STUDY ON THEORY AND APPLICABILITY OF LASER TECHNIQUES FOR MEASURING ATMOSPHERIC PARAMETERS

APPENDIX 1

OF

SECOND QUARTERLY REPORT

CONTRACT NAS 12-540 OCTOBER 1967

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ELECTRONICS RESEARCH CENTER CAMBRIDGE, MASSACHUSETTS

PREPARED BY

J. Pressman

- T. Wentink
- C. Schuler

GCA CORPORATION GCA TECHNOLOGY DIVISION BEDFORD, MASSACHUSETTS

	s N08-23184
GPO PRICE \$	
CFSTI PRICE(S) \$ Hard copy (HC)	Q (PAGES) (CODE) (C
Microfiche (MF)6_5	

NCO

00-04

ff 653 July 65

APPENDIX I

COMPILATION OF KNOWN FRANCK-CONDON FACTORS AND r-CENTROIDS

The following table lists a compilation * of sources of $q_{v'v''}$ and $\bar{r}_{v'v''}$ matrices. This is PRELIMINARY and will be revised for the final report under Contract No. NAS12-540 in early 1968. <u>Readers are requested</u> to report any errors or omissions, suggestions to improve utility, and particularly any new references or unpublished but retrievable new results.

In the tables, we list references to the original arrays for approximately 50 diatomic molecules and in some cases additionally theit ions or isotopic modifications, and some 165 separate band systems. The matrix size (extent in maximum v' and v" covered) is given, whether it is based on the Morse or RKR (more realistic, tabular) potential assumption, and if the known calculation included an equivalent r-centroid array. The $q_{v'v''}$ and/or $\bar{r}_{v'v''}$ may not be published but are listed if they are retrievable.

We have refrained from judgements as to the best array, although we intend this later. In general, the largest $q_{v'v''}$ matrix size, especially if accompanied by a $\overline{r}_{v'v''}$ matrix, is a indication that modern large computers have been used and also is fairly recent and so probably is a best choice. This is particularly true if an RKR potential well was used. An important exception, based on our experience, is Reference F-5 for NO(γ); Reference W-7 is recommended instead.

By T. Wentink, Jr. and E. D. Schultz.

The 96 references pertaining to this Appendix and following Table 1 have been typed by an IBM printer directly from IBM cards. This approach was chosen to facilitate present and future editing, and subsequent printings of an anticipated expanded reference list.

KEY TO TABLE 1

- a: Includes some modification of potential such as Morse-Pekeris.
- b: Rydberg-Klein-Rees or alternative experimentally determined potential.
- c: Matrix size given means maximum value of v' and v"; e.g., 4 x 9 covers v' = 0 through 4 and v" = 0 through 9. In many publications, the arrays are not complete, and often $\sum_{v''} q_{v'v''}$ or $\sum_{v'} q_{v'v''}$ are less than unity. 0 x 0 means only v' = 0, v" = 0 data given.
- d: () indicates unpublished data but usually available on request.
- e: [] indicates reference for potentials used in calculation of RKR arrays.
- f: N-11 quoted as unpublished in Reference N-10.
- g: Data of Reference S-8 for D-A of MgO are applicable to a good approximation to C-A since the vibrational constants of C and D are so similar.

h: $q_{y'y''}$ not given explicitly.

DR DIATOMIC MOLECULES RKR Potential ^b	$\begin{array}{ccc} q_{v'v''} & r_{v'v''} & \text{Reference} \\ \text{ice} & (\text{Note c, d}) & (\text{Note c}) \\ \end{array} $	9 x 9 9 x 9 S-6 [S-6]								N-10 ^f						
ROIDS FOR	Referenc	N - 1	H-1 N-2	H-1 N-2	M-5	S-4	W - 5	P-1	H-1 M 2	N (11-N)	H-1	N - 2 N - N	S -4	H-1 N-2	S -4	
RS AND r-CENT	rv'' (Note c,d)				(4 x 8)	(3 x 5)	(6 x))	3 x 3					(4 x 10)		(4 x 15)	
-CUNDUN FACTO	q _{v'v"} (Note c,d)	7 x 7	0 x 0 2 x 3	0 × 0 2 × 2	4 x 8	(3 x 5)	4 x 9	3 x 3	0 × 0	+ (;)	0 × 0	v v v v	(4 x 10)	0 x 0 4 x 8	(4 x 15)	
tion	Lower State	x 2 ² +	$x \frac{3}{\sum} g$	A 1	$_{\rm X}$ 1	x 1_{Σ}	$_{\rm X}$ $^{\rm 1}_{\Sigma}$	a 3 <u>∏</u>	X $^{3}_{\Pi}$		x ² ² +		-	x ² ²		
Transi	Upper State	A 22+	A $\frac{3}{2}$ u	B 1 ℃+	A 1	A]	A 1_{\parallel}	ր 3 ²⁺	A ³ .[A ² ∏i			B $^{2}\Sigma^{+}$,
	System Name	Green							Violet		Alpha			Beta		
	10 lecu le	A.,0	$^{B}_{2}$	ВН	ΒC ℓ	BBr	BF		BN		BO					

	<pre>% Potential^b</pre>	rv'v" Reference Note c,d) (Note e)				(8 × 15) W-4 [S-2]	(9 x 13) S-1 [S-2,	J-1] 5 x 8 J-1 [S-2, R-2]		2 x 16) W-5 [R-1]
	RKF	q _{v'v} " (Note c,d) (N				8 × 15	9 x 13 (5 x 8		2 x 16 (
		Reference	0-5 0-7 (N-11) N-10 S-4	(N-11) N-10 D-1 N-3 O-7	(N-11) N-10	F-1 H-2 N-2 N-13 N-21	0-1 S-1	J-1	H-1 N-13	H-1
<pre>1 (continued)</pre>	rse Potential ⁶	r _{v'v"} (Note c,d)	(2) (10 x 5)	(?) 4 x 4	(2)	4 × 4	(9 x 13)	5 x 8		
. LABLE	Moi	q _{v'v"} (Note c,d)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(;) (;) (;) (;)	(¿)	7 x 7 3 x 6 14 x 14 4 x 5 13 x 13 4 x 4	5 x 9 9 x 13	5 x 8	6 x 6 4 x 13	10 x 8
	ansition	er Lower ce State	. x 1.	× 1 ^{2,} × 1 ^{2,} + + +	-+ A 1 1	8 X′ 3 8 u			3 ₂ x 3_	r x, 3 g x, 3
	Tra	n Name Uppe Stat	A ¹ ,	A 1 green B 1	ination B ¹ ₂	an A 3.			k-Ramsæy A' 3	erzberg B ³
		olecule Syster	BaO	ŀeO Blue-	(Comb Band	C_2 Sw			Balli	Fox-H.

			2 0 			3			q
Molecule	System Name	Upper State	Lower State	q _{v'v"} (Note c,d)	rote c,d)	Reference	$\frac{q_{v'v''}}{(Note c,d)}$	$\frac{\mathbf{r}_{v,v,w}}{\mathbf{r}_{v,v,w}}$ (Note c,d)	Reference (Note c)
c2	Fox-Herzberg (continued)	ు గ బ	x, 3 _{II}	8 x 8 4 x 13 4 x 8	∞ 7	N - 2 N - 13 J - 1	4 x 8	4 8	J-1 J-13.
	Phillips	b ¹	x 2 8 2 1 +	8 x 6 6 x 10 6 5 10		H-1 N-2	(10 × 10)	(10 x 10)	R-2
				0 x 9 12 x 9 9 x 10		CI-N 1-0 1-S	9 × 10		S-1 [S-1]
	Deslandres- d'Azambuja	c L C	b 1 u	с 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		H-1 N-2 N-13	3 × 11		W-5 [R-1]
	Mulliken	$d \frac{1}{d} u$	× 1 %+	4 8 × × 5 × α 7 0		H-1 N-2 N-13	(2)	(2)	S-3 [R-1]
	Freymark	e 1 8 4	$b \prod_{u}^{1}$	6 x 6 5 x 8		H-1 N-13	3 x 13		W-S [R-1]
CH and CD	4300Å	A ² Δ	X ²	6 × 7 2 × 2		C-1 H-1			
	3900Å	B 2Σ-	x 2 _{II}	2 x 3 6 x 7	2 × 4	P - 1 C - 1			
	3143Å	c ² ²⁺	X ² .	3 x 2 0 x 4 (3 x 5)	(3 × 5)	H-1 H-1 S-4			
cH ⁺		A 1	$_{\rm X}$ $^{1_{\Sigma}}$ +	2 x 2		N-3, N-11			

TABLE 1 (continued)

		Tran	sition		Morse Potentis	11 ^a	T	KK Potential ^b	
Molecule	System Name	Upper State	Lower State	q _{v'v} " (Note c,d)	r _{v'v} " (Note c,d)	Reference	q _{v'v} " (Note c,d)	$r_{v'v''}$ (Note c,d)	Reference (Note c)
CF		A 2Σ ⁺	x ²	2 x 13	(2 x 13)	W-3			
		в ² +	x ²	2 x 7	(2 × 7)	W-3			
$C\ell_2$		A 3.	$\begin{array}{c} X & 1 \\ X & 2 \\ 2 \\ B \\ B \\ B \end{array}$	0 × 0		H-1			
CN	Red	A ² II.	x ² ² ⁴	6 x 6		N-1			
		гĦ		80 0 2 0 2 0		H-1 ~ ~ ~			
				9 X 0 19 X 18		N-4			
				15 x 18		S-1	18 × 18	(¿)	S-1 [F-6]
				8 x 8	10 . 12	W-1			
					CT X 01				
	Violet	$_{\rm B}$ 2 ⁺	$_{\rm X}$ $^{2}_{\Sigma}$ +	3 x 3		F-1			
				2 x 2		F-2			
				8 x 6		H-1			
						J-2			
				3 x 3		N-2			
				19 x 18 2	, ,	N-4			
				лх J 15 х 18	л Х С	N-21 S-1	18 x 18	(3)	S-1 [F-6]
		- - -	+ 	10 x 8		H-1			
00	Fourth Booitin	A	V V	7 x 7	7 x 7	J-3			
	LOSTLIVE			18 x 24		N-5			
				13 x 7		0-1			
				(17 x 24)	(17 x 24)	S - 3	(17 x 24)	(17 x 24)	S-3
	Hopfield-	$^{\rm B}$ $^{\rm 1}\Sigma^+$	$_{\rm X}$ $^{1}\Sigma^{+}$						
	bırge								
'	Angstrom	B $^{1}\Sigma^{+}$	A 1	1 x 6		N-3			
	I			11 x 13		0-1			

TABLE 1 (continued)

		Tran	sition		Morse Potenti	al ^a		RKR Potnetial	q
Molecule	System Name	Upper State	Lower State	q _{v'v"} (Note c,d)	$r_{v'v''}$ (Note c,d)	Reference	q _{v'v"} (Note c,d)	$r_{v'v''}$ (Note c,d)	Reference (Note e)
CO (con'd)	Hopfield- Birge	$c \frac{1}{\Sigma_{1}} +$	X 1 +++++++++++++++++++++++++++++++++++						
	Herzberg	$^{\rm B}$ $^{\rm L+}$	A 1						
	Cameron	$a \frac{3}{11}$	$X ^{1}\Sigma^{+}$	9 x 6		H-1			
				6 x 6 7 x 24		J-7 N-5			
	Hopfield- Birg e a	a, ³ ∑+	$_{\rm X}$ $^{1}_{\Sigma^{+}}$	8 x 8 10 x 24 (?)		H-J N-5 N-11) N-10			
0.4	Asundi	a,32+	a 3 ₁₁	10 x 8 12 x 2		H-1 J-7	9 x 10	9 x 10	W-5 []
	Third- Positive	b ³ Σ+	а 3 _П	1 × 7 10 × 13		N-3 0-1			
	Hopfield- Birge ⁻ b	b $^{3}\Sigma^{+}$	x 1_{Σ^+}	1 x 24		N - 5			
	Triplet	e C P	а 3 _П	10 x 15	10 x 15	W-5			
+00	Comet-tail	A $^{2}_{\Pi_{i}}$	$X^{2}\Sigma^{+}$	8 x 8 8 x 7 10 x 13	10 × 13	H-1 J-7 N-6			
	First- Negative	B 2 ⁺	$x^{2}\Sigma^{+}$	6 x 6 10 x 13 10 x 13	10 × 13	H - 1 N - 5 N - 6			
	Baldet- Johnson	$_{\rm B}$ 2 $_{\Sigma}$ +	A 2 ₁₁	6 x 6 10 x 10	10 × 10	H-1 N-6			
co+co		$^{\rm X}$ $^{2}_{\Sigma}$	$\frac{1}{X}$ 1_{Σ} +	(?) 10 x 0		(N-11) N-10 W-2			

TABLE 1 (continued)

.

.

•

I.

		Tra	ansition		Morse Poter	ntial ^a		RKR Porenti	q ¹
Molecule	System Name	Upper State	Lower State	$\frac{q_{v'v''}}{(Note c,d)}$	r _{v''v} " (Note c,d)	Reference	q _{v'v"} (Note c,d)	$\frac{r_{v'v''}}{(\text{Note } c, d)}$	Reference (Note e)
C0 ⁺ → C0		A ² T	x ¹ ² +	10 x 10		W- 2			
(Co n 'd)		B $^{2}\Sigma^{+}$	X 1 $^{\Sigma^{+}}$	10 x 10		W- 2			
СР	(like CN-red) A $^{2}\mathrm{T}_{i}$	$X^{2\Sigma^{+}}$	5 x 5	5 x 5	S-4			
	(like CN-viole	t)B $^{2}\Sigma^{+}$	$_{\rm X}$ $^{2}\Sigma^{+}$	5 x 10	5 x 10	S4			
		B $^{2}\Sigma^{+}$	A ² _{II}	5 x 5	5 x 5	S-4			
CS		A 1_{Π}	$x 1_{\Sigma^{+}}$	8 x 8	8 x 8	F-7			
СаН	6946Å	A $^{2}\mathrm{II}$	$_{\rm X}$ $^{2}\Sigma$	3 x 3		2-0			
		B ?	x ² 2	3 x 4	3 x 4	P-5			
0 8 0 85	Second- Infrared	2 $^{1}\Sigma$	(X) ¹ ²	6 x 6 11 x 9		0-7 0-5			
CrO		A ?	X 5	6 x 6	6 x 6	M-1			
СsН		A 1_{Σ}^{+}	$_{\rm X}$ $^{1}\Sigma^{+}$	0 × 0		H-1			
D ₂ (see 1	H ₂)								
GaI		?)A ³ To	$^{\rm X}$ $^{1\Sigma+}$	(¿)		(N-11) N-10			
H ₂	Lyman	B $^{1}\Sigma^{+}$ u	X $^{1}{}_{\Sigma}$ $^{+}$	10 x 8 14 x 14 13 x 14		H-1 H-2 N-17	36 x 14 20 x 0	0 x 0 20 x 0	S-7 [S-7] G-2 [N-23]
Ð				10 x 8		H-1			
НТ				10 x 8		H-1			
\mathbf{D}_2				10 x 8 14 x 14		H - 1 H-2			

						q		4	
		Tran	sition	Mon	rse Potential	a	RKR	Potential ^D	
Molecule	System Name	Upper State	Lower State	q _{v'v"} (Note c,d)	r _{v'v"} (Note c,d)	Reference	q _v ,'," (Note c,d)	^r v'v" (Note c,d)	Reference (Note e)
H ₂		$^{B'1\Sigma_{u}^{+}}$	x ¹ ²⁺	10 x 7		H-1	9 x 14	0 × 0	S-7[S-7]
ЯН)	10 x 7		H - 1.			
D_2				10 x 7		H-1			
H ₂	Werner	$^{\rm L}_{\rm u}$	X $^{1}\Sigma^{+}_{S}$	10 x 6		Н-1	14 x 14	0 × 0	S-7[S-7]
CH)	10 x 6		H-1	0 x 71	0 X 71	G-2[N-23]
НТ				10 x 6		H-1			
\mathbf{D}_2				10 x 6		Н-1			
Н ₂		${}^{\mathrm{D}}\mathrm{D}_{\mathrm{II}}^{\mathrm{L}}$	X $^{1}\Sigma^{+}_{g}$	10 x 5		Н-1	15 x 14	0 × 0	S-7 [S-7]
0H 86)	10 x 5		H-1			
\mathbf{D}_2				10 x 5		H-1			
H ₂		$E I_{\Sigma}^{1}$	B $^{1}\Sigma^{+}$				9 x 36	0 × 0	S-7 [S-7]
		$G^{1}\Sigma^{+}_{8}(1)$	1) $B_{\Sigma_u^+}$				13 x 36	0 × 0	S-7 [S-7]
		$G \frac{1_{\Sigma}+(2)}{8}$	2)B ¹ 2 ⁺ u				20 x 36	0 × 0	S-7 [S-7]
		I I B B	$\frac{1}{B}$ $\frac{1}{\Sigma}$				14 x 36	0 × 0	S-7 [S-7]
		d ³ Tu	a 3 ₂ + 8				17 x 18	0 × 0	S-7 [S-7]
		$_{\rm h} \frac{3_{\Sigma^+}}{8}$	c 3 _T				18 x 20	0 × 0	S-7 [S-7]
		k ³ Tu u	a 3 ₂ +				19 x 18	0 × 0	S-7 [S-7]

İ.

l

		\mathbf{T}_{1}	ransition	Mor	se Potential	đ	RKR	Potential ^b	
$ \begin{split} H_2^{-1} H_1^{-1} & X_1^{-2} X_1^{-1} X_1^{-1} X_1^{-1} & (1) & N+11 \\ T_2 & B_1^{-1} X_1^{-1} X_1^{-1} & Grephs & N+18 \\ T_2 & B_1^{-1} X_1^{-1} X_1^{-1} & Grephs & N+18 \\ KH (and KD) & A_1^{-1} X_1^{-1} X_1^{-1} & 0 \times 0 & H+1 \\ L_2 & A_1^{-1} X_1^{-1} X_1^{-1} & 0 \times 0 & H+1 \\ Li & M_1 & X_2^{-1} X_1^{-1} & 0 \times 0 & H+1 \\ Li & M_1 & X_2^{-1} X_2^{-1} & 0 \times 0 & H+1 \\ Li & M_2 & X_1^{-1} X_1^{-1} & 0 \times 0 & H+1 \\ Li & A_1^{-1} X_2^{-1} X_2^{-1} & 8 \times 8 & 0 -5 \\ M_2 & X_2^{-1} X_2^{-1} & 2 \times 2 & 2 \times 2 & H+1 \\ Li & A_1^{-1} X_2^{-1} X_2^{-1} & 2 \times 2 & 0 -5 \\ M_2 & A_1^{-1} X_2^{-1} X_2^{-1} & (N+1) & 0 \\ K_2 & M_1 & X_2^{-1} & (2 \times 3) & (N+1) \\ M_2 & B_1^{-1} X_1^{-1} & (2 \times 3) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_2^{-1} & (3 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_1^{-1} & (2 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_1^{-1} & (2 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_1^{-1} & (2 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_1^{-1} & (2 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_1^{-1} & (2 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_2^{-1} & (3 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_2^{-1} & (3 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_2^{-1} & (3 \times 5) & (2 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_2^{-1} & (3 \times 5) & (3 \times 5) & 0 -5 \\ M_2 & A_1^{-1} X_2^{-1} & (3 \times 4) & (3 \times 4) & Note g \\ M_2 & A_1^{-1} & (3 \times 4) & Note g \\ \end{array}$	Molecule System 1	Name Upp. Stat	er Lower te State	^q ν'ν" (Note c,d)	r _v ,v" (Note c,d)	Reference	q _v r _v " (Note c,d)	$r_{v'v''}$ (Note c,d)	Reference (Note e)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2^+ \rightarrow H_2$	x ² 2	α α α α α α	(2)		N-11			
Kit (and KD) A L^{2} X L^{2} 0 × 0 H-1 Li2 A L^{2} X L^{2} 0 × 0 H-1 Li4 (and LiD) A L^{2} x L^{2} 0 × 0 H-1 Li4 (and LiD) A L^{2} x L^{2} 0 × 0 H-1 Lado Red A T_{1} x L^{2} 7 × 7 0 -5 MeH A T_{1} x L^{2} 2 × 2 8 × 8 0 -5 MeH A T_{1} x L^{2} 2 × 2 0 -5 0 -5 MeH B L_{2} $X^{2}L^{2}$ 2 × 2 0 -5 0 -5 0 -7 MeO B L_{2} $X^{2}L^{2}$ 2 × 2 0 -6 0 -7 0 -5 MeO B L_{2} $X^{2}L^{2}$ $Z^{2}S$ $Z^{2}S$ $Z^{2}S$ 0 -6 MeO B L_{2} $X^{2}L^{2}$ $Z^{2}S$ $Z^{2}S$ 0 -6 0 -7 B L	I2	В Ч	$_{ou}^{I+} \times _{\Sigma_{g}}^{I+}$	Graphs		N - 18			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	KH (and KD)	A 1_{Σ}	$+$ x 1_{Σ}^{1}	0 × 0		H-1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li ₂	A ¹ ₂	$\frac{1}{u} \times \frac{1}{\Sigma}$	0 × 0		H - 1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LiH (and LiD)	Α ¹ Σ	:+ x ¹ 2+	0 × 0		H-1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LaO Red	A ² T	Γ x ² Σ	7 x 7		0-5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B ² Σ	: x ² ₂	8 x 8		0-5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	МдН	A $^{2}_{\Pi}$	\mathbf{i} x 2_{Σ}^{+}	2 x 2		H-1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	. 2	(;) 4 x 4		01-N (11-N)			
Mg0 $B^{-1}\Sigma$ $x^{-1}\Sigma^{+}$ 7×7 N^{-1} $B \times 8$ $B \times 8$ 0.5 0.5 $B^{-1}\Sigma$ $A^{-1}\Pi$ 2×5 $0.6, 0.7$ $B^{-1}\Sigma$ $A^{-1}\Pi$ 7×7 $0.6, 0.7$ $A^{-1}\Pi$ $x^{-1}\Sigma^{+}$ (2×5) (2×5) $A^{-1}\Pi$ $X^{-1}\Sigma^{-}$ (2×5) (2×5) $D^{-1}\Delta$ $A^{-1}\Pi$ 3×5 3.44 $D^{-1}\Delta$ $A^{-1}\Pi$ 3×4 3×4 $C^{-1}\Sigma$ $A^{-1}\Pi$ (3×4) (3×4) $Note g$		C	$X = \sum_{i=1}^{11} \text{ or }$	(2)		(N-11) N-10			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO	$^{\rm B}$ $^{\rm 1\Sigma}$	X $^{1}\Sigma^{+}$	7 × 7		N_ 1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)			8 x 8		0-5			
B $^{1}\Sigma$ A $^{1}\Pi$ (2×5) (2×5) $5-4$ A $^{1}\Pi$ X $^{1}\Sigma^{+}$ (3×5) (3×5) $8-4$ A $^{1}\Pi$ X $^{1}\Sigma^{+}$ (4×5) (3×5) $5-4$ D $^{1}\Box$ A $^{1}\Pi$ 3×4 3×4 $5-4$ C $^{1}\Sigma$ A $^{1}\Pi$ (3×4) (3×4) Note g				3 x 3		0-6,0-7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$_{\rm B}$ $^{1}\Sigma$	A 1 _{II}	(2 x 5) 7 x 7	(2 x 5)	S-4 N-1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		▲ 1 ⁺⁺	ν 1 _ν +	(3×5)	(3×5)	S=4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		н 1	• • •	(c x +)	(C X +)	N-4			
$C^{-1}\Sigma$ A ⁻¹ II (3 x 4) (3 x 4) Note g		⊲_ 0	Ш- А	3 x 4	3 x 4	S - 8			
		C IN	H A	(3 x 4)	(3 x 4)	Note g			

TABLE 1 (continued)

. '

ļ

. 1

lecule S N2 V									
N ^N 2	ystem Name	Upper	Lower		rse Potentia rvv"	13	q _v , v"	<u>R Potential^b r_vrv"</u>	Reference
N2 Vé		ыате	огаге	(Note c, d)	(Note c,d)	Kererence	(Note c,d)	(Note c,d)	(Note e)
K	egard-	A $\frac{3}{\Sigma^{+}}$	$X \xrightarrow{1}{\Sigma}_{g}^{+}$	14 x 14		Н-2	13 x 20		B-1 [B-2]
	aplan	I	D	9 x 20 16 x 27 16 x 27		J-4 N÷5 N-7	9 × 20		Z-1 [Z-1]
		в <mark>3</mark> в	$_{X}^{X}$ $_{\Sigma}^{1\Sigma+}$		2 x 14	N-22	17 x 20		B-1 [B-2]
õ	gawa-Tanaka-	$^{B^{3}\Sigma_{u}}$	x ¹ 2+0				18 x 20		B-1 [B-2]
Ĩ	LIKINSON R-Afterglow	B ^{3Σ} u	$^{\rm B}$ $^{\rm 3}_{\rm B}$				18 x 17		B-3 [B-2]
Η̈́	anaka	c ³ Tu c	X $^{1}\Sigma^{+}_{g}$				4 x 20 4 x 15		B-1 [B-2] Z-1 [Z-1]
Ц. Н	irst-	^в ⊐⊥	A $3\Sigma_{\rm u}^{+}$	6 x 6		F-4,J-4	17 x 13		B-3 [B-2]
đ	ositive	D	i	4 x 6 14 x 14 12 x 12	5 × 5	F-8 H-2 J-5		2 x 4	J-8 [F-1]
				21 × 16	5 x 5	J-10 N-7			
				20 x 20 1 x 10	20 x 20 12 x 12	W-6 T-1	20 x 20 12 x 9	20 × 20	W-6 [Z-1] Z-1 [Z-1]
ų v	econd- ositive	c 3 _T 0	в В	4 x 17 4 x 6 4 x 12		B-3 F-4, J-4 .1-5	4 x 17 4 x 12		B-3 [B-2] Z-1 [Z-1]
Ϋ́	ourth- ositive	$D \frac{3}{\Sigma_u}$	B 3 B	4 x 21 Obsolete 0 x 10	(0 x10)	N-7 W-6 W-7			·
Ŭ	aydon Green	(¿)	(¿)	4 ¥ 5		N-14			

		Tran	sition	W	orse Potentia	al ^a	RK	R Potential ^b	
Molecule	System Name	Upper State	Lower State	q _v r _v " (Note c,d)	$r_{v'v''}$ (Note c,d)	Reference	q _v ,''' (Note c,d)	^r v'v" (Note c,d)	Reference (Note e)
N2 (con'd)	Lyman-Birge- Hopfield	a 1 ^{TT} g	$x \frac{1}{\Sigma_{g}^{+}}$	7 x 7 16 x 27	φ Χ	J-7 N-5, N-7 N-22	15 x 20 (6 x 21) 6 x 20	(6 x 21)	B-1[B-2] S-4[B-2] Z-1[Z-1]
	Birge- Hopfield #2	$^{\rm b}$ $^{\rm 1}_{\rm n}$	$_{\rm X}^{\rm 1}$ $_{\Sigma^+}^{\rm 1}$	5 x 27		N-5,(N-11)			
	Birge- Hopfield #1	b ¹ Σ ⁺ 1	× + 00 + 00 + 00 + 00 + 00 + 00 + 00 +	(15 x 22) 15 x 20	(15 x 22)	W-4, S-3 W-6			
	 Ogawa-Tanaka	_ w _	X _2%				6 x 20		B-1 [B-2]
	(or Wilkinso Mulliken)	n-w ^t ∆u	a t∏ 58				6 x 15		B-3 [B-2]
	9 8 9 8	a B B	a' ^I ∑ ⁻ u				5 x 19		B-3 [B-2]
	1 3 8 8 8 8	a, $l_{\Sigma_u}^{-1}$	${ m X}$ ${ m }_{\Sigma}^{1_{\Sigma}^{+}}$				19 x 20		B-1 [B-2]
^N 2+	Meinel	A $^{2}_{\Pi}$ u	X $^{2}{}^{\Sigma}_{B}$ +	6 x 6 5 x 21 5 x 5	5 × 5	F - 1 N - 7 N - 20			
	First- Negative	B 2 L	x 2 ² + 8	6 x 17 6 x 6 29 x 21 20 x 20	20 × 20	G-1 J-4 N-7 W-6			
	Second- Negative	$c^{2}\Sigma_{u}^{+}$	$x \frac{2}{2}$	10 x 21		N-5			
	Janin- d' Incan	${}^{\rm D}{}^{\rm 2}_{\rm II}$	A 2_{Π}^{2} u	11 x 5 11 x 9	11 x 9	N-5 N-8			

TABLE 1 (continued)

•

		Tran	sition	W	orse Potentia	la	R	KK Potential ^t	
Molecule	System Name	Upper State	Lower State	q _v r _v " (Note c,d)	r _v ry" (Note c,d)	Reference	q _v , v" (Note c,d)	$\frac{r_{v'v''}}{(Note c,d)}$	Reference (Note e)
$N_{2}^{+} \rightarrow N_{2}^{+}$		x ² Σ ⁺	x ¹ 2 ⁺	21 x 27		N- 5			
1		20	50	21 x 0		N-7			
		A ² 1	X $^{1}\Sigma_{c}^{+}$	5 x 27		N-5			
		ո 2 _չ +	ν 1 ₅ +	5 x 0		N-7			
		a n	< م	29 x 0		N-5 N-7			
		$c^{2}\Sigma_{u}^{+}$	$X \frac{1_{\Sigma^+}}{2}$	10 x 27		N-5			
		$D \frac{2_{II}}{g}$	$x \frac{1}{\Sigma^+}$	11 x 27		N-5			
NO	Gamna	A ² ²	х ² П	2 x 2		ሆ 1 ይ	70 . 01		
				6 x 6		J-4	05 x 71 0 x 10		[1-V] C-H
				8 x 10	8 x 10	K-1	2 x 10	(2 × 10)	W-7 [V-2]
				7×18		N- 1			יי ו י י
				15 x 23		N-12			
				11 × 13 12 × 20		0-1			
				1		110			
	Beta	B $^{2}_{\Pi}$	${\rm x}$ ${\rm ^2_{II}}$	2 x 12		J - 7	12 x 33		F-5 [V-1]
				10 x 9		K- 1			1
				6 x 18		N - 1			
				2 x 13		N-3			
				19 x 23		N - 12			
				15 x 15		0-1			
				31 x 23		0-2			
	(Beta prime)	$^{P}B^{D}_{ab}$	$_{\rm X}$ $^{2}_{\rm II}$	6 x 23		N-12			
	Delta	$^{\rm c}$ $^{2_{\rm II}}$	${\rm x}$ ${\rm 2_{T}}$	4 x 23		N - 12			
				6 x 6		0-3			
	Epsilon	D $^{2}\Sigma^{+}$	x $^{2}_{\mathrm{II}}$	11 x 23 6 x 6		N-12 0-3			

TABLE 1 (continued)

		Tran	sition	W	orse Potenti	al ^a	RK	8 Potential ^b	
olecule	System Name	Upper State	Lower State	q _{v'tv"} (Note c,d)	r _v r _v " (Note c,d)	Reference	q _{v'v"} (Note c,d)	r _v r _v " (Note c,d)	Reference (Note e)
O(cont [†] d)	Feast 1	$_{\rm D}$ $^{2}\Sigma^{+}$	A ² Σ ⁺	11 x 15		N-12			
	Gamma (prime)	$_{\rm E}$ $^{2}\Sigma^{+}$	x ²	5 x 23		N - 12			
	Feast 2	$_{\rm E}$ $^{2}\Sigma^{+}$	A $2\Sigma^+$	5 x ¹⁵		N - 12			
	Ogawa 1	$^{P}2_{ riangle}$	$_{\rm B}~^{2}_{\rm II}$	6 x 19		N-12			
	М	a 4_{Π}	x $^{2}_{\Pi}$	3 x 23		N-12			
	Ogawa 2	b ⁴ Σ	a_{Π}	6 x 7 3 x 3		C-1 N-12			
+0N		A 1_{Π}	$_{\rm X}$ $^{1}\Sigma^{+}$	(2)		(N-11) N-10			
				5 x 17 (20 x 20)	(20 x 20)	W-7 (S-4)			
0 ⁺ → N0		$x \frac{1}{\Sigma^+}$	${\rm x}^{-2}{ m m}$	$10 \times 0^{h^2}$		W-2, (N-10)			
		A $^{1}_{\Pi}$	x $^{2}_{\Pi}$	10 x 0 ^{h?}		W- 2, (N-10)			
NaH		A 1_{Σ}^{+}	x ¹ Σ^{+}	0 × 0		H-1			
0 ₂	IR Atmospheric	ca 1 ₀	x ³ Σ ₆	2 x 2		N-3			
I	Atmospheric	$b \frac{1}{\Sigma} + 0$	х ³ 2- 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		N-15 F-1 N-15			
	Noxon	ь ¹ 2+	a 1 g	3 x 5		N-15			
	Herzberg I Herzberg II	$A^{3}\Sigma^{+}$	$x \frac{3\Sigma}{2\Sigma}$	10 x 9 12 x 12 6 x 6		J-7 N-15 N-15	11 x 2		J-9 [J-9]
	ΠΤΤ <u>Συσ</u> λουνο ΤΤΤ	ົຕັ ເ	د ع ، - د			N_ 15			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Tran	sition	ίω	se Potential	a	17) d	Dutonial b	
$ \begin{array}{ccccc} 0^2 & \text{Schumann-} & B^3 \Sigma_{a}^{-1} & X^3 \Sigma_{b}^{-1} & 25 \times 15 & \text{F-1} & \text{fragments} \\ \text{(con1(d)} & \text{kups} & 14 \times 14 & \text{fr-2} & \text{fragments} \\ \text{(fragments} & 15 \times 2 & 1-7 & \text{fragments} & 1-6 & \text{fragments} \\ 15 \times 2 & 15 \times 2 & 1-7 & \text{fragments} & 1-6 & \text{fragments} \\ 15 \times 2 & 15 \times 2 & 1-7 & \text{fragments} & 1-6 & \text{fragments} \\ 15 \times 2 & 15 \times 0 & 15 \times 0 & 0-4 & \text{fragments} & 12, \text{ fragments} \\ \text{(driglow)} & a & b_{a} & b_{b} & 6 \times 5 & \text{N-15} & 0-4 & \text{fragments} & 12, \text{ fragments}	Molecule	System Name	Upper State	Lower State	$\frac{q_{v'v''}}{(Note c, d)}$	$\frac{r_v / v''}{(Note c, d)}$	Reference	qvrv" (Note c d)	r _{v'v} " (Note c,d)	Reference (Note e)
$\sum_{1,2,2\\21,2,21\\21,2,21\\21,221\\21,221\\21,221\\21,222\\21,25\\21,$	0 ₂ (Con'd)	Schumann- Runge	B $^{3}\Sigma_{u}^{-}$	х ³ 2-	25 x 15 14 x 14		F-1 H-2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					fragments 15 x 2		J-6 J-7	fragments		J-6 [J-11 12, R-2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					21 x 21 21 x 21 21 x 21		N-5 N-5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					21 X 21 15 X 0 21 :: 25	15 x 0	N-9 N-21			
$b_{2}^{+} \begin{array}{cccc} Broidar & A & 3x_{1}^{+} & b & 1x_{2}^{+} & 12 \times 3 \\ caydon & A & 2\pi_{1}^{-} & b & 2\pi_{2}^{-} & b & 12 \times 3 \\ second & A & 2\pi_{1}^{-} & X & 2\pi_{1}^{-} & 9 \times 9 \\ & & & & & & & & & & & & & & & & & &$		Chamberlain (Airglow)	D 3⊃ ⊔	a S g	6 x 5		0-4 N~15			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Broida- Gaydon	A 3_{Σ^+}	$b \frac{1}{\Sigma}$	12 x 3		N-15			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ ⁰ +	Second	A 2_{Π}^{2} u	x 2 _{II}	6 x 6		J-4			
First $b^{+} \Sigma_{g}^{-} = 4^{+}_{\Pi}$ 7×7 $20 \times 20 20 \times 20 W-6$ First $b^{+} \Sigma_{g}^{-} = 4^{+}_{\Pi}$ 7×7 10×10 $W-19$ Negative $b^{-} \Sigma_{g}^{-} = 4^{+}_{\Pi}$ 10×10 $W-19$ $\lambda^{-}_{\Pi} \times \lambda^{-}_{\pi} \Sigma_{g}^{-} = 10 \times 0 W-6$ $\lambda^{-}_{\Pi} \times \lambda^{-}_{\pi} \Sigma_{g}^{-} = 10 \times 0 W-11$ $b^{+} \Sigma_{g}^{-} \times \lambda^{-}_{g} = 0 \times 0 W-11$ $b^{+} \Sigma_{g}^{-} \times \lambda^{-}_{g} = 10 \times 0 W-1$ $a^{+}_{\Pi} \times \lambda^{-}_{\pi} \Sigma_{g}^{-} = 10 \times 0 W-2$ $a^{+}_{\Pi} \times \lambda^{-}_{\pi} \Sigma_{g}^{-} = 10 \times 0 W-1$		Negarive)	8 x 8 15 x 15		N-3 N-19			
First $b \ 4\Sigma^{-}_{g} a \ 4\Pi_{u} \ 7 \times 7 \ 3\Sigma^{-}_{g} b \ 4\Sigma^{-}_{g} a \ 4\Pi_{u} \ 10 \times 10 \ 3Z^{-}_{20} \ 20 \times 20 \ 3Z^{-}_{20} \ 20 \times 20 \ 3Z^{-}_{20} \ 20 \times 20 \ 3Z^{-}_{20} \ 3Z^{-$					20 x 20	12 x 12 20 x 20	N-22 W-6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		First Negative	$_{\rm b} 4_{\Sigma_{\rm g}}$	$a 4_{\Pi}$	7 x 7		J-7			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	5	10 x 10 20 x 20	20 × 20	N-19 W-6			
$A_{u}^{2} X_{g}^{3} Z_{g}^{-} Z_{0}^{(7)} W_{u}^{-11}$ $b_{u}^{4} Z_{g}^{-} X_{g}^{3} Z_{g}^{-} (2) W_{11}^{-2}$ $b_{u}^{4} Z_{g}^{-} X_{g}^{3} Z_{g}^{-} 10 \times 0 W_{11}$ $a_{1}^{4} X_{2}^{3} Z_{g}^{-} 15 \times 0 W_{11}$ W_{2}^{-2}	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array} \xrightarrow{0} 0_2$		x ² ^m	х ³ 2-	10 x 0 ·	07 07	W- 2			
$b \frac{4z^{-}}{g} \times \frac{3z^{-}}{g} = 10 \times 0$ w^{-2} w^{-11} $a \frac{4}{10} \times \frac{3z^{-}_{g}}{2z^{-}_{g}} = \frac{15 \times 0}{15 \times 0}$ w^{-2}			A 2 _{II}	х ³ 2- 8	(?) 20 x 0 (?)		N-11 W-2 N-11			
a $\prod_{n=1}^{4}$ X $3\Sigma_{g}^{-}$ 15 x 0 W-2			ь 4 2 8	х ³ 2- 8	10 x 0 (2)		W-2 W-11			
			a 4 u u	$\frac{3}{\Sigma_{g}}$	15 × 0		W-2			

				TABLE 1					
1		Tran	sition	Mor	se Potential	et		KR Potential ^b	
	System Name	Upper State	Lower State	q _{v'v"} (Note c,d)	r _{v''} " (Note c,d)	Reference	q v'v" (Note c,d)	$\frac{r_{v'v''}}{(Note c,d)}$	Reference (Note e)
1	112-1-1	2.+	2						
	VIOLET	A 2	X II	10 x 12	10 x 12	F-8			
				4 X 7 7 2 3		H-1 			
				4 X 4					
				4 X 4		N- 2			
				4 X 4		N-16			
				3 x 3	3 x 3	N-21			
		$_{\rm B}$ $^{2}\Sigma^{+}$	х ² П,	1 x 12	l x 12	F-8			
		B $^{2}\Sigma^{+}$	A $2\Sigma^{+}$	1 × 10	1 ~ 10	o F			
		-	l c			0 - J			
		c ² Σ ⁺	x ² ∏i	3 x 12	3 x 12	F-8			
		c ² Σ ⁺	A $2\Sigma^+$	3 × 10	3 x 10	F-8			
		A	$_{\rm X}$ $^{\rm 1_{\Sigma}+}$	0 × 0		H-1			
				5 x 8		N-2			
		D	\mathbf{x} $\mathbf{\Sigma}^{\mathbf{L}}$	0 × 0		Н-1			
				4 x 6		N-2			
		A 1_{Σ}^{+}	x ¹ z^+	0 × 0		н-1	۲ ک ۱۱	(11 + 5)	[/: 1/]/] 1
				(5 x 10)-h		G-1			0-14[0-14]
		$^{B}3\Sigma_{\tilde{u}}$	х ³ 2-	12 x 12	12 x 5	H-3			
		A $^{2}\Sigma^{+}$	x ² _{II}	3 x 3		N-3			
		$c^{-1}\Sigma$	x ¹ Σ^+	(¿)		M-3			
						•			

		Tran	sition	Mo	rse Potentia	a	RK	CR Potential ^b	
fo l e cu l e	System Name	Upper State	Lower State	q _{v'v''} (Note c,d)	$r_{v'v''}$ (Note c,d)	Reference	q _{v'v} " (Note c,d)	r _{v'v"} (Note c,d)	Reference (Note e)
SiF	Alpha	A ² Σ	x ² 1	3 x 8	(3 x 8)	W-5			
	Beta	B $^{2}\Sigma$	x $^{2}_{\Pi}$	3 x 10	(3 x 10)	W - 5			
SiN		$^{\rm B}$ $^{2\Sigma^{+}}$	$_{\rm X}$ $^{2}\Sigma^{+}$	5 x 10	(5 x 10)	W-5			
SiO		A $^{1}_{\Pi}$	$_{\rm X}$ $^{1}\Sigma^{+}$	10 x 10 ()		N-1 S-4			
Sc 0	Orange	A $^{2}_{\Pi}$	$_{\rm X}$ 4 $_{\Sigma}$	8 x 8		0-5			
	Blue-Green	$_{\rm B}$ $^{2}\Sigma$	x ⁴ ²	10 x 9		0-5			
$\mathbf{Sr0}$		A 1_{Σ}	x ¹ ²	6 x 6		N - 1			
TiO	Gamma (IR)	A $^3_{\triangle}$	х ³ п	6 x 6 5 x 5	5 x 5	₽-1, 0-6 ₽-2			
	Alpha (Blue- Green)	3 B or C]	пх 3 _П	5 x 6		0-6			
νο	Gamma (Yêllo Blue)	w- _A ² ∆	$^{2}_{\Delta}$	10 x 10 6 x 6 5 x 5		N-1 0-6 P-2			
О Д	Orange	A 2_{Π}	$_{\rm X}$ $^{2}\Sigma$	4 X 4		0-6			
		$^{\rm B}$ $^{2}\Sigma$	x ² ²	8 × 10 / * /		0-5 0-6			
Zr0	Gamma	A 3 ₀	$X \xrightarrow{3}{\supset}$	4 6 4 4 X X X X 7 6 4 4	4 6 4 6	0-0 N-24 S-9			
	Beta	$_{ m B}$ $_{ m II}$	x 3	6 x 6	6 x 6	N- 24			

				TABLE 1	(continued)				
		Tran	sition	Mo	rse Potentia	3	R	KR Potential ^b	
101ecule	System Name	Upper State	Lower State	q _{v'v"} (Note c,d)	r _v ,''' (Note c,d)	Reference	q _v ,','' (Note c,d)	$r_{v'v''}$ (Note c,d)	Reference (Note e)
ZrO con'd)	Alpha	c 3	X	5 x 6 6 x 6 7 4 6	3 x 4	N-24 0-6 S-5			
	A (b-a)	$f{b} egin{array}{c} 1 \ 1 \\ 0r \ 1 \end{pmatrix}_{A}$	a $^{1}\Sigma$ or $^{1} riangle$	6 x 6	6 x 6	N-24			
	B (d-c)	or $\begin{array}{c} 1 \\ 1^{\Sigma} \\ \Delta \end{array}$	c $^{1}\Sigma$ or $^{1}\Delta$	3 x 2	3 x 2	N-24			

REFERENCES FOR APPENDIX 1, TABLE 1.

<u>.</u>...

BENESCH, W., VANDERSLICE, J.T., TILFORD, S.G., AND WILKINSON, P.G. В1 ASTROPHYS. J., V.143, P.236 (1966). BENESCH, W., VANDERSLICE, J.T., TILFORD, S.G., AND WILKINSON, P.G. 82 ASTROPHYS. J., V.142, P.1227 (1965). BENESCH+W+,VANJERSLICE,J+T+,TILFORD,S+G+,AND WILKINSON,P+G+ 63 ASTROPHYS. J., V.144, P.408 (1966). 84 BATES,D. MON. NOT. ROY. ASTRON. SOC., V.112, P.614 (1952). C1 CHILDS, D.R. J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.4, P.283 (1964). DRAKE, U.W.F., TYTE, D.C., AND NICHOLLS, R.W. D1J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.7, P.639 (1967). F1 FRASER, P.A., JARMAIN, W.R., AND NICHOLLS, R.W. ASTROPHYS. J., V.119, P.286 (1954). F2 FRASER • P • A • PROC. PHYS. SUC. (LONDON), V.67, P.939 (1954). F3 FRASER, P.A. PROC. PHYS. SOC. (LONDON), V.66, P.1153 (1953). F4 FRASER, P.A. AND JARMAIN, W.R. PROC. PHYS. SOC. (LONDON), V.66 P.1145 (1953). FLINN, D.J., SPINDLER, R.J., FIFER, S., AND KELLY, M. FS J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.4, PP.271 (1964). F6 FALLON, R.J., VANDERSLICE, J.T., AND CLONEY, R.D. J. CHEM. PHYS., V.37, P.1097 (1962). F 7 FELENBOK,P. PROC. PHYS. SOC. (LONDON), V.86, P.676 (1965). F8 FELENBOK,P. ANN. DE ASTROPHYS., V.26, P.393 (1963). GAYDON, A.G. AND PEARSE, R.W.B. G1 PROC. ROY. SUC. (LONDON), V.173, P.37 (1939). GIEGER, J. AND TOPSCHOWSKY, M. ú2 Z. NATURFURSCH., V.21A, P.626 (1966).

- H1 HALMANN, M. AND LAULICHT, I. ASTROPHYS. J., SUPPL. SER., V.12, P.307 (1966).
- H2 HALMANN, H. AND LAULICHT, 1. J. CHEM. PHYS., V.44, P.2398 (1966).

. · ·

- H3 HERMAN, L. AND FELENBOK, P. J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.3, P.247 (1963).
- J1 JAIN, D.C. J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.4, P.427 (1964).
- J2 JARMAIN, W.R. AND FRASER, P.A. PROC. PHYS. SOC. (LONDON), V.66, P.1153 (1953).
- J3 JARMAIN, W.R., EBISUZAKI, R., AND NICHOLLS, R.W. CAN. J. PHYS., V.38, P.510 (1960).
- J4 JARMAIN, W.R., FRASER. P.A., AND NICHOLLS, R.W. ASTROPHYS. J., V.118, P.228 (1953).
- J5 JARMAIN, W.R. AND NICHOLLS, R.W. CAN. J. PHYS., V.32, P.201 (1954).
- J6 JARMAIN, W. R. CAN. J. PHYS., V.41, P.414, P.1926 (1963).
- J7 JARMAIN W R , FRASER P A , AND NICHOLLS R W ASTROPHYS J , V 122 P 55 (1955) •
- J8 JAMES, T.C. J. MOL. SPECTRY., V.20, P.77 (1966).
- J9 JARMAIN, W.R. AND NICHOLLS, R.W. PROC. PHYS. SOC. (LONDON), V.90, P.545 (1967).
- JIC JARMAIN, W.R. AND NICHOLLS, R.W. REP. NO. 20, UNIV. W. ONTARIO (1955).
- J11 JARMAIN, W.R. CAN. J. PHYS., V.38, P.217 (1960).
- J12 JARMAIN, W.R. SCI. REP. NO. 1, DEPT. PHYS., UNIV. W. ONTARIO (1961).
- J13 JAIN, D.C. AND SAH, P. CAN. J. PHYS., V.40, P.1269 (1962).
- J14 JAIN, D.C. AND SAHNI, R.C. PROC. PHYS. SOC. (LONDON), V.88, P.495 (1966).

K1 KIVEL, B., MAYER, H., AND BETHE, H. ANN. PHYS., V.2, P.57 (1957).

. · ·

- L1 LEARNER, R.C.M. PROC. ROY. SOC. (LONDON), V.269A, P.311 (1962).
- MI MURTHY,N.S. AND NAGARAJ,S. PROC. PHYS. SOC. (LONDON), V.84,P.827 (1964).
- M2 MURTHY,N.S.,SETTY, AND SUMATHI, INDIAN J. PHYS., V.38,P.428 (1964).
- M3 MCLEOD, JR., D. AND WELTNER, JR., W. J. PHYS. CHEM., V.70, P.3293 (1966).
- N1 NICHOLLS,R.W. J. RES. NATL. BUR. STD., (U.S.), V.66A,P.227 (1962).
- N2 NICHOLLS, R. W., FRASER, P.A., AND JARMAIN, W.R. COMBUST. FLAME, V.3, P.13 (1959).
- N3 NICHOLLS, R.W., FRASER, P.A., JARMAIN, W.R., AND MCEACHRAN, R.P. ASTRUPHYS. J., V.131, P.399 (1960).
- N4 NICHOLLS,R.W. J. RES. NATL. BUR. STD., (U.S.), V.68A,P.75 (1964).
- N5 NICHOLLS,R.W. J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.2,P.433 (1962).
- N6 NICHOLLS,R.W. CAN. J. PHYS., V.40,P.1772 (1962).
- N7 NICHOLLS,R•W. J. RES. NATL. BUR. STD., (U.S.), V.65A,P.451 (1961).
- N8 NICHOLLS,R.W. CAN. J. PHYS., V.40,P.523 (1962).
- N9 NICHOLLS,R•W• CAN• J• PHYS•, V•38,P•1705 (1960)•
- NIO NICHOLLS.R.W. J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.5,P.647 (1965).
- N11 NICHOLLS,R.W. UNPUBLISHED WORK, QUOTED BY NICHOLLS (N10).
- N12 NICHOLLS,R.W. J. RES. NATL. BUR. STD., (U.S.), V.68A,P.535 (1964).

N13 NICHOLLS,R.W. J. RES. NATL. BUR. STD., (U.S.), V.69A, P.397 (1965). N14 NICHOLLS, R.W. J. CHEM. PHYS., V.42, P.804 (1965). N15 NICHOLLS, R.W. J. RES. NATL. BUR. STD., (U.S.), V.69A, P.369 (1965). N16 NICHOLLS, R.W. IN SUPERSONIC FLOW, CHEMICAL PROCESSES, AND RADIATIVE TRANSFER, P.413, (ED. OLFE, D.B. AND ZACKKAY, V.), PERGAMON PRESS, N.Y. (1964). N17 NICHOLLS, R.W. ASTROPHYS. J., V.141, P.819 (1965). N18 NICHOLLS, R.W. J. CHEM. PHYS., V.38, P.1029 (1963). N19 NICHOLLS, R.W. CAN. J. PHYS., V.43, P.1390 (1965). N20 NICHOLLS,R.W. J. ATMOS. TERRES. PHYS., V.12, P.211 (1958). N21 NICHOLLS, R.W. PROC. PHYS. SOC. (LONDON), V.A69, P.741 (1956). N22 NICHOLLS, R.W. PROC. PHYS. SOC. (LONDON), V.A69, P.713 (1956). N23 NAMIOKA, T. J. CHEM. PHYS., V.43, P.1636 (1965). N24 NICHOLLS, R.W. AND TYTE, D.C. PROC. PHYS. SOC. (LONDON), V.91, P.489 (1967). 01 ORTENBERG, F.S. OPT. SPECTRY.(USSR), V.16, P.398 (1964). 02 ORY, H.A., GITTLEMAN, A.P., AND MADOX, J.P. ASTROPHYS. J., V.139, P.346 (1964). 03 ORY +H.A. J. CHEM. PHYS., V.40, P.562 (1964). 04 ORY .H.A. AND GITTLEMAN .A.P. ASTROPHYS. J., V.139, P.357 (1964).

.

05	URTENBERG+F+S+;GLASKO;V+b+;AND_DM1TR1EV;A+I+ SOVIET_ASTRON+-AJ; V+8;P+258 (1964)+
ÜБ	ORTENBERG+F•S• AND GLASKO,V•B• SOVIET ASTRONAJ, V•6,P•714 (1963)•
07	ORTENBERG,F.S. OPT. SPECTRY.(USSR), V.9,P.82 (1960).
Ρ1	PATHAK,A.N. AND MAHESHWARI,R.C. INDIAN J. PURE APPL. PHYS, V.5,P.138 (1967).
P2	PRASAD,5.5. PROC. PHYS. SOC. (LONDON), V.82,P.419 (1963).
РЗ	PRASAD,S.S. INDIAN J. PHYS., V.37,P.457 (1963).
Ρ4	PATCH,R.W. J. CHEM. PHYS., V.41,P.1881 (1964).
P5	PATHAK,A.N. AND SINGH,P.D. PROC. PHYS. SOC. (LONDON), V.87,P.1008 (1966).
R1	READ,S.M. AND VANDERSLICE,J.T. J. CHEM. PHYS., V.36,P.2366 (1962).
R2	REES;A.L.G. PROC. PHYS. SOC. (LONDON), V.59;P.998 (1947).
S1	SPINDLER,R.J. J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.5,P.165 (1965).
\$2	SINGH,N.L. AND JAIN,D.C. CAN. J. PHYS., V.40,P.520 (1962).
53	SPINDLER, R.J. UNPUBLISHED (1966).
<u>5</u> 4	SPINDLER,R.J. AND WENTINK,T.,JR. UNPUBLISHED (1967).
\$5	SINGH,P.D. AND PATHAK,A.N. PROC. PHYS. SOC. (LONDON), V.90,P.543 (1967).
56	SHARMA,A. J. QUANT. SPECTROSC. RADIAT. TRANSFER, V.7,P.289 (1967).
S7	SPINDLER,R.J. NASA REP. CR-72107, AVCO, LOWELL MASS. REP. AVSSD-0287-66-RR (1966).

..

,

- S8 SRIVASTARA, Y.P. AND MAHESHWARI, R.C. PROC. PHYS. SOC. (LONDON), V.90, P.1177 (1967).
- S9 SINGH,P.D. AND PATHAK,A.N. PRUC. PHYS. SOC. (LONDON), V.91,P.497 (1967).
- T1 TURNER, R.G. AND NICHOLLS, R.W. CAN. J. PHYS., V.32, P.475 (1954).
- V1 VANDERSLICE, J.T., MASON, E., MAISCH, W., AND LIPPINCOTT, E. J. CHEM. PHYS., V.31, P.738 (1959).
- V2 VANDERSLICE, J.T. J. CHEM. PHYS., V.37, P.384 (1962).
- wl wHYLER, A.A. ASTROPHYS. J., V.127, P.763 (1958).
- W2 WACKS, M.E. J. CHEM. PHYS., V.41, P.930 (1964).
- W3 WENTINK, T., JR. AND ISAACSON, L. J. CHEM. PHYS., V.46, P.603 (1967).
- W4 WENTINK, T., JR. UNPUBLISHED (1967).
- W5 WENTINK, T., JR., ISAACSON, L., MARRAM, E.P., AND SPINDLER, R.J. AVCO AVSSD-0105-67-RR, AFWL TR-67-30 (1967).
- W6 WENTINK, T., JR., ISAACSON, L., AND SPINDLER, R.J. AWFL TR-65-139 (1965).
- W7 WENTINK, T., JR., MARRAM, E.P., AND ISAACSON, L. AWFL TR-67-6 (1967).
- Z1 ZARE, R.N., LARSON, F.O., AND BERG, R.A. J. MOL. SPECTRY., V.15, P.117 (1965).