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FOREWORD

The work performed under NASA grant NGR-33-018-0Ll4 covered a wide
range of subjects which are coupled by the common theme of dual control.
Dual control is the problem of optimal control of a process under the
condition of incomplete information. Consequently, the problems of iden-
tification, adaptation, and sensitivity of optimal control systems were
investigated. The final report for this grant was divided into five

separate reports. These reports are as follows:

A. Learning Models for Adaptive System Identification
B. Adaptive Simulation Using Mode Identification
C. Sensitivity Design Technique

D. Bending Frequency Identification (Saturn Booster)
With a Digital Coherent Memory Filter

E. Pulse Rate Adaptive Threshold Logic Units

ix
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CHAPTER I
INTRODUCTION
1.1  Approach
System identification is the process of experimentally determin-
ing the variable parameters of a model chosen to represent a physical
system. The purpose of this paper is to develop a method of system identi-
fication using pattern recognition techniques. This is achieved by exam-

ining the relationship between the problems of pattern recognition and

system identification. The general mathematical equations of discriminate

functions used in pattern recognition are very similar to the general
mathematical equations used for representing a system. Thus, a method of
system identification can be obtained by taking the techniques that have
been developed for solving problems of pattern recognition and applying

them in a corresponding manner to the general relationships that are

LS e A o ot

arrived at in system representation.

Consider a physical system with a single input and a single

output. The input-cutput relationship of this system can be described by

a functionalgl. This functional represents a transformation from the past
system input and output and the present system input to the present or future
‘ system output. If the relevant system past is represented by a set of N

' measurements of the past system input and output, then the functional can

be replaced or approximated by a transformation from the N space of such

’ measurements to the real line. This transformation can also be viewed as

a hypersurface in a N plus 1 space. Selecting the set of measurements to

—p——
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be used is only part of the process of choosing a model for the physical
system to be identified. The general form of the input-output trans-
formation for the model must be chosen to sufficiently approximate the
input-output transformation for the physical system. For a linear system,
the hypersurface of the transformation is a hyperplane. Thus, once the
model is chosen, system identification is a matter of determining the
variable parameters in the general form of the hypersurface.

The basic task in pattern recognition is to classify a pattern
on the basis of the attainable measurements. This is accomplished by
determining a transformation from the attainable measurements to the classi-
fication based on a training set of patterns. The transformation is
usually a set of surfaces, or discriminant functions, which separate the
patterns of the training set into their correct categories. These surfaces
are determined by first assuming a general form for the surfaces and then
iteratively adjusting these surfaces after observing their performance on
each member of the training set. This is called "nonparametric" trainingls.

The analogy between pattern recognition and system identification
is clear. Both require the determination of a hypersurface. If measure-
ments taken from the normal operating record of the system output and the
past systems input and output are viewed as a sequence of patterns, then the
well developed techniques of pattern recognition can be applied. The
ﬁ-learning machine technique will be used here. The method is ve?y general
and can be trained by responding to the error between the system output

and the ﬁ-learning machine output. Note that it is the viewpoint which is
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important because this viewpoint naturally leads to the use of techniques
from a seemingly unrelated field.

The goal here is to develop a general method of system identi-
fication for execution on a special purpose digital computer. The desired
characteristics for this method consist of the following capabilities:

1. Use in an on-line application;

2. Identification from the normal operating record of
the system;

3. Control of identification error due to measurement noise;

k. Trade-off between computational complexity and speed
of identification;

5. Use of the a priori knowledge of the physical system.

The desired flexibility is achieved by using the é-learning
machine which is briefly explained in Section 1.2. The broad class of
system models that can be viewed as ¢-learning machines is examined in
some detail in Chapter II. Training procedures are developed in Chapter IIT
for an on-line tracking model identification scheme. These procedures
allow a trade-off between computational complexity, speed of ldentification,
and control of identification error due to measurement noise. In Chapter IV
similations for a wide variety of systems give a quantitative indication of
the characteristics of the identification scheme.

The description of the simulation programs and the techniques
used is given in the appendices.

1.2 & -Learning Machines

The term "p-learning machine" refers to the generic form of a

pattern recognition device. The general block diagram of this device is



shown in Figure (1.1). The "pattern" is represented by a d-dimensional
vector X. The first operation is a transformation of the input vector X
into a vector F on é-space. Vector F is a set of linearly independent
functions fi(g). The coordinates in g-space are the elements of the vector
F. Specific examples of é-functions are;

1. Linear functions: fi(gc_) = x; i=1, ... 4d

2. Quadric functions: fi(}_() has the form xkn xim for

k, L =1,...,4 and n, m=0 and 1

3. ol
n
r

Dy N,
Xkl ng N xkr for kl, kg""’kr =1,...,d and Dys DoyeeesB, = 0

order polynomial functions: fi(§) has the form

and 1.
If the original vector X was defined in a d-dimensional space
for 8 order polynomials, the vector F(X) = col. fl(g), fg(g),...,fM(g)
is defined in an M-dimensional space where
d+r
M= -1 r = order of the polynomials (1.2-1)
r
The second operation is a weighted linear summation of the functions
fi(g). The function

M

AR = > w52 (1.2-2)

i=1
represents a linear transformation from the é-space to the real line and an

rth order polynomial transformation from the original X pattern space.



PROCESSOR

LINEAR

$-PROCESSOR

&d-MACHINE

FIGURE




Equivalently, if the ¢-space and pattern space are augmented by the function
value @(X), the function represents a hyperplane in the augmented g-space,
and an rth order polynomial surface in the augmented pattern space.

In the transformed space, or g-space, $(X) is adjustable by
an iterative error correcting algorithm. Consequently, the use of a trans-
formation to a nonlinear space considerably eases the conceptual and com-
putational difficulties in achieving & given hypersurface in the augmented
linear space. The general procedure is quite similar to that of multiple
regressionl4 where a least squares fit to a given surface is achieved.

1.3 Historical Review

System identification can be divided into two basic problems:
development of a mathematical model for a general type of process; and
identification of the unknown parameters of the model for a particular
process. A wide variety of techniques for system modeling and identifi-
cation have been published. However, the techniques of interest are those
that can identify from the normal operating record. In other words, these
techniques do not need special inputs or other contrived situations.

The modeling of linear systems has become a part of the basic
knowledge of every engineer. Kalman8 developed a technique to identify and
control a process which he called a self-optimizing control system. This
technique used pseudo correlation functions and was based on the theories
of linear systems and sampling. Levinll has shown that a least squares
procedure is the "optimum" method for estimating an impulse-response in
the presence of Guassian noise. The precision of impulse-response esti-

mation based on short, normal operating records has been investigated by
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Kerr and Surber”. This is achieved by computing an "expected error" based
on the input and the estimated variance of the measurement noise. Jenkins

7 have developed an adaptive control system and applied it to the

and. Roy
control of a flexible booster. This method combines dynamic programming

as applied to solving the control problem and the Kalman filter as applied
to state and parameter estimation. A learning method for system identifi-
cation based on the error corrccting training procedure used in learning
machines has been investigated by Nagumo and NodalQ. This method identi-
fies the sampled impulse response of a linear system and is applicable to
cases where the random input signal is non-stationary or to the identifi-
cation of linear quasi-stationary systems such as adaptive systems, learning
systems, etc.

The development of models for non-linear systems has been some-
what disorganized. Most of the work has been for individual types of
processes. However, a general model for nonlinear systems with two level
inputs was developed by Roy and DeRussolS. This model was based on the
tabular form for a functional. The application of pattern recognition to
system identification is not new, however the previous techniques required
large memories. Examples of these are the application of decision theory
by Roy and Miller16 and of modal learning machines by Roy and Schleyl7.

A great deal of work has been done recently with the series
expansion of a functional developed by Volterragl. Wiener2 showed that
any nonlinear system with finite settling time could be characterized by

a linear network which characterized the input past, followed by a zero

memory nonlinearity. This cascade of two operations is essentially a



specific form of the functional approach of Volterra. This approach was
also studied by Cameron and Martinu. Analysis of nonlinear systems by
Volterra series has been treated in general terms by Barrettl, Brilliantg,

19

and Smets™”. Synthesis of nonlinear systems in like manner was the subject
of Van Treesgo, Shenl8, and Bush3. Bush developed use of multi-dimensional
Z=transforms for nonlinear discrete systems. A system identification
method for Volterra series models using a stochastic approximation tech-
nique has been reported by Kwatny and Shenlo.

A comprehensive statement of the state of the art of system
identification in automatic control systems was recently given in survey
papers by Cuenod and Sage5 and Eykhoff6. Cuenod and Sage discussed and
compared some of the principle computational problems and procedures in

system identification. Eykhoff investigated statistical estimation tech-

niques by comparing various methods.



CHAPTER II

SYSTEM REPRESENTATION

2.1 Introduction

Physical systems may be represented mathematically by a variety
of methods. The resulting mathematical model is based on a fundamental
set of assumptions about the physical system. Some of the assumptions that
can be made are: order of the system, settling time, sample data repre-
sentation, and type of nonlinearity. The model chosen should involve those
assumptions which best fit the a priori knowledge of the system and the
function for which the model is to be used. Whether the system is to be
treated as linear or nonlinear is the first consideration. Assuming
linearity greatly simplifies the model but may be inaccurate for other than
a small operating range. The type of nonlinearity postulated will govern
how complex the model must be for a given accuracy. In addition, a
sampled data representation is utilized if the system is to be controlled
digitally. Physical systems are usually of a low-pass nature making the
sample data representation very reasonable. The sampling rate must be
fast enough to preserve the characteristics of the physical system and to
allow the physical system to be controlled. The settling time of a system
is defined as the amount of past input history required to generate the
output to a desired degree of accuracy. Adopting a settling time requires
knowledge only of the transient response of the system, not its structure.
However, this approach generates a model that has a fairly large number of

parameters, such as the samples of an impulse response. The order of a
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sample data system may be viewed as the maximum number of delayed samples
of the input or output needed to determine the next output. Assuming the
order of the system based on its physical structure yields a compact model.
Being of a fixed order, this model will not satisfactorily represent a
system of higher order because it is very dependent on the structure of the
systen.

Based on his a priori knowledge of the system or lack of it, the
designer must make the proper assumptions in view of the function for which

the model is to be used.

2.2 Volterra Series Expansion for Delay Line Representations

Consider the linear system of Figure (2.1). The output y(t)

is given by the convolution integral

y(t) =f_: hz) x(t - ¢) 4T (2.2-1)

Clearly,

7o) | = | [ wz) ot - ©) a7

< [:lh(f)l T sup |x(t)| (2.2-2)

Ir

I

lh(t)‘ it < oo (2.2-3)

then a bounded input to the system produces a bounded output. Such a system

is called "stable". The systems that will be considered here are those



x(1)

h(h) _yw

x(1)

FIGURE 2.1

y(t) ( )2 z(t)

h(t)

FIGURE 2.2
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systems which are called "stable".

Next, examine the nonlinear system of Figure (2.2). Since
2
z(t) = y(t) (2.2-k)

the output of the system is given by

(0) = [ 7 mlay) ot - ) any f_: n(v,) x(t -T,) 4z,

- 00

©o oo
f_m j:oo h (7)) ho(r,) x(t - 7y) =t - T,) a1y a7y (2.2-5)
If a two dimensional kernel hg(t‘l, rg) is defined as
n(ry, 2,) = b (7)) 1 (75) (2.2-6)

then

z(t) =f°° fm n (), Ty) x(t - T7) x(t ~T,) 4ty 4t (2.2-7)

The two dimensional kernel hE(Zi’ té) is called a "regular
homogeneous" functional of second degree. This kernel is "realizable" if

hg('Z’l, 2’2) =0 for either Z’l or T,< 0 (2.2-8)
and "stable" if

@ roo

Those functionals with realizable kernels are called volterra

1,19

kernels. Kernels of this type play an important role in the analysis

18,20

and synthesis of nonlinear systems.
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Next, consider the case where the nonlinear block is an arbitrary

continuous function

z(t) = £ Er(t_)] (2.2-10)

*
The function f£(y) can be approximated by a finite order polynomial.

N

o(y) =~ o (y) = Z a; yo (2.2-11)
i=1

Consequently ZN(t) can be expressed as

zN(t) =a,+ 2 f_: hl(‘t') x(t -7T) daT

+ay ff’ f.‘: (T s e eaty) K= Ty) e x(b-0y) Aty .-.ary (2.2-12)

(e &

or
N
Zp(t) =a + Z a; foc. . foc hi(t’l, ..,z“i) x(t—‘Z"l) .
i=L - s
x(t-Z‘i) dz’l...dz'i (2.2-13)
where
o
h(Ty,--5T5) = 'l_l h (T.) (2.2-14)

*
The Weierstrass Theorem assures that a sequence of polynomials exist
which converge in a closed interval to f(y). For bounded functions,

this implies convergence in the mean. Thus, discontinuous nonlinearities

are excluded.
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If f(y) is analytic in a given region, then £(y) can be

expanded in a power series

#(y) Z b, v+ b, (2.2-15)

and

]

2(%) Z b, [: f: B (t), ) K(om T)) e (52

df'...dti + b

1 (2.2-16)

0
Since the power series (2.2-15) will converge for all ly(t)l < e the

functional power series will converge for all

|x(t)|< — < (2.2-17)
f_w Ih(’(‘,')' aT
Systems which can be represented by a functional power series
with a nonzero radius of convergence are called "analytic systems”.2 Although
the limit of Equations (2.2-13) and (2.2-16) are the same in the region of
convergence of the functional power series, Equation (2.2—16) is restricted
in its range of validity.
If the system was time varying, then Equation (2.2-13) would be

extended to the more general expression

N
[<e) [< ) ’
ZN(t) =ag* Z aif f hi(t, tl,...,z'i) x(t- z'l)...
i=1 - -

©0o

x(t-t’i) at, ...dt; (2.2-18)

The systems which will be investigated are the class of nonlinear

systems whose output depends to an arbitrarily small extent on the remote
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past; in other words, finite settling time systems. Wiener22 showed that
any nonlinear system with finite settling time could be characterized by
a linear network which characterized the input past, followed by a zero
memory nonlinearity. Dr. Wiener used a Laguerre network to produce an
orthogonal representation of the input past, then followed this network with
a set of Hermite polynomials which represented the zero memory nonlinearity.
This cascade of two operations is essentially a specific form of the
functional approach of Volterra. In this case, the values of the functionals
depend on the values of a real function over a finite interval. The functions
are continuous and square integrable over a finite interval. This approach
was also studied by Cameron and Martin.

Consider the case where the representation of the input past

consists of a set of sample values. Thus

X(t) = input vector = col [%1(t) xz(t) . Xn(ti}
xi(t) = x(t - (i-1)T)

T = sampling interval

nT = settling time of system (2.2-19)

Furthermore, the input will be assumed to be piecewise constant
x(t) = % (i-1)T <« t <iT |xil < X (2.2-20)

This type of input is inherent in a digital computer controlled system.
23

Under these assumptions, Equation (2.2-13) becomes

N n n

2(%) = B + Z Z Z ORI (2.0-21)

i=l k=1 k=1
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where

0 t < mT

M M

X j aihi(t, t'l...ri) a)...dT; mMr £ ¢ < (m+1)T
K T

He o (8) =
S ﬁ g(lirl)T g(ki+l)T

aihi(t, Ll...’['i) azy . ..dt;
i kT kT
(m+l)T < ¢ (2.2-22)
m = max [%1, kg,...,k%] 5 Ho =a,
(k,+1)T for k, < m
L 1
M =
t for k., =m
1

If Eguation (2.2-21) is expanded, taking into account the symmetry

of the kernels, then the form of the transformation surface is seen.

N n n
zN(t) = Hy + Z Z Z Hkl"'ki(t) xklxkl (2.2-23)
i=1 k1=l ki:ki-l
Note that if N =1 (linear system), the transformation surface is a hyper-
plane, for N = 2 a quadric surface, or in general, an Nth order polynomial
surface.
Equation (2.2-23) is the general form for the Volterra series ex-
pansion for delay line representations and can be used as an adaptive model
of a slowly time-varying plant. The parameters of the model can be obtained

by the training procedures discussed in Chapter III.
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2.3 Volterra Series Expansion for Difference Equation Representations

In Section 2.2, the physical system was modeled by a delay line
representation which was found by assuming a finite settling time for the
sampled system. In this section, the physical system will be modeled by a
difference equation obtained by assuming the order of the sampled system.
When considering a single input, single output, Nth order system without

impulsive components, the general time varying difference equation is

y(k) = (%, x(k-1), ..., x(k-N), y(k-1), ..., y(k-N)) (2.3-1)
. th R .

x(k) = the input at the k~~ sampling instant

y(k) = the output at the KB sampling instant

For the time invariant system, this reduces to
Y(k) = f(x(k"l):'“)x(k'N): Y(k'l):'”;y'(k’N))' (2.3-2)

In the case of time-invariant linear systems, the general Nth
order equation becomes

N N

y(k) = ) ey y(ed) + ) by Hied) (2.3-3)

i=1 i=1
with the corresponding Z-transform for these systems being

N »
b. 2z +
E i

H(z) = =% - (2.3-k)

-1
1'Zaiz

i=1
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The system is stable if the zeroes of the denominator of Equation (2.3-L)
are within the unit circle in the Z-plane.
The MU® order Volterra series approximating Equation (2.3-2) is

M 2N

2N
Y(k)=HO+Z Z z fe ok, B Oy

i=l k=l k=k;_;

x(k-q) for qg< N

y(k+N-q) for qg>N

This is the form of the input-output transformation surface of the Volterra
series expansion of the difference equation. Multi-dimensional Z-transforms
exist for those nonlinear systems whose Volterra kernels corresponding to
the cross terms in x and y are zero. The multi-dimensional transform

for these systems is

H(zl,...,zM) = (2.3-6)

-k

2
NN i
Y Y B
1 ;ZJ :E: L B, ok 21 R

These systems are stable if the zeroes of the denominator of Equation (2.3-6)

are within the unit hypersphere in 7 space. Work on the classes of non-
linear systems that can be modeled by these techniques has been done by

A. M. Bush3 and others.
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Equation (2.3-5) is the general form of this type of system
representation and can be used as an adaptive model of a slowly time varying
plant. The parameters can be obtained by the learning algorithm to be dis-

cussed.

2.4 Other System Representations

Representations put forth in the two previous sections are by
no means the only ways to model a system. Other models may be developed
by using the a priori knowledge of a particular physical situation to gain
special advantages.

The Volterra series expansions used are essentially multivariate
series in which the variables are raised only to positive powers. To
sufficiently model some physical systems with these expansions, it is
necessary to have a very large number of terms. A representation that in-
cludes negative powers of the variables can be used to model these more
difficult systems. Any multivariate power series containing inverse terms
(negative powers of any variables) can be changed into a ratio of two

Volterra series by finding a common denominator. This general form is

N N
= 1l 1
IRE

N
:Ei hkl:"':ki xk...xk
=k, _

(2.4-1)
i=1 kl=l k

A special type of model is formed from a set of transfer functions
followed by a linear or nonlinear combination network. An example is the

Laguerre network followed by the Hermite polynomials used by Dr. N. Weiner.
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An advantage of this method is that it provides output continuously but can
be trained on a sample data basis.

Polynomials are not the only type of nonlinearity that can be
used to model a physical system. If the range of the input and output of
the system is not the infinite interval, the nonlinear functions used can
be periodic or defined on only a finite interval. A multi-dimensional

Fourier series is an example of this approach.

2.5 Generalized Model

A generalized model that may be trained as a ¢-learning machine
will now be shown. The model includes all of the system representations
mentioned in this chapter as special cases. Let X be a vector represen-

tation of the measured system past input and output. The generalized model

is
u" &(x)
y(k) = ————— (2.5-1)
1+ Vv H(X)
For training, the model must be viewed as a é-learning machine. The
é-learning machine corresponding to Equation (2.5-1) is
T
y(k) = Ax, v) = W KX) (2.5-2)

where

- (Y

o - (45 )

(k) K(X)

1< Ic

The methods and properties of training this ¢-learning machine by error

correcting algorithms are the subject of the next chapter.
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CHAPTER IIT

TRAINING PROCEDURES

3.1 Introduction

Training procedures will be developed and studied in this chapter
for é-learning machines corresponding to system models with and without
inverse terms. The basic training procedure uses an error correcting
algorithm to train the é—machine. This algorithm iteratively adjusts the
weight vector of the linear portion of the d-machine based upon the normal
operating record of the system.12 Several variations of the training pro-
cedure will be considered.

The training procedures use the following nomenclature:

y; = observed output of the system at the ith iteration
* A . " -th . .

y; = output of "optimum" model at the i iteration

A . .th | .

yi = output of learning model at i iteration

= vector representation of system past input and output

=i

at the ith iteration for input to ¢-processor
z, = ) (gi) = output of @g-machine at 1™ jteration

. th | :
U, = numerator weight vector of model at i iteration
. . .th .

v, = denominator weight vector of model at i~ i1teration

i . . RN
Wi = \y = weight vector of g-machine at i~ iteration

* ~i

W, = "optimm" weight vector of p-machine

F(X) = col. [%l(z),...,fM(gi] = g-transformation
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G, = numerator vector of é-functions for model at ith
iteration
i = denominator vector of é-functions for model at ith
iteration
Gy th
= * = E(gi) = output of @-processor at i~ iteration
y. H.
i-=i
F || - FTF (squared Euclidian norm)
|El] = & &
a = convergence factor of algorithm
The system model with inverse terms may be written as:
N UG
¥y = — (3.1-1)
1=-V,” H,

-i =i
The corresponding g-machine is

T T T .
z; =07 Gt Yy Y& H, =W, E; (3.1-2)

Both the system model without inverse terms and its corresponding p-machine

may be written as:

A
vp =23 =8 G =N 5 (3-1-3)

The sequence of steps in the basic training procedure is as follows:

1. Set the initial weight vector. A zero weight vector
is adequate.

2. Determine y; and X

. t ., H., and z,.
3. Generate ‘91’ € i
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4. Calculate new weight vector using the following error

correcting algorithm

a(y. - z,) G.
_ i i =i
Wepp =43 F G, v, H (3.1-4)
1 1 -1
vy &y

| .
5. Repeat starting with step No. 2 using next value of 1.

Figure (3.1) is a diagram of a model tracking system that can use

any of the training procedures in this chapter.

3.2 Geometric Interpretation and an Example

The basic training procedure generates a sequence of Ei's whose
components converge towards an accurate representation of the physical
system. The learning process can be viewed geometrically be representing
the weights as vectors in an Euclidian "weight" space. If a physical system
is adequately represented by a ¢-machine model, then the weight vector of
the g-machine model is the "optimum" weight vector in "weight" space. The
weight error vector is the difference between the "optimum" and the current
learning model weight vectors.

1

The output of the system is the scalar product of the "optimum"
weight vector and the vector output of the é-processor. Likewise, the out-
put of the model is the scalar product of the current model weight vector

and the vector output of the é—processor. The error of the é-learning machine
is the difference of the scalar products which is the projection of the

weight error vector on the vector output of the ﬁ-processor. The training

procedure then changes the current weight vector in order to correct the
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observed error. This 1s done by adding a multiple of the vector output of
the é-processor to the current weight vector such that the difference
between the observed model and system scalar products is zero.

The system shown in Figure (3.2) will be used to illustrate this

algorithm. The input-output relationship for this system is

ylz\rﬂ =17 x [NT] +17 x EN-l)T] = (17, 17) [ x [nr] (3.2-1)
x [(w-1)1]

The correct weight vector is col. (17, 17). Assume an input sequence such

as

N o 1 2 3 4 5 6 7 8
x[NT:Ho

Table I lists the results at each iteration. The sequence of
weight vectors is plotted in Figure (3.3). This sequence converges to the
correct weight vector. The weight vector error is the difference between
the correct weight vector and the ¢-machine weight vector. The sequence of
weight vector errors is also plotted in Figure (3.3). The difference be-
tween two successive weight vectors, Ei+l - Hi’ is the projection of the
welght vector error, Ei’ on the unit vector in the direction of the input
vector Ei' Therefore the weight vector error cannot increase. The weight
vector error will remain the same, if two successive input vectors are
linearly dependent. The input vectors for 1 = 2, 3 and for i =35, 6

are examples of this.

3.3 Error Bounds for General System Representations

Consider the system of Figure (3.4). The output of the system

is corrupted by additive noise N. W, is the weight vector of the @-machine



26.

Z¢'¢ 34N9ld

(LN)A

ll

(LN)X



LT ‘24T

0 ‘1~

2 HT-

L1-

LT ‘24T
+~.m no

9°CT ‘241

- ‘0
9°CT-

LT-

9°€T

9°€T

‘oonT
‘0
‘oT
‘-
LT

LT

Q€T ‘e Nt
9'2 ‘€ 1- ¢z ‘0T~

TT ‘¢ ST ¢q ‘GGz

- ‘2 T ‘4=
€T- G €6
HE- T6-
< h

I TI9VL

Gg ‘G- ¢e

IR (Fz-Fh) = Fo

“¢ ¢z
nmnw

A

LT

He

o



wo 4
W Wg , Wx
6l Wg 9
We » W7
]2 4
Ll
8 1 W3, Wy
4.3
Wy Wi
5 —+ F : —— s —+
Y 8 i2 i6 24 28

WEIGHT VECTOR SEQUENCE

® 4

!
1
-4

4
WEIGHT VECTOR ERROR SEQUEN

FIGURE 3.3

8
CE



29.

(H)A

(N

P 3J4N9ld




30.

model which describes the system. The actual system output can be written

as:
* T
y =W KX) = ¥ K(X) (3.3-1)
Then the observed system output can be written as:

y; =vy N =WFE ¢ N (3.3-2)

For systems that are approximated by Equation (3.3-1) the truncated terms
of their representations are combined with the additive noise N. At the
ith iteration the additive noise Ni is the sum of the measurement noise
and the representatiocn residual.

Let Ei be the weight error vector.

E. =W, - W, (3.3-3)

Convergence of the ¢—learning machine will be defined as Ei approaching
zero as 1 increases without bound.

A recursive relationship will now be developed for Ei by com-
bining Equations (3.3-3) and (3.1-4)

a(yi-z') gl

1
Big =L - G
=i Va

(3.3-4)
y

. H.
i-i

Eliminating y, and 2z, with equations (3.3-2) and (3.1-2) yields



a T T A
= - + -
=i
_ a T TA T A
=& ”?H (W,  Fy + N -0, F -N, Vo H)E
=i
a TA A a T
—El- A El —J.El- A Ni(l-v* EJ'.)E:L
=i =i
where
G, 0
F, = = F, + =F, +AF
_l (v, +N)H e N B B
i/=1i 1-=1i
Let
a A AR
Ay =1 121 o4
F,
=i
and
a T
b, =X N.(1 -V, H)
7 ||
=i
then
E A E b ﬁ
Sivl C i=i T Tio-d
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(3.3-5)

(3-3-7)

(3.3-8)

Consider the case of an exact model with no measurement noise

(N, = 0). Equation (3.3-8) reduces to

Bivp =8 5

since bi is zero.
A
Taking the norm of Equation (3.3-9) noting that B

(3.3-9)

= Ei gives
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T, 2
(B ll =20 2 B (3.3-10)
T a2 T T
= [:I - -— F. F," + ———— F. F.7 F. F. :] B,
=i =i 2 =i-=-1 —-i-=i =i
] 2
_ET[I_a(E-a) FT:]E.
=i ” I “ I' 5 —i
a(2 - a) T 2 Do
1- , .
BN oy e U B
Let
3 a(z - a) T 2
where 0 < s £ 1 since O << a « 2, then
i
RS (3:3722)
j=
Note that, since 0 £ c., < 1,
i
o< 71 (- cj) <1 (3.3-13)
J=1
It will be assumed that s never equals one because c; = 1 implies
immediate convergence, ||Ei+l|| = 0. A necessary and sufficient condition

for the limit of Equation (3.3-12) to converge to zero as 1 increasesis

that the sum of the ci diverges.

(= =1
Z €57 (3.3-14)

=1

.
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Therefore, the input vector must probe the input vector space so that an
infinity of c:.L are nonzero. Also, the ci cannot approach zero too

quickly. By Equations (3.3-11) and (3.3-14)

> E - (3.3-15)
: — = 3.3=15
=il A

Thus, the sequence of Ei's must probe its vector space in all directions

infinitely often in the training sequence. Therefore, the sequence of gi's
must probe its vector space in both magnitude and direction.

If N; is not identically zero the g-learning machine may still
converge. However, this can happen only if the sequence of Ni's approaches
Zero.

Consider the case of a model without inverse terms which has
measurement noise. Now bi is not zero, but lsgi is zero. Equation
(3.3-8) reduces to

B = A5 "0 5 (3.3-16)

A
Taking the norm of Equation (3.3-16), noting that F, =F, and H = 0ylelds

|
3]
fo =3

| B | ; B, A E; - ob E A By by |5 | (3.3-17)

Ca(2-a)(E; By
TS T

SR LY

(aN +2(al)F

E;)

~i

i i-1 i

- c; ) “El“ zz 5 o (L-c)+d

j=1 J= k=j+1

I
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where
a Ni T
d_i = -HF__iﬂ_ (a Ni + 2(8."1) _F_‘i Ei) (3-3-18)

Assume that di is bounded for all i, that condition (3.3-1&) is satisfied,

and that there are only a finite number of s less than a preset positive

i ;0 ;- 9

for N-1 values of i. An upper bound on Iigill is found by operating on

Equation (3.3-17).

5 TS R ]
Eiall 2 TG oo Bl * G (202, T -2
j=1 | J=L k=gt
i [ i-N  i+1-N
T o) Bl * gy |2FN-1 ) T (-9
3=l | 3=l k=j+l
r-_ .
i i-N .
£ 77 - J -
< T (1 ci) “gl“ ta o | N Z € (3.3-20)
j=1 =L
Taking the limit as i —> oo gives
HE “ < 4 [N + -J::l (3.3-21)
- 00 - max €

where

a N, T
Tmax = T ‘“_glﬂ' (am; +2(a1) E;7 E;)
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This very conservative bound is dependent on the magnitude of the noise,
Ni’ the convergence factor, and the weight error vector. The bound de-
creases as these quantities decrease.

Consider the case of a model with inverse terms which has measure-

ment noise. Now bi and [;g& are not zero. Taking the norm of Equation

(3.3-8) gives

o T, 2 AT
|l§i+l|| =E A B - EME || ] (3.3-22)
2
a(2- a)(F l) a N, 7
= |1~ E.||]| +——(1-V,~ H)
El e | Bt s
—1 =i =i
T AT
Let
- A 2
¢, =1 - X2 -8) L E (3.3-23)
i
A
=i
where O < cy < 1 since 0&£ a £ 2. Let
AT
H )(&N (l V l) * 2(8.—1) El -E—l) (3'3"2”‘)

N 7

Assume that this new c, still satisfies condition (3.3-14). This is

A
reasonable because the Equation (3.3-23) is Equation (3.3-11) with £

replacing Fi' ﬁg should satisfy the same criteria that ‘Ei must satisfy

A
for condition (3.3-14) to hold because F, is just F. that has been

corrupted by Ni’ the additive noise. Now
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i-1 i

i
||§i+l|| = YT. (l'Cj) l’EllI + ZE: dj TT (l-ck) + di (3.3-25)
Jj=1

J=1 k=j+1

A upper bound on 'FE°°'1 is found by operating on Equation (3.3-25) in the
same manner as on Equation (3.3-17). Making the assumptions of Equation

(3.3-19) on the new c; and d, yields an upper bound for ||E<n|' in

this case.
g || < 4 N+ (3.3-26)
l——oo = “max € ' .
where
_ 1 T AT
a = max (1-v, gi)(ami(l-y* gi) + 2(a-1) £ gi)

B ll’\ll
1

Only the definition of d; makes this bound different from Equation (3.3-21).

They both have the same properties.

3.4  Error Bounds for Volterra Series System Representations

A useful concept for nonlinear systems is the dynamic approxi-
mation of a system about an operating point. The approximation could be a
linear or a nonlinear system that is simpler than the physical system. This
section investigates how this approximation technique can be accomplished
with the é-learning machine for systems that can be represented by a Volterra
series.

The Volterra series system representations of Chapter II can be
written in the generalized form of Equation (2.4-1). Let X be a
N-dimensional vector representation of the system past input and output,

then
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vy =-§-§% (3.4-1)
where
o N N
P(X) = py * Z Z Z Py ek TR
i=1 kl=l ki=kl_l
(3-4-2)

P(X) and Q(X) are called Volterra series or functional power series.
They can be expanded in a Taylor series about an operating point, X . For
an rth order expansion the remainder will be insignificant in some suffic-

iently small region about the operating point.

() = B(X°) + By (3.4-3)

Q(X) = Q(x

1
=
1<
O

Now Equation (3.4-1) may be approximated by neglecting the remainder.



(3-1-1)
Equation (3.4-L4) may be put in the form of a g-machine. Regroup-
ing the terms of Equation (3.4-4) so that the equation is a functional power

series in X dinstead of (K - go). Dividing the result by the constant

term of the denominator gives

r N N
D D e B,
« 1=l k=l k;=k, .
vy &~ —% o (3.4-5)
l+Z Z Z E;{l, ’ki )thxkl
i=1 k=l k=k,
where
r N N ot B(x)
W)+ ) D D moaes | () t)
i=l k=1 k;=k; £ i],0 *
Po = T N N i -
: 37 Q(x)
Q(x”) + : ~ — (-0 )en(x) )
;é; ;;;i kizii_l N ‘anl e " *

(3.4-6)
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2% Ax)
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53 - ot qx) |
ax) + Y > .. = (-, )=, )
;i; ﬁ;;l k;;;;-l. P ¥ k! i

X

The "optimum" g-machine to model the system given in Equation

(3.4-4) is

2= 4x) =5, o(x) + v vT D) (3.4-T)

where the "optimum" weight vectors are

N+r
M= -1 (3.4-8)
r
s Vi
Ug = . s Yy =
Ui+l M
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and the g-function vectors are

&1 1
a(x) = | - , B(X) = [ (3.4-9)

EpMr1 by

_ _ _ _ T
8 =1, 8, = X5 83 = Xy e 8y T Xy

By = x, by = X,y = X

Consider those systems approximated by Equation (3.4-1) whose outputs are
corrupted by additive noise. The observed output of the system may be

represented by

—wTF +P 4y + N (3.4-10)
vy =W By PRV gt N 3%

where Ni includes the measurement noise and the error in approximating

the physical system by Equation (3.&-1). The error bounds of Section 3.3
*

can be applied to this case by substituting PR + v QR + Ni for Ni in

Equations (3.3-21) and (3.3-26).

If PR and QR are identically zero, the error bounds and other

results are the same as in Section 3.2. When PR and QR are not zero,
the system is being approximated by a lower order Volterra series than that
which describes the system exactly. The error bound of Equation (3.3-26)

for models with inverse terms becomes

ENEx- [v+2] (3-4-11)

where




- —— —— ~— - -

TN T T T e T T T

h1.

- max | =2 (1y.T * .
“max = T ”/F\ H (11, By )N +Ppry, - ap) (1Y, Ky)
-1

* AT
(Mg Pty wg) + 2(a-) i~ By

The error bound of Equation (3.3-21) for models without inverse terms

becomes

“:E-w” < Yoy [N * %] (3.4-12)

where

(N, + P_+y. ) |a(m +P +y." q)
i R i R i R i R

;

T
+2(a-1) Ei El:]

Therefore, the desired results of approximation of the physical
system by a simpler system can be achieved. The magnitude of the error is
controlled by the operating region of the physical system, the additive

noise, and the convergence factor.

3.5 Algorithm Variations

Once the model given by Equation (2.5-1) is chosen there are
many ways to solve for the weight vector. For an on-line training procedure
an incremental adjustment of the weight vector seems best. The new weight

vector is given by

Ei+l = -W-i t a AHi (3.5-1)

where Hi’ a, LSHi are the old weight vector, convergence factor, and

weight vector increment respectively. As the convergence factor a 1s de-

creased from unity, the adaption process will be slowed. Thus, the weight
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vector will be affected less by noisy measurements. This should reduce
steady state weight vector error and the sensitivity to noise. However,
the rate at which the model can follow a time varying system will alsoc be
reduced. The weight vector increment is to be calculated from measurements
(yi, gi) taken from the operating record of the system. These measurements
are transformed into (yi, Ei) the measurement output of the system and
the ¢-functions of the model. The error-correcting procedure of Section 3.1
was chosen for its simplicity in using only the most recent measurement
for calculating the weight vector increment. This section investigates the
factors involved in choosing a more complex learning algorithm.

An algorithm more complex than the error correcting algorithm
may use multiple sets of measurements. The choice of such an algorithm will
involve a trade-off between computational complexity and accuracy or rate
of adaption. The factors of concern in computational complexity are storage,
time and processor complexity. The method and equipment used will determine
the accuracy with which the system can be modeled. They will also determine
how fast the model can track a time varying system.

Consider the problem of finding the weight vector increment based
on the stated values of the measurements from N selected data points. Let

these measurements be denoted by

i = .—2
vy By j=1, N (3.5-2)

. .th
The output of the present model corresponding to the j system output yj

is given by



|

L3,

z. =W." F. (3.5-3)

This problem can now be expressed as trying to find the best solutions for

FAN Ki to the following set of simultaneous linear equations

- T s =
.Vj - Zj = Ay_l EJ J=1N (3.5-k%)

The solution to this problem is not unique unless the Ej's form a basis
for the ¢-space. That is, if the determinant of the matrix formed by the
vectors gj (j =1, N) is non-singular. This is true if and only if
é-space is an N-space and the Ej form a linearly independent set of
vectors. The error between the present model output Zj and the system
output yj can be viewed as the projection of the current weight error

vector E, = W, - W. onto the g-function vector F,.
=i =% =i =J

y. -z, =E, F. (3.5-5)

The weight vector increment must be a linear combination of the Ej's
because the components of E; in directions other than the Ej's (if any)

are unknown. Therefore, the weight vector increment is given by

_ 5-6
Al chgj (3.5-6)

If the gj's are linearly independent and A‘Ki is assumed to
be a linear combination of the Ej's, then the solution to Equation (3.5-k4)
becomes unique. If the Ej's are not linearly independent, the cj‘s may
be picked on basis of a minimum square error procedure or a similar method.
Such a method can be derived to suit special purposes from techniques

developed in the literature for mathematical programming.
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The choice of an algorithm depends on the nature of the process
and the requirements placed on the identification scheme. There are
several factors that can be varied during the execution of the training
procedure. These factors are convergence factor, number of data points,
and the method for calculating the weight vector increment. '"Convergence"
for all these variations is guaranteed by simple extensions of Section 3.3.
The simplest extension of the error correcting algorithm would be to iterate
the error correcting algorithm on several data points between measurement
times. The next step would be a projection algorithm to calculate the
weight vector increment based on a set of linearly independent Ej's.
Finally, a weighted least squares procedure is the most complex algorithm.
The error correcting algorithm and the projection algorithm have been
similated. The results are given in Chapter IV for a variety of processes

and conditions.

3.6 Projection Algorithm

The training procedure when using the projection algorithm will
follow the sequence of steps in Section 3.1 with the error correcting
algorithm of Step 4 replaced by the projection algorithm. The projection
algorithm will take the new (yi, gi) and add it to the set of stored
(yi, Ei)'s previously received. The set of vectors will be adjusted so
that it is still linearly independent. Then based on the current weight
vector Hi and the stored (yi, Ei)’ the projection algorithm will cal-

culate the weight vector increment, A Hi'
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First the projection algorithm must determine if the new Ei is
linearly independent of the stored _F_i's. The stored Ei's are a linearly
independent set by definition and therefore form a basis of a sub-space

in g-space. Let this basis be denoted by VY .
W/: [..,Ei,o.] (3-6"’1)

*
The projection matrix \Y for this sub-space will project any vector in

d-space onto the W sub-space.

V- yevt Pyt Ve (3.6-2)

Ei is linearly independent of the stored Ei's only if the projection of

-Ei onto the \I/ sub-space doesn't equal _}:?_‘i. However, if the difference
between Ei and its projection is very small, the Ei will be considered
linearly dependent in order to avoid numerical difficulties in computation.

Therefore, Ei will be considered linearly dependent if
IE- ¥ E||<e JE|| 0 < € <2 (3-6-3)

In such a case one or more stored (yi, Ei)'s will be discarded so that
Equation (3.6-3) is no longer satisfied. Since Ei is now linearly inde-
pendent of the stored Ei's, (yi, —F-i) will be added to the set of stored
(yi, Ei)'s. Let Y be the vector of stored yi's in the same order as
the corresponding _Ei’s in the Y matrix.

The weight vector increment OW. must satisfy Equations (3.5-k4)
and (3.5-6) which can now be written as:

T

I

- YV, = ¥ aW (3.6-4)
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AW, = ¢ (3.6-5)

These equations can be solved for the vector ¢ which indicates the

necessary combination of stored Ei's in Awi.

I- .\YTEj_: .\YT\Y c
c= (W)Yt (x- ¥w,)

8

The desired AW, is obtained by substituting c¢ back into Equation (3.6-5).
. T -1 T
pu, =TT (- ¥ ) (3.6-6)
Thus Equation (3.1-4) can be replaced by

W =W, +a VYT (- ¥ u,) (3.6-7)

—i+1l —i
The vector equation for the observed system output corresponding

to Equation (3.3-2) is

Y = \yT W, + X (3.6-8)

Equation (3.6-6) becomes

I

an, - T(¥THT ¥, -1) + WY (3.6-9)

—i

Il

¥ E, - V(YT )T

AKi is the projection of the weight error vector onto the sub-space plus
an error due to measurement noise and modeling error. Hence, this method

is named the projection algorithm.
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CHAPTER IV

SIMULATIONS OF MODEL TRACKING IDENTIFICATION

4.1 Introduction

The model tracking system of Figure (3.1) was simulated on an
IBM 360/50. The input to the plant in Figure (3.1) was selected in one of
two ways for each of the identification runs. A single sample of uncorre-
lated noise from a digital Gaussian noise generator was used as the input
for those runs made to determine the ability of the technique to identify
a particular system under given conditions. The effects of identification
and control on each other were investigated by computing the input neces-
sary to force the learning model output to follow a desired trajectory.
This input was computed at each iteration and applied to the plant. The
additive noise in Figure (3.l) was provided by the digital Gaussian noise
generator and was independent of the input noise sequence. In order to
achieve a desired correlation, the additive noise was passed through a
first order filter. After each iteration of the training procedure, the
normalized weight vector error (||Ei‘|/llﬂ*l|)l/2 and the rms errors be-
tween the outputs of the plant, the learning model, and the "optimum" model
were computed.

The system identification technique was tried on a linear time
invariant system, a linear time varying system, and two nonlinear systems.
An underdamped second order linear system was used to study the effects
of varying the convergence factor a, the standard deviation g~ of the

additive noise, and the first order correlation P of the additive noise.
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The system used had a damping ratio of .02 and a natural frequency of one
radian per second and was sampled at one second interﬁals. A five state
model of the Saturn booster was used to test the ability of the technique
to follow a time varying plant. A description of the booster model can be
found in Appendix B. The discrete plant matrices were computed from the
continuous plant matrices at one second intervals for a sampling interval
of one tenth of a second. Figure (4.1) shows the cubic and inverse systems
which are the two nonlinear plants used to study the ability of the
technique to identify nonlinear plants. The cubic system is two first
order linear systems separated by a pure cubic nonlinearity. The inverse
system is the second order underdamped linear system preceded by a non-
linearity which is the ratio of a fifth order polynomial to a fourth order
polynomial which has no real roots. The inverse system was also used to
study the dynamic linearization of a nonlinear plant.

The results of the simulations are divided into two groups:
those for which the optimum model is stationary and those for which the
optimum model is non-stationary. The normalized weight vector error was
plotted on a logarithmic scale. This was done to emphasize small values
of the normalized weight vector error and to transform the curves which

should be exponentials into straight lines.

4.2  Results for Stationary "Optimum' Models

In order to provide insight into how the technigue searches for
the correct weight vector, a twenty tap delay line model was used for the

second order linear system with the error-correcting algorithm of Section 3.l.



x(t) :::
E

x(1t)

1303

CUBIC SYSTEM

af -

g(x)

g(x) =

?+ 0.04S + |

y(t)

02x +1.2% + 0.04x°

|0 +1.04%% + 0.04x4

INVERSE SYSTEM

FIGURE 4.1
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The "optimum" weight vector is the sampled impulse response of the system.
The components of the "optimum" weight vector and the actual weight vector
after five, ten, twenty, and forty iterations are plotted in Figure (4.2)
versus their position on the delay line. This plot shows that the compo-
nents of the actual weight vector approach the sampled impulse response quite
quickly, although not monotonically. Both the plant and the model outputs
are plotted in Figure (4.3) versus the number of iterations or elapsed time
in seconds. This reveals that the learning model tracks the system to the
accuracy of the graph (0.013) after eighty seconds. The normalized weight
vector error plotted in Figure (4.4) decreases exponentially in Figure (L.k4)
until a lower limit is reached at about 0.02. This 1limit is the result of
_the error between the plant and the "optimum" model outputs which has a rms
value of about .02.

The second order system was identified with three configurations
of the model tracking system. First, the error correcting algorithm was
used with the twenty tap delay-line model. Then the error correcting
algorithm was used with a second order difference equation model. Finally,
the projection algorithm was used with the difference equation model. All
three situations were simulated for a wide variety of conditions. The con-
vergence factor a, the standard deviation of the additive nolse ¢~ , and
the correlation of the additive noise e were given values of 1.0, 0.5,
0.25; 0.0, 0.01, 0.1, 1.0; 0.0, 0.5, 0.707 respectively. Identification
runs were made with the weight vector initialized both to zero and to the

"optimum" weight vector for all possible combinations of a, ¢~, and e -
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Figures (4.5) through (4.11) are plots of data selected from these identi-
fication runs. Table II contains auxiliary information about these runs
and the identification of the curves. Generally, the normalized weight
vector error approached a limiting value as the time increased and oscil-
lated about it. The normalized weight vector error curves are plotted in
pairs. The first curve is for W, = 0 and the second curve is for

Hl = W,. The pairs of curves approach a mutual asymptote. The W, =W

1 %
curves approach the asymptote more quickly than the Hl = 0 curves.
Therefore, the mean normalized weight vector error for the Hi = W, curves

closely approximates the mutual asymptote of the pair of curves.

The effect of increasing F was to increase the asymptote of
the normalized weight vector error curve. However, this increase was
slight in most cases. Figure (4.5) shows the results for the most sensi-
tive case.

Figures (4.6), (4.7) and (L4.8) show the effects of increasing
the standard deviation @~ of the additive noise. The asymptotes of the
curves are approximately proportional to the standard deviation ¢~ . The
step in curve E of Figure (L4.6) is due to the zero initial conditions of
the plant. The modeling error caused by having only twenty taps on the
delay line is zero until after twenty seconds and then it has a rms value
of 0.0146. The asymptotes for a given ¢~ are greatest in Figure (%.8)
and least in Figure (4.6). The difference equation model with the error
correcting algorithm is only slightly more sensitive than the delay line

model with the error correcting algorithm. The difference equation model
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TABLE II

AUXTLIARY INFORMATION ABOUT IDENTIFICATION OF THE
LINEAR, SECOND ORDER UNDERDAMPED PLANT

*
El = RMS error between vy and v
E = RMS error between 2z, and Yy,

2 i i
E = RMS error between y.* and 2z,

3 i i
E)+ = Mean normalized weight vector error

FIGURE 4.5 Difference Equation Model, Error Correcting
Algorithm, a = 1.0, o~ = 0.1

Plot P Wy E; E, Es E)
A 0.0 0 .1002 .2016 .1809 .2313
B 0.5 0 .1003 .2071 .1866 .2392
c 0.707 0 .1008 .2258 .1957 .2552
D 0.0 W, .1002 .1560 1232 .1125
E 0.5 W, .1003 .1625 .1278 1241
F 0.707 W .1008 .1823 .1388 .1532

*

FIGURE 4.6 Delay Line Model, Error Correcting Algorithm,
a =1.0, @ = 0.00

Plot o Wy E) E, E, E),
A 0.0 0 -01459 .1534 .1528 .1864
B 0.01 0 .0L785 1549 .1532 .1871
C 0.1 0 .1015 218k .1851 .2168
D 1.0 0 1.003 1.486 1.0k2 1.065
E 0.0 W, .01459 .02103 .01355 .01277
F 0.01 Wy 01785 . 02647 01717 . 01607
G 0.1 W .1015 .1499 .1040 .1043
H 1.0 Wy 1.003 1.471 1.029 1.041



Plot

= 3 B O Q

Plot

H B g Q W

TABLE II (Cont'd)

FIGURE 4.7 Difference Equation Model, Error Correcting
Algorithm, a = 1.0, e = 0.0

o W, E, E, Eg E),
0.0 0 9.154E-7 1409 L1409 .2039
0.0L 0 -01002 1405 1406 .2040
0.1 0 1002 .2016 .1809 .2313
1.0 0 1.002 1.555 1.231 1.1ko
0.0 W, 9.154E-7 9.235E-7 1.051E-7 6.695E-T7
0.01 W, .01002 .01560 .01232 .01125
0.1 W, .1002 .1560 .1232 .1125
1.0 W, 1l.002 1.560 1.232 1.125

FIGURE 4.8 Difference Equation Model, Projection
Algorithm, a = 1.0, e = 0.0

0" n 1 "2 B B,
0.0 0 9.154E~7 .06102 .06102 .1395
0.01 0 .0L002 L9090k .9091 .8752
0.1 0 .1002 9.073 9.070 8.6k1
0.0 Wy 9.154E-7 2.280E-5 2.293E-5 2.08LE-5
0.01 W, .01002 L9072 .9070 .8640
0.1 Wy L1002 9.073 9.070 8.640

56.



TABLE II (Cont'd)
i .

' FIGURE 4.9 Delay Line Model, Error Corrective Algorithm,
o= 0.1, e= 0.0 "

Plot a El El E2 E3 El+
A 1.0 0 .1015 2184 1851 .2168
B 0.5 0 .1015 2619 2415 .2979
c 0.25 0 .1015 L4093 Loe6 4381
D 1.0 Wy .1015 1499 .1040 .1043
E 0.5 W, .1015 1185 .0511 .05958
F 0.25 W, .1015 .1084 .0324L .034k22

FIGURE 4.10 Difference Equation Model, Error Correcting
Algorithm, g~ = 0.1, e= 0.0

Plot a El El E2 E3 Eh_
A 1.0 0 .1002 .2016 .1809 .2313
B 0.5 0 .1002 .2028 .1866 .2876
C 0.25 0 .1002 2679 2599 Lokl
D 1.0 W, .1002 .1560 1232 .1125
E 0.5 W, .1002 1199 07438 .05808
F 0.25 W .1002 1109 ~0239( +U30L3

¥

FIGURE L4.11 Difference Equation Model, Projection Algorithm,
o= O-Ol’ Q = O-O

Plot a Wy E) E, E3 E),
A 1.0 0 .01002 L9094 L9091 8752
B 0.5 0 . 01002 5272 5272 .5249
C 0.25 0 .01002 .3284 .2860 .3767
D 1.0 Wy .01002 .9072 .9070 .8640
E 0.5 Wy .01002 5242 5242 5037
F 0.25 W .01002 3197 <3197 .337h

*

o7
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with the projection algorithm is mmch more sensitive than either of the
other combinations. The convergence rate is exponential until the asyup-
tote is reached and is nearly independent of g~ . The convergence rate
for the difference equation model with the error correcting algorithm is
twice as great as that for the delay line model with the error correcting
algorithm. As expected, the convergence rate for the difference equation
model with the projection algorithm is much greater than the other combin-
ations. Thus, a greater sensitivity to noise accompanies the faster con-
vergence.

Varying the convergence factor a gilves the results in Figures
(%.9), (4.10), and (L4.11). The asymptotes and the convergence rate are
both approximately proportional to the convergence factor for all cases.
Table II reveals that decreasing the convergence factor provides some
control over the identification error. For the cases using the error
correcting algorithm, the rms error between the outputs of the plant and
the learning model approaches the value of g~ as a decreases. The rms

1

error between the outputs of the "optimum" model and the learning model
becomes less than the value of o , as a decreases. Thus, the effects
of additive noise can be averaged.

The normalized weight vector error plots of Figure (L4.12) result
from requiring the learning model to follow the random signal used for
the input in the previous runs. The convergence rate is slightly less than
that for corresponding identification runs. Runs with &> = 0.1 were made

for a =1.0 and a = 0.5. The asymptote of the normalized weight vector

error curve for a = 1.0 was twice as great (0.04) as that for a = 0.5 (0.02).
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Another indication of the noise controlling ability of the convergence
factor is given in Figure (4.13). The rms error between the outputs of
the plant and of the learning model approaches the value of o~ more closely
for a = 0.5 than for a = 1.0. Thus, choosing the input based on the
learning model does not affect the learning characteristics of the identi-
fication.

The cubic system was identified using the error correcting
algorithm and a second order cubic difference equation model. This model
has only eighteen weights. The results of the identification are shown in
Figure (L4.14). The convergence rate is about half that of the delay line
model for the second order system using the error correcting algorithm.
This is probably due to the limited range of the input. Again, the
asymptote of the normalized weight vector error curve decreases with the
convergence factor.

The inverse system was identified with the model tracking system
using two combinations of models and training algorithms. The error cor-
recting algorithm was used with an exact difference equation model which
had thirty-six numerator weights and eight denominator weights. The pro-
jection algorithm was used with a second order difference equation model.
This second order model is the model used for the linear system with a
constant term added to represent the offset of the operating point.

Figures (4.15) and (4.16) reveal that the first case had much
slower convergence than any other case tested. This slow convergence may
be due to either the inclusion of inverse terms or the limited range of

the input.
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For the second case, the plant was identified for various ranges
of operation about an operating point, X, This was achieved by multi-
plying the usual input noise sequence by a constant and adding another
constant. Based on the nonlinear function of the invefse system, four
operating points were chosen. They are: Xy = 0.0 and X, = 1.5 (the
maximm and minimum points of the slope of the nonlinear function); and
X, = 0.75 and X, = 6.75 (the unity slope points of the nonlinear
function). The second derivative of the nonlinear function is nearly
maximal at X, = 75 and minimal at X, = 6.75. The normalized weight
vector error curves in Figures (4.17) through (4.20) show that pertur-
bations of approximately .0l yield the best operating range for this case.
If the perturbations about the operating point are too small, the pro-
jection algorithm will not be able to form a full set of linearly inde-
pendent Ei's. However, if the operating range is too large, the modeling
error will keep the learning model from accurately approximating the
linearized plant. The results are poorest at Xo = .75 where the charac~
teristics of the linearized plant change the most over the operating range.
Thus, the best operating range depends on the operating point and the
degree of nonlinearity at the operating point. The convergence rates are
about half that for the linear second order system examples. Therefore,

the model tracking identification has linearized the system.

4.3 Results for Non-Stationary Optimum Models

Two non-stationary situations were considered. In the first case,
the model tracking system with the second order difference equation model

and the projection algorithm was used. Based on the linear model, the plant




R §'0 01 g0 01 §0 01 ® /|'h J¥NVIA T s—
100°0 100°0 10°0 100 10 10 O
3 3 ¢ 9 8§ Vv
o NHLI¥09V NOI103r0Yd
0°0= X  T3GOW G3Z1¥V3NIT
1NV1d 3S¥3ANI ,
q - \ /.
_ AN
L ‘Ju\/?.‘,«/ b s
T~ oy T e e -
\ \ Vo oS ); | x
f\l/ ™~ e ...'/..; _ m
N~ x/// | =
\‘. A\..il —— kS u
= S
9 / o
2
-
? 3
3
=
3
2
-
\ ,
|
\
kY
/\ \m
e o T TR 0l
051 ; éuw Nl 3WIL
v
Lo



74

§'0 01 §°0

0’ §°0 071 ®
100°0 100°0 10°0 10°0 10 10 O

| 3 q ) 8 v

WHLIY09Y NOILD3royd
TICON Q3Z 1¥V3NIT
INVTd 3SY3IANI

0
§L°0 = X

81 "h 34N914

Ol

404¥3 ¥OLO3A LHII3M Q3Z I TVWION

0°l

~ 070l



75

61 h 3¥NO 14

-y
Y0¥¥3 YOLIIA LHOIIM QIZITVAWION

.
A.‘
v
e e e e e ket Ny
. 413 . ' 0l
- $03S NI 3NIL 00l o
§'0 01 §°0 01 S0 0° ®
100°0 100°0 10°0 10°0 1°0 [0 O
4 i ¢ 92 8 v
o WHLI¥0DTV NOILD3r0¥d ﬁ .
'l = X TI00W Q3ZIAVINIT ool

AINVId 3SUIANI




76

G0 0l
100°0 10070
4 3

0 07 o't ®
10°0 10°0 1'0 ©
a ) g v

0 WHL1¥097V NOILI3royd

S°0
1°0

GL°9 = X 300K @3Z I¥V3NIT

INVId 3SY¥3IANI

—~———
s

0C"h 34N914

R

Ol

YO¥Y3 ¥OLI3A LHOIIM Q3Z1TVMION

0°l

-~

0s1 *$03S NI INIL

+

001

- 0°01



-

was made to follow a few trajectories. PFor the second case, the bending
mode of the booster was identified given a difference equation model for
the rigid dynamics.

Three trajectories were used in the test: a series of steps,
two truncated ramps, and a nolsy sinusoid. The noisy sinusoid was a
sinusoid of magnitude five added to the standard noise sequence with a g
of 0.1. The resulting normalized weight vector error curves are in Figure
(4.21). Figures (4.22), (4.23), and (4.24) are plots of the actual and
desired plant outputs. When the learning model is a poor representation
of the system, the control will cause considerable deviation from the de-
sired trajectory. This behavior will normally be oscillatory thereby
providing sufficient information to identify the system. This is especially
evident in the noisy sinusoid case. Thus, it should be possible to design
a dynamic linearization identifier which can be used in the control of
nonlinear plants over slowly varying trajectories.

The bending mode of the booster was identified using the model
tracking system of Figure (4.25). Note that measurement errors are
introduced by the use of a difference equation model for the rigid dynamics.
The output of this model does not always agree with the actual rigid body
states. Thus, when they are subtracted from the gyro measurements, an
error is introduced. The learning model was initialized to the nominal
bending model for 4.0 seconds after liftoff. Identification runs were made
both for nominal bending and for bending with the natural frequency reduced
to eighty per cent of nominal. The normalized weight vector error curves

obtained using the error correcting algorithm are in Figures (4.26) and (4.27).
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The curves rise because the error correcting algorithm cannot keep up with
the rate of change of the booster. The results for the projection
algorithm are in Figures (4.28) and (4.29). The peaks are due to the
sensitivity of the projection algorithm. The controlled booster had very
smooth trajectories making identification very difficult. Due to the large
amount of computer time needed for this type of run, no attempt was made
to maximize the performance on this example. However, it can be seen from
the methods used that a compromise of these methods should provide the de-

sired identification of the bending.
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CHAPTER V

CONCLUSION

5.1 Conclusions

By observing that the output of a system can be represented by
a functional, a method of system identification has been developed using
the pattern recognition technique of ¢—learning machines. The functional
can be approximated by a transformation from the operating history of the
system to the output of the system. Viewing this transformation as a
hypersurface in a N-dimensional space facilitates the use of the pattern
recognition technique to identify the hypersurface. The approach yields
a very general method of system identification.

The designer must choose a model for the physical system based
on his a priori knowledge of the physical system and the situation in
which the identification is to be used. Any model that can be expressed
in the general form of Section (2.5) may be used with the training pro-
cedures of Chapter III. This general form includes models based on delay
line and difference equation representations for the physical system.
These models can be linear or nonlinear and may include inverse terms.

The ability of the learning technique to identify the physical
system from its normal operating record was verified by the use of the
model tracking system in Chapter IV. Table III is a summary of the experi-
mental results discussed in Chapter IV.

Both analytical and experimental results imply that the learning
technique has certain characteristics. First, the use of a simple model

for a complex plant at an operating point is feasible. Second, by the use
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of the convergence factor, speed of identification can be sacrificed for a
greater accuracy of identification. Finally, the magnitude of the identi=-
fication error I|E°°|| is proportional to the variance of the additive noise.
The trade-off between computational complexity and speed of
identification comes down to choosing a method of approximating a solution
to Equation (3.54). Two methods tried were the error correcting algorithm
and the projection algorithm. The projection algorithm was developed as
an extension of the geometric concept of the error correcting algorithm.
Among the possibilities of improving the identification technique would be
the use of techniques which computed the weight vector increment based on
a large set of data points in order to lessen the effect of additive noise.
Another possibility would be the scaling of the fi(g) to improve the

searching for the weight vector.
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APPENDIX A

Computing (¥T ¥)™

The basis is formed by adding a column and possibly removing one or

more columns from the previous basis. Therefore, it is possible to save

a considerable amount of computational effort by using the value of the

o1d ( ¥T¥) in finding the value of the new ( ¥° ¥)™'. This can

be done by examining the inverse of a general partitioned matrix. Let

M be a general partitioned matrix.

a b
M = (A.1)
c d
Then if Mfl is partitioned in the same manner, the result is
A B
Mt = (a.2)
C D
where
A=(a - pa~t c)_l
-1
B = - Abd (4.3)
c=-atea
p=at-ate
Consider the case of appending a column F to jy&.
(A.4)

Yi‘*‘l = (_F_) Yl)



T 7 1
T o FE vy
(¥ Yiuy) 7~ = . T
4 BA‘
e o]

B - - AT W3 ("I’iT \Yi)_l
C=- (\lfiT ifi)_l ‘I/iT FA = BT

- (g" “—:Yi)-l + af gl

This can be easily computed on a digital computer.

Consider the case of removing a column F from

Yi = (-F-" \Yi+l)

T -1
I W¥ia

It
I@g
=

T
| Yia ¥ Vi1 Vil
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(A.5)

(A.6)

(A7)

(A.8)



(o T SR S
D=(Fyr Hawny) *F BA

)'l =D - BL BA™L

( ‘I’iﬂT i1

Again, this is easily computed on a digital computer.

98.

(4.9)
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APPENDIX B

Five State Model of the Saturn Booster

The matrix differential equations for the five state model of the
Saturn Booster are given below. The first three states are: pitch ¢,
pitch rate ;, and angle of attack a. These states describe the angular
motion of the rigid body in radians for the pitch channel about a nominal
trajectory. The last two states are normalized bending -71, and normalized
bending rate 1i. These states describe the first bending mode as measured

in meters at the engine gimble point.

P%W o 1 0 0 o | 4] o
| 0 0 Ay 0 0 ) B,
| X=| &|=|Ay 1 Ay O 0 |+ | By | B
| N 0 0 0 o 1|7 0
| P 0 0 0o A A B
L L v S (1] L
B o o0 .015 O
Y = 1 0 0 007 | X
0o 1 0 0
—

The variable elements of the matrix equations are plotted in Figures (B.1l),

(B.2), and (B.3).
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APPENDIX C

Simulation Programs

The simulations of the model tracking system presented in Chapter IV
were performed using several variations of a single program. The flow
chart for all of these variations is in Figure (C.1). Three subroutines
were used. The GAUSS subroutine provided independent sequences of digital
gaussian pseudo noise with desired mean, variance, and auto-correlation.
The PATTERN subroutine calculated the G and H vectors from the input
and output history. This subroutine is the ﬁ-processor of the learning
model. The LEARN subroutine calculates the new weight vector. The flow
charts of the LEARN subroutine for the error correcting algorithm and the

projection algorithm are in Figures (C.2) and (C.3) respectively.



ENTRY

READ CONTROL CARD [ea—

PROGRAM INITIALIZATION
READ RUN PARAMETERS

READ CASE PARAMETERS
PRINT CASE IDENTIFICATION

o= INITIALIZE: NOISE GENERATORS
DATA ARRAYS

IPASS = |

|

K |

DETERMINE PROCESS INPUT, CALL cAuss(')

DETERMINE F, CALL PATERN(2)

CALCULATE: LEARNING MODEL OUTPUT,
OPTIMUM LEARNING MODEL OUTPUT,
MACHINE OUTPUT, AND
NORMALIZED WEIGHT VECTOR ERROR

DETERMINE PROCESS OUTPUT
DETERMINE MEASUREMENT NOISE, cALL GAuss(!)
DETERMINE NEW WEIGHT VECTOR, CALL LEARN(S3)
COMPUTE SQUARED ERRORS

oy

COMPUTE RMS ERRORS
o= UPDATE NXPRNT

PRINT: IPASS, PROCESS INPUT,
ALL OUTPUTS, AND

RMS ERRORS

EXIT =
—o={ [PASS = |PASS + |
PRINTOUT DESIRED?
IPASS > NXPRNT
NO YES
NO DONE? YES
IPASS > NPASS ' »

PRINT: FINAL WEIGHT VECTOR AND RMS ERRORS
PUNCH: PLOTTING DATA

(1) SUBROUTINE GAUSS IS THE NOISE GENERATOR
(2) SUBROUTINE PATERN 1S THE $-PROCESSOR
(3) SUBROUTINE LEARN IS THE TRAINING ALGORITHM

FIGURE C. |

FLOWCHART OF

MODEL TRACKING IDENTIFICATION PROGRAMS



ENTER
GIVEN: F, W, a, y;, z{»]IE]|

YES

HEl=0

NO

CALCULATE CORRECTION CONSTANT
CORREC = a = ( Yi=g VHEN

CALCULATE NEW WEIGHT VECTOR
W= W+ CORREC + F

\

RETURN

FIGURE C.2  FLOWCHART OF
LEARN SUBROUTINE FOR ERROR CORRECTING ALGORITHM

RETURN
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enTer( 1)
GIVEN: , W, a, y;, z IIE]l, EPS, MAXAGE, NACTIV

YES NO

FIND OLDEST STORED DATA(2)
=| UPDATE |AGE

SET IREMO = POSITION OF OLDEST DATA
SET IMAX = 1AGE( IREMO)

1

. NO

106

IMAX > MAXAGE

YES

cALCULATE NEw (WTW)™! BY EQUATION A.6
REMOVING COLUMN CORRESPONDING TO |REMO
NACTIV = NACTIV =1

RETURN
DETERMINE COLUMN
‘ TO BE REMOVED
FROM
SET IREMO
NO -
IV G-FE[|>EPS *|| E]| pa—]
YES
NO YES

cALCULATE: ¢ = (W TW )"V WT ElIcH, &INve-F|

< ——
NACTIV < X NACTIV = NACTIV + |

CALCULATE NEw (W TW) ! BY EQUATION A.9
APPENDING THE NEW DATA F

STORE NEW DATA F & y; INW & Y

'

CHECK AND CORRECT (W7 ¥)™!

weLy (W)™ = (W) - (FTW) ) €
UNTIL 1€ ]| CEASES TO DECREASE

wiere €= (VW) (WT@) -

!

CALCULATE NEW WEIGHT VECTOR

RETURN [-¢

W=w+ W (VW) (Y-¥TH)

(1) ALL ARRAYS ARE INITIALIZED TO ZERO BY MAIN PROGRAM
(2) 1AGE(J) 1S THE NUMBER OF ITERATIONS SINCE THE CORRESPONDING DATA WAS STORED

FIGURE C.3  FLOWCHART OF
LEARN SUBROUTINE FOR PROJECTION ALGORITHM



