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STABILITY OF NONLINEAR PULSE SYSTEMS

(Article by A. Kh. Gelig, Leningrad State University imeni A. A.
Zhdanov Moscow, Doklady Akademii Nauk SSSR (Reports of the Academy
of Sciences USSR), Russian, Vol 178, No 4, 1968, pages 793--796]

In hisa er at the Third All-Union Conference on Auto-
matic Control Llj E. Jury singled out as one of the urgent
problems awaitin g 	^tmicsCD
of systems with width and pulse-frequency modulation [256 For-
mulated infra are sufficient frequency conditions for the sta-
bility an=ssipativity of systems of this type.

.: ?met us consider a nonlinear pulse system whose
mathematical description is reduced to the equations

I	 t

Q, ( t) = tt ( t) + -- I S [yti (t
j-10

o,	 (1)ecnx I a,, n I < Qt,
^^ (t) =

Ist, t sign o f n,(l) acax U1 	 At,

f Pti l X13 (,%) dX + 	 (1)

t i. n < t 
,'

 t i, n+1,	
(2)

`ti. n < t 	 tip n+1+

ti, n	 ti, n-i + T i, n,	 ti, o = 01	n := 1, 2, ..	 (3)
(z = 1,...,1;	 oi,n -= cri(ti,n-0)).

Key: 1. if
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Here the constants f10 and functions f i (t) represent
natural oscill at .ons of the linear part of the system; a 

i 

(t)
is a signal, at the input of the i-th pulse element ( PE i )
and 

q i
(t) a signal at its output.

The function s ip n (t) describes the shape of the pulse
produced by PE i at moment t i, n , and is assumed to be piece-
wise-continuous nonnegative given ti n < t < t i n + l and

equal to zero given t * 
ti p n, t ,> tin 1 . The nonnegative

constant Q i characterizes the value of the insensitivity
of PEi . The quantity T in may be a nonlinear function of
10- 

i n 
I , as well as a functional of Cr i(t) C33, the value

of Tip n in the latter case depending on the behavior of the
function Or i (t ) only given t < t i n .

 

It is assumed that
there exist positive constants -V*  V * such that

1/v»C1/Ti,n<:v'	 l; n=1,21...)^	 (4)

"+ 	 ti,^^ nn rippor and a lower limit.i. e. the pul se 1i" rsyuGit^f +acty Asa aw^r....

Formulas (2), (3) encompass all types of modulation with fi-
nite pulse duration described in L23: amplitude, width and
time (frequency and phase) modulation of the first and sec-
ond kind.

Let us define some characteristics of pulse elements*
Let 7' 

in 
be the pulse duration (measure of the set of val-

ues t E (tin ; ti, n .+13v for which si n ( t ) > 4

ti, n+i	 tt, n+1

Mt, n=.-;F 
4	

S St, n (t) dt,	 at, n =	 m	 S2 n (t) dt,
it n t	 it n t, n t

to n 	 t,n
ti t n-a

xt, n =	
Z	

S 0 ° ti t n) St, n (t) A m.t — inf Mi, n,
mot. A. n Q t y n I t	 ° n 1> At

fin

1.

i

2



4

^ {	 9Uj2'	 {	 max	 (.S{^ n (t) Ill  SUP x t. n,

^ ^{, nl >^{ t^[^{i n' fi t, n +11 	 ^ ^'t, n^ '^t

•	 at 
=10.,S

1 d S P 
at, n

t ► n	 t

•

if PEi produces s quare pulses of amplitude n i, then

evidently m in n	 cX is n = Mi w mi = cx i = Q i , whale the

characteristic R i coincides with the tr steepness t' of the
pulse element characteristic introduced in [230

It is assumed that the estimates

NI{< oo, 	m{>0	 (d=1, ... ► l),
	

(5)

occur, that functions f i (t) are absolutely continuous given
t > 0 and that there is fulfillment of the relations

	

f^ ( t )	L, t 0, oo),	ling /t ( t) =0	 (^ _ ^, ..	 l);	 (6)

	

p i f = const,	 -yij (t) e^ L, [0, oo ) n L2[0, oo)	 ( t , 1 -= 1, , .. , l); ` (7)

CO

Pia + Vii (t ) = 91i ( t) + I C^k)i 1 ( t — ^^^s),	 (8)
k-1

where the f unctiona gij (t) are absolutely continuous given
t > 09 with

00

gt1(t )	 L1 [ 0 , O°),	 I clk; I < oo,	 (9)
k=1

t '
kl = const > 0 9 1(t ) = 0 given t < 0, 1(t ) = 1 given t -> 00^ i s j

The latter requirement is due to the fact that the func-
tions T i j (t) may be discontinuous if the linear part of the

3



control system contains links with distributed parameters,

0*
Let us assume that functions ,p( (p) : ^	 (t) exp

(-- pt) dt are analytic given
the designations:

Ij	
0	

Ij

Re p > 0, and let us Introduce

4	 00	 00

r^ ==	 gli(+ 0)1 + S ( t i(t)! dt+ 	 cjk)i	 rt ^{i•^i	 8	 k^i

K and D are diagonal matrices with elements kl , ... , k t
and dl , . • ., d j respectively [See Note; r" (p) is a square
matrix with elements	 i j (p) ; R is a square matrix with
elements P ij.

CNoteD : The numbers	 i and dl will be described
infra.

Theorem, 1. Let the following; conditions be fulfilled:

1) relations (4)-(9) take place;

2) there exist positive constants 8 i such that
X i < 2/r i - a ry (i ' 1' . . . 9 z ) ;

3) if D i > 0, then	 i tea` i ! n > 0 ; if /-1 i = 02
x,01	 i

then the dependence of ?' i, n on O' i, n is such that

lim 0"i, n = 0 y

4) there exist positive constants d l , . • . , d 1 such
that the matrix DR is symmetric and nonnegative and given all
real 0 the matrix

Q((,))	 D,K + 0,5(Df  (i(o) + P` (iw)D)
	 (i -- F-1);

i



5) either det R, ^ 0 or the constants f io are such
that the system of equations

I
ft°--= ^I P jut (^	 ^,,.,,l)

is solvable relative to ul , • . • > u j •

Then the solution of system (1) possesses the following
properties:

4) r,
m (max (sup I ort ( t) ^) l -^ 0, Coe (X)

t	 00

ro	 (sup I h (t ) I + I ti I + slip I h (t) I + S ft (t)1 dt );	
(10)

t'Mt 
f>0(2)	

1>0	 0

2) lim aj,n = 0, ec4u A t — 0;
n-+o0

Keys:
1, where
2 if

3) if " i - n; hhen _^A_^  a will bg 
ft	

- su^.^'. that
t7'i(t itn ' 0 ) 1 c A i given all tit  > T*.

Condition 2) of Theorem 1 cannot be essentially relaxed
since there exists an example for which %' j = 2/ri and all
the rest of the conditions of Theorem 1 aarre satisfied, but
its conclusions are not fulfilled,

I

Theorem 1 encompasses critical cases where the charac-
teristic equation o:f the linear part of the system has not
more than I zero roots. Let us now consider a noncritical
case. In this case in equations (1) fio` P i j — 0 (i t j - 1,

,	 ... s Z ) and the following assertion occurs.

Theorem 29 Let in equations (l) and expressions (8).
( 10 ) fio .__. PiJ = 0 (it j = 1 0 •..,

 Z ) conditions 1) and
2) of Theorem 1 be fulfilled and let there exist positive con-

5
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stants dl, . o , , d z such that the matrix Q("))
tive given all real

Then	 lim 0- :L (t) : 0 (1 = 1,	 0 ) L	 and
t * cxs

is nonnega--

lim [max (sup 
I 
ut	 0,

r&O i	 t>0

2. Now let us consider the system of equati "n3

I

all M = ft (t) + A — ^ [Ytl (t —,%) + pti] 	A + *t
0

11 (t)	 J (t -- t t, n)i	 (12)

0,	 qG xr ''t (t t, n -- 0) = 0 0	 (^ 3)
sign yt (tt, n --- 0)1	 a^ x Tt ( fi t, n --- 0) + 0

( z = 1, , , ,), t),

Key: 1. if

Here Cr i , (t), fi( t ), fi0 	 const, 1' ij(t1), e ii -- constg tin
have the same sense as in equations (I), y i (t) are constant-
ly operating perturbations; CS (t) is the Dirac delta function
C43 and the moments t ipn are defined according to formula
(3), with Ta ,n > 1/V *.

Each function tp i (t) is piecewise continuous and is

the value on tY i (t) of some nonlinear operator A i .	 Op-
erators Ai are defined on piecewise continuous functions
and satisfy the following conditions:

1)	 V i (t -- 0) depends on the values of function,
p- i (-r	 only given 0 < T < t --- 0;

I
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2) (P i (t - 0) cr i (t ` 0) > 0 for those moments t giv-

en which cr i(t - 0) 	 C- 	 if', LJ it3, where	 i't) ,6 11
are nonnegative constants.

Equations (11)- (13) describe a nonlin ear pulse system
with	 pulse elements, which effect frequency modulation by
instantaneous ^)ulses [5D•

It is assumed that the functions Y i j (t) are continu-
ous rAven t > 0,	 belong to L210, oo ), and vheir Laplace
transforms X i j (p) are analytic given ate p > 0* with re-
spect to the functions f i (t) and J) i (t) we ghall assume
that they are continuous given t> 0 ands whatever may be

the sequence t i , t2, ... , which satisfies the condition
tn+ 1 - to > 11-y *, there is fulfillment of the relations

n

litri	 ,GJ ^t ^ )	 at	 11'tll 	 j i i ^lk^ ( < oo	 (Z	 l).
n-Ko n	 n-00 k-1

it can be seen from equations (11) that at {ILVLiIWAL t .a,k
the functions 0- i (t) undergo a jump by the quantity
-- ( y ii H- 0) '^ , i J ) A ^ ^ k, which, generally speaking, does

not tend to Zero given k -> oo , even if Q 	 -= LA i t — 7P i(t)
0 (1 - 1, • . • , L ) . Therefore instead of the problem of

stability as a whole, let us study the dissipativity of sys-
tem (1l)-(13)o

Theorem 3• Let system (11H 13)(13) satisfy the assumptions
made in^F"i ss action and let conditions 4) (given K - 0) and
5) of Theorem 1 be fulfilled. Then for the solution of sys-
tem (U - (l3) the estimate

O qT	 + V 
+T 
	

(14)
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is valid, where

I	 s	 t	 t

A I di max (Ai r A0, V =::; I N d, I (I'Y« (q° Q) I + I p l3 I )^
toot	 twat	 JPW1

1 0 IT	
d` o f	 T j aj (tjt k— 0) Ir N= 

ma
x  k,it f,k<	 t,k	 t

^^•^	 n<t;, k 4 T

'Where exists an example satisfying the conditions of
Theorem 3 for which an equality is realized in (14).

Let us assume that nonlinear operators Ai satisfy
the supplementary condition [See Note]: (p i (t) = 4 for those

t given which Cr i (t) C— I — © iftt A i 
t a. Then Q can be

put on the right--hand side of inequality (14) instead of
2,,d .

CNotea: This case takes place when insensitivity is
present in pulse elements.

The proof of the above-fortilil.laved tileoreras is ba oro"%A v n
the method of a priori integral estimates, which is used for
estimating a functional which is quadratic relative to
(T 1 , ... , O- Z ) ^ 1 , ... , ^ 1 . In the proof of Theorem 3, in
addition, the delta function is preliminarily replaced by a
delta-shaped sequence (del t taobrazna a osledovatellnostr),
and at the end of the cal"^cu"lat onsa tray;, 1`tion Is ma"Te-7o
the limits

It is interesting to note that the r,^0#-0,u.'A t s of this work
are finding use in the investigation of the dynamics of mathe-
matical models of neuron networks.

Submitted to press 27 March 1967•
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FIGURE 7

REMOVAL OF METHANOL FROM TEST VESSEL
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010URE 6

FIGURE 5 REMOVAL OF AEROZINE 50 FROM TEST VESSEL

BLOCK DIAGRAM or TtsT UNIT

Cleo" r""Ww"	 C
D ► ift"$	 Abs orbe n t	 o"Ism ino t 's, d

solvent solvent

Took Column	 Column	 Took

Pump
put"

k.

at
w uQuo FLUSH
W •
LE

total

•

Has
Cult

fit•	 Test	 odens r	
Gas

voweal •Left	 he	 of scr ubber
•	 WON PHASE FLUSH

0

MINUTES

FIGURE 8

IOOO	

REMOVAL OF N204 FROM TEST VESSEL
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