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FOREWORD

The work performed under NASA grant NGR-33-OI8-OI4 covered a wide

range of subjects which are coupled by the common theme of dual control.

Dual control is the problem of optimal control of a process under the

condition of incomplete information. Consequently, the problems of iden-

tification, adaptation, and sensitivity of optimal control systems were

investigated. The final report for this grant was divided into five

separate reports. These reports are as follows:

A. Learning Models for Adaptive System Identification

B. Adaptive Simulation Using Mode Identification

C. Sensitivity Design Technique

D. Bending Frequency Identification (Saturn Booster)

With a Digital Coherent Memory Filter

E. Pulse Rate Adaptive Tbzesho!d Logic Units

ix



CHAPTER I

INTRODUCTION

l.

i.i Approach

System identification is the process of experimentally determin-

ing the variable parameters of a model chosen to represent a physical

system. The purpose of this paper is to develop a method of system identi-

fication using pattern recognition techniques. This is achieved by exam-

ining the relationship between the problems of pattern recognition and

system identification. The general mathematical equations of discriminate

functions used in pattern recognition are very similar to the general

mathematical equations used for representing a system. Thus, a method of

system identification can be obtained by taking the techniques that have

been developed for solving problems of pattern recognition and applying

them in a corresponding manner to the general relationships that are

arrived at in system representation.

Consider a physical system with a single input and a single

output. The input-output relationship of this system can be described by

a functional 21. This functional represents a transformation from the past

system input and output and the present system input to the present or future

system output. If the relevant system past is represented by a set of N

measurements of the past system input and output_ then the functional can

be replaced or approximated by a transformation from the N space of such

measurements to the real line. This transformation can also be viewed as

a hypersurface in a N plus i space. Selecting the set of measurements to
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be used is only part of the process of choosing a model for the physical

system to be identified. The general form of the input-output trans-

formation for the model must be chosen to sufficiently approximate the

input-output transformation for the physical system. For a linear system,

the hypersurface of the transfo_lation is a hyperplsa_e. Thus, once the

model is chosen, system identification is a matter of determining the

variable parameters in the general form of the hypersurface.

The basic task in pattern recognition is to classify a pattern

on the basis of the attainable measurements. This is accomplished by

determining a transformation from the attainable measurements to the classi-

fication based on a training set of patterns. The transformation is

usually a set of surfaces, or discriminant functions, which separate the

patterns of the training set into their correct categories. These surfaces

are determined by first assuming a general form for the surfaces and then

iteratively adjusting these surfaces after observing their performance on

each member of the training set. This is called "nonparametric" training 13.

The analogy between pattern recognition and system identification

is clear. Both require the determination of a hypersurface. If measure-

ments taken from the normal operating record of the system output and the

past systems input and output are viewed as a sequence of patterns, then the

well developed techniques of pattern recognition can be applied. The

_-learning machine technique will be used here. The method is very general

and can be trained by responding to the error between the system output

and the _-learning machine output. Note that it is the viewpoint which is
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important because this viewpoint naturally leads to the use of techniques

from a seemingly unrelated field.

The goal here is to develop a general method of system identi-

fication for execution on a special purpose digital computer. The desired

characteristics for this method consist of the following capabilities:

Use in an on-line application;

Identification from the normal operating record of

io

2.

the system;

3.

4.

Control of identification error due to measurement noise;

Trade-off between computational complexity and speed

of identification;

5. Use of the _ _riori knowledge of the physical system.

The desired flexibility is achieved by using the _-learning

machine which is briefly explained in Section 1.2. The broad class of

system models that can be viewed as _-learning machines is examined in

some detail in Chapter II. Training procedures are developed in Chapter IiI

for an on-line tracking model identification scheme. These procedures

allow a trade-off between computational complexity, speed of identification,

and control of identification error due to measurement noise. In Chapter IV

simnlations for a wide variety of systems give a quantitative indication of

the characteristics of the identification scheme.

The description of the simulation programs and the techniques

used is given in the appendices.

1.2 _-Learning Machines

The term "_-learning machine" refers to the generic form of a

pattern recognition device. The general block diagram of this device is
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shown in Figure (l.1). The "pattern" is represented by a d-dimensional

vector X. The first operation is a transformation of the input vector X

into a vector F on _-space. Vector F is a set of linearly independent

functions fi(_). The coordinates in _-space are the elements of the vector

F. Specific examples of _-functions are:

i. Linear functions: fi(X) = xi i=l, ...d

,

k,_ = 1,...,d

,

nI n 2 nr

xk 2 "-" Xkr

Quadric functions: fi(X) has the form

and n, m = 0 and i

rth order polynomial functions: fi(X)

n m

for

has the form

for _, k2,...,k r = l,...,d and nl, n2,...,n r = 0

and i.

th
for r

If the original vector X was defined in a d-dimensional space

order polynomials, the vector F(X) : col. fl(X), f2(X), ...,fM(X)

is defined in an M-dimensional space where

d+r)
M = - i r = order of the polynomials (1.2-1)

r

The second operation is a weighted linear su_nation of the functions

fi(X). The function

M

: wi fi(x)
i=l

(1.2-2)

represents a linear transformation from the _-space to the real line and an

th
r order polynomial transformation from the original X pattern space.
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Equivalently, if the _-space and pattern space are augmented by the function

value _(X)_ the function represents a hyperplane in the augmented _-space,

th
and an r order polynomial surface in the augmented pattern space.

In the transformed space, or _-space_ _(X) is adjustable by

an iterative error correcting algorithm. Consequently_ the use of a trans-

formation to a nonlinear space considerably eases the conceptual and com-

putational difficulties in achieving a given hypersurface in the augmented

linear space. The general procedure is quite similar to that of multiple

14
regression where a least squares fit to a given surface is achieved.

1.3 Historical Review

System identification can be divided into two basic problems:

development of a mathematical model for a general type of process; and

identification of the unknown parameters of the model for a particular

process. A _ide variety of techniques for system modeling and identifi-

cation have been published. However_ the techniques of interest are those

that can identify from the normal operating record. In other words_ these

techniques do not need special inputs or other contrived situations.

The modeling of linear systems has become a part of the basic

knowledge of every engineer. Kalman 8 developed a technique to identify and

control a process which he called a self-optimizing control system. This

technique used pseudo correlation functions and was based on the theories

of linear systems and sampling. Levin ll has sho_n that a least squares

procedure is the "optimum" method for estimating an impulse-response in

the presence of Cuassian noise. The precision of impulse-response esti-

mation based on short_ normal operating records has been investigated by



Kerr and Surber9. This is achieved by computing an "expected error" based

on the input and the estimated variance of the measurementnoise. Jenkins

and Roy7 have developed an adaptive control system and applied it to the

control of a flexible booster. This method combinesdynamic programming

o

as applied to solving the control problem and the Kalman filter as applied

to state and parameter estimation. A learning method for system identifi-

cation based on the error correcting training procedure used in learning

machines has been investigated by Nagumo and Noda 12. This method identi-

fies the sampled impulse response of a linear system and is applicable to

cases where the random input signal is non-stationary or to the identifi-

cation of linear quasi-stationary systems such as adaptive systems, learning

systems, etc.

The development of models for non-linear systems has been some-

what disorganized. Most of the work has been for individual types of

processes. However, a general model for nonlinear systems with two level

inputs was developed by Roy and DeRusso 15. This model was based on the

tabular form for a functional. The application of pattern recognition to

system identification is not new, however the previous techniques required

large memories. Examples of these are the application of decision theory

by Roy and Miller 16 and of modal learning machines by Roy and Schley 17 .

A great deal of work has been done recently with the series

21 Wiener 2 showed thatexpansion of a functional developed by Volterra

any nonlinear system with finite settling time could be characterized by

a linear network which characterized the input past, followed by a zero

memory nonlinearity. This cascade of two operations is essentially a
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specific form of the functional approach of Volterra. This approach was

4
also studied by Cameron and Martin Analysis of nonlinear systems by

Volterra series has been treated in general terms by Barrett l, Brilliant 2,

and Smets 19 . Synthesis of nonlinear systems in like manner was the subject

of Van Trees 20, Shen 18, and Bush 3 • Bush developed use of multi-dimensional

Z-transforms for nonlinear discrete systems. A system identification

method for Volterra series models using a stochastic approximation tech-

nique has been reported by Kwatny s_id Shen lO.

A comprehensive statement of the state of the art of system

identification in automatic control systems was recently given in survey

papers by Cuenod and Sage 5 and Eykhoff 6. Cuenod and Sage discussed and

compared some of the principle computational problems and procedures in

system identification. Eykhoff investigated statistical estimation tech-

niques by comparing various methods.



CHAPTERII

SYSTEMREPRESENTATION

.

2.1 Introduction

Physical systems may be represented mathematically by a variety

of methods. The resulting mathematical model is based on a fundamental

set of assumptions about the physical system. Some of the assumptions that

can be made are: order of the system, settling time, sample data repre-

sentation, and type of nonlinearity. The model chosen should involve those

assumptions which best fit the _riori knowledge of the system and the

function for which the model is to be used. Whether the system is to be

treated as linear or nonlinear is the first consideration. Assuming

linearity greatly simplifies the model but may be inaccurate for other than

a small operating range. The type of nonlinearity postulated will govern

how complex the model must be for a given accuracy. In addition, a

sampled data representation is utilized if the system is to be controlled

digitally. Physical systems are usually of a low-pass nature making the

sample data representation very reasonable. The sampling rate must be

fast enough to preserve the characteristics of the physical system and to

allow the physical system to be controlled. The settling time of a system

is defined as the amount of past input history required to generate the

output to a desired degree of accuracy. Adopting a settling time requires

knowledge only of the transient response of the system, not its structure.

However, this approach generates a model that has a fairly large number of

parameters, such as the samples of an impulse response. The order of a



sample data system maybe viewed as the maximumnumberof delayed samples

of the input or output needed to determine the next output. Assumingthe

order of the system based on its physical structure yields a compactmodel.

Being of a fixed order, this model will not satisfactorily represent a

system of higher order because it is very dependent on the structure of the

system.

Based on his _ priori knowledge of the system or lack of it, the

designer must make the proper assumptions in view of the function for which

the model is to be used.

lO.

2.2 Volterra Series Expansion for Delay Line Representations

Consider the linear system of Figure (2.1). The output

is given by the convolution integral

y(t) = h(_) x(t -T) d_

y(t)

(2.2-1)

Clearly,

h(_) x(t - F) d'g" I

(2.2-2)

If

f°L Idt <
_0

then a bounded input to the system produces a bounded output.

is called "stable".

(2.2-3)

Such a system

The systems that will be considered here are those



x(t) I-
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systems which are called "stable".

Next, examine the nonlinear system of Figure (2.2).

z(t) = y2(t)

the output of the system is given by

--00 1_

Since

12.

(2.2-4)

= f_ f_ _c_-_)_)_c_-_) _c_-__._%
cO CO

If a two dimensional kernel h2(_l, _2) is defined as

h2(rl' :2) = hl(rl) hl(%)

then

z(t) = f_°° £_ h2(_l' _2 ) x(t -_l ) x(t -_2) d'q d_ 2

(2.2-5)

(2.2-6)

(2.2-7)

me t_oaimensional_ernelh2(q, r2) iscalle_a "re_Zar

homogeneous" functional of second degree. This kernel is "realizable" if

h2(_l, _2) = 0 for either _i or _2 _ 0 (2.2-8)

and "stable" if

-f2 , < ,_ (2.e-9)

Those functionals with realizable kernels are called volterra

kernels. Kernels of this type play an important role in the analysis I'19

and synthesis 18_20 of nonlinear systems.
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Next, consider the case where the nonlinear block is an arbitrary

continuous function

z(t) = f _(t)_ (2.2-i0)

The function f(y) can be approximated* by a finite order polynomial.

N

f(Y) _fN (y) -- _ ai yi (2.2-Zl)

i:l

Consequently zN(t ) can be expressed as

zN(t) = a 0 + aI __ _ hl(_ ) x(t - Z') d

oiIo. Ioo,i

or

N

zN(t ) = ao + _ ai _ec Z_ hi(_l_ "'_i_i) x(t__l)
• ,, • o , .

i=l _ oc

x(t-q) _i"" "_ti

where

i

hi(rl,...,_i) : fl hj(rj)
j=l

(2.2-12)

(2.2-13)

(2.2-14)

The Weierstrass Theorem assumes that a sequence of polynomials exist

which converge in a closed interval to f(y). For bounded functions,

this implies convergence in the mean. Thus, discontinuous nonlinearities

are excluded.
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If f(y) is analytic in a given region, then

expanded in a power series

f(y): _, bi yi + bO

and

_(y) can be

(2.2-15)

drl...dq +bo

Since the power series (2.2-15) will converge for all ly (t) [ _ e

functional power series will converge for all

(2.2-16)

the

Ix(t) I <
l h(_) d_

(2.2-17)

Systems which can be represented by a functional power series

2
with a nonzero radius of convergence are called "analytic systems". Although

the limit of Equations (2.2-13) and (2.2-16) are the same in the region of

convergence of the functional power series, Equation (2.2-16) is restricted

in its range of validity.

If the system was time varying, then Equation (2.2-13) would be

extended to the more general expression

N

zN(t ) = a0 + _.

i=l

a .... hi(t , _l,...,_'i) x(t- _i)...
i _

x(t-q) d_m.• .dr' i (2.2-18)

The systems which will be investigated are the class of nonlinear

systems whose output depends to an arbitrarily small extent on the remote
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past; in other words, finite settling time systems. Wiener 22 showed that

any nonlinear system with finite settling time could be characterized by

a linear network which characterized the input past, followed by a zero

memory nonlinearity. Dr. Wiener used a Laguerre network to produce an

orthogonal representation of the input past, then followed this network with

a set of Hermite polynomials which represented the zero memory nonlinearity.

This cascade of two operations is essentially a specific form of the

functional approach of Volterra. In this case, the values of the funetionals

depend on the values of a real function over a finite interval. The functions

are continuous and square integrable over a finite interval. This approach

was also studied by Cameron and Martin. 4

Consider the case where the representation of the input past

consists of a set of sample values. Thus

X(t) = input vector = col [xl(t)x2(t)... Xn(t)_

xi(t): x(t-

T = sampling interval

nT = settling time of system (2.2-19)

Furthermore, the input will be assumed to be piecewise constant

x(t) = x i (i-l)T _ t _ i T Ixil_ X
(2.2-20)

This type of input is inherent in a digital computer controlled system.

Under these assumptions, Equation (2.2-13) becomes 23

(2.2-21)
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where

t <mT

I" I"
klT kiT

aihi(t, _l..._Ti) d%-l...dT, mT m t < (m+l)Tl

_...k.(t)=

_ [ !('+l)_ I(ki+l)_,_"'" kit
aihi(t'Zl'"%) dq...dq

(m+l)T _ t (2.2-22)

m = max [_, k2, i..,ki_ j H0 = a0

M = f (ki+l)Tt forfor

k. _ m
i

If Equation (2.2-21) is expanded, taking into account the symmetry

of the kernels, then the form of the transformation surface is seen.

N n n

_(t) = _o + _, _ _ H_ . .ki(t)_'" /, . _k..._. 1
i=l _=i ki=ki_ I

(2.2-23)

Note that if N = i (linear system), the transformation surface is a hyper-

plane, for N = 2 a quadric surface, or in general, an Nth order polynomial

surface.

Equation (2.2-23) is the general form for the Volterra series ex-

psm_sion for delay line representations and can be used as an adaptive model

of a slowly time-varying plant. The parameters of the model can be obtained

by the training procedures discussed in Chapter III.
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2.3 Volterra Series Expansion for Difference Equation Representations

In Section 2.2, the physical system was modeled by a delay line

representation which was found by assuming a finite settling time for the

sampled system. In this section, the physical system will be modeled by a

difference equation obtained by assuming the order of the sampled system.

NTMWhen considering a _7 _ input, single output, order system without

impulsive components, the general time varying difference equation is

y(k) -- f(k, x(k-l),...,x(k-N), y(k-l),...,y(k-N))

x(k) = the input at the kTM sampling instant

y(k) = the output at the kth sampling instant

For the time invariant system, this reduces to

y(k) -- f(x(k-l),...,x(k-N), y(k-1),...,y(k-N)).

In the case of time-invariant linear systems, the general Nth

order equation becomes

N N

y(k) = _ a i y(k-i)+ _ b i x(k-i)

i=l i=l

(2.3-i)

(2.3-2)

(2.3-3)

with the corresponding Z-transform for these systems being

N -i

_-Tb i z

: i:l
N

i - ai z

i=l

(2.3-4)
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The system is stable if the zeroes of the denominator of Equation (2.3-4)

are within the unit circle in the Z-plane.

The Mth order Volterra series approximating Equation (2.3-2) is

M 2N 2N

i=l _=i ki=ki_ 1

x(k-q) for q _
c

q = _ y(k+N-q) for q > N

(2.3-5)

This is the form of the input-output transformation surface of the Volterra

series expansion of the difference equation. Multi-dimensional Z-transforms

exist for those nonlinear systems whose Volterra kernels corresponding to

the cross terms in x and y are zero. The multi-dimensional transform

for these systems is

_(Zl,...,zM) : (2.3-6)

M N N -k

7, 7, .-. 7, ._..._._z2..._._
i=l _=i ki=ki_ I

M N N _k i__y_7, _ _ _+_z_ z_
•"" /_j _+N,..., l

i=l _=i ki=ki_ I

These systems are stable if the zeroes of the denominator of Equation (2.3-6)

are within the unit hypersphere in Z space. Work on the classes of non-

linear systems that can be modeled by these techniques has been done by

A. M. Bush 3 and others.
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Equation (2.3-5) is the general form of this type of system

representation and can be used as an adaptive model of a slowly time varying

plant. The parameters can be obtained by the learning algorithm to be dis-

cussed.

2.4 Other System Representations

Representations put forth in the two previous sections are by

no means the only ways to model a system. Other models may be developed

by using the _priori knowledge of a particular physical situation to gain

special advantages.

The Volterra series expansions used are essentially multivariate

series in which the variables are raised only to positive powers. To

sufficiently model some physical systems with these expansions, it is

necessary to have a very large number of terms. A representation that in-

cludes negative powers of the variables can be used to model these more

difficult systems. Any multivariate power series containing inverse terms

(negative powers of any variables) can be changed into a ratio of two

Volterra series by finding a common denominator. This general form is

M N N

i=l _=i ki=ki_ I

Y : M N (2.4-i)

i=l kl=l ki=ki_ 1

gh'"'"ki

Xk'''Xk

A special type of model is formed from a set of transfer functions

followed by a linear or nonlinear combination network. An example is the

Laguerre network followed by the Hermite polynomials used by Dr. N. Weiner.
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An advantage of this method is that it provides output continuously but can

be trained on a sample data basis.

Polynomials are not the only type of nonlinearity that can be

used to model a physical system. If the range of the input and output of

the system is not the infinite interval, the nonlinear functions used can

be periodic or defined on only a finite interval. A multi-dimensional

Fourier series is an example of this approach.

2.5 Generalized Model

A generalized model that may be trained as a _-learning machine

will now be shown. The model includes all of the system representations

mentioned in this chapter as special cases. Let X be a vector represen-

ration of the measured system past input and output. The generalized model

is

u_T _a(x)
y(k) = (2 5-1)

i + vw _(x)

For training, the model must be viewed as a _-!earning machine. The

_-learning machine corresponding to Equation (2.5-1) is

y(k) = _(x, y) = w__F(_x) (2.5-2)

where

- - y(k)_(x)

The methods and properties of training this _-learning machine by error

correcting algorithms are the subject of the next chapter.
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CHAPTER III

TRAINING PROCEIJJRES

3.1 Introduction

Training procedures will be developed and studied in this chapter

for _-learning machines corresponding to system models with and without

inverse terms. The basic training procedure uses an error correcting

algorithm to train the _-machine. This algorithm iteratively adjusts the

weight vector of the linear portion of the _-machine based upon the normal

operating record of the system. 12 Several variations of the training pro-

cedure will be considered.

The training procedures use the following nomenclature:

th iteration
Yi = observed output of the system at the i

* .th
Yi = output of "optimum" model at the i iteration

A

Yi = output of learning model at ith iteration

U.

--i

X. = vector representation of system past input and output
--l

.th
at the i iteration for input to _-processor

th iteration
Z.l = _ (_i) = output of _-machine at i

= numerator weight vector of model at ith iteration

.th
V. = denominator weight vector of model at l
--i

W. = = weight vector of _-machine at 1
_vi

iteration

iteration

W. = "optimum" weight vector of _-machine

F(X) = col. _fl(X),.'-_fM(X)] = _-transformation



G.

--I

m.

--l

th
= numerator vector of _-functions for model at i

iteration

= denominator vector of _-functions for model at ith

iteration

F.

--l = ._ : _F(Xi)
Yi -Hi

= output of _-processor at ith iteration

T

II Fi --l F i (squared Euclidian norm)

a = convergence factor of algorithm

22.

The system model with inverse terms may be written as:

T
U. G.

^ --l --l (3.1-1)
Yi = v.T1- H.

--1 --1

The corresponding _-machine is

zi = U T G. + Yi V'T H. : W. T F.• --l --1 --l --1 --l
(3.1-2)

Both the system model without inverse terms and its corresponding _-machine

may be written as:

A : = W. T F. (3.1-3)
Yi z. =uTG.l --i -l -l -l

The sequence of steps in the basic training procedure is as follows:

1. Set the initial weight vector. A zero weight vector

is adequate.

2. Determine Yi and --_X'"

3. Generate _i' _i' and z..l



4. Calculate newweight vector using the following error

correcting algorithm

-Wi+l =--iW"+
a (Yi - I

Yi -Hi

5. Repeat starting with step No. 2 using next value of i.

23.

(3.l-4)

Figure (3.1) is a diagram of a model tracking system that can use

any of the training procedures in this chapter.

3.2 Geometric Interpretation and an Example

The basic training procedure generates a sequence of W.'s whose

components converge towards an accurate representation of the physical

system. The learning process can be viewed geometrically be representing

the weights as vectors in an Euclidian "weight" space. If a physical system

is adequately represented by a _-machine model, then the weight vector of

the _-machine model is the "optimum" weight vector in "weight" space. The

weight error vector is the difference between the "optimum" and the current

learning model weight vectors.

The output of the system is the scalar product of the "optimum"

weight vector and the vector output of the _-processor. Likewise, the out-

put of the model is the scalar product of the current model weight vector

and the vector output of the _-processor. The error of the _-learning machine

is the difference of the scalar products which is the projection of the

weight error vector on the vector output of the _-processor. The training

procedure then changes the current weight vector in order to correct the
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observed error. This is done by adding a multiple of the vector output of

the _-processor to the current weight vector such that the difference

between the observed model and system scalar products is zero.

The system shown in Figure (3.2) will be used to illustrate this

algorithm. The input-output relationship for this system is

The correct weight vector is col. (17, 17).

as

N

Assume an input sequence such

0 1 i i -4 2 -i 0 -i

Table I lists the results at each iteration. The sequence of

weight vectors is plotted in Figure (3-3). This sequence converges to the

correct weight vector. The weight vector error is the difference between

the correct weight vector and the _-machine weight vector. The sequence of

weight vector errors is also plotted in Figure (3.3). The difference be-

tween two successive weight vectors, _i+l - _i' is the projection of the

weight vector error, _i' on the unit vector in the direction of the input

vector X.. Therefore the weight vector error cannot increase. The weight
--i

vector error will remain the same, if two successive input vectors are

linearly dependent. The input vectors for

are examples of this.

3.3

is corrupted by additive noise

i = 2, 3 and for i = 5, 6

Error Botmds for General System Representations

Consider the system of Figure (3.4). The output of the system

N. W__ is the weight vector of the _-machine

(3.2-i)

0 i 2 3 4 5 6 7 8
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model which describes the system. The actual system output can be written

as:

y : w._ _F(X): L._F(X) (3.3-1)

Then the observed system output can be written as:

* T
Yi:Yi +Ni:_ -_F"+N._ (3.3-2)

For systems that are approximated by Equation (3.3-1) the truncated terms

of their representations are combined with the additive noise N. At the

•th
l iteration the additive noise N.

l
is the sum of the measurement noise

and the representation residual.

Let E. be the weight error vector.
--l

E_i :L - wi (3.3-3)

Convergence of the _-learning machine will be defined as E. approaching
--l

zero as i increases without bound.

A recursive relationship will now be developed for E. by com-
--1

bining Equations (3.3-3) and (3.1-4)

--Ei+l = --mE"-

a (Yi - zi )

IL(yili)ll
(3 3-_)

Eliminating Yi and zi with equations (3.3-2) and (3.1-2) yields
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_Ei+I = E.--1
(w__T F. + N. - W T^ ) F^-l i -i --Fi --i (3.3-5)

a
= E.

-l It-%II
W A

--1 1
w.T^ T ^F. - N V_. _H ) F.--i --l i i --l

where

a
-- E.

-l 11%11

G.
F. = .

--l (Yi + Ni)Hi

E_ T _. AF.
--_ --l --1

a

0

N. H.

l--l

A

Ni(1 - V. T Hi) F.
--:l.

: F +Z__;i__ (3.3-6)

Let

and

then

a 9. ^ T_Fi
A. =I-_
l --l

b = a

 -tll

/%

_El+I = A. E. - b. F.1 --l 1 --1

(3.3-7)

(3.3-8)

Consider the case of an exact model with no measurement noise

(N i = 0). Equation (3.3-8) reduces to

_Ei+I = A. E.1 --l
(3.3-9)

since b.
l

is zero.

Taking the norm of Equation (3.3-9) noting that F. = F.
--l --l

gives



--l l --l

2
a

FI . a(2- a)E

-i L llZ_lliI___Ii

R a(2 - a)

c- Ilall 11-_11
Let

a(2 - a) (Fi T El)2

_ = llallIi-_II -

where 0 L c. _ i since O_ a I" 2, then

i

I1 - + 11=,-i- ( -° )Ilall
j=l

F. F. T F. F. T] E.--l --l --I --l --l

32.

(3.3-10)

(3.3-11)

(3.3-12 )

Note that, since 0 _ ci _ i,

i

o <_ K (1- %) __i (3.3-13)
j=l

It will be assumed that c. never equals one because c. = i implies
1 l

immediate convergence, IIEi+l II = O. A necessary and sufficient condition

for the limit of Equation (3.3-12) to converge to zero as i increasesis

that the sum of the c. diverges.
l

c_D

2
j=l

C . = (_

0
(3.3-l_)
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Therefore, the input vector must probe the input vector space so that an

infinity of c. are nonzero. Also, the c.
l l

quickly. By Equations (3.3-11) and (3.3-14)

cannot approach zero too

= (_FZ_Ei)2

j=l

= _ (3.3-15)

Thus, the sequence of F.'s must probe its vector space in all directions
--l

infinitely often in the training sequence. Therefore, the sequence of X.'s
--l

must probe its vector space in both magnitude and direction.

If N. is not identically zero the _-learning machine may still
1

converge. However, this can happen only if the sequence of Ni's approaches

zero.

Consider the case of a model without inverse terms which has

measurement noise. Now b. is not zero, but _F i is zero. Equationl

(3.3-8) reduces to

_Ei+1 = A E. + b. F.--1 I --l
(3.3-16)

Taking the norm of Equation (3.3-16), noting that F. = F.
--l --l

and H. = 0 yields
--1

Ei+l = Ei l --i i -i i --l i Fi
(3.3-17)

i a(2-a)(_FiT _Ei)2 I a N i
(a N i + 2(a-l) F.T _El)

l

i

: II (i - cj)
j=l

i-1 i

j=l k=j+l

(i - Ck) + d.l
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where

aN.

= _ (a N + 2(a-l) _FiT El) (3.3-18)
di i

Assume that d. is bounded for all i, that condition (3.3-14) is satisfied,
l

and that there are only a finite number of c. less than a preset positive
l

constant.

_ I" e (3.3-19)di _ dmax, all i 0 _-_ c i

for N-1 values of

Equation (3.3-17).

i

j=l

i _ u_perbo_onIi_-illisfo_byoperatingon

+ I_ (l-°k
j=i k=j +l

i

_ (i- c±)llElll + dmax

j=l

i-N i+l-N

+_-l+ fl (i- e)
j=l k=j+l

i

_-7T(1-ci) _-ll+%ax
j=l

+ ej

j=l

(3.3-2o)

Taking the limit as i----_ gives

lIE ii_ dma x IN + i]

where

d
max

aN i

: maxL_ (a_i
+ 2 (a-l) __FITEl) 1

(3.3-21)
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This very conservative bound is dependent on the magnitude of the noise,

Ni, the convergence factor_ and the weight error vector. The bound de-

creases as these quantities decrease.

Consider the case of a model with inverse terms which has measure-

and _F i are not zero. Taking the norm of Equationment noise. Now b I.

(3-3-8) gives

aN.
3.

(_i (l--V*_-_i)- 2(l-a)_9i___i)

Let

ci = 1 - a(2 - a) ^ T )2,^l <
(3.3-23)

where 0 % ci _ i since 0 _ a I 2. Let

a N. aNi(l-V* T _.T Ei ) (3.3-24)d : _ (I-V* T _i )( -_i) + 2(a-J.) -__l ii- - -
Assume that this new c. still satisfies condition (3.3-14). This is

1

A

reasonable because the Equation (3.3-23) is Equation (3.3-11) with F.
--l

A

replacing F.. F should satisfy the same criteria that F. must satisfy
-m --i --l

for condition (3.3-14) to hold because F. is just F. that has been
--l --l

corrupted by Ni, the additive noise. Now
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i i-i i

II i - II -_-i+1: II(l-cj)II__1+ a. II (1-°k)+ d.j m

j=l j=l k=j+l

(3.3-25)

A upper bound on lIE II is found by operating on Equation (3.3-25)in the

same manner as on Equation (3.3-17). Making the assumptions of Equation

(3.3-19) on the new

this case.

c.m and d.l yields anupper bound for IIEeoll in

E oo _ dmax (3.3-26)

where

dmax = maxi 9 i (I_v.T _Hi)(aNi(l-v.T_ Hi) + 2(a-l) --l_'TEi)

--i

Only the definition of d. makes this bound different from Equation (3.3-21).
l

They both have the same properties.

3.4 Error Bounds for Volterra Series System Representations

A useful concept for nonlinear systems is the dynamic approxi-

mation of a system about an operating point. The approximation could be a

linear or a nonlinear system that is simpler than the physical system. This

section investigates how this approximation technique can be accomplished

with the _-learning machine for systems that can be represented by a Volterra

series.

The Volterra series system representations of Chapter II can be

written in the generalized form of Equation (2.4-1). Let X be a

N-dimensional vector representation of the system past input and output,

then
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(3.$-1)

where

N N

_x>=_o+Y,X...Y,
i=l _=l ki=ki_ I

N

,___>=,o+S S
i:l _=i

Ph,""ki _'"_i

N

l

ki=ki_ 1

(3._-2)

x = col. [_,...,_]

P(_) and Q(X) are called Volterra series or functional power series.

They can be expanded in a Taylor series about an operating point, _0. For

th
an r order expansion the remainder will be insignificant in some suffic-

iently small region about the operating point.

P(X) = P(X 0) + PR

r N N _i P(X)

+7 Y,.--Y, _,..., _x,.
i=l k.=l k.=k. J-

l l-I±
X o

(3.4-3)

0

( x__-< )...( Xki-% ._.)

q(_x) : Q(_x°) + QR

r N N _i Q(_X)

+Y,7... Y, ,...,
ki=ki_ 1 m X o

0 0

Now Equation (3.4-1) may be approximated by neglecting the remainder.
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y N

r N _ _i P(_X)
p(xO) + _, _, "'" _, ... _Xk.

i:i_:l _x_, ,ki=ki_ 1 l
X 0

r N N _i Q(X)

_xO_+7 7, ..- 7 _,_
i=i_=l '"" _kiki=ki_ 1 X o

__-x(>...c_-__

(3.4-4)

Equation (3.4-4) may be put in the form of a _-machine. Regroup-

ing the terms of Equation (3.4-4) so that the equation is a functional power

series in X instead of (X _ X0). Dividing the result by the constant

term of the denominator gives

r N N

_o+_ 2-.. S _\ .,_._..._.
_'" l 1

. i=l _=i k. =k.
l l-1 (3.4-5)

Y _ r N N

_+ _ ... _,...,_ %-"_.
l

i=l kl=l ki=ki_ l

where

PO

r N N

i=l _=l ki=ki_ I
_%k'"" _xk- (- ) "(-_)

i x0 l

r N N

_o_+_ 2-..
i=l kl=l ki=ki_ 1

_,... _. (- )...(-_.)
l x0 l

(3.4-6)
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Pl =

N

PN, • •.,N =

• ql =

%_..._N =

r QCx)

X o

N N _ i Q(X)
_x°/+__ ... _ _ ,...,_

ki=ki_ 1 i Xo

(-x_)...(-_i)

The "optimum" _-machine to model the system given in Equation

(3.4-4)is

z : _(x): _T _a(_x)+ y X.___(_x) (3.4-7)

where the "optimum" weight vectors are

(7)M : - J_ (3.4-8)

(1)(vl),L= "
• i

UM+ I vM

N

Ul : PO' "'"UM+l = PN, ...,N

vl : q1'"""'vM: %, ...,_
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and the _-function vectors are

_a(x): ,__(x): "

M+I

r

gl : l, g2 : _' g3 : x2'""gM+1: xN

r

hl--_, h2 : _,...,_ :

(3.4-9)

Consider those systems approximated by Equation (3.4-1) whose outputs are

corrupted by additive noise. The observed output of the system may be

represented by

.

Yi = w-_T --iF"+ PR + Yi QR + Ni
(3.4-10)

where N. includes the measurement noise and the error in approximating
l

the physical system by Equation (3.4-1). The error bounds of Section 3.3

can be applied to this case by substituting PR + Yi QR + Ni for N i in

Equations (3.3-21) and (3.3-26).

If PR and _R are identically zero_ the error bounds and other

results are the same as in Section 3.2. When PR and QR are not zero,

the system is being approximated by a lower order Volterra series than that

which describes the system exactly. The error bound of Equation (3.3-26)

for models with inverse terms becomes

where



d = max
max

i
(I-V, T Hi)(Ni+PR+y i QR ) a(l-V_,T H i

( i+P +Yi + 2(a-l)_9i - i

41.

The error bound of Equation (3.3-21) for models without inverse terms

becomes

E ec _ dmax (3.4-12)

where

d : max
max i

_(Ni + PR

+ Yi a + * QR)_QR ) (Ni + PR Yi

+2(a-1)

Therefore, the desired results of approximation of the physical

system by a simpler system can be achieved. The magnitude of the error is

controlled by the operating region of the physical system, the additive

noise, and the convergence factor.

3-5 A_IgorithmVariations

Once the model given by Equation (2.5-1) is chosen there are

many ways to solve for the weight vector. For an on-line training procedure

an incremental adjustment of the weight vector seems best. The new weight

vector is given by

_i+l : --iW"+ a /__iW. (3-5-i)

where _i' a, _W._l are the old weight vector, convergence factor, and

weight vector increment respectively. As the convergence factor a is de-

creased from unity, the adaption process will be slowed. Thus, the weight
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vector will be affected less by noisy measurements. This should reduce

steady state weight vector error and the sensitivity to noise. However,

the rate at which the model can follow a time varying system will also be

reduced. The weight vector increment is to be calculated from measurements

(Yi' Xi) taken from the operating record of the system. These measurements

are transformed into (Yi' Fi) the measurement output of the system and

the _-functions of the model. The error-correcting procedure of Section 3.1

was chosen for its simplicity in using only the most recent measurement

for calculating the weight vector increment. This section investigates the

factors involved in choosing a more complex learning algorithm.

An algorithm more complex than the error correcting algorithm

may use multiple sets of measurements. The choice of such an algorithm will

involve a trade-off between computational complexity and accuracy or rate

of adaption. The factors of concern in computational complexity are storage_

time and processor complexity. The method and equipment used will determine

the accuracy with which the system can be modeled. They will also determine

how fast the model can track a time varying system.

Consider the problem of finding the weight vector increment based

on the stated values of the measurements from N selected data points. Let

these measurements be denoted by

F j --i, (3.5-2)
Yj' --j

.th

The output of the present model corresponding to the j system output yj

is given by



z. : w. F. (3.5-3)
j --z --j

43.

This problem can now be expressed as trying to find the best solutions for

/k W. to the following set of simultaneous linear equations
-i

yj - z.j = /kW.T_z --JF" j = i, N (3.5-4)

The solution to this problem is not unique unless the F.'s form a basis
--j

for the _-space. That is_ if the determinant of the matrix formed by the

vectors F. (j = i, N) is non-singular. This is true if and only if
--J

_-space is an N-space and the F. form a linearly independent set of
--j

vectors. The error between the present model output z. and the system
J

output yj can be viewed as the projection of the current weight error

vector E. = W., - W. onto the _-function vector F..
--m -_ -z -J

• E. T
yj - zj :_m --JF" (3-5-5)

The weight vector increment must be a linear combination of the F.'s
--j

because the components of E. in directions other than the F.'s (if any)
--l -J

are unknown. Therefore, the weight vector increment is given by

N

AW_i= _ c.F.j--j

j=l

(3.5-6)

If the F.'s are linearly independent and _W. is assumed to
--j --l

be a linear combination of the F.'s, then the solution to Equation (3.5-4)
-j

becomes unique. If the F.'s are not linearly independent, the c.'s may
--j J

be picked on basis of a minimum square error procedure or a similar method.

Such a method can be derived to suit special purposes from techniques

developed in the literature for mathematical programming.
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The choice of an algorithm depends on the nature of the process

and the requirements placed on the identification scheme. There are

several factors that can be varied during the execution of the training

procedure. These factors are convergence factor, number of data points,

and the method for calculating the weight vector increment. "Convergence"

for all these variations is guaranteed by simple extensions of Section 3.3.

The simplest extension of the error correcting algorithm would be to iterate

the error correcting algorithm on several data points between measurement

times. The next step would be a projection algorithm to calculate the

weight vector increment based on a set of linearly independent F.'s.
--j

Finally, a weighted least squares procedure is the most complex algorithm.

The error correcting algorithm and the projection algorithm have been

simulated. The results are given in Chapter IV for a variety of processes

and conditions.

3.6 .ProjectionAlgorithm

The training procedure when using the projection algorithm will

follow the sequence of steps in Section 3.1 with the error correcting

algorithm of Step 4 replaced by the projection algorithm. The projection

algorithm will take the new (Yi' _i ) and add it to the set of stored

(Yi' _i )'s previously received. The set of vectors will be adjusted so

that it is still linearly independent. Then based on the current weight

vector W. and the stored (Yi' _i )' the projection algorithm will cal---1

culate the weight vector increment, ,_W..
--!
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First the projection algorit_ml must determine if the new F. is
m l

linearly independent of the stored F.'s. The stored F.'s are a linearly
--l --l

independent set by definition and therefore form a basis of a sub-space

in _-space. Let this basis be denoted by _ •

The projection matrix _*

(3.6-z)

for this sub-space will project any vector in

_-space onto the _ sub-space.

Ai/* = _l/( li/T ]_/)-i _T (3.6-2)

F. is linearly independent of the stored F.'s only if the projection of
--1 --l

F I onto the _ sub-space doesn't equal F • However, if the difference

between F. and its projection is very small, the F. will be considered
--l --l

linearly dependent in order to avoid numerical difficulties in computation.

Therefore, F. will be considered linearly dependent if
--l

(3.6-3)

In such a case one or more stored (Yi' _i )'s will be discarded so that

Equation (3.6-3) is no longer satisfied. Since _i is now linearly inde-

pendent of the stored F.'s, (Yi' _i ) will be added to the set of stored--l

(Yi' Fi)'s" Let Y be the vector of stored

the corresponding F.'s in the _ matrix.
--l

The weight vector increment _i

and (3.5-6) which can now be written as:

Yi'S in the same order as

must satisfy Equations (3.5-4)

Y - _I/T W. = _I/T _W. (3.6-4)
-- --l --3.
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AW. = _ c (3.6-_)

These equations can be solved for the vector c

necessary combination of stored _Fi's in A W.._I

c : ( _ T )-z(_y_ _ _wi)

which indicates the

The desired _W i is obtained by substituting

A W i = _.( _T_ )-i (_y_ 9T Wi)

c back into Equation (3.6-5).

(3.6-6)

Thus Equation (3.1-4) can be replaced by

Wi+l : --IW"+ a _( _T_)-l (_y . _T Wi ) (3.6-7)

The vector equation for the observed system output corresponding

to Equation (3.3-2) is

_Y: _i,T w. +_N (3.6-8)

Equation (3.6-6) becomes

z_w. : _( _ @)-i @_(w. - wi) + y( Y_ 9) -I__

--T* E. + T(_ _)-i

(3.6-9)

A W. is the projection of the weight error vector onto the sub-space plus

an error due to measurement noise and modeling error. Hence, this method

is named the projection algorithm.
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SINULATIONSOFMODELTRACKINGIDENTIFICATION
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4. i Introduction

The model tracking system of Figure (3.1) was simulated on an

IBM 360/50. _qe input to the plant in Figure (3.1) was selected in one of

two ways for each of the identification runs. A single sample of uncorre-

lated noise from a digital Gaussian noise generator was used as the input

for those runs made to determine the ability of the technique to identify

a particular system under given conditions. The effects of identification

and control on each other were investigated by computing the input neces-

sary to force the learning model output to follow a desired trajectory.

This input was computed at each iteration and applied to the plant. The

additive noise in Figure (3.1) was provided by the digital Gaussian noise

generator and was independent of the input noise sequence. In order to

achieve a desired correlation, the additive noise was passed through a

first order filter. After each iteration of the training procedure, the

 ootor (ll  ll/liw.ilY o ror 

tween the outputs of the plant, the learning model, and the "optimum" model

were computed.

The system identification technique was tried on a linear time

invariant system, a linear time varying system, and two nonlinear systems.

An underdamped second order linear system was used to study the effects

of varying the convergence factor a, the standard deviation (y" of the

additive noise, and the first order correlation _ of the additive noise.
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_le system used had a damping ratio of .02 and a natural frequency of one

radian per second and was sampled at one second intervals. A five state

model of the Saturn booster was used to test the ability of the technique

to follow a time varying plant. A description of the booster model can be

found in Appendix B. The discrete plant matrices were computed from the

continuous plant matrices at one second intervals for a sampling interval

of one tenth of a second. Figure (4.1) shows the cubic and inverse systems

which are the two nonlinear plants used to stud_v the ability of the

technique to identify nonlinear plants. The cubic system is two first

order linear systems separated by a pure cubic nonlinearity. The inverse

system is the second order underdamped linear system preceded by a non-

linearity which is the ratio of a fifth order polynomial to a fourth order

polynomial which has no real roots. The inverse system was also used to

study the dynamic linearization of a nonlinear plant.

The results of the simulations are divided into two groups:

those for which the optimum model is stationary and those for which the

optimum model is non-stationary. The normalized weight vector error was

plotted on a logarithmic scale. This was done to emphasize small values

of the normalized weight vector error and to transform the curves which

should be exponentials into straight lines.

4.2 Results for Stationary "O_timum" Models

In order to provide insight into how the technique searches for

the correct weight vector, a twenty tap delay line model was used for the

second order linear system with the error-correcting algorithm of Section 3.1.



x(t)

i 1 y(t)

CUBIC SYSTEM

x(t)
gC" )

g(x)
$2+ 0.04S + I

y(t)

g(x)=
0.2x + 1.2x 5 + 0.04x 5

1.0 +l.04x 2 + O.04x 4

INVERSE SYSTEM

FIGURE 4.1
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The "optimum" weight vector is the sampled impulse response of the system.

The components of the "optimum" weight vector and the actual weight vector

after five, ten, twenty, and forty iterations are plotted in Figure (4.2)

versus their position on the delay line. This plot shows that the compc_

nents of the actual weight vector approach the sampled impulse response quite

quickly, although not monotonically. Both the plant and the model outputs

are plotted in Figure (4.3) versus the number of iterations or elapsed time

in seconds. This reveals that the learning model tracks the system to the

accuracy of the graph (0.013) after eighty seconds. The normalized weight

vector error plotted in Figure (4.4) decreases exponentially in Figure (4.4)

until a lower limit is reached at about 0.02. This limit is the result of

the error between the plant and the "optinmm" model outputs which has arms

value of about .02.

The second order system was identified with three configurations

of the model tracking system. First, the error correcting algorithm was

used with the twenty tap delay-line model. Then the error correcting

algorithm was used with a second order difference equation model. Finally,

the projection algorithm was used with the difference equation model. All

three situations were simulated for a wide variety of conditions. The con-

vergence factor a, the standard deviation of the additive noise _ , and

the correlation of the additive noise _ were given values of 1.O, 0.5,

0.25; 0.0, 0.O1, O.1, 1.O_ 0.0, 0.5, 0.707 respectively. Identification

runs were made with the weight vector initialized both to zero and to the

"optimum" weight vector for _ possible combinations of a, _, and
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Figures (4.5) through (4.11) are plots of data selected from these identi-

fication runs. Table II contains auxiliary information about these runs

and the identification of the curves. Generally, the normalized weight

vector error approached a limiting value as the time increased and oscil-

lated about it. The normalized weight vector error curves are plotted in

pairs. The first curve is for W 1 = O and the second curve is for

_WI = W,. The pairs of curves approach a mutual asymptote. The W_I = W_

curves approach the asymptote more quickly than the W_l = O curves.

Therefore_ the mean normalized weight vector error for the W. = W__ curves

closely approximates the mutual asymptote of the pair of curves.

The effect of increasing _ was to increase the asymptote of

the normalized weight vector error curve. However, this increase was

slight in most cases. Figure (4.5) shows the results for the most sensi-

tive case.

Figures (4.6)_ (4.7) and (4.8) show the effects of increasing

the standard deviation _ of the additive noise. The asymptotes of the

curves are approximately proportional to the standard deviation O_ . The

step in curve E of Figure (4.6) is due to the zero initial conditions of

the plant. The modeling error caused by having only twenty taps on the

delay line is zero until after twenty seconds and then it has arms value

of 0.0146. The asymptotes for a given O_ are greatest in Figure (4.8)

and least in Figure (4.6). The difference equation model with the error

correcting algorithm is only slightly more sensitive than the delay line

model with the error correcting algorithm. The difference equation model
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TABLE II

AUXILIARY INFORMATION ABOUT IDENTIFICATION OF THE

LINEAR, SECOND ORDER UNDERDAMPED

E1 = RMS error between Yi and Yi

E2 = RMS error between zi and Yi

.
E3 = RMS error between Yi and z.l

E4 = Mean normalized weight vector error

FIGURE 4.5 Difference Equation Model, Error Correcting

Algorithm, a = 1.O, O_= O.1

Plot _ El El E2 E3 E4

A 0.0 0 .1002 .2016 .1809 .2313

B 0.5 0 .1003 .2071 .1866 .2392

C 0.707 0 .1008 .2258 .1957 .2552

D 0.0 W, .1002 .1560 .1232 .1125

E 0.5 W. .i003 .1625 .1278 .1241

F 0.707 W, .1008 .1823 .1388 .1532

FIGURE 4.6 Delay Line Model, Error Correcting Algorithm,

a = 1.0, _ = 0.00

Plot _- _l E1 E2 E3 E4

A 0.0 0 .01459 .1534 .1528 .1864
J

B O.O1 0 .01785 .1549 .1532 .1871

c o.! o .ioi5 .2184 .1851 .2168

D 1.0 0 1.003 1.486 1.042 1.065

E 0.0 W, .01459 .02103 .01355 .01277

F O.O1 W, .01785 .02647 .01717 .01607

G 0.i W, .1015 .1499 .1040 .1043

H 1.0 W, 1.003 1.471 1.029 1.041
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TABLE II (Cont 'd)

Plot

A

B

C

D

E

F

G

H

FIGURE 4.7 Difference Equation Model, Error Correcting

Algorithm, a = 1.0, _ = 0.0

O" W 1 E1 E2 E 3 E4

0.0 0 9.154E-7 .1409 .1409 .2039

O.O1 0 .01002 .1405 .1406 .2040

0.i 0 .i002 .2016 .1809 .2313

1.O 0 1.002 1.555 1.231 1.140

0.0 W. 9.154E-7 9.235E-7 i •051E-7 6.695E-7

0.01 W. .01002 .01560 .01232 .01125

0 .i W_. .1002 .1560 .1232 .i125

1.O W__ 1.002 1.560 1.232 1.125

FIGURE 4.8 Difference Equation Model, Projection

Algorithm, a = 1.0, _ = 0.0

Plot

A

B

C

D

E

F

v_

O _ W_l _i _ E o

0.0 0 9.154E-7 .06102 .06102

0.01 0 .01002 .9094 .9091

0.i 0 .i002 9.073 9. 070

0.0 W_. 9.154E-7 2.289E-5 2.293E-5

O. 01 W. .01002 •9072 •9070

0.1 W_. .1002 9.073 9.070

E),

.1395

•8752

8.641

2.084E-5

•8640

8.640



FIGURE4.9

TABLEII (Cont'd)

i "

Delay Line Model, Error Corrective Algorithm,

_= O.1, _= 0.0 .....

Plot a E1 E1 E2 E3 E4

A 1.0 0 .lO15 .2184 .1851 .2168

B 0.5 0 .1015 .2619 .2415 .2979

C 0.25 0 .1015 .4093 .4026 .4381

D 1.0 W__ .1015 .1499 .1040 .1043

E 0.5 W. .1015 .1185 .0511 .05958

F 0.25 W. .1015 .1084 .03244 .03422

57.

FIGURE 4.10 Difference Equation Model, Error Correcting

Algorithm, O_= 0.i, _ = 0.0

Plot a _i E1 E2 E3 E4

A 1.0 0 .1002 .2016 .1809 .2313

B 0.5 0 .1002 .2028 .1866 .2876

C 0.25 0 .1002 .2679 .2599 .4044

D 1.O W. .1002 .1560 .1232 .1125

E 0.5 W__ .1002 .1199 .07438 .05808

F 0.25 _. .1002 .i109 .O_ .uo6i3

Plot

A

B

C

D

E

F

FIGURE 4.11 Difference Equation Model, Projection Algorithm,

O_= 0.01, _ = 0.0

a _i E1 E2 E3 E4

1.0 0 .01002 .9094 .9091 .8752

0.5 0 .01002 .5272 .5272 .5249

0.25 0 .01002 .3284 .2860 .3767

1.0 W. .01002 .9072 .9070 .8640

0.5 _. .01002 .5242 .5242 .5037

0.25 W. .01002 .3197 .3197 .3374
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with the projection algorithm is much more sensitive than either of the

other combinations. The convergence rate is exponentialuntil the asymp-

tote is reached and is nearly independent of O-- The convergence rate

for the difference equation model with the error correcting algorithm is

twice as great as that for the delay line model with the error correcting

algorithm. As expected, the convergence rate for the difference equation

model with the projection algorit_ is much greater than the other combin-

ations. Thus, a greater sensitivity to noise accompanies the faster con-

vergence.

Varying the convergence factor a gives the results in Figures

(4.9), (4.10), and (4.11). The asymptotes and the convergence rate are

both approximately proportional to the convergence factor for all cases.

Table II reveals that decreasing the convergence factor provides some

control over the identification error. For the cases using the error

correcting algorithm_ the rms error between the outputs of the plant and

the learning model approaches the value of _ as a decreases. The rms

error between the outputs of the "optimum" model and the learning model

becomes less than the value of _ , as a decreases. Thus, the effects

of additive noise can be averaged.

The normalized weight vector error plots of Figure (4.12) result

from requiring the learning model to follow the random signal used for

the input in the previous runs. The convergence rate is slightly less than

that for corresponding identification runs. Runs with _= O.1 were made

for a = 1.0 and a = 0.5. The asymptote of the normalized weight vector

error curve for a = 1.0 was twice as great (0.04) as that for a = 0.5 (0.02).
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Another indication of the noise controlling ability of the convergence

factor is given in Figure (4.13). The rms error between the outputs of

the plant and of the learning model approaches the value of o_ more closely

for a = 0.5 than for a = 1.O. Thus, choosing the input based on the

learning model does not affect the learning characteristics of the identi-

fication.

The cubic system was identified using the error correcting

algorithm and a second order cubic difference equation model. This model

has only eighteen weights. The results of the identification are shown in

Figure (4.14). The convergence rate is about half that of the delay line

model for the second order system using the error correcting algorithm.

This is probably due to the limited range of the input. Again, the

asymptote of the normalized weight vector error curve decreases with the

convergence factor.

The inverse system was identified with the model tracking system

using two combinations of models and training algorithms. The error cor-

recting algorithm was used with an exact difference equation model which

had thirty-six numerator weights and eight denominator weights. The pro-

jection algorithm was used with a second order difference equation model.

This second order model is the model used for the linear system with a

constant term added to represent the offset of the operating point.

Figures (4.15) and (4.16) reveal that the first case had much

slower convergence than any other case tested. This slow convergence may

be due to either the inclusion of inverse terms or the limited range of

the input.
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For the second case, the plant was identified for various ranges

of operation about an operating point, x • _is was achieved by multi-
o

plying the usual input noise sequence by a constant and adding another

constant. Based on the nonlinear function of the inverse system, four

operating points were chosen. They are: x = 0.0 and x = 1.5 (the
O O

maximum and minimum points of the slope of the nonlinear function)_ and

x = 0.75 and x = 6.75 (the unity slope points of the nonlinear
O O

function). The second derivative of the nonlinear function is nearly

maximal at x = .75 and minimal at x = 6.75. The normalized weight
O O

vector error curves in Figures (4.17) through (4.20) show that pertur-

bations of approximately .O1 yield the best operating range for this case.

If the perturbations about the operating point are too small, the pro-

jection algorithm will not be able to form a full set of linearly inde-

pendent F. 's. However, if the operating range is too large, the modeling

error will keep the learning model from accurately approximating the

linearized plant. The results are poorest at xo = .75 where the charac-

teristics of the linearized plant change the most over the operating range.

Thus, the best operating range depends on the operating point and the

degree of nonlinearity at the operating point. The convergence rates are

about half that for the linear second order system examples. Therefore,

the model tracking identification has linearized the system.

4.3 Results for Non-Stationary Optimum Models

Two non-stationary situations were considered. In the first case,

the model tracking system with the second order difference equation model

and the projection algorithm was used. Based on the linear model, the plant
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was made to follow a few trajectories. For the second case, the bending

mode of the booster was identified given a difference equation model for

the rigid dynamics.

Three trajectories were used in the test: a series of steps,

two truncated ramps, and a noisy sinusoid. The noisy sinusoid was a

sinusoid of magnitude five added to the standard noise sequence with a Cr-

of 0.i. The resulting normalized weight vector error curves are in Figure

(4.21). Figures (4.22), (4.23), and (4.24) are plots of the actual and

desired plant outputs. When the learning model is a poor representation

of the system, the control will cause considerable deviation from the de-

sired trajectory. This behavior will normally be oscillatory thereby

providing sufficient information to identify the system. This is especially

evident in the noisy sinusoid case. Thus, it should be possible to design

a dynamic linearization identifier which can be used in the control of

nonlinear plants over slowly varying trajectories.

The bending mode of the booster was identified using the model

tracking system of Figure (4.25). Note that measurement errors are

introduced by the use of a difference equation model for the rigid dynamics.

The output of this model does not always agree with the actual rigid body

states. Thus, when they are subtracted from the gyro measurements, an

error is introduced. The learning model was initialized to the nominal

bending model for 4.0 seconds after liftoff. Identification runs were made

both for nominal bending and for bending with the natural frequency reduced

to eighty per cent of nominal. The normalized weight vector error curves

obtained using the error correcting algorithm are in Figures (4.26) and (4.27).
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The curves rise because the error correcting algorithm cannot keep up with

the rate of change of the booster. The results for the projection

algorithm are in Figures (4.28) and (4.29). The peaks are due to the

sensitivity of the projection algorithm. The controlled booster had very

smooth trajectories making identification very difficult. Due to the large

amount of computer time needed for this type of run_ no attempt was made

to maximize the performance on this example. However, it can be seen from

the methods used that a compromise of these methods should provide the de-

sired identification of the bending.
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CHAPTER V

CONCLUSION

88.

5.1 Conclusions

By observing that the output of a system can be represented by

a functional, a method of system identification has been developed using

the pattern recognition technique of _-learning machines. The functional

can be approximated by a transformation from the operating history of the

system to the output of the system. Viewing this transfol_mation as a

hypersurface in a N-dimensional space facilitates the use of the pattern

recognition technique to identify the hypersurface. The approach yields

a very general method of system identification.

The designer must choose a model for the physical system based

on his _ priori knowledge of the physical system and the situation in

which the identification is to be used. Any model that can be expressed

in the general form of Section (2.5) may be used with the training pro-

cedures of Chapter III. This general form includes models based on delay

line and difference equation representations for the physical system.

These models can be linear or nonlinear and may include inverse terms.

The ability of the learning technique to identify the physical

system from its normal operating record was verified by the use of the

model tracking system in Chapter IV. Table III is a summary of the experi-

mental results discussed in Chapter IV.

Both analytical and experimental results imply that the learning

technique has certain characteristics. First_ the use of a simple model

for a complex plant at an operating point is feasible. Second, by the use
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of the convergence factor_ speed of identification can be sacrificed for a

greater accuracy of identification. Finally_ the magnitude of the identi-

fication error IIE_ II is proportional to the variance of the additive noise.

The trade-off between computational complexity and speed of

identification comes down to choosing a method of approximating a solution

to Equation (3.54). Two methods tried were the error correcting algorithm

and the projection algorithm. The projection algorithm was developed as

an extension of the geometric concept, of the error correcting algorithm.

Among the possibilities of improving the identification technique would be

the use of techniques which computed the weight vector increment based on

a large set of data points in order to lessen the effect of additive noise.

Another possibility would be the scaling of the fi(_) to improve the

searching for the weight vector.
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APPENDIX A

Computing ( _T _)-l

The basis is formed by adding a column and possibly removing one or

more columns from the previous basis. Therefore, it is possible to save

a considerable amount of computational effort by using the value of the

old ( _T _)-l in finding the value of the new ( _T _)-i. This can

be done by examining the inverse of a general partitioned matrix. Let

M be a general partitioned matrix.

M = (A.1)

d

Then if M-I is partitioned in the same manner, the result is

(A.2)

where

A : (a - bd-I c)-I

B = - Abd-I (A.3)

C = - d-I cA

D = d-I - d-I cB

Consider the case of appending a column

Yi+1 --(_F,_i)

_F to "_i"

(A.4)
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Dj

(A.5)
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A

-- - i _I'i)_q;

s = - ___ _i (_iT _l'i)-i

c : - (x_J _i )-i_i_ _FA: _ (A.6)

n : (_i_ _i)-i _ (_i_ _i)'i_i _ __

= (_i_ _i)-i+ s_ _-i

This can be easily computed on a digital computer.

Consider the case of removing a column F from

_Fi : (L _i+i)

E JA B

C D

-i

(A.7)

(A.S)
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D : (@i+lT _i+l)-I+ B_ BA-I

)-1 BT(_i+3 Ti+l : h - BA-1

(A.9)

Again_ this is easily computed on a digital computer.
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APPENDIX B

Five State Model of the Saturn Booster

The matrix differential equations for the five state model of the

Saturn Booster are given below. The first three states are: pitch _,

pitch rate _ and angle of attack G. These states describe the angular

motion of the rigid body in radians for the pitch channel about a nominal

trajectory. The last two states are normalized bending _ _ and normalized

_. These states describe the first bending mode as measuredbending rate

in meters at the engine gimble point.

0 i 0 0 0

0 0 A23 0 0

A31 i A33 0 0

0 0 0 0 i

o o 0 A54 A55

0

B 2

£d

m

f 0 0 .015 0 1

0 i 0 0 •007 X

0 0 i 0 0

The variable elements of the matrix equations are plotted in Figures (B.I),

(B.2), (B.3).
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APPENDIX C

Simulation Programs

The sinTalations of the model tracking system presented in Chapter IV

were performed using several variations of a single program. The flow

chart for all of these variations is in Figure _u.±j _n_ee -'_ ....÷_

were used. The GAUSS subroutine provided independent sequences of digital

gaussian pseudo noise with desired mean_ variance, and auto-correlation.

The PATTERN subroutine calculated the G and H vectors from the input

and output history. This subroutine is the _-processor of the learning

model. The LEARN subroutine calculates the new weight vector. The flow

charts of the LEARN subroutine for the error correcting algorithm and the

projection algorithm are in Figures (C.2) and (C.3) respectively.
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EXIT

READCONTROLCARD

_-_ IPASS = IPASS + I I

ENTRY

PROGR_ INITIALIZATION

READRUNPARAHETERS

READCASE PARAHETERS

PRINT CASEIDENTIFICATION

INITIALIZE: NOISE GENERATORS

DATA ARRAYS

IPASS = I

NO

PRINTOUTDESIRED?IPASS_ NXPRNT

NO

DONE?

YES

IPASS_NPASS

DETERHINEPROCESSINPUT, CALLGAUSS(I)

DETERHINEF, CALLPATERN(2)

CALCULATE:LEARNINGMODELOUTPUT,

OPTIMUMLEARNINGMODELOUTPUT,

MACHINEOUTPUT,AND
NOI_4ALIZED WEIGHTVECTORERROR

DETERHINEPROCESSOUTPUT

DETEf_IINEMEASURE.HENTNOISE, CALL GAUSS(I)

DETERMINENEWWEIGHTVECTOR,CALL LEARN(3)

COMPUTESQUAREDERRORS

COMPUTERHSERRORS

UPDATENXPRNT

PRINT: IPASS, PROCESSINPUT,
ALL OUTPUTS, AND
RMSERRORS

PRINT: FINAL WEIGHTVECTORANDRMSERRORS

PUNCH:PLOTTINGDATA

(I) SUBROUTINEGAUSSIS THE NOISE GENERATOR

(2) SUBROUTINEPATERNIS THE_-PROCESSOR
(3) SUBROUTINELEARNIS THE TRAINING ALGORITHM

FIGURE C.I FLOWCHARTOF

MODEL TRACKING IDENTIFICATION PROGRAMS
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ENTER

G_VEN:F, W_a, y_, z_,llFIt

!!F!!=0

NO

YES
RETURN

I

CALCULATECORRECTIONCONSTANT

CORREC= a* ( yi-zi )/ilFII

CALCULATENEWWEIGHTVECTOR

W-- W + CORREC* F

I RETURN

FIGURE C.2 FLOWCHART OF

LEARN SUBROUTINE FOR ERROR CORRECTING ALGORITHM
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L

RETURN

_ lIF_.ll= 0 k
ENTER(I)

GIVEN: F_, W, a, Yi' zi'llF_l, EPS, MAXAGE,NACTIV

DETERNINE COLUMN
TO BE REHOVED
FROM

SET I REMO

I UPDATEIAGE
FIND OLDESTSTOREDDATA(2)

"-_ SET IREMO= POSITION OF OLDESTDATASET IMAX= IAGE(IREMO)

, •

} "°IMAX>_MAXAQE '

YES

CALCULATENEW(_I/'T'_I/) -I BY EI_UATIONA.6

RENOVlNGCOLUMNCORRESPONDINGTO IRENO
NACTIV = NACTIV - I

NO

*11_FII
CALCULATE: C = (_I/ T_I/')-I ,i_t,TF_,IIC__II,&I_C-FII

I CALCULATE NEW (_I/T_I/')I BY E_ATION A.9

APPENDINGTHE NEWDATAF.
NACTIV = NACTIV + I

STORENEWDATA_F& Yi IN_ & Y_.

I YES

NACTIV _ NNAX

YES

CHECK AND CORRECT (_I/T_I/)-I

APPLY ('_I/T'_I/')-I = ('_I,/'T'wI/)-I(I- ('_I/T_/')-I ) E

UNTIL lJE IICEASES TO DECREASE

M_ERE E = ('wI/T'_'/) ( _,T_/.)-I _ I

I
C_CULATE NEWWEIGHTVECTOR

W : W + _ ('_I/'T'_/")-I ( y _,_/T_w)

(I) ALL ARRAYSARE INITIALIZED TO ZEROBY MAIN PROGRAM

(2) IAGE(J) IS THE NUMBEROF ITERATIONSSINCE THE CORRESPONDINGDATAWASSTORED

FIGURE C.3 FLOWCHART OF

LEARN SUBROUTINE FOR PROJECTION ALGORITHM


