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RISK AVERSION AND BIDDING THEORY

by

D. L. Hansonl and C. F. Menezes2

1. Introduction and Summary

This paper provides a theory of individual bidding be-
havior in competitive sealed tender markets. The objective
is to formulate a bidding model in terms of modern utility
theory and to derive its basic properties. The model pre-
sented in this paper differs in important ways from the
expected utility maximizétion bidding models independently
formulated by Greismer, Levitan, and Shubik [4], and by
Vernon Smith [7]. For one thing, both Greismer, et al,
and Smith assume that the bidder maximizes expected utility
of income. We assume that the bidder maximizes expected
utility of wealth, the improvement being that utility is
made to depend on both the size of the payoff and the level

of initial wealth.
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A second difference relates to the form of the utility
function. Greismer, et al, implicitly assume that utility
is a homogeneous linear function of income. It is well known
that linear utility functions, whether or not homogeneous,
imply "neutrality" to risk; i.e., the individual will be
indifferent between engaging in any arbitrary bet and re-
ceiving the sure option equal to the actuarial value of the
bet. This type of implied behavior seems hardly consistent
with intuitive evidence or observation. On the other hand,
Smith assumes in places that utility is guadratic in income.
This form of utility function is very prevalent in the
literature on decision making under uncertainty and has been
the basis for the mean-variance approach to the theory of
portfolio selection. However, the quadratic utility function
implies implausible behavior. As K. J. Arrow [2] has noted,
it violates the principle of decreasing absolute risk aversion.
It also implies that eventually wealth has negative marginal
utility, so that it would be better to throw some away. Be-
cause of the implausible behavioral implications of linear
and quadratic utility functions, we assume that utiiity is
a concave function of wealth, this being the most general
form of utility function which characterizes risk averse
behavior.

Finally, the emphasis in this paper on deriving the

formal properties of the model and giving their economic
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interpretation is also quite unique and turns out to be
rewarding. A natural relationship emerges between the prin-

cipal properties of the model and certain tools and concepts

which have been developed in some branches of mathematical

statistics on the one hand, and in the theory of risk aversion

on the other. Specifically, an investigation of the solution
properties of the model reveals the important role of the

"hazard rate" or "failure rate" function, a basic concept in

the mathematical theory of reliability [3]. At the same time,

we find that some of the more important comparative statics
properties of the model depend on the behavior of two functions;

one of which has been independently established as a measure

of risk aversion by K. J. Arrow [1]; [2]; and by J. W. Pratt

[e]. As far as we know, the other function has not been

interpreted as a measure of risk aversion in the literature

prior to this. We establish it as such and relate it to the

work of Arrow and to that of Pratt.

In Section 2 we formulate thg bidding model and give con-
ditions under which the model has a unique solution; The
hazard rate function is interpreted and the expression deter-
mining the optimal bid is shown to have a straightforward
behavioral meaning. Section 3 contains a summary of the work
of Arrow and Pratt and some new résults in the theory of risk

aversion. Section 4 contains an investigation of the compara-

tive statics properties of the model and their relation to the




existence of risk aversion and the behavior of two measures
of risk aversion. In contrast to the usual treatment of
comparative statics in economic theory, both the direction of
change in the optimal bid price and bounds on its magnitude
are considered. The analysis 1s somewhat revealing of the
nature of the substitutions between "safety" (as measured

by the probability of success) and potential profits that
underlie the bidder's response to a change in a specified
parameter. In Section 5 we briefly outline possible direc-

tions in which the model can be extended.

2. An Expected Utility Maximization Bidding Model

This section deals with the structure and basic prop-
erties of an expected utility maximization bidding model for
the sealed tender selling market. The institutional features
of this market are outlined as follows: the market consists
of a number of sellers competing for a single contract; each
seller submits a single sealed bid; and the contract is awarded
to the lowest bidder. Each seller's decision variable is his
bid price. Every seller realizes that the higher his bid
price the smaller the probability of getting the contract,
but the larger the profits should he get it. Thus, each
submitted bid reflects an attempt to balance probability and

profit considerations.



To introduce the model we focus on a typical seller and
denote his average cost by ¢ . Because n , the size of the
contract, is fixed in the type of market under consideration,
c = c(n) 1s a constant for any given bidding decision. Re-
~garding the seller's beliefs about the bidding behavior of
his opponents, we assume that the selier attaches a proba-
bility distribution F(b) to the minimum of his competitor's
bid prices b . We let p denote the bid submitted by the
seller. He will get the contract if he submits a bid that
is below all of the bids submitted by his competitors, that
is, if p < b . The probability that his bid will be success-
ful is
(2.1) prip < bl =1 -F(@p) .

We assume that F 1s continuous, so that the probability of
a "tie" between bids is zero; because F 1is continuous, what
happens in case of é tie does not affect the seller's proba-
bility of getting the contract.

The bidding situation facing the seller is equivalent
to choosing p in a lottery which offers a prize of n(p - c)
with probability 1 - F(p) and a prize of zero with proba-
bility F(p) . Note that the prize zero corresponds to an
unsuccessful bid. The utility of a prize depends on its
size and on the seller's initial wealth w . In particular,

the utility of the prize zero is u(w) . The seller, being



a von Neumann-Morgenstern expected utility maximizer,
chooses p so as to ma%imize his expected utility
E(p:;c,w,n), where

(2.2) E(pic,w,n) = [1 - F(p)luln(p - c) + wl + F(p)u(w).

A rearrangement of terms reduces this to the more convenient
form

(2.3) E(p;c,w,n) = (1 - F(p)llu{n(p - ¢) + w} - u(w)] + u(w).
Any p which maximizes E(p;c,w,n) = E(p) for fixed values
of the parameters ¢, w, and n will be called a solution
of the model or an optimal bid.

Our immediate concern is whether the model has a solu-
tion, and if so, whether the solution is unique. The two
theorems presented below give conditions under which there
exists an optimal bid and conditions under which that optimal
bid is unique. To state the theorems we need to define the
number |
(2.4) A = min{p:F(p) = 1} .

From the definition of A it follows that if the seller
submits a bid greater than or equal to X then one of his
opponents will get the contract, so E(p) = u(w) for all

p > A. If, on the other hand, the seller's bid p 1is less
than or equal to his unit cost ¢, then he has nothing to
gain even if he wins the contract since E(p) < u(w) for
all p < c. Thus, for a bid p to be "reasonable," it
must satisfy ¢ < p and p < A. In order that a "reason-

able" bid be available to the seller we require that ¢ < A.




We note from (2.3) that every bid in the interval (c, 1)
gives a higher expected utility E(p) than u(w). We are
now in a position to state our two theorems on the exist-
ence and uniqueness of an optimal bid.

Theorem 13: (Existence Theorem) If

(A1) ¢ < A < o,
(A2) u is continuous and strictly increasing, and
(A3) F is continuous (with or without a density),
then there exists an optimal bid (not necessarily unique)
in the interval (c, A).
Proof: Under assumptions (Al), (A2), and (A3) we see that
E(p) = [1-F(p)] [u{n(p-c)+wl-u(w)] + u(w) is a continuous
function of p on the compact set [c, A1, that
E(p) > u(w) for all p in (¢, 1), and that
E(c) = E(p) = u(w). Thus there exists a number Po (not
necessarily unique) in [c, 1] such that-

E(p,) = max{E(p)|c < p < 1}, and since

E(p) > u(w) = E(c) E(A) for all p in (c, 2), it

follows that Pg # ¢ and Pg # X, !

(3) The assumption X < « 1is not necessary in this work.
In this proof we use [1-F(p)lu{n(p-c)+w} - 0 as p > 2.
This is true if uw is bounded, or if A < =, or if
[pdF(p) is finite and u is concave. We use A < @ not
only because the assumption simplifies the proof of this
theorem, but also because it is difficult (if not imposs-
ible) to conceive of a situation in which A = o,




Having given conditions under which there exists an
optimal bid, we now show that under suitable assumptions
this optimal bid is unique. ©Note that in the following
theorem assumptions (A2a) and (A3a) imply (A2) and (A3) of
Theorem 1 respectively.

Theorem 2: (Uniqueness theorem) Suppose:
(Al) cC < A < o ;
(A2a) u is continuous, strictly increasing, and
concave;
(A3a) F is absolutely continuous with density £,
and the hazard rate function f (p)/[1-F(p)]
is a nondecreasing function of p.
Then there is a unigue optimal bid Po in the interval

(c, A), and for p in (c, 1), the expression

(2.5) nu'[n(p - c) + wl £(p)

uln(p - ¢) + w] - u(w)  I-f(p)

is positive for p < Pq and negative for p > Py- In
(2.5), the marginal utility function u' can be taken to
be the right derivative of u, that is

u(t + h) - u(t)
R .

u'(t) = lim
hy0

If f(p) and u'[n(p - ¢) + w] are continuous for p in
(¢, A), then P, is the unigue zero in (c, A) of expression

(2.5).



Proof:

Because of the assumptions made about u and f ,
E(p) = [1 - F(p)][u{n(p - ¢) + w} - u(w)] + u(w)
has a right derivative D+(E(p)) almost everywhere and

is the integral of this right derivative. (We can con-

sider £ to be the right derivative of F .) We have

D (E(p)) = -£(p) [u{n(p-c)+w} - u(w)] + [1-F(p)]nu'[n(p-c)+w]

(a) + (b)

Vit

where
a = [1-F(p)] [uln(p-c) + w} - u(w)]

and

nu' [n(p-c) + wl _ f(p)
uln(p-c) + wl - u(w) 1-F(p)

!

and u'(t) = D+(u(t)) is the marginal utility. From the
definition of X we see that [1-F(p)] > 0 for all

p <X, and since u 1is strictly increasing,

u{n(p-¢) + w} - u(w) > 0 for p > c . Thus the expression
(a) is positive for ¢ < p < X .,

We will show that there exists a unique Ps in the
interval (c, A) such that the expression (b) is positive
for p < P, and negative for p > Py - Then, for p in
(c, A) , this would make D+(E(p)) positive for p < Po
and negative for p > P, so that E(p) is strictly
increasing for p < Py and strictly decreasing for p > Py

and thus E(p) has a unigque maximum at p = Po-
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We note that:
(1) u'ln(p-c) + w] 1is positive and non-increasing
in p since u is concave and strictly increasing;

(2) lim uln(p-c) + wl] - u(w) = 0;

p>c
(3) uln(p-c) + wl - u(w) is strictly increasing in p ;
so that '
(4) u[Elégé§—i)w; Y]u(w) is strictly decreasing
in p for c¢ < p ;
and

. u' [n(p-c) + wi
(5)  lim ufn(p-c) + wl - u(w)

pYc
By assumption, IE%%%T is non-decreasing, so expression (b)
is strictly decreasing in p . If 1lim(b) > 0 and

pYc

lim(b) < 0 , then the desired p_  exists. But 1im —iB)_
o 1-F(p)

ptA ptc

is non-negative and finite, so it follows from (5) that

f (p)
1-F(p) 70 -

1

lim(b) + > 0 , "Obviously" 1lim
pYc ptA

Since X < o,
= Jlog (1-F(X)) - log (1-F(0))

4
dt

A
= exp kJ L) at

log (1-F(t))dt
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A
. f(t) . f(t) .
h —_— = o, © =t
so that fol—F(t) dt Since A < and I=F(f) IS
. R 6 <) N
non-decreasing we must have 1lim -, = ®, Thus we see
1-F(t)
t+A
that 1lim(b) = -~ < 0. Hence conditions for the desired

pP4+A
Po to exist are satisfied.

If u'(n(p-c) + w) and f(p) are continuous for p
in (c, A), then expression (b) is continuous for p in
(c, A) and must assume the value zero somewhere in the
interval by the mean value theorem. Since (b) 1is either
positive or negative for each p # Pq in {c, A), it
follows that Pg is the unique zero of expression (b)
in (¢, A). 0

In the remainder of this section we demonstrate that
the expression (2.5) determining the optimal bid has a

meaningful economic interpretation. To show this we define

nu' [n(p-c) + w]
uln(p-c) + w] - u(w)

H(p) = ig%%%y and G(p) =

. G(p) can
be thought of as the rate of proportionate change in utility
of profits as a function of the bid price p. Note that be-
cause of the assumptions about u, G(p) 1is a strictly de-
creasing function of p. The function H plays an important
role in many disciplines, particularly actuarial science and

the mathematical theory of reliability, and is usually called

the "hazard rate" or the "failure rate." In the context




of our model, H(p)dp approximately represents the proba-
bility that a bid of size p + dp would be unsuccessful
given that a bid of size p would have been successful.
Thus H(p) 1is the rate of proportionate increase in the
probability of losing the contract as a function of p

It seems natural to assume that H(p) is a non~decreasing
function of p . This is equivalent to assuming that the

conditional probability that the minimum of the opponents'

bids is at least p + dp given that it is at least p

is a non-increasing function of p . (Intuitively, one
might think of this, when applied to an individual, as
saying that if a person is contemplating making a bid of
p , then he is more likely to raise it an amount dp if
p 1is a low bid than if p 1is a high bid.)

The above definitions enable us to rewrite expression
(2.5) as G(p) -~ H(p) . From Theorem 2 we know there exists
a unique opfimal bid Pg in the interval (c, A) such that
G (p) 2 H(p) when p S Py * Thus for bids less (greater)
than Py the rate of proportionate increase in the utility
of profits exceeds (falls short of) the rate of proportionate
increase in the probability of losing the contract, and
expected utility can be increased by raising (lowering) the
bid. Theorem 2 further states that if the marginal utility

u'[n(p-c) + w] and the probability density £f(p) are
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continuous functions of p in the interval (¢, A) , then
the optimal bid Pg is the unique solution of the equation
G(p) = H(p) . That is, G(p ) = H(p,) and G(p) < H(p)
when p S Py - Thus when marginal utility and the proba-
bility density are continuous functions of p , expected
utility is maximized and the optimal bid is determined by
equating the rate of proportionate increase in the utility
of profits to the rate of proportionate increase in the
probability of losing the contract. This is an intuitively
meaningful result and is not immediately obvious from an
examination of the structure of the model. Figure 1 presents
a graphic illustration of the solution of the equatioﬁ
G(p) = H(p) . Figure 2 indicates what can happen when the
hazard rate function is discontinuous. The same sort of
thing can happen when G{(p) instead of H(p) is discontinuous.
For these cases Py is the unique value of p for which

the expression G(p) - H(p) changes sign.
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Figure 2

Figure 1
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3. Risk Aversion and its Measurement

Let u be a utility function for wealth with marginal
utility strictly positive. The purpose of this section is
to demonstrate that the functions A(t) =-u"(t)/u'(t) and
P(t; w) = -tu"(t+w)/u'(t+w) for each fixed w can be
interpreted as two measures of risk aversion. We set forth
the economic meanings of A and P here because, as will
be shown later, some important comparative statics properties
of the bidding model can be determined from the behavior
of these two functions.

We begin by defining risk aversion. An individual is
a risk averter if for any arbitrary risk he prefers the
non-random amount equal to the actuarial value of the risk
to the risk itself. Let w be his initial wealth and =z ,
a random variable, be his income. He is risk averse if
(3.1) ulw + E(z)] > Elu(wt+z)]
where E is the expectation operator. A necessary and
sufficient condition for (3.1) to hold for all values of
w and all risks =z 1is that the utility of wealth function
u be strictly concave, or equivalently that it be the
integral of a strictly decreasing marginal utility of wealth

function u' . ( u' may be assumed to be either the right

or the left derivative of wu if such is convenient.) This

guarantees




(3.2) u"(t) < 0 for all t >0
and a little more.

While (3.2) indicates the existence of (a weak form of)
risk aversion, the magnitude of u"(t) has in itself no
meaning. The reason is that if u is a von Neumann-
Morgenstern utility function, then the preference ordering
represented by E(u) does not change when the utility func-
tion u is replaced by the utility function cu + b if ¢
is positive. However, such transformations change the magni-
tude of wu"(t) , although they do not alter its sign. Thus
the sign but not the magnitude of wu"(t) is significant.

The foregoing suggests that a measure of risk aversion
should in some sense measure the concavity of u and should
remain invariant under positive linear transformations of
the utility function. The functions A(t) = -u"(t)/u'(t)
and P(t; w) = -tu"(t+w)/u'(t+w) fulfill both requirements
and hence qualify as measures of risk aversion. We will show
that these measures have straightforward behavioral interpre-

tations.

A as a Measure of Risk Aversion

A 1is called absolute risk aversion. Its role as a
measure of risk aversion was discovered independently by
Kenneth J. Arrow [1], [2], and by John W. Pratt [6]. Pratt

interprets A in terms of the risk premium 7 defined by
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the equation

ulw + E(z) - 7] = E[u(wt+z)] .
T can be regarded as the maximum amount, beyond the negative
of the expected value of the risk itself, which an individual
with wealth equal to w would pay to insure against the risk
z . Pratt [5, page 125] indicatés that under suitable regu-
larity conditions
(3.3) ™ = (02/2)A(w + E(z)) + o(o?)
where o2 is the variance of z. (We use of(t) to denote

any function which is of smaller order of magnitude than t

near o. In particular, o(¢?)/0%?+0 as o¢2>0.) Thus, when

02

is small, w = (0?/2)A(w + E(z)). It follows that A(w)
is about twice the risk premium per unit of variance for
"small" actuarially neutral (E(z) = 0) risks. Note that
in view of (3.2), the risk premium is non-negative.

Still another inte;pretation of A has been provided by
Arrow [2, pages 33 and 34.] He considers a risk which involves
winning or losing an amount h with probabilities. p and
1l - p, respectively. Given the amount of thé bet h and
the initial wealth w, consider the probability p' such
that the individual is just indifferent between accepting
and rejecting the bet. The value of p' is determined from
the equation

u(w) = p'u(w+h) + (l-p')u(w-h)
using finite Taylor's series expansions of u(w+h) and

u{w-h) about w. Under suitable regularity conditions on u




P' = 3 + JA(W) + o(h).

Thus for sufficiently small values of h,

(3.4) p' = %+ %—A(w).

It follows that absolute risk

N =

In view of (3.2), p' >
aversion measures the individual's demand for more-than-fair
odds.

A(w) may increase, decrease, or remain constant with
increasing wealth. A may be non-monotone for some utility
functions and may be bounded or unbounded. Decreasing
(increasing) absolute risk aversion means that the individual
will pay less (more) for insurance against a given risk as
his wealth increases; alternatively, that the size of favor-
able odds required to stake a given amount diminishes (in-

creases) with increasing wealth.

R  as a Measure of Risk Aversion

P(t; w) = -tu"(t+w)/u'(t+w) has so far as we know not
appeared in the literature prior to this. However, it appears
to be a variant of the measure R(t) = -tu"(t)/u'(t), which
is called relative risk aversion by Arrow and proportional
risk aversion by Pratt. The comparative statics of the
bidding model do not depend on the behavior of R, but since
Arrow and Pratt have provided an interpretation for R, we
look at this measure in order to obtain a clue as to how to

interpret P.




The interpretation of R follows quite easily from
that of A. Suppose the risk premium and the risk itself
are measured not in absolute terms but as proportions of
initial wealth. Let 1° = w/w and 2° = z/w denote the

proportional risk premium and the proportional risk, respec-

tively. Then, as Pratt shows, if 2° is actuarially

neutral (i.e., if E(zo) = 0),
1° = (02/2)R(W) + o(0?),
where o2 is now the variance of z°. A similar interpre-

tation is provided by Arrow. Let h = how, so that h° is
the fraction of wealth at stake. Then, Arrow shows that

o]

oy

p' = % + R(w) + o(ho).

>

Relative risk aversion may increase, decrease, or re-
main constant with increasing wealth. Increasing (decreas-
ing) relative risk aversion means that the proportion of
wealth spent for insurance increases (decreases) when wealth
and risk are increased in the same proportion; alternatively,
that the size of favorable odds demanded increases (decreases)

when wealth and bet size are increased in the same proportion.

P as a Measure of Risk Aversion

We are now in a position to interpret the function P

as a measure of risk aversion. Suppose the individual's
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wealth w is increased by an arbitrary amount t. Now
measure the risk premium and the risk itself as proportions
of t. Let 7 =171/t and z = z/t denote the risk pre-
mium and the risk respectively, each measured as a pro-
portion of the increase in wealth. Under suitable
regularity conditions it can be shown that

2 —
(3.5) T o= Z_(TSLT(_"Z:‘TT P[t(1+E(Z));w] + o(c?)

where o2

is the variance of z . If E(z) = 0 then
T = (c%2/2)P(t;w).
The measure P can also be interpreted in terms of

the more—than—fair odds concept. Let h = ht, so that

h is the fraction of additional wealth that is at stake

Then it is easy to show that

T

(3.6) p' = % + 2 pew) + o(R).

At a formal level the measures R and P appear
to be quite similar. However, they are associated with
two different types of betting situation. Relative risk
aversion is relevant when the ratio of the bet size td
wealth is being considered. The function P is
important when the ratio of the bet size to additional
wealth is under consideration. Note that if the ratio
of the bet size to wealth remains constant then the

ratio of the bet size to additional wealth decreases
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as wealth increases. Conversely, if the ratio of the bet
size to additional wealth is kept constant then the ratio
of the bet size to wealth must increase as wealth increases.
The following propositions and discussion are intended
to provide some insight into the behavior of P. For the
remainder of this section we assume that u is non-decreas-
ing, that u 1is concave (but not necessarily strictly con-
cave) , that u has a continuous first derivative u',
and that u' is the integral of some function u" (possibly
the regular derivative, the right derivative, or the left
derivative of u').

Proposition 1l: Fix w. If P(t;w) is non-increasing in

t for t in some interval (O,to) with to > 0, then
either P(t;w) = 0 (and consequently u"(t+w) = 0 for
0 <t < t, or else w = 0.

Proof: P(t;w) is non-negative. Assume it is non-
increasing and not identically zero for 0 < t < to'

Then 1lim P(t;w) > 0. Now u' is non-increasing
t+0

and non-negative and can't be identically zero on (0, to)
if P(t;w) 1is to make sense. Thus we find a > 0,

b > 0 such that for 0 <t < b we have P(t,w) > a

and u'(t+w) > a. Then for 0 < t <b

a a?

n - = a4t —_
u" (t+w) < T U (t+w) < T



and integrating gives

b
u'(w+b) - u'(w) < I (a2/t)dt = —o
0
so that u'(w) = +«., Because u' 1is non-increasing this

can happen only when w = 0 and then only for some utility

functions. [J

Proposition 2: Fix w > 0 and suppose ty > 0. If P(t; w)

is monotone (strictly monotone) in t for 0 < t < to,
then it is non-decreasing (strictly increasing) there.
Proof: Suppose P(t; w) . isvnon-increasing for 0 < t < toe
Then by Proposition 1 we-have P(t; w) =0 for 0 < t < to.
Thus P(t; w) can't be strictly decreasing for 0 < t < to’
and if it is non-increasing it is in fact also non-decreasing
since it is a constant. []

These two propositions indicate that if w > 0 and
we for some reason believe P(w; t) to be monotone in t,
then we must believe either that P(w; t) 1is strictly in-
creasing in t or that u(t) is linear. If we require
strict concavity of u, then we can rule out the lattef;
Unfortunately, fluctuations are possible. It is possible to
construct a bounded or unbounded utility function with a
continuous second derivative for which P is not monotone
or for which R is not monotone. It would thus seem that
any assumptions about the monotonicity of P must be made

on the basis of either intuitive of empirical considerations.
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We conclude this section with the following observa-
tion:

Proposition 3: If either A(t) or R(t) is non-decreasing

then either u"(t) = 0 (so that u 1is linear), or else
P(t; w) 1is a strictly increasing function of t for each

fixed w.

4. Comparative Statics of the Bidding Model

Recall that in Section 2 an optimal bid price was
defined as any value of p which maximizes expected utility
E(p;c,w,n) for given values of the parameters ¢, w, and
n. It was demonstrated that under economically meaningful
conditions there exists a unique optimal bid price P,-

The purpose of this section is the investigation of the
change in the optimal bid price Po caused by independent
variations in the three parameters c, w,vand n. Both the
direction of change of Po and bounds on its magnitude are
of interest.

Throughout this section we will assume, unless specifi-
cally stated otherwise, that changes in the parameters c,
w, and n will not cause the seller to revise his estimate
of the bidding behavior of his competitors. Thus the proba-
bility distribution F(p), and hence the hazard rate func-
fion H(p), are assumed fixed under changes in ¢, w, and

n. This is, of course, a reasonable assumption for changes
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in w, and also for changes in ¢ that are internal to
the firm. The assumption might be somewhat unrealistic
for a change in n since such a change directly affects
. all firms competing for the contract. Later in this sec-
tion we will comment on how our analysis must be extended
in order to take into account revisions in the seller's

estimate of the bidding behavior of his competitors.

The Effect on the Optimal Bid Price

of a Change in Average Cost

The results of this subsection are summarized in the
following theorem.
Theorem 3: Suppose conditions (al), (A2a), and (A3a) are
satisfied and that u' and f are the right derivatives
of u and F respectively. If the average cost c¢ 1is
raised (lowered) by an amount Ac, then the new optimal

bid price Py satisfies the inequalities

- A
(4.1) Po £ Py S P, t Ac (po > Py 2 Py c)
where P is the original optimal bid. If wu' and £
are continuous, then
(4.2) P, < Py (b, > Py)-
1f, in addition, the hazard rate function is strictly

increasing then

(4.3) Py < Py + Ac (pl > Py - Ac) .
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Proof:

Note that the basic assumptions used in this theorem
are the same ones that were used in Theorem 2. We are
thus guaranteed the existence and uniqueness of optimal
bids for the various values of ¢ under consideration
provided only that they are all less than X (see (2.4)).

Earlier we defined and interpreted the functions

_ nu' [n(p-c) + wl
6(P) = Fm(p-o) * wl = uW)

and H(p) = TE%%%)' From

Theorems 1 and 2 we know that, for fixed ¢, w, and n,
the expected utility E(p; ¢, w, n) has its unique
maximum at N the point where the expression
G(p) - H(p) changes sign. Equivalently, P is the
"crossover point" of the graphs of G(p) and H(p) |
(see Figures 1 and 2). One might therefore expect to
obtain some information about the direction of change
in Py from the shifts in the graphs of G(p) and H(p)
due to a change in the parameter c.

By assumption the graph of H(p) does not change when
¢ changes. However, for fixed p and c¢ < p, we see that

u'[n(p-c) + w] is non-decreasing in ¢ and u[n(p-c) + w]

' —
is strictly decreasing in ¢, so that G(p) = u?ﬁ(éfé§+§;f¥{w)

is a strictly increasing function of c¢. This argument

shows that the whole graph of G(p) is raised when ¢
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increases and lowered when ¢ decreases. (Refer back
to Figures 1 and 2 to visualize this.) Thus Po is a
non-decreasing function of c. Po is a strictly in-
creasing function of ¢ if both f and u' are con-
tinuous so that G and H are continucus. The various
cases provide the proper inequalities between Po and Pq -

nu' (nt+w)
u(nt+w) - ulw)

Now let t = p - ¢ so that G(t+c) =

and H(t+c) = IE%%%%%T. For fixed ¢, the "crossover point"

tO of the graphs of G(t+c) and H(t+c) 1is just tO = Py = C-
The function G(t+c) (and therefore its graph) does not depend
on c¢, while H(t+c) 1is non-decreasing in c¢ for each fixed t.
It follows (see Figure 3) that to is a non-increasing function
of c. (t0 is a strictly decreasing function of ¢ if H 1is
strictly increasing and if both u' and f are continuous- -
so that G and H are continuous.) In particular, if ty and
p, are the "crossover points" corresponding to an average cost
of ¢ + Ac, then Py - (c + Ac) =t; <t = Py = © if Ac > 0,
or equivalently, I Ac. (We get strict inequality

if tO is a strictly decreasing function of c¢.) The other

inequalities follow by considering a decrease in c¢ by an

amount Ac. $i
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Figure 3



-~ 28 -

The conclusions of this theorem are intuitively quite
appealing. Suppose average cost is increased by an amount
Ac. 1If the bid price is left unchanged, potential average
profit will decline from (pO - ¢c) to (p0 - Cc - pC).
Note that the probability of getting this smaller profit
is still 1 - F(po). A smaller profit is now associated
with the former probability of success, and the theorem
tells us that the bidder "trades off" some of his
probability of success for an increase in his potential
profit. He therefore raises his bid price. However,
since the bidder is risk averse, his willingness to
"trade off" probability of success for potential profit
declines as potential profit increases and probability
of success decreases. In particular, the theorem tells
us that he is totally unwilling to continue this type
of "trade off" once he has obtained his old level of

potential average profit.

The Effect on the Optimal Bid Price

of a Change in Initial Wealth

The result of this subsection depends on an assumed
monotonicity of the absolute risk aversion function A.
Our result gives the direction of change in the bid price
due to a change in initial wealth, but gives no bound on

this change.
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Theorem 4: Suppose conditions (Al), (A3a),
(A2b) u is strictly increasing, concave, and con-
tinuously differentiable,
(a4) u' is right differentiable and is the integral
of its right derivative u'',
are satisfied, and that ¢ and n are fixed. If the bidder's
initial wealth is raised (lowered), and if the function A
is non-increasing, then the new optimal bid price Py satis~-
fies the inequality
(4.4)  p, 2Py (b, > Py)-
If, in addition, £ is continuous and A is strictly de-
creasing, then the inequalities above are strict. If A
is non~decreasing (strictly increasing) instead of non-
increasing (strictly decreasing), then the inequalities are
reversed.
Proof :
We begin by finding an equivalent expression for G(p).

Setting 6 = n(p - c¢), we have
1 . fu' (6+w) _ 1 fu' (6+w)

G(p) = p-c u(b6+tw) - u{w) p - c 9
f u' (t+w) dt
0
1 -1
= {(p-c) J [u'(6Tt+w) /u' (6+w)]1dt}
0

where we have made the change of variables t = 61. Using

the fact that a/b = exp(log a - log b) when a and b



are positive, we obtain

G(p) = [(p-c)[gexp(log u'(Bt+w) - log u'(8+w))dr] L
= [(p-c)f%exP(ng g§1og u' (x+w)dx)dr] L
- [(p—c,f%eXp(ng-A(x+w)dx)dT]_l
1

[(p—C)féexp(ef%A(ey+w)dy)dT]_

where we have made the change of variables x = 6y, and
have noted that the reversal of the limits of integration
changes the sign of the integral. Our final expression for
G(p) 1is

(4.5 G(p) = [(p-c) [gexpln(p-c) [1a(ny(p-c)+w)dyldr] T,

By hypothesis, H is not affected by changes in W.
However, from (4.5) we see that if A 1is non-increasing
(strictly decreasing, non-decreasing, strictly increasing),
then G(p) 1is a non-decreasing (strictly increasing, non-
increasing, strictly decreasing) function of w for each
fixed p.

The remainder of the proof uses the argumenfs of Theorem 3
and will be omitted. !

Theorem 4 indicates the relationship between the be-
havior of the absolute risk aversion function A and the
direction of change in the bid price due to a change in

initial wealth. It might be helpful to look at this result



in intuitive terms. Suppose that A decreases with wealth,
i.e., an individual's willingness to engage in a bet, as
measured either by the risk premium or by the favorable odds
demanded, increases with wealth. This means that as his
~wealth increases, the bidder raises his bid price (conse-
quently reducingv 1 - F(p), his probability of getting the
contract) in order to increase potential (and, incidentally,
also expected) profit. The opposite type of argument can
be used to explain the claim of Theorem 4 that the bid
price decreases if A increases with wealth.

Whether A increases or decreases with wealth would
seem to be an empirical rather than a theoretical issue. On
the basis of intuitive evidence and casual observation we are
inclined to accept Arrow's [2, page 35] hypothesis that abso-

lute risk aversion decreases with wealth.

The Effect on the Optimal Bid Price

of a Change in Contract Size

The first theorem of this subsection gives the direction
of change of the optimal bid price. It depends on an assumed
monotdnicity of the function P(t; w) introduced at the
beginning of section 3. (Recall that proposition 2 of
that section states that if P(t; w) is monotone in ¢,
then it must be non-decreasing.) Our other theorem provides

a bound on this change.
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Theorem 5: Suppose conditions (Al), (A2b), (A3a), and (A4)
are satisfied and that ¢ and w are fixed. 1If the contract
size is increased (decreased), and if the function P(t; w)

is non-decreasing in t, then the new optimal bid price 1<
satisfies the inequality

(4.6) Py, 2 P (p, < Py) -

If, in addition, f is continuous and P(t; w) 1is a strictly
increasing function of t, then the inequalities above are
strict.

Proof:

From (4.5) and the definitions of A and P we see that
(4.7 G(p) = [(p=c) [pexplfI(1/y)P(n(p=c)yiw)dylar] .

The proof of this theorem is essentially a repetition of the
proof of theorem 4 using (4.7), P, and n instead of (4.5),
A, and w. We omit it. []

Under the assumption that P(t; w) 1is a non-decreasing
function of t, one's intuition agrees with the theorem's
description of the bidder's behavior. If the contract size
is increased from n to n + An, then both the bidder's
potential profit and his expected profit are multiplied by
a factor of (n + An)/n if he maintains his old bid price

8] (and if his opponents' bidding behavior is unchanged). -

o
It is intuitively reasonable that he should "trade off" some
of his additional potential profit (and expected profit) for

some extra probability of success (extra safety). Thus he
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should lower his bid price.

Note that Theorem 5 does not indicate how much of his
additional potential profit the bidder will "trade off" for
an increase in his probability of success. The following
theorem bounds this "trade off."

Theorem 6: Suppose conditions (Al), (A2a), and (A3a) are
satisfied, that ¢ and w are fixed, and that u' and

f are the right derivatives of u and F respectively.
Then potential profit is a non-decreasing function of n.

In particular, if the contract size n is raised (lowered)
by an amount An, then the new optimal bid price Py satis-

fies the inequality

A An
(4.8) py > p, - Hi%ﬁ (py - <) (Py 2 Py * fgan (Po = ©))-

If, in addition, u' and f are continuous, then the
inequalities above are strict.
Proof:

The proof of this theorem is quite similar to the proof

of the second part of Theorem 3. We let s = n(p-c¢) so that

S
f(= + c)
’
G(IE + ¢) = nu’ (s+w) and H(S + c) = 1 .
n u(s+w)-u(w) n l—F(E + c)
n
For fixed ¢ and n, the "crossover point" Sq of the

graphs of G(g + ¢c) and H(% + ¢) as functions of s is
just n(po -~ c). For each fixed s we see that G(% + c)

is a strictly increasing function of n, and H(% + ¢) 1is



a non-increasing function of n since H(t) is non-increasing
in t. Thus Sq is a non-decreasing function of n (and

is strictly increasing if both u' and f are continuous).
The inequalities are an immediate consequence of this. i

Again, the results of this theorem are quite reasonable.
One would expect at least as large a total potential profit
on a large order as on a small order even if the profit per
unit were smaller.

Theorems 5 and 6 together indicate that if the contract
size n 1is raised by an amount An, then the new optimal
bid price Py satisfies the inequalities
(4.9) Po ~ Hé%ﬁ (g = ©) 2 Py 2 Py
The inequalities are reversed if the contract size is lowered
by an amount An.

The preceding analysis has been based on the assumption
that average cost is constant. We now consider briefly how
Po varies with n when average cost ¢ depends on the
level of output. The analysis for decreasing average cost
is straightforward. Suppose an increase in contract size
from n to n + An decreases average cost from ¢ to
c - Ac. The effect of such a change on the optimal bid price
can be decomposed into two parts. First, we have seen that
an increase in contract size of An with cost remaining
constant at ¢ will reduce the bid price. Similarly, a

net decrease in average cost of Ac with contract size

constant at n + An will decrease the bid price even further.
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These two effects together lower the bid price more than
either one does by itself. For cost as an increasing func-
tion of contract size, the two effects work in opposite
directions. Whether the optimal bid price will increase or
decrease depends on the size of the increases in contract
size and cost, and on the specific utility function of the

bidder.

Remarks about the Effect on the Optimal Bid Price

of a Change in the Probability Distribution F.

Changes in F represent revisions in the bidder's be-
liefs about the bidding behavior of his competitors. Such
changes can be dealt with if they can be expressed as appro-
priate changes in the hazard rate function H. Suppose, for
example, that the bidder believes that the minimum of his
competitors' bid prices is increased by the amount Ac (due,
perhaps, to an increase of Ac in the costs of each of his
competitors). One way of expressing this revision in his
beliefs is by setting F*(p) = F(p - Ac), where F* and
F are the distribution functions expressing his new and old
beliefs about the minimum of his competitors' bid prices.

If H* and H are the corresponding hazard rate functions,
then H*(p) = H(p - Ac), and if H is non-decreasing, then
uéing H* instead of H amounts to lowering the whole H

curve (or at least to not raising it anywhere). Thus, the



- 36 -

intersection of the curves of H* and G will be to the
right of the intersection of the curves of H and G and
will therefore result in a higher bid price. Notice that
this type of argument can still be used even if the relation.
between F* and F 1is not clearly defined so long as the
bidder is willing to assume that H* is non-decreasing and
that H*(p) < H(p) for all p. In many cases this would be
a reasonable assumption. It merely amounts to assuming that
if the minimum of his competitors' bid prices is at least p,
then it is at least as likely to be close to p under the
old distribution F as under the new distribution F*.

5. Possible Extensions of the Model

The model developed in this paper is formulated for compe-
titive sealed tender selling markets. Witﬁ minor modifications,
the model is applicable to individual bidding behavior in
sealed tender buying markets and Dutch auctions.

A promising application of the model is in the study of
investment decisions associated with the submission of proposals
for the acquisition of Research and Development (R & D) con-
tracts. We briefly describe the mechanics of one kind of

R & D contract market.4 The market consists of a group of

firms competing for a single contract to produce a specified

(4) We are indebted to Walter L. Johnson for information about
the institutional features of this market.
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quantity of a new product. The product is defined in terms
of certain "standards of performance" and cannot be produced
with existing technology. Each participating firm is required
to submit a proposal on or before a given future date. The
proposal consists of (1) a detailed statement of the produc-
tion process the firm will use if awarded the contract and
(2) a bid price. The contract is awarded to the lowest bidder
from among the proposals that meet the required standards of
performance.

Initially each firm must decide whether to begin the
R & D work necessary for submission of a proposal. R & D
costs, production costs, and the payoff are éll unknown at
this time. A first step toward a model explaining R & D
proposal submission decisions might be the extension of the
model déveloped in this paper to the case where production
costs ¢ are assumed to be random. Such a model would, of

course, be useful in itself.

University of Missouri, Columbia
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