The Voyager Planetary Quarantine Model

 1973 MissionRobert G. Chamberlain

Approved by:

c. W. Craven Voyager Project

T. W. Hamilton, Manager Systems Analysis Section Systems Division

```
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
    PASADENA, CALIFORNIA
    June 1, 1967
```

Copyright (C) 1967
Jet Propulsion Laboratory California Institute of Technology
Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

Contents

I. Introduction 1
II. Planetary Quarantine Policy and Requirements 1
A. Establishment of Planetary Quarantine 1
B. Planetary Quarantine Requirements 1

1. Infection (of an extraterrestrial planet) 1
2. Contamination (of an extraterrestrial planet) 2
3. Quarantine (of an extraterrestrial planet) 2
C. Planetary Quarantine Policy 2
III. Planetary Quarantine Model and Probability Allocations 2
A. Introduction 2
B. The Validity of the Mathematical Model 7
C. The Planetary Quarantine Model 7
IV. Concluding Remarks 8
Appendix 9
References 17
Figures
4. First level breakdown of planetary quarantine model 3
5. Launch vehicle portion of planetary quarantine model 3
3.. Intact planetary vehicle portion of planetary quarantine model 4
6. Orbiting spacecraft portion of planetary quarantine model 5
7. Separated entry capsule portion of planetary quarantine model 6

Abstract

This Memorandum presents the framework of a model which treats all elements of the Voyager 1973 Mission in sufficient detail to allow reasonable assurance that the Voyager policy on planetary quarantine can and will be adhered to by the Voyager Project.

The Voyager 1973 Mission is examined from the point of view of planetary quarantine in order to isolate every conceivable source of contamination of the planet Mars. These sources are being studied in detail in order to ascertain the requirements that must be met by the hardware and mission designs in order to satisfy the constraints imposed by the planetary quarantine policy.

The Voyager Planetary Quarantine Model 1973 Mission

I. Introduction

This Memorandum consists of two parts. The first delineates the planetary quarantine policy and requirements which have been established for the Voyager Project. The second part describes the framework of a mathematical model for assessing whether this policy can and/or will be adhered to. The format of the model can also be used to present the quarantine violation probability allocations which must be placed by the Voyager Planetary Quarantine Office.

II. Planetary Quarantine Policy and Requirements

A. Establishment of Planetary Quarantine

A fundamental scientific and philosophic question that has remained unanswerable until the advent of space flight is whether life exists anywhere in the universe other than on Earth. As a result of observations and study of the solar system, there is speculation that the only opportunity to investigate the existence and nature of extraterrestrial life within the solar system may be the planet Mars. If there is life on Mars, it is fundamental to the understanding of the nature and origin of life whether that life is similar to the life on Earth or not.

The possibility of answering these vital questions would be seriously compromised if early interplanetary vehicles, such as Voyager, were to infect the planet Mars with any form of viable Earth life. In order to avoid such compromise, the planet Mars has been placed under quarantine.

Any attempt to investigate Mars by means of interplanetary vehicles must have associated with it some finite probability of infecting Mars, thus violating the quarantine. Quarantine requirements, to be meaningful, should be so placed that there is a very low probability that Mars is infected prior to completion of an adequate spectrum of biological experiments.

B. Planetary Quarantine Requirements

Infection, contamination and quarantine definitions are established in the following.

1. Infection (of an extraterrestrial planet). Infection is defined as growth and spreading of terrestrial microorganisms throughout major portions of the planet's surface, subsurface, and/or atmosphere. The only kind of infection of concern from the planetary quarantine point of view is, of course, that which results from terrestrial exploration of space.
2. Contamination (of an extraterrestrial planet). Contamination is defined as release of one or more viable terrestrial microorganisms on the planetary surface, within the planetary subsurface, or in the planetary atmosphere.
3. Quarantine (of an extraterrestrial planet). Quarantine is defined as a requirement to avoid infection prior to a specified calendar year or for a specified period of time.

The planetary quarantine requirements established by the Voyager Project Office for the Voyager 1973 Mission are typically as follows: the total probability of violation of the quarantine of the planet Mars as a result of the dual launch of the Voyager 1973 Mission shall be less than approximately 10^{-4}. In addition, the quarantine period has been set at 20 yr , so that the quarantine will not end prior to the calendar year 1985 A.D. These explicit requirements result from considerations which are outside the scope of this document; but see Ref. 1 and 2 .

C. Planetary Quarantine Policy

In order to ensure adherence to the planetary quarantine requirements described in Subsection B, the Voyager Project has adopted the following policy for the 1973 Mission to the planet Mars:

1. All aspects of a proposed mission, including the complex interactions of the spacecraft with the interplanetary environment, shall be examined in order to isolate every conceivable source of planetary contamination.
2. Each separate source of contamination shall be investigated to yield an adequate understanding of the processes through which it occurs, and, wherever possible, mathematical models shall be formulated which adequately characterize the probability of violation of quarantine. These mathematical models shall be based upon standard probabilistic techniques, conservative assumptions shall be employed whenever uncertainties are present in the derivation of the probability formulae, and the limitations and assumptions inherent in their formulation shall be explicitly described in the explanations of their validity. Whenever an adequate mathematical model is impossible (for example, when the necessary assumptions are not meaningful), every effort shall still be exerted to describe suitable
ranges or bounds for the probability of violation of quarantine.
3. The total probability of violation of planetary quarantine shall be constrained to satisfy the planetary quarantine requirements by the allocation of probabilities to the above modes of violation.
4. Wherever possible, numerical estimates of the probabilities of violation of quarantine by the above modes shall be calculated; and the space vehicle . shall be designed and constructed and the mission operations formulated such that these estimates conform to the allocated probability constraints. For those modes of violation of quarantine which cannot be adequately described by a mathematical model, the allocated probability constraints shall be employed as guidelines for the necessary engineering and scientific judgements.
5. All investigations of possible contamination sources and all numerical estimates of the probabilities of violation of quarantine shall be adequately documented.

III. Planetary Quarantine Model and Probability Allocations

A. Introduction

The purpose of this section is twofold. First, the limitations and assumptions inherent in the application of probability theory to the planetary quarantine problem must be understood, and are discussed below. Second, all identified possible modes of violation of the planetary quarantine are presented.

Figures 1-5 diagram the Voyager 1973 Mission planetary quarantine model, and show (or can show) the following:

1. All identified possible modes of violation of quarantine.
2. The limiting probabilities of violation allocated to each mode by the Voyager Planetary Quarantine Office.
3. The contribution and relationship of each mode to the over-all probability of violation of planetary quarantine.

The model is also presented in an outline format in the Appendix.

(x)331
PROBABILITY
OF
EXPLOSION
OF S-II
STAGE
ALLOG $=$
ESTz

(X)332	(4)341
PROBABILITY OF ONE OR MORE CONTAMINATED PIECES IMPACTING MARS	OTHER TYPES OF EJECTA FROM S-II stage
ALLOC =	ALLOC:
EST: ${ }^{\text {- }}$	EST*

(4) 342	(4)343	(+) 344
ROCKET EXHAUST	LEAKED PROPELLANT	TVC FLUID
ALLOC:	ALLOC:	ALLOC:
EST :	EST:	EST =

+345
ATTITUDE CONTROL GAS
ALLOC:
EST:

+ 346	(4)347
$\begin{aligned} & \text { LOOSE } \\ & \text { HADWARE } \end{aligned}$	PYROTECHNIC SHRAPNEL
ALLOC:	ALLOC:
EST =	EST

Fig. 1. First level breakdown of planetary quarantine model

Fig. 2. Launch vehicle portion of planetary quarantine model

Fig. 3. Intact planetary vehicle portion of planetary quarantine model
poliout prang 2

Fig. 5. Separated entry capsule portion of planetary quarantine model

B. The Validity of the Mathematical Model

Several valid objections are applicable to any attempt to precisely formulate a mathematical model to ensure that the planetary quarantine requirements are met. The principal difficulty arises from the extremely small value of the limiting probability of violation of quarantine. Many of the contributing quantities are statistical in nature, and the applicability of the usually assumed probability distributions may be questionable at large variances. Strictly valid formulations would become involved with confidence levels on the variances of the actual distributions and would become extremely complex. Furthermore, even if confidence levels could be meaningfully incorporated into a usable model, empirical testing necessary to establish reasonable confidence levels at the extremely small probabilities involved would be hopelessly long. and costly. Finally, a case could be made for the argument that the probability of overlooking a significant mode of violating the planetary quarantine exceeds the extremely small allocations for contingency. All of these objections are quite valid to the extent that a mathematical model is incapable of proving that the requirements have been satisfied. The objections, however, should not preclude a rational attempt to meet the planetary quarantine requirements insofar as is possible and feasible.

The fact that the limiting probability of violation of quarantine is so small does bear one benefit, in that the probability equations are simplified: Assume n independent sources of violation of quarantine. Define p_{j} to be the probability of violation by the $j^{\text {th }}$ mode. (Then $0 \leq p_{i} \leq 1$, and $\left.j=1, \cdots, n.\right)$ Then, the probability that quarantine will not be violated by the $j^{\text {th }}$ mode is (1-p ${ }_{j}$).

Now, the probability that the quarantine will be maintained is the product of the individual probabilities. Further, the planetary quarantine requirement is that this probability be greater than or equal to $(1-Q)$, where Q is the limiting probability of violation of quarantine. Thus,

$$
\begin{equation*}
\mathbf{I}_{j=1}^{n}\left(1-p_{j}\right) \geq 1-Q \tag{1}
\end{equation*}
$$

Now, since Q is very small, the individual p_{j} must be very small, so that on expansion of the product, the terms involving products of the p_{j} will be negligible.

Therefore, equation (1) may be rewritten as follows:

$$
\begin{equation*}
\sum_{j=1}^{n} p_{j} \leq Q \tag{2}
\end{equation*}
$$

Thus, we see from Eq. (2) that the sum of the individual probabilities of violating the quarantine over all the various modes of violation must be less than or equal to the limiting probability of violation.

C. The Planetary Quarantine Model

The acceptable overall probability of violating the quarantine of the planet Mars on a single mission has been established as an extremely small number (on the order of 10^{-4}), for the reasons discussed in Subsection A. As a result, a very large number of unlikely modes of quarantine violation must be considered in any attempt to ensure that the actual probability will be below the established limit.

An equation to express the estimated violation probability would not only be unwieldy, but confusing and unclear, unless a departure from the usual format for equations is used. Furthermore, the various modes of quarantine violation can be considered at several levels of detail. To illustrate both of these points, consider the following:

$$
\begin{equation*}
Q=\dot{p}_{L V}+p_{P V 1}+p_{P V 2} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
Q= & \text { overall probability of violating the planetary } \\
& \text { quarantine of the planet Mars as a result of } \\
& \text { the Voyager } 1973 \text { Mission. }
\end{aligned}
$$

$p_{L V}=$ probability of violating the planetary quarantine of the planet Mars as a result of all violation modes associated with the launch vehicle.
$p_{P V 1}=$ violation probability resulting from all modes associated with planetary vehicle 1.
$\begin{aligned} p_{P V 2}= & \text { violation probability resulting from all modes } \\ & \text { associated with planetary vehicle } 2 .\end{aligned}$
But, each term on the right in Eq. (3) requires further expansion. For example,

$$
\begin{equation*}
p_{P V 1}=p_{1}+p_{2}+p_{3} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
p_{1}= & \text { violation probability resulting from an intact } \\
& \text { (spacecraft/capsule not separated) planetary ve- } \\
& \text { hicle } 1 .
\end{aligned}
$$

Again, each term in Eq. (4) requires further expansion, but such expansion will not be illustrated at this point in the discussion.

Two alternative formats for the presentation of the equation for the assessment of the overall violation probability are presented in Fig. 1-5, and in the outline in the Appendix. It should be noted that both formats can be used for assessment (by starting at the bottom and working up) and for allocation (by starting at the top and working down). Both formats present the same probability equation and may be used in conjunction with each other. Submodels for many of the key factors have yet to be established before an adequate assessment can be made; further breakdown of any of the lowest level entries is, of course, possible.

The probabilities allocated to various possible modes of violation of quarantine are shown by the abbreviation ALLOC $=$. Estimated values of various relevant parameters are shown by the abbreviation EST $=$. Certain probabilities have been conservatively assumed to be unity and are indicated by the abbreviation ASSUME $=1.0$. In the figures and in the outline, the computational relationships of the various parameters are represented by signs for equality, addition, and multiplication.

The process of treating the quarantine model in successively more explicit detail is handled in the outline format (the Appendix) by indentation, and in Fig. 1-5 by branching to successive levels.

IV. Concluding Remarks

This document presents a discussion of the need for the establishment of a quarantine of the planet Mars, a description of the current JPL planetary quarantine policy and requirements, and a description of a model of
the Voyager 1973 Mission (as modeled from a quarantine point of view).

The model which makes up the bulk of this document is not the only one which can be constructed. It is intended to provide an illustration of the complexity of the planetary quarantine problem, and to delineate most of the elements which must be considered. A number of the items in the model represent a great deal of analytical effort. ${ }^{1}$

At the lowest levels shown, kill processes are generally treated as independent, while in fact the processes may combine to give higher kill probabilities than implied. This simplification is a conservative one, and therefore permitted. It may be desirable in some cases to be more precise by using joint kill probabilities or joint probability distributions instead. In some cases, the relationships shown are oversimplified in another way. That is, some of the parameters of particular elements undergo wide variation during the course of the mission. ${ }^{2}$ In such cases, the required probabilities can be conservatively estimated, or the addition relationships can be considered as generalized sums (integrals or summations), and the product relationships considered as factors in the integrand.
. Kill probabilities, for example, may not be independent of the number of microorganisms to be operated upon. This complication can be treated by use of probability distributions rather than point estimates of probabilities as is done here. This elaboration of the analysis can be applied to individual branches of the tree, if desired.

Finally, it should be noted that there may be cases particularly when simpler missions, such as fly-by missions, are considered - in which it is unnecessary to evaluate all of the elements of the model in order to estimate or to allocate violation probabilities. It may be quite reasonable to simply note that some branches have a negligible contribution to the overall probability of violation of quarantine. ${ }^{3}$

[^0]
Appendix

Outline Format for the Model of the Probability of Violation of the Quarantine of the Planet Mars as a Result of the Voyager 1973 Mission

Basic planetary quarantine requirement: The probability of violation of the quarantine of the planet Mars as a result of the Voyager 1973 Mission shall be less than or equal to Q^{4}. This probability equals ($=$)
I. Violation probability resulting from all violation modes associated with the Saturn V launch vehicle (ALLOC ${ }^{5}=$ \qquad ; $\mathrm{EST}^{6}=$ \qquad -)

+ II. Violation probability resulting from all violation modes associated with planetary vehicle No. 1 (PV 1) (ALLOC = \qquad ; $\mathrm{EST}=_$_
- +III. Violation probability resulting from all violation modes associated with planetary vehicle No. 2 (PV 2) (ALLOC = \qquad ; $\mathrm{EST}=$ \qquad -)
I. Violation probability resulfing from all violation modes associated with the Saturn V launch vehicle ALLOC $=$ \qquad ; EST= \qquad
- $=1$ Violation probability resulting from all violation modes associated with the launch vehicle not identified below Contingency $\mathrm{AllOC}=$ \qquad $E S T=0.0$
+2 Violation modes associated with the Saturn IC (S-IC) stage AllOC= \qquad ; $\mathrm{EST}=$ \qquad

age not iden$E S T=0.0$ tified below Contingency ALLOC = \qquad
+22 Probability of violation due to impact of S-IC stage ALLOC $=$ \qquad ; EST $=$ $\qquad$$+243$
$=221 \quad$ Probability of Martian impact of S-IC stage ALLOC $=$ \qquad ; EST $=$ \qquad
Probability that at least one viable terrestrial organism is on or within the S-IC stage at Martian impact, given that malfunctions occur in such a way that the S.IC stage impacts Mars ASSUME $=1.0$
+23 Probability of violation due to Martian impact of a piece (or pieces) of the S-IC stage $A L L O C=\ldots ;$ EST $=$ \qquad
Probability that the S-IC stage explodes for any reason ALLOC= \qquad ; EST $=$ \qquad $+247$

A numerical value yet to be established.
'Allocated value
$+244$
$+245$
$+246$

$$
20
$$

$$
+248
$$

$\times 232$ Probability that any of the debris from an explosion of the S-IC stage contains at least one viable terrestrial organism and impacts Mars ALLOC= \qquad ; EST $=$ \qquad
Violation modes associated with the ejecta from the S-IC stage ALLOC= \qquad _; EST $=$ \qquad
$=241$ Violation modes associated with other types of ejecta from the S.IC stage than identified below Contingency ALIOC= \qquad ; $E S T=0.0$

Probability of violation due to S-IC rocket exhaust

$$
A L L O C=
$$

\qquad ; EST $=$ \qquad
Probability of violation due to propellant leaked from the S-IC tanks
\because AlLOC $=$ \qquad ; EST $=$ \qquad

Probability of violation due to S-IC stage thrust vector control (TVC) fluid ALLOC= \qquad ; EST= \qquad
Probability of violation due to S-IC stage attitude control gas ALLOC $=$ \qquad ; EST= \qquad
Probability of violation due to loose hardware associated with the S.IC stage AllOC $=$ \qquad ; EST $=$ \qquad
Probability of violation due to shrapnel from 5-1C stage pyrotechnics ALLOC = \qquad ; EST $=$ \qquad

Probability of violation due to loose hardware associated with the S-II stage ALLOT $=\square$ EST $=$ \qquad
Probability of violation due to shrapnel from 5-11 stage pyrotechnics ALLOT $=$ \qquad ; EST= \qquad
Probability of violation due to material outgassed, spalled, ablated, or sputtered from the S-II stage ALLOT $=$ \qquad ; $E S T=$

Violation modes associated with the Saturn II/Saturn IVB (S-II/S-IVB) stage separation AllOT = half charged to S-II stage, half to S-IVB stage; EST = \qquad
Probability that contaminated loose hardware resulting from an assumed S-II/S-IVB separation will impact Mars ALLOT $=$ \qquad ; EST $=$ \qquad
Probability that contaminated pyrotechnic shrapnel resulting from an assumed S-II/S-IVB separation will tmpact Mars ALLOT $=$ \qquad EST $=$ \qquad
Violation modes associated with the S-IVB stage ALLOT $=$ \qquad ; EST $=$ \qquad
Violation modes associated with the S-IVB stage not idemtiffed below Contingency ALLOT $=$ \qquad ; $E S T=0.0$
Probability of violation due to impact of S-IVB stage ALLOT = \qquad ; EST $=$ \qquad
Probability of Martian impact of S-IVB stage AlLOC $=$ \qquad ; EST $=$ \qquad
Probability S.IVB stage is on a Martian impact trajectory after both planetary vehicle separations ALLOT = \qquad ; EST $=$ \qquad
Probability S.JVB retrorockets (if any) do not remove the S-IVB from an impact trajectory ALLOT = \qquad ; EST =

Probability that at least one viable terrestrial organism is on or within the S-IVB stage at Martian impact, given that the S-IVB stage impacts Mars ASSUME $=1.0$

Probability of violation due to Martian impact of a piece (or pieces) of the S-IVB stage ALLOT= \qquad ; $\mathrm{EST}=$ \qquad
Probability of explosion of S-IVB stage for any reason ALLOT = \qquad EST =

Probability that any of the debris from an explosion of the S-IVB stage contains at least one viable torrestrial organism and impacts Mars ALLOT $=$ \qquad ; $\mathrm{EST}=$ \qquad Violation modes associated with the ejecta from the S-IVB
stage
ALIOC $=[$ EST $=$
\qquad

+242 Violation modes associated with ejecta released from PV 1 during orbit insertion ALLOC= \qquad ; EST $=$ \qquad

Violation modes associated with ejecta released from PV 1 after orbit insertion AllOC $=$ \qquad ; EST $=$ \qquad
Violation modes associated with other types of ejecta from PV 1 than identified below Contingency $A L L O C=$ \qquad ; $\mathrm{EST}=0.0$

Probability of violation due to orbit trim rocket exhaust gases ALLOC $=$ \qquad ; EST= \qquad
Fraction of such gases which will reach Mars prior to 1985 ALLOC $=$ \qquad _; EST $=$ \qquad
Probability such gases are contaminated when they reach Mars ALLOC $=$ \qquad ; EST $=$ \qquad
Initial microbial load of retro propellants ALLOC= \qquad ; EST= \qquad
Probability microorganisms are not killed by propellants AllOC $=$ \qquad ; $\mathbf{E S T}=$

Probability remaining microorganisms not killed by ejection process AllOC= \qquad ; $E S T=$ \qquad
Probability remaining microorganisms not killed by other means AllOC $=$ \qquad EST $=\underline{-}$
Probability remaining mieroorganisms not killed by "die off" AllOC $=$ \qquad ; EST= \qquad
Probability remaining microorganisms not killed by UV radiation ALLOC $=$ \qquad ; $\mathrm{EST}=$ \qquad

Fraction of such gases will reach Mars prior to 1985 ALLOC = \qquad ; EST $=$ \qquad
Probability attitude contral gases contaminated when at Mars ALLOC $=$ \qquad ; EST $=$ \qquad
Probability such gases contaminated initially ALLOC $=$ \qquad EST $=$
$\times 243327$
$\times 243424$
$\times 243425$
$\times 243426$
$\times 243427$
$\times 243322$
$\times 243323$
$\times 243324$
$\times 243325$
$\times 243326$
$+2434$
$=24341$
$\times 24342$
$=243421$
$\times 243422$
$\times 243423$
$\times 24343$
$+25$

Probability microorganisms not killed by other means ALLOC $=\ldots$; EST $=$ \qquad
Probability remaining microorganisms not killed by "die off" ALLOC $=$ \qquad EST $=$ \qquad
Probability remaining microorganisms not killed by ejecfion process ALLOC $=$ \qquad ; EST= \qquad
Probability remaining microorganisms not killed by UV radiation ALLOC $=$ \qquad ; EST $=$ \qquad
Probability remaining microorganisms not killed by other solar radiation AllOC $=$ \qquad ; $\mathrm{EST}=$ \qquad
Probability remaining microorganisms not killed by vacuum ASSUME $=1.0$

Probability of violation due to outgassed, spalled, ablated, sputtered, etc., material AllOC $=$ \qquad ; EST $=$

Expected microbial lead of such material ejected prior to spacecraft/capsule separation ALLOC $=$ \qquad ; EST $=$ \qquad
Probability such material is confaminated when it reaches Mars ALLOC $=$ \qquad ; EST $=$ \qquad
Probability such material is contaminated initially AllOC= \qquad EST $=$ \qquad
Probability microorganisms not killed by other means ALOC= \qquad ; EST= \qquad
Probability remaining microorganisms not killed by ejection process $A L L O C=$ \qquad EST $=$ \qquad
Probability remaining microorganisms not killed by "die - off" AlLOC= \qquad ; EST $=$ \qquad
Probability zemaining microorganisms not killed by UV radiation ALLOC $=\longrightarrow ; \quad E S T=$ \qquad
Probability remaining microorganisms not killed by other solar radiation ALLOC $=$ \qquad ; EST= \qquad
Probability remaining microorganisms not killed by vacuum ASSUME $=1.0$

Fraction of such material which reaches Mars prior to 1985 AllOC $=$ \qquad $\mathrm{EST}=$ \qquad
Probability of violation due to impact to the forward part . of the biological barrier ALLOC= \qquad EST $=$ \qquad

Probability orbit insertion motor explades ALLOC = \qquad ; EST = \qquad
Probability orbit trim motor explodes AllOC= \qquad ; EST = \qquad
Probability pressure tanks explode
ALLOC = \qquad ; EST = \qquad
Probability batteries explode ALLOC $=\ldots$ _ $E S T=$ \qquad
Probability spacecraft smashed by meteorites ALLOC = \qquad ; EST = \qquad
Probability a sufficiently large mefeorite hits the spacecraft prior to 1985 ALLOC= \qquad EST $=$ \qquad
Probability that any of the resultant pieces impact Mars prior to 1985
AllOC= \qquad EST $=$ \qquad
Probability spacecraft breaks up from centrifugal force prior to 1985 ALIOC = \qquad ; $\mathbf{E S T}=$ \qquad
Probability attitude control system fails prior to 1985 ASSUME $=1.0$

Probability unbalanced forces cause excessive spacecraft spin-up prior to 1985 AllOC= \qquad EST $=$ \qquad
Probability any spacecraft pieces decay prior to 1985 ALLOC = \qquad EST $=$ \qquad
Probability any spacecraft pieces which decay prior to 1985 are contaminated when at Mars ALLOC $=$ \qquad ; EST= \qquad
Initial spacecriaft microbial load ALLOC= \qquad EST = \qquad
Probability microorganisms not killed by other means AllOC $=$ \qquad EST $=$ \qquad
Probability microorganisms not killed by entry $A L L O C=$ \qquad ; EST = \qquad

Fraction of initial load left when spacecraft breaks up ALLOC= \qquad EST $=$ \qquad
Probability remaining microorganisms not killed by UV radiation AllOC =__ $E=$ \qquad
Probability remaining microorganisms not killed by other solar radiation ALLOC = _ _ EST = \qquad

Probability remaining microorganisms not killed by vacuum ASSUME $=1.0$

Violation modes associated with ejecta from an orbiting spacecraft Alloc = \qquad EST $=$ \qquad

$=341$	Violation modes associated with other types of ejecta from orbiting spacecraft than identified below Contingency ALLOC= \qquad ; $\mathrm{EST}=0.0$	$\times 34333$
+342	Probability of violation due to orbit trim rocket exhaust gases	$\times 34334$
	ALLOC $=\ldots$ _ $E S T=\ldots$	
$=3421$	Probability orbit trim rocket propellants contaminated initially	$\times 34335$
	ALLOC $=\ldots$ _ $E S T=$	
$\times 3422$	Fraction of such gases which reach Mars prior to 1985^{-} ALLOC $=$ \qquad ; EST $=$ \qquad	$\times 34336$
$\times 3423$	Probability microorganisms not killed prior to Mars entry ALLOC = \qquad ; $\mathrm{EST}=$ \qquad	+344
$=34231$	Probability microorganisms not killed by other means ALLOC $=$ \qquad ; EST $=$ \qquad	
$\times 34232$	Probability remaining microorganisms not killed by propellants	
	ALLOC $=\ldots \ldots$ EST $=$	$\times 3442$
$\times 34233$	Probability remaining microorganisms not killed during rocket firing	$=34421$
	ALLOC $=\ldots \ldots$ [EST $=$	
$\times 34234$	Probability remaining microorganisms not killed by "die off"	
	ALLOC $=$ \qquad ; EST $=$	$=344221$
$\times 34235$	Probability remaining microorganisms not killed by UV radiation	
	ALIOC $=\square \ldots$	$\times 344222$
$\times 34236$	Probability remaining microorganisms not killed by other solar radiation	
	AllOC $=$ _ \quad _ $E S T=$	$\times 344223$
$\times 34237$	Probability remaining microorganisms not killed by vacuum	
	ASSUME $=1.0$	$\times 344224$
+343	Probability of violation due to attitude control gases ALLOC $=$ \qquad ; EST = \qquad	
		$\times 344225$
$=3431$	Probability attitude control gas contains viable terrestrial microorganisms initially (or initial microbial load)	
	ALLOC $=$ = $;$ EST $=$	
$\times 3432$	Fraction of attitude control gas which reaches Mars prior to 2023	-
	ALLOC $=\square$ _ $\mathbf{E S T}=\square$	$=344231$
$\times 3433$	Probability microorganisms not killed in transit to Mars ALLOC $=$ \qquad ; EST = \qquad	
$=34331$	Probability remaining microorganisms not killed by means other than identified below ALLOC= \qquad ; EST = \qquad	$\times 344232$
$\times 34332$	Probability remaining microorganisms not killed during release	$\times 344233$
	ALLOC $=\ldots$ _ $\mathbf{E S T}=\ldots$	

Probability remaining microorganisms not killed by "die off" AlLOC $=$ \qquad ; $\mathrm{EST}=$ \qquad
Probability remaining microorganisms not killed by UV radiation ALLOC $=$ \qquad ; EST $=$ \qquad
Probability remaining microorganisms not killed by other solar radiation ALLOC= \qquad ; EST $=$ \qquad
Probability remaining microorganisms not killed by vacuum ASSUME $=1.0$

Probability of violation due to material outgassed, spalled, efc. $A L L O C=$ \qquad ; EST $=$ \qquad
Fraction of such material which impacts Mars prior to $\overline{985}$ AlLOC= \qquad ; EST $=$ \qquad
Probability such material contaminated when af Mars ALLOC $=$ \qquad ; EST $=$ \qquad
Initial microbial load of such material AllOC $=$ \qquad ; EST $=$ \qquad
Probability viable microorganisms not killed in transit prior to ejection AllOC= \qquad : EST $=$ \qquad
Probability microorganisms not killed by means other than as follows ALLOC $=$ \qquad ; EST $=$ \qquad
Probability remaining microorganisms not killed by "die off" in transit ALLOC $=$ \qquad ; EST $=$ \qquad
Probability remaining microorganisms net killed by UV radiation ALLOC $=\ldots ; \quad$ EST $=\ldots$

Probability remaining microorganisms not killed by other solar radiation
AllOC= \qquad EST $=$ \qquad
Probability remaining microorganisms not killed by vacuum ASSUME $=1.0$

Probability viable microorganisms not killed during or after ejection from spacecraft ALLOC= \qquad EST $=$ \qquad
Probability remaining organisms not killed by means other than as follows AllOC $=$ \qquad ; EST $=$ \qquad
Probability remaining microorganisms not killed by "die off" ALLOC $=$ \qquad ; EST= \qquad
Probability remaining microorganisms not killed by ejection process AlloC $=$ \qquad EST $=$ \qquad
$\times 344234$
$\times 344235$
$\times 344236$
+42 Probability contaminated spacecraft/capsule separation debris impacts Mars prior to 1985 ALLOC = \qquad ; $E S T=$ \qquad
+43 Violation modes associated with capsule ejecta ALLOC $=$ \qquad ; $\mathrm{EST}=$ \qquad
Fraction of capsule ejecta which impacts Mars ASSUME $=1.0$
Probability remaining microorganisms not killed by UV radiation ALLOC $=$ \qquad ; $\mathrm{EST}=$ \qquad
Probability remaining microorganisms not killed by other solar radiation ALLOC $=$ \qquad ; EST $=$ \qquad
Probability remaining microorganisms not killed by vacuum $A S S U M E=1.0$

Violation due to impact of the aft part of the biological barrier ALLOC $=$ \qquad ; EST = \qquad
Probability aft part of biological barrier impacts Mars ALLOC $=$ \qquad ; EST = \qquad
Probability aft part of biological barrier is contaminated when it impacts Mars ASSUME $=1.0$

Probability capsule ejecta is contaminated when it reaches Mars
ALLOC $=\square$$\quad$ EST $=\square$

Violation modes associated with impact or landing of an entry capsule ALLOC = \qquad ; EST $=$ \qquad
Probability of capsule contacting Mars ASSUME $=1.0$

Probability of capsule being contaminated when contacting Mars ALLOC = \qquad ; EST = \qquad
Probability of failure of heat sterilization ALLOC $=$ \qquad ; EST $=$ \qquad
Probability of recontamination occurring and remaining undiscovered prior to launch AllOC $=$ \qquad ; EST $=$ \qquad

$$
\begin{aligned}
& \text { Probability of undiscovered recontamination due to poor } \\
& \text { handling }
\end{aligned}
$$ ALLOC = \qquad ; EST = \qquad

Probability of failure of "sterile insertion" rechniques (if used) ALLOC $=\ldots ;$
$\times 442323$
$=4423231$
$+4423232$
$+44233$
$=442331$
$\times 442332$
$\times 442343$
+4423 Probability of recontamination due to failure of biological barrier $A L L O C=$ \qquad ; EST $=$ \qquad
$=44231$ Recontamination due to modes of biological barrier failure other than shown below Contingency ALLOC= \qquad ; $E S T=0.0$

Recontamination due to structural failure of biological barrier AllOC= \qquad ; EST $=$ \qquad
$=442321$
$\times 442322$
$+44234$
$=442341$
$\times 442342$
$+4424$
$=44241$
$=442411$
$\times 4424126$
Probability remaining microorganisms not killed by in flight ALLOC= \qquad EST $=$ \qquad vacuum ASSUME $=1.0$

Probability microorganisms not killed by other means than shown below ALLOC = \qquad EST $=$ \qquad
Probability remaining microorganisms not killed by "die off" ALLOC = \qquad EST $=$ \qquad
Probability microorganisms not killed when dislodged AlLOC= \qquad ; $\mathbf{E S T}=$ \qquad
Probability remaining microorganisms not killed by UV radiation AllOC = \qquad ; EST $=$ \qquad
Probability remaining microorganisms not killed by other solar radiation AllOC= \qquad ; EST $=$ \qquad
$\times 44242$
$=442421$
$\times 442422$

Probability of unsterile particles contaminating capsule AlLOC= \qquad EST $=$ \qquad
Probability unsterile particles impinge on capsule AllOC= \qquad ; EST =

Probability impinging unsterile particles stick to the capsule AllOC $=$ \qquad EST $=$ \qquad
III. Violation probability resulting from all violation modes associated with planetary vehicle No. 2 ALLOC $=$ \qquad EST $=$ \qquad
This submodel probability is similar to that for planetary vehicle No. 1, detailed in preceding Subsection II.

References

1. Sagan, Carl, and Coleman, Sidney, "Spacecraft Sterilization Standards and Contamination of Mars," Astronautics and Aeronautics, May 1965.
2. A Note on COSPAR Resolution 26.5, NASA Position Paper COSPAR, NASA Headquarters, May 1966.
3. Craven, C. W., Planetary Quarantine Plan, Voyager Project, Jet Propulsion Laboratory, March 15, 1966 (1st Rev., October 15, 1966).

[^0]: ${ }^{2}$ For example, the fraction of orbiting spacecraft orbit trim rocket exhaust gases which reach Mars prior to 1985.
 ${ }^{2}$ For example, the probability that planetary vehicle attitude control gases ejected during transit will reach Mars prior to 1985.
 'A branch has a "negligible contribution" if its estimated probability is less than an allocation so small as to not materially affect the allocations to other branches at the same level.

