NASA CONTRACTOR REPORT

NASA CR-61203

February 68

NASA CR-61203

TECHNIQUES FOR MEASURING STRESSES IN ROCK ON THE EARTH

ADAPTABILITY TO A LUNAR EXPLORATION PROGRAM

Prepared under Contract No. NSR 05-003-189 by F. E. Heuze and R. E. Goodman

UNIVERSITY OF CALIFORNIA, BERKELEY

GPO PRICE \$_	
CFSTI PRICE(S) \$_	
Hard copy (HC)	3.00
Microfiche (MF)	· 65
ff 653 July 65	

For

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Huntsville, Alabama

N 68-23	890
S (ACCESSION NUMBER)	(THRU)
(PAGES) (PA	(CODE).

TECHNIQUES FOR MEASURING STRESSES IN ROCK ON THE EARTH

ADAPTABILITY TO A LUNAR EXPLORATION PROGRAM

By

F. E. Heuze and R. E. Goodman

Prepared under Contract No. NSR 05-003-189 by UNIVERSITY OF CALIFORNIA, BERKELEY

For

Space Sciences Laboratory

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

INDEX

INTRODUCTION

,

METHODS FOR MEASURING ABSOLUTE STRESSES IN ROCK

Complete Stress Relief by Overcoring

Measuring diametral deformations in borehole Measuring stress changes in solid inclusions Using strain gages cemented into borehole

Partial Stress Relief: The Flat Jack Method

Flat Jack Method

Analysis of data

Remarks

REVIEW OF PROBES TO MEASURE STRESSES IN ROCK

Definitions

Listing of Probes

CONCLUSION

REFERENCES

THE MEASUREMENT OF STRESSES IN ROCK

I. INTRODUCTION

1. The following constitutes an extensive review of techniques used for the determination of stresses in a rock mass on the earth. The theory of these techniques and a detailed listing of instruments are presented. The purpose of this study is to guide appraisal of the adaptability of such measurements to a Lunar Exploration Program. It will serve as a basis for recommendations and preliminary design of a probe to measure the absolute state of stress in the moon's crust. The value of such an experiment has been emphasized in a previous publication * on this contract from both a scientific and engineering standpoint.

Rock differs from many other engineering materials in being under significant initial stress. The range in possible values of initial stresses is great due to the unknown influence of topographic and geologic factors. Excavation at the surface or underground disturbs this stress field and induces a new one. The final stress state consequently is directly dependent on the initial state of stress which must therefore be determined for any rational analyses of a rock structure.

Mitchell, J. K., and Lambe, T. W., "Lunar soil engineering and engineering geology," Summer Conference on Lunar Exploration and Science, U. C. Santa Cruz, July 31 - August 13, 1967, NASA CR-61178.

		TABLE I	
		METHODS OF MEASURING STRESSES IN ROCK	
		METHOD	KEY REFERENCES
г.	Comp	olete stress relief by overcoring	
	(a)	Measure diametrical displacements	Merrill (1967), Panek (1966),
			Leeman (1967), Merrill et al. (1964)
	(q)	Measure stresses in a stiff inclusion	Wilson (1961), Hult (1963), Hast (1958),
			Leeman (1964), Coutinho (1949)
	(c)	Measure strains on bottom or walls	Leeman (1964), Leeman and Hayes (1966),
			Hoskins (1967)
3.	Part	ial stress relief by excavation	
	(a)	Measure displacement on cutting a slot, and pressure	rincelin (1958), Alexander (1958),
		in slot to cancel displacements (flat jack method)	Joskins (1966)
	(q)	Measure displacement of points inside a hole on	Kawamoto (in preparation)
		drilling a contiguous hole	
	(c)	Measure diametrical displacement of points inside)e la Cruz and Goodman (in preparation)
		a hole on deepening it	

'n	Cal	culations from structural behaviour	
	(a)	Measure displacement of tunnel walls, or roof,	Obert, Merrill and Duvall (1958, 1967)
		or invert on advance of face	
	(q)	Measure strain or stress in tunnel walls	Morgan and Panek (1963)
		resulting from new mining	
4.	Rock	: fracture stress	
	(a)	Measure pressure to fracture rock with borehole	Jaeger and Cook (1963)
		jacks	
	(q)	Measure water pressures to initiate and propagate	Fairhurst (1965)
		fracture in a hole	
	(c)	Core discing	Obert and Stephenson (1965)
ۍ ۲	Indi	rect methods	
	(a)	Seismic velocity	Marsh and Thurston (1951)
	(વ)	Seismic frequency	none
	(c)	Electrical resistivity	Sen (1962)
	(P)	Gamma ray	Borecki and Kidybinske (1966)

KEY REFERENCES

METHOD

.

II. METHODS FOR MEASURING ABSOLUTE STRESSES IN ROCK

The methods available for assessing the state of stress in rock masses are listed in Table I. A discussion of the methods based on complete or partial stress relief follows. These are the <u>overcoring</u> and <u>flat jack</u> methods.

1. Methods Based on Complete Stress Relief by Overcoring

Overcoring refers to the relief of stress in the rock around an instrumental hole by drilling a larger concentric hole. The method was initiated for stress measurement in boreholes by Hast in 1951, who first used trepanning (drilling of overlapping drill holes) to execute the outer hole. Olsen overcored rosettes on the surface of a gallery in rock as early as 1932 (Olsen, 1957).

Overcoring brings about a virtually complete removal of stress in the rock around the inner borehole. The methods based on overcoring are therefore severely affected by nonlinear and inelastic mechanical behavior. Overcoring may be accomplished by diamond-drilling a hole three to four times the radius of the instrumented hole. In the U. S. Bureau of Mines method, for example, the inner hole is EX (1.5") and the outer hole is 6 inches. Rocha has proposed overcoring EX with NX (3"). Overcoring has also been accomplished by overdrilling the bottom of a hole, instrumented in its center (Leeman, 1964).

a. Determination of stresses by measurement of diametrical
 displacements as a result of overcoring.

This method has recently become widely used because of the excellent deformation gages developed by the U. S. Bureau of Mines. The latest version of this gage (Merrill, 1967) has 3 cantilever beams

allowing simultaneous measurement of displacements across three diameters during overcoring.

The displacement measurements are related to the in situ stresses by means of the Kirsch solution (Merrill and Peterson, 1961). If P and Q are the maximum and minimum stresses (compression positive) in the plane perpendicular to the drill hole, the displacement across a diameter (d) inclined at θ to P is

$$U_{\theta} = (P + Q) \frac{d}{E} + (P - Q) \left(\frac{2d}{E}\right) (\cos 2\theta)$$
(1)

where E is Young's modulus for the rock. It is therefore accurate if the measurement is made at shallow depth in a borehole drilled perpendicular to a free face. If the measurement is conducted at such a depth that the longitudinal stress (parallel to the borehole) is not negligible, or if the borehole is inclined so that it does not follow a principal stress direction, the displacements will be affected by longitudinal stress and shear stress in the plane normal to the hole.

Adopting local coordinates $X_1 X_2 X_3$ with the drill hole parallel to X_2 , the displacement across a diameter making an angle θ with X_1 (θ is positive measured from (+) X_1 toward (+) X_3) is (Panek, 1966):

$$U(\theta) = \sigma_1 f_1 + \sigma_2 f_2 + \sigma_3 f_3 + \tau_{13} f_4$$
 (2)

where $f_1 = \frac{d}{E} (1 - v^2) (1 + 2 \cos 2\theta) + \frac{dv^2}{E}$

$$f_2 = -\frac{dv}{E}$$

$$f_3 = \frac{d}{E} (1 - v^2) (1 - 2 \cos 2\theta) + \frac{dv^2}{E}$$

and
$$f_4 = \frac{d}{E} (1 - v^2) (4 \sin 2\theta)$$

Note that the shear stress components parallel to the borehole axis (τ_{23}, τ_{21}) do not contribute to the displacement across a diameter.

By making measurements across several diameters in a minimum of 3 different holes (Gray and Toews, 1967) the complete stress tensor may be determined. Panek (1966) demonstrates how the best fit to redundant data may be determined using the method of least squares. In the case of a shallow measurement in a hole perpendicular to a free surface, Equation 1 may be used to determine P, Q, and θ if measurements are made in 3 different directions. For a 60° configuration, with measurements at: (a) θ ; (b) θ + 60°; and (c) θ + 120°, superposition yields the following result (Obert and Duvall, 1967)

$$P + Q = \frac{E}{3d} (U_a + U_b + U_c)$$

$$P - Q = \frac{E}{\sqrt{2} 3d} \left[(U_a - U_b)^2 + (U_b - U_c)^2 + (U_c - U_a)^2 \right]^{1/2}$$

and $\tan 2\theta$

$$\theta = \frac{-\sqrt{3} (U_{b} - U_{c})}{2 U_{a} + U_{b} - U_{c}}$$

In these formulas, θ is measured counterclockwise from U₁ to P, and if

$$U_b > U_c$$
 and $U_b + U_c < 2 U_a$, then $0 \le \theta \le 45$
 $U_b > U_c$ and $U_b + U_c > 2 U_a$, then $45 < \theta < 90^\circ$
 $U_b < U_c$ and $U_b + U_c > 2 U_a$, then $90 < \theta < 135^\circ$
 $U_b < U_c$ and $U_b + U_c < 2 U_a$, then $135 < \theta < 180^\circ$

Rocha (paper in preparation) has developed equipment and procedures for measuring displacements in off diameter as well as diametrical directions in a borehole. His equipment allows complete solution for the stress tensor at any point in a single borehole.

 Measurement of stress changes in a solid inclusion as a result of overcoring.

This approach, first suggested by Coutinho (1949), is based on the stresses induced in the center of an elastic inclusion in a stressed elastic material. If the inclusion is "welded" into a circular hole in rock whose stress is then relieved by over coring, it will develop stresses σ_{1_i} and σ_{2_i} by virtue of the rock stresses σ_{1_r} and σ_{2_r} ,

the relation being

$$\sigma_{1_{r}} = \kappa_{1} \sigma_{2_{i}} + \kappa_{2} \sigma_{2_{i}}$$

$$\sigma_{2r} = \kappa_1 \sigma_{2i} + \kappa_1 \sigma_{1i}$$

where

$$K_{1} = \frac{(1 + v_{i}) (3 - 4 v_{i})}{8 (1 - v_{r}) (1 + v_{r})} \cdot \frac{E_{r}}{E_{i}} + \frac{5 - 4 v_{r}}{8 (1 - v_{r})}$$

$$K_{2} = \frac{(1 + v_{i}) (1 - 4 v_{i})}{8 (1 - v_{r}) (1 + v_{r})} \cdot \frac{E_{r}}{E_{i}} + \frac{4 v_{r} - 1}{8 (1 - v_{r})}$$

 K_1 and K_2 are practically constant for $E_i/E_r > 4$ and are insensitive to v_i and v_r .

A solution corresponding to the boundary condition of an elastic inclusion fit into a hole in the rock was obtained by Muskelishvili and reported by Leeman (1964). The results are similar to those given above. Hult (1963) considered the stresses in inclusions in viscoelastic material. As an alternate to using formulas of the type given above, interpretation of field data may be based on calibration of the gage in rock from the test site, e.g. the hollow cylinder obtained in overcoring.

Instruments based on this method were developed by May (1958), Potts (1957), Salamon (1962), Wilson (1961), Hast (1958), and Nichols et al. (1967). Good results of tests with Wilson's device were recently reported by Hobbs and Clarke (1966). Hast (1958) developed a fine instrument and refined technique for rigid inclusion type measurements and has accumulated great experience. A variety of the rigid inclusion method is

the photo elastic method developed by Roberts et al. (1964). A glass cylinder is prestressed inside a small hole and overcored. The glass acts as a rigid inclusion and develops photo elastic fringes, which are counted with a hand held analyser by the observer.

An advantage of the rigid inclusion approach is its relative insensitivity to the value of the modulus of elasticity of the rock. A disadvantage is that the inclusion must be prestressed in the hole and the rock may break under the prestress during overcoring.

c. Measurement of stresses by means of strain gages glued to the rock inside the borehole and overcored

Leeman (1964) introduced a method of stress measurement by overcoring a rosette glued on the bottom of a drill hole. He developed apparatus for grinding the bottom flat and affixing the gage rosette. The rosette output allows calculation of the magnitude and direction of principal strains at the bottom of the borehole. There is no published analytical solution to the stresses at the bottom of a borehole, but Gaille and Wilhoit (1960) published the results of a 3 dimensional photo elastic investigation of this problem. The stress along any radius at the center of the hole bottom was found to be 1.56 times the free field stress parallel to the same radius, and - 1.04 times the free field stress parallel to the borehole. This may be written

$$\sigma = \sigma' K_1 + \sigma' K_2 + \sigma' K_3$$

$$\sigma_{\mathbf{y}} = \sigma'_{\mathbf{x}} \mathbf{K}_1 + \sigma'_{\mathbf{x}} \mathbf{K}_2 + \sigma'_{\mathbf{z}} \mathbf{K}_3$$

where σ'_{x} , σ'_{y} , and σ'_{z} are the primary stresses and

$$\begin{pmatrix} K_1 \\ K_2 \\ K_3 \end{pmatrix} = \begin{pmatrix} 1.56 \\ 0 \\ -1.04 \end{pmatrix}$$

Applying Hooke's law

 $\xi_{\mathbf{x}}^{\mathbf{E}} = (\sigma'_{\mathbf{x}} K_{1} + \sigma'_{\mathbf{x}} K_{2} + \sigma'_{\mathbf{z}} K_{3}) - \nu (\sigma'_{\mathbf{x}} K_{1} + \sigma_{\mathbf{x}} K_{2} + \sigma'_{\mathbf{z}} K_{3})$

$$\varepsilon_{\mathbf{x}} E = \sigma'_{\mathbf{x}} (K_1 - \nu K_2) - \sigma'_{\mathbf{y}} (\nu K_1 - K_2) + \sigma'_{\mathbf{z}} K_3 (1 - \nu)$$

leads to the following expression for the strain ϵ_x at the bottom of the hole

$$\varepsilon_{x} = 1.56 \sigma'_{x} - 1.56 \nu \sigma'_{v} - 1.04 (1 - \nu) \sigma'_{z}$$

with a similar equation for ε .

Hoskins (1967) pointed out this unfortunately large dependence of the strains on the generally unknown longitudinal stress σ_z '. Berents and Alexander (1965) and Hoskins (1967) suggested grinding the hole bottom into a hemisphere and overcoring a rosette placed thereon. The formulas for stresses in a sphere (e.g. Timoshenko and Goodier, 1951) could then be used to reduce the data,

with
$$\begin{pmatrix}
K_1 \\
K_2 \\
K_3
\end{pmatrix} = \frac{1}{2(7-5\nu)} \begin{pmatrix}
27-15\nu \\
15\nu-3 \\
-(3+15\nu)
\end{pmatrix}$$
11

Substitution in Hooke's law yields in this case:

For v = 0

$$\varepsilon_{x} = 1.93 \sigma' - 0.24 \sigma' - 0.24 \sigma'_{z}$$

For v = 0.2

$$\epsilon_{x} = 2.00 \sigma' - 0.4 \sigma' - 0.4 \sigma'$$

with a similar equation for ε_{y} . The smaller dependence of the results on the unknown stress σ'_{z} means smaller errors when data are interpreted using the assumption that $\sigma'_{z} = 0$, as has been customary.

Hoskins suggested alternating measurements with flat and hemispherical bottoms, allowing calculation of the longitudinal stress σ_z' . When σ_z' is known, the stresses σ_x' and σ_y' can be determined accurately from the strain data. Leeman and Hayes (1966) developed instruments for measuring sufficient strain data inside a borehole to calculate the complete stress tensor in one overcoring operation. An instrument was developed to fix three strain gage rosettes to the walls of the borehole. This method is so new that little is known yet about its general applicability.

2. Partial Stress Relief Methods: The Flat Jack Method

If the rock exhibits nonlinear stress-strain relations or hysteresis on cyclic loading, methods of stress measurement by complete stress relief are subject to error. Another approach would be to cause a relatively small change in the stresses at reference points and relate the magnitude

of the induced change to the primary stress field. The best known method of this type is the flat jack technique, originally developed by Tincelin (1958), in which the induced change is related to the primary stress by stress compensation. Another approach, the interference of one hole on another, is under study by Kawamoto (personal communication). Talobre (1967) described a similar approach conducted at the end of a borehole.

a. Flat jack method

In this method one measures the average pressure normal to the plane of a slot cut in a rock wall. A slot cut into the wall by overlapping drill holes or, better, a diamond saw (Rocha, Lopes, and Silva, 1966), causes deformations in the rock toward the slot, which are measured by a Whittemore or Huggenberger gage or a vibrating wire. A flat hydraulic jack is embedded in the slot and the displacements of the rock, away from the slot, are recorded as the jack is pressured. The pressure required to restore the deflections from slot cutting is an estimate of the primary rock pressure. A detailed analysis of the flat jack test was made by Alexander (1960) and Hoskins (1966).

The flat jack method generally yields a value only for the pressure perpendicular to the plane of the jack, not the complete stress tensor. In the past it has been performed at shallow depth beneath the surface, whose generally disturbed stress field detracts from the usefulness of the results. However Rocha, Lopes, and Silva (1966) have introduced a diamond-saw slot countersinking technique that extends the method in depth. Also, the method has several distinct advantages: in the course of testing one determines the modulus of elasticity, the

stresses are determined without need for accurate knowledge of E; finally, the jack measures average rock pressures over a large area, reducing the influence of small inhomogeneities.

b. Analysis of data from flat jack test

In the conduct of a flat jack test, two distinct operations are performed:

- a slot of finite width is excavated and the resulting displacements across the slot between preset gage points are measured;
- (2) a jack of small width in grouted contact with the rock, is pressured until the pins are restored to their former position.

The cancellation pressure of (2) is often taken as the pressure preexisting in rock perpendicular to the jack before slot cutting. There are two reasons why this is not exactly true: 1) the slots are of different width and length in (1) and (2) and therefore equal displacements in the two cases must signify unequal pressures; 2) pressure parallel to the slot axis also has an effect on the displacement.

<u>Displacements on slot cutting</u>. The displacement between pins 2 y distant symmetrically located across a slot 2 y_o thick and 2 c₂ long is

Displacements on pressuring flat jack. The displacement caused by a thin jack c_i long with internal pressure P_i is

$$\omega_{2} = \frac{P_{j}c_{j}}{E} \left((1 - v) (\sqrt{1 + y^{2}/c_{j}^{2}} - \frac{y}{c_{j}}) + \frac{(1 + v)}{\sqrt{1 + y^{2}/c_{j}^{2}}} \right)$$

 ω_2 is measured as a function of P so that for any given P, E can j be calculated if V is assumed.

If ω_1 is measured in two tests at right angles, P and Q may be calculated from the two equations for ω_1 . Typical dimensions are

Evaluation of initial free field stresses. P and Q represent wall rock stresses that have been caused by concentration of initial stresses in the free field upon excavation of the test chamber. Frequently it is the free field initial stresses that are wanted.

For example, in the circular tunnel shown, P_{A} represents a combination of stress concentration factor k_1 acting on σ_{v} and k_2 on $\sigma_{h}^{}.$

k, are the stress concentrations at a distance inward of 1/3 jack width.

for a circular tunnel, $k_{12} = k_{21}$ and $k_{11} = k_{22}$.

Solving for σ_v and $\sigma_{h'}$ and letting $k_{11} = k_1$ and $k_{12} = k_2$ one obtains

$$\sigma_{\mathbf{v}} = \frac{\frac{P_{A} k_{1} - P_{B} k_{2}}{k_{1}^{2} - k_{2}^{2}}}{\frac{P_{B} k_{1} - P_{A} k_{2}}{k_{1}^{2} - k_{2}^{2}}}$$

 k_1 and k_2 may be determined by photoelasticity, analytical solution, or finite element analysis.

3. Remarks

The above presentation of data interpretation from overcoring and flat-jack tests is based on the assumption of rock isotropy and linear elasticity. It has been emphasized that these methods are quite sensitive to nonlinear and inelastic rock mechanical behavior and data interpretation would be difficult in such a case.

However rock anisotropy can be accommodated in the reduction of overcoring data (Becker and Hooker, 1967). The introduction of anisotropic instead of isotropic equations in the proper cases has proved to yield results significantly different for the stress tensor values thus warranting their use.

1. Definitions

For the reader's convenience some definitions are presented or repeated here.

<u>Overcoring</u>: The so-called overcoring technique of stress measurement consists in drilling a first bore hole at depth in a rock body and inserting the measuring probe in it. A first reading is taken of the gage output while subjected to an initial arbitrary prestress.

The first hole is then overdrilled with a bit of much larger diameter (4 times for instance). This brings about complete relaxation of a thick wall cylinder of rock in whose central hole the probe has been placed. This relaxation monitored by the probe is assumed to be elastic. The probe's output has been previously calibrated in terms of stresses or deformations in the laboratory.

<u>Calibration Curves</u>: Curves obtained beforehand in the laboratory and relating the gage output to deformations (soft inclusions), stresses (rigid inclusions), or change in rock properties (resistivity, wave velocity) with applied pressure.

<u>Soft Inclusion</u>: A probe in which measuring parts are subjected to significant deformations, play a passive role in the measurements, and are calibrated in terms of deformations. They can be termed displacement gages. Stresses can then be computed from the theory of elasticity if the rock's elastic constants are known, assumed or otherwise measured.

Related publications on this contract include:

Heuzé, F.E., and Goodman, R.E., Investigation of rock behavior and strength - In situ and laboratory techniques - Adaptability to a lunar exploration program. Department of Civil Engineering, U.C. Berkeley. February 1968.

Goodman, R. E., Van, T. K., and Heuzé, F.E., Devices for measuring rock deformability in bore holes on earth. Adaptability to a lunar exploration program. Department of Civil Engineering, U.C. Berkeley, February 1968. <u>Rigid Inclusion</u>: A probe requiring laboratory calibration in terms of stresses and subjected to much smaller deformations. Rigid inclusions are generally undirectional and some required calibration in the same type of rock as the one tested. They must be such that the ratio (gage modulus)/(rock modulus) is greater than 2.

<u>Restoration of an Initial Stress Condition</u>: An opening (slot or borehole) is made in a rock mass, whose deformation is monitored during and after drilling. A pressure cell is inserted in the opening and pumped up until the initial reading of monitoring instruments (pins, pressure cell) is restored. The initial stress in rock is then assumed to be the one in the pressuring cell at cancellation. Thus there is no need for complementary determination of the elastic constants. Moreover they can be obtained from the deformation curves (pin displacement).

<u>Component</u>: A bore hole gage at one location will measure 1, 2, or 3 diametral deformations and will be called 1, 2, or 3-component gage. In order to get the complete state of stress in a plane perpendicular to the bore hole axis at any location, three deformations upon relaxation have to be measured. If not, the result of measurements at several depths will have to be interpolated at some central position hence reducing the accuracy.

2. Listing of Probes

Each instrument is presented separately according to the following outline:

Name:

Reference.	(see attached :	list of references)
Principle:	one of the fo	llowing
	Overcoring	of soft inclusion
		of rigid inclusion
		of photoelastic material
		of strain gage on bottom of hole
	Restoration of	f initial stress condition
	Changes of ro	ck properties with stress level
Location:	In a borehole for experime	(and minimum number of holes required ent)
	On the rock's	surface
	In a slot	
Instrumentation:	(only those pa	rts directly involved in the measurement
	of stress)	
Quantity measured:	1	

Comments:

Name:	Maihak Strain Cell
References:	1,2,3,4,5,6
Principle:	Overcoring of a soft inclusion
Location:	Used in a bore hole

- Instrumentation: Vibrating wire, electromagnetic plucker, oscilloscope or frequency counter
- Quantity Measured: Vibration frequency of the string; thus bore hole diameter from calibration curves and stresses from elastic theory.

Comments: Measures deformation across one diameter only. Could be extended to 3 simultaneous diametral measurements. Good sensitivity. Oscilloscope is cumbersome. E must be known.

PROBE 2

Name:	CSIR Strain Cell, Mark I
References:	7,8,9
Principle:	Overcoring of a soft inclusion
Location:	Used in a bore hole

Instrumentation: Circular elastic rings upon which a strain gage is mounted. Strain gage potentiometer.

- Quantity Measured: Strain on rings. Thus deformation of bore hole diameter from calibration curves and stresses from elastic theory.
- Comments: Deformations measured across 2 orthogonal diameters (2 rings) can be extended to 3 diameters. However, measurements not in the same plane. E must be known.

- Instrumentation: LVDT's (linear variable differential transformers) and recording system
- Quantity Measured: Voltage outputs; thus deformation of bore hole diameter from calibration curves and stresses from elastic theory.

Comments: It is a three component gage. Good accuracy. E must be known.

PROBE 4

Name:	Sibek's Cell
Reference:	11
Principle:	Overcoring of a soft inclusion
Location:	Used in bore hole
Instrumentation:	LVDT's and recording system
Ouantity Maagurad	Weltage output, thus deformation of here hele
Quantity Measured:	voltage output; thus deformation of bore note
	diameter from calibration and stresses from
	elastic theory.
Comments:	Single component gage. Can be extended to
	3 components. E must be known.

Name:	U.S. Bureau of Mine Gage
References:	12, 13
Principle:	Overcoring of a soft inclusion
Location:	Used in a bore hole

- Instrumentation: 1 gaged cantilever beam and strain gage potentiometer
- Quantity Measured: Strain on gages, cantilever deflection and bore hole deformation from calibration curves and stresses from elastic theory.

Comments: Single component gage Rugged Good sensitivity E must be known

PROBE 6

Name:	U.S. Bureau of Mines Gage
Reference:	14
Principle:	Overcoring of a soft inclusion
Location:	Used in a bore hole

Instrumentation: 3 gaged cantilever beams strain gage potentiometer

Quantity measured: Strain on gages Cantilever deflection and borehole deformation through calibration curves Stresses from elastic theory

Comments: 3 component gages Measurement in a single plane perpendicular to borehole axis Rugged Good sensitivity E must be known 23

•

٠

.

Name:	Griswold's Cell
Reference:	15
Principle:	Overcoring of a soft inclusion
Location:	Used in a bore hole
Instrumentation:	4 transducer rings or cantilever beams All gaged Strain gage potentiometer
Quantity Measured:	Voltage output
	Ring deformation or cantilever deflection thus
	bore hole diameter
	Stresses from elastic theory
Comments:	3 component gage
	Relatively low sensitivity for this particular gage
	E must be known
	PROBE 8
Name:	Surface rosette gage
Reference:	16
Principle:	Overcoring of a strain gage rosette
Location:	On the surface of a rock mass
Instrumentation:	Strain gage rosette
	Strain gage potentiometer
Quantity Measured:	Strain on rosettes
	Stress relief on overcoring from calibration curves
	in the laboratory.
Common has	
comments:	Gage is not recovered
comments:	Gage is not recovered Surface masurement
comments:	Gage is not recovered Surface masurement Rosettes are fragile
comments:	Gage is not recovered Surface masurement Rosettes are fragile Good bonding to rock surface is a problem
comments:	Gage is not recovered Surface masurement Rosettes are fragile Good bonding to rock surface is a problem E need not be known but the reliability of biaxial

Name:	Bottom rosette gage
References:	17, 18, 19, 20
Principle:	Overcoring of a strain gage rosette
Location:	Bottom of a bore hole, prepared flat or hemispherical
Instrumentation:	Strain gage rosettes
	Strain gage potentiometer
Quantity Measured:	Strain on gages upon stress relief
	Stress from calibration curves in the laboratory
Comments:	Gage is not recovered
	Rosettes are fragile
	Good bonding to rock surface is a problem
	No theory exists at present for the state of stress at the bottom face of a bore hole, which is of a highly complex nature. Calibration is not thought to be very reliable because of effect of unknown stress parallel to hole.
	PROBE · 10
Name:	PROBE · 10 Pott's Stressmeter
Name: Reference:	PROBE -10 Pott's Stressmeter 21, 22, 23, 24
Name: Reference: Principle:	PROBE 10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion
Name: Reference: Principle: Location:	PROBE-10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole
Name: Reference: Principle: Location: Instrumentation:	PROBE-10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm
Name: Reference: Principle: Location: Instrumentation: Quantity Measured:	PROBE-10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm Strain on diaphragm gage from change in cell's volume.
Name: Reference: Principle: Location: Instrumentation: Quantity Measured:	PROBE-10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm Strain on diaphragm gage from change in cell's volume. Stress from laboratory calibration in uniaxial compression
Name: Reference: Principle: Location: Instrumentation: Quantity Measured: Comments:	PROBE-10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm Strain on diaphragm gage from change in cell's volume. Stress from laboratory calibration in uniaxial compression Measurement in only one direction
Name: Reference: Principle: Location: Instrumentation: Quantity Measured: Comments:	PROBE-10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm Strain on diaphragm gage from change in cell's volume. Stress from laboratory calibration in uniaxial compression Measurement in only one direction Can be also used without overcoring to monitor long term stress changes
Name: Reference: Principle: Location: Instrumentation: Quantity Measured: Comments:	PROBE-10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm Strain on diaphragm gage from change in cell's volume. Stress from laboratory calibration in uniaxial compression Measurement in only one direction Can be also used without overcoring to monitor long term stress changes E need not be known
Name: Reference: Principle: Location: Instrumentation: Quantity Measured: Comments:	PROBE:10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm Strain on diaphragm gage from change in cell's volume. Stress from laboratory calibration in uniaxial compression Measurement in only one direction Can be also used without overcoring to monitor long term stress changes E need not be known Uniaxial calibration not satisfactory
Name: Reference: Principle: Location: Instrumentation: Quantity Measured: Comments:	PROBE:10 Pott's Stressmeter 21, 22, 23, 24 Overcoring of a rigid inclusion Used in a bore hole Steel cell filled with oil and closed by a gaged diaphragm Strain on diaphragm gage from change in cell's volume. Stress from laboratory calibration in uniaxial compression Measurement in only one direction Can be also used without overcoring to monitor long term stress changes E need not be known Uniaxial calibration not satisfactory High prestress required

T

1

.

Name:	May's Stressmeter
Reference:	25, 26, 27, 28
Principle:	Overcoring of a rigid inclusion
Location:	Used in a bore hole
Instrumentation:	Steel cell filled with oil and closed by a gaged diaphram
	Diferent thickness of diaphram will give different sensitivities
Quantity Measured:	Strain on diaphram gage
	Stress from laboratory calibration in uniaxial compression
Comments:	Measurement in only one direction
	Can be also used without overcoring to monitor long term stress changes
	E need not be known
	Uniaxial calibration not satisfactory
	High prestress is required
	Recoverable through overcoring

PROBE 12

Name:	National Coal Board Borehole Gage
Reference:	29, 30
Principle:	Overcoring of a rigid inclusion
Location:	Used in a bore hole
Instrumentation:	Split brass cylinder gaged along an inside diameter
Quantity Measured:	Strain on gage
	Stress from laboratory calibration under uniaxial compression
Comments:	Measurement in only one directon
	Can be also used without overcoring to monitor long term stress changes .
	E need not be known
	Uniaxial calibration not satisfactory
	High prestress required
	Recoverable through overcoring

i I

•

ł

Name:	Hast's Stressmeter
References:	31, 32
Principle:	Overcoring of a rigid inclusion
Location:	Used in a bore hole
Instrumentation:	Nickel alloy spool Coil
	Screening tube
Quantity Measured:	Changes in impedance of the coil changes in stress through calibration
Comments:	Measurement in only one direction
	Can be also used without overcoring to monitor long term stress changes
	E need not be known
	Uniaxial calibration not satisfactory
	High prestress is required
	Recoverable through overcoring

PROBE 14

Name:	Salamon's Cell
References:	33, 34
Principle:	Overcoring of a rigid inclusion
Location:	Used in a bore hole
Instrumentation:	Hydraulic cell
	8 wire strain gages
	4 legs (one for temperature compensation)
Quantity Measured:	Strain on gages
	Stresses from laboratory calibration
Comments:	Measurement in only one direction
	Can be also used without overcoring to monitor long term stress changes
	E need not be known
	Uniaxial calibration not satisfactory
	High prestress required
	Recoverable through overcoring

Name:	USGS Solid Inclusion Probe
Reference:	35
Principle:	Strains developed on spherical inclusion
	Can be overcored
Location:	Grouted in place in a borehole
Quantity Measured:	Output of 3 strain gage rosettes

Comments: Applicable particularly for monitoring long term change in stress Very rugged

PROBE 16

Name:	Robert's Stressmeter
Reference:	36
Principle:	Overcoring of a photoelastic gage
Location:	Used in a bore hole

Instrumentation: Glass cylinder light source Polarizer Analyser $\lambda/4$ plate

Quantity Measured: Fringe pattern Directions and magnitude of change in stresses from laboratory calibration

Comments: A borehole camera can be used to monitor changes in the fringe pattern The equipment is rather cumbersome and fragile Gives a CHANGE IN STRESS but not the absolute STRESS TENSOR

ł

.

.

.

Name:	Photoelastic rosette
References:	37, 38, 39, 40
Principle:	Overcoring of a photoelastic strain rosette
Location:	On the face of an opening or at the <u>bottom face</u> of a bore hole
Instrumentation:	Photoelastic strain rosette Polariscope
Quantity Measured:	Fringe pattern
	Direction and magnitude of the change in stresses from laboratory calibration
Comments:	A borehole camera is used to monitor changes in the fringe pattern
	The equipment is rather cumbersome and fragile
	Gives a change in stress but not the absolute stress tensor

PROBE 18

Name:	Flat Jack
References:	41, 42, 43, 44
Principle:	Restore initial stress conditions
Location:	Used in an elliptical shallow slot
Instrumentation:	Flat hydraulic cell Reference pins
Quantity Measured:	Reference pins displacement upon rock relaxation and restressing
	Stress level at pins displacement cancellation
Comments:	Surface measurement (depth 1 foot)
	1 Component of stress only for one cell thus need for 2 orthogonal cells emplaced close to each other
	Not used in a bore hole
	E can be computed from pin displacement (reference 63)

1

1

.

Name:	Jaeger's Curved Jack
Reference:	45
Principle:	Restore an initial stress condition
Location:	Used in the ring cut by a thick wall drilling bit
Instrumentation:	Thin quadrantal hydraulic cells
	Two series: Inner ones for reference Outer ones for pressurization
Quantity Measured:	Pressure in inner cells for references (drops on overcoring and is restored by pressurization in outer cells); thus initial stress in rock is restored.
Comments:	The theory has been worked out but the instrument has not so far been used in actual testing.
	PROBE 20
Name:	Seismic Gage
References:	46 to 53
Principle:	Change of properties with stress level (wave velocity)
Location:	Surface impact and surface pickup
	or Borehole charge and borehole pickup
Instrumentation:	Sledge hammer or seismic charge
	Triggering circuit
	Geophones
	Oscilloscopes
Quantity Measured:	Wave Travel Time
	Wave velocity and elastic constants
Comments:	The elastic constants change with the state of stress
	Results are compared to laboratory movements
	Indicates a PRESSURE LEVEL but does not give the STRESS TENSOR

ţ

.

Name:	Resistivity Gage
References:	47, 54 to 59
Location:	Can be used in a bore hole
Instrumentation:	Electrodes
	Ohmmeter
Quantity Measured:	Loss of potential
	Rock resistivity
Comments:	The rock's resistivity changes with the state of stress
	Results are compared to laboratory measurements
	Indicates a PRESSURE LEVEL but does not give

PROBE 22

the STRESS TENSOR

Name:	Nuclear Probe
Reference:	60
Principle:	Change of properties with stress level (attenuation of a radiation)
Location:	Can be done in bore holes (1 for source and 1 for pick up)
Instrumentation:	Gamma radiation sources
	Gamma counter
Quantity Measured:	Input radiation and absorption with distance
Comments:	The absorption varies with the rock's PRESSURE LEVEL but the STRESS TENSOR cannot be obtained

TABLE II

DEVICES FOR MEASURING STRESSES IN ROCK ON THE EARTH

OVERALL RATING FOR EARTH OPERATION	8	8	A	8	8	A	А	U	C	60	8	8	œ	8	υ	æ	υ	Ø	ظ	U	υ	υ
E NEEDED TO REDUCE DATA	Yes	Yes	¥08	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Ň	No	Ň	No	Ŷ	No	No	No	No	No
# OF STRESS COMPONENTS AT I LOCATION	-	2	Ń	-	-	3	3	2 or 3	2 or 3	-	-	-	-	ю	y	2 or 3	2or 3	-	3	0	0	0
STRESS TENSOR OBTAINED	Yes	Yes	Yes	Yes	Yes	Yes	Yee	Yes	Yo 2	Yes?	Yes?	Yes?	Yes?	Yes?	Yes	Yee?	No	Yes	Xe.	No	Ň	Ŷ
CALIBRATION	Frequency and Strain	Strain	Strain	Strain	Strain	Strain	Strain	Strain	Strain	Stress	Stress	Stress	Stress	Stress	Strain	Stress	Strees	Pressure	Pressure	Wave Velocity in Rock	Rock Resistivity	Radiation Absorbtion
PRINCIPLE	Overcoring	Overcoring	Overcoring	Overcoring	Overcoring	Overcoring	Overcoring	Overcoring	Overcoring	Prestress and Overcoring	Prestress and Overcoring	Prestress and Overcoring	Prestress and Overcoring	Prestress and Overcoring	Overcoring	Prestress and Overcoring	Overcoring	Restore Initial Stress	Restore Initial Stress	Change in froct	Properties	with Pressure Level
LOCATION	Borehole	Borehole	Borehole	Borehole	Borehole	Borehole	Borehole	Surface	Borehole Bottom	Borehole	Borehole	Borehole	Borehole	Borehole	Borehole	Borehole	Borehole Bottom	Slot	Ring	Boreholes (2)	Borehole	Boreholes (2)
TYPE OF	nical ft	inical ft	snical ft	anical ifi	anical oft	anical oft	anical oft	onical	anical ft	id id	nical id	d d	nical d	inical id	id	Elastic ug	Elastic ette	anical oft	hanical oft	tronic	ctrical	clear
	Mecha So	Mecho So	Mecho So	Mech	Nech Nech	Mech	Ne Ch	Mecho So	Mech. So	Mecho Rig	Mecha Rig	Mecho Rigi	Mechai Rigi	Mecho Rig	Mecho Rig	Photo	Photo Ros	Nech Ser	00 10 10 10 10 10 10 10 10 10 10 10 10 1	Ē	, m	Ž
COUNTRY OF ORIGIN	South Mecha Africa So	South Mecha Africa So	South Mecho Africa So	Czechoslovakia Mech	U.S.A. Mech So	U.S.A. Mech	U.S.A. Mech	U.S.A. Mech	U.S.A. Mech South Africa So	Great Mecho Britain Rig	Canada Mecha Rig	Great Mecha Britain Rigi	Sweden Mechai Rigi	South Mecha Africa Rig	U.S.A. Mecho	Great Photo Britain Pl	Canada Photo Ros	France Mech	Australia Mec S	Several Countries Elec	Canada Elec	Poland Nu
REFERENCES COUNTRY OF ORIGIN	I to 6 South Mecha Africa So	7,8,9 South Mecha Africa So	3,10 South Mechi Africa So	II Czechoslovakia Mech	12,13 U.S.A. Mech S	14 U.S.A. Mech	I5 U.S.A. Mech	IG U.S.A. Mech	17 to 20 U.S.A. Mach	21 to 24 Great Mecho Rigan	25 to 28 Canada Mecha Rig	29,30 Great Mecha Britain Rig	31,32 Sweden Mechai	33,34 South Mecha Africa Rig	35 U.S.A. Mecho	36 Great Photo Britain Pl	37 to 40 Canada Photo Ros	41 to 44 France Mech	45 Australia Mac S	46 to 53 Several Elec	47,54 to 59 Canada Elec	60 Poland Nu

1

•

IV. CONCLUSION

1. The major features of the reviewed probes are summarized in Table II. The following should be considered when rating the devices for adaptability to a lunar exploration program.

- 1. Has the technique been used satisfactorily on earth?
- 2. How rugged is the probe?
- 3. Are any fluids used in operating the probe?
- 4. How good is its sensitivity?
- 5. What is the overall accuracy of the measurement towards determination of the absolute stress tensor? How many components of stress are measured at one location?
- 6. Is knowledge of the rock's elastic constants required to interpret the measurement or can a direct stress reading be obtained?
- 7. What is the possibility of automatic recording and remote control?
- 8. Is there a requirement for high initial prestressing of the probe thus endangering its retrieval?
- 9. Is the calibration very sensitive to temperature and pressure variations?
- 10. What is the essential measuring device? (LVDT, cantilever, wire, ring, pressure cell, photoelastic material, strain rosette, etc.)
- 11. How cumbersome is the total measuring and monitoring instrumentation?
- 12. How easily can a stress measurement be integrated into a complex bore hole experiment on the moon?

Based upon these considerations a rating of reviewed probes has been made for their adaptability to lunar measurements. (Table III)

2. It is concluded here that in order to measure stresses in rocks on the moon efforts should be directed towards the design and/or lunarization of a "three-component" gage to be used in an overcoring process. Automatic recording will be refined for data analysis to be performed on earth. LVDT's seem to be best fitted as displacement monitoring instrument, to a lunar environment.

Of all the devices known to the authors it appears that Probe No. 6 (U.S. Bureau of Mines - Grosvenor's system^{*}) would be the best suited to undergo miniaturization and lunarization. It is interesting to note that this conclusion has been reached independently by Kaarsberg (see ref. 69).

A very similar probe has been designed by Dr. Niles Grosvenor, Colorado School of Mines, Golden. TABLE III

RATING OF IN-SITU STRESS

FOR LUNAR OPERATION MEASURING DEVICES

		-	T	· · · ·	r		-		_		_	_										_	
OVERALL RATING	60	۵	٩	æ	ß	٩	A	U	v	U	U	U	U	8	U	U	U	υ	U	υ	υ	v	
CAN IT BE Miniaturized	Yes	¥0\$	Yes	Yes	Yes	Yes	Yes	¥er	Yes		¥88,	,	10	¥88,	Yee	ž	*•,	Difficult	Difficult	Yes?	Yes	Yes	
EASILY INTEGRATED TO MULTIPURPOSE PROBE	Yes	Yes	ž	, ,	ž	ž	,	Ŷ	Ŷ	°	No	°z	Ŷ	No	Ň	Yes	No	Ň	No	No	¥0,	Yes	
CAN IT BE Retrieved After USE	Yes	Yes	, ,	 ,	Yes		, X	Ŷ	°N N	Not Always	Not Always	Not Always	Not Always	Not Always	Ň	Not Always	No	No	No	Yes	Yes	Yes	RATING
REMOTE OPERATION POSSIBILITY	Yes	Yes	Yes	Yes	Yes	Yes		Yes?	Yes?		Yes	Yes	.,	Yes	jee,	Yes	Yes	Difficult	Difficult	Yes	Yes	Yes	
INSENSITIVE TO SEVERE ENVIRONMENT	Yes	Yes	Yes?	Yes?	Yes	¥84	Yet	No	No	Ye.	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	ADAF
EASY TO OPERATE AND INTERPRET	Yes	99 <u>)</u>	sey	90 <u>,</u>	Yes	Yes	40£	Not Always	No	No	ON	oN	٥N	oN	No	Not Always	Not Alwa ys	Yes	ذ	No	No	No	
PREVIOUS EXPERIENCE IN-SITU	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yee	Yes	Yes	Yee	Yes	No	Yes	Yes	Yes	
PROBE	-	5	3	4	2	9	7	89	6	Q	=	12	13	4	15	16	17	8	6	20	21	22	

USABLE IN LUNAR EXPLORATION SEVERE SHORTCOMINGS - DIFFICULT TO ADAPT REJECT FOR LUNAR APPLICATION

4 6 0

- Jacobi, D., "Instrumentation for rock pressure research," <u>Colliery</u> <u>Engineering</u>, V. 25, Feb. 1958, p. 81-85.
- Leeman, E. R., "The measurements of stress in the ground surrounding mining excavations," <u>Ass'n. Min. Mngrs., S. Africa, Paper and Discussion</u>, V. 1958/59, September 1958, p. 331-356.
- 3. Leeman, E. R., "Measurement of stress in abutments at depth," <u>Int'l</u> <u>Strata Control Conf.</u>, Paris, Paper D 5, May 1960, p. 295-311.
- 4. Everling, G., "Calculation of stress from measurements made in boreholes in the seam and in the rock," <u>Int'l Strata Control Conf.</u>, Essen, 1956.
- Morrison, I. F., and Cornish, W. E., "Measurement of earth pressure," <u>Engineer</u>, V. 169, N. 504, May 1940.
- Lee, I. K., "Application of vibrating wire measuring principle to measurement of earth pressure," <u>Australian J. Applied Science</u>, V. 2, N. 1, March 1960, p. 65-79.
- 7. National Mechanical Engineering Research Institute, Rock Mechanics Special Report No. 29, "Measurements of stress and ground movement in 55 E 12 E Stope, Cinderella Section, E.R.P.M., Pretoria," March 1959.
- National Mechanical Engineering Research Institute, Rock Mechanics Special Report No. 32, "Stress measurements in 64 E Stope, Driefontein Section, E.R.P.M., Pretoria," CSIR Report CN 301, November 1959.

- 9. Leeman, E. R., "The measurement of changes in rock stress due to mining," <u>Mine and Quarry Engineering</u>, V. 25, N. 7, July 1958, p. 300-304.
- National Mechanical Engineering Research Institute, Rock Mechanics Special Report No. 49, "Stress measurement sin coal pillars using stress-releif techniques, Pretoria," <u>CSIR Report CN 488</u>, July 1962.
- 11. Sibek, V., Contribution to Paper D 5, <u>Int'l Strata Control Conference</u>, Paris, May 1960, p. 311-312.
- Obert, L., "In situ determination of stress in rock," <u>Mining</u> Engineering, August 1962, p. 51-58.
- 13. Obert, L., Merrill, R. H., and Morgan, T. A., "Borehole deformation gage for determining the stress in mine rock," <u>U.S. Bureau of Mines</u> R.I. 5978, 1962.
- 14. Merrill, R. H., "Three-component borehole deformation gage for determining the stress in rock," <u>U.S. Bureau of Mines RI 7015</u>, August 1967, 38 pp.
- Griswold, G. B., "How to measure rock pressures: new tools,"
 Engineering and Mining Journal, V. 164, N. 10, October 1963, p. 90-95.
- Olsen, O. J., "Measurement of residual stress by the strain relief method," <u>Col. School of Mines Quarterly</u>, V. 52, July 1957, p. 185-204.
- Roberts, A., et.al., "Photo-elastic coating technique applied to research in rock mechanics," <u>Trans. Institute Mining and Metallurgy</u>,
 V. 71, Part 10, 1961-62.

- 18. Leeman, E. R., "The measurement of stress in rock." Part 1, "The principles of rock stress measurements." Part 2, "Borehole rock stress measuring instruments." Part 3, "The results of some rock stress investigations." J. South Afr. In'st. of Mining and Metal, 1964.
- Hoskins, E. R., "An investigation of strain rosette relief methods of measuring rock stress," <u>Int. J. Rock Mech. Min. Sci.</u>, V. 4, pp. 155-164, 1967.
- 20. Hoskins, E. R., "Field and laboratory experiments in rock mechanics," PhD thesis, Australian National University, July 1967.
- Potts, E. L. J., "Stress distribution, rock pressures, and support loads," <u>Colliery Engineering</u>, August 1954, p. 333-339.
- 22. Potts, E. L. J., "The practical application of scientific measurement to problems in strata control," <u>Iron and Coal Trades Review</u>, November 11, 1955, p. 1169-1179.
- Potts, E. L. J., "Underground instrumentation," <u>Colo. School of</u> <u>Mines Quarterly</u>, V. 52, July 1957, p. 135-182.
- 24. Potts, E. L. J., and Tomlin, N., "Investigations into the measurement of rock pressures in the mine and in the laboratory," <u>Int'l</u> <u>Strata Control Conf.</u>, Paris, Paper D 4, May 1960, p. 281-294.
- 25. May, A. N., "Determination of stresses in the solid," <u>Dept. of</u> <u>Mines and Tech. Surveys, Ottawa, Canada</u>, Technical Manual 106/58-MIN, 1958.

- 26. May, A. N., "The application of measurement instrumentation to the determination of stresses encountered in rocks surrounding underground openings," <u>Winter Instrument-Automation Conf.</u>, Instrument Soc. of America, February 1960.
- 27. May, A. N., "Stressmeter trials at the Canadian Refractories, Ltd. Mine, Kilmar, Quebec. Method of locating and pre-stressing stressmeter at the end of a borehole," <u>Dept. of Mines and Tech.</u> Surveys, Ottawa, Canada, Technical Memo 37/59-MIN, April 1959.
- 28. May, A. N., "Instruments to measure the stress conditions existing in the rocks surrounding underground openings," <u>Int'l Strata Control</u> <u>Conf.</u>, Paris, Paper D 3, May 1960, p. 263-274.
- 29. Wilson, A. M., "A laboratory investigation of a high modulus borehole plug gauge for the measurement of rock stress," <u>4th Symp. on Rock</u> Mechanics, Penn. State Univ., April 1961.
- 30. Hobbs, N. B., and Clarke, D. A., "Residual stress measurements by the drillhole prestressed meter and the rigid brass plug," Proc Lisbon Conf., V. 2, p. 3, 1966.
- 31. Hast, N., "The measurement of rock pressure in mines," <u>Sveriges</u> Geologiska Undersoking, Ser. C. Arsbok 52, N. 3, 1958.
- 32. Hast, N., Contribution to paper D. 3, <u>Int'l Strata Control Conf.</u>, Paris, May 1960, p. 277-279.
- 33. Salamon, M. G., "Some theoretical aspects of stressmeter design," <u>Univ. of Durham, Kings College Mining Bull.</u>, V. 9, N. 2, Series: Strata Control/Res. N. 13, 1962.

- 34. Salamon, M. G., "The design and development of a 'grid stressmeter,'" <u>Univ. of Durham, Kings College Mining Bull</u>., V. 9, No. 3, Series: Strata Control/Res. N. 18, 1962.
- 35. Nichols, T. C., Jr., Abel, J. F., Jr., and Lee, F. T., "A solid inclusion borehole probe to determine 3-dimensional stress changes at a point in a rock mass," Open File Report, U. S. Geological Survey, 1967.
- 36. Roberts, A., Hawkes, I., Williams, F. T., and Dhir, R. K., "A laboratory study of the photoelastic stressmeter," <u>Int'l Journal</u> <u>Rock Mechanics and Mining Sciences</u>, V. 1, N. 3, May 1964, p. 441-458.
- 37. Emery, C. L., "The strain in rocks in relation to mine openings," Mining Engineer, Paper N. 3834, October 1960, p. 54-59.
- 38. Corlett, A. V., and Emery, C. L., "Pre-stress and stress re-distribution in rocks around mine openings," <u>Canadian Mining Metallurgy Bull</u>,
 V. 52, N. 566, 1959.
- 39. Emery, C. L., "Photo-elastic coatings on granular materials," Roneod paper, presented to the Institute of Physics, April 13, 1960.
- 40. Van Duyse, H., "Study of the influence of moving face on a cross-cut driven in the rock below it," <u>Int'l Strata Control Conf.</u>, Paris, Paper D 7, May 1960, 313-320.
- 41. Tincelin, E., "Pressions et Déformations de Terrain dans les Mines de Fer de Lorraine," Thèse, <u>L'Université de Nancy</u>, 1958, p. 99-140.
- 42. Panek, L. A., "Measurement of rock pressure with a hydraulic cell," <u>Mining Engineering</u>, Marcy 1961, p. 282-285.

- Alexander, L. G., Field and laboratory tests in rock mechanics, <u>Proceedings</u> 3rd Australia-New Zealand Conf. On Soil Mech. and Found. Eng. pp. 151-158, 1958.
- 44. Hoskins, E. R., "An investigation of the flat jack method of measuring rock stress," <u>Int'l J. Rock Mech and Min. Sci.</u>, V. 3, pp. 249-267, 1966.
- 45. Jaeger, J. C., and Cook, N. G. W., "Theory and application of curved jacks for measurement of stresses," <u>Proc. Int'l Conf. State</u> <u>of Stress in the Earth's Crust</u>, Santa Monica, California, pp. 249-264, 1963.
- 46. Tincelin, E., "Measurement of rock pressures in the Lorraine iron mines," Leeds University Mining Science Journal, 1954.
- 47. Marsh, F. W., and Thurston, R. C. A., "Variation of ultrasonic pulse velocity, electrical resistivity and strain with increasing compressive load in Alberta coal and cola measure rocks." <u>Dept. of</u> <u>Mines and Tech. Surveys, Ottawa, Canada</u>, Research Report N. D. M. 91, May 1951.
- Brown, A., "Canadian ground stress investigations," <u>Dept. Mines and</u> Tech. Surveys, Ottawa, Canada, Report I.R. 58-116, May 1958.
- 49. Phillips, J. W., "An appreciation of the possibilities of applying sonic energy to problems of exploration in mines," <u>Nat'l Coal</u> <u>Board</u>, CRE Report N. 88.
- 50. Dixon, J. K., "The sonic location of pressure zones around mining excavations," <u>Univ. Durham, School of Mines Research Publication</u>,
 V. I, 1953, p. 25-28.

- 51. Potts, E. L. J., and Jenkins, J. D., "A study of rock pressures around mining excavations," Int'l Strata Control Conf., Essen, 1956.
- 52. Buchheim, W., "The problem of determining rock pressure by acoustic means," <u>Bergakademie</u>, 1, 1953.
- 53. Buchheim, W., "Geophysical methods for the study of rock pressure in coal and potash-salt mining," <u>Int'l Strata Control Cong.</u>, Laipzig, October 1958, p. 222-235.
- 54. Buchanan, J. G., "Electrical resistivity field unit," <u>Dept. of Mines</u> and Tech. Surveys, Ottawa, Canada, Information Memo 331, October 1952.
- 55. Buchanan, J. G., "Report of electrical resistivity measurements made in Canmore No. 3 Mine, Canmore, Ottawa," <u>Research Report</u> <u>N. P. M. 156</u>, January 1954.
- 56. Buchanan, J. G., "Correction factors for electrical resistivity measurements in a coal seam," <u>Dept. Mines and Tech. Surveys, Ottawa</u>, Research Report N. P. M. 159, March 1954.
- 57. Brown, A., Cochrane, T. S., and Patching, T. H., "Ground stress studies in coal mines of western Canada - A progress report," Canadian Mining Metallurgy Bull., November 1958.
- Isaacson, E., "<u>Rock pressure in mines</u>," Mining Publications Ltd., 1958, p. 185-186.
- 59. Sen, G. C., "Application of electrical resistance method as a means of investigating stresses and strains in rock salt," <u>Univ. Durham,</u> <u>Kings College Mining Bull.</u>, V. 9, N. 3, Series: Strata Control/Res. N. 17, 1962.

- 60. Borecki, M., and Kidybinske, A., "Problems of stress measurements in rocks taken in the Polish coal mining industry, <u>Proc. 1st Cong.</u> Int'l Society of Rock Mechanics, Lisbon, 1966, p. 9.
- 61. Leeman, E. R., and Hayes, "A technique for determining the complete state of stress in rock using a single borehole," <u>Proc. 1st Cong. Int'1</u> Soc. Rock Mech, V. 2, p. 17, 1966.
- 62. Obert, L., and Stephenson D., "Stress conditions under which core discing occurs," Trans SME, AIME, V. 232, N. 3, 1965.
- 63. Coutinho, A., "Theorie de la détermination experimentale des contraintes par une méthode n'exigeant pas la connaissance precise du module d'élasticité," <u>Intern. Assoc. for Bridge and Struct. Eng.</u>, Pub. 7, pp. 83-103, 1969.
- 64. Hult, J., "On the measurement of stresses in solids," <u>Chalmers</u> tekneska Hogskolas Handlingar, N. 280, 1963.
- 65. Merrill, R. H., Robert, H., and Peterson, J. R., "Deformation of a borehole in rock." <u>U.S. Bureau of Mines R.I. 5881</u>, 1961.
- Berents, H. P., and Alexander, L. G., "Rock stress measurements and drilling techniques," <u>Contracting and Construction Equipment</u>, V. 19, N. 1, pp. 64-66, 1965.
- 67. Obert, L., "Determination of stress in rock A state of the art report," ASTM Special Tech. Publ. 429, 1967.
- 68. Buchanan, J. G., Marsh, F. W., and Thurston, R. C. A., "Measurement of stress changes during mine operations," <u>Canadian Mining</u> Journal, V. 76, N. 12, December 1955, p. 49-55.

- 69. Kaarsberg, E. A., Investigation into the determination of stress
 in rock. <u>Brown Engineering Co.</u> summary Progress Report RPL-26459-1.
 (NASA Contract NAS 8-20166). May 1967. p. 81.
- 70. Becker, R. M., and Hooker, V. E., Some anisotropic considerations in rock stress determinations. <u>U.S. Bureau of Mines R.I. 6965</u>, June 1967.