

21 Pages

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-252

The Voyager Planetary Quarantine Model 1973 Mission

Robert G. Chamberlain

Approved by:

0 CW

C. W. Craven Voyager Project

T. W. Hamilton, Manager Systems Analysis Section Systems Division

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

June 1, 1967

•

Copyright © 1967 Jet Propulsion Laboratory California Institute of Technology

Prepared Under Contract No. NAS 7-100 National Aeronautics & Space Administration

Contents

I.	Inti	oduction
II.	Pla	netary Quarantine Policy and Requirements
	Α.	Establishment of Planetary Quarantine
	B.	Planetary Quarantine Requirements
		1. Infection (of an extraterrestrial planet)
		2. Contamination (of an extraterrestrial planet)
		3. Quarantine (of an extraterrestrial planet)
	С.	Planetary Quarantine Policy
III.	Pla	netary Quarantine Model and Probability Allocations
	Α.	Introduction
	B.	The Validity of the Mathematical Model
	С.	The Planetary Quarantine Model
IV.	Сог	ncluding Remarks
Ap	pend	lix
Ref	erer	nces

Figures

1.	First level breakdown of planetary quarantine model	•	•	•	•	•	3
2.	Launch vehicle portion of planetary quarantine model	•	•	•	•	•	3
3. .	Intact planetary vehicle portion of planetary quarantine model .		•	•	•	•	4
4.	Orbiting spacecraft portion of planetary quarantine model		•		•	•	5
5.	Separated entry capsule portion of planetary quarantine model	•					6

JPL TECHNICAL MEMORANDUM 33-252

.

iii

Abstract

This Memorandum presents the framework of a model which treats all elements of the Voyager 1973 Mission in sufficient detail to allow reasonable assurance that the Voyager policy on planetary quarantine can and will be adhered to by the Voyager Project.

The Voyager 1973 Mission is examined from the point of view of planetary quarantine in order to isolate every conceivable source of contamination of the planet Mars. These sources are being studied in detail in order to ascertain. the requirements that must be met by the hardware and mission designs in order to satisfy the constraints imposed by the planetary quarantine policy.

iv

JPL TECHNICAL MEMORANDUM 33-252

The Voyager Planetary Quarantine Model 1973 Mission

I. Introduction

This Memorandum consists of two parts. The first delineates the planetary quarantine policy and requirements which have been established for the Voyager Project. The second part describes the framework of a mathematical model for assessing whether this policy can and/or will be adhered to. The format of the model can also be used to present the quarantine violation probability allocations which must be placed by the Voyager Planetary Quarantine Office.

II. Planetary Quarantine Policy and Requirements

A. Establishment of Planetary Quarantine

A fundamental scientific and philosophic question that has remained unanswerable until the advent of space flight is whether life exists anywhere in the universe other than on Earth. As a result of observations and study of the solar system, there is speculation that the only opportunity to investigate the existence and nature of extraterrestrial life within the solar system may be the planet Mars. If there is life on Mars, it is fundamental to the understanding of the nature and origin of life whether that life is similar to the life on Earth or not.

JPL TECHNICAL MEMORANDUM 33-252

The possibility of answering these vital questions would be seriously compromised if early interplanetary vehicles, such as *Voyager*, were to infect the planet Mars with any form of viable Earth life. In order to avoid such compromise, the planet Mars has been placed under quarantine.

Any attempt to investigate Mars by means of interplanetary 'vehicles must have associated with it some finite probability of infecting Mars, thus violating the quarantine. Quarantine requirements, to be meaningful, should be so placed that there is a very low probability that Mars is infected prior to completion of an adequate spectrum of biological experiments.

B. Planetary Quarantine Requirements

Infection, contamination and quarantine definitions are established in the following.

1. Infection (of an extraterrestrial planet). Infection is defined as growth and spreading of terrestrial microorganisms throughout major portions of the planet's surface, subsurface, and/or atmosphere. The only kind of infection of concern from the planetary quarantine point of view is, of course, that which results from terrestrial exploration of space.

2. Contamination (of an extraterrestrial planet). Contamination is defined as release of one or more viable terrestrial microorganisms on the planetary surface, within the planetary subsurface, or in the planetary atmosphere.

3. Quarantine (of an extraterrestrial planet). Quarantine is defined as a requirement to avoid infection prior to a specified calendar year or for a specified period of time.

The planetary quarantine requirements established by the Voyager Project Office for the Voyager 1973 Mission are typically as follows: the total probability of violation of the quarantine of the planet Mars as a result of the dual launch of the Voyager 1973 Mission shall be less than approximately 10^{-4} . In addition, the quarantine period has been set at 20 yr, so that the quarantine will not end prior to the calendar year 1985 A.D. These explicit requirements result from considerations which are outside the scope of this document; but see Ref. 1 and 2.

C. Planetary Quarantine Policy

In order to ensure adherence to the planetary quarantine requirements described in Subsection B, the Voyager Project has adopted the following policy for the 1973 Mission to the planet Mars:

- 1. All aspects of a proposed mission, including the complex interactions of the spacecraft with the interplanetary environment, shall be examined in order to isolate every conceivable source of planetary contamination.
- 2. Each separate source of contamination shall be investigated to yield an adequate understanding of the processes through which it occurs, and, wherever possible, mathematical models shall be formulated which adequately characterize the probability of violation of quarantine. These mathematical models shall be based upon standard probabilistic techniques, conservative assumptions shall be employed whenever uncertainties are present in the derivation of the probability formulae, and the limitations and assumptions inherent in their formulation shall be explicitly described in the explanations of their validity. Whenever an adequate mathematical model is impossible (for example, when the necessary assumptions are not meaningful), every effort shall still be exerted to describe suitable

ranges or bounds for the probability of violation of quarantine.

- 3. The total probability of violation of planetary quarantine shall be constrained to satisfy the planetary quarantine requirements by the allocation of probabilities to the above modes of violation.
- 4. Wherever possible, numerical estimates of the probabilities of violation of quarantine by the above modes shall be calculated; and the space vehicle shall be designed and constructed and the mission operations formulated such that these estimates conform to the allocated probability constraints. For those modes of violation of quarantine which cannot be adequately described by a mathematical model, the allocated probability constraints shall be employed as guidelines for the necessary engineering and scientific judgements.
- 5. All investigations of possible contamination sources and all numerical estimates of the probabilities of violation of quarantine shall be adequately documented.

III. Planetary Quarantine Model and Probability Allocations

A. Introduction

The purpose of this section is twofold. First, the limitations and assumptions inherent in the application of probability theory to the planetary quarantine problem must be understood, and are discussed below. Second, all identified possible modes of violation of the planetary quarantine are presented.

Figures 1-5 diagram the Voyager 1973 Mission planetary quarantine model, and show (or can show) the following:

- 1. All identified possible modes of violation of quarantine.
- 2. The limiting probabilities of violation allocated to each mode by the *Voyager* Planetary Quarantine Office.
- 3. The contribution and relationship of each mode to the over-all probability of violation of planetary quarantine.

The model is also presented in an outline format in the Appendix.

JPL TECHNICAL MEMORANDUM 33-252

ł

					OTHER MODES OF PLANETARY QUARANTINE VIOLATION	S-IC STAGE				·
					ALLOC .	ALLOC.				
					EST.	EST.		• .		
					·	<u> </u>				
€ 21		(+)23					€24		
OTHER MODES OF PLANETARY QUARANTINE VIOLATION	IMPACT OF S-IC STAGE	PIECE S-	CT OF ES OF IC AGE					ECTA		
ALLOC+	ALLOC.	ALLOC					ALLO			
EST .	EST.	EST.	{				EST=			
	Q	(2					Q	<u>_</u>	
x 221	× 222	× 23I	×232	(→)241	€242	€243			<u>€</u> 246	ب •
PROBABILITY OF IMPACT OF S-IC STAGE	PROBABILITY OF ONE OR MORE V/O ON S-IC STAGE	PROBABILITY OF EXPLOSION OF S-IC STAGE	PROBABILITY OF ONE OR MORE CONTAMINATED PIECES IMPACTING MARS	OTHER TYPES OF EJECTA FROM S-IC STAGE	ROCKET EXHAUST	LEAKED PROPELLANTS	TVC FLUID	ATTITUDE CONTROL GAS	LOOSE H ARDWARE	PYROTE(SHRAP
ALLOC .		ALLOC.	ALLOC.	ALLOC.	ALLOC.	ALLOC.	ALLOC.	ALLOC=	ALLOC .	ALLOC.
EST.	ASSUME = 1.0	EST.	EST.	EST=	EST.	EST.	EST=	EST.	EST.	EST:

آن

()2

JPL TECHNICAL MEMORANDUM 33-252

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

FULDOUT FRAME

1

l

FOLDUUT FRAME 3

Fig. 2. Launch vehicle portion of planetary quarantine model

Fig. 3. Intact planetary vehicle portion of planetary quarantine model

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

FOLDOUT FRAME

FOLDOUT FRAME 2

FOLDOUT FRAME

z

ł

	·						•	•				•					
				· · · · · · · · · · · · · · · · · · ·	243 POST ORBIT ACHIEVENENT EJECTA ALLOC• EST•		•) 2433_							IMPAC FORV PAR BIOLO BARI ALLOC - EST -	VARD FOF GICAL RIER	(* PLANE VEHIC LANE VEHIC SEPAR ALLOC EST - (*) 261 CONTAMINATED LOOSE HARDWARE ALLOC - EST -	
(*) 24322 ORBIT TRIM ROCKET EXHAUST ALLOC* EST* O (*) 24322 PROBABILITY THAT SUCH GASES ARE CONTAMINATED WHEN THEY REACH MARS ALLOC* EST* O 23 (*) 243224 (*) 2432 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OHE OFF ALLOC* EST* O	PROBABILITY THAT MICROORGANISMS	5 (243227 PROBABILITY MICROORGANISMS NOT KILLED BY OTHER SOLAR RADIATION ALLOC = EST •	(×) 243228 PROBABILITY THAT MICROORGANISMS NOT KILLED BY VACUUM ASSUME +1.0	(*) 243321 PROBABILITY THAT SUCH GASES CONTAMINATED INITIALLY ALLOC- EST •	(*) 243322 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER MEANS ALLOC • EST •	ATTI CON GA ALLOC EST - (*) 24331 FRACTION OF ATTITUDE CONTROL GASES WHICH REACH MARS PRIOR TO 1985 ALLOC - EST -	TUDE TROL SES (x) 24332 PROBABILITY THAT ATTITUDE CONTROL GASES CONTAMINATED WHEN AT MARS ALLOC- EST • (x) 243324 PROBABILITY THAT	(*) 243325 PROBABILITY THAT MICROORGANISMS NOT KILLED BY UY RADIATION ALLOC • EST •	(x) 243326 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER SOLAR RADIATION ALLOC = EST •	(2) 243327 PROBABIL ITY THAT MICROORGANISMS NOT KILLED BY VACUM ASSUME • 1.0	(*) 24341 PROBABILITY THAT SUCH MATERIAL IS EJECTED PRIOR SEPARATION ALLOC- EST- (*) 243421 PROBABILITY THAT SUCH MATERIAL IS CONTAMINATED INITIALLY ALLOC- EST-	(x) 243422 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER MEANS ALLOC - EST -	2 (x) 243423 PROBABILITY THAT MICROORGANISMS NOT KILLED BY EJECTION PROCESS ALLOC - EST -	OUTGASSED, SPALLED, OBLATED, OR SPUTTERED MATERIAL ALLOC• EST• (*) 24342 PROBABILITY THAT SUCH MATERIAL IS CONTAMINATED WHEN IT GETS TO MARS ALLOC• EST•	(X) 243425 PROBABILITY THAT MICROORGANISMS NOT KILLED BY UV RADIATION ALLOC • EST •	PROBABILITY	(x) 24343 FRACTION OF SUCH MATERIAL WHICH REACHES MARS PROR TO 1985 ALLOC- EST- (x) 243427 PROBABILITY THAT MICROORGANISMS NOT KILLED BY VACUM ASSUME + 1.0

.

JPL TECHNICAL MEMORANDUM 33-252

FOLDOUT FRAME 4

FOLDOUT FRAME

5

1

					· .	•			÷.	•			•	· . -	
									· ·			. 1			
	•								•					•	•
	(→ 3 1		€) 32												
	OTHER MODES OF PLANETARY QUARANTINE VIOLATION BY ORBITING SPACECRAFT ALLOC = EST = 0.0	SPACE IMP PRIO I9 ALLOC EST •	CRAFT ACT R TO 85				•			• ·					
		(x) 321 PROBABILITY THAT SPACECRAFT CONTAMINATED ASSUME +1.0	(x) 322 SPACECRAFT IMPACTS PRIOR TO 1985 ALLOC • EST •						•	× 331 PROBABILITY THAT SPACECRAFT BREAKS INTO PIECES ALLOC = EST • (-)					
i -	OTHER CAUSES OF PREMATURE ORBIT DECAY ALLOC • EST •	(→ 3222 DECAY DUE TO ATMOSPHERIC DRAG ALLOC • EST •	3223 IMPACT DUE TO FAULTY ORBIT TRIM ALLOC • EST •	3224 MPACT DUE TO PERTURBATIONS AT SPACECRAF V SEPARATION ALLOC • EST •	3225 DECAY DUE TO A-BODY PERTURBATIONS ALLOC+ EST+	(+) 3226 DECAY DUE TO GRAVITATIONAL HARMONICS ALLOC = EST =		ALLOC EST		¥		DRITES	PROBA TI SPACE BREAKS CENTR FO ALLOC EST =	3313 BILLITY AAT UP FROM UP FROM RCE .	OT CAUS PREM ORBIT ALLOC EST =
LEYEL						S3111 PROBABILITY OF OTHER KINDS OF EXPLOSIONS ALLOC = EST - 0.0	33112 PROBABILITY THAT MIDCOURSE MOTOR EXPLODES ALLOC • EST •	(*) 33113 PROBABILITY THAT RETRO MOTOR EXPLODES ALLOC* EST*	(*) 33114 PROBABILITY THAT ORBIT TRIM MOTOR EXPLODES ALLOC • EST •	CONTRACT	× 33121 PROBABILITY THAT A SUFFI- CIENTLY LARGE METEORITE HITS SPACECRAFT PRIOR TO 1985 ALLOC - EST -	× 33122 PROBABILITY THAT THE RESULTANT PIECES HIT MARS ALLOC• EST•	33131 PROBABILITY THAT ATTITUDE CONTROL SYSTEM FAILS PRIOR TO 1985 ASSUME • 1.0	(*) 33132 PROBABILITY THAT UNBALANCED FORCES CAUSE EXCESSIVE SPACECRAFT SPIN-UP PRIOR TO 1985 ALLOC • EST •	T
LEVEL 7									•						

FOLDOUT FRAME

¥

FOLDOUT FRAME

													·		<i>1</i>	
							SPACECRAFT EJECTA ALLOC• EST•								ALLOC.	i of Art Ical Er
		ATTI CONT GA ALLOC- EST-	ROL IS				· · ·			OUTGA SPAL ABLA O SPUTI MATE ALLOC EST*	LLED, ATEO, R FERED RIAL				(*) 351 PROBABILITY THAT AFT PART OF BIOLOGICAL BARRIER IMPACTS MARS ALLOC- EST-	(x) 352 PROBABILITY THAT AFT PART OF BIOLOGICAL BARRIER IS CONTAMINATED ASSUME •1.0
	PROBAE THAT AT CONTRO CONTAINS MICROORC INITI/ ALLOC= EST-) 3431 (P SILITY FRACTI TITUDE ATTI L GAS CONTR VIABLE WHICH F SANISMS MARS P	03432 (ON OF TUDE EACHES B5 ALLOC EST •	3433 ABILITY SUCH SOUCH SOUCH SOUCH SOUCH SOUCH SOUCH AGANISMS LLED IN SOUCH ARS .						EST.	(x) 3442 PROBABILITY THAT SUCH MATERIAL CONTAMINATED ALLOC EST=					
(*) 34236 (*) 34237 BABILITY PROBABILITY THAT THAT ORGANISMS MICROORGANISMS KILLED NOT KILLED AER SOLAR BY DIATION VACUUM C• ASSUME =1.0	X 34331 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER MEANS ALLOC- EST-	34332 PROBABILITY THAT MICROORGANISMS NOT KILLED DURING RELEASE ALLOC- EST-	(*) 34333 PROBABILITY THAT MICROORGANISMS NOT KILLED BY DIE OFF ALLOC* EST*	× 34334 PROBABILITY THAT	34335 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER SOLAR RADIATION ALLOC- EST-	34336 PROBABILITY THAT MICROORGANISMS NOT KILLED BY VACUUM ASSUME = 1.0		34421 PROBABILITY THAT SUCH MATERIAL CONTAMINATED INITIALLY ALLOC- EST •	(x) 34422 PROBABILITY THAT VIABLE MICROORGANISMS NOT KILLED IN TRANSIT PRIOR TO EJECTION ALLOC * EST • (•)				PROBA THAT V MICROOR NOT KI AFTER E SPACE ALLOC EST	/IABLE GANISMS LLED JECTION OM CRAFT		
						X 344221 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER MEANS ALLOC* EST*	X 344222 PROBABILITY THAT MICROORGANISMS NOT KILLED BY DIE OFF ALLOC- EST-	(x) 344222 PROBABILITY THAT MICROORGANISMS NOT KILLED BY UV RADIATION ALLOC- EST-	¥	X 344225 PROBABILITY THAT MICROORGANISMS NOT KILLED BY VACUUM ASSUME • 1.0	S (*) 344231 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER MEANS ALLOC- EST-	X 344232 PROBABILITY THAT MICROORGANISMS NOT KILLED BY DIE OFF ALLOC• EST•		(*) 344234 PROBABILITY THAT MICROORGANISMS NOT KILLED BY UV RADIATION ALLOC- EST-	(*) 344235 PROBABILITY THAT MICROORGANISMS NOT KILLED BY OTHER SOLAR RADIATION ALLOC- EST-	344236 PROBABILITY THAT MICROORGANISMS NOT KILLED BY VACUUM ASSUME =1.0

•

. i

1

Fig. 4. Orbiting spacecraft portion of planetary quarantine model

2

FOLDOUT FRAME

FOLDOUT FRAME 3

B. The Validity of the Mathematical Model

Several valid objections are applicable to any attempt to precisely formulate a mathematical model to ensure that the planetary quarantine requirements are met. The principal difficulty arises from the extremely small value of the limiting probability of violation of quarantine. Many of the contributing quantities are statistical in nature, and the applicability of the usually assumed probability distributions may be questionable at large variances. Strictly valid formulations would become involved with confidence levels on the variances of the actual distributions and would become extremely complex. Furthermore, even if confidence levels could be meaningfully incorporated into a usable model, empirical testing necessary to establish reasonable confidence levels at the extremely small probabilities involved would be hopelessly long and costly. Finally, a case could be made for the argument that the probability of overlooking a significant mode of violating the planetary quarantine exceeds the extremely small allocations for contingency. All of these objections are quite valid to the extent that a mathematical model is incapable of proving that the requirements have been satisfied. The objections, however, should not preclude a rational attempt to meet the planetary quarantine requirements insofar as is possible and feasible.

The fact that the limiting probability of violation of quarantine is so small does bear one benefit, in that the probability equations are simplified: Assume n independent sources of violation of quarantine. Define p_j to be the probability of violation by the j^{th} mode. (Then $0 \leq p_j \leq 1$, and $j = 1, \dots, n$.) Then, the probability that quarantine will not be violated by the j^{th} mode is $(1 - p_j)$.

Now, the probability that the quarantine will be maintained is the product of the individual probabilities. Further, the planetary quarantine requirement is that this probability be greater than or equal to (1 - Q), where Q is the limiting probability of violation of quarantine. Thus,

$$\prod_{j=1}^{n} (1-p_j) \ge 1-Q$$
 (1)

Now, since Q is very small, the individual p_j must be very small, so that on expansion of the product, the terms involving products of the p_j will be negligible.

JPL TECHNICAL MEMORANDUM 33-252

Therefore, equation (1) may be rewritten as follows:

$$\sum_{j=1}^{n} p_{j} \leq Q \tag{2}$$

Thus, we see from Eq. (2) that the sum of the individual probabilities of violating the quarantine over all the various modes of violation must be less than or equal to the limiting probability of violation.

C. The Planetary Quarantine Model

The acceptable overall probability of violating the quarantine of the planet Mars on a single mission has been established as an extremely small number (on the order of 10^{-4}), for the reasons discussed in Subsection A. As a result, a very large number of unlikely modes of quarantine violation must be considered in any attempt to ensure that the actual probability will be below the established limit.

An equation to express the estimated violation probability would not only be unwieldy, but confusing and unclear, unless a departure from the usual format for equations is used. Furthermore, the various modes of quarantine violation can be considered at several levels of detail. To illustrate both of these points, consider the following:

$$Q = p_{Lv} + p_{Pv_1} + p_{Pv_2}$$
(3)

where

- Q = overall probability of violating the planetary quarantine of the planet Mars as a result of the Voyager 1973 Mission.
- p_{LV} = probability of violating the planetary quarantine of the planet Mars as a result of all violation modes associated with the launch vehicle.
- p_{PV1} = violation probability resulting from all modes associated with planetary vehicle 1.
- p_{PV2} = violation probability resulting from all modes associated with planetary vehicle 2.

But, each term on the right in Eq. (3) requires further expansion. For example,

$$p_{PV_1} = p_1 + p_2 + p_3 \tag{4}$$

where

- p_1 = violation probability resulting from an intact (spacecraft/capsule not separated) planetary vehicle 1.
- p_2 = violation probability resulting from an orbiting spacecraft from planetary vehicle 1.
- p_3 = violation probability resulting from a separated entry capsule from planetary vehicle 1:

Again, each term in Eq. (4) requires further expansion, but such expansion will not be illustrated at this point in the discussion.

Two alternative formats for the presentation of the equation for the assessment of the overall violation probability are presented in Fig. 1–5, and in the outline in the Appendix. It should be noted that both formats can be used for assessment (by starting at the bottom and working up) and for allocation (by starting at the top and working down). Both formats present the same probability equation and may be used in conjunction with each other. Submodels for many of the key factors have yet to be established before an adequate assessment can be made; further breakdown of any of the lowest level entries is, of course, possible.

The probabilities allocated to various possible modes of violation of quarantine are shown by the abbreviation ALLOC=. Estimated values of various relevant parameters are shown by the abbreviation EST=. Certain probabilities have been conservatively assumed to be unity and are indicated by the abbreviation ASSUME=1.0. In the figures and in the outline, the computational relationships of the various parameters are represented by signs for equality, addition, and multiplication.

The process of treating the quarantine model in successively more explicit detail is handled in the outline format (the Appendix) by indentation, and in Fig. 1-5 by branching to successive levels.

IV. Concluding Remarks

This document presents a discussion of the need for the establishment of a quarantine of the planet Mars, a description of the current JPL planetary quarantine policy and requirements, and a description of a model of the Voyager 1973 Mission (as modeled from a quarantine point of view).

The model which makes up the bulk of this document is not the only one which can be constructed. It is intended to provide an illustration of the complexity of the planetary quarantine problem, and to delineate most of the elements which must be considered. A number of the items in the model represent a great deal of analytical effort.¹

At the lowest levels shown, kill processes are generally treated as independent, while in fact the processes may combine to give higher kill probabilities than implied. This simplification is a conservative one, and therefore permitted. It may be desirable in some cases to be more precise by using joint kill probabilities or joint probability distributions instead. In some cases, the relationships shown are oversimplified in another way. That is, some of the parameters of particular elements undergo wide variation during the course of the mission.² In such cases, the required probabilities can be conservatively estimated, or the addition relationships can be considered as generalized sums (integrals or summations), and the product relationships considered as factors in the integrand.

Kill probabilities, for example, may not be independent of the number of microorganisms to be operated upon. This complication can be treated by use of probability distributions rather than point estimates of probabilities as is done here. This elaboration of the analysis can be applied to individual branches of the tree, if desired.

Finally, it should be noted that there may be cases — particularly when simpler missions, such as fly-by missions, are considered — in which it is unnecessary to evaluate all of the elements of the model in order to estimate or to allocate violation probabilities. It may be quite reasonable to simply note that some branches have a negligible contribution to the overall probability of violation of quarantine.³

JPL TECHNICAL MEMORANDUM 33-252

8

ļ

¹For example, the fraction of orbiting spacecraft orbit trim rocket exhaust gases which reach Mars prior to 1985.

³For example, the probability that planetary vehicle attitude control gases ejected during transit will reach Mars prior to 1985.

³A branch has a "negligible contribution" if its estimated probability is less than an allocation so small as to not materially affect the allocations to other branches at the same level.

Appendix

Outline Format for the Model of the Probability of Violation of the Quarantine of the Planet Mars as a Result of the Voyager 1973 Mission

Basic planetary quarantine requirement: The probability of violation of the quarantine of the planet Mars as a result of the Voyager 1973 Mission shall be less than or equal to Q^4 . This probability equals (=)

- I. Violation probability resulting from all violation modes associated with the Saturn V launch vehicle (ALLOC⁵=_____; EST⁶=____)
- +II. Violation probability resulting from all violation modes associated with planetary vehicle No. 1 (PV 1) (ALLOC=____; EST=___)

+III. Violation probability resulting from all violation modes associated with planetary vehicle No. 2 (PV 2) (ALLOC=____; EST=___)

	, .	÷	
-	robability resulting from all violation modes associated with I launch vehicle	× 232	Probability that any of the debris from an explosion of the S-IC stage contains at least one viable terrestrial
ALLOC=	; EST=		organism and impacts Mars ALLOC=; EST=;
, =1	Violation probability resulting from all violation modes as-		
	sociated with the launch vehicle not identified below	+24	Violation modes associated with the ejecta from the S-IC
	Contingency ALLOC =; EST = 0.0		stage
+2	Violation modes associated with the Saturn IC (S-IC) stage		ALLOC =; EST =
	ALLOC =; EST =	=241	Violation modes associated with other types of ejecta from
			the S-IC stage than identified below
=21	Violation modes associated with the S-IC stage not iden-		Contingency ALLOC =; EST=0.0
	tified below		
	Contingency ALLOC =; EST = 0.0	+ 242	Probability of violation due to S-IC rocket exhaust
+22	Probability of violation due to impact of S-IC stage		ALLOC =; EST =
,	ALLOC =; EST =	+243	Probability of violation due to propellant leaked from the
•	ALLOC, COT		S-IC tanks
= 2 21	Probability of Martian impact of S-IC stage		ALLOC =; EST =
	ALLOC =; EST =		
× 222	Probability that at least one viable terrestrial organism is	+244	Probability of violation due to S-IC stage thrust vector
~ ***	on or within the S-IC stage at Martian impact, given		control (TVC) fluid
	that malfunctions occur in such a way that the S-IC		ALLOC =; EST =
	stage impacts Mars	+ 245	Probability of violation due to S-IC stage attitude contro
	ASSUME = 1.0		gas
.•			ALLOC =; EST =
+23	Probability of violation due to Martian impact of a piece		
	(or pieces) of the S-IC stage	+246	Probability of violation due to loose hardware associated
	ALLOC =; EST =		with the S-IC stage
≤231	Probability that the S-IC stage explodes for any reason		ALLOC =; EST =
2431	ALLOC =; EST =	+ 247	Probability of violation due to shrapnel from S-IC stage
			pyrotechnics
			ALLOC =; EST =
numerical	value yet to be established.		
llocated va	lue	+248	Probability of violation due to material outgassed, spalled,
	•		ablated, or sputtered from the S-IC stage
Estimated v	aue	•	ALLOC =; EST =

JPL TECHNICAL MEMORANDUM 33-252

$+\frac{25}{30}\frac{(\frac{1}{2})}{(\frac{1}{2})}$	Violation modes associated with the Saturn IC/Saturn II (S-IC/S-II) stage separation ALLOC=, half charged to S-IC stage, half to S-II stage; EST=
$\leq \frac{251}{301}$	Probability that contaminated loose hardware resulting from an assumed S-IC/S-II separation will impact Mars ALLOC=; EST=
$+\frac{252}{302}$	Probability that contaminated pyrotechnic shrapnel result- ing from an assumed S-IC/S-II separation will impact Mars ALLOC=; EST=
+3	Violation modes associated with the S-II stage ALLOC=; EST=
=31	Violation modes associated with the S-II stage not iden- tified below Contingency ALLOC=; EST=0.0
+32	Probability of violation due to impact of S-II stage ALLOC=; EST=
=321	Probability of Martian impact of S-II stage ALLOC=; EST=
×322	Probability that at least one viable terrestrial organism is on or within the S-II stage at Martian impact, given that malfunctions occur in such a way that the S-II stage impacts Mars ASSUME=1.0
+33	Probability of violation due to Martian impact of a piece (or pieces) of the S-II stage ALLOC=; EST=;
≤331	Probability that the S-11 stage explodes for any reason ALLOC=; EST=
× 332	Probability that any of the debris from an explosion of the S-II stage contains at least one viable terrestrial organism and impacts Mars ALLOC=; EST=
+34 .	Violation modes associated with the ejecta from the S-II stage ALLOC=; EST=
=341	Violation modes associated with other types of ejecta from the S-II stage than identified below Contingency ALLOC=; EST=0.0
+342	Probability of violation due to S-II rocket exhaust ALLOC=
+ 343	Probability of violation due to propellant leaked from the S-II tanks ALLOC=; EST=
+344	Probability of violation due to S-II stage TVC fluid ALLOC=; EST=
+345	Probability of violation due to S-II stage attitude control gas ALLOC=; EST=

+346	Probability of violation due to loose hardware associated with the S-II stage ALLOC=; EST=
+347	Probability of violation due to shrapnel from S-11 stage pyrotechnics ALLOC=; EST=
+348	Probability of violation due to material outgassed, spalled, ablated, or sputtered from the S-II stage ALLOC=; EST=
$+ \frac{35}{40} \frac{(1/2)}{(1/2)}$	Violation modes associated with the Saturn II/Saturn IVB (S-II/S-IVB) stage separation ALLOC =, half charged to S-II stage, half to S-IVB stage; EST =
$\leq \frac{351}{401}$	Probability that contaminated loose hardware resulting from an assumed S-11/S-1VB separation will impact Mars ALLOC=; EST=
$+\frac{352}{402}$	Probability that contaminated pyrotechnic shrapnel result- ing from an assumed S-11/S-1VB separation will im- pact Mars ALLOC =; EST =;
+4	Violation modes associated with the S-IVB stage ALLOC=; EST=
=41	Violation modes associated with the S-IVB stage not iden- tified below Contingency ALLOC=; EST=0.0
+ 42	Probability of violation due to impact of S-IVB stage ALLOC=; EST=
=421	Probability of Martian impact of S-IVB stage ALLOC=; EST=
=4211	Probability S-IVB stage is on a Martian impact trajectory after both planetary vehicle separations ALLOC=; EST=
×4212	Probability S-IVB retrorockets (if any) do not remove the S-IVB from an impact trajectory ALLOC=; EST=
× 422	Probability that at least one viable terrestrial organism is on or within the S-IVB stage at Martian impact, given that the S-IVB stage impacts Mars ASSUME=1.0
+43	Probability of violation due to Martian impact of a piece (or pieces) of the S-IVB stage ALLOC=; EST=
≤431	Probability of explosion of S-IVB stage for any reason ALLOC=; EST=
×432	Probability that any of the debris from an explosion of the S-IVB stage contains at least one viable terres- trial organism and impacts Mars ALLOC=; EST=
+44	Violation modes associated with the ejecta from the S-IVB stage ALLOC=; EST=

E

=441	Violation modes associated with other types of ejecta from 11. the S-IVB stage than identified below Contingency ALLOC=; EST=0.0
+442	Probability of violation due to S-IVB rocket exhaust ALLOC=; EST=
+443	Probability of violation due to propellant leaked from • the S-IVB tanks ALLOC=; EST=
+ 444	Probability of violation due to S-IVB stage TVC fluid ALLOC=; EST=
+ 445	Probability of violation due to S-IVB attitude control gas ALLOC=; EST=
+446	Probability of violation due to loose hardware associated with the S-IVB stage ALLOC=; EST=
+447	Probability of violation due to shrapnel from S-IVB pyrotechnics ALLOC=; EST=
+ 448	Probability of violation due to material outgassed, spalled, ablated, sputtered, etc., from the S-IVB stage ALLOC=; EST=
+5	Violation modes associated with the aerodynamic nose fairing (shroud) ALLOC=; EST=
=51	Violation modes associated with the shroud not identified below Contingency ALLOC =; EST=0.0
+ 52	Probability of violation due to loose hardware associated with the shroud ALLOC=; EST=
≖521	Probability that loose hardware associated with the shroud will impact Mars ALLOC=; EST=
× 522	Probability that at least one viable terrestrial organism is on or within loose hardware associated with the shroud, given that such hardware impacts Mars ASSUME=1.0
+ 53	Probability of violation due to Martian impact of a piece (or pieces) of the shroud ALLOC=; EST=
≤531	Probability that any shroud pieces impact Mars ALLOC =; EST =
× 532	Probability that at least one viable terrestrial organism is on or within the shroud piece (or pieces) which im- pact Mars, given that such impact occurs ASSUME=1.0
• ·	

Violation probability resulting from all violation modes associated with planetary vehicle No. 1 __; EST=. Violation probability resulting from all modes associated = 1 with PV 1 not identified below Contingency ALLOC =____; EST = 0.0 Violation modes associated with an intact planetary +2 vehicle ALLOC = _; EST=___ =21 Violation modes associated with an intact planetary vehicle not identified below Contingency ALLOC =___ _: EST=0.0 +22 Probability of violation due to impact of the intact planetary vehicle ALLOC =_ ___; EST=_ Probability of violation due to impact resulting from =221 · causes other than those identified below Contingency ALLOC=____; EST=0.0 Probability of violation due to PV being placed on an +222 impact trajectory at injection ALLOC=____; EST=_ =2221 Probability midcourse engine fails to deliver sufficient control and/or thrust to produce abort (i.e., to remove PV from impact trajectory) ALLOC =____; EST =__ X 2222 Probability retro (orbit insertion) engine fails to produce abort ALLOC =____; EST =____; Probability PV is contaminated when at Mars × 2223 ASSUME = 1.0 Probability PV is placed on impact trajectory at injection × 2224 +223 Probability of violation due to PV being placed on an impact trajectory by a midcourse maneuver ALLOC=___; EST=___ +224 Probability of violation due to PV impact resulting from orbit insertion attempt ALLOC =____; EST =___; +225 Probability of violation due to PV impact resulting from orbit trim attempts ALLOC = ____; EST = ____; +226 Probability of violation due to orbital decay of intact planetary vehicle

ALLOC =____

ASSUME=1.0

Probability PV orbit decays prior to 1985 ALLOC=____; EST=_____ Probability capsule not separated

ALLOC =____; EST=_

= 2261

× 2262

X 2263

__; EST=_

Probability PV contaminated at the time of orbit decay

JPL TECHNICAL MEMORANDUM 33-252

ł

+23	Probability of violation due to impact of PV explosion shrapnel ALLOC=; EST=	=24131	Fraction of transit attitude control gases which will reach Mars prior to 1985 ALLOC=; EST=
≈231	Probability PV explodes ALLOC=; EST=	× 24132	Probability such gases are contaminated when they reach Mars
×232	Probability that a contaminated piece of an exploded PV will impact Mars ALLOC=; EST=	= 241321	ALLOC=; EST= Initial microbial load of such gases ALLOC=; EST=
+24	Violation modes associated with ejecta from PV 1 ALLOC=; EST=	× 241322	Probability microorganisms not killed by other means ALLOC=; EST=
=241	Violation modes associated with ejecta released from PV 1 prior to orbit achievement ALLOC=; EST=	×241323	Probability remaining microorganisms not killed by ejec- tion process ALLOC=; EST=
=2411	Violation modes associated with other types of ejecta from PV 1 than identified below Contingency ALLOC=; EST=0.0	× 241324	Probability remaining microorganisms not killed by "die off" ALLOC=; EST=
+2412	Probability of violation due to midcourse maneuver ex- haust gases ALLOC=; EST=	× 241325	Probability remaining microorganisms not killed by UV radiation ALLOC=; EST=
=24121	Fraction of such gases which will reach Mars prior to 1985 ALLOC=; EST=	× 241326	Probability remaining microorganisms not killed by other solar radiation ALLOC=; EST=
×24122	Probability such gases are contaminated when they reach Mars ALLOC=; EST=	× 241327	Probability remaining microorganisms not killed by vacuum ASSUME=1.0
=241221	Initial microbial load of such propellants ALLOC=; EST=	+2414	Probability of violation due to outgassed, spalled, ab- lated, sputtered, or other material
× 241222	Probability initially viable microorganisms in the propel- lants are not killed by the propellants ALLOC=; EST=	=24141	ALLOC=; EST= Fraction of such material which will reach Mars prior to 2023 ALLOC=; EST=
× 241223	Probability remaining microorganisms are not killed in the ejection process ALLOC=; EST=	×24142	Initial microbial load of such material ALLOC=; EST=;
×241224	Probability remaining microorganisms are not killed by other means	×24143	Probability microorganisms not killed by other means ALLOC=; EST=
×241225	ALLOC=; EST= Probability remaining microorganisms do not "die off" (due to time, lack of food, etc.)	× 24144	Probability remaining microorganisms not killed by ejec- tion process ALLOC=; EST=
× 241226	ALLOC =; EST = Probability remaining microorganisms are not killed by UV radiation	×24145 .	Probability remaining microorganisms not killed by "die off" ALLOC=; EST=
×241227	ALLOC=; EST= Probability remaining microorganisms are not killed by other solar radiation	×24146	Probability remaining microorganisms not killed by UV radiation ALLOC=; EST=
×241228	ALLOC =; EST = Probability remaining microorganisms are not killed by vacuum ASSIIME=1.0	×24147	Probability remaining microorganisms not killed by other solar radiation ALLOC =; PST=
+2413	ASSUME=1.0 Probability of violation due to attitude control gases ALLOC=; EST=	× 24148	Probability remaining microorganisms not killed by vacuum ASSUME=1.0
12 ·	· · ·		JPL TECHNICAL MEMORANDUM 33-252

+ 242	Violation modes associated with ejecta released from PV 1 during orbit insertion	× 243322	Probability microorganisms not killed by other means ALLOC=; EST=
+243	ALLOC =; EST = Violation modes associated with ejecta released from PV 1 after orbit insertion	× 243323	Probability remaining microorganisms not killed by "die off" ALLOC=; EST=
- 9/21	ALLOC =; EST =	×243324	Probability remaining microorganisms not killed by ejec-
=2431	Violation modes associated with other types of ejecta from PV 1 than identified below Contingency ALLOC=; EST=0.0	N 0 (0005	ALLOC =; EST =
+2432 `	Probability of violation due to orbit trim rocket exhaust gases	× 243325 •	Probability remaining microorganisms not killed by UV radiation ALLOC=; EST=
=24321	ALLOC =; EST = Fraction of such gases which will reach Mars prior to 1985	×243326	Probability remaining microorganisms not killed by other solar radiation ALLOC=; EST=
× 24322	ALLOC=; EST= Probability such gases are contaminated when they reach Mars	× 243327	Probability remaining microorganisms not killed by vacuum ASSUME==1.0
=243221	ALLOC =; EST = Initial microbial load of retro propellants ALLOC =; EST =	+ 2434	Probability of violation due to outgassed, spalled, ab- lated, sputtered, etc., material ALLOC =; EST =
×243222	Probability microorganisms are not killed by propellants ALLOC=; EST=	=24341	Expected microbial load of such material ejected prior to spacecraft/capsule separation
×243223	Probability remaining microorganisms not killed by ejec- tion process AllOC=; EST=	×24342	ALLOC =; EST = Probability such material is contaminated when it reaches Mars ALLOC =; EST =
× 243224	Probability remaining microorganisms not killed by other means ALLOC=; EST=	=243421	Probability such material is contaminated initially ALLOC=; EST=;
× 243225	Probability remaining microorganisms not killed by "die off"	× 243422	Probability microorganisms not killed by other means ALLOC=; EST=
× 243226	ALLOC=; EST= Probability remaining microorganisms not killed by UV radiation	×243423	Probability remaining microorganisms not killed by ejec- tion process ALLOC=; EST=
×243227	ALLOC =; EST = Probability remaining microorganisms not killed by other	× 243424	Probability remaining microorganisms not killed by "die • • off"
	solar radiation ALLOC=; EST=	×243425	ALLOC =; EST = Probability remaining microorganisms not killed by UV
× 243228	Prob'ability remaining microorganisms not killed by vacuum		radiation ALLOC =; EST =;
+ 2433	ASSUME = 1.0 Probability of violation due to attitude control gas from	×243426	Probability remaining microorganisms not killed by other solar radiation ALLOC=; EST=
, , ,	PV 1 ALLOC=; EST=	× 243427	Probability remaining microorganisms not killed by
=24331	Fraction of such gases will reach Mars prior to 1985 ALLOC=; EST=		vacuum ASSUME=1.0
× 24332	Probability attitude control gases contaminated when at Mars	× 24343	Fraction of such material which reaches Mars prior to 1985 ALLOC=; EST=
=243321	ALLOC =; EST = Probability such gases contaminated initially ALLOC =; EST =	+ 25	Probability of violation due to impact to the forward part _ of the biological barrier ALLOC=; EST=
÷			

13

ŗ

=251	Probability of impact of the forward part of the biological barrier ALLOC=; EST=
×252	Probability forward part of biological barrier contaminated ALLOC=; EST=
+26	Violation modes associated with Launch Vehicle/Planetary Vehicle 1 separation ALLOC=; EST=
=261	Violation due to impact of contaminated loose hardware ALLOC=; EST=
+262	Violation due to impact of contaminated pyrotechnic shrapnel ALLOC=; EST=
+3	Violation modes associated with the orbiting spacecraft ALLOC=; EST=;
=31	Violation modes associated with an orbiting spacecraft not identified below Contingency ALLOC=; EST=0.0
+32	Violation due to premature impact of the orbiting space- craft ALLOC=; EST=
=321	Probability orbiting spacecraft contaminated at impact ASSUME=1.0
× 322	Probability orbiting spacecraft impacts prior to 1985 ALLOC=; EST=
= 3221	Probability of premature orbit decay as a result of other causes than shown below Contingency ALLOC=; EST=
+ 3222	Probability of premature decay due to atmospheric drag ALLOC=; EST=
+ 3223	Probability of impact due to faulty orbit trim maneuvers ALLOC=; EST=
+ 3224	Probability of impact due to perturbations at spacecraft/ capsule separation ALLOC=; EST=
+ 3225	Probability of decay due to N-body gravitational per- turbations ALLOC=; EST=
+3226	 Probability of decay due to gravitational harmonics ALLOC=; EST=;
+33	Violation due to impact of spacecraft pieces prior to 1985 ALLOC=; EST=
=331	Probability spacecraft breaks into pieces ALLOC=; EST=
= 3311	Probability spacecraft explodes ALLOC=; EST=
=33111	Probability of any other explosion on the orbiting space- craft Contingency ALLOC=; EST=0.0
+33112	Probability midcourse motor explodes ALLOC=; EST=

+33113	Probability orbit insertion motor explodes ALLOC=; EST=
+33114	Probability orbit trim motor explodes ALLOC=; EST=
+33115	Probability pressure tanks explode ALLOC=; EST=
+33116	Probability batteries explode ALLOC=; EST=
+3312	Probability spacecraft smashed by meteorites ALLOC=; EST=
=33121	Probability a sufficiently large meteorite hits the space- craft prior to 1985 ALLOC=; EST=
×33122	Probability that any of the resultant pieces impact Mars prior to 1985 ALLOC=; EST=
+3313	Probability spacecraft breaks up from centrifugal force prior to 1985 ALLOC=; EST=
=33131	Probability attitude control system fails prior to 1985 ASSUME=1.0
×33132	Probability unbalanced forces cause excessive spacecraft spin-up prior to 1985 ALLOC=; EST=
×332	Probability any spacecraft pieces decay prior to 1985 ALLOC=; EST=
×333	Probability any spacecraft pieces which decay prior to 1985 are contaminated when at Mars ALLOC=; EST=
= 3331	Initial spacecraft microbial load ALLOC=; EST=
× 3332	Probability microorganisms not killed by other means ALLOC=; EST=
×3333	Probability microorganisms not killed by entry ALLOC=; EST=
× 3334	Fraction of initial load left when spacecraft breaks up ALLOC=; EST=
×3335	Probability remaining microorganisms not killed by UV radiation ALLOC=; EST=
× 3336	Probability remaining microorganisms not killed by other solar radiation ALLOC=; EST=
×3337	Probability remaining microorganisms not killed by vacuum ASSUME = 1.0
+34	Violation modes associated with ejecta from an orbiting spacecraft ALLOC=; EST=

JPL TECHNICAL MEMORANDUM 33-252

=341	Violation modes associated with other types of ejecta from orbiting spacecraft than identified below Contingency ALLOC=; EST=0.0	. ×34333	Probability remaining microorganisms not killed by "die off" ALLOC=; EST=
+342	Probability of violation due to orbit trim rocket exhaust gases ALLOC=; EST=	×34334	Probability remaining microorganisms not killed by UV radiation ALLOC=; EST=
=3421	Probability orbit trim rocket propellants contaminated initially ALLOC=; EST=	×34335	Probability remaining microorganisms not killed by other solar radiation ALLOC=; EST=
× 3422	Fraction of such gases which reach Mars prior to <u>1985</u> ALLOC =; EST =	×34336	Probability remaining microorganisms not killed by vacuum
×3423	Probability microorganisms not killed prior to Mars entry ALLOC=; EST=	+ 344	ASSUME=1.0 Probability of violation due to material outgassed, spalled, etc.
=34231	Probability microorganisms not killed by other means ALLOC=; EST=	2441	AllOC=; EST=
× 34232	Probability remaining microorganisms not killed by pro- pellants	= 3441	Fraction of such material which impacts Mars prior to <u>1985</u> ALLOC=; EST=
×34233	ALLOC =; EST =	× 3442	Probability such material contaminated when at Mars ALLOC =; EST =
~ 34233	rocket firing ALLOC =; EST =	=34421	Initial microbial load of such material ALLOC=; EST=
× 34234	Probability remaining microorganisms not killed by "die off" ALLOC=; EST=	×34422	Probability viable microorganisms not killed in transit prior to ejection ALLOC=; EST=
× 34235	Probability remaining microorganisms not killed by UV radiation	=344221	Probability microorganisms not killed by means other than as follows ALLOC=; EST=
	ALLOC =; EST =	× 344222	Probability remaining microorganisms not killed by "die
× 3 4236	Probability remaining microorganisms not killed by other solar radiation		off" in transit ALLOC=; EST=
	ALLOC =; EST =	× 344223	Probability remaining microorganisms not killed by UV
×34237	Probability remaining microorganisms not killed by vacuum	•	radiation AlLOC=; EST=;
+ 343	ASSUME = 1.0	× 344224	Probability remaining microorganisms not killed by other solar radiation
- 343	Probability of violation due to attitude control gases ALLOC=; EST=		ALLOC =; EST =
=3431	Probability attitude control gas contains viable terrestrial microorganisms initially (or initial microbial load) ALLOC=; EST=	×344225	Probability remaining microorganisms not killed by vacuum ASSUME=1.0
× 3432	Fraction of attitude control gas which reaches Mars prior	× 34423	Probability viable microorganisms not killed during or after ejection from spacecraft
	to 2023 ALLOC=; EST=	•	ALLOC=; EST=
× 3 433	Probability microorganisms not killed in transit to Mars ALLOC=; EST=	=344231	Probability remaining organisms not killed by means other than as follows ALLOC=; EST=
= 34331	Probability remaining microorganisms not killed by means other than identified below	× 344232	Probability remaining microorganisms not killed by "die off"
	ALLOC =; EST =		· AllOC=; EST=
× 34332	Probability remaining microorganisms not killed during release ALLOC=; EST=	× 344233	Probability remaining microorganisms not killed by ejec- tion process ALLOC=; EST=

٠,

15

F

× 344234	Probability remaining microorganisms not killed by UV radiation ALLOC=; EST=	+ 4423	Probability of recontamination due to failure of biological barrier ALLOC=; EST=
×344235	Probability remaining microorganisms not killed by other solar radiation ALLOC=; EST=	=44231	Recontamination due to modes of biological barrier failure other than shown below Contingency ALLOC=; EST=0.0
×344236	Probability remaining microorganisms not killed by vacuum ASSUME=1.0	+ 44232	Recontamination due to structural failure of biological barrier ALLOC=; EST=
+ 35	Violation due to impact of the aft part of the biological barrier ALLOC=; EST=	= 442321	Probability biological barrier structure fails ALLOC=; EST=
=351	Probability aft part of biological barrier impacts Mars ALLOC=; EST=	× 442322	Probability capsule recontaminated if the biological bar- rier structure fails ALLOC=; EST=
× 352	Probability aft part of biological barrier is contaminated when it impacts Mars ASSUME=1.0	× 442323	Probability mission not aborted if there is structural fail- ure of the biological barrier ALLOC=; EST=
+4	Violation modes associated with a separated entry capsule ALLOC=; EST=;	=4423231	Probability structural failure of biological barrier is not detected ALLOC=; EST=
=41	Violation modes associated with a separated entry capsule not identified below Contingency ALLOC=; EST=0.0	+ 4423232	Probability failure is detected and mission is still not aborted ALLOC=; EST=
+ 42	Probability contaminated spacecraft/capsule separation de- bris impacts Mars prior to 1985 ALLOC=; EST=	+ 44233	Probability of recontamination due to bad biological seals on the biological barrier
+ 43	Violation modes associated with capsule ejecta ALLOC=; EST=	=442331	ALLOC=; EST= Probability of biological barrier having bad seals ALLOC=; EST=
=431	Fraction of capsule ejecta which impacts Mars ASSUME=1.0	× 442332	Probability capsule recontaminated if bad seals are present ALLOC =; EST =
× 432	Probability capsule ejecta is contaminated when it reaches Mars ALLOC=; EST=	+ 44234	Probability of recontamination due to micrometeoric punc- ture of biological barrier
+44	Violation modes associated with impact or landing of an		ALLOC =; EST =
	entry capsule ALLOC =; EST =	=442341	Probable number of micrometeoric punctures ALLOC=; EST=;
= 441	Probability of capsule contacting Mars ASSUME = 1.0	× 442342	Probability that a viable terrestrial microorganism enters • puncture hole in the biological barrier
× 442	Probability of capsule being contaminated when contact- ing Mars ALLOC=; EST=	× 442343	ALLOC =; EST = Probability that such organisms would travel from the
=4421	Probability of failure of heat sterilization ALLOC =; EST =		biological barrier to the capsule ALLOC=; EST=
+ 4422	Probability of recontamination occurring and remaining undiscovered prior to launch ALLOC=; EST=	+ 4424	Probability of recontamination of the entry capsule after the removal of the biological barrier ALLOC=; EST=
=44221	Probability of undiscovered recontamination due to poor handling ALLOC=; EST=	= 44241	Probability that particles surrounding the planetary ve- hicle are not sterile ALLOC=; EST=
+ 44222	Probability of failure of "sterile insertion" techniques (if used) ALLOC=; EST=	= 442411	Number of particles surrounding planetary vehicle which are not sterile initially ALLOC=; EST=

×442412	Probability microorganisms on such particles are not killed in flight ALLOC=; EST=	×4424126	Probability remaining microorganisms not killed by vacuum ASSUME=1.0
=4424121	Probability microorganisms not killed by other means than shown below ALLOC=; EST=	× 44242	Probability of unsterile particles contaminating capsule ALLOC=; EST=
× 4424122	Probability remaining microorganisms not killed by "die off" ALLOC=; EST=	=442421	Probability unsterile particles impinge on capsule ALLOC=; EST=
× 4424123	Probability microorganisms not killed when dislodged ALLOC=; EST=	× 442422	Probability impinging unsterile particles stick to the capsule ALLOC=; EST=
× 4424124	Probability remaining microorganisms not killed by UV radiation ALLOC=; EST=	• III. Violation probability resulting from all violation modes associated with planetary vehicle No. 2 ALLOC=; EST=	
×4424125	Probability remaining microorganisms not killed by other solar radiation ALLOC=; EST=	This submod	lel probability is similar to that for planetary vehicle No. 1, reding Subsection II.

References

- 1. Sagan, Carl, and Coleman, Sidney, "Spacecraft Sterilization Standards and Contamination of Mars," Astronautics and Aeronautics, May 1965.
- 2. A Note on COSPAR Resolution 26.5, NASA Position Paper COSPAR, NASA Headquarters, May 1966.
- 3. Craven, C. W., *Planetary Quarantine Plan*, *Voyager Project*, Jet Propulsion Laboratory, March 15, 1966 (1st Rev., October 15, 1966).

JPL TECHNICAL MEMORANDUM 33-252