FINAL REPORT

EXTENSION OF MODERN CONTROL SYSTEM THEORY

A Research Project Supported by a NASA Grant in the Space-Related Sciences

NsG-518

DRI Project No. 3638
University of Denver March 1958

TABLE OF CONTENTS

Page
I. Introduction 1
TI. Summary of Results of the Research Effort 2
III. Publications Related to the Research Effort 4
IV. Copies of Published Papers 5

I. INTRODUCTION

This report describes the results obtained on DRI Project No. 3538 which extended from 1 July 1955 to 31 December 1957. The objective of the research was to develop analysis and synthesis techniques for general linear systems with emphasis upon the development of methods to minimize the sensitivity of optimal control systems to large parameter variations.

During the period of study the principal investigators supervised the 3 dissertations and 4 publications listed in Section III of this report. These publications contain the most significant results obtained in this study.

During the course of the research five distinct results were obtained.
A. A method has been developed for analytically determining the optimal control for a linear system with respect to a performance functional that includes trajectory sensitivity. Specifically, the control law \underline{u} has been found for the system described by the state-variable differential equation

$$
\dot{\underline{x}}=\mathrm{A} \underline{\underline{x}}+\mathrm{Bu}
$$

so that the performance index J is minimized:

$$
J=f^{0}(\underline{x} \cdot \alpha \underline{x}+\underline{u} \cdot R \underline{u}+v \cdot s v) d t
$$

where $0, R$ and S are positive definite matrices and the trajectory sensitivity vector v is defined by

$$
\underline{\nu}=\frac{\partial \underline{x}}{3 \alpha}
$$

where α is a system parameter appearing only in A. Numerical determination of the optimal-control law is achieved by the solution of a nonlinear algebraic matrix equation. Implementation of the optimal control renuires generation of the \underline{v} vector which is done in a straight-forward manner: for an n-th order system, the trajectory sensitivity vector $\underline{\nu}$ reruires in integrators for its simulation ${ }^{1 *}$.
B. A design algorithm was developed for the minimization of a cost functional which includes, in addition to state and control variables, a measure of sensitivity. This algorithm was used to solve a problem of practical interest: a flexible ballistic missile in powered fiight. Comparisons were made with optimal designs which include sensitivity and those that do not. The efficacy of using a measure of

[^0]sensitivity in the performance index was demonstrated ${ }^{2,4}$.
C. A technique was developed for compensator design which includes constraints on peak time, overshoot, settling time, peak value of the controller output, and velocity error constant. A basic feature of the design technique is the formation of a figure-ofmerit, which is a linear combination of the design objectives, and a minimization by adjustment and addition of compensator gain, poles and zeros under the control of a multilevel decision procedure. Examples show a favorable comparison to several other synthesis techniaues ${ }^{3}$.
D. A method was developed for obtaining the optimal control law for plants containing a randomly slowlyvarying parameter whose probability density function is known. The necessary conditions for the optimal control law were derived using the calculus of variations, and a method advanced for approximating the optimal control law in closed-loop fashion. Numerical examples have been worked and the results compared with both optimal control systems designed about the nominal value of the parameter, and an adaptive system whose control law changes to the optimal for the existing parameter value 5,7.
E. A design procedure was developed which assumed the plant input to be a combination of plant states and approximate sensitivity functions. Necessary conditions were developed and examples worked to illustrate the methoan.

III. PUBLICATIONS RELATED TO THE RESEARCH EFFORT

The following publications were prepared by or under the direction of the principal investigators during the period of study.

1. D'Angelo, H., Moe, M.L., and Hendricks, T.C., "Trajectory Sensitivity of an Optimal Control System", Proceedings of the Fourth Annual Allerton Conference, pp. 489-498, University of Illinois, October 1965.
2. Hendricks, T.C., "Trajectory Sensitivity of an Optimal Control Systein of Fixed Structure". Ph.D. Dissertation, University of Denver, May 1957.
3. Hauser, F.D. and Moe, M.L., "A Computer-Aided Design Techniaue for Sampled-Data Control Systems", Digest of the First Annual IEEE Computer Conference, pp. 59-72, Chicago, Illinois, September 1957.
4. Hendricks, T.C. and D'Angelo, H., "An Optimal Fixed Control Structure Design with Minimal Sensitivity for a Large Elastic Booster", Proceedings of the Allerton Conference on Circuit and System Theory, pp. 142-151, University of IIlinois, October 1957.
5. D'Angelo, H . and Patrick, L.B., "Opíimal Control of Plants with Random Slowly-Varying Parameters", Proceedings of the Allerton Conference on circuit and System Theory, pp. 711-720, University of Illinois, October 1957.
6. Bradt, A.J., "The Design of Optimal Controllers to Minimize a Performance Index Containing Trajectory Sensitivity Functions", Ph.D. Dissertation, University of Denver, October 1967.
7. Patrick, L.B., "Optimization of Random Systems by Minimization of the Expected Value of a quadratic Performance Index", Ph.D. Dissertation, University of Denver, March 1958.

IV. COPIES OF PUBLISHED PAPERS

A detailed description of the results is best provided by including copies of the following four papers $1,3,4,5$.

TRAJECTORY SENSITIVITY OF AN OPTIMAL CONTROL SYSTEM
N $68-23562$

ABSTRACT
**SYOI\&GNGH • S SVWOHI
pue *IOW 'I G\&VNXVW (A method is introduced for analytically det A method is introduced for analytically determining the optimal contro
for a linear system with respect to a performance functional that includes for a linear system with respect trajectory described by the state-variable differential equation

$$
\dot{x}=A x+B u
$$

$$
\text { so that the performance index } \mathrm{m}
$$

$$
\text { so that the performance index } \int_{0}^{\infty}\left(x^{\mathrm{T}} Q x+u^{T} R u+\sum_{i=1}^{m} v\right.
$$

where Q, R and the S_{i} are positive definite matrices and the trajectory sensitivity vector v_{i} is defined by

$v_{i}=\frac{\partial^{i} x}{\partial a^{i}}$

 simulation.The Main Results
The Main Results $\dot{x}=\mathrm{Ax}+\mathrm{Bu}$ where

$A=A(a), B=B(a)$ and $x=x(t, a)=\left[\begin{array}{c}x_{1}(t, a) \\ \cdot \\ \cdot \\ \cdot \\ x_{n}(t, a)\end{array}\right]$
 Denver. student at the University of Denver.

$$
\begin{aligned}
& \begin{array}{l}
(21) \\
\text { (22) } \\
\text { (23) } \\
\text { (24) }
\end{array}
\end{aligned}
$$

I := s dof osuodsay '

0 s loj asuodsay $\quad 2$ ambíi

F. D. Hauser
Martin-Marietta Corp.
Denver, Colorado

M. L. Moe
University of Denver
Denver, Colorado

ABSTRACI. A technique is presented for compensator design which includes constraints on peak time, overshoot, settling time, peak value of the controller output, and velocity error constant. A basic feature of the design technique is the formation of a figure-of-merit, which is a linear combination of the design objectives, and a minimization by adjustment and addition of compensator gain, poles, and zeros under the control of a multilevel decision procedure. Examples are given showing favorable comparisons to several other synthesis techniques.

INTRODUCTION

Several design techniques for sampleddata compensators have been proposed [2-8]. However, each allows only a limited number of design specifications and generally results in cancellation of poles and zeros. The computer-aided design technique described, does not result in pole and zero cancellation and allows a variety of specifications to be used. The particular specifications used for the development of the procedure include peak
, time, overshoot, settling time, peak signal input to the controlled system, and the velocity error constant. But the general technique need not be limited to these. The design technique is a search procedure as opposed to analytical synthesis. A figure-of-merit, which is a linear combination of the design objectives, is generated and then minimized by adjusting the compensator gain, poles, and zeros under the control of a multilevel decision procedure.

The procedure starts by attempting gain compensation, and if this fails it gradually adds poles and zeros until an acceptable design is achieved. Both real and complex poles and zeros may be used. Since the technique uses only the response of the fixed portion of the system, the approach does not become more involved as the order of the system increases. The complexity of the compensator is related to the difficulty of achieving the design objectives rather than the complexity of the system.

THE PROCEDURE

The design procedure synthesizes compensators of arbitrary complexity using both real and complex poles and zeros; however, for simplicity, the procedure will be described for a compensator consisting of a gain, one pole and one zero.

A figure-of-merit, FM, is defined

$$
F M=C_{1} T_{p}+C_{2} E_{s}+C_{3} / K_{v}+C_{4} M_{s}
$$

where $C_{1}, \quad C_{2}, \quad C_{3}$, and C_{4} are arbitrary weighting factors, E_{s} is the maximum error after the specified settling time, T_{p} is the time to the peak, K_{v} the velotity error constant, and M_{s} the peak signal into the fixed portion of the system. When comparing two compensators, the one with the smaller value for $F M$ is considered the better. When a particular specification is satisfied for both compensators, it is deleted from the figure-of-merit calculation. This allows the search to concentrate on those specifications that are not yet met.

The design begins with what is termed a brute-force search (BFS) where combinations of pole and zero locations on the real axis inside the unit circle are considered. Large increments can be used in this search. For each pole and zero combination, the gain is adjusted to bring the overshoot within the specifications, if possible. If it is not possible, the particular pole and zero combination is eliminated from further consideration. For each pole and zero combination where the overshoot requirement can be satisfied, the value of $F M$ is computed. As the search progresses, the lowest value of $F M$ and the compensator which produced it are recorded and updated as better compensators are encountered.

If a suitable compensator has not been found at the end of the BFS, the program continues with a vernier search about the best pole and zero locations found in the BFS. In this aearch the pole and zero are alternately shifted with decreasing step size until FM is minimized, or a suitable compensator found. The gain is used to control the overshoot during the vernier search also. The use of gain to control overshoot created a two level search pro-
cedure which was much more efficient than one which considered gain as a parameter, on the same level with a pole or zero, and included overshoot in the figure-of-merit.

If the design is not completed at the and of the varnier aearch, the best compensator found is kept as a fixed compensator. Then an additional pole and zero is introduced and the procedure is repeated starting with the BFS again. This process may continue until a desired solution is found the compensator has exceeded the allowed complexity, or the program execution time exceeds the specified limit.

If complex poles and zeros are allowed the program first attempts to use a real pole and zero. If this fails, complex poles and zeros are introduced using a BFS and then a vernier search as with real poles and zeros. Of course, the search procedure is more complex and time consuming since four, rather than two, parameters are used.

The design procedure has been compared with seven design techniques on five different problems with very favorable results [l]. The following example will illustrate the results obthined.

Example

The effectiveness of the technique may be illustrated by comparing its solution with that obtained by Kuo on an example problem [5]. The fixed parts, of the sam-pled-data system with zero-order hold are described by the transfer function

$$
P(s)=\frac{\left(1-e^{-T s}\right)}{s^{2}(s+1)}
$$

where the sampling period, T, is 0.1 sec -. onds. The z-transform is

$$
P(z)=\frac{(.005)(z-.9)}{(z-1)(z-.905)}
$$

The specifications to be realized are:

1) The damping ratio, $\xi=.707$
2) The peak time, $T_{p} \leq 0.3$ seconds
3) The overshoot, $M_{p}^{p} \leq 10$ per cent
4) The velocity error constant $K_{v} \geq 5$. seconds ${ }^{-1}$.

The peak time, overshoot, and damping ratio are related, and since the program does not include provisions for damping ratio it was not explicitly used.

Kuo's method for discrete compensation of sampled-data systems is an extension of

Truxal's synthesis technique developed for continuous systems [8]. Kuo's design does not consider the settling time, T_{s}, or the peak value of the controller output, M_{s}. For the computer-aided design, the values used for T_{s} and M_{s} were the actual values obtained from Kuo's solution. This, of course, puts more severe restrictions on the computer-aided solution than necessary.

Table 1 contains a summary of the results of Kuo's solution, as well as two separate solutions by the computer-aided design technique. The compensators resulting from the various techniques were as follows:

$$
\begin{gathered}
\text { Kuo's Solution: } \\
D(z)=138 \frac{(z-0.0737)(z-0.905)}{(z-0.23)(z-0.9)} \\
\text { Computer Solution \#1: } \\
D(z)=127.48 \frac{z-0.1}{z-0.25} \\
\text { Computer Solution \#2: } \\
D(z)=200.11
\end{gathered}
$$

Solution \#l has very similar properties to that of Kuo's. The response, as shown in Fig. 1, indicates that solution \#l has slightly more damping than Kuo's. However the computer-aided design used only a single pole and zero while Kuo's technique required a second order compensator.

The second solution illustrates that a simple design tends to result whenever possible. In this case, when the peak output of the controller was not restricted, only a gain was needed to obtain approximate deadbeat response. The solution as shown in Fig. 1, is within 0.5 per cent of the final value from the first sample onward. The closed-loop transfer function with compensator \#2 is given by

$$
\frac{C(z)}{R(z)}=\frac{(1.00056)(z-.9)}{(z-.005)(z-.899441)}
$$

and indicates that the solution is well behaved between samples. The suitability of this solution is dependent upon the reason for the requirement of a damping ratio of 0.707 . If this figure was chosen to allow a reasonable overshoot and fast response, then the requirement could be changed to $5 \geq .707$ and solution \#2 would certainly be the best.

CONCLUSIONS

A technique for computer-aided compensator design is presented which is not dependent on the complexity of the fixed portion of the system. The procedure is general and could be easily extended to include additional design specifications, e.g., mean-squared-error, bandwidth, gain margin, phase margin, etc. Although not tested as yet, it would appear that the procedure can also be extended to nonlinear and continuous systems, and because of its organization, could make effective use of facilities for hybrid computation.

REFERENCES

[1] Hauser, F. D., "A Technique For The Design of Sampled-Data Compensators Using A Digital Computer," M. S. Thesis, University of Denver, Denver, Colorado, 1966.
[2] Jury, E. I.. Sampled-Data Control Systems, John Wiley and Sons, Inc., London-Chapman \& Hall Limited, 1958.
$[3]^{\prime *}$ Jury, E. I., and W. Schroeder, "Discrete Compensation of Sampled-Data \& Continuous Control Systems," A.I.E.E. Transactions, Vol. 75, pt. 2, January 1957, pp. 317-325.
[4] Jury, E. I.. and F. W. Semelka, "Time Domain Synthesis of Sampled-Data Control Systems," A.S.M.E. Transactions, Vol. 80, Nov. 1958, pp. 1827-1838.
[5] Kuo, B. C., Analysis and Synthesis of Sampled-Data Control Systems, pren-tice-Hall, Inc., Englewood Cliffs, N. J.. 1963.
[6] Reddy, D. C., \& L. A. Ware, "A Graphical Technique for Compensation in the z-Plane," Int. J. Control, Vol. 4, No. 1, pp. 87-95, 1966.
[7] Tou, J. T., Diqital and Sampled-Data Control Systems, MCGraw-Hill Book CO Inc., New York, 1959.
[8] Truxal, J. G.. Automatic Feedback Control System Synthesis, McGraw-Hill Book Co., Inc., New York, 1955.

TABLE 1

Properties of The Solutions For The Design Problem

		T_{p}	${ }^{M}$	$\mathrm{T}_{3}{ }^{\text {* }}$	K	M_{s}
1)	Design Specifications	. 3	. 10	. 5	5.	138.
2)	Kuo's Solution	1.3	<. 062	. 5	8.301	138.
3)	Computer Solution \#1	. 3	. 051	. 5	$8: 052$	127.48
34)	Computer Solution \#2	. 2	. 005	. 2	10.532	200.11

*Output within $\pm 2 \%$ of its final value.

Figure 1
 are neglected. Rigid and 2 respectively. Two frames of reference are used in
itgure 1 and cescrioing the
 Ihe nonlinear equations describing the motion of the center of gravity (σ) of the vehicle are written in terms of $\theta_{3} a$, and η (attitude, angle of attack, and bending mode deflection).

$$
\begin{aligned}
& \text { I } \theta
\end{aligned}
$$

$\operatorname{Mv}_{0}(\dot{\theta}-\dot{a})=T \sin \delta+q S_{f} C_{a}^{a}$

$\ddot{\eta}=-2 \zeta \omega \eta=\omega^{2} \eta+\operatorname{mn}_{8} \delta$

$a_{2}=\left(q_{f} C_{n_{a}} / M\right)$

$\left(I /_{T} I_{0}{ }_{0} J_{S b}\right)={ }^{t_{B}}$

AN OPTIMAL FIXED CONTROL STRUCIURE DESIGN WITH MINTIMAL SENSITTVITI FOR A
LARGE ELASTIC BOOSTER

$$
\begin{array}{ll}
\text { THOMAS HENDRIGKS } & \begin{array}{l}
\text { HRNRI DIANGEIO } \\
\text { Martin Marietta Corp.. Aerospace Div. } \\
\text { Denver University }
\end{array} \\
\text { Denver, Colorado } &
\end{array}
$$ ABSTRACT N $68: 23564$

HRNRI DiANGEIO
Denver University
Denver, Colorado
 tional which inctical messure of sensitivity, is used colssile in powered flight. Comparisons Interesti a feen optimal designs which include sensitivity in the perare made between op those that do not. The efficacy of using a measure of sensitivity in the performance index is demonstrated.
I. INTRODUCTION

Trajectory sensitivity, defined as $v=\partial x / \partial a$ where x is the syatem
 Murray [1] in a mathematical error sensitivity functions in control system Meissinger in 1960. And in 1964 Kokotovic [3] demonstrated how sensitivity functions can be similated in a straight forward manner on an anslog computer. An early use of trajectory sensitivity functions in [4].
 terms have been advanced by mumerous authors [5, 6, 7]. In the ming options the optivity functions zation of a performa control law, if feedback control is used, will in general be a $[8]$ function of these sensitivity variables. In this case, it realized. To that the sensitivity functions can only be the approach taken here is
 of only the states, 1 . e.s a constant feedback structure is assumed. constant feedback striously, other feedback structures could also be mathematically. Obviously, other feedback structures cory to determine if
 zation of a performance index containing sensitivity with the adagnistraint of fixed feedback structure is ilustrated by siexible booster in powered flight. It is shown that if the trajectory dispersions, as in powered finght. It are varied, are used to evaluate two optimal designs (one wesign with sensitivity performs in a superior mamer.
II. STATEMENT OF THE PROBLEM
 It is assumed that the states of the aystem are exactly known, ise, sensors are noiseless and contain no

$A * K+K A-K B R^{-1} B * X+Q=0$	(4)
mely	
$\mathrm{B}^{*}=-\mathrm{R}^{-1} \mathrm{~B}^{*} \mathrm{~K}$	(5)
The selection of δ to minimize a performance index	
$\Phi=\frac{1}{2} \int_{0}^{\infty}\left(x \cdot Q x+v \cdot S v+\delta^{2}\right) d t$	(6)
containing, in addition to "state" and "control", a measure of trajectory sensitivity is effected by an iterative algebraic algorithm developed in [9] under the additional constraint that the feedback law is a innear function of the state variables. The algorithm presented in [9] is a generalization, and a computational improvement, of the work of Schoenberger [10].	
For notational simplicity the system to be controlled is written in the following form	
$\dot{x}=A x+b \delta$	(7)
The control is assumed to be a constant function of the state variable	
Combining equations (7) and (8) $\dot{x}=(A+b g *) x^{\Delta} \tilde{A} x$	(9)
and the sensitivity equations, $\dot{\mathrm{v}}=\widetilde{\mathbb{A}}_{a} x+\widetilde{\mathrm{A}} \mathbf{v}$	$\begin{aligned} & n(9) \\ & (10) \end{aligned}$
In block form equations (9) and (10) become	
$\left[\begin{array}{l} \dot{x} \\ \dot{v} \end{array}\right]=\left[\begin{array}{ll} \tilde{A} & 0 \\ \tilde{A}_{a} & \tilde{A} \end{array}\right]\left[\begin{array}{l} x \\ v \end{array}\right]$	(11)
To simplify equation (11) we de	
$=\left[\begin{array}{l}x \\ v\end{array}\right] \quad \overline{\mathbf{A}}=\left[\begin{array}{ll}\tilde{A} & 0 \\ \tilde{\mathbf{A}}_{a} & \tilde{\mathbf{A}}\end{array}\right]$	
Then using the above nomenclature equation (11) and the performance index equation (6) can be rewritten	
$\dot{y}=A y$	(12)
$\frac{\alpha}{2} \int(y \bullet W y) d t$	

REFERENGES
Miller, K. S. and F. J. Murray, 'A Mathematical Basis for an Error

1. ${ }^{\text {A. }}$. Math. and Phys., No. 3, Vol. Anslysis of Differentia
$32,1953, \mathrm{pp} .136-163$.
2. Meissinger, H. F., "The Use of Parameter Influence Coefficients in 2. Meissinger, H. For Dy Conference, 1960, pp. 181-192.
3. Kokotovic, P., "The Sensitivity Point Method in the Investigation 3. Kokotovic, aptimization of Linear Control Systems", Avtomatika i Telemekhanika, Vo1. 25, No. 12, 1964.
4. Siljak, D. D., and R. Dorf," On the Minimization of Sensitivity
in Optimal Control Systems ", Proceedings of the Third Annual Allerton Conference, 1965, pp. 225-229.
5. Tuel, W., "Optimsi Control of Unknown Systems", Ph.D. Thesis,
Rensselger Poly. Inst., June 1965.
G. Gavrilovic, M, and R_{0} Petrovic," On the Synthesis of the Least. Sensitive Control", Proc. of International Symosium, Dubrovnik, 1964.
6. D Angelo, H. M. Moe, and T. Hendricks, "Trajectory Sensitivity ference, October 1966.
7. Kreiniler, E., "Synthesis of Flight Control Systems Subject to Vehicle Parameter Variations ", Technical Report AFFDL-TR-66-209,
8. Hendricks, T.," Trajectory Sensitivity of an Optimal Control
System of Fixed Structure", Ph.D. Thesis, Denver University, May 1967. 10. Schoenberger, M, " System Optimization with Fixed Control 10. Schoenberger, M, M, Syst

(1) awuodsay apnaravy

((1) sundeat apnatiay

Figure 3b. Missile Attitude Rate Response for $S=0$

Figure 3c. Missile Bending Mode Response for $S=0$
§ §ิ §
$\dot{p}(t, \alpha)=-Q x(t, \alpha)-A^{\star}(\alpha) p(t, \alpha)$ with boundary conditions
$\begin{aligned} x\left(t_{0}, \alpha\right) & =x_{0} \\ p\left(t^{,}, \alpha\right) & =F_{x}\end{aligned}$
$p\left(t_{f}, \alpha\right)=F \times\left(t_{f}, \alpha\right)$
The optimal control law $u^{0}(t)$ ，derived from equation（13），is
$\mathbf{u}^{0}(t)=-R^{-1} \int^{\alpha}{ }^{\alpha} \omega(\xi) B^{*}(\xi) P(t, \xi) d \xi$
γ_{0}

mated as a function of the state and thus provide closed－loop control．Ex－

$p(t, \xi)=\sum_{i=0}^{\infty} p_{i}\left(t, \alpha_{0}\right) \frac{\left(\xi-\alpha_{0}\right)^{i}}{i!}$ $\left.\frac{\left(\xi-a_{0}\right)^{i}}{i!}\right] d \xi$ $\sum_{i=0} p_{i}\left(t, \alpha_{0}\right)$

 Thus substituting from equation
 $\left.p_{i}\left(t, \alpha_{0}\right) \equiv \frac{\partial^{i} p(t, \xi)}{\partial \xi^{i}}\right|_{\xi=\alpha}$

（22）

（sc）
（ヵて）
$(c z)$

 $\int_{\alpha_{2}}^{a_{h}} \omega(\alpha)<\left.\frac{\partial K}{\partial x}\right|_{0, p}-p\left(t_{f}, \alpha\right), \phi\left(t_{f}, \alpha\right)>d \alpha+\int_{t}^{t_{f}} \int_{\alpha}^{\alpha} \omega(\alpha)<\left.\frac{\partial H}{\partial x}\right|_{0, p}$ $\int_{t_{0}}^{t_{f}} \int_{\alpha_{l}}^{a_{h}}$ $+\dot{p}(t, \alpha)], \phi(t, \alpha)>$ dad $+\int_{t_{0}}^{t_{f}} \int_{\alpha_{\ell}}^{\alpha_{h}} \omega(\alpha)<\left.\frac{\partial H}{\partial u}\right|_{0, p}, \eta(t)>d a d t \rightarrow 0$
which the following necessary conditions are deduced：
It is necessary that the differential equations
$\dot{x}^{0}(t, a)=\frac{\partial H}{\partial p}$
$\dot{p}^{0}(t, \alpha)=\frac{-\partial H}{\partial x}$ $+\dot{p}(t, \alpha)], \phi(t, \alpha)>$ dad $+\int_{t_{0}}^{t} \int_{\alpha_{\ell}}^{\alpha_{h}} \omega(\alpha)<\left.\frac{\partial H}{\partial u}\right|_{0, p}, \eta(t)>d a d t \rightarrow 0$
which the following necessary conditions are deduced：
It is necessary that the differential equations
$\dot{x}^{o}(t, a)=\frac{\partial H}{\partial p}$
$\dot{p}^{0}(t, \alpha)=\frac{-\partial H}{\partial x}$ $\quad+\dot{p}(t, \alpha)], \phi(t, \alpha)>$ dad $+\int_{t}^{t_{f}} \int_{\alpha_{\ell}}^{\alpha_{h}} \omega(\alpha)<\left.\frac{\partial H}{\partial u}\right|_{0, p}, \eta(t)>d a d t \rightarrow 0$
from which the following necessary conditions are deduced：
It is necessary that the differential equations
$\dot{x}^{0}(t, a)=\frac{\partial H}{\partial p}$
$\dot{p}^{0}(t, \alpha)=\frac{-\partial H}{\partial x}$ $+\dot{p}(t, \alpha)], \phi(t, \alpha)>$ dad $+\int_{t_{0}}^{t} \int_{\alpha_{\ell}}^{\alpha_{h}} \omega(\alpha)<\left.\frac{\partial H}{\partial u}\right|_{0, p}, \eta(t)>d a d t \rightarrow 0$
which the following necessary conditions are deduced：
It is necessary that the differential equations
$\dot{x}^{o}(t, a)=\frac{\partial H}{\partial p}$
$\dot{p}^{0}(t, \alpha)=\frac{-\partial H}{\partial x}$ $+\dot{p}(t, \alpha)], \phi(t, \alpha)>$ dad $+\int_{t_{0}}^{t} \int_{\alpha_{\ell}}^{\alpha_{h}} \omega(\alpha)<\left.\frac{\partial H}{\partial u}\right|_{0, p}, \eta(t)>d a d t \rightarrow 0$
which the following necessary conditions are deduced：
It is necessary that the differential equations
$\dot{x}^{o}(t, a)=\frac{\partial H}{\partial p}$
$\dot{p}^{0}(t, \alpha)=\frac{-\partial H}{\partial x}$
（6）
（ OL ） （It）
$\underset{\text { © }}{ }$
※ with the boundary conditions
$x^{0}\left(t_{0}, a\right)=x_{0}$
$p^{o}\left(t_{f}, \alpha\right)=\frac{\partial K\left[x\left(t_{f}, \alpha\right)\right]}{\partial x}$
and the integral equation
a a $a(\varepsilon)$ 胃
$\int_{a_{\ell}}^{q_{l}} \omega(\xi) \frac{\partial H}{\partial u} d \xi=0$
be satisfied．
3．The linear regulator problem

$J(u)-J\left(u^{0}\right)=\int_{\alpha_{f}}^{a_{h}} u(\alpha)\left\{K\left[x\left(t_{f}, \alpha\right)\right]-\left.K\left[x^{0}\left(t_{f}, \alpha\right)\right]\right|_{d \alpha}\right.$ $+\int^{t_{f}} \int_{a_{h}}^{a_{h}}$
$J(u)-J\left(u^{0}\right)$

	$+\int_{t_{0}}^{f} \int_{\alpha_{\ell}}^{h_{h}} \omega(\alpha)\{H[x(t, \alpha), u(t), p(t, \alpha) ; t, \alpha]$
	$\left.-H\left[x^{0}(t, \alpha), u^{0}(t), p^{0}(t, \alpha) ; t, \alpha\right]\right\} d \alpha d t$
	$+\int_{t}^{t} f \int_{a}^{\alpha} \omega(\alpha)\left\langle p(t, \alpha),\left[x^{0}(t, \alpha)-\dot{x}(t, \alpha)\right]>d \alpha d t \quad\right.$（7）

(67)

$\left(x^{2}+u^{2}\right) d t$
$c=\int_{0}$
over the range of $a,(0,2)$, between a system designed to minimize J (the expected value of C), using such a 3-term approxim), and the optimal regulator ЧวケM wats that would be obtained by an optimally adaptive system, i.e., a sor the partia control law $u(t)$ that is adjusted, on line, to be optimal for cular value of a әЧЭ uf suoffernen using this simple appronth decreased from that not taking into account variations in the parameter α.

Figure 4 shows that the trajectories of a system so designed are less
sensitive to variations in the parameter α.
 The authors gratefully acknowledge the support of the Nationan No.
Foundation (Grant No. GK 274) and NASA (Grant No. NsG(T) 49 and Grant No. NsG-518).

REFERENCES

[1] Athans, M. and Falb, P., Optimal Control, McGraw-Hill, 1966.

 [4] Kalman, R. E., "Contributions to the Theory of Optimal Control",
Baletin Sociedad Matematica Mexicana, Vol. S, 1960.
[5] Reed, W. T., "A Matrix Differential Equation of Riccati Type",
$\begin{aligned} & \text { American Journal of Mathematics, Vol. 68, 1946. }\end{aligned}$
[6] Kokotovik, P., "Method of Sensitivity Points in the Investigation and
Optimization of Linear Control Systems", Automation and Remote
Control, Vol. 25, No. 12, December, 1964.

$$
u(t)=-R^{-1} \hat{a} \hat{k}\left(t, \alpha_{0}\right) \hat{x}\left(t, \alpha_{0}\right)
$$

A simulation of such a closed-loop optimal control system is shown in Figure 1. It should be noted that in generating the trajectory sensitivity vectors $v_{i}\left(t, \alpha_{0}\right)$ knowledge of the plant parameter α ises, the control law generated in this fashion will be only an approximation to the optimal control law. Experience shows that this is generally a good approximation. Further, in any practical sity vectors will be generated. Thus all the infinite-order equasensitivity vectors approximated by finite-order equations.

$\frac{\text { Illustrative numerical example }}{\text { Consider the first-order system characterized by }}$

 $\dot{x}=-\alpha x+u$ Knoring that the parameter α is uniformly distributed on the interval $(0,2)$, it is desired to obtain the control u that minimizes the performance index $J=\int_{0}^{2} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2}\left(x^{2}+u^{2}\right) d t d \alpha$ Since this is an infinite time regulator problem, the matrix Riccati differential equation reduces to an algebraic equation. Truncating the Taylor expansion of $p(t, \xi)$ given in equation (22) afterRiccati equation (43) being

The approximate control, in accordance with equation (44), is

[^0]: *Numbers refer to publications listed in Section III.

