
PROPERTY OF U.S. GEOLOGICAL SURVEY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL LETTER NASA-72

GEOLOGIC INTERPRETATION OF INFRARED IMAGERY 

OF THE PEND OREILLE AREA, IDAHO

May 1968

Prepared by the U.S. Geological Survey for the 
National Aeronautics and Space Administration (NASA) 
under NASA Contract No. R-09-020-015, 
Task No. 160-75-01-44-10

MANNED SPACECRAFT CENTER
HOUSTONJEXAS

https://ntrs.nasa.gov/search.jsp?R=19680013937 2020-03-12T08:52:32+00:00Z



UNITED STATES

DEPARTMENT OF THE INTERIOR Interagency Report 

GEOLOGICAL SURVEY NASA-72
WASHINGTON. D.C. 20242 ^8 Y 1968

Mr. Robert Porter 
Acting Program Chief 
Earth Resources Survey 
Code SAR - NASA Headquarters 
Washington, D.C. 20546

Dear Bob:

Transmitted herewith is one copy of:

INTERAGENCY REPORT NASA-72

GEOLOGIC INTERPRETATION OF INFRARED IMAGERY OF THE 

PEND OREILLE AREA, IDAHO*

by

Jack E. Harrison**

The U.S. Geological Survey has released this report in open files. 

Copies are available for consultation in the Geological Survey 

libraries, 1033 GSA Building, Washington, D.C. 20242; Building 25, 

Federal Center, Denver, Colorado 80225; 345 Middlefield Road, 

Menlo Park, California 94025; and 601 East Cedar Avenue, Flagstaff, 

Arizona 86001.

Sincerely yours,

£M& William A. Fischer
Research Coordinator 
EROS Program

*Work performed under NASA Contract No. R-09-020-015, Task No.-160-75-01-44-10
**U.S 0 Geological Survey, Denver, Colorado



UNITED STATES 

DEPARTMENT OF THE INTERIOR 

GEOLOGICAL SURVEY

INTERAGENCY REPORT NASA-72

GEOLOGIC INTERPRETATION OF INFRARED IMAGERY OF THE 

PEND OREILLE AREA, IDAHO*

by
Jack E. Harrison** 

May 1968

Prepared by the Geological Survey
for the National Aeronautics and

Space Administration (NASA)

*Work performed under NASA Contract No. R-09-020-015, Task No. 160-75-01-44-10
*-*U 0 S. Geological Survey, Denver, Colorado



FORWARD - '-    

The infrared imagery described in this report was acquired by 

HRB Singer, Inc., on contract to the U. S. Geological Survey. It is 

a product of a Reconofax IV scanner imaging in the 3-5 micron portion 

of the infrared spectrum. Studies of the data were -conducted under 

the Geologic Applications Program of the NASA Earth Resources  Survey- 

Pro grain as Task No. l60-75-01-U^-10 entitled "Ground Truth .Investigations"
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Geologic Interpretation of Infrared Imagery, of the.Pend , « 

Oreille area, Idaho.

by , ... 

Jack E. Harrison .-    / i 

/ . ., Introduction

. : Infrared imagery covering an area about 7 miles wide,and 36 , 

miles long in the Lake Pend Oreille area, Idaho (Site. #110) (Fig. l) 

was collected on August 8, 1966 by HKB-Singer, Inc. under sub-contract 

to the U. S. Geological Survey. The image was recorded between 

2151 and 2202 MDT, about 1 1/2 hours after sunset, on the highest 

peaks, and was collected on Mission ta>7-23, Flight 1, using a , 

Reconofax IV instrument with no filter. . .

The imagery has been compared with l) geologic maps made by the 

writer (Harrison and Jobin, 19^5; unpublished map of the Elmira 

quadrangle) and by Allan B. Griggs (unpublished map of the eastern half 

of the Spokane 1° x 2° sheet) of the U. S. Geological Survey; 

2) vertical aerial black and white photographs taken in 19^6 under a 

contract to the Topographic Division of the U.. S. Geological Survey; 

and 3) oblique black and white aerial photographs of part of the area 

taken on September U,. 1933, by Miller Cowling of the Il6th Photo 

Section, Washington National Guard.



Geology and Geography

The area spanned by the infrared imagery (Fig. 2;) includes a 

variety of rock types (Fig. 3) and physiographic provinces (Fig. k). 

Most of the area is mantled either by moderately dense to dense 

evergreen forests or by scattered to dense brush; about a third of 

the land in the Purcell Trench has been cleared. Perhaps 5 percent 

of the area contains bedrock exposures, and about 25 percent^contains 

a thin cover of bedrock chips that are essentially In place over the 

bedrock from which they are being derived. :" '  .--.A,:

The area is underlain by a thick sequence of old metasedimeritary 

rocks (the Precambrian Belt Series) that has been intruded'by dioritic 

to gabbroic sills of Precambrian age, and by dioritic to granitic dikes, 

stocks, and a batholith of Cretaceous age. Cambrian-sedimentary H>. 

rocks are exposed in a few places south of Pend OreillerLakel' Glacial 

moraine and outwash fills most of the mountain valleys -and covers'some 

of the lowlands in the Purcell Trench. Glacial lake beds and wind 

blown sand and silt fill lowlands of the Purcell Trench'nqrth of J . . 

Pend Oreille Lake. - Recent alluvium occurs in the lower parts of . 

mountain streams, along the lake shore, and along the meandering : 

courses of streams in the Purcell Trench. . ... ,

The dominant structures of the region are faults. The Hope.Fault 

and its branches represent a crustal break that has about 8 miles of 

right lateral displacement and several thousand feet of vertical 

displacement (Harrison and Jobin, 1963, p. K28-K29). South of the

branching Hope Fault are block faults (Harrison and Jobin, 19^5;
/ 

Allan B. Griggs, written communication, 1966), of which only a few of

the major ones are shown on the geologic sketch map.
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FIGURE 2. INFRARED IMAGE, PEND OfTftil AfE* |i
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Imagery as Related to Ground Features ... ; 

The relative radiation intensity (tone) of various features 

identifiable on the image was determined by using the eye plus a 

reading glass as a crude densitometer and making mental adjustments 

for visible variations (light and dark vertical bands, Fig. 2) in 

reception (knob twiddling) during collection of the image. These 

observations are summarized in Table 1. Four supplemental observations 

are perhaps obvious but are listed here for completeness:

1. Features in the central part of the film strip show a brighter 

tone than similar features nearer the top and bottom edges of the strip.

2. Relative intensity is greater for a given linear feature as 

the feature approaches an attitude perpendicular to the flight line.

3- Relative intensity is greater for a given planar feature 

as the feature approaches an attitude perpendicular to the "line of 

sight" of the instrument.

k. The"double oblique" effect caused by the method of scan and 

imagery collection results in images that are difficult to work with. 

This effect adds further variables to a complicated problem, variables 

that would be eliminated or more simply dealt with in rectified images.



Table 1. Relative radiation intensity (tone) of various features 

identifiable on the infrared image.

Darkest 
(Coolest)

Brightest 
(Warmest)

Cleared land; recent (1-2 years old) gravel .roads; 
, power line cuts ' . .. j

Drainage lines in bottom of V-shaped valleys : "' 

Drainage lines and lower slopes of broad valleys' 

Deeper parts of large lake ' " ;

Paved roads approximately parallel to flight line; : : 
older gravel roads ...

Heavily timbered or brushy slopes and ridges

Outcrop, or near outcrop partly covered by thin 
rubbly colluvium

Non-vegetated blocky talus of quartzite and Siltite 

Paved roads approximately perpendicular to flight line 

Shallow streams, ponds, and lakes

Non-vegetated large (k - 6 ft on a side) blocks of 
granodiorite in a mass-wasting deposit



Observable direct relations of the image (Fig. 2) to geologic 

features (Fig. 3) are few. The drainage pattern is well displayed. 

Where the drainage is related to faults or contacts, these geologic 

features can be identified on the image, just as they ; can be on 

black and white aerial photographs. Bold bedrock outcrops are 

not readily distinguished from outcrops of similar rock that are ' , 

partly covered by timber, brush, or unconsolidated rocks. Broad   

areas of partly covered or bold bedrock outcrops are generally    

distinguishable in the mountainous regions by their1 relatively 

lighter tone, but this does not hold consistently for the bedrock 

knobs and hills that stick up through the unconsolidated rocks in 

the lowlands of the Purcell Trench. Differences among the many 

rock types generally are not distinguishable on the infrared image. 

Some exposures of talus and mass-wasting deposits that are not 

covered by brush or timber do show up as bright spots on the infrared 

image, and at least one of these warmer areas is of such intensity 

that it warrants further study.

One of the basic questions raised by the imagery is whether the 

irregular spots of high intensity thermal radiation shown on Packsaddle 

Mountain reflect a geothermal anomaly or are an effect peculiar to 

some factors of the surface geology. Therefore, the following few 

paragraphs will describe more fully rock types exposed on Packsaddle 

Mountain and closely related rock types elsewhere in the area.



Talus and other mass-wasting deposits are exposed, in7 many,parts 

of the area, but only a few deposits are large enough t.o, be mapped 

at the scale (1:62, 500) of the published maps, (see .HarrjL.spn and^Jobin, 

1965, for example). Three of these large areas of talus or mass-wasting 

deposits are within the view field on the image (cf. Figs. 2 and 3).   

one near Windy-Point, one near Granite, and a very large one around 

Packsaddle Mountain. The Windy Point and Granite deposits .are, mostly 

1-ft blocks and smaller cobbles of siliceous siltite and/or quartzite 

from the Burke and Revett Formations of the Belt Series. . .The .., 

Packsaddle Mountain deposit is mostly U-6 ft and smaller blocks of 

granodiorite forming a mass-wasting sheet over most of a Cretaceous, 

intrusive plug. Both the granite and Packsaddle Mountain depos,its may 

contain permanent ice in them because ice-cold springs flow from ,t,he 

deposits. One.such spring issues within a few 10 f s of £eet .of the 

top of Packsaddle Mountain. Rock streams are common i;n the mass-wasting 

deposit on Packsaddle Mountain, and many of them contain no timber in 

a heavily timbered area. The sliderock at Windy Point and Granite ,are 

dribbling down across the same bedrock unit from which the sliderock 

is forming. On Packsaddle Mountain granodiorite bedrock,crops out 

high on the mountain ridges and crest; the mass-wasting deposit has 

crept downhill and now covers most of the granodiorite as well as 

some of the Cambrian quartzite and limestone that form a resistant 

ledge rimming the mountain about 1000 feet below the crest (Fig. 6). 

A few of the rock streams have moved downhill far enough to choke the 

drainage below the outcrops of Cambrian rocks and form streaks of 

granodiorite blocks below the ledge.
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Talus at Windy Point shows on the infrared imagery as a 

lighter colored streak (Fig. 2), but it is not striking   perhaps 

because it is partly covered by timber and partly shaded from the 

infrared instrument by the sharp ridge that forms Windy Point. 

Light-colored near-vertical streaks down the steep cliffs in the 

area appear to correspond with streaks of sliderock.

The deposit at Granite is partly covered by moderately dense 

timber and is also partly shaded from the instrument view. It is 

not identifiable on the image.

The Packsaddle Mountain deposit shows irregular spots and 

streaks of the highest intensity recorded on the image (Fig. 2). 

An enlargement of the Packsaddle Mountain imagery is shown in 

Figure 5, and a black and white aerial oblique photo of approximately 

the same area is shown in Figure 6. The striking correspondence 

between the light colored areas on Packsaddle Mountain shown in 

both pictures is obvious. The light colored streaks are rock streams 

and other untimbered areas in the mass-wasting deposit. Even the 

small streams of granodiorite blocks that spill down across Cambrian 

and Belt rocks are identifiable on the infrared image. Of interest 

is the fact that many of the light spots on the conventional photo 

(Fig. 6) are accented by the light snow cover on them. Of further 

interest is the fact that the outcrops of granodiorite on top of 

Packsaddle Mountain and in the cirque wall, although light colored 

on the infrared image, do not approach the intensity of infrared 

emission of rubble of the same granodiorite.



OMWMJNI a»»nnN»>*iheu



H
SC

-2166-69



Conclusions and Recommendations

Stefan's law for emission of-radiant energy, is:
h

W = eeT

where W is the rate of emission, e is emissivity of the surface 

(measured from zero to unity), & is a constant, and T. is the Kelvin 

temperature (Sears, 19^7, p. 383)^ As applied to a given-rock type, 

e is larger for fragments than for whole slabs and & is a constant that 

can be ignored when comparing fragments of rock with a slab of the 

same rock to determine relative rates of emission. Thus, given equal 

surface temperature, the law explains the well known phenomena that 

fragments radiate their heat energy more quickly and cool faster than 

a slab of the same material.

. The writer's tentative conclusion is that the Packsaddle Mountain 

anomalies are not indicative of a geothermal anomaly. For this to be 

true, the T of the blocks at the time the imagery was made would have to 

be significantly higher than that of the outcrop. Assuming that the 

thermal conductivity of a given block is the same as the outcrop during 

the relatively short daily period of heating, then the total absorbed 

radiant energy for the blocks can be much greater per unit area as 

viewed on an image or photo because the blocks are being heated on two 

or more sides whereas the outcrop is being heated essentially on only 

one. Even though e for the blocks is unquestionably slightly greater 

than e for the outcrop and the heat loss more rapid in the blocks, the 

imagery may have been taken so soon after sunset that the blocks were



in a total heat energy state significantly higher than that of the 

outcrop. Because the rate of emissivity is a funetion : of the surface 

T to the fourth power, small differences in surface T could make 

significant differences in"brightness recorded on the infrared "image. 

The heated "dead" air in the spaces "between the blocks 'might ;al;So'; aid 

in maintaining.temperarily a higher T in the blocks.. , : : ::;!.,:;

A simple test of the theory is possible. If, the same area : 

can be reflbwn under the same approximate conditions but much'later 

after sundown, then Stefan's law requires that the blocks be 'cooler 

than the outcrop. A laboratory experiment on a small slab' and ' >    --.  

crushed pieces of the granodiorite could also be designed 'to  ".:  '"'  

examine the shape of the radiant energy decay curves as well a;s " 

to measure the absolute surface T of the samples following limited 

exposure to radiant energy. v !., >.; v

The ability to recognize a true geothermal anomaly on the-' 1 '   '-' ' 

imagery is important to geologic application of such data. The 

writer strongly recommends that one or both of the above tests be 

performed as an aid in clarifying geologic interpretation of- 

infrared Imagery * '    ' ..-     ' '' '
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