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ULTRASONIC MEASUREMENT OF CORE
MATERIAL TEMPERATURE

by

M. S. McDonough, L. C. Lynnworth and E. H. Carnevale

ABSTRACT

A pulse-echo ultrasonic system was used to determine temperature by
measuring the round trip transit time in a Re wire sensor., Measure-
ments on Re were conducted up to 6216°R in carbon-free vacuum, and
up to 4800°R in a graphite environment. Above ~35000R, enough carbon
diffuses into the Re sensor in one hour to perturb the transit time/
temperature calibration. A sheath is therefore required, to avoid this
calibration shift, and to permit operation beyond the Re/C eutectic.
Temperatures have also been measured at two different locations on one
line using two different modes of vibration.
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SUMMARY

The main object of the first phase of this work was to conduct
research, design, develop, construct, and test an ultrasonic system
capable of measuring temperature up to 5300 R for one hour, to an
accuracy of 50 R, in a graphite/hydrogen/nuclear environment.

High temperature ultrasonic measurements were conducted as
functions of temperature and frequency to determine the feasibility of
using a rhenium sensor as the high temperature sensor. The veloc1ty
and attenuation were measured in carbon-free vacuum up to 6216°R.
Measurements were also performed up to ~5000°R with rhenium in
intimate contact with graphite, in order to determine its effect on
ultrasonic propagation in the rhenium sensor. It was found that when
carbon diffuses into rhenium, the sound velocity increases. This
occurs at temperatures above 3500°R. Furthermore, the tempera-
ture dependence of sound velocity substantially decreases. To avoid
this, and also to permit operation above the Re/C eutectic, a sheath
is required. Sensor rnater1als other than rhenium may also be re-
quired, for use to 5300 R.

Measurement of two temperatures greater than 3000°R at
two different locations on the same line, using extensional and
torsional waves, has also been accomplished by using the Joule-
Wiedemann eifect.

It is recommended that a sheath be used in Phase II to protect
the sensor from the graphite/hydrogen e%vironment. The sheath is
necessary since temperatures up to 5300 R are to be measured.



INTRODUCTION

Statement of the Problem

One of the more important measurements required in nuclear
rocket engine technology is the measurement of temperature. This
measurement has proven to be extremely difficult because of the high
temperatures involved (~5300 R), because of compatibility problems
with some of the materials involved (graphite and hydrogen) and be-
cause of the intense and sustained neutron and gamma fluxes. Addi-
tional difficulties stem from the high ambient noise, shock and
vibration levels expected in some locations, the accuracy and response
time required, possibility of temperature overshoot, high pressure,
flow, accessibility and geometrical restrictions, etc.

Up to now, thermometry based on thermocouple developments
has received the greatest attention, with respect to operating in the
above nuclear rocket engine core environment. At this time, however,
a number of thermocouple problems still remain unsolved.

Present Ultrasonic Approach

Ultrasonic measurements of temperature in a nuclear rocket
engine may be applied in the core and also in the thrust chamber
(Fig. 1). Our work on through-transmission gas thermometry is
reported elsewhere (ref. 1-3), the most recent instrumentation de-
velopment being the Pana-Therm Model 10K, which is designed to
automatically measure transit time across the hot gas, Core ther-
mometry, on the other hand, exploits the pulse-echo technique applied
to a thin wire sensor. The rest of this report is devoted to the thin
wire approach to ultrasonic thermometry in the core of a nuclear
rocket engine.

Phase I Objective

The main objective of Phase I was to determine the maximum
temperature that a rhenium sensor would be able to measure in a
graphite environment. Initially, the goal for the temperature mea-
surements was one hour at 5000 R. About two-thirds of the way
through Phase I, however, the temperature objective was increased
to 5300 R. Since this new temperature goal is above the rhenium-
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In the ultrasonic temperature measuring system, temperature
is determined by measuring the round trip transmit time in a wire sensor.
Transit time is determined by the pulse-echo method. That is, the ultra-
sonic signal is reflected from the beginning and end of the sensor.
Usually, as temperature increases, transit time increases.

Besides changes in transit time, as temperature increases, the ampli-
tude of the sensor's echoes usually decreases, due to attenuation. Attenu-
ation beconoles increasingly more severe as the temperature increases
above 3000 R. Attenuation is characteristic of the material, vibrational
mode, frequency, and dampening external to the wire. Usually, attenua-
tion decreases as the frequency of the ultrasonic signal decreases;
herein lies one basis for overcoming attenuation.

We previously determined that rhenium appeared to be a suitable
ultrasonic temperaturoe sensor, since it does not form a carbide and its
eutectic point is 4966 R. = In the present contract, we investigated
rhenium sensors with diameters ranging from 0.0l'" to 0.1" and with
lengths varying from 1'' to 5. The emphasis during this phase has been
placed on 0.020" and 0. 030" diameter sensors, since, for a reasonably
small hole in graphite, the space required by a sheath and the necessary
clearances indicates that the maximum diameter that a sensor can be is
approximately 0.030'",

In the present work, the ultrasonic line usually consists of a
Remendur transducer wire, a tungsten lead-in wire, and the rhenium
sensor (see Fig. 2). Joints were formed satisfactorily by flash butt
welding. Echoes reflected by the various welds were essentially equal
to that predicted by theory.

EXPERIMENTAL INVESTIGATIONS

Transducers

The coil used to launch and detect the ultrasonic wave is wound
on the Remendur transducer wire. The ultrasonic wave is produced by
the magnetostrictive effect. To increase the ultrasonic signal, a biasing
magnet is positioned close to the transducer. The transducer coils used
to obtain the following results were wound with #36 AWG copper wire.
Sixteen feet of wire was used for every inch of coil length. Figure 3 is a
plot of the pulse width of the signal vs coil length for extensional and
torsional waves. The measurements were performed for each coil by
varying the pulse width uniil ihe echo amplitude was maximized, It



should be observed that the pulse width varies approximately linearly
with the coil length. The curve begins to fall off for the 3" coil.

This is probably due to flux leakage. Figure 4 shows the minimum
sensor length (echoes from each end of the sensor do not overlap) vs
coil length. The sensor length must increase linearly as the coil
length increases. This effect can also be interpreted in terms of
frequency by saying that the sensor length must increase as the fre-
quency decreases. Satisfactory results were also obtained magneto-
strictively, by winding a coil directly on the 0, 125" diameter Remendur
wire and connecting this to the same 0. 09" diameter sensor. Figure 5
shows a piezoelectric transducer which was used when the sensor has
a diameter of ~0. 09",

Attenuation

Attenuation decreases as frequency, f, decreases, if the atten-
uation is proportional to f™ and n is greater than one. It was found
that the attenuation for rhenium and tungsten was less at low frequency
(coil lengths of 3'" and 1-1/2'') than for high frequency (1/4" coil).
Figure 6 shows reflections from the ends of a two foot tungsten lead-
in at room temperature and at ~5400°R. The transducer coil had a
length of 3". The signal from the end of the lead-in is readily 1dent1fg.ed.
The attenuation of the ultrasonic signal increases rapidly above 3500 R.
For a 1/4" coil it would have been difficult to identify the end echo.
Figure 7 shows the ultrasonic signals produced by 2 3" coil for a 5"
rhenium sensor at room temperature and at ~5300°R.

The attenuation as a function of temperature for tungsten and
rhenium is shown in Fig. 8. Attenuation of the ultrasonic signal was
calculated by measuring the pulse heights at room temperature and at
elevated temperatures, and then following the procedure described in
NASA CR-72339, Figures 45c and 46. 4 These measurements in W
and Re infer that a line consisting of a two foot tungsten lead-in wire"
and a 5 inch rhenium sensor can all be heated to 5300° R, and the tem-
perature of the sensgr will still be measurable at a pulse width of
~10 psec (frequency = of ~100 kHz).

*The attenuation due to additional tungsten lead-in wire at tempera-
tures less than 3500°R is negligible.

(O
......

“In this work the frequency is taken ag the reciprocal of the pulse
width.



Equipment

The equipment used in the various experiments includes the
Pana-Therm Model 5000, the General Radio 1217-C Unit Pulser and the
1397-A Amplifier, A block diagram of the complete system is shown
in Fig. 9. By using the pulse amplifier, the output impedance, polarity,
and rise and fall times of the driving pulse can be varied. The echo
amplitudes can sometimes be improved if the shape of the driving pulse
is trapezoidal instead of square. This im7provement was predicted
theoretically by Rothbart and Rosenberg,

The metal wires used in this work have been heated in vacuum
by the self-heating technique. With this method, for example, rhenium
was heated to its melting point, 6216°R. A photograph of the equipment
used in a typical experiment is shown in Fig. 32 of reference l. The
thin wire is supported in a vertical position in an evacuated Vycor tube.
As the wire is heated it tends to bow due to expansion. This expansion
can become a problem if it results in the wire coming in contact with
the tube. Bowing is avoided, however, by attaching a coiled piece of
braided copper to the bottom of the sensor. The weight of the braid
keeps the self-tested wire sufficiently straight.

Rhenium Sensors Self-heated in Vacuum

To determine the effects of graphite on rhenium at temperatures
up to ~5000°R, it was first necessary to measure transit time in carbon-
free rhenium as a function of the self-heating current and also as a
function of temperature. (Similar measurements had been obtained in a
preliminary manner in the previous contract.) Figure 10 is a plot of
the transit time vs current for rhenium sensors of lengths 2! and 3"
and diameters of 0.020", A 1'' sensor did not have the same charac-
teristics. This is attributed to the large temperature gradients present
in such a short sensor.” Figure 11 shows a plot of current versus
temperature for self-heating experiments in this laboratory and in other
laboratories. The curves agree reasonably well. Figure 12 shows the
resistivity of rhenium and other refractory metals as a function of
temperature,

As explained previously, the temperature goal of Phase I was in-
creased from 5000°R to 5300°R. Since this is above the Re-C eutectic

* Gradients in self-heated W are shown in Temperature Its Measurement
and Control in Science and Industry, Vol. 3, ed. Charies Herzield,
Pp. 523-534,




temperature a sheath is required to assure survival of rhenium, There-
fore emphasis was placed on measuring propagation in rhemum in
carbon-free vacuum, at a temperature of at least 5300°R. Table I

lists the transit time, the clock time and the self-heating current cor-
responding to 19.5 amps. With the aid of Flg. 13 it was determined

that the temperature was approximately 5300 R. Pyrometer readings
were taken and the uncorrected temperature was found to be 43 520R.
When this reading was corrected for the wall loss of the Vycor tube and
the emissivity of rhenium, the corrected temperature was found to be
~5380 R. At this temperature, transit time remained constant for one
hour. Transit time vs current measurements were performed several
times and the results were the same. Having demonstrated the stability
of rhenium at a temperature of at least 5300 R for one hour, it was
concluded that temperatures up to ~5300°R can be measured ultrasonic-
ally to the extent that a sheath prevents carbon diffusing into the sensor.

Rhenium Sensors in Graphite

Prior to increasing the temperature goal above the Re/C eutectic,
indirect heating and self-heating were used to study rhenium in a
graphite environment for temperatures up to 4966°R. For the indirect
heating method, rhenium was placed inside a heated graphite sleeve.
Indirect heating methods included (1) induction heating, (2) resistance
heating of the graphite and (3) resistance heating of tungsten wire sur-
rounding a graphite cylinder. Studies of graphite effects in rhenium
were not completed with these indirect heating techniques because the
self-heating technique was meanwhile found to be the easiest to execute
in the time prior to the increase in the Phase I temperature objective.
(Preliminary self-heating tests in graphite felt had also been conducted
in the previous contract. %)

In this phase, self-heating experiments were conducted initially
using either powdered graphite or a solid cylinder of graphite intimately
surrounding the rhenium sensor. When the sensor became white hot,
that is, when its resistivity reached about 100 uf2 -cm, the graphite began
to shunt the current intended for heating the sensor. Due to shunting,
the current became unstable and the sensors melted. To avoid shunting,
graphite felt manufactured by Basic Carbon Company was used. This
felt enabled us to perform measurements on rhemurn in a graphite en-
vironment at temperatures up to the eutectic, 4966°R. Figure 14 shows
the transit time as a function of current for different rhenium sensors
that have been heated to 4800°R. From these ﬁgures it is seen that the

e aye 4+ o~ 1 4+l AL 42 €rne =eslad o n mela o
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heated in graphite increases. On cooling, the average slope of the curve



has decreased by a factor of approximately two. The change in transit
time and the resulting change in slope are attributed to the presence of
C in the Re sensor, Tables II, III, IV and V give analyses of (1) a Re
sensor before and after heating in graphite, (2) the amount of carbon
that was found in sensors that had been heated in graphite felt, and

(3) the graphite felt. These analyses show that a significant amount of
carbon diffused into the sensor after it was heated in a graphite environ-
ment. According to the phase diagram of the rhenium-carbon system,
the temperature at which 0. 4 weight percent of C in Re is in equilibrium
occurs at ~4450°R. Thus, the temperature of this sensor was at least
4450 R. After at least three hours, this sensor was reheated for at
least one hour to the same temperature. The heating and cooling curves
were found to be very similar. Figure 15 shows the transit time as a
function of current for sensors that have been previously heated in a
graphite environment for a period of at least one hour.

This similarity in the heating and cooling curves in Fig. 15 is
attributed to the carbon that has diffused into the rhenium. Table IV
shows that ~0. 35% by weight carbon has diffused into the rhenium.
When the sensor's surface was examined with a magnifying glass a film
was found to have formed. The change in the transit time was plotted
as a function of the heating time at a fixed current, and the results for
the different sensors are shown in Fig. 16. Transit time does not
change for approximately the first 10-15 minutes, but then it changes
rapidly, finally approaching an asymptotic value. The rapid change in
transit time for a fixed current is attributed to the rapid diffusion of
carbon into the rhenium. As time increases, proportionately less car-
bon diffuses into the sensor, and this results in a decreasing change in
transit time. After a period of approximately three hours the transit
time approaches its asymptotic value within 2%. During the period of
heating, the voltage across the sensor did not change and the conductivity
of the sensors at room temperature before and after being heated in
graphite remained essentially the same. This means that the current
passing through the sensors did not change as the carbon diffused into
the rhenium. It was found thata rhenium sensor could be heated to at
least 3500°R in graphite without affecting the ultrasonic velocity. This
result is important since it shows that a bare rhenium sensor can mea-
sure temperature in a graphite environment up to at least 3500°R for
periods up to one hour. To date, the work on the feasibility of using
an unprotected rhenium sensor beyond 3500° R in a graphite environment
is inconclusive. Based on present information a sheath system will be
used to protect the rhenium sensor from the graphite/hydrogen environ-
ment in the nuclear reactor, for operation to 5300 K up iv une hour.



Joule-Wiedemann Effect

The measurement of two temperatures on the same line, using
two modes of propagation, has been accomplished using the Joule-
Wiedemann effect. When a longitudinal and a circumferential magnetic
field are simultaneously applied to a long wire of a ferromagnetic
material, the resultant lines of force form helices about the axis of
the wire. If a magnetostrictive transducer is used to generate acoustic
waves in the wire, it is found that extensional and torsional waves will
be simultaneously produced. This is known as the Joule-Wiedemann
effect. & In the following, we refer to the generation of torsional waves
as the Wiedemann effect, to distinguish from the generation of exten-
sional waves only, by the Joule effect.

An important condition necessary for obtaining the Wiedemann
effect is that the magnitude of the circumferential field must be larger
than that of the axial field at the surface of the wire. (The reverse con-
dition holds somewhere inside the wire. )9 The equation for the circum-
ferential field, HG’ can be written as

H = X 1)
0 2
2m a

where I is the axial magnetizing current, r the distance from the center
of the wire, and a the radius of the wire. The circumferential field

will have its maximum value at the surface of the wire. This value must
be larger than that of the pulsed axial field.

The method used to produce the Wiedemann effect is shown in
Fig. 17. The wire is first demagnetized, and then magnetized in the
circumferential direction by discharging capacitors through a longi-
tudinal section of the wire. To maximize the circumferential field, the
discharge circuit is connected as close as possible to the transducer
coil, Measurements have been made in a line consisting of a magneto-
strictive wire, a tungsten lead-in wire, and 2'" and 7" tungsten sensors
(Fig. 18). The temperature of each sensor was determined by measuring
the velocity of the extensional and/or torsional wave in the appropriate
sensor. Since extensional and torsional waves have quite different
velocities, it is easy to differentiate between these two types of ultra-
sonic waves. Using the pulse echo technique, the two echoes associated
with each sensor were observed on an oscilloscope. As the temperature
of ilie sensor incrcascd, the senmaration of the echoes increased (see

Figs. 19 and 20).



The sensors were self-heated in vacuum, The temperature of
the first (2'"') sensor was determined by measuring the velocity of the
torsional waves. Figure 19A shows tors1ona1 wave echoes when the 2"
sensor is at room temperature (~ 530 R) and also at 3000 R The
second set of signals shows quite clearly that the velocity of the tor-
sional waves has decreased at elevated temperatures. Figure 19B shows
that extensional waves can also be used to determine the temperature of
the same 2'" W sensor,

Figure 20Ashows torsional wave echoes in the 7' W sensor at
room temperature and also at a temperature greater than 3500°R. The
torsional echo from the end of the sensor is attenuated at these elevated
temperatures. Figure20B shows extensional wave echoes in the same
7" sensor, at room temperature and also at a temperature greater than
3500°R. The extensional end echo has not been severely attenuated.

In all of the cases examined, the torsional waves were attenuated more
than the extensional waves. Therefore, it is preferable to use the
torsional waves to measure the temperature of the sensor closer to the
transducer, while the temperature of the more distant sensor should be
measured with extensional waves. Thus, by sequentially energizing
torsional and extensional transducers, it has been shown that torsional
waves can be used to measure a temperature of 3000°R in one sensor,
while extens1onal waves can be used to measure a temperature of at
least 3500° R in a second sensor, adjacent to the first, in the same wire.
The preliminary data for attenuation in tungsten shows that the maximum
distance the sensors can be separated is approximately one foot.

CONCLUSIONS AND RECOMMENDA TIONS

Based on tests and analyses conducted in Phase I, it appears
that an optimized system should consist of the following: Pana-Therm
Model 5000, plus power amplification and pulse shaping circuitry,” a
three inch transducer coil wrapped around a 0, 06" diameter Remendur
wire, a 0, 04" diameter tungsten lead-in wire, and a five inch long,

0. 03" diameter W or Re sensor. Tests on W and Re have been con-
ducted to at least 5400°R in carbon-free vacuum for one hour. Use of
lower frequencies than in the previous contract overcomes attenuation
even at these high temperatures. If a sheath can be developed to protect
the sensor from the graphite environment it would appear that the ultra-
sonic system can measure temperatures up to 5300 R.

* In this phase, the required power amplification and pulse shaping was
provided by the General Radio 1217-C Pulses and 1397-A Pulse Amplifier.
In the future, the required power and shaping will be incorporated into a
new instrument, the Pana-Therm Model 5010, If required, these features
can also be built into the Model 5000 prototype.

9



It is recommended that Phase II be initiated to determine the required
sheath material and configuration,
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Table I

Rhenium sensor heated to ~53OOOR

Clock Time-Minutes Transit Time-p sec Current-Amps
0 21.5 0
23 32.0 19.5
33 31.5 19.5
38 31.5 19.5
50 31.5 19.5
65 31.5 19.5
83 31.5 19.5
94 31.5 19.5

This table shows that over a period of one and one-hal:f) hours the
ultrasonic velocity does not change at a temperature of ~5300 R.

12



Table II

sl
Typical analysis of pure rhenium

Element Parts per million
C 20
Si 3
H 5
N 10
©) 10
Al < 5
Co < 3
Cr < 3
Cu < 2
Fe =70
Mn < 2
Mo <25
Sn < 2
Ti < 2
Zi < 2
All others < 1

% Analysis performed by Cleveland Refractory Metals, Solon, Ohio.
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Table III

Analxsism of rhenium wire self-heated in graphite felt

Li ND Zn ND Sb ND Lu

Be ND Ga ND Te ND Hf ND !
B ND Ge ND Cs ND Ta ND |
Na ND As ND Ba ND % ND

Mg \FfiT Rb ND La Re H

Al VVFT Sr ND Ce Os ND

Si VET Y Pr Ir ND |
K ND Zr ND Nd bt ND |
Ca VVFT Nb ND Sm Au ND

Ti ND Mo ND Eu Hg ND

v ND Ru ND Gd T1 ND

Cr VFT Rh ND Tb Pb VVET

Mn VFT Pd ND Dy Bi ND

Fe FT Ag VVEFT No Th

Co ND Cd ND Er U

Ni VVEFT In ND Tm P ND

Cu VFT Sn VVFT Yb

Key:

ND Not Detected T .01-1%

VVET <— ,0001% L . 1-1%

VFT . 0001%-.001% M 1%-10%

FT . 001%-.01% H > 10%

ﬂ;‘\nalysis performed by Jarrell-Ash Co., Waltham, Mass.
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Taktle IV

Analysis"\ of a rhenium sensor that was heated in graphite felt

Weight % of C that diffused

Sensor into the sensor.

1) 20 mil Re sensor-Heated 0. 35
to 4600°R for at least 8 hours

2) 30 mil Re sensor-Heated 0. 42
to 46000R for at least 3 hours

“Chemical analysis performed by Werby Laboratories, Inc.,
Boston, Mass.
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Table V

~nalysis of the graphite feltused to rrovide the graphite
environment for the self-heated rhenium sensors

Li ND Zn ND Sb ND Lu

Be ND Ga ND Te ND Hf ND
B VVFT Ge ND Cs ND Ta ND
Na VET As ND Ba ND w ND
Mg FT Rb  ND La Re ND
Al VFT Sr ND Ce Os ND
Si FT Y Pr Ir ND
K ND Zr ND Nd Pt ND
Ca T Nb ND Sm Au ND
Ti FT Mo ND Eu Hg ND
v ND Ru ND Gd T1 ND
Cr FT Rh ND Tb Pb VFT
Mn VVFT Pd ND Dy Bi ND
Fe FT Ag VET Ho Th

Co ND Cd ND Er U

N1 VVFT In ND Tm P ND
Cu :;X?T Sn ND Yb

Key:

ND Not Detected T .01-1%

VVEFT <—.0001% L < 1-1%

VFT . 0001%-.001% M 1%-10%

T .001%__ 01% H  >10%

%
Analysis performed by Jarrell-Ash Co.
Waltham, Mass.
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>" Measurement of temperature

in core, using thin wire system.
Measurement of
temperature across
thrust chamber. Gas

itself is the sensor, — |

(Q = MEASUREMENT LOCATION

‘_Figure 1. Nuclear rocket engine,



0. 060" diameter 0. 040" diameter

0. 020" diameter
Remendur wire

W lead-in wire Re sensor
4 y
1/ 7 jm ,
V »
/k—— ~1t e 1' to 5L \7‘,{ 1'"'to 5“——)'
Transducer
coil

Fig. 2. Ultrasonic line used to measure temperature. The ultrasonic
echoes reflect from the beginning and end of the rhenium sensor,

Dimensions shown approximate the typical values for the present
program. See also Fig. 9 for instrumentation details.
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A~ LA

VAR AR ARY
B VARE : - ,' SR ' Room temperature
| B ‘

5400°R

‘N
2

isec/cm 20 mV/cm

Figure 6. Echoes in a 2 foot by 0. 03 inch diameter W wire at room tem-.
perature and at 5400°R, produced with a 3 inch transducer coil.



Room temperature

1 I

10 MV /cm 10 p sec/cm

High Temperature
> 5300°R

10 MV/coxo 20 usec/cm

Figure 7. Self-heated rhenium wire, 0.020" dia by 5 inches in length. The coil
used was 3 inches in length.
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Figure 12. Electrical Resistivity of rhenium, tungsten, tantalum and
molybdenum as a function of temperature. '
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Fig. 15. Transit time as a function of self-heating current,
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Fig. 19A Torsional waves
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Fig. 19B Extensional waves

Figure 19. Ultrasonic echoes measure temperature in 2 inch W sensor
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