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ABSTRACT 

The rad ia t ion  emitted during hypervelocity 

impact consis ts  of emission l i n e s  of t h e  t a r g e t  and pro- 

j e c t i l e  mater ia l  and continuum r a d i a t i o n  associated with 

the  broadening of these l ines .  Spectroscopic observation 

of the rad ia t ion  emitted y ie lds  information about ' the  

composition, ve loc i ty ,  and s i z e  of the  impacting p a r t i c l e .  

the composition is kno-m, the  ve loc i ty  and diameter 

can be obtained from simple measurements involving only 

one photomultiplier. A possible appl ica t ion is the  de- 

t ec t ion  of micrometeoroids and measurement of t h e i r  

ve loc i ty  and s i ze ,  



SECTION 1 

INTRODUCTION 

When a  high ve loc i ty  p r o j e c t i l e  s t r i k e s  a  t a r g e t ,  par t  of the  

k i n e t i c  energy of the  p r o j e c t i l e  is t ransf  ormed i n t o  electromagnetic 

radia t ion .  The i n t e n s i t y ,  s p e c t r a l  d i s t r i b u t i o n ,  and time h i s t o r y  of 

the  impact r ad ia t ion  can y i e l d  information about the  p r o j e c t i l e  and t a rge t .  

When the  t a r g e t  proper t ies  a r e  known, r ad ia t ion  i n  the  wavelength region 

3000g - 9000g (which fo r  our purposes we def ine  as the  impact "f lasht t )  

y ie lds  information about the  ve loc i ty ,  s i z e ,  and composition of the  pro- 

j e c t i l e .  The possible appl ica t ion  of impact f l a s h  fo r  the  de tec t ion  and 

analys is  of micrometeoroids is t h e  subjec t  of t h i s  repor t .  

Rela t ive ly  l i t t l e  research has been conducted on the  nature  and 

o r i g i n  of the  impact flash: I n  1959, Clark s tudied  f l a shes  produced 

by the  impact of copper on copper a t  v e l o c i t i e s  below 2 km/sec, and con- 

cluded t h a t  the  f l a s h  is  due t o  the  in te rac t ion  of a  high ve loc i ty  spray 

from the  impact region with the  ambisnt atmosphere. Y e  did not: propose 

a  ~rechanism which could generate such a high v e l o c i t y  spray. In  1963, 

R.W. Mac~oknack(~)  observed t h a t  the  r i s e  time of the  luminosity is an 

increasing function of the  ambient range pressure f u r  aluminum impacting 

alumtnurn. H i s  spectrographic s tud ies  a l s o  revealed the  exis tence  of .a 

l i n e  s t r u c t u r e  c h a r a c t e r i s t i c  of the  ma te r i a l  involved. The above men- 

t ioned authors ,  however, were i n  apparent disagreement with the  work con- 

ducted by Gehring and ~ a r n i c a O )  who f a i l e d  t o  measure any peak i n t e n s i t y  

v a r i a t i o n  of the  f l a s h  with pressure when the  ambient pressure i n  the  

range was lower than one mil l imeter  s f  Hg. R,A. ~ o e h l e r ( ~ )  impacted 



d i f f e r e n t  ma te r i a l  on lead t a r g e t s .  From h i s  spec t rographic  ana lys i s  of 

the  f l a s h ,  he concluded t h a t  the  spectrum i s  cha rac t e r i zed  by e x c i t a t i o n  

of the  atoms of t h e  p r o j e c t i l e  ma te r i a l  r a t h e r  than t h e  t a r g e t  ma te r i a l .  

He a l s o  de tec ted  continuum r a d i a t i o n  emanating from t h e  impact point  and 

superimposed l i n e  emission coming from the  e j e c t a .  Our work shows t h a t  

continuum r a d i a t i o n  is present  a t  the  Impact po in t ,  and t h a t  l i n e  emission 

c h a r a c t e r i s t i c  of both t a r g e t  and p r b j e c t i l e  m a t e r i a l  is present  i n  t h e  

spray. We have proposed a mechanism which accounts f o r  t h e  observed pro- 

p e r t i e s  of both the continuum and the l i n e  ernfssion. We have concluded 

t h a t  t he  continuum r a d i a t i o n  emit ted Fv a micrometeoroid when it impacts 

a t a r g e t  whose c h a r a c t e r i s t i c s  a r e  k~.own can be used t o  deduce the  velo- 

c i t y  and s i z e  of t he  micrometeoroid. This r epo r t  p resents  t h e  reasoning 

and experimental evidence which support  t h e  conclusion. 

Sec t ion  2 descr ibes  t he  experimental f a c i l i t i e s :  t h e  launchers ,  

t h e  range,  and the  instrumentat ion.  A desc r ip t ion  of t he  impact f l a s h  

and a proposed mechanism f o r  its genera t ion  follows i n  Sec t ion  3.  The 

p r i n c i p a l  method of experimental i n v e s t i g a t i o n  was spectroscopy,  and a 

d iscuss ion  of spec t roscopic  ae thods  and r e s u l t s  is  found i n  Sec t ion  4. 

Suct ion 5 descr ibes  t he  e f f e c t  of such parameters as v e l o c i t y ,  range 

pressure ,  and p r o j e c t i l e  shape on t h e  impact f l a s h .  A complete l i s t i n g  

of a l l  experimental f i r i n g s  is  found i n  Sect ion 6. 



SECTION 2 

EXPERIMENTAL SET 'CP 

2.1 LAUNCHER 

Two types of launchers have been used during the  course of the  

program. For impacts a t  2.5 - 8 km/sec, a 0.5 inch l t g h t  gas gun was 

used, A photograph of the gun is shown i n  Figure 1. For shots  1 - 61, 

smooth bore barre ls  were used and a i r  separat ion type sabots were em- 

ployed. For shots  62-150, r i f l e d  ba r re l s  were used and the  sabots were 

sp in  separated. The r i f l e d  b a r r e l  r e su l t ed  i n  b e t t e r  sabot separa t ion,  

and a l s o  resu l t ed  i n  i n - f l i g h t  s t a b i l i t y  fo r  non-spherical p ro jec t i l e s  

such as spheroids. 

For impacts a t  v e l o c i t i e s  of 2 - 2.5 km/sec, a .22 c a l i b r e  con- 

vent ional  r i f l e  was i n s t a l l e d  i n  t h e  dump tank of the  l i g h t  ga.1 gun. 

Four low veloci ty  shots  were f i r e d  with the  .2% c a l i b r e  r i f l e .  

2.2 RANGE 

Figure 2 shows the  range associated with t h e  0.5 inch l i g h t  gas 

gun. St  is  divided i n t o  three  sect ions:  the  dump tank, the  t r a v e l l i n g  

sec t ion ,  and the  impact sect ion.  

me dump tank cons i s t s  of 4 tank t h r e e  f e e t  i n  diameter and 15 

f e e t  -!.n length, Baffles i n  the  dump 'tank prevent sabot segments and other 

debris  from entering t h e  t r a v e l l i n g  section. ' f ie  dump tank supports two 

pulsed x-ray heads which can be used t o  obta in  x-ray photographs of the  



p r o j e c t i l e  and sabot a t  various s tages  of separation. The x-rays a r e  

t r iggs red  5y a broken l i g h t  beam a t  the  muzzle of the  gun. 

The t r a v e l l i ~ g  sectior.  is c~ .ected t o  the  dump tank by a pipe 

two inches i n  diameter. I so la t ion  of t h e  dump tank is  accomplished by a 

25 pm thick mylar diaphragm a t  t h e  end of the  pipe. Broken besn l i g h t  

detectors placed a t  f i v e  foot  in te rva l s  along the  t r ave l l ing  sec t ion  a r e  

used t o  measure the  veloci ty  of the  p r o j e c t i l e  a s  it t rave l s  down t h e  

range, The broken beam detectors a l s o  t r igger  shaduwgraph cameras which 

are mounted a t  r i g h t  angles t o  the  line of f l i g h t  of the  p ro jec t i l e .  

The experimental sec t ion  consis ts  of 2 rese rvo i r  3 f e e t  in  dia- 

meter and 5 f e e t  long, with 9 viewing ports  placed around the  t a r g e t  area. 

Pressures as low as  4 x Torr ire maintained by a 6 inch o i l  d i f fus ion 

pump and a large  area  cold trap,  

instrumentatior, includes a spectrograph, a broadband photomultiplier,  

open shu t t e r  -,ameras, and image converter cameras. Each of these  w i l l  22e 

discussed below. 

The spectrograph used was a 0.75 meter £16.8 Czerney Turner ins t ru -  

ment. It was general ly used as  a polychromator, with 4 photomultipliers 

a t  the  exit slits. When spec t ra  were recorded, U.V. s e n s i t i v a  p la tes  were 

used, usually Kodak Type 103-0. Quartz windows were used i n  the  spectro- 

graph port i n  the  range. For a few shots a t  the  end of the  program a medium 

quartz Hilger spectrograph was used i n  conjunction with t h e  Czerney Turner. 



Radiation produced by the impact was a l so  monitored by a photo- 

mult ipl ier  sensi t ive  from 3500-65001( (S-5 sensi t ivi ty) .  Neutral density 

f i l t c r s  were used t o  prevent saturation.  The s ignal  from the piloto- 

multiplier  was displayed on a scope externally triggered by another 

unf i l tered photomultiplier. A f ixed delay of approximately one micro- 

second was externally established between the tr iggering s ignal  and the 

displayed pulse. Figure 3 shows a block dlagram of the e lectronic  logic 

used to  record the impact signature. The gated delayed t r igger  was used 

i n  order t o  avoid any spurious signals which could have tr iggered the 

scope prior t o  the impact signal. 

Time integrated photographs of the impact f lash were taken for  

each shot. Two cameras, loaded with panchromatic and red  sens i t ive  film, 

were mounted a t  r i gh t  angles t o  the l i ne  of f l i g h t  i n  the plane of the  

ta rge t ,  and the i r  shut ters  were l e f t  open for  the en t i r e  duration of the 

Tmpact flash. 

Time resolved photographs were also obtained fo r  each shot by 

means of four image converter cameras. Tnree of the cameras were mounted 

t o  observe the impact f lash from the s ide ,  and a fourth was mounted t o  

observe the f lash  head-on through a front surface mirror. The exposure 

time of each photograph could be s e t  at: .@I, -1, or 1.0 usec. The time 

a t  which each picture was taken was recorded on a scope tr iggered by the 

P.M. tr igger.  From the sequence of photographs obtained, the velocity of 

the luminous ring could be measured. 



SECTION 3 

THE IMPACT FLASH 

3.1 DESCRIPTION OF THE IMPACT FLASH 

The pact f l a s h  cons i s t s  of two pa r t s  : a narrow, f a s t  r'ise- 

time pulse of l i g h t  followed by a much wider pulse which decays slowly 

t o  zero in tens i ty ;  An example of an impact s ignature  is shown i n  Figure 

4 .  Thz i n i t i a l  pulse ,  which we r e f e r  t o  a s  the  "spike1', is t y p i c a l l y  

l e s s  than l p s e c  wide. Spike widths a s  s h o r t  a s  0 . l p s e c  have been ob- 

served f o r  .318 cm p r o j e c t i l e s ,  Following the  decay of t h e  sp ike ,  the  

l i g h t  i n t e n s i t y  again r i s e s  and then slowly decays. We r e f e r  t o  t h i s  

second pulse a s  the  " ta i l" .  

In  some cases ,  the  sp ike  and t a i l  merge together. This makes 

it d i f f i c u l t  o r  impossible t o  make measurements on t h e  spike. Two examples 

of impact s ignatures  i n  which t h e  spike  and the  t a i l  have p a r t i a l l y  merged 

a r e  shown i n  Figure 5. In  such cases a s  these ,  i t  is o f t en  possible t o  

make some measurements on the  spike ,  f o r  example the  i n i t i a l  r a t e  of change 

of i n t e n s i t y ,  but impossible t o  make o ther  measurements such a s  peak in- 

t ens i ty .  Figure 6 shows an example of impact s igna tu re  i n  which the  spike  

and the  tsil have merged completely. In  such cases ,  it may s t i l l  be pos- 

s i b l e  t o  measure the  i n i t i a l  r a t e  of change of i n t e n s i t y  of the  spike", but 

not the  sp ike  i n t e n s i t y  or  time t o  reach maximum. 

There a r e  a l s o  ceses i n  which the  t a i l  is very small  and the  spike  

is predominant. An example of an impact: s ignature  i n  which t h e  spike is pre- 

cbminant is shown i n  Figure 7. 



Before we can understand the  reasons fo r  such a v a r i e t y  of impact 

s igna tu res ,  we must consider the  o r i g i n  of the  t a i l  and of the  spike. This 

w i l l  be done i n  the  next two subsections. 

ORIGIN OF THE TAIL 

Image converter  photographs show t h a t  the  t a i l  i s  associa ted  with 

a luminous r i n g  which expands along t h e  t a r g e t  plane a t  a v e l o c i t y  higher 

than the  impact ve loci ty .  A head-on photograph of the  luminous r i n g  is 

shown i n  Figure 8. The time a t  which the  photograph was taken is indi-  

ca ted  on the  scope t race .  

The ve loc i ty  of  the  luminous r i n g  is  a slowly increasing function 

of t h e  impact ve loc i ty ,  as shown i n  ~ i ~ u r e  9. Tbe number ins ide  each 

c i r c l e  is the  shot  number. 

Many of the  proper t ies  of the  luminous r ing  a r e  most e a s i l y  

demonstra-ted by f i r i n g  cone shaped p ro jec t i l e s .  The reason f o r  t h i s  is 

t h a t  nany of the  proper t ies  a r e  a function of the  angle between the  t a r g e t  

surface  and the  p r o j e c t i l e  surface.  For the  case of a spher i ca l  p r o j e c t i l e ,  

t h i s  angle va r i e s  from 0' a t  the  ins tan t  of impact t o  90° when the  pro- 

j e c t i l e  has penetrated a d is tance  equal t o  i t s  radius. The angle is a 

constant f o r  a conica l  p ro jec t i l e .  In order  t o  explain the  o r i g i n  of t h e  

luminous r i n g ,  and thus of the  t a i l ,  we l i s t  here f o r  reference  a sumnary 

of r e s u l t s  obtained from cone f i r i n g s  which were conducted previous t o  

t h i s  program. 

1. The luminous r i n g  disappears when the  angle between 
the  t a r g e t  surface  and the  cone su r face  is l e s s  than 

7 



a c e r t a i n  c r i t i c a l  angle oc c. The angle c 
depends on the  t a r g e t  ma te r i a l ,  t h e  cone mate r i a l ,  
and the cone velocity.  L i t t l e  or no l i g h t  i s  
emitted by an impacting cone whose impact angle 
is smaller thanoc c. 

2. For a given impact ve loc i ty ,  the lumicous r ing  
ve loc i ty  decreases as  the  cone angle increases. 
The maximum r i n g  ve loc i ty  is observed a t  the  
c r i t i c a l  angle. 

3. The luminous r ing  produced by a cone a t  the  
c r i t i c a l  angle t r a v e l s  f a s t e r  than t h e  luminous 
r ing  produced by a sphere a t  t h e  same velocity.  

These observations suggest t h a t  t h e  luminous r i n g  is r e l a t e d  t o  the  jet 

predicted by shaped-charge ' theory. In Birkhof f '  s ( ~ )  treatment of t h e  

collis-[.on of two p l a t e s ,  a jet of  mate r i a l  is predicted and t h e  v e l o c i t y  

of the  jet decreases a s  the  angle between t h e  p la tes  increases. me 

geometry of the  two-plate c o l l i s i o n  is shown i n  Figure 10. 

In  the  co-ordinate system moving with the  c o l l i s i o n  region,  the  

two p la tes  move towards the  c o l l i s i o n  point with a speed lv l  and both t h e  

slug and the  jet move away from the  c o l l i s i o n  point with the  same speed ( v I .  
The s i m i l a r i t y  of a cone o r  sphere impact t o  t h e  impact of two p la tes  is 

evident from Figure 11. 

Birkhoff 's  predic ts  t h a t  t h e  j e t  produced by a spheri-  

c a l  p r o j e c t i l e  w i l l  have an i n f i n i t e  velocity.  There is no concept of a 

c r i t i c a l  angle i n  h i s  theory. ~ a l s h ( ~ )  considered the e f f e c t  of shock waves 

on the  c o l l i s i o n  and found tha t  below a c e r t a i n  c r i t i c a l  angle jetless col- 

l i s i o n s  were possible. He found t h a t  i f  the  point of contact between t h e  

t a r g e t  and p r o j e c t i l e  moved a t  a ve loc i ty  g rea te r  than t h a t  01 the  shock 

waves i n  the  t a r g e t  and p r o j e c t i l e ,  the  shocked mater ia l  was e f f e c t i v e l y  



held between the  two shock surfaces and no j e t t i n g  resul ted .  I f ,  however, 

one of the shocks moved f a s t e r  than the point of contact ,  shocked material, 

could escape i n  the form of a jet. Three possible cases a r e  i l l u s t r a t e d  

i n  Figure I n  case (a) ,  the ve loc i ty  of the  point of contact  is g rea te r  

than the  hor izonta l  v e l o c i t y  of e i t h e r  the  t a r g e t  shock or  the  p r o j e c t i l e  

shock. The shocked mate r i a l  is trapped between t h e  two shock surfaces ,  and 

no j e t t i n g  r e s u l t s .  The c r i t i c a l  angle has not yet  been reached. I n  (b ) ,  

the  hor izonta l  ve loc i ty  of the  t a r g e t  shock is g r e a t e r  tban the  ve loc i ty  

of the  contact  point. Shocked material .  can escape i n  the  form of a jet. 

A s imi la r  s i t u a t i o n  i s  shown i n  (c). I n  (b) and (c) the  angle between t h e  

p r o j e c t i l e  surface  and the  t a r g e t  surface  exceeds t h e  c r i t i c a l  angle. The 

c r i t i c a l  angle,  according t o  t h i s  p ic tu re ,  is t h e  angle a t  which t h e  v e l o c i t y  

of the  contact  point is j u s t  equal t o  the  hor izonta l  ve loc i ty  of the f a s t e r  

of the two shock waves. 

I n  jetless c o l l i s i o n s ,  very high pressures e x i s t  i n  t h e  region 

between the  two shock surfaces,  A j e t l e s?  configurat ion fo r  an asymmetric 

c o l l i s i o n  (unlike materials, unequal v e l o c i t i e s ) ,  is shown i n  Figure 13. 

The co-ordinate system is moving with the  c o l l i s i o n  region,  scch t h a t  t h e  

point of contact  between the  t a r g e t  and p r o j e c t i l e  appears t o  be s ta t ionary ,  

pl andf2 a r e  the  dens i t i e s  of the  p r o j e c t i l e  materialsand the  t a r g e t  

material.  UO, is the  ve loc i ty  of the  p r o j e c t i l e  mater ia l ,  measured i n  t h e  

plane of t h e  p r o j e c t i l e  surface ,  and UOZ is t h e  ve loc i ty  of the  t a rge t  

mater ia l  measured i n  the  plane of the  t a r g e t  surface. In  the laboratory 

system of co-ordinates the  t a r g e t  is s t a t ionary ,  s o  Uoz is a l s o  the  velo- 

c i t y  of the  co-ordinate system which is  moving with the contact  point.  

The pressure P must be constant across the  contact  surIace (sl ipstream) 

which separates t h e  two diss imi lar  streams, A breakdown of the  j e t l e s s  



configuration must occur when e i t h e r  g(P) or  @(P) reaches the  c r i t f c a l  

angle associated with tha t  stream. The c r i t i c a l  angle is then givan by 

where PC is the  smaller of Pcl and PC*. Pcl is the  pressure associated 

with the maximum possible def lec t ion of the  p r o j e c t i l e  stream, and Pc2 is  

the  pressure associated with the  maximum possible def lec t ion of the  t a r g e t  

stream. The equation fo r  Pcl  is given by ~ a l s h ( ~ )  as  

where r ,  = ( p. l pl ) - 1, p, is the  densi ty  of the  shocked p r o j e c t i l e  

materiel., 
fL 

is the  densi ty of the  unshocked p r o j e c t i l e  mate r i a l ,  and 

Uor is  t h e  ve loc i ty  of the  unshocked p r o j e c t i l e  material .  A s imi la r  

equation exists f o r  Pc2. The density of t h e  shocked mate r i a l  can be ca l -  

cula ted  from the  Rankine-Hugoniot equation 

p-V/ = e("- "1 1 

where W is the shock wave ve loc i ty  and U is  the  p a r t i c l e  ve loc i ty  behind 

the  shock. 

Using the  above equations, the  c r i t i c a l  pressure fo r  copper- 

cadmium, titanium- cadmium, and aluminum-cadmium impact has been calculated.  

Results a r e  shown i n  Figure 14. 

A£ ter the  jet ti-ng begins, the  pressure f a l l s  t o  a low value. 

A s  viewed by an observer a t  the  c o l l i s i o n  point t h e  c o l l i s i o n  process 

appears t o  remain unchanged i n  time o r  i n  o ther  words appears a s  steady 



motion. It follows tha t  we can use the  Bernoulli  equation t o  describe 

the  flow. For compressible flow, 

where P is the  pressure,  p is the  densi ty ,  and V is the  ve loc i ty  of the  

stream of material.  The assumption made by 13irkhoffU) is " that  the  l i n e r  

moves away from the  exploded gases s o  f a s t  t h a t  t h e  pressure of i t s  surface  

is  very low and hence pressures are constant  on a l l  surfaces of the  collap- 

s ing  liner". From t h i s  i t  follows t h a t  t h e  p r o j e c t i l e ,  the  p r o j e c t i l e  jet ,  

and t h e  shocked mater ia l  a l l  appear t o  approach o r  recede from an observer 

s t a t ionary  a t  the  point of contact  a t  equal speed. Since the  c o l l i s i o n  is 

asymmetric, the  p r o j e c t i l e  mate r i a l  approaches a t  a speed d i f fe ren t  from 

t h e  t a rge t  mater ia l  speed. 

In the  laboratory co-ordinate system the  j e t  ve loc i ty  is the  

vector  sum of the  jet ve loc i ty  as seen by an observer a t  the  c o l l i s i o n  

point  and the  ve loc i ty  of the  c o l l i s i o n  point  .In the  laboratory cs-ordinate 

system. Figure 15 shows the  p r o j e c t i l e  and t a r g e t  vectors  and t h e i r  com- 

ponents. 

The p r o j e c t i l e  jet ve loc i ty  i n  t h e  laboratory co-ordinate system 

i s  the  sum of V o / s i n a  and Vo/tanoc , where Vo is the  p r o j e c t i l e  velocity.  

We obta in  for  the p r o j e c t i l e  j e t  ve loc i ty  and the t a rge t  j e t  velocity.  

up= = [ COS'~ 2 CosK c.5 + 11% 
s 1-4 ? 

t 

Both UpT and UTr decrease a s d  increases. The maximum jet ve loc i ty  occurs 

a t  t h e  c r i t i c a l  angle, 



The j e t  predicted by shaped-charge theory has two of the  proper t ies  

exhibi ted  by the  luminous r i n g ,  i .c .  i t  disappears belov a c e r t a i n  c r i t i c a l  

angle and the  j e t  ve loc i ty  decreases as the  cone angle increases.  'LCe 

agreement between the  j e t  theory and the  f i r s t  two proper t ies  of the  

luminous r i n g  has been shown t o  be quan t i t a t ive  a s  well  as q u a l i t a t i v e  i n  

another program which has j u s t  been completed. (7) 

The t h i r d  property of the  luminous r i n g  is  more d i f f i c u l t  t o  

understand. Jet theory predic ts  t h a t  the  maximum j e t  v e l o c i t y  depends 

only on the  p r o j e c t i l e  ve loc i ty  and t h e  c r i t i c a l  angle, The shaps and 

s i z e  of the  p r o j e c t i l e  do not a f f e c t  t h e  maximum jet veloci ty .  Why then 

should a cone a t  the  c r i t i c a l  angle produce a f a s t e r  luminous r i n g  than a 

sphere a t  the  same ve loc i ty?  A reasonable explanation is suggested by 

the  dependence of luminous r ing  ve loc l ty  on sphere s i z e .  A p l o t  of 

luminous r i n g  ve loc i ty  vs p r o j e c t i l e  v e l o c i t y  f o r  copper-cadmium impacts 

i s  shown i n  Figure 16. 

'i'he .635 cm spheres cons i s t en t ly  produce a f a s t e r  luminous r i n g  

than the  .I59 cm spheres. The smaller spheres sweep through the  c r i t i c a l ;  

angle much Easter than the  l a rge r  spheres. The angle a t  any time t is 

given by 
oC = COS-I [ I - v.t/rI , 

where Vo is the p r o j e c t i l e  ve loc i ty  and r is t h c  p r o j e c t i l e  radius.  A 

small p r o j e c t i l e  spends l e s s  time ~ i t h  0 ~ .  drt6, where 6 i s  some small  

angle,  than a l a rge r  projectil-e.  Therefore, l e s s  ma te r i a l  w i l l  be emit ted 

a t  the  ve loc i ty  corresponding t o  :he c r i t i c a l  angle. A s  the  sphere con- 

t inues  t o  penetra the  t a r g e t ,  the  a n g l e d  becmes continuously l a rge r  

and the  j e t  ve loc i ty  becomes continuously smaller ,  f t  may be t h a t  the  



amount of ma te r i a l  emitted a t  the  c r i t i c a l  angle procluces i n s u f f i c i e n t  

luminosity t o  be detected by our image converter cameras. I n  the  case of 

a  cone, & i s  not  a  function of r o r  t ,  and the  j e t  ma te r i a l  is a l l  emitted 

a t  the  same veloci ty.  

An example of the  luminous r i n g  produced by a non-spherical 

p r o j e c t i l e  is shown i n  Figure 17. The time a t  which the  photograph was 

taken is shown on the  scope t races .  The p r o j e c t i l e  was a polyhedron. In 

the  d i rec t ions  fo r  which the  f ace  angle was s l i g h t l y  above the  c r i t i c a l  

angle,  l a rge  lur  'nous r i n g  v e l o c i t i e s  were observed. Xn the  d i r e c t  ions 

f o r  which ?he face angle was smaller than or  much l a rge r  than the  c r i t i c a l  

angle,  no luminous r i n g  was observed, 

The dependence of j e t  v e l o c i t y  on p r o j e c t i l e  ma te r i a l  is not  

large.  Results fo r  p r o j e c t i l e s  of nagnesium, aluminum, t i tanium, i ron ,  

copper and garnet  a r e  shown i n  Figure 18. 

I n  conclusion, i t  appears l i k e l y  tha t  the  luminous r i n g  is 

produced by the  jet of mater ia l  predicted by shaped-charge theory, and 

tha t  the  t a i l  of the  impact s ignature  is the  l i g h t  emitted by the  luminous 

r ing  . 

ORIGIN OF THE SPIKE 

The impact s ignature  cons is ts  of two pa r t s  - a spike  and ; t a i l .  

Jet theory gives a s a t i s f a c t o r y  explanation of the  o r i g i n  of the  t a i l .  The 

o r ig in  of the  sp ike  w i l l  be discussed below i n  terms of the  same j e t  theory, 

In the  region around the  point of contac t ,  the  pressure produced 

by an i n i t i a l l y  jetless c o l l i s i o n  f a l l s  t o  a  low value a f t e r  j e t t i n g  begins. 



A luminous r ing  i s  associated with the  low pressure j e t t ing .  However, the  

pressure cannot f a l l  t o  a low value instantaneously, and s o  the re  is a 

time,immediateSy a f t e r  j e t t i n g  begins,during which the  pressure decays t o  

the  ~ C I W  value associated with the  luminous r ing.  m e r e  i s  a f a s t  jet ,  i.e. 

a jet Easter than t h e  luminous r ing,  caused by the  t r a n s i t i o n  pressures. THe 

f a s t  j e t  is emitted a t  succeseively iower v e l o c i t i e s  as  the  pressure decays, 

and ul f imate ly  becomes the  jet ssso'eiatsd with t h e  luminous r ing,  It must 

be s t r essed  tha t the  f a s t  j e t  and the  luminous ring a r e  produced by t h e  same 

process, bur a t  d i f fe ren t  pressures. The f a s t  jet is not luminous, except 

very near t o  the  impact point as w i l l  be discussed below. This is  probably 

because very 1ittZ.e mate r i a l  is emitted i n  the  form of a f a s t  je t ,  while 

much more mater ia l  is emitted i n  t2,e luminous r ing.  The i n i t i a l  luminosity 

of the  f a s t  j e t ,  near the  impact point ,  is apparently rebponsible f o r  t h e  

spike. 

The f a s t  jet was detected by secondary t a r g e t s  a t  r i g h t  angles 

t o  the  main t a rge t ,  The t a r g e t s  were mounted a t  5, 10 o r  20 cm from the 

Impact point. Two basic types of secondary t a r g e t s  were used: 

(1) Penetrat ion type. !the East jet was detected 
when the  p a r t i c l e s  i n  the  j e t  penetrated an 
aluminized mylar f i lm 10 microns th ick  mounted 
on a grounded meta l l i c  support ,  The p a r t i c l e s  
caused a shor t  c i r c u i t  between the altiminum 
lpyer and the  support, 

(2) Ionisi t ion type, A shor t  c i r c u i t  between two 
overlapping aluminized mylar s t r i p s '  indica ted  
the  presence of an ionized gas. The c i r c u i t  
used i n  t h i s  case was such t h a t  a s i n g l e  pulsc 
was given out a t  t h e  ins tan t  of impact on the  
mylar. 

A f a s t  j e t  was detected by both types of t a rge t s .  The v e l o c i t y  

of the  East j e t  was more than twice the  ve loc i ty  of t h e  luminous r i n g  



produced by a spher ica l  p r o j e c t i l e ,  and about 1-112 times f a s t e r  than t h e  

luminous r ing  produced by a cone a t  the  c r i t i c a l  angle, A p lo t  of f a s t  

jet ve loc i ty  vs p r o j e c t i l e  ve loc i ty  fo r  aluminum-aluminum impacts is shown 

i n  Figure 19. Luminous r i n g  v e i o c i t i e s  a r e  included for  comparison. 

Evidence t h a t  the  spike  i s  produced i n  a region of high pressure 

is provided by space resolved spec t ra  of the  impact f lash.  We s e t  up our 

spectrograph suck that: a l i n e  on t h e  t a rge t  face  was imaged on the  s l i t  of 

the  spectrograph. The o p t i c a l  arrangement w i l l  bs presented i n  Section 4.4. 

An example of the  spectrum obtained is shown i n  Figure 20. Considerable 

l i n e  broadening exists a t  t h e  impact point. Away from the ir.pact points ,  

along the  path of the  luminuus r i n g ,  l i t t l e  o r  no broadening is observed. 

A space resolved spectrum is i n  some respects  a l s o  time resolved,  s ince  

points on the  f i lm which a r e  successively f a r t h e r  from thb impact point 

a r e  exposed a t  successjrve~y l a t e r  ins tan t s  of time. me broadened c e n t r a l  

port ion of the  spectrum corresponds t o  the spike,  and the  r e l a t i v e l y  sharp 

emission l i n e s  which extend on e i t h e r  s i d e  of t h e  impact point correspond 

t o  the t a i l .  

Polychromritor r e s u l t s  provide fu r the r  evidence t h a t  the  spike  

consis ts  mainly of continuum rad ia t ion  and t h e  t a i l  consis ts  mainly of 

l i n e  emission. The piblychraator records fo r  the  5085g l i n e  of cadmium 

and fo r  background rad ia t ion  a t  4922g a r e  presented i n  Figure 21. Both 
0 

the  spike and the  t a i l  a r e  present a t  5085A. 

In conclusion, t h e  spike  consis ts  mainly of continuum rad ia t ion  

which is  associated with l i n e  broadening. The l i n e  broadening may be 

caused by the  high pressure which e x i s t s  a t  the  moment j e t t i n g  begins, 



SECTION 4 

SPECTROSCOPIC STUDIES 

4.1 INTRODUCTION 

Three types of spectroscopic s tud ies  were undertaken - space- 

in tegra ted  time-resolved, space-integrated time integra ted ,  and space- 

resolved time-integrated. The f i r s t  type of s tudy,  space-integrated 

time-resolved, was conducted by put t ing  photomultipliers a t  the  exit 

s l i t  of t h e  spectrograph, and looking a t  se lec ted  cadmium emission 

l ines.  For t h e  second type of s tudy,  space-integrated t i m e  in tegra ted ,  

l i g h t  froin the  impact f l a s h  was allowed t o  f a l l  uniformly on the  entrance 

s l i t  and the  result ir ig spectrum was recorded on a photographic plate. For 

the  space-resolved time-integrated s tud ies ,  l i g h t  from the  impact f l a s h  

was focussed on the  entrance s l i t  such t h a t  the re  was a one t o  one cor- 

respondence betweel. points  on t h e  t a r g e t  and points  on the entrance s l i t ,  

and the  resu l t ing  spectrum was recorded on a photographic plate.  Results 

of each of the three  types of s tud ies  w i l l  be discussed i n  t h e  following 

subsections. 

4.2 SPACE- ID!XEGRATED TIMERESOLVED SPECTRA 

For t h i s  type of s tudy,  the  spectrograph was used a s  a poly- 

chromator ~ i t h  four photomultipliers a t  the  exit s l i ts  looking a t  four 

differeni: wavel,engths. Three of the  photomultipliers looked a t  cadmium 

0 
emission l i n e s  a t  326113, 36104; and 50858. Cadmium was chosen as  a t a r g e t  

mater ia l  because i t  has a r e l a t i v e l y  simple s p e c t r u ~ ,  it is  easy t o  vaporize, 



and it is not expected t o  be present i n  micrometeoroid materialg. The 
0 

four th  photomultiplier looked a t  background rad ia t ion  a t  about 4900A. 

The o r ig in  of some of the  emission l i n e s  of cadmium is shown 

on the  energy l e v e l  diagram i n  Figure 22. I n  tiie nota t ion N * ~ + ' L ~ ,  N is the  

p r inc ipa l  qyantum number, S is the  sp in ,  L is  the  o r b i t a l  angular momentum 

quantum number, and J is t h e  vector  sum of S and L. A de ta i l ed  account of 

the  meaning of each quantum number can be found i n  any good text on atomic 

physics . 
The s i g n a l  from each of the  four  photomultiplier tubes was dis-  

playad on an osci l loscope and photographed. The photographs d isplay  the  

time h i s t o r y  of the  impact f lash.  

0 0 
The t i m e  h i s t o r i e s  a t  3610A and 5085A resemble each other  and 

d i f f e r  from the  t i m e  h i s t o r y  a t  326%. Since the  32612 l i n e  a r i s e s  from 

a t r a n s i t i o n  i n t o  the  ground state,  while t h e  o ther  two l i n e s  o r ig ina te  

from t r a n s i t i o n s  between exci ted  l eve l s ,  it is not su rpr i s ing  t h a t  t h e  
0 

3261A l i n e  is unique. It is t h e  most e a s i l y  exci ted  of the  th ree  l ines .  

In genera l ,  the  3 2 6 9  l i n e  has a spike  with s f a s t e r  rise tiwe than t h e  

o ther  two l i n e s ,  and a more predominant t a i l  than t h e  o ther  two l ines.  

Two examples a r e  shown i n  Figure 23. 

The polychromator can a l s o  be used t o  study l i n e  broadening. 

0 
For shots  899 and 903 t h e  photomultiplJer which normally looked a t  50858 

0 0 
was moved t o  5060A. The e x i t  s l i t  was 5A wide, Zn each of t h e  two shots  

the  intensi t l r  was down by a fac to r  of 20 from what it would have been a t  

508561. The shape of the  pulse was a l s o  d i f f e r e n t  from t h a t  expected a t  

50858. The spike peaked a t  0.2 usec ins tead of 1.0 usec, and t h e  i n t e n s i t y  



of the  t a i l  was s o  small t h a t  it was not detected. These observations 

lend support t o  the  theory t h a t  the  spike  is  associa ted  with continuum 

rad ia t ion ,  and the  t a i l  i s  associated with l i n e  emission. 

The background r a d i a t i o n  was a l s o  measured st various wavelengths 

0 0 
between 4824A and 4942A. The i n t e n s i t y  observed was unexpectedly high, 

0 0 
almost a s  high a s  the  i n t e n s i t y  a t  5085A, I n  the 118A wide region,  the  

i n t e n s i t y  of the  continuum rad ia t ion  appears t o  be uniform. 

While the  width of t h e  spike  is very dependent on t a rge t  and pro- 
0 0 0 

j e c t i l e  surface  f i n i s h  a t  3610A and 50858, around 4900A it is not. Figure 

24 shows the  spikes fo r  a  rough t a r g e t  (Shot No. log),  fo r  a  rough p r o j e c t i l e  

(Shot No. 118), and for  a  normal t a r g e t  and p r o j e c t i l e  (Shot No. 92), The 

spike  i n  t h t  background region of the  spectrum is not stongly a f fec ted  by 

t a r g e t  o r  p r o j e c t i l e  surface  e f fec t s .  The e f f e c t  of t a r g e t  and projectile 

surface  f i n i s h  on t h e  spike  w i l l  be discussed more f u l l y  i n  Section 5.3 

4.3 SPACE-INTEGRATED TlMEINZlEeRATED SPECTRA 

For t h i s  type of study, l i g h t  from the  impact was allowed t o  f a l l  

d i r e c t l y  on t h e  entrance s l i t  of t h e  polychsomator, and a photographic 

p l a t e  was used i n  place af  the  e x i t  s l i t s  and photomultipliers.  Only a 

few spect ra  of t h i s  type were recorded, s ince  t h e  space-resolved time- 

in tegra ted  type yie lds  more information. 

A spectrum for  aluminum impacting cadmium is shown i n  Figure 25. 

Some of the  more predocinant cadmium and aluminum l i n e s  a r e  ident i f ied .  The 

4800g l i n e  of cadmium appears t o  be more in tense  than the  50858 l ine .  In , 

addit ion,  the  4800g l i n e  seems t o  be broadened more then the  50852 l ine .  



Possibly the  50858 l i n e  should be replaced by the 48008 l i n e  as a source 

of observables. 

Lines i d e n t i f i e d  i n  the  spectrum produced by aluminum impacting 

cadmium a t  5 km/sec (Shot No. 8) a r e  shown i n  Table I. The spectrograph 

was an f/6.3 instrument with a 100 y wide entrance s l i t  and a 600 line/nun 

grat ing.  Tlrle chemical composition of the  aluminum p r o j e c t i l e  is shown i n  

Table 2. 

4.4 SPACE- RESOLVED T I  ME- INTEGRATED SPECTRA 

Space-resolved spec t ra  were obtained by focussing an image of 

the  impact region on the  entrance s l i t  by means of quartz optics.  A dia- 

gram of the  o p t i c a l  system used is shown below. 

Mirror 



TABLE 1. LINES IDENTIFIED, SHOT NO. 8 

Copper 0.15 -- 0.40% 

Iron 0.70 

Magnesium 0.15 

Sil icon 0.40 -- 0.80 

Titanium 0.15 

Zinc 0.20 

Chromium 0.15 -- 0.35 

TABLE 2, CONPOSITION OF TItFI PROJECTILE 



A space-resolved spectrum is  a l s o  i n  some respects  time-resolved, 

s ince  points on the photographic p la te  which a re  successively f a r t h e r  from 

the  image of the  impact point a r e  illuminated a t  successively l a t e r  ins tan t s  

of time. The duration of the  spike  can be r e l a t e d  t o  the  width of the  zone 

on the  p la te  which shows strong l i n e  broadening. A 1or.g duration spike  w i l l  

show l i n e  broadening fo r  some dis tance  on e i t h e r  s i d e  of the impact point ,  

while a shor t  duration spike  w i l l  show l i n e  broadening fo r  a much smaller  

distance. The spectrum obtained from Shot No. 8 ,  aluminum impacting cadmium, 

is shown i n  Figure 26. A record of the impact s ignature  i s  a l s o  shown. The 

continuum which surrounds t h e  impact point  corresponds t o  the spike. 

Figure 27 shows the  spectrum obtained from Shot No. 120, t i tanium 

impacting cadmium. The l i n e  broadening extends f o r  a l a rge  distance around 

the  impact point. The record of the  impact s ignature  shows a very wide 

spike which peaks a t  about 1.5 usec. By way of con t ras t ,  the  spike  i n  Shot 

No. 8 peaks a t  about .4 usec. 

An example of a very narrow spike  and its associated ssectrum is 

shown i n  Figure 28. The spectrum is  from Shot No. 127, magnesium impacting 

cadmium. I n  t h i s  case the  sp ike  peaks a t  .05 usec and t h e  region of l i n e  

broadening on the  p l a t e  is extremely narrow. The two narrow regions of 

l i n e  broadening which a r e  v i s i b l e  on e i t h e r  s i d e  of the  impact point 

c o r r e s r ~ n d  t o  two p a r t i c l e s  which came down range behind the  main p ro jec t i l e .  

Their impact f l a s h  is indicated by "A" and "B" on t h e  broadband record. 



SECTION 5 

PARAMETRIC STUDIES 

INTRODUCTION 

The purpose of the  parametric s tud ies  was t o  f ind  observables 

(measurable quan t i t i e s )  of the  impact s ignature  from which the  ve loc i ty ,  

s i z e ,  and dens i ty  of the  impacting p a r t i c l e  could be deduced. The ob- 

s e r v a b l e ~  chosen must s a t i s f y  s e v e r a l  requirements. They must be functions 

of the  p r o j e c t i l e ' s  v e l o c i t y  and s i z e ,  but they must not depend very much 

on the  p r o j e c t i l e ' s  shape o r  su r face  f in i sh .  They must not  depend on an 

ambient atmosphere f o r  t h e i r  exis tence ,  i.e. they must continue t o  be good 

observables i n  the  high vacuum condiyions encountered i n  space. Several  

observables were inves t iga ted  t o  see i f  they s a t i s f i e d  t h e  necessary re- 

quirements. The peak i n t e n s i t y  of the  sp ike  and of t h e  t a i l ,  the  time t o  

reach maximum of t h e  sp ike  and t h e  t a i l ,  and the  r a t e  of  change of int-ensi ty 

of the  sp ike  were invest igated.  Of these  observables, the  only ones wbich 

s a t i s f i e d  the  necessary requirements were the  peak i n t e n s i t y  of the  sp ike  

and the  r a t e  of change of i n t e n s i t y  of the  spike. 

The l i n e s  chosen f o r  s tudy were th ree  l i n e s  of n e u t r a l  cadmium. 

Cadmium was chosen a s  t a r g e t  ma te r i a l  because i t  is e a s i l y  exci ted ,  i t  

has a r e l a t i v e l y  sj-mple spectrun;, and it is not  expected t o  be present i n  

typ ica l  micrometeoroids . The l i n e s  chosen were 32612, 36102, and 5085% 

A diagran! of the  t r a n s i t i o n s  responsible f o r  these  wavelengths was shown i n  

Figure 22. P r o j e c t i l e  ma te r i a l s  used were magnesium, aluminum, titanium, i r o n ,  

copper,tungsten, and garnet.  !J!he metals were chosen t o  provide a wide range 

of dens i t i e s ;  garnet  was chosen t o  compare the  behaviour of me ta l l i c  and 

non-metallic p ro jec t i l e s ,  



5.2 BEHAC'IOUR OF TJXE TAIL 

Two measurements were made on the t a i l  - peak i n t e n s i t y  and time 

t o  reach maximum. Neither measurement yielded a good observable. The t i m e  

t o  reach maximum was found t o  vary unpredictably from shot  t o  shot ,  and so  

was re jec ted  a s  an observable. The peak i n t e n s i t y  of the  t a i l  varied as 

the ve loc i ty  t o  the  four th  power. The data  exhibited considerable s c a t t e r .  

Experimental data points f o r  smooth j 318 cm spher ica l  p r o j e c t i l e s  impacting 

on smooth cadmium ta rge t s  a r e  shown i n  Figure 29. The ordinate  of the  

graph gives the  number of microwatts of l i g h t  energy which a r e  incident  

on an area  of 1 cm2 a t  a  d is tance  of 1 meter from t h e  impact point. Abcve 

about 5 krn/sec the  spike ,  which increases a s  ve loc i ty  t o  the  e ighth  power, 

becomes predominant and t h e  t a i l  i n t e n s i t y  is  d i f f i c u l t  o r  impossible t o  

measure. For t h i s  reason, t h e  peak i n t e n s i t y  of the t a i l  has a l so  been 

re jec ted  as  an observable. 

5.3 B.FHAVIOUR OF THE SPIKE 

Three measurements were made on the spike  - peak i n t e n s i t y ,  

i n i t i a l  r a t e  of change of i n t e n s i t y ,  and time t o  reach maximum. As i n  

the case of the  t a i l ,  t he  time t o  reach'maximum was r e j e c t e d  a s  an ob- 

servable. The p r o j e c t i l e  shape and surface  f i n i s h  a f fec ted  the  t i m e  t o  

reach maximum t o  such a largh extent  t h a t  consis tent  r e s u l t s  were not 

obtainable. The peak i n t e n s i t y  and i n i t i a l  r a t e  of change of i n t e n s i t y  

were fouild t o  vary cons i s t en t ly  with p r o j e c t i i e  scze  and velocity.  I n  

the following paragraphs, the  e f f e c t  of p r o j e c t i l e  and t a rge t  propert ies 

on the  peak i n t e n s i t y  I and the  i n i t i a l  r a t e  of change of i n t e n s i t y  d I /d t  

w i l l  be discussed. 



5.3.1 I n t e n s i t y  of t he  S ~ i k  

27ne peak i n t e n s i t y  v a r i e s  a s  t he  e igh th  power of v e l o c i t y  f o r  a l l  

t h r e e  of t h e  cadmium l i n e s  analyzed. Figure 30 shows t h e  50851( d a t a  poin ts  

f o r  copper p r o j e c t i l e s  impacting cadmium t a r g e t s .  A l i n e  was f i t t e d  t o  t h e  

da t a  poin ts  by t h e  method of l e a s t  squa res ,  and then  t h e  l i n e  was ad jus t ed  

t o  the  nea re s t  i n t e g e r ,  which was 8. Data poin ts  f o r  t h e  .635 cm p r o j e c t i l e s  

do not  fol low the  same t r end  a s  d a t a  poin ts  f o r  t h e  two smal le r  p r o j e c t i l e  

s i z e s .  This makes i t  d i f f i c u l t  t o  c a l c u l a t e  t h e  diameter dependence of t h e  

sp ike  i n t e n s i t y ,  as w i l l  be discussed, l a t e r .  Kesesults f o r  t h e  50858 da ta  

poin ts  f o r  p r o j e c t i l e s  o ther  than copper are shown i n  F igure  31. The l i n e  

f o r  .318 cm copper p r o j e c t i l e s  is repea ted  f o r  comparison. Figures 32-39 

show sp ike  i n t e n s i t y  a t  36108, 3261I(, background wavelengths,  and broadband 

0 
wavelengths. Background wavelengths a r e  around 4900A, between t h e  cadmium 

0 0 
l i n e s  a t  4800A and a t  50858, The background photomul t ip l ie r  measures t h e  

t ime h i s  tory of t h e  continuum ( l i n e  broadened) r a d i a t i o n .  Broadband r a d i a t  iop  

0 0 
i s  measured i n  t h e  wavelength reg ion  3500A - 6500A. 

The peak i n t e n s i t y  is a l s o  a func t ion  of p r o j e c t i l e  diameter. 

Figures  40-42 show the  v a r i a t i o n  of 1/v8 wi th  p r o j e c t i l e  diameter.  The 

da t a  poin ts  a t  d = .042 cm and d = .080 cm (log d = 2.62 and 2.9 r e spec t ive ly )  

were obtained from in-house f i r i n g s  conducted s h o r t l y  a f t e r  t h e  conclusion 

of the  present  program. The i n t e n s i t y  appears t o  vary  a s  d 9-4* O, depending 

on the  wavelength being observed. 

The range pressure ,  i .e.  t h e  pressure  i n  t h e  neighborhood of 

t h e  t a r g e t ,  does not  a f f e c t  t h e  peak i n t e n s i t y  very  much. Table 3 



.. 
shows the  broadband s p i k e  i n t e n s i t y  f o r  t h r e e  shots .  For two of t h e  s h o t s  

t he  pressure was r e l a t i v e l y  low. For t h e  t h i r d  s h o t ,  t h e  pressure  was 

1000 times higher .  The broadband sp ike  i n t e n s i t y  is reduced by a f a c t o r  2 

a t  t he  higher  pressure.  Polychromator r e s u l t s  a r e  not  a v a i l a b l e  f o r  t h e  

high pressure  s h o t ,  but  t h e  sp ikes  a t  3261g, 36108, and 50852 a r e  u s u a l l y  

s i m i l a r  i n  shape t o  t h e  broadband s p i k e ,  s o  we can accept  t h e  behaviour 

of t he  broadband sp ike  a s  being r e p r e s e n t a t i v e  of a l l  t h e  sp ikes .  

Shot No. P r o j e c t i l e  Veloc i ty  Pressure  Spi..d I n t e n s i t y  
diameter ,  cm kmlsec Tor r (Broadband) 

TABLE 3.  PRESSURE DEPENDENCE OF THE SPIKE 

The t a r g e t  s u r f a c e  f i n i s h  a f f e c t s  t h e  shape of t he  sp ike  but  no t  

i t s  magnitude. For Shot No. 109, t he  t a r g e t  f a c e  was coveted wi th  con- 

c e n t r i c  grooves 1 mrn a p a r t  and .3  mm deep. For Shot 116 the  t a r g e t  f a c e  was 

covered with random scra tches .  Both t a r g e t s  a f f e c t e d  t h e  s p i k e  in t h e  same 

way. The time t o  reach maximum was increased  by a f a c t o r  of 3 ,  whi le  t h e  

peak i n t e n s i t y  was not a f f ec t ed .  Figure 43 shows the  shape of t h e  s p i k e  

a t  3 6 1 d  f o r  a rough t a r g e t  and f o r  n highly  p o l i ~ h e d  t a r g e t .  

The p r o j e c t i l e  shape and su r f ace  f i n i s h  a f f e c t  t h e  s p i k e  i n  much 

the  same manner a s  t h e  t a r g e t  s u r f a c e  f i n i s h .  Sphe r i ca l  p r o j e c t i l e s  whose 
e 

su r f ace  was covered wi th  sc ra t ches  apd grcoves produced a sp ike  whose magni- 



tude was the  same as  t h a t  fo r  a polished p r o j e c t i l e ,  but whose timc t o  

reach maximum was increased by a f a c t o r  of 2-4. 

A series of p r o j e c t i l e s  of various shapes was Eired with the  poly- 

chromator s i t u a t e d  as shown i n  Figure 44, Each p r o j e c t i l e  was equal i n  mass 

t o  a -318 cm sphere. The purpose of the  series was two-fold:- t o  examine the  

e f f e c t  of the  p r o j e c t i l e  shape on the  impact sp ike ,  and t o  examine the  possi- 

b i l i t y  of observing t h e  impact f l a s h  by looking a t  the  t a r g e t  head-on. 

With the  polychromator arrapged a s  shown i n  Figure 44, the  i n t e n s i t y  

of the  sp ike  produced by a sphere was reduced by a f a c t o r  10. The shape of 

the  sp ike  was the  same as  i f  the  polychromator had been viewing the  impact 

f l a s h  a t  r i g h t  angles t o  the  p r o j e c t i l e  l i n e  of f l i g h t ,  as  it normally did, 

For t h i s  reason,  i t  appears t h a t  r e s u l t s  obtained with the  polychromator i n  

i t s  normal pos i t ion  w i l l  s t i l l  be v a l i d  when t h e  polychromator views the im- 

pact from a more head-on d i rec t ion .  

Figures 45-48 show the  spike  i n t e n s i t y  f o r  t h e  various p r o j e c t i l e  

shapes. The s c a t t e r  is  qu i t e  small, e spec ia l ly  considering the  v a r i a t i o n  

i n  theshapeof  the  p ro jec t i l e .  The spheroids were f i r e d  with t h e i r  symmetry 

ax i s  al igned p a r a l l e l  t o  the  l i n e  of f l i g h t .  

The p r o j e c t i l e  ma te r i a l  a f f e c t s  the  magnitude of t h e  spike,. A 

0 
p lo t  of the  3610A spike  i n t e n s i t y  f o r  spheres of magnesium, aluil~inum, 

t i tanium, i r o n ,  copper, tungsten,  and garnet  was shown i n  Figure 33. In- 

sufficient data a r e  ava!.labEe t o  iden t i fy  the  dependence of the  sp ike  in- 

tcnni ty  on p r o j e c t i l e  density. X t  appears t h a t  t h e  sp ike  i n t e n s i t y  f o r  

clifferent: p r o j e c t i l e  mater ia ls  i s  not  a  function of the  projec t i . le  dens i ty  

alone, s ince  the  spike  from an aluminum p r o j e c t i l e  is more in tense  than fo r  a 



I 

tungsten, t i tanium, or  i ron  p r o j e c t i l e ,  However, a s  shobn on the  graphs i n  

Figures 31, 33,  35 and 37, the  sp ike  i n t e n s i t y  f o r  each mate r i a l  appears to  
I 

8 vary as  V . 
5.3.2 Rate of Change of I n t e n s i t y  of the  Spike 

The r a t e  of change of sp ike  i n t e n s i t y ,  d I / d t ,  a l s o  depends on the  

propert ies  of the  p r o j e c t i l e ,  of the  t a r g e t ,  and of the  ambient atmosphere. 

Figures 49-52 show the  v a r i a t i o n  of dT/dt with p r o j e c t i l e  ve loci ty .  In each 

case ,  a l i n e  of s lope  6 is drawn thrcugh the  da ta  points .  The f i t ;  is qu i t e  

good i n  a l l  but a  few cases. The s c a t t e r  about the  l i n e  of s lope  6 is much 

the  same a s  the  s c a t t e r  of the  i n t e n s i t y  data points  about a l i n e  of s lope  8. 

d I /d t  i s  a l s o  a function of p r o j e c t i l e  diameter, The quant i ty  d I /d t  

divided by v6 is p lo t t ed  agains t  log diameter i n  Figure 53. There is  considerable 

s c a t t e r  i the  da ta  f o r  the  .635 cm pro jec t i l e s .  The s c a t t e r  seems t o  decrease 

as  the  p r o j e c t i l e  diameter decreases. A l i n e  of s lope  2.1 has been d r a w  

through the  data  points ,  but due t o  s c a t t e r  the  s lope  could vary considerably 

from 2.1. 

The t a r g e t  surface  f i n i s h  a f f e c t s  t h e  value of dT/dt. Polished 

targets tend t o  increase elfldt,  and rough t a r g e t s  tend t o  decrease i t .  Values 

of d I /d t  f o r  rough t a r g e t s  and f o r  polished t a r g e t s  a r e  shown i n  Table 4. 

6 Values a r e  normalized t o  the  same ve loc i ty  by dividing by V . 

Shot No, Target Description 

Normal, t a r g e t ,  s l i g h t  pol ish  , 0 2 3 ~  
Rough, s p i r s l  grooves 1 nun spa-rt , .016 

.3 mm deep, 
Highly polished .0265 

Rough, covered with random scra tches  ,0225 
and grooves. 

TABLE 4 .  d I / d t  FOR VARIOUS TAWfiT STJRFACES 
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dT/dt is a l s o  a f fec ted  by the  shape and surface  f i n i s h  of the  

p ro jec t i l e .  In  general ,  t h e  e f f e c t  of a roughened p r o j e c t i l e  surface  o r  of 

a non-spherical p r o j e c t i l e  was t o  increase dI/dt .  The e f f e c t  of p r o j e c t i l e  

surface  f i n i s h  and shape is  shown i n  Table 5. Values of d I /d t  a r e  again 

6 normalized to  constant ve loc i ty  by dividing by V . In  each case ,  the  t a r g e t  

was polished. 

s:zot No, P r s j  e c t i l e  

Normal, polished 

Polyhedron 

Scratched sphere 

TABLE 5. d l J d t  FOR VARIOUS PROJECTILE SURFACES 

For the  s e r i e s  of head-on shots  described on page 26, the  v a r t a t i o n  of dI /d t  

with p r o j e c t i l e  shape is shown i n  Figures 34 and 55. The low value of d I /d t  

produced by the  prola te  spheroid is not  surpr is ing:  s ince  a p ro la te  spheroid 

behaves l i k e  a sphere of smaller  radius,  

The dependence of dI /d t  on p r o j e c t i l e  ma te r i a l  is much the  same as  

the  dependence of 1 on p r o j e c t i l e  material .  Complete p lo t s  of  dI /d t  f o r  

various p r o j e c t i l e  mater ia ls  a r e  found i n  Figures 50 and 52. 

In conclusion, the peak i n t e n s i t y  and r a t e  of change of i n t e n s i t y  

of t l ~ c  spike vary consis tent ly  with p r o j e c t i l e  ve loc i ty  and s i z e ,  and a r e  

r e l a t i v e l y  unaffected by the  p r o j e c t i l e  shape and su r face  f in i sh .  Time t o  

reach maximum var ies  too much with p r o j e c t i l e  shape t o  be use fu l  a s  an ob- 

servable. 

9899/I?Rl 



SECTION 6 

EXPERIMENTAL RESULTS J 

6.1 TABULATED RESULTS 

The tables  on the  following pages show the  r e s u l t s  of a l l  shots  

which yielded measurable data. Most of the  shots  which a r e  not included 

were f a i l u r e s  e i t h e r  because the  p r o j e c t i l e  missed t h e  t a r g e t  o r  because 

small p a r t i c l e s  t r ave l l ing  ahead of the  p r o j e c t i l e  caused 'he e lec t ron ics  

t o  pretr igger.  Eighty shots  a r e  l i s t e d  i n  t h e  tables.  

P r o j e c t i l e  mater ia ls  used were mag~esium, aluminum, t i tanium, 

i ron ,  copper, tungsten, and garnet.  Two a l loys  of aluminum were used, 

type 17ST4 f o r  shots  1 aLld 2 ,  and type 65ST6 f o r  a l l  other shots. F i l e  

p r o j e c t i l e  diameters were used, .I58 cm (1/16"), .318 cm (1/8"), .478 cm 

(3/16"), .572 cm (. 22 c a l i b r e ) ,  and .635 cm (1/411). Only two shots  were 

f i r e d  with a .478 cm p r o j e c t i l e ,  and only four with a .572 cm pro jec t i l e .  

\ 
In most cases ,  the p r o j e c t i l e  shape was spher ica l ,  although polyhedrons and 

spheroids were a l s o  f i red .  P r o j e c t i l e  surface  f i n i s h  was smooth f o r  a l l  

but a few shots. Velocity ranged from 1.04 km/sec t o  7.72 kmlsec. 

Target mater ia ls  used were mild steel, aluminum, and cadmium. 

Beginning with shot  27, a l l  t a r g e t s  were cadmium. Up t o  shot  104, the  

t a rge t s  were f in ished by turning them on a lathe. Although the t a rge t s  

f e l t  smooth t o  the  touch (hence the  designation llsmooth" i n  the  t ab les )  

microscopic examination showed small  concentric  r idges on the  target: face. 

Data from shot  108 indicated t h a t  polishing the  t a r g e t  r e s u l t s  i n  b e t t e r  

separa t ion of the spike  from the  t a i l ,  s o  t a rge t s  subsequent t o  168 were 



polished a f t e r  they were turned on the lathe.  

The pressure is given i n  Torr,  i.e. i n  mm of Hg. Pr io r  t o  shot  
e 

87, most range pressures were about 2 x lo--' Torr. A new cold t r a p  was 

added t o  the  pumping system j u s t  p r io r  t o  Shot 87,  and as a r e s u l t  pressures 

f o r  subsequent shots  were around 5 x l om6 Torr. 

Luminous r ing  ve loc i ty  is given i n  km/sec. The ve loc i ty  of t h e  

luminous r ing was obtained by time and dis tance  measurements on the  photo- 

graphs of t h e  luminous r i n g  obtained from the  image converter cam2ras. The 

f a s t  jet ve loc i ty  was obtained from t h e  pulses f r m  the  secondary targets .  

Fast j e t  ve loc i ty  was measured only on Shots 1-10. There were not enough 

scope channels t o  allow secondary t a rge t s  and the  polychromator t o  be used 

a t  t h e  same time. 

0 0 
The broadband photomultiplier was s e n s i t i v e  from 3500A t o  6500A. 

I n t e n s i t y  values given i n  the  t ab les  a r e  r e l a t i v e ,  s ince  absolute i n t e n s i t y  

measurements would requ i re  an accurate d i sc r ip t ion  of the  s p e c t r a l  d i s t r i -  

bution of the  rad ia t ion  iz t h e  inpact f lash .  Such a descr ip t ion was not  

available.  

In tens i ty  values f o r  t h e  background wavelength and t h e  f o r  32618, 

36108, and 50858 l i n e s  a r e  given l n  microwatts per square centimeter of 

detector  s u r f a c e ~ a t  a  d is tance  of one meter from the  impact point.  d I /d t  

is  given in  u n i t s  of microwatt/cm2/microsec a t  a distance of 1 m. 

6.2 EXPERIMENTAL ERROR 

Several sources of e r r o r  which 3ay a f f e c t  the  data  a r e  discussed 

below. 

9899/FRl 3 0 



Error i n  the velocity measurement i s  l ess  than 1%. For esch shot ,  

f ive  tho-and-distance measurements were obtained: muzzle detector t o  f i r s t  

vclocity s t a t i on ,  f i r s t  veloci ty  s ta t ion  t o  second velocity s t a t i on ,  second 

velocity s ta t ion  to  t h i rd  velocity s ta t ion ,  t h i rd  velocity s t a t i on  t o  

impact, and muzzle detector t o  impact. - The veloci t ies  obtained from these 

measurements usually agreed with each other t o  within 1%. !The reported 

veloci ty  is  the average of the f ive  values obtained. 

Errors in  the polychromator data a r i s e  from several  sources: cal i -  

bration e r r a r s ,  e lectronic  e r rors ,  and measurement errors.  The photomultipliers 

were calibrated periodically with an Osram U.V. standard lamp, and fhay were 

also calibrated before each shot with a cadmium vapor lamp. Calibration error  

is probably less  than 5%. Variations of 5910% i n  photomultiplier response 

t o  the cadmium vapor lamp were observed from shot t o  shot. This var ia t ion 

could be caused by small changes i n  mirror, s l i t ,  grating,  and photomultiplier 

positions due t o  vibration and temperature change. Small changes 9n the 

voltages applied to' the  photomultipliers could a lso contribute t o  the 

variation. The scopes used t o  record the s i g n a b  from the polychromator were 

cal ibrated monthly, but e r rors  i n  time and voltage measurements could s t i l l  

be present. Losses i n  the cables from the instrumentation area t o  the scopes 

in  t h e  control room was another source of error. Although the losses could 
I 

be measured accurately a t  any given frequency, the losses were frequency 

dependent, and the actual  attenuation suffered by any given polychromator 

s ignal  was unknown. It i e  e s t h a t e d  that  e lectronic  e r rors ,  including 

cable lasses ,  were about 10%. measurement errors  were highest on the d l ld t  

measurements. While i t  was easy t o  measure I from the scope photographs, 

assignirig an i n i t i a l  slope to  a l i ne  whose slope was often changing i n  time, 



or  obscured by noise ,  was sometimes d i f f i c u l t .  It is estimated t h a t  the  

measurement e r r o r  (from the  scope t r aces )  i n  I was l e s s  than 5% and i n  

dI /d t  was l e s s  than 25%. Including a l l  sources of e r r o r ,  i t  is esti- 

mated t h a t  i n t e n s i t y  measurements have an e - r o r  of 2 25%, and d I /d t  measure- 

ments have an error of 2 45%. 
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Shot No, 1 2 3 4 5 7 8 9 10 
'n 
w 
\ 

3 
f-J 

P r o j e c t i l e :  Material  A~17sT4 A117ST4 A165ST6 A 1  . A 1  . A 1  . A l .  A l .  A l .  

Diameter, cm. .635 .635 ,635 .635 .635 .635 .635 .635 .635 

Shape Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere 

Surf ace f i n i s h  Smooth 

Velocity,  km/sec .5.16 

Target: Mater ia l  Mild s t e e l  

Surf ace f i n i s h  Smooth 

Pressure,  Torr x10 5 
40. 

w Velocity-?Auminous r i n g  14.0 
W 

Fast J e t  (km/sec) 23.0 

Broadband: I n t e n s i t y  -- 

Smooth 

5.30 

A165ST6 

Smooth 

4.0 

15.6 

33.0 

6000 

Smooth 

4.94 

A165ST6 

Smooth 

2.5 

17.0 

37.5 

4700 

Smooth 

3.89 

A l .  

Smooth 

3.2 

14.6 

32.0 

700 

Smooth 

6.05 

A 1  . 
Smooth 

2.0 

18.6 

35,O 

6000 

Smooth 

5.43 

Cd. 

Smooth 

3.2 

- 
22.4 

- - 

Smooth 

5.00 

Cd. 

Smooth 

2.0 

14.4 

22.4 

- - 

Smooth 

6.04 

A l .  

Smooth 

1.5 

16.8 

32.4 

15,000 

Smooth 

5.88 

A l .  

Smooth 

2.0 

16.0 

30.6 

330 



Shot No. 11 13 15 17 18 20 27 29 30 

P r o j e c t i l e :  Material  Al. 

Diameter, cm. .318 

Shape Sphere 

Sur face  f i n i s h  Smooth 

Veloci ty  km/sec 3.52 

Target: Mater ia l  Al. 

Surface f i n i s h  Smooth 

Pressure,  Torr x10 
5 

2.4 

Veloc ity~'Luminous r i n g  16.3 

Broadband: I n t e n s i t y  18 

0 
Background: WavelengthA -- 

2 I n t e n s i t y  uw/cm @lm -- 
32618: I n t e n s i t y  -- 
3610g: In tef is i ty  -- 

dI/dt - - 
0 

51?85P.: h t e n s i t y  - - 
&I/de - - 

A1 . 
.318 

Sphere 

Smooth 

6.00 

Al. 

Smooth 

2.0 

17.0 

210 

-- 
-- 
- - 
- - 
-- 
- - 
- - 

A1 . 
.318 

Sphere 

Smooth 

7.48 

Al. 

Smooth 

2.2 

16.2 

1800 

0 - 
- - 
- - 
0 - 
- .. 
-- 
- - 

A1. 

.635 

Spkere 

Smoo t h  

7.29 

Al. 

Smooth 

4.0 

21.6 

21,000 

- - 
- - 
-- 
- - 
0- 

- - 
- - 

Al. 

.318 

S?here 

Smooth 

7.85 

Al. 

Smooth 

1.7 

14.8 

1500 

-- 
-- 
- - 
-- 
-- 
-- 
- - 

Al. 

.I59 

Sphere 

Smooth 

8.25 

A1 . 
Smooth 

2.0 

- - 
80 

- - 
- - 
- - 
- 

-- 
- - 
-- 

Al. 

.478 

Sphere 

Smooth 

3.54 

Cd. 

Smooth 

6.0 

10.9 

1720 

- - 
- - 
-- 
132 

150 

70 

7 7 

A1 . 
.478 

Sphere 

Smooth 

5.77 

Cd. 

Smooth 

2.0 

12.2 

2880 

- - 
- - 
-- 
650 

965 

1100 

1550 

A1 . 
. 3  18 

Sphere 

Smooth 

5.86 

Cd, 

Smooth 

2.4 

11.2 

16,500 

- - 
- - 
200 

475 

770 

1750 

290 
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Co 

Shot No. 35 3 7 3 9 40 41 5 1 54 5 6 60 
W 
\O 
\ 
Y 

P r o j e c t i l e :  Material  Cu 

Diameter, cm. .318 

Shape Sph er  e 

Surf ace  f i n i s h  Smooth 

Velocity km/sec 5.97 

Target: Mater ia l  Cd 

Surface f i n i s h  Smw t h  

Pressure, Torr xIC 5 2.6 

Velocity-Luminous ring - 
Cn 

Broadband: intensity 3800 

2 I n t e n s i t y  uw/cm @Im - 
0 

32618: I n t e n s i t y  29. 
0 

3610A: I n t e n s i t y  - 

50858: I n t e n s i t y  252 

dI /d t  840 

Cu 

-318 

Sphere 

Smooth 

3.82 

Cd 

Smooth 

1.6 

- 
270 

- 
- 
- 
- 
- 

6.2 

28 

Cu 

-635 

Sphere 

Smooth 

4.60 

Cd 

Smooth 

3.0 

- 
- 
- 
- 
- 
45 8 

720 

337 

53 7 

Cu 

-635 

Sphere 

Smooth 

6.00 

Cd 

Smooth 

3e3 

14.6 

- 
- 
- 
- 
- 
- 

1200 

1590 

M g  

.318 

Sphere 

Smooth 

3.77 

Cd 

Smooth 

2.0 

9.6 

7 5 

- 
I. 

- 
- 
- 
- 
- 

Cu 

-318 

Sphere 

Smooth 

5.87 

Cd 

Smooth 

20 8 

- 
2400 

- 
- 
11.6 

506 

9 60 

522 

542 

A 1  

-318 

Sphere 

Smooth 

4.14 

Cd 

Smooth 

2.3 

730 

- 
- 
- 
- 
- 

26.5 

33.6 

A 1  

.318 

Sphere 

Smooth 

7.00 

C d 

Smooth 

2.4 

- 
62,500 

- 
- 
- 
2400 

1370 

1640 

940 

Ti 

-318 

Sphere 

Smooth 

4.25 

Cd 

Smooth 

1.0 

- 
- 
- 
- 
- 
- 
- 

2.8 

84 



Shot No, 62 63 64 6 5 6 7 69 7 2 7.5 7 7 
CO 
w 
\d 
C 

Project i le :  Msterial  Cu Cu T i  T i  T i  Ti  T i  T i  T i  E 
Diameter: cm, -572 .572 .572 -572 .318 .I59 ,635 ,635 .635 

Shape Hemisphere hrsphere h'sphere h'sphere Sphere Sphere Sphere Sphere Sphere 

Surface Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth 

Target: Material Cd 

Surface f i n i sh  Smooth 

Pressure, Torr xlO 
5 

3*7 

w Velocity-Luminous r ing - 
a\ 

'Broadband: In tens i ty  1~18 

2 In tens i ty  uw/cm @Im - 
0 

326lA: In tens i ty  - 
0 

3,610~: In tens i ty  - 
dI/dt  - 
0 

5085A: In tens i ty  -31 

d f  /d t  12.5 

Cd 

Smooth 

4.0 

- 
8 

- 
-16 

- 
- 
- 
- 

Cd 

Smooth 

3.8 

- 
10 

- 
- 
.26 

- 
.78 

8.8 

Cd 

Smooth 

3.8 

- 
- 
- 
- 
- 
65 0 

- 
175 

Cd 

Smooth 

3.2 

- 
600 

- 
- 
-96 

1 I. 

- 
- 

Cd 

Smooth 

4Q1 

e- 

220,000 

- 
4250 

9000 

8500 

5060 

3800 

Cd 

Smooth 

3.8 

- 
- 
- 
- 
- 
113 

- 
480 

Cd 

Smooth 

3-9 

- 
- 
- 
- 
- 

96 

- 
182 



Lo a Shot No. 78 81 82 84 85 87 88 89 9 0 
w 

-- -- 

3 Projectile: Material T i  T i  Cu Cu Cu Cu Cu Cu Cu 

Diameter, cm. .318 -159 .635 -318 ,318 ,159 -159 .635 -635 

Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere 

Surface finish Smooth Smooth Smooth Smooth Smooth Smooth S~uooth Smooth Smooth 

Velocity knr/sec 
- ,  

4.50 6.25 2.86 3.30 5.00 4.97 7.20 5.20 3-95 

Target: Material Cd Cd Cd Cd Cd Cd Cd Cd Cd 

Surface finis': .e Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth 

5 Pressure, Torr x10 4.1) 1.6 2.0 1.3 2.5 -68 1.0 1.0 .6 

G, Velocity-Luminous r ing - - 11.4 - - - 11.0 - - 
-l 

Broadband: Xntensity - 5500 Y.360 280 2000 230 - 9000 3000 

h t e o s i e y  uv/cm& - g g -. 27. - 26. 320 37.5 
0 

326U: SntensPty - 108. 4,8 0.9 25. - 85. - - 
36102: Intensity - 47 23.4 5.7 - 4.0 120. 945 158 

dI/dt 42 436 133 53 686 75.6 970 7000 1600 

0 
50858: Intensi ty - - 10.1 2.2 - 4.3 96.5 361 40.7 

dI/dt 29 230 70. 23.8 345 20; 177 870 330 



Projectile: MAterial CJ 

Diameter: cue -318 -159 ,418 -318 -635 .635 .318 .318 

Shape Sphere Sphere Sphere Sphere Sphere Sphere Sphere Sphere 

Surf ace finish Smooth Smooth Smooth Smooth Smooth Smooth Smooth Smooth 

Velocity km/sec 3,85 7.72 4.40 4,47 5.00 4.07 3.90 4.10 

Target : Material! Cd Cd Cd Cd Cd Cd Cd Cd 

Surface finfsh Smooth Smooth Smooth Smooth Smooth Smooth IIighly 
Polished 

Pressure, Torr x10 5 
1.2 -84 . 5 3.5 .45 .48 -70 .70 

Velocity-Luminous ring - - - - 14.2 12.4 12.0 - 
00 

3roadband: Intensity 520 3900 1440 1330 - - 3000 530 

intensity: uw/c&lm 11.3 83 9.65 1%. 2 75 18.7 i4.3 16.5 

326d: Intensity 
0 

3610A: Intensity 29, 133 18.2 46.3 - - 84. 34. 
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SECTION 7 

CONCLUSION AND DISCUSSION 

A study of the  rad ia t ion  emitted when a hypervelocity p r o j e c t i l e  

impacts a cadmium ta rge t  can reveal  the  ve loc i ty  and s i z e  of the  impacting 

p r o j e c t i l e ,  provZded its composition is known. Since the  emitted rad ia t ion  

conzains l i n e  emission which is character  is t i c  of the  mater ia ls  involved 

i n  the  impact, the  composition of t h e  p r o j e c t i l e  can be measured spectro- 

scopical ly.  I n  the  case of micrometeoroids where only a few types of 

cornposition a r e  expected, measurement of a few emission l i n e s  of elements 

expected t o  be present i n  the  micrometeoroid may be s u f f i c i e n t  t o  y ie ld  

the  micrometeoroid type, and hence i t s  con,position. Once the  composition 

of the  impacting p r c j a c t i l e  is known, t h e  v e l o c i t y  and s i z e  can be calcu- 

l a t e d  from 

where X is :he i n t e n s i t y  of t h e  f i r s t  pulse of r ad ia t ion  produced by t h e  

impact, df is the  i n i t t a l .  rate of change of i n t e n s i t y  of t h e  pulse,  V and 
d t  

d a r e  the  p r o j e c t i l e  ve loc i ty  and diameter, and K ,  and K,are constants  

fo r  a given p r o j e c t i l e  compos it ion. Considerable confidence is placed on 

the values 8 and 6 f o r  t h e  ve loc i ty  exponents. With the  exception of a 

6 few t i tanium sho t s ,  a l l  the  data  tend t o  support a v8 and V dependence. 

Less confidence is placed on the  exponents showing the  diameter dependence. 

The exponents a r e  based e n t i r e l y  on copper p r o j e c t i l e s ,  and only two pro- 

j e c t i l e s  smaller  than. .I59 cm were f i r ed .  The diameter exponents a l s o  

appear t o  depend on the  wavelength of the rad ia t ion  being observed. 



The poss ib i l i ty  tha t  the two equations above a re  not independent 

has been considered. An example of diameter exponents which make the two 

equations dependent i s  

I = K, v8 d4 

In th i s  case V and d zannot be evaluated separately,  and only the product 

2 V (I :an be evaluated. However, the implications of such a case do not seem 

reasonable. If the equations a r e  dependent, dX/dt can be calculated from I. 

An example which shows tha t  t h i s  is not reasonable Is the example of a large 

slow pro jec t i l e  and a small f a s t  project i le .  The diameter can be adjusted 

such tha t  a 1 km/sec pro jec t i l e  produces an impact f lash of exactly the same 

intensi ty  as one pro3uced by a 100 kmfsec projecti le.  I f  the equations a r e  

dependent, the dE/dt for  the two impacts w i l l  also be identical .  However, 

the c r i t i c a l  angle associated with the large slow pro jec t i l e  is swept through 

much more slowly than the  one associated with the small f a s t  p ro jec t i l e ,  so 

ident ical  dX/dt seems highly unlJcely. 
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Figure 3. Block Diagram sf Photomult %y l iar BadPat h a  Monitsre 







Projectile Velocit) , kmlsec 

Figure 9. Luminous Ring Velocity, A$-A1 Impacts 

Figure 10, Geometry rrf mo Plats Collision 



SYMMETRIC IMPACT OF 
lNCLlNEO FLAT PLATES 

PLATE 

JET 

M E  - CONE OR WEDGE 

CONE OR WEDGE IMPACT 
TARGET 

Figure 11 Similarity of Two Plate Collision 
to Sphere or Cone &pact 

PROJECTILE SHOCK 

POINT OF CGNTACT 

TARGET SHOCK CONTACT SURFACE 

(a) NO JET IMPACT 

PROJECTILE SHQCK 
\ 

PROJECTILE SHOCK 

- 
. ---- 
~ C O M A C T  

----. 
CONTACT ,JLd 

--* TARGET 

SHOCK SURFACE SURFACE SHOCK 
(b) JET FORMED BY SHOCK (c) JET FORMED BY SHOCK 

MOVING INTO TARGET MOVING INTO PROJECTILE 
. . 

Figure 12 Jetless and Jet Producing Impacts 



Figure 13. Jet less Configuration for Asymmetric Collision 

Pro3 ecti~le Velocity, km/sec 

Figure 14. Critical Pressure vs Projectile Velocity 



Figure 15(a) Projecti le Velocity Vector and Components 

Figure IS(b) Target Velocity Vector-and Components 



Projectile Velocity, kmlsec 

Figure 16. Luminous Ring Velocity vs Projectile Velocity, Cu-Cd &pacts 





Projectile Vsloci ty ,  km/eec 

2 '  

> 

FCputn 18. hpandonce of Lmfnous R%ng Velocity on Projectile Hateria! 

0 .478 cm 
0 .318 cm 

I 3 3 2i '"i 6 ? 

A 1  - Aluminum 
Cu - Capper 
Fe - Ison 

8 
Mg - Ma,gnesium 
Ti - Titanium 

I 



Fast Jet 

Zroj ec t i l e  Velocity, km/sec 

Figure 19, Fast: Jet vs Projectile Velocity, Al -A1  h p a a  



















Figure 29. Intensity of the Tail, vs Projectile Velocity 







Log Velocity (kmleec) 

Fligure a, Spike Xntensity for Cu-Cd Xfnpactrs, 
361d)fi. 









-6 .8 1.0 
Log Velocity (knlaec) 



A - Alumiilum 
F - Iron 
G - Garnet 
M - Magnesium 
T - Titanium 
W - Tungsten 

Slope = 8 

v . - 
.2 '4 ,G .8 

Log v4ltocity (h/sec) 

Figure 33, Spike XnteasrPtg for V a r i w  ProjecW'ie Materiala 
Zmpaotirmg Cadmium, Background, 



Slope = 4 

Figure 38b Spike b t ~ n e - i f y  for -Cii Xmpacts, P Broadband (3500- 650 ) . 



Figure 39, Spike Xntensity for Variotus I?raject%Xe 
Hater Lals &pace ing Ca&fum, Broadband 
(3500- 650oA.). 



Log diameter (cm) 

0 
Figure 40. Dependence of Spike Intensity on Projectile Diameter, 326J.A. 



- - - - 
1.2 1.4 1.6 1.8 

Log diameter (cm) 

0 
Figure 41. Dependa~~ce of Spike I n t e n s i t y  on  P r o j e c t i l e  Diameter, 36108. 







' \ ~ u a r t z  
Window 

-- 
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Surface 
Mirror 

Figur M. Polychromator Set: Up for Shots Ua-144. 



0 - Polyhedron 
1 - Scratched Sphere 
2 - Smooth Sphere 
3 - Oblate Spheroid 
4 - Prolate S p h ~ r o i d  

I * 8 ,8 6 
Log Velocity (kmlsec) 

Figure 45, Spike I@eneity for Various Projdctile Shapes, 
~olychromstoi Head-on , 50858. 

Figure 46,  8pae htfeasity Ear Various Projectile Shapes, 
Polyohrgastor had-on, 3610g. 
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Figure 47.. Spike I $ t m i t y  for Variow Projectile Shapes, 
Polychromatm Head-on, 3261% 

10 

1 .  

loco3 
Q - Polyhedron 
1 - Scratched Sphere 
2 - Smooth Sphere 
3 Oblate Spheroid 
4 - Prolate Spheroid 

iEl 

0 - Polyhedron 
1, - Scratched Sphere 
2 - Smooth Sphere 
3 - oblate Spheroid 
4 - Prol,ate Spheroid 1 

m a 
I I 

Figure 46,. &Me Xntensfry for mime Pr6jectile Shapes, It a Broadband (3500.15500 ). 
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FQure 55,, Spike Rate of Change of &tensity for Varims a 
Projectile Shapea , Polychromator Head-on, 36tOA 

I 

0 1 - Polyhedron 
1 - Scratched Sphere 
2 -. Smooth Sphere 
3 - Oblate Spheroid 
4 - Prolate Spheroid 

106 rn I I 1 .2 ,4 .6 -8 1 .O 
Log Velocity (kmlsecj 

Figure 54. SpZke Rate of Change of Intensity for Various 
Pro j eet i l e  Shape, Polychromator Head-on, 508511. 
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