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1. Introduction

The general methods of solution of the basic equations of the linear
theory of thin shells may be classified into displacement, force and mixed
methods. The first method is well known and deals with equilibrium equa-
tions expressed in terms of displacements. The second and third methods
take various forms. In (1)(2) a system of equations for "complex forces"
is developed. In (3) the equations of the stress function method are
obtained by expressing the strain compatibility equations in terms of
stress functions. A well known mixed method for shallow shells deals with
a system of two equations for a displacement component and a stress function
(4)(5). A fundamental property of the basic equations of linear thin
shell theory is the static geometric analogy (3)(6) or duality. In the
following the duality is established for the non-homogenous shell problem
and is used as a basis for establishing the equations of two types of
formulations: a dual or mixed formulation in which the unknowns are dis-
placements and stress functions and complex formulations in which the
disp]acements and stress functions are combined into the real and imaginary

parts of complex dependent variables.



2. Basic Equations

The principal lines of curvature of the middle surface are chosen
as coordinate lines of a system of curvilinear coordinates E] and 52. The

first and second fundamental forms are written, respectively, in the form

— - 2 2 2 2

dr » dr = o dg] + o, dEZ (1a)
CXZ G.Z

e LM 2 % 2

dr -+ dt, = R, de] + R, de5 (1b)

A local reference frame of unit vectors fi, fé and Eé is defined through

the relations

Fs1 = 04 t] (2a)
Fap = 0 t2 (2b)
t3 = ty X t2 (2¢)

The vector equilibrium equations may be written in the form

(032 N'|)s'| + (O‘-I NZ)’Z + (X-l OL2 P=20 (36)
(0‘2 M])s] + (0‘] Mz)sz + OL-I OLZ (t-l X N-l + t2 X NZ) + OL-I 0L2 Q=20

_ (3b)

where Ni and ﬁ} are stress resultant and stress couple vectors and P and

Elare applied force and moment intensities.
let

N M - INE —p M _p -=
(Voo Mo) = (% + N5, B+ BY), §=1, 2 (4)
where N? and ﬁ? form a particular solution of Equations (3) and N? and M?

the general solution of the homogenous equilibrium equations




(ap 1) sy + (ag T) sy + ag 0, (T, x W+ F, x W) = 0 (5b)

Equations (5) are solved by means of two vector stress functions F and G

in the form
o, Nﬁ =’f,2 (6a)
oy NE = - ?}] (6b)
oy Mﬁ = G}Z *a, Té x F (6¢)
oy M’2‘=-_G_,]-on1 _f]xr _ (6d)

The strain-displacement relations for the strain vectors, E&, Eé,

ij, and }é corresponding, respectively, to N}, N,, M}, and ﬁé have the

form

el
—~
~J

[o1]
j

a]€]=u,1+a]t1x

oy EZ = U’Z *+ o TZ X W (7b)
CX-I 3(_-1 = ZU—;-I (7C)
Go 3(—2 = (-U—az (7d)

where u and w are the translation and rotation vectors, respectively,
associated with a point of the middle surface and the normal thereto.

The strain vectors satisfy the compatibility relations

(az ;é)’] - (a1 ;&)az =0 (8a)

(az 82)91 = (a] 81)92 + u] az (t] X X2 = t2 X X])

0 (8b)



The component representation of i}, ié, Wﬁ and Mé is taken in the form

and that of all other vecotrs in the form

The stress-strain relations for an elastic shell are assumed obtainable

from a strain energy density function we (€:., Xij) and, alternatively,

1]
from a complementary strain energy density function W_ (Nij’ Mij) in the
form
(OW oW_ )
T T B B (10a)
1] 1] Laeij axijJ
: ) fawo awo‘ , )
Eirs Xss) = y (10b
ij ij LaNij aMij)

We will consider a linearly elastic material without initial stresses so
that we and w0 are homogenous polynomials of second degree in their res-
pective variables.

It will prove convenient for the purpose of presenting the static

geometric analogy to express Equations (10) in terms of N¥ and ng. For

J
this purpose let




where the partial derivatives are evaluated at N?j’ mP

may then be written in the form

* + NP, omx. + MP.
(NTJ N1J’ M1J M1J)

. P _ P
(e . £55° Xij Xij)

and the following relations hold

we = 1/2 I [(N$j + N
1,J

Wx = .. o-

x 1/2 1?j [(€1J £

A§ for the stress resultan

notation will be adopted for the

()=()+ ()P

ij°

( 3
_ aW, aW,,
9e.. * 3v..
LE'IJ X1JJ
'awg aW* )
T OISNFL O IME L
aNij dMij)

p * p
Pg) eyt (M + M) x40

POy Ne, + (xs. - xPL) mr

ij7 ] iJ ij ;]

ij

ts and stress couples the following

strain quantities.

If constraints are placed on the material of the shell they replace

corresponding stress-strain relations which are then assumed excluded

from Equations (13).

Equations (10)

(13a)

(13b)

(14a)

(14b)

The constraints of zero transverse shear strains and zero couple-

stress stress couples will be adopted i.e.,

€53 = 0
M].3 =0

We Tet also
P.=0

€3

(16a)

(16b)

(16c)



i3

X33

(16d)

(16e)



3. Static-Geometric Analogy

The analogy between the forms of Equations (5) and (8), and (6) and
(7) allows transforming one set of equations into the other by means of a
correspondance between the statical and geometrical quantities. It will
be convenient to establish this correspondance between pairs of quantities
having the same physical dimensions. For this purpose all statical quan-
tities are divided by an arbitrary factor k having the dimensions of a

force as shown in Equation (17).

(ﬁ}a E%s ?-s a-a B; a) = ]/k (N}s M}: F; Gs P9 6) (]7)

Hi and q have the dimension of a curvature, ﬁ& and f are non dimensional,
g has the dimension of a length and p the dimension of the inverse of an
area. Quantities ﬁ?, ﬁ?, ﬁ? and ﬁ? are defined similarly to ﬁ} and ﬁ}.

Letting

[w

(n--,mij),w

. ij (Ei-a Xij)] = 1/k [wO (Ni.’ M")swe (Eij’ Xij)]

e J J 1]

(18)

the stress-strain relations for the newly defined stress resultants and
stress couples are obtained from W and Wo through formulas similar to
Equations (13).

The analogy between the homogenous equilibrium equations and the
compatibility equations may be used to combine these two systems into
one system of equations for complex dependent variables. These are de-

fined through the relations

—

$p=-ifs=x -1in} (19a)

Xp =1/ =3+ 10} (19b)



€ = - i m§ = E} -1 ﬁ; (19c)
EZ =i mf = Eé + 1 ﬁ# ' (19d)

where i =VT

The notation for a complex quantity associated with a real quantity ( ) or
(") is unambiguously (™). No special notationis used to indicate complex
vectors. The notation (7) indicates the complex conjugate of (™).

Consistently with the notation
(") = () + ()P (20)

we define the quantities

SHLAE AL @)
BB @)
b= imb =l +im (21¢c)
gb = -imh = &) - i mf (21d)

From Equations (20)and (21), Equations (19) may also be written in the

form .
Reoifg = -in (222
R=if =53+ (22b)
B = -im, = -im, (22c)
gy = im ey tim (22d)

g, T, U and w are combined in the forms




i=id=u+tig (23a)
&:i?:w+i? (23b)

The complex quantities defined above will be referred to, as the notation
suggests, complex strains, complex stress resultants, complex displacemnets
etc.... The real and imaginary parts of a complex geometrical quantity
as appearing in Equations (19), (21), (22), and (23) will be called dual.
The same terminology is applied to the Scalar components.

If dual quantities are interchanged the homogenous equilibrium and
compatibility equations are interchanged. If a duality is to be defined
in which the stress-strain relations remain invariant it is necessary to
let the matrix of elastic constants, appropriately ordered, be the dual
of its inverse.

We will consider an isotropic material having E as Young's modulus

and v as Poisson's ratio, for which, with

2

K= —Eh (24a)
12(1-v2)

hy = S | — (24b)
12(1-v2)

W and Wg take the form

=

2
Wy = 70 [ngy + ngg)” = 2014w} (g mpp = mpp gl

(25a)

1 2 )
o [(myy + mp,)" = 20140 (myq myp - My myy)]
2(1-v )h0
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] 2
W = 7 Llegy * epp)” - 2010y €5 - £q5 £py)]

(25b)
"o

2
+ 7 [(X]] + X22) - 2(1‘\))(X” X22 - X*|2 XZ])]

In Equations (25) h0 must be considered as an elastic constant. In the
correspondance that leaves the stress strain relations unchanged h0 and v

correspond to - h0 and - v, respectively, and w; corresponds to - Wo-




4. Equations for Complex Dependent Variables

Equations (5) and (8) may be combined into complex homogenous

equilibrium equations in the form
(ay %),y + (ag F5),p = 0 (26a)
(az rﬁ’f),1 + (a] mg),z + og az(t] x ¥+ t, x ﬁE) =0 (26b)
It is also possible to write
(oc2 ﬁ1)"| + (0L1 n2),2 + oy o B =0 (27a)

(az m1),] + (a] mz),2 * oy 0y (E} x fiy + Eé X ﬁz) topo,d=0

(27b)
where
_ (a7 X5)sn = (05 X5)s
B=p+i 1 41722 2 2721 (27¢)
%1 *
(0 €2)5, - (o, €B),
O et N R S b S L0 - S
4=q*1 o o, tlhxxg -ty (27d)
The stress-strain relations derived from W and W, and Equations

(16a-d) may be combined in the complex form

m71 = - i hO (ﬁ22 -V ﬁ]]) (28a)

m;z = i ho (ﬁ12 + v ﬁ12) (28c)

5y = 1 hy (figy + v 7izy) (28d)



ﬁ?3 0 (28e)

m53 0 (28f)

where ﬁ}j is the complex conjugate of ﬁij' The relations between the
quantities ﬁ?j and m?j associated with the particular solution of the
equilibrium equations are obtained by changing the sign of one side of
Equations (28). There follows that Equations (28) may alternatively be
written with the sign (*) deleted from the left hand sides and attached
to the quantities of the right hand sides.

Equations (26) are solved in terms of the two complex vector stress

functions § and ¥ in the form

o, 5 = F,, | (29a)
oy 1§ = - F, (29b)
o, % = §yp + oy T, x f (29¢)
o0y 8 = - §oq - oy Ty x f (29d)

The scalar equations obtained from Equations (27a, b) with m]s = m23 =

take the form
o o Oy Qo 5. =0
(ap fiyqgdsy * lag figg)sp = ap y figy + 0y 5 Ty + R, ™3 taya, Py
(30a)

N . _ N % %
(o igp)ag + (ay fiyp)sy = ag o figy *+ 0y 3 iy + ¢

~

n23 + Qay O ﬁz =0
(30b)

2

i T2
(0 Myglay + (g fip3)sy = oy ap (= + R, ~P3)=0 (30c)

12
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(oy fiyq)sq + (o Mpy)sp = 0y g Mgy + 0y 5 iy, - 0g 0y fiyg +a; 0y Gy =0
(30d)

(ag fip)sy * log Mypday =g o Mgy + 0y g Mgy - 0y 0y flgg = 0g 0y @y = 0

(30e)
N Pt R o
g =My *g—-g +t33°0 (30)
i 2
and from Equations (29) there comes
o o T =g Fy s 0 (31a)
O ap fi¥pp = =0y fy 3 v 07 5 Fy (31b)
- ¥ .1 %
ap op My =0y Fy 5+ oy ¢ iy * R, f3 (31c)
e = ;1% -
ap op gy = -0y fy 9 -0y 5 F) - R, f3 (31d)
(X-l &2
Nk = a ———
ay 0p Wiy = 0q Gy 5 + 0y g Gy * R, 03 (31e)
et
et = e
M o M=o 911 o2 8 TR 9 (31f)
ay Oy My = =ay Gy ot oy g Gp-oqapf (31g)
ay 0 M3y = =0y Ty g+t og 5 Uyt agap fy (31h)
e L3 92 = .
oy iy = f3’2 - ﬁg-fz (311)
~ 0‘] - 11
I%t.4 - - —
oy Ti5s faq+ : f (313)
OL2 ~
~* - A - — & -
%2 M3~ 93,2 " |, 927 % i (31k)
a'l ~
m¥x = A —_— 4 -
ay M5y = - g3 4 * g9y -0 (312)



Tetting m§3 = m§3 = 0 yields

-ty
|
N
)

(32a)

(32b)

Equations (31 may then be expressed in terms of gl, §2, §3 and ?3.

14



5. Mixed Formulation in Terms of Displacements and Stress Functions

Assuming that a particular solution of the equilibrium equations
has been determined, the stress-strain relations when expressed in terms
of the stress functions and displacements form a system of eight equations
in the eight unknowns 91> 9os 93» f3, Ups Uys Ugs and w3 These equa-
tions are the real and imaginary parts of Equations (28a-d).

By eliminating ?3 = fy - i wy from Equations (28c-d) in which ¥3
appears in non differential form a system of six real equations for 97>
9ps 93s Ups Uy, and ug is obtained. From Equations (28c-d) written in
the alternative form mentioned earlier with the asterisk on the right

hand side and Equation (30f) used in the homogenous form there comes

2 2 e Ty

m-|2 - ITl2-l = hO (]-\) )(RT— - ﬁ?) (33&)
and from Equations (31g-h)

. o CE . P oD

fiyg = Mpp = [lop Gp)sy = oq §y)spl - 2f3 + Wy, - Mgy

M %
(33b)
It may be concluded from Equations (33) that a negligible error of order
2 ~
hE-is made if in the expression (31c-d) of fi¥, and fi§,, f5 is determined

$rom Equation (33b) by letting fiyp - i,y = 0, i.e.,

T 1 ~ . ~ =D _ =D
Noting that (m’f2 + mg]) is independent of f3 the three complex equations

for determing Ups Ups Uzs Gps Jps and 93 take the form

15



(35a)

(35b)

(35¢)

16
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6. Complex Formulation in the Case v = 0

If v = 0 Equations (28a-d) do not contain the complex conjugates
ﬁ}], ﬁéZ’ ﬁ}Z’ and ﬁé]. They form, after use of Equation (3la-h) and
(32), four equations for §], G5 §3, gnd ¥3. As outlined in the preceding
section a negligible error of order h?- is made if Equations (35) with
v = 0, are used as a system of threeRequations for determining §], §2,
and §3.

This compiex formulation is essentially the same as that of Equa-
tions 15.5 in Reference (1). In these equations however, displacements
and stress functions are combined into complex quantities in the homo-
genous problem only and the particu]ar.solution is restricted to be a
membrane solution. Another complex formulation in the case v = 0 will

be obtained in section 8.



7. Complex Formulation in the Case v # 0. Expansion in Powers of v

Let Equations (28a-d) be represented in matrix notation in the form

{f*} - i h, {f} =i h v [ (M (36)
where
{f*} = (i, A5, fi%, i)} (37a)
@} = {-fiyy ~fi) iy, fiyld (37b)
[0 -1 0 07
-1 0 0 O
[J] = (37¢)
0 0 1 0O
L0 0 0 1]

The dependent variables may be sought as power series in v in the form

2]

() = (g + W)y #F )y * (38)

Equating coefficients of equal powers of v in Equation (36) obtain the

system of equations

@}, - 1 hy L

n
o

(39a)

{m*}k - 1 ho {ﬁ}k

ih, [J] {ﬁ}k-1 k=1,2,3, ... (39b)

The solution of Equations (39) may proceed sequentially and, because
Equations (39) have the same homogenous part, only particular solutions
of (39b) need be determined.

The obtention of particular solutions of Equation (39b) presents
in general no significant effort beyond the obtention of the general

solution of the homogenous equation (39a). Practically the system of

18



equations is truncated at an appropriate value of k.

WO
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8. Approximate Complex Formulation in the case v # 0. Vector Equations

The solution of the shell problem may be viewed as consisting in
determining two complex vectors f and g such that the components of the
left hand sides of Equations (29) satisfy the stress-strain relations
Equations (28)

Equations (28) may be written in the vector form

it = i hy (- T, + (0 + v(7)) T5 x ;) (402)

iy =i h (T + (1 +v(7)) 5 x i) (40b)
where

A= ﬁ]] + ﬁ22 ‘ (41)

and (7) is the operator transforming a complex quantity into its complex
conjugate. Considering now Equations (29c,d) as a system of equations

for determining §, obtain with use of Equations (40)

2

§oy == i h (o T+ (1+ (7)) Ty x oy fi,) - 0y Ty x
] o 14 37 %2 11 (42a)

~h?

{

§oy = - h (o, t,- (1+v(7)) T, xa,ii)-a,t,x
2 0 2 2 37 %M 2 72 (42b)

From Equations (42) and (29a,b) the total differential of § takes the form
dg = - i h [fidr- (1+v(7) Ty x df] - drx f
+1h (14 9(7) Ty x (o, Ah de, - oy iy dEy) (43)

For d§ to be an exact differential the right hand sides of Equaticns (42)

must satisfy the condition

~3 = Na = (44)
921 7992 0
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which, after use of Equations (27a), (29a,b) and differentiation formulas

for the unit normal vector Eé, takes the form

0 ~ o - ~ - ‘\l* ~
ih, (oc1 flap ty - 0y sy t2) tay o, (t] X By +t, x ng)

(45)

+ag o, i h0 (1 + v(™)( R =R - t3 xp)=0

Equation (45) may be expressed in terms of f and T by means of Equations
(29a,b). If v = 0, T does not occur and Equation (45) may be considered
as a complex vector differential equation in one unknown f. For v # 0 an
expansion of f in powers of v may be made following the method of section
7. It may be seen, however, that an equation for f amy be obtained from

Equation (45) after neglecting terms of order %u This is

i hO (G.-l ﬁsz t-l - 0,2 ﬁs'l t2) + O,-l 0(,2 (t-l X n?l‘ + t2 X ﬁ’é)

o il T xR
+oq 9 j h0 (1 +v(™)) ( R

1 2
Further simplifications are possible in Equation (46) if ﬁ? and ﬁg
are not of a Targer order of magnitude than ﬁf and ﬁ;. Having solved
Equation (46) for f, § is determined through integration of d§ in Equation
(43) where simplifications consistent with the obtention of Equation (46)
and such that d§ remain an exact differential must be made. These simpli-
fications may be seen to consist in letting in Equation (43)

ty X df = d(t3 x f) - dty x f (47)
then neglecting i ho di& x f with regard to dr x f. The result is

d(g-ihy (1+v()E3xF)=-1h fdr+fxdr
: (48a)

. = et p - ~p- .
+ i ho (v +v(™)) ty X (az ﬁ] dgz oy fis dg.l)



letting

~ ~

y=g-1ih, (1

+

Equation (48a) yields

Scalar Equations

= - h0 a

= - i h0 a,

= 24

=

The scalar components

v(™) tyx f
tp o Fx By -0 hoop (1+v(7))Eg x
T, v o, FX T, 0 h o, (14 9(7))T, x

of Equation (45) take the form

~

i
-\ I -
v n]3) =-1ih, (E;_'+ By + v p1)
~ o ﬁ"2 ~ ~
oy M2 fig
(1 +v()E—=-5)
Ry Ry

(48b)

(49a)

(49b)

(49c¢)

leading to Equation (46) transform Equations (49) into

ﬁ,"

h, (—
OOL-I

+ B+ v )
+ 55+ v By
i, iy
(1 +v(™)) (57— - 5
Ry Ry

(50a)

(50b)

(50c)

22



where
iy
ﬁi = ﬁ] + R_I (51a)
=P
n
~ o 3
p2 = P2 + Rz (S]b)

In terms of ?], f, and ?3 Equations (50) take the form

o ay (o F1)an - (o, F,), il
p 2 _ . %l Ty 2 1 My =
f3,2 "R, f2 = ho a o, O 1 ho %2 (a FPyptvp )
2 1 1%
! (52a)
.M oy | (o Fy)sp = fay Foloy (ﬁ?z
-f te—f, =-1h — -ih oy (=—+p,+vD
3,1 R] 1 0 a, ay o 1 » 2 2
P
(52b)
oy F)ap *+ (e, i) /AP
(i) For 22 2 Vo i (14 u(7)) (12 - 2
1 Ry 3 oy oy 0 1 2
(52¢)

With %3 determined from Equation (52c), Equations (52a,b) form a system
of two differential equations for ?] and ?2. For shells of zero mean
curvature the coefficient of ¥3 in Equation (52c) vanishes. A system of
two equations for %1 and ?2 is formed then of Equation (52c) and of the
equation obtained by eliminating ?3 from Equations (52a,b)

A particular solution of Equations (52) may be viewed as a correction
to the particular solution of the equilibrium equations, in the sense that

superposition of the two solutions yields a solution of the complete system

of shell eugations. In particular, Equations (52) may be used to investigate

the approximate character of a membrane solution.

23



The scalar components of Equations (48c,d) take the form

. i Y PO [ . I

Y0t o, ¥, * ﬁ;-y3 = =i h oy (- (1+v()) i) (53a)

Tp0 - 2y = oy Fy- oy (1% () R (53b)

Y21 a, Y =% T3~ o %1 v fi5

N % .

AR el T B (53c)

. %2,1 . x iy <D

N2~Tay Y277 % fa -1 hy o, (14 v(7)) @Y, (53d)

a o

~ 2,] ~ _2_ ~ . ~ = ~P

V2,2 % o ¥ R, ¥3 = - i hyo, (- (1+ (7)) Ayy)  (53e)

N Qs ~

327/, Y27 (53f)
where fi may be expressed in terms of ?] and ?2 in the form

(a7 F1)sp = (o, F,)s
soap 01 T T % Tl (58)

% %2

Novozhilov's Equations

Substituting for N3 and N3 from Equations (50a,b) into the complex
equilibrium equations (30a—c) and assuming that a negligible error of
order g-is made by letting in Equations (50a,b) pi =P and pé = Py there

comes

- ~ 0
(oy figq)sq + {ag fipy)sp =0y g Mgy + 0y 5 My = =0, iy + 0y 0y
ih i h

tayay (1- “ﬁ;g) Py - VR

24



! ho ~ n23
(0 finpdsy * (ay fign)sy = 0y 5 fiygtoy fiyy - T T2t R;
ih ih
+ a, 0, (1 - 0)5,,‘-\) OB—=O (55b)
e T
1. fig o
Ry TR T TR

Equations (55) reduce to equations 16.10 in Reference 1 if there is no
moment load q and if the particular solution is identified, withoug having
actually to be determined, with a solution of the equilibrium equation of

the membrane theory. In that case n?3.= n23 =0, i? = ig =0and p =P = p.

~ ~ ~

Expressing the complex stress resultants in terms of f], f2 and f3
by means of Equations (3la-d), Equation (55c) becomes a consequence of
Equations (55a,b) and these take the form of Equations (52a,b). Equations
(52a,b) express then the conditions for the complex stress resultant -

stress function relations to solve Equations (55).

25
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9. Equations in Invariant Form I

From Equations (50a,b) or, equivalently, from Equations (52a,b) and
for shells of non zero Gaussian curvature ?1 and ?2 may be expressed in

terms of ?3 and i in the form

p: Ry - . sy -
f] = &T f3,] -1 hO R.I (02 + ﬁz + v ﬁz) (56&)
7 R2 % ﬁ’1 —
f2 = a; f3’2 + 1 hO R2 (aT— + ﬁ] + v ﬁ]) (56b)

where, as found in Equation (54)

(a] f]):z - (az f )a]
o1 %2

(57)

Substituting for ?] and ?2 from Equations (56) into Equations {(57) and

(52c) there comes

R, a R, a ay o :
2 2 o 171 .1 2 p i F - 3
[ o] "’1] * [ ﬁ’z] S WA e TRy T3 0)hp - Ry F3,5)59]
"I ’2

Ot2 0
+ (1 +9() [(Ry oy By)sy + (Ry ay B1)sy] =0 (58a)
Ry a R, a
1 %2 =~ 2 1 % ] 1\ = .
o f3a] * [ o T3,2| toqop (R Rn) far ihg TRy Magdsp ~Ry M )]
1 , 2 , 1 2 2 °1
1 2
- . my,  fh
+ 1 hO (] + \)( ))[(R2 O.-I ﬁ-l),z = (R] 0‘2 bz)a] + (l-l 0.2 (ﬁr = R_z—)] =0

(58b)
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Equations (58) from a system of two differential equations of fourth order
for ?3 and i. They may be written in an arbitrary system of curvilinear
coordinates on noting that ?3 and fi are invariants and that the differen-
tial expressions involved in Equations (58) may be expressed as divergence
expressions.

It may be noted that the homogenous membrane solution and its dual
inextensional bending solution are obtained through the solution for ;3
of the differential equation obtained from Equation (58b) by letting all

terms other than ?3 be zero.



10. Equations in Invariant form II

Another way of expressing Equations (52) in terms of two invariant

functions is to express ?] and ?2 in the form

3, Uy

% %2

~ @’ 113,
f2 - a_g T a ]
2 1

From Equations (59) there comes

(o F1)sp = (ap fp)oy =00y 4P

(a] fz),z + (a2 f]),] =aya, A F

where A is Laplace's operator in the middle surface.

(59a)

(59b)

(60a)

(60b)

From Equations (60),

(57) and (52c) it is seen that A and ?3 are related to Ay and AF through

the relations

i* = A

h WP P
;o] "o =y a2 l21
f3 =T '271\55 2C (] + V( ))(R1 - R2 )

(61a)

(61b)

Equations (52a,b) expressed in terms of ¢ and § take the form

28



where

It may be noted that the homogenous equations (63) admit as solutions

o a ';ps @s
2 A 2 71 2
— (AD) sy - (5F), + - =
o 1 2C’?2 o R2 R2
o a ws &s
1 A 172 1
- (A‘p)s + ( )s + +
ty 2 2C’ 1 A, R]
i 1+ o P
~ 1 =\ V
oy 1 2u2 C R.l
~p : _ =D
°2 . = + v(7) 11712
5, " PetVRt T C IR
L

o 22
P
"2
Ry
)
)
"21
Ry
”

(63a)

(63b)

(64a)

(64b)

conjugate harmonic function ¢ and ¥ making ?] and ?3 zero and contributing

zero to ?3. Such harmonic functions are of no interest.
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11. Mushtari-Vlassov Equation

For rapidly varying states of stress such that

¢’-i & .
R« [2‘3]’1 =12 (65)

the terms ﬁli may be neglected in Equations (63). Then upon elimination
i
of {%%} there comes the differential equation for ¥

~ ~

(g 21059 + (g %p)op

ihy 809 + 8p B = - i hy T (66)
where
an( ), aq( ),
) e | e +P—'ﬁ—2 (67)
% 92 17°2 )., % '

Consistently with the above approximations the terms in & should be deleted
from Equations (59).
If the simplifying assumptions associated with Vlassov's shallow shell

equations (7) are introduced it becomes possible to write
[ 93 - i Us (68)

It is interesting however, that the derivation of Equation (66) may be
based solely on the order of magnitude relation (65) which for a surface

of smooth geometry may be replaced by
2
¢ << R® A (69)

Equation (66) may be identified except for its right hand side with

Equation 17.16 of Reference 1. The discrepancy between the right hand




sides is due to the assumption made in Reference 1 and similar derivations
that q = 0, Py =Py = 0 and to the introduction in the present derivation

of a particular solution of the equilibrium equations.
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12. Application to a Spherical Shell

The coordinates 51 and gz-are identified, respectively, with the
meridional angle £ and the circumferential angle 6. Letting a denote the

radius of the sphere and r the radius of a parallel circle we have

ag = R] = R2 = a (70a)
a, = r=asing (70b)
It is convenient to introduce the independent variable

n = log tan-% (71a)

and to adopt the notation

() =0y (72b)
() = (), (72¢)
(=2l () sing (724)

The notation ( )* of Equation (72d) applies only to this section.
It may be shown that

Ao( ) = a2 A( ) = sin”

g L0 )+ ()] (72e)

Assuming ﬁ?z ﬁg1 Equation (61b) yields

I
r 3 0
f3=- 25 (73)




and Equations (63) take the form

i ho

22 8, U+ UI* - [(a, + 28] ‘

-2 ho a”~ sin ¢ % (74a)

ih
2[—= &, 5+ 91+ [(a, + 2)3]*

. 2 . ~
-21ih a" sing g, (74b)

It is noted that the homogénous Equations (74) are Cauchy-Reimann conditions
with respect to n and 6. The quantities in the brackets, as far as the
solution of the homogenous equations is concerned, are therefore complex
conjugate harmonic functions. It may be readily verified that a particular
determination of ¢ and J corresponding to these conjugate harmonic functions
may be made such that ?], ?2 and ?3 are zero. Disregarding this determina-
tion of ¥ and J as being of no interest the general solution of Equations

(74) may be written in the form
U= wp + P, (75a)
5= B, + 4 (75b)

where mp and @p are a particular solution and mh and &h are the general

solution of the equations

. a _
by By - i E;’Wh =0 (76a)
(A0 + 2) By = 0 (76b)
?], ;2 and %3 are obtained from Equations (59) and (73) in the form
S N Y
= aeme 0" -0) (77a)

1 .
o= a5 & - ) (77b)
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A
f -9 _ ' 0P
f5 3 | (77¢)
Equation (76b) is associated with the homogenous membrane and inextensional
solutions and Equation (76a) is associated with the edge-zone solution. §
is now determined through ¥, Equation (48b), by integrating Equations (53).
These after using Equations (6la), (76a) and (77) take the form

i+ Ty =Wy - ihga (@ - vy v al ) (78a)

Ty = By - i hga (1+ () - 58,8 (78b)
&' 5.

S S0 _ h ' E i

Y3-N 7 sinE *howme (78¢)

y] - cos £ yz = - sin £ &h - sin £ (i ho a (1 +v(%)) ﬁ?z - %—A 3 )

0 'p
(78d)
y2 + cos & y] + sin & y3 = sin & mh - ho a sin g(ﬁgz -V ﬁ?] + a2 A, wp)
(78e)
93 - sin & yz = sin & &ﬁ + mh + sin £ 66 + wp (78f)

Equations (78) form a compatible system of six equations in three unknowns.

A particular solution of Equations (78) is of the form

ARAEEA (79)

where yp corresponds to the terms in ﬁ?j, wp and ép’ and §, corresponds to
wh and $h. To obtain ¥, it is convenient to introduce two complex harmonic
functions H] and ﬁz conjugate in the Cauchy-Riemann sense, i.e., satisfying

the relations




H? = H2 (80a)

H1 = - H§ (80b)
and related to éh through the relation

5h = (Sin 3 Hz)' (8])

To show that Equations (80) and (81) are consistent with Equation (76b)

the following identity may be verified

: boo ] .3 .
(8, +2) (sing ()" = - (sin” € a,()) (82)

~

There follows from Equations (76) and (82) that the most general H2 as
defined in Equation (81) satisfies

Ay Hz =.;ﬂi%l_ (83)

sin” g

where A(9) is an arbitrary function of 8. For an arbitrary A(8) it is
possible to determine a particular solution for ﬁz of Equation (83) in the
form E%%lgu Such a particular solution gives &h = 0. There is thus no
loss of generality by letting

A(6) = O (84a)

and

A H,=0 (84b)

~

H2 is therefore a general complex harmonic function.
It may be readily verified that a solution for yh1, yhz and yh3 may

be written in the form

Fp = sin £ Hy | (85a)

35



Fhp = sin € H, (85b)
Yp3 T - (sin ¢ ﬁ])' + lﬁh (85¢c)

Since the homogenous Equations (78) express in scalar form the equation
dy = 0 the general solution of Equations (78) is obtained by adding a
constant vector yo to the particular solution. This need not be done,

however, because a constant vector is representable through Equations (85)

by letting
Py, = 0 (86a)
H] = § cot g cos 8 + 5y cot ¢ sin 6 - & (86b)
fip = - 3, 5%+ g 928 (86¢)

where éx, d and 52 are cartesian components of the constant complex

Y
vector.

Finally, the general solution for § is obtained from Equation (48b)

in the form
gy =sin e Hy - ih (1+ (7)) F,+ ¥ (87a)
Gy = sin £ + 1 hy (14 v()) Fy + 5, (87b)
g3 = - (sin £ H)' + T + §p3 (87¢)

The general solution of the spherical shell problem obtained here agrees
except for a negligible discrepancy in Equation (76a) due to the approxi-
mations introduced in obtaining Equations (52) with an earlier solution

of the homogenous problem in terms of stress functions (8).

36



37

Summary and Conclusion

The static geometric analogy is established for the non homogenous
shell problem and is used as a basis for a mixed formulation of the shell
problem in terms of displacements and stress functions and for complex
formulations in terms of complex dependent variables. Using complex
stress functions {(or complex displacements) two formulations are obtained
in each of which the basic system of differential equations is reduced to
a system of twoequations for two invariant complex functions. The rela-
tionship between these equations and Novozhilov's system of three equations
for complex stress resultants is established. The approximations that
make feasible the complex formulations are all contained in the single
step of obtaining the vector Equation (46) from Equation (45). The
mathematical inconsistencies that are caused by these approximations in
the determination of displacements from strain quantities and of stress
functions from stress quantities are identified and eliminated. The
determination of the displacements and stress functions is thereby reduced
to the integration of an exact differential. This should be advantageous
for satisfying boundary conditions involving displacements or stress
functions in analytical as well as numerical methods of solution.

The Mushtari-Vlasov formulation for rapidly varying states of stress
and for shallow shells is obtained from the general Equations (63) by
deleting negligible terms.

Application to the case of the spherical shell results in two com-
plex uncoupled differential equations of second order, each associated
with a particular type of shell behavior.

The complex formulations presented here may be written in an arbi-

trary system of surface curvilinear coordinates upon making use of the



invariance of the differential operators involved and of the unknown

functions.
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