any set of real numbers Qyseees s and (A—h):pij(ui,vi)

and k(ui,vi,i) are continuous for each 1i,j where w, and vy

range over the compact sets Ui and Vi’ resp, Then there is an op-

timal pure strategy pair (saddle point) (u,v): PV =MV s WY,

A

*



The cost. C = ¢V s the unique solution bfi’ T, T

(1) ¢ = inf s%p[P(u,v)C + K(u,v)] = sup iaf[P(u,v)C + K(u,v)]

(2) ¢ - inf s%p[P(u,v)Cn"l + K(u,v)] = sup i%f[P(u,v)Cn_l + K(u,v)]

Proof. 1°. Fix u. Let the row sums of EN(u,ﬁ) be less

than 1-€ for some € >0 and each v, There is sone el >0 so

that, uniformly in 1 and v, the probability of going from state 1
to state O within N steps, and without stopping at the same state
more than once (except for state 0) is greater than el. This im-
plies that the row sums of % P(u,vi) are less than l-el for any
sequence {vi}. Thus (A-1) and the second part of (A—E) are equival-
ent to this stronger condition.

The following extension will be helpful in the sequel, when
consldering e€-approximate saddle points. Let PN(u,v) be uniformly

contracting in u and v, where u varies over a family F,, and v

]_)
Let unm. be in Fl and vnm in F and let the

over a family F Y

2'
limit 'lim‘P(upm;vnm) = P exist. Then Pg is contracting and so is
N n

i3 Pm = PN'-'Pl, and the row sums are less than l—el for some el > 0.
1

T N N
. Mol over TV..
U ranges over gUl and Vv . ov AR

TTThe i%f sup is taken component by comoonent; the assertion is that there

v . N ,
is some u,v so that C; = 1%§ S%§ [% pij(ui’vi)cj + k(ui,vi,l)] and
the inf sup is attained at ﬁi,?ﬁ.

K(u,v) = {k(uy,v;,1), 1 = 1,...,N}.

Tt



20. Fix the strategies u and v, Under (A-1), there is

a cost €' which is the unigue solution to
(3) ¢V = P(u,v)C™ Y + K(u,v).

In fact ICE’VI SN su ]k(ogﬁ,i)]/el. Under (A-2), ¢V solves

l}a)ﬁ

e

(3), and the solution is unique 1f u = U (since PN(E,V) is a con-
traction).

3%, Tix the strategy u, and consider the problem of choos-

ing v to maximize €2, Under (A-1) and (A-4), there is an opti-

mal control v(u) and'

(La) ¢t = sup eV - s%p[P(u,v)Cu + X(u,v)]

Similarly, for fixed v, the strategy minimizing ¢™V s given by
(1) aEi¥C%v=%ﬂH%ﬂJ+KWﬂH,

and the solutions to (La) and (Lb) are unique.

Now assume (A-2) and (A-L), and fix the strategy v. First,

e i e T AR & R

it will be shown that the set of vectors § =U €' is a complete
u

latticeff, under the 'min' partial ordering., Let ul “and u2 be
ul,v i,v

strategies and denote C = ¢ . Order the states so that Ci’v ES

~l_']?he existence and uniqueness proofs are consequences of the more general
arguments of the sequel., The details are very close to the details for
the condition kA-Z) below. The result of 3° is essentially that of [1],
for the control problem, with a few minor changes and corrections, and
is also in [1] and [2].

is partially ordered under the ordering Cu,v =

if ¢;’' £¢?" for i=1,...,N. The statement asserts,that S

)

is a lattice; i.e., for any u ,ug, there is a w so that ¢®V =
ul v o u,v
min{C™ 7 7,¢" 7], (where the 'min' is component by component), and that

JrF}x v. The set

u,v

I3
c%s v

l-_.l

S 1is complete under the 'min' ordering; i.e., let Cu"v1l A, then
there is some 1 so that A = ¢V,

For the set Sl = g Cu,v, the 'max' ordering will be used.



5

l,v «+eyN. Denote u =

2.v . 2,V
¢;’", i=1,...,0 and €77 <Cj = 441,
[ui,...,uz, ui+l,...,u§]u It will first be shown that 05’v <

mln[Cl v 2,v] No generality is lost by supposing Cl’v < o and
o 1,v L,v 2,v 1L,v 2,v
@<, Denote Y° = (e’ yeeesCy?s ch,...,cN ] = minfc™? Y, 007,

Define Y' and the transformstion T(u.,v) by

(5) .Yn = P(u.i,v)Yn"l + K(uB,v) = T(u?,v)Yn_l.

Now T(u?,v) is a monotone transformation (X = Y implies T(u?,V)X z

T(uj,v)Y) and Yl < v°. Thus Tn(u3,v)yo =Y is a non-increasing

sequence tending to some Y 2 0. Y satisfies Y = P(ﬁj,v}Y + K(u?,v).

By (B) of Lemma 1, fN(u5,v) is a contraction (let Y = Y°,
the u = u5, and replace 2 by =). This implies that the solution to the
equation for Y dis unique and Y = CB-’V £ mln[Cl’v C ,v] Yo.

Since § is a lattice, 0 = i%f ¢®V is well defined and
there is a sequence W so that ¢™V l ¢’ = i%f Y (for all com-

ponents simultaneously) and

n,v

(6) ¢’ = 1m ¢™Y = 1in inf{P,v)C " + K(u,v)].

Now the expression i&f [P(u,v)C + Kf,v)] is continuous in C (whether

or not (A-k) hoids). Thus, since ¢V Cv, (6) implies that!

(7) ¢’ = i%f[P(u,v)Cv + K(u,v)],

and under (A-4), there is some u(v) at which the inf is attained.

TNote that Lemma 1(B) implies that the solution to (7) is unique.



10

A similar argument (still supposing (A-2)) shows that for

’U."V5 u, Ve]

any »vl and v2, there is a v5 so that « =z C = maX[CU,V ,C

where some ccmponents may be infinite (+ w). There is a sequence

u

A

n
v so that 0 =c¢™V 1 Sup ¢V =c ©, C" satisfies (ka), and, by (A-b4),
the supremum is attained by some v(u) =v. If u = E; then "

is the unique solution to (ka).

5°, Next, it is shown that the expressions- sup ' =C
and iﬁf ¢ = ¢ make sense*and that, T=¢ and C = U for some
¥ and u.
B ' e i 1
First assume (A-1), and denote C by C7. Fix v and
2 1 2 . 2
v~ and order the states so that ¢, =z C/, 1 = 1,...,4 and C. >
i i i
. . . 2 2 .
Ci, i=4+1,...,N. Write v5 = [vi,...,vi, v£+l""’VN]' It will
. ) 1.2 1 1 2 2y _ L0
first be shown that €’ z max{C™,C] = (Cl,...,CE, Cz+l""’CN) =Y.

Define Y" and the transformation T(v5 ) by

(8a) Y = iﬁf[P(u,vB)Yn_l + K(u,va)]
n 2y -1

(8v) Y o= T(v)Y .

Now X2 Y implies that T(v)X 2 T(v')Y. Using this and the defini-

tion of Y° gives v'2v° and ¥° = T(v5)Yl z T(VB)YO -yt and,

n-1

in general, Yz v (A-1) (see second paragraph of lo) implies that

the Y have a finite upper limit, which is denoted by Y, whether or

not (A-4) holds, Then

TI.e., % ¢ and U ¢’ are complete lattices under the appropriate
: v

partial orderings.
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L i%f[P(u,wP)Yn + K(u,vﬁ)] = i%f[P(u,Vi)Y + K(u,é)]
S

(A-1) implies that € =Y is the unique solution of (9). Thus

(9) Y

1.2
¢z max[Cv,CY ]. By (A-L) the infimum in (9) is attained at some
5) 1 2

u = u(v A similar calculation yields that for any uw and u,

3 lu2

3

there is a 1w so that €V = min[Cu ,C 1.

Next (still assuming (A-1)), let v be a sequence such
that (monotically non-decreasing) ¢V 1 sup ¢V =T. Such a sequence
exists by the argument of the previous paragraph. By (A-1) (see 20)
C is finite., Also

n n
¢’ = i%f[P(u,vn)Cv + K(u,v) ]

By (A-4), there is a subsequence of the v which converges (in each

component) to, say, v, and

(102) C = inff P(u, V)T + K(u,¥)].

By (A-1), ¢' =T is the unique solution to (10a). Under (A-L), the in-

fimum is attained at some U, An analogous argument shows that there is
n u u .

a sequence u so that C i C=C- for some u and that C is the

unique solution~ to
(10v) C = supf P(u,v)C + K(u,v)].

The supremum is attained at some v, under (A-4).

Now, assume (A-2). The proof is almost the same as under

(A-1), and only the differences will be given. By the definition (8a),



(12)

where

12

Do p(E, V)Y ¢ KT,

U is defined in the Theorem statement. But IN(ﬁ;VB) is a

contraction., Thus, the Y" are uniformly bounded by Lemma 1 (A),

2

and by the argument given under (A-1) we conclude that ¢ =
1.2 )

nwx[Cv ,Cv ]. The second part of (A-2) now implies that C is

finite since T = Sup Cﬁ’v < o, and the rest of the previous argu-

ment carries over . The details relating to C are similar +o those

for the condition (A-1).

Uniqueness of the solution to (10a) is proved as follows.

Let the finite vectors Cl, i = 1,2, solve (10a) with corresponding

i

u', i = 1,2. Then, by (10a), ¢ = P(u’,¥)C
2 3 ) b4 3 2

i i

+ K(u ,¥). By Lemna 1

(B), the fN(u;,V are contractions (let Y = Cl). Using (lOa),

P(u ,V)

K(u ,V).

¢t 4 K(u ,V), where j #°i, j,i= 1,2, and ¢t P(u ,V)C +

Thus, we obtain

P(ul_,v)(cl-c?) s ¢tc® = P, R?)(Cl—cg)

Pl 9 (ctc® = otac® = (9 (B

which implies ¢t - 02. The details for the unigueness of (10b) are

also straightforward and are omitted,

5°. Assume (A-1) or (A-2). It will now be shown that!

al -
1t

sup i%f{P(u,v)a + K(u,v)1

C = inf sup[P(u v)C + K(u,v)].

¥-The~s%p i%f and i%f s%p are, of course, to be understood to apply to

each component of the vector separately.
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By the definition of 'sup',

-a.

(13) Sgp{i%f[P(u,v)5'+aK(u,v)]} z iﬁf{P(u,VyE + K(uv,v)] = C.

Suppose that the inequality (13) is strict for some component of the
vectors, say the qth (i.e., there is some vl so that the qﬁh com-

ponent of the bracketed term on the left of (13) is strictly greater

[

than the q'° component of the right of (13)). Define Y°
i%f[P(u,vl)E + K(u,vl)]. Using the transformation T(v) of (8b),

define Y® = o(vHyy*?

. Since Y° = T(vl)'c‘ 2 C (with a strict in-
équality in the qth component), the arguments of 4° yield that
Yiyvy=0¢ = C, with a strict inequality in the qﬁh component,
The contradiction yields (12a). (12b) is obtained similarly.
o . . . .
6. By (A-3), the sup inf and inf syp in (12) may be in-

terchanged. Thus, for either (A-1) or (A-2), and any wu,v,

(1ka) P(u,v)C + K(T,v) = P(u, V)T + K(1u,V) = P(v,V)C + K(u,¥)

=T
(1hp) P(u,v)C + K(u,v) £ C = P(u,v)C + K(u,v) = P(u,v)C + K(u,v)

Assume (A-2). Then using the left side of (14) and Lemma*l(C),

[e]

no o s n . .
T P(u,vl) -0 and T P(u,vl) —»0 as n - for any sequence {v'}.
0 R . Y -
In fact . %P(Ti, vy =

on

M < w, for any sequence {(v'}. (The assertion
is clearly true for (A-1)).
Now assume either (A-1) or (A-2). On the left of (1lha), let

v =y and let u=7u on the right of (1),




1k

= P(u,v)(Cc-C)

&
]!

or

e

c-C

A

(9, v) (¢-T).

The right side tends to zero as n — o, Thus C £ C. The reverse

inequality follows from the seguence

u,v u,v
sup c? z¢

v

Lo
I

. u, v o_ . u,v
inf sup C™ inf ¢
u v u

sup inf ¢BV . T.
v Tu i

[

Thus C = C and the game has a saddle point with value € = C

.
— o— J

either

pair (u,v) or (u,v) is a saddle point.

70. Let C° be an arbitrary finite vector. Define the se-

gquence c? by

L. inf s%p{P(u,v)Cn + K(u,v)) = sup i%f[P(u,v)Cn + K(u,v))

By (A—h), the iaf sup is realized at some up,vn. Then for any wu,v

)

n+l

vy K(up,v) s C

(15a) _ p(u™,v)C

P(u,vn)Cn + K(u,vn)

A

(15b) ™ s p(E, v 4 (VY

Either (15b),(A-1) and 1° or (15b) , (A-2), 1° and Lemma 1
(A), imply that the ¢® are uniformly bounded. Then the left side

n ] .
of (15a) and (A-1) or (A-2) and Lemme 1(C) imply that T P(u,¥) =0
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Similarly, either (A-1) and 1° or (A-2), (1%a), Lemma 1(B) and 1° imply
n .

that T P(ﬁ,vl) -0 as. n oo Next, in (15a), let u=1u, v=7 and
)

let v=v' and u=1u" in (14a). Then (1ka) and (15a) yield

(16) P(T, v (T-¢™) 5 T - ¢™ = P, 7) [@-¢P)
or
(17) 72 P(T,v)(T-c%) = T-c™ = 7 B(u',7)(C-0).

Since both sides of (17) go to zero as 1n - w, ¢ 5T as n - o, Q.E.D.

Let 8€ denote a vector, each of whose components has the

value e, Recall that C" = sgp C’' and €' = inf ¢,

Corollary 1. Assume (A-1) or (A-2) and that the components
of K(u,v) are uniformly bounded in u =and V. Then , for any ul and u2 ,
) w
there is some w so that C

oo St Dt v vt

4V

< m‘in[Cu ’V,Cu ’V] For each € >0,

P

there is a u(€) 'so that

e 4 i%f %V 5 Cu(e),v°

. z
1 2
For each vl and v2 , there is a ¥ so that Cu’é z max| ¢V ,Cu’ A

———

For each € >0, there is a v(e€) ‘o that

e

u, Vv u, vy € .
S%}p Ci) ~€ = Ci’ ( ) L o= l,ooo,N

if C; <=, and c}.ﬁ"’(e) 2 /e if C; = =



16

Furthermore
(18a) o - infl P(w,v)c" + K(v,v)]
(18v) ¢” = s%}p[P(u,v)Cu + K(u,v)]

The solution to (18a) is unigue (if finite). If u = ¥, the solution

to (18b) is unique ('i'_f_ finite).

Proof. Most of the proof ;ls a direct consequence of the ar-
guments of 50, 4°,  Also most of the statements.are essentially contained
in [4]. Only the uniqueness for (18a) will be proved, under (A-2),

The uniqueness under (A-1) is obvious. Assume (A-2), and fix € >0

so that ii&fﬁk(a,ﬁ,i) - €E3 8 >0. There is a u(€) so that
2 .

(19) ¢’z Plu(e),v)c” + K(u(e),v)-€_
Thus
v n n-1 .
(20) ¢’z Pi(u(e),v)c" + L P(u(e),v)[K(u(e),v)-€] 2 0

(20), together with & >0, and Lemma 1(B) implies that PN(u(e),v)

N s .
is a contraction, uniformly in €3 i.e., |2 P'(u(e),v)| = M < for
i 5

some real number M and all 0 < € < d.,. ILet CV and € Dbe solu-

tions to (18a). Then, combining

. € = M(u(e),v)T + K(u(e),v)
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with (19) yields

a0V = p(u(e),v)(E-C") + €,
n-1 .
P(u(e),v)(8-c) + § PH(u(e), Ve,

NEeo

A

A

v

A

ME o

Since the argument is symmetric in ¢ and Cv, "NEe < G- e

Since € 1is arbitrarily small, the uniqueness follows. Q+E.De

of K(u,v) are uniformly bounded in u and v. Then, for each ut

and u°, there is a W o that

3 1

2
w,v oo, u,v u ,v
sup c minf sup c » Sup c 1s

i

For each vl and v2, there is a \P so that

1 2
u’VB 2 max[inf BV, inf ¢tV

inf C
u

)

For each € >0, there are wu(e), v(e), u(e), v(e) so that

’u(e),'v(e) u(e),v s W,V
(21a) = /e + € = sup C- £ inf syp C + &
(21b) c€)v(e) e 2gne ¢WV(E) 5 gup ane ¢WY g L
- : € u . v u €

Proof. The first paragraph of Corollary 2 follows from the

arguments of part 30, 4° of the proof of the Theorem. The right sides of

n n

(21a) and (21b) are obvious since (see 4°) ¢% = sup c? ’vl inf sup ¢tV
n n :

and €' = iaf o T sup inf i (merely choose € and let wu(e€) =
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n n - o Lo
=u, v(e) = v, vhere n is large enough so that C, - inf C; <e¢
n
and sup Cz - Cz <e for i =1,.e0.,N). Finally, the left sides of

(21a) and (21b) follow from Corollary l. QeE.D.

Tet CO be a finite vector. Define Cn by

(22) ¢+ inf sup [P(u,v)e™ + K(w,v)].
Then

n . u,v . u,v
(23) C" —inf sup C7° = sup inf €7

(2k) p(u”(e),v)C" + K(u™(€),v) - € = ¢ 5 B(u,v"(e))c"
+ K(u,vn(e)) + € o

Then, there is a finite c0ns£ant M, so that, for suffiéiently large n,

A

up(e) vn(e) u,v
c ) - inf syp €7V S ME_.

(25) M€ e

1€
[(23) and (25) imply the existence of an e-optimal strategy pair.]
Proof. First the analogs of (12) and (14) will be obtained.

Fix € >0 and, in case of (A-2), let ii&fgk(a,ﬁ,i)-e =08 >0. Let
b Rad )

Se(q) be a vector whose qth component is strictly greater than € and




19

the other components are zero. Denote Cu(e);v(e) by Ee and

OE(E)’ZKG) by géo Suppose that (cof° (15)), there is some vl

and some ¢ so that

w

i [P(w,vT + K(w,v)] = inf (200, 7(e))T + K(w,¥(e))] + € (a)-

Define Y° and T(vl) as below (13). Then Y° =Y | ¥, where Y

satisfies (18a). Since the solution to (182) is unique (Corollary 1)
1 V:L ’ ;-e o
and, for v = v, equals C , the evaluation C + Se(q) £Y =

1
v

lim Y* = ¢'  contradicts the definition of C . Thus, it is con-

cluded that there is no such vl and

(262) [ sup i%f[P(u,v)EE + K(u,v)] - €.
Similarly
(26b) gf £ inf s%p[P(u,v)gE + K(u,v)] + e,

is obtained. By (A-3), the inf syp and syp inf may be inter-
changed and (27) (the analog of (14)) obtained.
(21) €, + Bu(e), )¢S + K(u(e),v) £ ¢ = B(u(e),v(€))ct + K(u(e),v(<))
s P(u,v(e))c" + K(u,v(e)) + €,
€ . . - — €
where €, u(e) and v(e) are either C, u(€), v(e), or C°, u(e),

v(€), resp. ILet A = gf - T Then (27) yields (compare (1h) and

the development following it)
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P(e), V(N4 - 22 5 A5 PE(e),¥(e))A, + 2

vhich implies that (under (A-1) or (A-2))
(28) QE_ S A S

where M  is some real number (see proof of Corollary 1). The left hand

side of (27) implies by (A-1) or (A-2) and Lemma 1(c) that, for any sequence
i J . . R

{v }, 326 i J+1P(u(€):v )K(u(e),v") is bounded uniformly in e for

u(e) = u(e) or wule)).
Then (28) and the arbitrariness of € imply that C = Ce

The proof of (25) is along the lines of the proof in the
Theorem, with the obvious alterations, and only the outline will be
given. BEach ¢” is finite since the components of K(u,v) are
finite. Then the existence of u“(¢) and v'(€) follows by (A-3).

In (27), let
¢ = Tsu(e) = We), v(e) = We), u = w(e), v = v(e).
Then

(29) -Kle+p<t(€),vn<e))<a€_c> T 2 Hu(), () (T + Ky

+

for some @ >K >0, (29) implies that the elements of T -C™*'

differ by no more than : Mle, for some real number Mi < o, Q.E.D.
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