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Preface

This report has been written in partial fulfillment of
Contract NAS5-10349 carried out by the Mathematical Sciences éroup
with the support of the Systems Analysis and Electric Propulsion
Section of the Goddard Space Flight Center. This report constitutes
a final report for the subject contract and is intended to serve as
a reference document for controls engineers faced with the task of

design and construction of optimal attitude control for space vehicles.

Under Contract NAS5-10191 a synthesis for suboptimal at-
titude maneuvering control for synchronous earth-pointing satellites
was performed using six degree of freedom nonlinear dynamics for
rigid body satellites being perturbed by gravity gradient and solar
pressure torques and misalignment of attitude control thrusters.
Under the Contract NAS5-10349 this analysis was extended to include
the real effects of sensors such as noise and derived rate data.
Thruster real effects are also incorporated related to on-time delays,
minimum pulse restrictions, and rise time and decay behavior. Analysis
has also been performed to allow elastic deformation of members sup-
porting a solar panel on the satellite. Computer programs have been
constructed for control synthesis and simulation purposes in the
digital member of a digital-analogue hybrid computer. In addition,
analoguous computer software has been constructed for fully digital
simulation study.

Extensive simulation studies have been carried out using
the MSG control synthesis program and much information has been

obtained which can be of direct application in the proper design



of satellite controls hardware. Of particular interest in this
direction are the trade-off studies between minimum time and minimum
fuel consumption in making standard maneuvers. A deeper investiga-
tion has revealed some extremely interesting results concerning the
influence of the real effects of sensors and thrusters on these

trade-offs. These studies are fully documented herein.

Although the results of this study are quite general and
not restricted in any essential way to a specific satellite, they
are highly relevant for possible utilization with the ATS-F and -G
satellites. In particular, solar and gravity gradient torques are
computed with the physical characteristics of these satellites in

mind. Of significant practical importance is the determination that

the control synthesis simultaneously possesses highly versatile capa- .
bilities and sufficient simplicity for feasible onboard implementa-

tion. Ground station operation is anticipated to be necessary only

for incorporating secondary adaptive modifications to system

parameters and for transmitting slewing commands.

Contrcl strategies discussed herein are particularly
well suited for applications where a precise time sequence of at-
titude maneuvers is required and conservation of fuel is a major
consideration. Such characteristics are of central importance to
missions involving the mapping of the surface of the earth or the
surveillance of surface or near surface activities such as weather,

plane flights,missile launchings, explosions, etc. It is also

feasible to consider tracking missions of one space vehicle by

another using the synthesis developed.
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In addition to the interesting qualitative and quantitative
results of simulation studies documented, this report contains
a complete detailed development of the theoretical foundation behind
these studies. The many theoretical aspects of the dynamics involved
have been carefully recorded for easy reference. Discussion of the
relevant control theory is included as well as the complete synthesis
of the relevant optimal feedback control policy constructed around a
very flexible performance index weighting time, fuel, and energy in the

system.
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s-system

S-system

b-system

B~system

r-system

R-system

p-system

e-system

C-system

LIST OF SYMBOLS

A satellite or orbital coordinate system with 22

>
pointing at the center of the earth and 8y pointing
northward and parallel to the axis of rotation of

the earth.

A satellite related coordinate system parallel to the

s-system but with origin at the center of the earth.

The body coordinate system with %2 pointing at an

initial latitude and longitude.

N .
The body coordinate system with 32 pointing at a target

(or terminal) latitude and longitude.

>
A reference coordinate system with ¥y pointing at an

initial latitude and longitude.

>
A reference coordinate system with R2 pointing at

a target (or terminal) latitude and longitude.

A principal moment of inertia system with axis along

>
the body principal moments of inertia and P, parallel
to the axis of symmetry of the body, positive toward

the earth.
An inertial earth system.

An earth-sun coordinate system with EZ pointing from

the sun to the earth.

)




c(, ¥, 9

N S
(qu Pq ¢Pq)

. B(L, %, Y) =

> >
The matrix satisfying (v)p = A;q(v)q. That is, the
transformation which takes a vector with components
in the q-coordinate system into a vector with components

in the p-coordinate system.

A special case of the matrix A;q where both the p-system
and q-system are orthonormal systems and where the
elements of the matrix are written in terms of the

Euier angles 6, Y, ¢.

The Euler angles which satisfy the equation

Ac = C(© ¥ . That is, the angles which
pa = CCpq® *pq’ ¥pq ’ & |
rotate the g-system into the p-system. (Defined to

be the (pitch, yaw, roll) angles, respectively.)

A special case of the matrix A;q where the matrix
elements can be written in terms of latitude (L),

longitude difference (%) and rotation angle ().

Latitude, initial latitude, target (or terminal)

latitude of a point on the surface of the earth.

Difference in longitude, initial difference in longi-
tude, target (or terminal) difference in longitude
between a point on the surface of the earth and the
longitude of the point directly below the satellite.
The difference is positive for points east of the

satellite longitude.
Rotation angle of the b-system about the r, axis.

Rotation angle of the B-gystem about the R2 axis.



3 = The angular velocity of the body with respect to the

s-system.
wy = The components of the angular velocity in the p-system.
D(Wbs. ¢bs) = The matrix transforming the time derivatives of the
>
Euler angles into (m)b -- the angular velocity of the
body in terms of the b-system. (Also a matrix of the
form qu where p 1is the b-system and q 1is the
non-orthogonal system (33. Eé, 51).
oy = Normalizing constants for the r and R system unit
vectors.
A > >
uv = The angle between the vectors u and v.
r, = Radius of the earth.
r = Radius of the satellite orbit.
K = rs/re .
Mml = 1Inverse of a matrix M.
MT = Transpose of a matrix M.
\L = Linearization of a matrix M, i.e., angles 6 small
enouh so that sin 6§ = 6, cos 0 = 1, " = 0 for
n= 23,000
h(t) = Angular momentum of body.
n = Total torque of body about center of mass.
= n, + n_, where n, is control torque and n, is
disturbance torque.
th
I, = Moment of inertia about 1 principal axis, i = 1,2,3. ‘

10
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COORDINATE SYSTEM AND TRANSFORMATION SUMMARY

The matrices used for coordinate transformations are presented

here for references:

CyCo cys o Sy
c(e, ¢, ¢) = ~SPSYCO-C¢S O ~S¢SYS HCCO SéCy
=C$SYPCo+S¢So -C¢SyS6-S¢Co CeCy
— | . -
£§§1 (k~cosL cost) ~E08 cosL sing -1 sinY
1 %1 %2
=siny sinL cosL sinf ~siny sinL(k-cosLcos®)
a0 a, o
172 172
osL sinf k-cosL cos®) sinlL
B(L,,y) = RS - e oy
2 2 2
-sinY sinY al
- UL (k-cosL cost) S cosL sinf 5 cosY
| 1 2
—cosY sinl, cosL sinf -COS
o, 0 —£o8Y sinL(k~cosL cos%)
172 a, o
172
e PU———

The normalizing constants a, are defined on page 43.

1 0 siny
D(y, ¢) = 0 -cos¢ sin¢g cosy
0 sing cos¢ cosy

11



()
DU(y, ¢) = o -1

71 -tany siné

o iy, 0 = ( 0 -cos¢
\ 0 secy sinéd

1 0

i tw, 1= [ o
N ¢

(1) bi*si

> > >
(u)s = A;b(u)b = C(eSb’ ‘bsb. ¢Sb) (u)b

T > T
C (ebs’ l"’bs’ ¢bs) (u\b B (LI’ 9’1’ YI

(2) 8y +> Ri

> > >
(Wg = ARs(u)s = C(8,, o, ¢R8) (u)s

= B(Lps Lpo 0) (@)

-tany cos¢

secy cos¢




(3) bi > Ri

@ = AF @), = ClOp, by 6p) (@)
= T e o = <= >
c ( bR’ WbR, ¢bR) (u)b = ARS A;B (u)b

_ T >
= C(eRS’ 0’ ¢RS)C (ebs! 'Pbsa ¢bS) (U)b

(4) e, » s,

@), = A5 @), = c(6(e) _,0,0) (D),

where e(t)Se = Q(t - to) + G(to),  1is the rate of rotation of the earth,

t, an arbitrary time.

(5) bi > Py

> . >

>
(6)

1
(83’ 52’ bl)

L ¢bs
D (‘pbs’ ¢bs) 'q)bs

%

|1

)
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(M Ry, Ry, b)) > by
: bR
@)y = DUhps 4pr) | VbR
®br
(8) b, > (85, 8,5 By)
¢
bs
. -1 >
1f’bs =D (g ¢bs) (w)b
ebs
| (9 bi > (R3’ st bl)
bR\ §
Vpr | =D Gpre fR) (W
6

bR

= 0 g Gy 1Ny
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Introductory Summary

Spacecraft Dynamics Model

The development of techniques for the construction of
economical high-accuracy attitude control mechanisms is a problem
of pressing importance to the objectives of NASA and the industry
built around and dependent upon earth satellites. In this document
and the study it describes the authors respectfully report that signi-
ficant pregress both practical and theoretical has been made in

answer to this need.

This report is divided into seven main parts and five
appendices which may be read independently depending on the needs
and interest of the reader. Part I together with Appendices A, B,
and ( develop fully the kinematics and dynamics of a single body
satellite moving in a synchronous orbit around the earth's equator.
All transformations between the various coordinate systems encoun-
tered are fully described as well as the transformations between
létitude and longitude coordinated ground tracks and Euler angles
tied to the body of the satellite or to an attitude target position.
A mathematical model is developed describing the dynamics for
attitude maneuvers of earth oriented satellites incorporating the

following considerations:

1) Six degree of freedom nonlinear dynamics.

2) Disturbance torques resulting from solar pressure

acting on a parabolic dish.

15




3) Disturbance torques resulting from gravity gradient

considerations.

'4) Misalignment of attitude control thrusters relative

to the satellite principal axes.

5) Incomplete feedback resulting from data acquisition

restrictions.

6) Effects of elastic deformation of satellite members

supporting solar panels.

In Part II and Appendix E a brief discussion of relevant
optimal control theory is presented and a detailed synthesis of
optimal control strategy is developed for the dynamics described in
Part I. Control policies described herein and developed during the
prerequisite study are adaptive in the sense that weighting parameters
are incorporated in the performance criterion to allow trade-off
between speed of response and fuel consumption. It is also possible
by adjusting parameters to strengthen the stability of the system at
the expense of optimality in speed of response and fuel consumption
and conversely. The control synthesis is particularly well suited
for appliéations where a precise time sequence of attitude maneuvers

is required and conservation of fuel is a major consideration.

In Part III a comprehensive and detailed account of results
acquired through simulation studies is presented. A series of

experiments is described which test and illustrate the performance

16




of the control strategy under systematic variations of the large number

of parameters built into the system. In particular, trajectories are
illustrated for different initial and target angular positions. The
stability of the feedback control has been illustrated by subjecting

the simulated vehicle to a large unaccounted for disturbance during a
slewing maneuver. A variety of optimizations based on compromise
weightings between speed of response, energy in the system, and fuel
economy were tested and curves indicating the trade-off characteristics

of these performance parameters are presented. The effects of incomplete
feedback resulting from sample data and the cross-coupling effects of large
initial rates are also illustrated. Curves were computed representing

the effects of gravity gradient and solar pressure torques and large random

torques on the control of the vehicle.

In Part IV the analysis and simulation results associated with
the introduction of noise, derived rate data, and other imperfections
in sensor hardware are outlined. The application of a linear filter for
deriving rate data from noisy angular data is set forth in Appendix F.
The effects of real thruster characteristics on the control of the vehicle
are discussed and illustrated in Part IV. A number of the parametric
studies illustrated in Part III are repeated in Part IV with the incorporation
of real sensors and thrusters. The program has the capability of handling
torques which are not aligned with the vehicle principal axes. The method
of simulation and also how these disturbance torques are compensated for

are described in Appendix J.

17



In Part V elastic dynamics zenerally are discussed and a limited
result of simulation study is presented. It is anticipated that more
complete and detailed investigations of elastic effects will be carried out
in future work. In Appendix D a lumped parameter analysis of a single
rigidly attached elastic member is presented.

Part VI consists of Appendices A through E which in general con-
tain much of the detailed mathematical analysis backing up the illustrations
and conclusions set forth in Parts I through V.

A detailed discussion and the logical flow of the digital and
digital-analogue simulation computer programs are set forth in Part VII.
Included also are complete program'listings, instructions for the opera-
tion of these programs, and specifications of some of the tests performed
in establishing the functional correctness of subroutine components of
the system. Part VII is presented under separate cover.

It should be pointed out that the constraint of feasible
implementation has been imposed on the control synthesis described herein.
This constraint has necessitated some minor deviation from strict theoreti-
cal optimality with respect to the performance criterion. In the strict
theoretical sense, therefore, the control synthesis should be described
as '"'mear" optimal.

A number of important techniques were developed in this study
for quantitatively assessing and predicting the performance of attitude
control systems. Of particular importance is the ability of the synthesis
to predict the fuel requirements of a satellite in carrying out specified
maneuvering missions. Conversely given a satellite design with a specified
fuel storage capacity, the synthesis can be used to determine what maneuver-

ing missions are at least theoretically feasible.

18




In addition to its fuel predicting capability, the synthesis
developed herein is capable of time synchronization of satellite
maneuvers with the movement of other vehicles while simultaneously
maintaining fuel optimality subject to the requirement of speed of
response. In time synchronization of sequential operations the
control policy is adaptive or self-calibrating. That is, feedback
adapts the control policy to arrive at specified targets at specified
times. This capability is particularly useful in situations where
accurate apriori estimates of environmental disturbances are not

possible to obtain.

Many of the capabilities of the control synthesié discussed
in this report are new in the engineering art of 3-axis control of
attitude maneuvers. It is strongly felt that the techniques developed
point the way by which the design of attitude control hardware can
be substantially improved. The results presented have been subjected
to extensive experimentation in which the characteristics are
standard hardware have been included. The conclusions strongly sup-
port the feasibility of the control strategy developed (or a slightly

modified one) for implementation in a wide range of space vehicles.

Basie Problem Fcrmulation

With respect to some specified orthonormal reference axis
system let ¢, ¥, 6 denote the Euler angles of deviation of the
principal axes of inertia of a single body satellite. Our reference
axis is chosen such that the satellite will have the desired attitude
when the deviation angles ¢, ¥, and 6 are zero. Let £ be the

vector whose components are ¢, Y, and 6. That is,

19



£ = 1\ * | (l)

Let A(¢) denote the matrix

i 0 sin ¢

0 -cos ¢ sin ¢ cos ¥ , » (2)

0 sin ¢ cos ¢ cos Y

-
and let
“1
w = w, (3)
w
L3

denote the angular velocity vector with components taken about the

principal axes of inertia. We have the relationship
w = A)E , , (4)

where & 1is the time derivative of the vector function &. The vector

equation for angular velocity is

Io + w x Jw=Bu+ f(g,w,t) (3)
where

I = diag [Il’ 12, I3]

40




is the moment of inertia matrix for the principal axis system, U is

. the control torque vector, and B 1is a matrix representing the mis-
alignment of control torques with respect to the principal axis system.
f(£,w,t) represents environmental disturbance torques affecting the rotating
of a satellite. In particular, f incorporates torques generated by solar
flux and variations in the gravitational field. f might also include dis-
turbances on attitude motion resulting from other processes going on in the
satellite.* The time dependency of f expresses itself primarily in the
solar torques, which are influenced by the position of the sun. The change
in these torques is small in the period encompassed by a slewing maneuver,
however, so we assume that f 1is time independent, this is even
more strongly indicated by the fact that these torques are very small compéred
with the control torque. This leaves us with

— .

r —
. £ (& 0,t ) T
f(i,w,to) = fz(a,w,to) = T,

as the contribution of solar pressure and gravity gradient forces.

The control vector function

“1
u = Uy _ _ (6)
“3
is subject to constraints |u1 s kg qul s ky, and Iusls kg o
*We shall not consider elastic effects here, but refer the
' interested reader to Part I.

21



9 and k3 are specified positive constants. For an

arbitrary vector

where kl’ k

let
1/2

3

2

"Vl' = X v;
i=1

"As a practical design requirement the parameters ki’ i1 =1, 2, 3,

are specified such that
kp> 8 -1ulf + ﬂf(E,w)" , 1=l, 2, 3 (N

for all considered values of &, w, and U. This requirement simply
indicates that our means for exerting control torque dominates the
disturbance torques it must counteract and that disturbance resulting

from misalignment is not sufficient to disrupt this situation.

The basic objective in this study was to synthesize and
carry out simulation experients with a control function U such that:
(a) Transfers of attitude position for a satellite take

place within physically imposed constraints and with

22




? . sufficient speed to be useful in a specified mission.
? (b) The energy put into the system in making transfer
is constrained so as not to endanger the stability
of the system.
(c) The expenditure of fuel or power required in carrying
out transfer is held to the minimum consistent with
imposed constraints and other specified objectives

such as speed of response.

These objectives are quantitatively measured by means of an appropriate
performance criterion which can be adaptively changed through para-
metric variations. In accordance with the imposed performance criterion

a feedback control function V(E,w) 1s constructed such that when v(E,w)

. is substituted in equation (4), the system
T)d) =y = Tgdwgug + bygvy +bypvy + b vy + T)
12&2 = (I3— Il)mlm3 + b21v1 + b22v2 + b23v3 + T2
13m3 = (11- Iz)wlm2 + b31v1 + b32v2 + b33v3 + T3 | (8)
@ = wl - tan ¥ sin ¢w2 - tan y cos ¢m3
& = — cos ¢w2 + sin ¢w3
é = sec Y sin ¢w2 + sec Y cos ¢w3

performs optimally with respect to above objectives and imposed con-

straints.

23




At an arbitrary but specified time to we conslder the
system at an arbitrary state go’wo and our general objective is to
drive the system to the state 0,0 at some time tl later. With the
performance criterion used in control synthesis it is possible to
impose a variety of control strategies. In particular, one strategy
could be to effect the movement from Eo,wo to 0,0 with velocity
components constrained in magnitude to be less than some specified constant
and with the time of arrival on target specified to be no later than a
specified time t*> to if possible. If it is not possible to arrive
on target at or before time t*, then the system would be required to
arrive on target as quickly as possible. Within specified velocity and
time constraints the system would be required to use a minimum of fuel.
An alternative strategy would be to rigidly constrain velocity and fuel

and minimize the time required to carry out the motionm.

24




Control Law Spectificcton

The control laws used throughout the report are selected on the

basis of the following performance index

f{ < |H< \H 13“3\/2

o)

For fixed to and free tl’ the objective of the control is

to minimize P. The mathematics of this development is covered in Part II¢

here we only mention the type of control which is obtained.

The control settings called for by optimization are constrained

to u, = {ki’ 0, -b,, k.1 .

(For definition of bi in functional terms see page 74.) That is, control

will not ever assume other values in the interval [k., ki] .

Ideally, a trajectory is controlled by a sequence of controls
with only three changes of control setting.

For practical reasons this mode has been simplified so that controls

called for are 'bang-off-bang," that is

and a trajectory ideally contains only two changes of setting.
The large number of parameters in the performance index gives this
control computer a tremendous range of flexibility in applications. Some of

these are described in the next section.
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Control Capabilities

Under the constraints imposed, a variety of optimization schemes
are feasible with the general synthesis developed. The fundamental formula-
tion involves the specification of a time of arrival on a designated earth
target (given in latitude and longitude) from an arbitrary initial angular
position and rotational rate. Arrival on target is interpreted as assuming
a desired attitude position with rotational rates exactly counteracting the
effect of the earth's rotation. The control synthesis is such as to require
the satellite to slew and arrive on target at the specified time and to
carry out this maneuver with a minimum expenditure of fuel. The specified
time of arrival will, in general, be a function of initial position, initial
rates, target position, and constraint parameters. In particular, Spécified
time of arrival can be set as the minimum time required for the maneuver
subject to constraints imposed on thrust levels of control jets.

The control policy generally can be described as 'bang-off-bang"
which simply means that control thrusters are either on full or off at any
given time during a maneuver. Strict mathematical optimality would; in
general, also require a phase in which the control exactly counteracts the
disturbance torques. However, it was determined that only a small loss of
theoretical optimality would result from dropping this phase and substantial
simplification would be achieved. Dropping the counteracting phase, there-
fore, may be correctly considered as a move in the direction of practical

optimality.
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It is, of course, impossible to graphically represent optimal . ' |
trajectories in a six dimensional state space. However, a good indication |
of solution behavior may be obtained by superimposing three 2-dimensional
projected trajectories on the same coordinate frame. In particular, if
respectively, then typical.

we plot ¢, ¥, and 6 against , and w

Wys Yy

superimposed projected trajectories are represented by Figure 1. The com-

3

ponents Ups Ugs and Ug of the control vector u essentially control
the (¢, ml)—projection, the (v, mz)-projection, and the (6, ws)—projec—
tion respectively. The target state is placed at the origin of our state
space and consequently at the origin of each projected subspace. Initial
rates in the illustration are taken to be zero with respect to the target
state and ¢0’ wo’ and eo represent initial angular positions. Optimal
strategy is set so as to require arrival on target in ninimum time.

For purposes of comparison in Figure 1, maximum control thrust in each .
projected plane is normalized to 1 with respect to a specified thrust to inertia
ratio. With respect to this normalization the (¢, wl)—projected trajectory
begins furtherest from target position. Note that for the (¢, wl)—trajectory
full control thrust is first applied in the positive direction and then immedi-
ately applied in theAnegative directicn. In common terminology the contrél with
respect to this axis is '"bang-bang." During the near horizontal portions of
the (v, w2)—trajectory and the (6, ws)-trajectory note that the control
thrusters are off. That is, between applications of extreme positive and
extreme negative control the vehicle with respect to motion in these projected
planes is allowed to drift. In common terminology the control with respect to

the (¢, w,)~-trajectory and the (8, ws)wtrajectory is "bang-off-bang."
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Figure 2 illustrates optimal projected trajectories when the
specified time of arrival on target is greater than minimum possible
time. Note that for the non-time optimal case é drift phase appears
in all three projected trajectories. Such drift phases in any parti-
cular formulation may be the result of the fuel consumption constraint
or the rate-limiting constraint which may be imposed to improve stability
and keep unacceptable elastic perturbations from developing. In both
Figure 1 and Figure 2 the slopes of projected trajectories during
drift phases are functions of the perturbations acting on the system.
If perturbations and inertial cross-coupling were not incorporated,
then the trajectories would be exactly horizontal during drift phases.
During phases of active control, the trajectory slopes are functions
of perturbations; cross-coupling, and the ratio of control thrusts
to inertial resistance.

A distinctive feature of the control strategy developed
herein is that regardless of the weighting factors assigned to the
various parameters involved in determining optimality, all projected
trajectories arrive on target simultaneously. If such time of arrival
synchronization is not present, then it can be shown that the
strategy can be improved and therefore is not optimal. The logic
involved in effecting this simultaneous time of arrival for the
projected trajectories is referred to as "time synchronization
and it is the fundamental link between optimality for the three
projected trajectories separately and optimality for the total

system.
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20

Ct™er modes of ootimization may be formulated where one

may determine the "best’ utilization of a specified fuel allocation
with respect to carrying out a mission involving a series of attitude
maneuvers. Since bc- . Zime and fuel requirements are readily pre-
dictable through this ynthesis, a highly significant logical design
tool has been created. It is possible to apply mathematical

(linear or nonlinear) programming techniques to carry out a large
variety of projects of importance to NASA and other space oriented
agencies. One immediate and obvious application could be the
optimal programming of experiments carried out through the use

of earth satellites and involving extensive attitude maneuvers.
Optimal timed surveillance of a number of earth sites by a satel-

lite or network of satellites is also feasible. Among the most

exciting outcomes of this study are the implications of feasibility
for tracking space vehicles with earth-oriented satellites. In
particular, for Apollo and other manned flights such tracking would
provide a capability for continuous uninterrupted surveillance and
communication. In addition, improved accuracy in orbital data could
result from the reduction of atmosphéric interference. The synthesis
developed could also be used to detect the need for, and to communi-
cate adaptive corrections for improving performance during rendezvous

and other more complicated mission maneuvers.
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PART 1

SATELLITE ATTITUDE KINEMATICS AND DYNAMICS
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1.1

1. Coordinate Systems.

Given a synchronous, equatorial satellite, we wish to set up
coordinate systems at the c. g. (center of gravity) of the satellite and
at the center of the earth in order to describe the orientation of the
satellite.

(a) The gi system. The origin of the gi system is at the c. g.
of the satellite. Let ; be a unit vector pointing to the center of the

2

> . : . .
earth. Take 5, as a unit vector parallel to the axis of rotation of the

earth and pointing northward. For a satellite in the plane of the

5
equator, ;2 and s, are orthogonal. Choose gl so that the system (;1’

§2’ §3) is a right-handed orthonormal system. (See Figure 1.1.) The

;i system is set up as a reference for the other coordinate systems.

(b) The ;i system. The origin of the ;i system is at the
c. g. of the satellite. Let ;2 be a unit vector pointing at a prescribed
latitude and longitude on the surface of the earth. Choose ¥. to be a

3

> A . . >
unit vector orthogonal to r, and lying in the plane containing r, and

>

>
s Choose the positive direction of r, SO as to make the smaller of

3
the two possible angles with §3 (that 1is, ;3 makes the smallest angle
with 23 of any vector which is orthogonal to ;2.). (See Figure 1.2.)
Let ;l be chosen to give a right-handed orthonormal system. The ;i
system is set up to determine the desired attitude of the satellite,
that is, what direction (;2) the antenna should point for a prescribed
latitude and longitude and within what cone (of ;3) the sensors should
point to locate certain stars.

(c) The Ei system. The Ei system is the same as the %i

system except for a rotation by a fixed angle (-y) about the ;2 axis.
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Figure 1.1



Figure 1.2
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> 2 ] . . .
The bi system is a body fixed system and is set up to describe the orienta-
tion of the satellite.
> >
(d) The p; system. The origin of the p; system is at the c. g.
>
of the satellite. The unit vectors 1 point along the principal axes
>
for the moment of inertia. The P; system is set up for use in the equa-
tions of motion of the satellite about its c. g.
> > >
(e) The Si system. The Si system is the same as the s system

> > > >
except for the origin of Si' That is, (Sl, SZ’ S3) are, respectively,

>
parallel to (;l’ gz, §3), but the origin of the Si system is at the

>
center of the earth while the origin of the S; system is at the c. g. of
>

>
the satellite. The Si system is set up to relate the r, vector to lati-

tude and longitude on the surface of the earth.

2. Transformation From One Coordinate System To Another.

We are interested in obtaining an expression for the transfor-
mation or rotation AES from the gi system to the gi system. Such a
rotation can be represented in matrix form in two different ways. First,
the elements aij of Ags can be written in terms of the scalar products
(Ei . gj) of unit vectors in the two systems. Secondly, Ags can be written
in terms of a set of Euler angles. Equating corresponding terms in the
forms for Ags will then enable us to solve for the Euler angles.

We will investigate in this section the scalar product form

for Ags. In the next section, we will examine the Euler angles.

> >
Let w be a fixed vector and resolve w into components in

>
the S; system:
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5 = v ; + v ; + v.s . (1.2.1)

>
Similarly, resolve w into compenents in the gi system:

> >
w = ulb1 + u?_b2 + u3b3 . (1.2.2)

To obtain the relation between the two sets of components, we define the

matrix Ags to satisfy:

4
A

u, = Ags v, . (1.2.3)

\f3 Lf?}s

>
That 1is, Ags is the matrix which transforms components in the S system

>
to components in the bi system.

In element notation (1.2.3) can be written:

U =AYy + aj,Vy + a;4v3 (1.2.4)

[
l

ayVy F ayvy Fajsv

[
I

a3lv1 + a32v2 + a,,v

Equating (1.2.1) and (1.2.2):

> > > > > >
u,b, + u,b, + u,b, = v,s, +v,s5, + v,s . (1.2.5)

Taking the scalar product of (1.2.5) with El’ we have:
> > > > > >
u = (b1 sl)vl + (b1 sz)v2 + (bl'SB)V3 (1.2.6)

>
(for bi an orthonormal system). Since the v, are arbitrary, comparing
(1.2.4) and (1.2.6) gives:

> >

> > > >
ap = (by7sy)s 3y = (By78y)y apy = (bysy) 1.2.7)
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1.7

In general, we have:
> >
= (b,*s.) . (1.2.8)

>
In a similar way, the inverse mapping Agb from the bi system

>
to the s system given by

a )
vy uy
Vol T | ™2 (1.2.9)
v u
3% 3
b
\/ ./
> >
has elements bij = (si-bj). Thus one transformation is the transpose
of the other. That is:
A;b Abs or Ags Abs (1.2.10)

T -1

+ e " i "
where Abs denotes the transpose and Abs denotes the inverse of Abs' That
is, each matrix involved is an orthogonal matrix.

) .
For s, an orthornormal system, (1.2.4) may also be written as:

1

> > > >

by = ay;8) + a;,8,) + a;35,

> > > >

b2 = 3,18 + 35,8, + a,48,4 (1.2.11)
> > >

b, = s, + a,.s, + a,.s

37 #3151 T 2325, 7 23383 -
To verify (1.2.11), take the scalar products with ;1, gz, and 53, respectively,
and compare with (1.2.8). Therefore, one may obtain the elements aij from
(1.2.11) by expressing the Bi vectors in terms of the ;i system.
The transformation Afs from ;i components to Ei components may

be considered as the product of two transformations; the first, from ;.
i
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> > >
s the second, from T to bi' In matrix notation this is:

Agé = AqrA;s . (1.2.12)

The transformation Agr is simply a rotation through an angle

>
(-y) with r, fixed. Consequently, Agr may be written:

2
cos Y 0 sin vy
Agr = 0 1 0 ) (1.2.13)
-sin v 0 cos j}
\

To find AY , we will use the technique of (1.2.11) and write:

r.=b 8 +b .3 +b .3
T1 % P11%51 7 P12%2 T P13%3

> > > >
r, = b21sl + bzzs2 + b23s3 (1.2.14)

r,=b, 8, +b..3 +b.3
T3 = 03181 T P38 T D338,

where the bij in (1.2.14) are the elements of the matrix A;s'
>
First, we solve for the T, vector (which points at a given

initial latitude and longitude on the surface of the earth). Let G

S
be a vector with components in theSi system and terminating at the
given latitude and longitude. We then have
4 ) ~ A
r, cos L cos (2+270°) r, cos L sin 2
;S = |r, cos L sin (24270°)| = -r, cos L cos [} . (1.2.15)

Ty sin L S Ty sin L S
\ J \ J

(See Figures 2.1 and 2.2.) In equation (1.2.15) r, is the radius of the

(spherical) earth, L is the given latitude (north positive), and 2 is
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Figure 2.1
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Figure 2.2
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1.10

the given longitude minus the satellite longitude (longitude determined
by a straight line from the satellite to the center of the earth). If
the given longitude is east of the satellite, then & is taken as positive.

>
To express u, in the s; system we need to perform a translation

S

through a distance rS (the distance of the satellite from the center of
the earth).

Thus, we have:
> _ > + > 6
u, = ug rys, (1.2.16)

or

f \

r, cos L sin %

eV
[}

r - r cos L cos? . (1.2.17)
s s e

r sin L
e S

J

> >
We may now normalize ug and set it equal to T,-

> >
in
T, 5q (cos L sin )/a2

+ ;2 (k-cos L cos 2)/a2 (1.2.18)

+ ;3 (sin L)/a2

where k = rS/re and the normalizing constant @, is:

= /Qcos L sin 2)2 + (k - cos L cos 2)2 + (sin L)2

Q
1l

2
3 (1.2.19)
= ¢{+k -2 kcos L cos &
We next solve for ;3. From Figure 2,3, we have:
> > > > >
agry = S = (s3 r2)r2 (1.2.20)
where oq is the normalizing constant:
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1.1t

A - (23-§2)2 ) (1.2.21)

(a2

Figure 2.3

From (1.2.18):

sin L

(1.2.22)
%

> >
(s3‘r2) =

Consequently, from (1.2.21) and (1.2.22):
2

Jia )2

. - sin” L

o =f1 - (SBLy2Z (o) - sin (1.2.23)
3 ay a,

and from (1.2.20), (1.2.22) and (1.2.18):

. ; = -sin
373 1
+ ;2 <31n I>
2 Sln
ey (i

2

|
nv

N\
cos L s:Lnl)

-~ cos L COS.>) (1.2.24)

\\_,///"“\ g\

We may solve for ;1 by noting that ;:1 is normal to 1>"2 and ;3
and, therefore, to ;:2 and 33. Thus

>

1> (a ) X 8, (1.2.25)

or
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> >
@, Ty = 8 (k - cos L cos L)
> .
- s, (cos L sin %)
We also have:
2 . 2
al = V(k - cos L cos 2)° + (cos L sin 2) = a,0,
or
ay = al/az

1.12

(1.2.26)

(1.2.27)

(1.2.28)

The matrix At = (bij) may now be written out using (1.2.14),

(1.2.18), (1.2.24) a

nd (1.2.26):

(/Zk - cos L cos %)

- cos L sin 2
a

%1 1
A = cos L sin % (k = cos L cos %)
rs L) )

-sin L cos L sin &

(-sin LY(k - cos L cos %)

%1%

\

%1%

where Gy has been eliminated from the third row.

Summarizing the ay factors, we have:

ay = JQk—cos L cos 1)2 + (cos L sin 2)2
J/ 2 2 2
= Jecos" L + k™ - 2k cos L cos
a, = V4k - cos L cos 2)2 + (cos L sin 1)2 + (sin L)2
= lQal)z + sin L)2
= /{ + k2 - 2k cos L cos %
ay = al/a2 \
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The matrix Ags = (ai%) may also be written out using (1.2.12),

(1.2.13) and (1.2.29).

411

12

13

21

22

23

31

32

433

L£oS Y (k - cos L cos 2) - 220X sin L cos L sin 2

%1 %1%
COS Y s L sin & - S Y gin L (k - cos L cos %)
a o, 0
1 172
a
+(sin Y) El
2

cos L sin £

%

(k - cos L cos %)
o

2
sin L
%
"SR Y (x - cos L cos &) - 25 Y 5in L cos L sin %
*1 %1%

+si
S0 Y os L sin & - £28 Y 451 (k -~ cos L cos %)
ay a0,

a
(cos vy) 1
%2

For uniformity of notation, we introduce the following matrix.

1.13

(1.2.332a)

(1.2.33b)

(1.2.33¢)

(1.2.334)

(1,2.33e)

(1.2.33f)

(1.2.33g)

(1.2.33h)

(1.2.331)

The matrix whose elements are given by (1.2.33) depends upon three variables,

the latitude L, the longitude 2 and the angle of rotation Y.

B(L,%,Y) = (ai

where the a

ij
As
and

A<«
rs

elements are given by (1.2.33).

Let

3

In this notation:

B(Ls 2.y)

B(L,2,0) .
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1.14

|
1 . 3. The Euler Angles.

There are many different ways one could set up Euler angles
to define the orientation of a rigid body. We will describe in this
section a (Y, 6, ¢) system which corresponds to yaw, pitch and roll,
respectively, as if the satellite were an airplane flying along the
equator.

Suppcse we wish to rotate the r, system into the bi system.
(See Figure 3.1.) First, we rotate about ;3 through an angle 6. This

rotation has the matrix:

(:;s 0 sin 06 6\

D =|-sin © cos 0 0 . (1.3.1)

: K‘ 0 0 1
Secondly, we rotate about ié through an angle (-~¥). This rotation has

the matrix

r D

cos ¥ 0 sin VY
E = 0 1 0 . (1.3.2)
-sin VY 0 cos ¥
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The Euler angles (8, ¥, ¢) = (pitch, yaw, roll)
>
a) 6 rotated about Tg. N

>|
b) (-¥) rotated about T, /)
c) ¢ rotated about El' ¢5555555§§

Figure 3.1
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>
Finally, we rotate about bl tnrough an angle #. This rotation has the matrix:

| A
’ 1 0] o
F = 0 cos ¢ sin ¢ (1.3.3)
L? -sin ¢ cos ¢l
/

I

The elements C of the complete rotation may be obtained from the

product of the successive rotations:

C=FED . (1.3.4)

We thus obtain:

(/ CyCo CYSe Sy \\
i—s¢swce -S¢SYSe
- 1.3.5

c(e, ¥, 8) = | _ CsS6 + CoCo S¢C¥ (1.3.5)

i

{ —CoS¥Ch -C$SYSe

i

i + $6S0 - S$Co CoC¥

\

where CY denotes cosY, S8 denotes sin 9§, etc.

The rotation matrix C as defined in equation (1.3.5) can be used
represent the rotation of any orthonormal coordinate system into any other
orthonormal coordinate system if the appropriate angles (6, ¥, ¢) are used.
Thus A« = C(8 ¥ ) indicates the rotation from the system into

5a = CCpq’ ¥pa’ %pq 4 = 2axe

the p; system. The angles indicated in Figure 3.1 are 8 , and we

br’ ‘br’ Pbr
have Aﬁr = C(ebr’ Wbr’ ¢br). To indicate the rotation from the S system to
the bi system, we introduce the notation ebs’ Wbs’ and ¢bs for those angles.

Thus, the transformation Aﬁs of the previous section can be represented as:

As = c(ebs’ Yhe? ¢bs) : (1.3.6)

There are other representations for Ags. For example we can

calculate the angles esb, st and ¢sb for the rotation of the bi system
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into the s system. The last transformation is the inverse of the first,
that is:

-1
Clopg> Yhgr %bs) = € Cpr Yopr top) | (1.3.7)

(although the two sets of angles are not simply related). However, each
A and C matrix is an orthogonal matrix, and its inverse is equal to its

transpose (compare equation (1.2.10)). Thus:

-1 T
C (O Yopr Osp) = C (Ogps Ygps dgy) (1.3.8)
and from (1.3.3), (1.3.4) and (1.3.5):
« =cN(o., ¥, 6.) 1.3.9)
Abs sb’ ‘sb’ “sb (1.3.

.is a second representation for Ags. Other representations are possible

for writing Ags as a product (compare equation (1.2.12)) and writing each

factor in various forms.

We now wish to introduce two sets of latitude and longitude,
the iﬂitial latitude and longitude denoted by (LI, QI) and the terminal
or target latitude and longitude denoted by (LT, 1T). For each set of
latitude and longitude there will be an r, and a bi coordinate system.
We will use the notation R, and B, for the r, and bi systems corres-

i i i

ponding to the target latitude and longitude. The notation of r, and

bi we now will associate with the initial latitude and longitude. Our
primary interest is in finding the transformation Aﬁb which takes the

bi system corresponding to the initial latitude into the R, system cor-

i
responding to the target latitude.

The transformation Aﬁb satisfies several different relations:

@ = AL, @), (1.3.10) [
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3.11)

3.12)

3.13)

Equation (1.3.10) is the defining equation for Aﬁb' Equation (1.3.11) follows

from considering Aﬁb as the succession of the rotation A; and the rotation

b
Aﬁs' Equation (1.3,12) follows from the definition of the matrix C and

the Euler angles GR

b WRb’ ¢Rb' Equation (1.3.13) follows from the Euler

angles ebR, wbR’ ¢bR in rotating from Ri system to the bi system (compare

equation (1.3,9)).

Similarly, the transformation A; used in (1.3.11) satisfies:

b
> >
(u)S = Agb(u)b (1.
A<, = BT(L £, v (1.
sb I° 1’ '1
= 1.
Agb C(esb’ st, ¢sb) (
A< = CT(0 6. ) (1.
sb bs’ bs’ "bs’ ?
and Aﬁs satisfies:
> > .
= 1.
(u)R Aﬁs(u)s (
= [3 1.
Ar B(LT, T 0) (
- 1.
Aﬁs C(eRs’ 0, ¢Rs) (
A = CT(G y o ) (1.
Rs sR> 'sR’ "sR *
The angle ¥, = 0 follows from noting that equation (1.3.19) is

R

3.14)

3.15)

3.16)

3.17)

3.18)

3.19)

3.20)

3.21)

the

same as (1.2.29) (with the use of L. and 2T)’ and comparing (1.2.29) with
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equation (1.3.5) (with the Rs subscripts).’

We wish to use equation (1.3.11) to solve for the Euler angles
ebR’ wbR’ ¢bR' Substituting (1.3.13), (1.3.17) and (1.3.20) into (1.3.11),

we have:

T

T
C (ebR, \be, ¢bR) = C(eRS, 0, ¢RS)C (Gbs, \be, ¢bs)’ (1.3.22)

or taking the transpose of both sides:

T
c( ) = C08 s ¥ios 0 CT (0 0, vp ) (1.3.23)

ebR’ wbR’ dJbR
One may express the matrix equation (3.23) in element form in

the following way. The Euler angles Gbs, ?bs’ ¢bs may be obtained from equat-

ing matrix elements in equations (1.3.17) and (1.3.15) using the definition

of the matrix B ((1.2.33) and (1.2.34)) and the matrix C (equation (1.3.5)).

We thus obtain for Wbs’ ebs and ¢bs’ (where I denotes initial conditions)

1
i |
sin Wbs = (sin YI) ;—f = a4 (1.3.24a) .
2
in ¢ y =Sinly_ 1.3.24b
sin bs cos ¥ - 23 (1.3. )
%
- v =cos Yp ) sin Ygp .
sin O, cos bs = a T cos LI sin RI— ;—E;_f sin LI(k - cosLIcos I)
1 1 2
(1.3.24¢)
Alternatively, we have:
sin L a
I 1 23
tan ¢, = =3 (1.3.25a)
cos yy alI 33
tan o = cos yy cos LI sin QI - sin Y1 sin LI(k - cos LI cos 21)
bs cos vy (k - cos LI cos QI) - sin Y1 sin LI(cos LI sin 21)
= a12/all s (1.3.25b)
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or:
I
*“
cos ¢bs cos {bs =cos y; —7 = 333 (1.3.26a)
o
2
cos Y sin y
cos ebs cos Wbs = a T (k - cos LI cos RI) -1 I s:.nLIcosLIsnvLI
1 : %1 %2
= . 1.3.26b
aj; ( )
The Euler angles eRs’ ¢Rs and WRS are determined similarly from

equation (1.3.19) and (1.3.20):

= 1.3.27
Yps = 0 . ( a)
sin LT
i = — 1.3.27b
sin ¢Rs a T ( )
2
-cos LT sin RT
i = 1.3.27
sin GRS T ( c)
%

These equations are actually of the same form as (1.3.24) with T (T denoting

target conditions) replacing I and Yy set to zero. Alternatively, we have:

sin L

tan ¢. = 1 (1.3.28a)
Rs
OL]_T
-cos LT sin RT
tan 6, = G~ cos L cos T ° (1.3.28b)
T T
or: T
%1
cos ¢Rs =7 (1.3.29a)
%2
(k ~ cos LT cos QT)
cos SRS = T (1.3.29b)

%

Finally, direct matrix multiplication of the right hand side of

(1.3.23) and equating matrix elements gives us:
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sin ch = gin ¢Rs cos wbs sin (eRs - ebs) (1.3.30a)

+ cos ¢Rs sin wbs
sin y = { -

ebR cos VbR sin ¢Rs sin ¥, + cos ¢Rs cos wbs sin(ebs eRs)
(1.3.30Db)

sin ¢bR cos wbR = - sin ¢Rs cos ¢bs cos(eRs - ebs)

- 3 3 3 — e

sin ¢Rs sin ¢bs sin wbs 51n(6Rs bs)
y
+ cos ¢Rs sin ¢bs cos ¥ (1.3.30¢)

The angles OuR? Yur? ¢y MY be written directly in terms of

(L QI) and (LT’ QT) by substituting into equation (1.3.30) using equations

I)
(1.3.24) through (1.3.29). The same result may also be obtained by substituting

equations (1.3.15) and (1.3.19) and (1.3.11) and equating matrix elements.
Another problem which may arise in these equations is the ground
track problem, a type of inverse problem. For given Euler angles ¢bR’ wbR’

ebR’ what direction is the satellite pointing? That is, for a fixed set
. ?
(LT, T) how do the values of LI’ 21 and Yy vary as ¢bR’ wbR and ebR vary

Rewriting the right hand side of (1.3.23) using (1.3.15) and (1.3.17) we have:

- T
CC 8,5 Yppe pr) = B(Lp» %> YPCO (6pgs 05 bps) (1.3.31)

or:

B(L,, ) = C(® ) c(8 0, ¢..) (1.3.32)

2
Y1 bR’ TbR’ ®bR Rs’ Rs

-1 for the orthogonal matrix C). The right

(using the fact that CT = C
hand side of (1.3.32) is known since the ebR, WbR’ ¢bR are now prescribed
.3 1.3.2
and O and ¢, are determined by (L, lT) (equations (1.3.27), ( 8)
and (1.3.29)). See Appendix A for the expression of the matrix equation

(1.3.32) in element form.
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One nctes a difference in the use of equations (1.3.24) through
(1.3.30) in the computer simulation runs and actual satellite operation.
In actual operation, sensors in the satellite will be used to determine
8, . in i
¢ Y and os In simulation runs, the angles ¢bs’ wbs and ebs

bs’® 'bs
are determined by equations (1.3.24) (or by an analog computer).
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4. Angular Velocities

The angular velocities determined by the satellite sensors are the
values ébs’ wbs and ebu’ the rates of change wi:h respect to time in the
Euler angles between the bi and s systems. However, the angular velocities

used in the equations of motion (next section) are expressed about the bi

(or pi) coordinate axes. It is thus necessary to obtain the transformation
between these two representations of the angular velocity.

Let o be the angular velocity of the body (or bi system) with res-—
pect to the s system. The angular velocities ébs’ (—@bs) and ébs may be coﬁ—
sidered as the components of o expressed in the non-orthogonal coordinate system

(23, gé, El) (see Figure 3.1 with r, replaced by Si)' That is, we may write

b=b s, + (¥ )sb+d b
= “bs °3 bs?S2 F % P (1.4.1)

>
We wish to express the vector w in (1.4.1) in terms of the bi system.
The terms on the right hand side of (1.4.1) may be transformed

individually. Expressing the first term in the bi system, we have

. > . >
(ebs 53)b = Aﬁs(ebs s3)s (1.4.2)
or b
o >
(ebs s3)b = C(ebs, LA ¢bs) .o , (1.4.3)
5]
bs /s

The expression used in (1.4.3) for Afs was previously obtained in section 3
(equation (1.3.6)) and corresponds to a rotation through the three angles

G Note that (1.4.3) could be altered (and still give the

bs’ Wbs’ ¢bs°

correct results) to:
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(ebs S3)b B C3(ebs’ Vbs’ ¢bs) .0 (1.4.4)

ebs s

where C3 is a matrix identical to C in the third column and arbitrary in
the first and second columns. Equation (1.4.4) is possible because of the
> -

ps S3 in the Sy system.
The second term on the right hand side of (1.4.1) may be written:

.
zeros occuring in the vector representation of 9

-'. >' = —. >' o XY
Yy $2)p = Aer C¥g ), 1.4.9
or 0
yoa'y = -3 1.4.6
(Ypg S0y = €O ¥y 600 | ~¥g X ( )
0 s'

The expression used in (1.4.6) for Aﬁs' may be obtained by noting that the
s; system goes into the bi system by means of a rotation through the two

angles wbs’ ¢bs (6bs = 0 for this case). In analogy with (1.4.4), we may
rewrite (1.4.6) as:

(wbs Sé)b = C2(0, ¥ ) (1.4.7)

bs® ®bs?| “'bs )
where C2 is a matrix identical with C in the second column and arbitrary
otherwise.

The third term on the right hand side of (1.4.1) is already ex-

pressed in the bi system. However, for purposes of comparison, we may write:

¢bs
0
0 /b

s

. > .
(d¢ By)y = €O, 0, 0) (1.4.8)

or
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5.)

(¢bs 1’b

= ¢,(0,0, 0) 0 , (1.4.9)

where C1 is a matrix identical to C in the first column but arbitrary

otherwise.

Using (1.4.4), (1.4.6) and (1.4.7) to rewrite (1.4.1) we have:

0
@, = €8, ¥y s 0 ) [ 0 (1.4.10)
ebs (3
0
00, ¥gs 9y —@bs
0/
ébs
+¢,(0, 0, 0) 0
0

b

Making the three matrices in (1.4.10) equal, we may rewrite (1.4.10) as:

%

S

>
(w)b = D(wbs, ¢bs) bs (1.4.11)

bs

e Lo

where D is a matrix which agrees with C(eb s wbs’ ¢bs) in the third column

s
(ebs does not actually appear in the third column), agrees with -C(O, Wbs, ¢bs)
in the second column, and agrees with C(0, 0, 0) in the first column. Since

8 s does not explicitly appear, D is a function of only two angles wbs and ¢bs'

b
The matrix D(¥,¢) may be written in full as:
1 0 sin vy “\

D(v,9) = | O -cos ¢ sin ¢ cos (1.4.12) .

0 +sin ¢ cos ¢ cos VY
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One may also obtain the equation:

(@), = ( ) (1.4

WbR’ d)bR

in a similar manner.
The inverse of (1.4.11) or (1.4.13) may be obtained if D(¥,¢) is
not singular. The determinant of D(Y¥,¢) is equal to -cos ¥. Thus, we may

rewrite (1.4.13) as:

oS-

bR

=1}

-1 >
= 1.4
bR D (wb , ¢bR) (w)b (

bR

De

if cos ¥, _ # 0. We have explicitly that:

bR
1 ~tan Y sin ¢ -tan Y cos ¢
D_l(W,¢) =l 0 -cos ¢ sin ¢ (1.4
sec ¥ sin ¢ sec ¥ cos ¢

If we linearize the D and D-1 matrices (for Y small and ¢ small),

we obtain:

1 0 y
L = (1.4
D(¥,¢) ={ O -1 ¢ .
0 $ 1
and 1 0 -y

D7 (v, 0)1" (1.4

W
o
|
[
©
-
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5. Equations of Moticw

By Newton's second law as applied to angular momentum, we have:

( dh ) = n(t) (1.5.1)

dt “inert

where h = h(t) is the angular momentum of the body, n(t) is the total applied

d
torque about the center of mass and CE; inert

denotes the time derivative
of a function taken in an inertial coordinate system.

We wish to express (1.5.1) relative to a rotating coordinate system,
in particular, one fixed relative to the body. Let E(t) be any arbitrary
vector depending on time. The change dc for a small change in time dt
will differ when viewed in the inertial system as compared to the change

viewed in the body system. The difference is due to the rotation of the

body axes, and we can write:

(d8)body = (dB)inert + (d&)rotat (1.5.2)

>
where (dG) rotat arises solely from the rotation.

The change due solely to rotation may be written as:
(d8)rotat = & x dA- (1.5.3)

(see Figure 5.1). Then (1.5.2) becomes:

(dé)body = (dé)inert + & x A, (1.5.4)

Dividing by the differential time element dt, we have:

daé ag > >
Cat dboday = ¢ at Yinert TEX© (1.5.5)
where W = %Eihis the angular velocity of the body. Equation (1.5.5)
may also be written as:
a8 _ (% >
(gt dinere = Cac )body toxt . (1.5.6)
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Applying (1.5.6) to (1.5.1), we have:

dﬁ > _ > .
(E'M®+wxﬁ—nuh “}Liﬂ

an equation applying to any coordinate system fixed in the body. Now the

angular momentum may be written as:

h(e) =S o), (1.5.8)
where S is the moment of inertia tensor (as represented by a symmetric
matrix). For S expressed relative to any coordinate system fixed in the
body, we have that S is a constant matrix. Then (1.5.8) substituted into
(1.5.7) yields:

>
(s) (42,

+0 x () o =
body * dt ’body x )0 n(t) (1.5.9)

dy

Equation (1.5.9) can be written in component form most simply in a
certain body axes system. Since S is symmetric, a coordinate system can be
chosen in which S is a diagonal matrix. Such a coordinate system is called

! the principal moment of inertia system and the diagonal elements (Il’ 12, 13)
of the matrix S are called the principal moments of inertia. We have

previously denoted the principal moment of inertia system as the P; system.

Expressing (1.5.9) in component form in the p; system yields:
Livg + (I - Iy = oy
Izwz + (I1 - 13)w1w3 =n, (1.5.10)

13w3 + (I

2 ~ I))¥¥, =y

where &i denotes the time derivative in the body system. These equations

are the so-called Euler equations of motion for a rigid body with one point

fixed.
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The torque in equation (1.5.9) or (1.5.10) may be considered

as the sum of a control torque and a disturbance torque:

> > >
n=n + n, (1.5.11)

Equation (1.5.10) may then be rewritten:

I.o, = (T

191 +T. +Db

9 = I3)w2w3 1 11%1 +b + b, .u

12%2 1343

I.0, = (I3 - Il)w

195 + T, +b,,u, +b..u. +b..u (1.5.12)

1“3 7 f2 T Pap¥y T Dpaly T Pogls

I, = (I

1%3 + T, +b,,u, +b..,u, +b,.u..

1~ Iy + Ty + bayuy +bgouy + bygu,

For completeness we add the angular rate equations used in

the simulation (linearized from the full equation)

S

0y Yy

< .

= -w, + duq (1.5.13)

D

= duy + w,

o

If ;c is given in another coordinate system, say the bi system, we

may always transform to the Py system as discussed in Section 3, e.g.
>
(nc)p - A;b(nc)b . (1.5.14)

The disturbance torques ;D are discussed more fully in a later section

and in the appendices.
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6. Simulation Program and Coordinate System Use

Part VII of this report has been issued under separate covef.
Part VII is a complete program description of both the analog and digital
parts of the simulator. This includes input instructions for the digital
program, setup instructions for the analog array, and detailed flow charts
for each. In the present section we want to describe the simulation
briefly and then, by using the flow chart appearing in Figure 6.1, relate
the major junctions of information flow to the various coordinate systems,
Euler angles, equations of motion, etc., that appear in the body of the
report. Further detail on the analytical aspects is provided elsewhere in
this report, further material, on the analog program (provided by Computing

and Software, Inc.), and on the digital programs is contained in Part VII.

Two distinct simulation modes were available, runs could be made
either on hybrid equipment or on a completely digital simulator. The analog
computer used was an EAL Hydac 2000, the digital computer an SDS-9300.

In hybrid operation, the analog computer solved the différential
equation describing the satellite dynamics and provided output via standard
analog strip charts and x-y plotters (primarily used for phase plane
plotting of the three satellite axes). The digital machine provided the
analog with the control torques and the "natural" disturbance torques
arising from solar and gravitational effects.

When using completely digital simulation, output could be specified
at any multiple of the integration interval.

The remainder of this section appears in the form of Notes relating

to the flow chart in Figure 6.1.
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Note 1: Data read fro- cards. :.ong these are ls (longitude of satellite

subpoint), L. anc ¢ “atitude and longitude of target), L and

T T 1’ %10

Y1 (latitude and longitude of initial pointing, and the arbitrary initial
rotation angle about the 2 (yaw) - axis), Euler angles bp relating body
to principal axes, and the 12 thruster misalignment angles. Coordinates
used: all. Subroutines used: Main.

Note 2: QS fixes the s; coordinate system, L_ and ¢ determine the

T T

Euler angles eRs (see equation 1.3.27). LI’ 21, and Y1 then determine

the Euler angles 6 (see equation 1.3.24). The Euler angles 6. and

O s determine the Euler angles A (see equation 1.3.30). The Euler
angles ebp determine the matrix Agb = C(Gbp, wbp’ ¢bp) (see equation
1.3.5). All initial rates are set to zero. Coordinates used: si, Rs, bs,
bR, bp. Subroutines used: INIT and STUP.

Note 3: If hybrid simulation is used, initial conditions (ebR, wbr’ ¢br)

and thruster misalignment coefficients are setup on the analog computer.
Note 4: Disturbance torques due to solar radiation and gravity gradient
are calculated here (see Appendices B and C, respectively).. Since these
torques are very small, an option to use constant torques is provided. All
torques are expressed in the p; system (using the matrix in section 2).
The sum of these two torques is the disturbance torque sent to the analog in
hybrid simulation.

Another disturbance torque arises from misalignment of the jets
with respect to the principal axes. The overall disturbance torque (b)
used in the computation of the control is the sum of torques {Ti} (composed
of solar, gravitational, and thrust misalignment) and the cross—coupling

torques w x Iw. Coordinates used: ;- Subroutines used: TOR.
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Note 5: The control torques {ui}i are calculated using the current

{w 13 and {b.}3

1 [a)
(normalized values of “bR? wbR’ ¢bR’ i11° i71°

(See Part II
and Appendix E.)
The equations used in control computation are
y=v+b

where: 1) y 1is the normalized vector w, 1i.e.,

y = K-lIw

K = diag(biiki)’ I= diag(Ii), Ii being the moment of inertia on the ith

principal axis, k1 being the control bound in the ith axis, and b

being the projection of that control torque on the ith axis (

ii
bii 1

if misalignment is present); 2) B is the normalized control vector
whose components therefore, are either 0 or + 1; 3) b is the normalized
disturbance torques that is K—lI times the sum of cross coupling torques
Iw ¥ w, solar and gravitational torques T and the disturbance torques

caused by misalignment of the control torques, e.g.

1

b2 = g;;iz ((I3 - Il)wlw3 + T2 + b21u1 + b23u3 .
In addition the normalized form of equation 1.5.13 is used, i.e.

o, = El (wy, - ¥, _w.,)

1 k1 1 bR™3

. Iz

27 %, 2T frYs

. I3

37k, W3ttt

Coordinates used: Py and bR. Subroutines used: REG .

Note 6: An option is provided here to calculate the satellite dynamics
either digitally or by analog computer. The control torques uy from
Note 5 are used and the dynamic ecuations are integrated either on the
analog or the digital computer. The anélog device has the option of using
a decaying control torque rather than a constant one (see Part III and

Part VI). The digital program has the option of approximating the elastic

effects of a boom (see Part V and Appendix D). Coordinates used: bR
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and P, - Subroutines used: MAIN, DER, RK - or analog.

Note 7: To simulate the sensor, only the values from Note 6 of the

angles ebR’ .+« (no rates) are used. Using the linear approximationm,

these are set equal to the sensor outputs, a Gaussian noise is added,

and the noisy angles are filtered to yield smooth values of ebR, wbR’ ¢bR

. . .

and 6 ps Vps Op-

are the current angles and rates used next in Note 5 (see Part IV). Co-

. . . >
After converting (ebR, wbR, ¢bR) to (w)p, these

ordinates used: DR and P;- Subroutines used: MAIN.

Note 8: Using the angles ... obtained from the full dynamics,

ebR’
the ground track is computed (i.e., current latitude-longitude of
pointing). (See Appendix A.) Coordinates used: bR, rs, bs. Subroutines

used: GT.

Note 9: In hybrid simulation, no digital output appears during the run.
In digital simulation, printed output can be given at integral multiples
of the integration interval. Among other things, the state of the system
and its dervative, the ground track coordinates, and values of the torques
are printed. A complete format is given in Part VII. Cordinates used:

Subroutines used: OUT .

Note 10: The target is reached when the Euler angles and rates ébR

Obr
have reached a prescribed neighborhood of the origin. In digital simulation,

a terminal print is given. Coordinates used: bR. Subroutines used: MAIN.

66




PART II

OPTIMAL ATTITUDE CONTROL SYNTHESIS
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2.1 ’

2.1 The Mcdel

Let 2, %, ¥ denote the euler angles of the principal axis
system with respect to a reference coordinate system determined by a
selected target point. Our primary objective is to drive these angles
to zero. A control is to be synthesized which carries out this objective
and simultaneously behaves optimally with respect to performance criteria
and constraints to be described.

For our discussion in this part we introduce the vector notation

£ = ¥ > (2.1.1)

— ]
1 0 sin ¥
A(g) = 0 -cos ¢ sin ¢ cos ¥ , (2.1.2)
0 sin ¢ cos ¢ cos Y
L _
®1
w = wg , (2.1.3
L %3

where ® 1is angular velocity about the center of gravity of the satellite.
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The basic dynamics as developed in Part I for rigid body satellite

attitude motion are represented by the equations
Tw + X Iw = Bu + (g, w), (2.1.4)
and

AE)e = w . (2.1.5)

In equation (2.1.4)

Il 0 0
I = 0 I2 0 (2.1.6)
0 0 I3

is the moment of inertia matrix which is diagonal since I measures
principal axes of inertia deviations relative to our reference system.

U in equation (2.1.4) is a three parameter control torque vector, and

B is a matrix representing the misalignment of control torques with
respect to the principal axes system. B in general is assumed close to

the identity matrix which we represent by E.

[ £ e0) |

f(eg,w) = f (&) (2.1.7)
fg(g,w)

represents environmental disturbance torques effecting the rotation of a

satellite. In particular, f incorporates torques generated by solar flux
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and variations in the gravitational field. F also includes other dis-
turbances on attitude motion resulting from other processes going on in
the satellite. The precise breakdown of this vector function is the
subject of later sections and Appendices B, C, and D in particular. For
purposes of our present discussion of control, we need only specify that
it satisfies certain constraints which are specified shortly.

The control vector

]

Uy

(2.1.8)

is subject to constraints |u1| < kl’ ]u2| < k2, and 1“3I < k3, where

kl’ k3, and k3 are specified positive constants . For an arbitrary
vector
s
v = 7)2 ’
Y3
let
1/2
3
2
[|v]] = D (2.1.9)
. 7
1=1

As a practical design requirement the parameters ki’ =1, 2, 8§ ,

are specified such that

k. > [|(B - E)ull+ [[f(e,0)[], ¢ =1, 2, 3 (2.1.10)
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for all considered vali:es of £&,w, and u. This requirement simply
indicates that our means for exerting control torque dominates the
disturbance torques it must counteract and that disturbance resulting
from misalignment is not sufficient to disrupt this situation.

The basic objective in this development is to synthesize and

present the results of simulation experiments with a control function u
such that:

(a) Transfers of attitude position for a satellite take
place within physically imposed constraints and with
sufficient speed to be useful in a specified mission.

(b) The energy put into the system in making transfer
is constrained so as not to endanger the stability
of the system.

(c) The expenditure of fuel or power required in carrying
out transfer is held to the minimum consistent with
imposed constraints and other specified objectives

such as speed of response.

These objectives are quantitatively measured by means of an appropriate
performance criterion which can be adaptively changed through para-
metric variations. In accordance with the imposed performaﬁce criterion
a feedback control function 9 (&,w) is constructed such that when g (&,w)

is substituted in equation (2.1.4),the system
Io + w x Iw = Bg(g,w) + F(&,w) (2.1.11)

performs optimally or nearly so with respect to above objectives and

imposed constraints.
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At an arbitrary but specified time to we consider the
system at an arbitrary state go’wo and our general objective is
to drive the system to the state 0,0 at sometime t] later. With
the performance criterion used in control synthesis it is possible
to impose a variety of control strategies. In particular, one
strategy could be to effect the movement from 50’“0 to 0,0 with
velocity components constrained in magnitude to be less than some
specified constant and with the time of arrival on target specified
to be no later than a specified time t* > to if possible. If it is
not possible to arrive on target at or before time t*, then the system
would be required to arrive on target as quickly as possible. Within
specified velocity and time constraints the system is required to use

a minimum of fuel. An alternative strategy would be to rigidly constrain

velocity and fuel and minimize the time required to carry out the motion.
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2.2 System Normalization and Simplification for Purposes of Control Synthestis
For purposes of control synthesis it is convenient to normalize our

system through the change of variables

~

Kl1w, v = Klu and A*(e) = K'1IA(2), (2.2.1)

<
1]

and

K= diag{bll kl’ b22 k2, b33 ks} . (2.2.2)

Our dynamical system in terms of these normalized variables takes

the form

y=v+b ‘ (2.2.3)
and

A*(g)E =y (2.2.4)
together with the composite perturbations

b(g, v, v) = K L((B-B)Kv+f(z, I"7Ky) - I"TKyxKy)  (2.2.5)

o
i}

‘where

>

= diag{b ;, by, by,

and - (2.2.6)
lo,ls 2 for i=1,2, 5.

Subject to the performance criterion which we shall introduce shortly,

we would ideally like to synthesize optimal control with these completely

general dynamics. Unfortunately, however, for a variety of reasons this is

not feasible. To begin with, the complexity of the function b makes the

analysis involved in such a synthesis completely untractible. Furthermore,

even if such precise synthesis were carried out, it would be far too
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complicated for application to real systems. What we shall synthesize is
a highly stable control for these general dynamics which is "near" optimal.
This will be accomplished by synthesizing optimal control for a system
which, from the point of view of control, closely approximates our general
system.

Let b be an arbitrary constant vector whose components in

magnitude are bounded less than I. Consider the system of equations
y=v+b (2.2.7)
and

A (e)e =y (2.2.8)

together with the constraints |vi| <1, 1 =1, 2, 3. Let us suppose
for each point (&, y, b) that v = p(&, y; b) 1is an optimal synthesis
for this system. A "near'" optimal synthesis for our general dynamics is

given by the formula

v =p(g, ys b(g, y, 0)) (2.2.9)

under the reasonable assumption that b 1is relatively small and makes large
value changes slowly. If misalignment of thrusters with the principal axes
of inertia is relatively large, then improved performance is likely if Vv 1is

given by the formula

v =ple, y; ble, y, p(g, y5 blg, y, 0)))). (2.2.10).
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2.3 The Performance Criterion

2
Let Yy and IVI denote the vectors

r ) r T
Y7 o, |
2
Yy and v, (2.3.1)
v EX
L7 L7

respectively. For our performance criterion we shall require that controlled

attitude slews be such that as to minimize the functional

t
1
J = J (n + r2-y2 + r3'|v|)dt (2.3.2)
t

o

where to and tZ are the initial time and time of arrival on target

respectively. A 1is a positive scalar parameter and Fl and P2 are

vector parameters with positive components.

Minimizing J in the process of driving our satellite to the target
attitude £ = 0, ¥y = 0 represents optimal performance with a weighted com—
promise between speed of acquisition, fuel consumption, and stability char-
acteristics. Choosing different A, P2, gnd P3 will result in a different
weighting of these important performance factors. In particular, if we
choose X # 0, FZ =0, F3 = 0, our control would be time optimal. How-
ever, time optimality for our system is not uniquely defined and we would not
in general use this particular choice of parameters. We would use nonzero
vectors for T and T which would use minimum fuel consistent to arriving

2 3

on target in minimum time. If minimum time is not required, then P2 and F3

would be chosen so as to constrain further .fuel consumption and angular rates.
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Including the term F3‘|V| in J has the effect of holding a
1lid on the amount of control force appiied. This in turn acts as a con-
straint on the amount of fuel required. The term F2-y2 in J has
the effect of constraining angular rates and thereby improving stability
of performance. Having all components of FZ positive dictates that
optimal control for ]lyll sufficiently large is automatically a despinning
mode (See Section 3 of Appendix E).

We have qualitatively explained the effects of our parameterized
performance criterion on system performance. Let us now illustrate how
the parameterization can be used to yield specific types of system per-
formance.

First let us define T to be a vector such that

1
1 |
Pl = A21 (2.3.3)
A
|3
where A11 + A21 + A31 = A, and let F2 and F3 in component form be
- ] [~ o
A2 13
F2 = A22 and FS = A23 . (2.3.4)
2 | Y33 |

Let
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N B 2 R
LYy S TRST AT L1
= dy| o= J Aoy + Aoois + )\23|v2| dt  (2.3.5)
| ‘
| 0 5
| I3 ] Agg t Ago¥z ¥ Mgzl
be called the performance vector and let
ST TIRST
N VA W (2.3.6)
Az1 r32 sz

be called the parameter matrix. In conjunction we introduce the concept

of a speed of response function t*(&,y) which we assume has been defined
apriori based on hardware and mission considerations. ¢*(f,y) 1is'a positive
real valued function which establishes that if the state of our system at

to is (Eo,yo), then we strive for the state (0,0) at time to + t*(&o,yo).
t*(g,y) may be defined simply as the minimum time required for arrival on
target from the position (g,w).‘ Let us also assume F2 and P3

have positive components which have been specified apriori on the basis

of hardware and mission considerations. They may, however, be subjected

to adaptive modification during a mission if this becomes desirable.

Assume t*(£,y) has been specified, we define

3 t*(&o,yo) o
= *
IJt*I 2 f (Ngg + Aoy + A (828 Ly )) v [)de. (2.3.7)
1=1 t
0
Optimal control defined relative to t* and J 1is interpreted in terms

of minimizing |Jt*l in slewing from any point (£,y) in our operational
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state to the target position ((,0). The procedure followed herein accom-

plishes this to a high degree of approximation.
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2.4 System Splitting through a Nonlinear Change of Variables

We have at this point reduced the dynamics to be considered to
the system (2.2.7) and (2.2.8). Our performance criterion is incorporated
through J as defined by (2.3.2). We shall now introduce a nonlinear
change of variables as the first step in the development of a procedure
whereby the control function as specified by (2.2.9) or (2.2.10) can be
closely approximated.

Let us consider the functional equation
1 .
x(t) = - j A*(2(1))2()dx 2.4.1)

where X and 2Z are differentiable vector functions defined on the interval

[to,tl] which vanish at ¢ It can be proved that for each function X(%)

7
there exists one and only one function 2(t) satisfying (2.4.1). Hence there
exists a one-to-one correspondence between the functions x(t) and z(t)

related through equation (2.4.1). Proof of this fact is given in Appendix E.

Now consider the system

y=v+b (2.4.2)

X =y (2.4.3)

together with J and the constraints on V as previously specified.
Let &, ¥y, V = p(g,y:b) be functions defined on an interval [to,t ]
which satisfy the system of equations (2.2.7) and (2.2.8) and are such that

E(tz) = (0 and y(tl) = (0. Let X and £ be related by the equation

1
x(t) = - J A*(e())E()dr . (2.4.4)
t
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Proposition I: &£, ¥, v = p(g,y:b) <& an optimal synthesis for the system
of equations (2.2.7) and (2.2.8) relative to J 1<if and only if

X, ¥, vV = q(x,y:b) is an optimal synthesis for the system of equations
(2.4.2) and (2.4.3) relative to J and

t
1
o(£,y) = q(-j A*(g(1))E(T)Tay) (2.4.5)
t

Proof of this proposition is given in Section 4 of Appendix E.

Through the use of Proposition I we have a procedure for synthesiz-
ing optimal control for the system of equations (2.2.7) and (2.2.8) by con-
sidering optimal synthesis for the system (2.4.2) and (2.4.3) together with
J. We observe that the latter system can be split into three, two-dimen-
sional systems which are coupled only through J and b. The "carry over"
synthesis is exact if given initial data E(to) = go, y(to) = yo’ the

initial state vector
X(t ) = x_ = - f A*(e())E(r)dr . (2.4.6)
t

is exactly known. Xo is, of course, only known through the formula
(2.4.4) but it can be computed through iteration to any degree of precision.
A simple and adequately accurate estimate for xo in most cases is given

by the formula

X, = -;- (Ax(0) + A*(g ))g, . (2.4.7)

Since all terms on the right hand side of (2.4.7) are computable explicitly
without integration, this estimate is highly desirable from the point of

view of implementation.
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2.5 Control Synthesis for Split Dynamics

In view of Proposition I it is now clearly reasonable to synthesize

control with respect to the dynamics

( y=v+b ,
X=y
(2.5.1)
! 5 ,
’T i£1 i (gg * Apgyy * Aggloglae
o

\  Jv.| s 1 , i=1,2, 3.

This system is splittable for purposes of control synthesis into the

following scalar systems:

( -
y,=v, ¢+ b1 R
x1=y1 3
ﬁ (2.5.2)
lo,l s 1,
t, ,
J = J (Agg # A¥7 + ;15|v1|)dt
t
o
Yo = vy t b2 R
x2_y2 b}
/ (2.5.3)
|v2| <1,
¢ 2
J = [ (Agy + Ago¥y + A23|v2|)dt
t
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{
y3 03+Z;5 S
x3=y3 s
ﬁ (2.5.4)
logl s 1,
t

1
2
J = J (Agy + Ago¥3 # )\sslvzl)dt .
t

o

Note that systems (2.5.2), (2.5.3), and (2.5.4) are coupled only

through J and the vector parameter

B

p ]
1

b=1]25b . (2.5.5)

Note also that arrival time on target is the same for all three systems.
This requirement is referred to as time synchronization. The simultaneous
optimation of these systems does in fact constitute optimal synthesis for

the total system represented by (2.4.1).

Operationally, unless a specific speed of response function is

introduced, time of arrival on target is dictated by the initial

specification of A which we denote by Ao. In terms of

this parametric specification, times of arrival Tys Tgo and Tz for the
scalar systems (2.5.2), (2.5.3), and (2.5.4) respectively are computed.

Time of arrival is then specified as 1 = max {1 A is then

1 T2 Tah
properly modified to a new matrix Al which will cause all three systems

to arrive on target simultaneously at the specific time to + t. Note
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that Ao is maintained in the computer at all times and A is recomputed

1

at each sample interval. This is necessary, of course, to preserve the
closed loop character of the synthesis.

The details of the calculations of and A are

T3? 1

Tz’ 12’
presented in Section 2 of Appendix E. Assuming, therefore, that parameters

matrix AZ is properly specified, our synthesis is completed by considering

simultaneously the syntheses of three scalar component systems of the form

y=v+Db
x =Y
§ ‘ (2.5.6)
~ 2
J = J (A + Agy” + A fvlide .
T
o
lv| s 1

Optimal v for such systems can be easily shown to take
on only the values 1, 0, -b, and -1. It is representable in closed
form as a function of X,y, and b as illustrated in Figures 2.1, 2.2,
and 2.3. In these illustrations )b 1is assumed negative and less than 1.
For positive b the control is reflexed with respect to the y—axis. Note
that changing b has the effect of moving switching curves, but otherwise
does not change the qualitative behavior of the system. Assuming perfect
data from any point x,y a maximum of only three value changes in the
control is required for reaching the target.

For the practical implementation of this system, one can drop
the value of -b for v without seriously effecting optimality. This

is accomplished by softening the control appropriately near the lines




. 1°7 °ind1g
///
= N T+=n ! e
n/m N m “~
~. _ / ,
- \ S - ~
~ ~
~ | ~
, “
H //.
1
” ™~
m .
| //.,
~ 4 N '~
w _— S V b o i# N N,
a-=n \ N m ol N
s Y="Y N

\}

A

Y,
Km

/l/

T+=n
< e (1+)qz v
. S-1 ]
| i
°y
m .
q°YTk
L
I-=n Y A Q-eﬁw e
E 14S1z-_S e
nmia\/.. +512-,54 p
q-=n
~ ~ <




2,18

27 @an814




€'z wuawﬁg




2.20

Optimal control as utilized and described herein and represented
in Figures 2.1, 2.2, and 2.3 was derived through the use of the Pontryagin
Maximal Principle. The details of the anaiysis necessary to establish

the optimality of our results are presented in Section 1 of Appendix E.
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PART III

SIMULATION STUDIES FOR ATTITUDE MANEUVERS USING OPTIMAL
CONTROL STRATEGY AND IDEAL SATELLITE DYNAMICS
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Simulation Studies for Attitude Maneuvers Using Optimal Control Strategy
and Ideal Satellite Dynamics

Many simulation studies were performed in the process of check-
out. These began with single—axis problems and progressed to more complica-
ted cases. In this process we gained intuition about the control which
enabled us to draw up an experiment plan designed to demonstrate the proper-—
ties of the system in a relatively demanding maneuver. Specifically, slews
from Mohave to Quito were chosen for illustration since they require a
reasonable rotation about both the pitch and roll axes and because both
Mohave and Quito are logical targets for such a satellite. Mohave is 35.3°
North Latitude, 116.9° West Longitude; Quito is .2° South Latitude, 78° West
Longitude. The resultant initial conditions in terms of the coordinate system
used in the program are a roll angle of .0993 radians, a yaw angle of 6.5 x 10-'5
radians and a pitch angle of .1065 radians. Since the holding mode takes over
when an angle is less than .0017 radians, the yaw angle is seen to be already in
this region and no thrust is required for this axis during this maneuver. The
angles above are computed for a satellite orbiting in the earth's equatorial
plane, at synchronous altitude and having a subpoint at longitude 100° West.

In this chapter we will analyze results obtained using the "ideal"
satellite. This is in distinction from the ''real' satellite described in
section 4 and the "elastic'" satellite described in section 5. In this con-
text, the ideal satellite has two distinguishing characteristics. Both angle
and rate information are available for use in control computation. The thrust
rise time and tailoff time are both zero and the thrust level is constant.

The satellite physical constants for all simulation appear in

the following table.
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SPACECRAFT REFERENCE DESIGN CONSTANTS

RATED THRUST  MOMENT TORQUE MOMENT OF INERTIA
AXIS DESIGNATION (1bs.) ARM (ft.) (ft.-1bs.) (slugs-ft?)
pitch 6 0.026 4.6 0.12 2000
roll 6 0.017 4.6 0.08 3580
yaw v 0.011 3.6 0.04 1970

NOTE: Above thrust and torque values for the yaw axis assume

a couple.
Moment of inertia values are for the principal axes.

Maximum thruster misalignment angles are 1 degree in
each axis.
The results described here came from two types of simulation.
In one, all computations were done on an SDS 9300 digital computer. In the
other, control values and solar and gravitational torques were computed digitally
on the 9300 for use in the dynamics run on an EAI Hydac 2000. Angle and rate
then came from the analog computer back to the digital.
The runs herein described were made on the hybrid computer unless
specifically labeled otherwisef
Figure 3.1 is a phase plane plot showing both the pitch and roll
axes during this slew for a time optimal run (v = 1, O, 0). It should be
noted that both angles go directly into the holding region with practically
no overshoot or undershoot. (We refer to the holding region as one in which
the angle is less than .002 radians and the rate is less than .5 X 10-4
radians per second.) For the roll axis, which requires the maximum time, the
thrust is on for the first half of the slew and is reversed for the final haif.
For the pitch axis thrust is cut off when the rate reaches .00104 rad/sec and
is reversed when the angle reaches —.008.radians. If the single axis control
policy were adhered to with respect to the pitch axis, it would arrive on target

considerably earlier than the roll axis with a resultant waste of fuel. Time

* Complete description of the hybrid setup appears in Part VII, Sect 5 - 9.
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3.3

synchronization causes the cut-off, which causes both axes to reach the

origin at approximately the same time, the roll axis being the later, but

using no more fuel than is absolutely necessary.

Figure 3.2 is a phase plane plot for the Mohave to Quito slew
showing the roll axis behavior for three different cost functions;
Figure 3.3 shows the pitch axis for these same runs.
From these graphs it appears that the effect of fuel weighting
is the same as that for rate weighting. This is certainly true for a
fixed initial condition. That is for a given slew, any control law obtained

)

by some (1, Aos 0) weighting could also be obtained by using a (1, O, A3
weighting. However, if the initial conditions were changed, for instance by
making both initial angles smaller, the trajectories given by the two weightings
would not be the same. This may be verified by comparing the (curved)
switching line imposed by fuel weighting with the (flat) line given by energy
weighting. These may intersect at one point but will not coincide.

Figure 3.4 shows the ground track, i.e., the trace of the earth's
latitude and longitude to which the yaw axis points as the satellite per-
forms a Mohave-Quito maneuver. Two runs are displayed here, one being the
time optimal, the other being fuel limited, both with the satellite subpoint
at 100° West Longitude. These were hybrid runs, the plots being done simul-
taneously on the analog x - y plotter, the great circle added by hand.

Figure 3.5 is the same time optimal run as appears on Figure 3.L.
However, it was drawn from digital computer output, enabling us to perform
a little more analysis of the curve and the time sequence. The initial
(0-17 seconds) trace should be approximately a straight line with slope

equal to the ratio of the torque/moment ratios in the two axes.

86 _ 1169+ 11bak __2.76 _ , o (e =5 s - 170 - o.68
¢ 35.3 - 3k.25 T 1.05 <O (p/Ty. - o8 Tt 19 = 2.
¢ 3580
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The trace in +the region (17-106 sec) is approximately an S-curve
with inflection point occurring at the roll control sign change (67 seconds).

Notice that 33.75 - 16 = 17.75 degrees of latitude are covered
in the 50 second interval (17 - 16) while only 16 - 2.5 = 13.5 are covered
in the dynamically symmetric interval (67 - 106). This occurs, of course,
because a one degree change in roll at a latitude of 35° covers about
Esg—ggg as much as at latitude zero.

We can also speculate about the relation of the track to a great
circle. Little can be said except that the track will virtually never

follow the G(reat) C(ircle) but will probably always approximate it. We have
seen above that the track will start tangent to the G. C. only if the

torque /moment ratios are properly set. Further, we notice that the track
does not cross the G. C. at 67 seconds. We gather that in order to follow
the G. C. the target and initial conditions must be symmetric with respect

to the satellite subpoint, and both axes must actuate controls together.

The time resolution on the digital printout is one second and
the time periods seem to be within this accuracy. That is, there are 17
seconds negative and 16 seconds positive on-time in pitch. There are 67
seconds negative and 64 seconds positive on-time in roll. Roll control cut
off by reaching the dead band, prior to passing through Quito, which could
account for the three second discrepancy.

Now consider the terminal behavior. From 67 to 106 seconds the
curve flattens as latitude (roll) rate slows. Then at 106 the pitch rate
begins to slow more quickly even than roll. Hence the curve turns down.

At 122 seconds longitude (pitch) error is zero and the trace moves vertically
to the final latitude. This is, of course, a result of the failure to

have perfect synchronization.
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This failure to have perfect simulation is primarily caused
by the purposely introduced bias in the synchronization calculation. That
is, we expect the axes with shorter times to come in several seconds before
the longest—time axis. This is done to avoid the choice of longest-time

axis switching back and forth.
Figure 3.6 is a graph resulting from a series of runs in which ll

and A3 were fixed at 1 and O respectively, but Ag,

factor, was varied from O to 8. The graph shows clearly the fuel-time

the fuel weighting

trade-off for the Mohave-Quito slew. For example, the minimum time possible
for this maneuver is about 131 seconds. However, allowing an additional 20
seconds would effect a saving of approximately one-third the fuel, a factor
of no small import.
Figure 3.7 exhibits phase plane plots of the roll axis in executing
a slew from TO° South Latitude, 100° West Longitude to 70° North Latitude,
100° West Longitude, the satellite being at 100° West Longitude. The figure
shows clearly the efficiency of the control in executing this maneuver, this
being a near maximum slew for the satellite. In all three cases the
holding region was entered directly with neither undershoot nor overshoot.
Figure 3.8 shows the resultant shift in the time-fuel curve if
the control torque is increased or decreased by 11%. If we examine the
curve with the increased torque we see that for the time optimal case,
(Ae = 0), both time and fuel are less than time and fuel for the standard
torque. Indeed, the entire curve is below and to the left of the standard
curve, indicating a saving in time and fuel for all cost functions.
This is to be expected since the increased thrust was obtained
by an increase in Isp and not by an increase in mass flow rate. If increased
thrust came from increased flow rate then clearly time would be less but
at time-optimal for instance more fuel would be used. This is true since

. . . . e -1 .
minimum time is proportional to thrust in the single axis case.
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Among the single axis runs which we have made on the hybrid

computer, one involving large, known disturbance torques was particularly
interesting and could be very relevant to the application if, for instance,

a single thruster should become locked open.

Figure 3.9 exhibits a pitch slew of this type, with a disturbance
torque one-half of the control torque. This figure was hand drawn from an
analog x-y plot and also shows the trajectory with no disturbance torques.

In pitch the dynamics are

5

B =6+10"+0b

and we here let b= 3 ° 10‘5.

Then the second quadrant switching curve is

82 = - 6 * 10778

and the fourth quadrant switching curve is

22

8” = - 18 ° 10'5

)

One may think of this problem with equal validity as being charac-
teristic of unequal bounds on the control torque rather than as a problem
with disturbance torques. In such a case we observe that control in the
interval [-a, b] will always imply a longer minimum time and a smaller

switching rate than the minimum time with control in the interval

-a+h a+b
[ 2 b ] 2 ]'

Of course there is an obvious distinction between unequal control
bounds and disturbance torques in that with unequal control bounds the origin

is an equilibrium whereas disturbance torques will require compensation to

keep the system near the origin.
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Figure 10 shows another single axis experiment, this time with
degraded thrust. Here the actual torque available is only 75% of that
which the control computer expects. This necessarily leads to overshoot.
However, the system is most sensitive to unknown thrust changes in time-
optimal control and any change toward reducing the rates will reduce over-
shoot. This is evident from the graph.

We can comment again on the non-equivalence of A2 and A3
weighting. It is apparent that for some weighting, say X = (1, 4, 0),
the first and second switching points could be made the same as for
A= (1, 0, 0.001). 1In the known-torque case the trajectories would both
go to the origin then and be identical. However, because of the overshoot
we can observe a difference.

When the (1, 2, 0) trajectory overshooﬁs and goes into the fourth
quadrant with an angle of about 0.5° it hits the Cl curve (see page 8))
at a much lower point than it did when the angle was 16°. This causes
the observed "flat". Notice that no such behavior occurs in the (1, 0, 0.001)

trajectory.
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PART IV

THE EFFECTS OF REALISTIC CHARACTERISTICS OF SENSORS
AND THRUSTERS ON SYSTEM PERFORMANCE
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1. Introduction

Previous chapters have discussed in some detail the synthesis
of the control law and its application under certain ideal situations
where the satellite is rigid, its state is known perfectly, and ideal
thrusters are available. In Chapter V a short investigation will be
made into the effects of vehicle flexibility.

In this chapter, however, we wish to consider the effects of
certain characteristics of the real thrusters, and, in addition, test
the filter used to process sensor information when only noisy angles are
available. The simulation set-up is the same as that described in Part III
except that all runs with real thruster simulation have been made on the
hybrid computer.

The overall block diagram shown as frontispiece to this report
presents the major functional parts of the simulation complex. This
could be considered as a ground-based simulation model, a spacecraft
onboard control model, or a spacecraft—to—éround linkage and control
model. The pre-filter refers to processing of sensor outputs to verify
the presence of useable data or to reject signals which can be shown to
lie outside of prescribed measurement bounds. Thruster selection is in-
cluded to allow for more than one control jet on a given axis (redundancy),
and the selection input command would be by telemetry link or digital
input to the onboard control system. The sensor-to-filter link can be
considered as spacecraft to ground telemetry, or straight forward analog

to digital conversion within a simulation system.
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Real thruster effects considered in this section deal with
mathematical modeling of thrust magnitude versus time resulting from
rise-time transients, thrust level decay during extended pulse operation,
and tail-off behavior. First order exponential response is assumed for

approximation of real behavior. The control impulse (H added to the

1)
spacecraft during thrust turn-on is given by:
t

1
Hl = J A(l - e
0

ALt
17yae

where A is defined as the initial steady state thrust magnitude, tl

is duration of turn-on command, and Xl is the reciprocal rise time
constant. During extended thrust-on periods, the actual steady state
level can decrease as the result of regulation system behavior. This
can occur in the form of variations in mass flow rate or variations in
specific impulse due to thermal transients. The control impulse (Hz)

added to the spacecraft during this interval can be represented by: -
t2
H2 = J A[l - KQ - e
Y
where K 1is the steady state bias constant in control torque, t2 is

time of thrust-off command (assuming no valve lag), and Az is the

=A,(t-t,)
2 1 )1dt

reciprocal thrust decay constant.

The thrust tail-off behavior results from stored energy in the
propulsion device that does not reduce instantly to zero upon off command.
The control impulse (H3) added to the spacecraft during this interval

is given by:

“

) (e -t)  =r, (t-t,)

H3=J {A[I—K(l-e 2772 17y, 3 2jdt

t
2
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where A, is the reciprocal tail-off time constant. The total impulse

3
added to the spacecraft (Ht) during a full jet firing cycle from on-
to-off is the sum of Hl plus H2 plus H3. Typical values of real

effect constants used in the study program are:

Al = 10 seconds-1

X2 = 0.0115 seconds"1
A3 = 3,333 seconds_1
K = 0.3913

The relative importance of each control impulse term, Hi’ is dependent
upon time constants involved and the total jet-on time required to per-
form a given slewing maneuver. The above constants are representative
values supplied by the govermment for a thermal storage resistojet using
a sonic metering orifice and operating in the millipound thrust regime.
Large angle slewing operations, such as from Mohave to Quito tracking
stations, would require on~times in the range of 120 seconds or more
based upon actual simulation data. For such cases rise and tail-off
impulse variations are but a small percentage of the total impulse needed
to perform the given maneuver. Early simulation tests revealed that only
the thrust decay effects were of importance in such slewing operations.
However, for very small angle slewing modes (e.g. 0.2 degrees) the total
control impulse becomes small and rise-tail-off effects are now important.
The above thruster simulation model assumes that positive and
negative torques are generated within the same control device. In the
subject case, the device would be a multijet version of a heated-gas

thruster. 1In this approach, control impulse H2 would continue to
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decrease upon switchover from a positive roll jet to the negative roll
jet. If, however, separate control jets are employed on each thrust
direction, a separate simulation model is required for H2 to properly
represent expected thrust level variationms.

The control computer assumes that the force available to it
is a constant, whereas the real thruster has a decay characteristic. 1In
order to predict the correct switching points for thruster operation, it
is necessary to incorporate either a fine-tuning of control torque input
or adjust control policy to account for thrust-time behavior. If not
compensated, this would invariably lead to overshoot relative to the
target. This leads to no instability or failure to terminate at zero,
but does introduce a rather wasteful circling of the origin before equi-

1ibrium is reached. Certain rather simple procedures are described for

alleviating this problem.

Naturally when the sensors provide only angle data, this con-
fusion is even greater since rate derivation is based partly on knowledge
of the thrust level.

The complete derivation of the filter appears in Appendix F
and only an outline will be given here. The sensor (polaris tracker and
vertical indicator) information is linearly approximated by the Euler
angles (¢, 6, W)br’ 80 to avoid any possibility of hybrid timing problems
caused by long computation times, the Euler angles themselves (corrupted
by additive gaussian noise) were used as sensor outputs. These in turn
went through a constant gain Kalman filter to produce the rate and angle

estimates upon which control was based.
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. Since

we assumed that the filter would start each slew with correct angle and

commands to initiate a slew will come from the ground,

rate estimates, especially since the initialization of these quantities
could itself be the command to slew.

Our conclusions, in brief, were
1) With the present filter, the lack of rate information does not seem

to inflict any added costs.

2) Real thrusters involve added costs but these penalities decrease auto-

matically as the trajectory is removed from time-optimality.
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11. Experiments

The basic slew here is Mojave-Quito, time-optimal.

1) Noiseless with filter. This run was made using the filter but with

no noise on the signal. That is, only angle data was available,

but it was correct.

The runs are indistinguishable from the runs in which the state is

fully known.

2) Filter with noise of standard deviation, ¢ = .00063. This is the

realistic sensor case as described in Appendix F. Again the rumn is
indistinguishable from the ideal case. To illustrate this, the

phase plane plots of ¢ and 6 appear in Figure 4.1 and 4.2, the

time traces of ¢, Uy, and u, in Figure 4.3. Notice that there are

3

no additional actuations and the satellite goes directly to zero.

3) Noiseless with filter and real thruster.

This gave us some interesting results. The phase plane plots of
¢ and 6 appear in Figure 4.4 and 4.5, the time traces of ¢, Uy, and uy
appear in Figure 4.6. Examine Figure 4.5 first.

This axis (pitch) is under control of the time synchronization
8 (013
T3

since it is "closer" to the origin in terms .of the quantity
Therefore the time during which thrust decay takes place is only about

18 seconds (see the two wu, bursts in Figure 4.6). This leads us to

108A



expect only a small overshoot in 6 since the control force is close to
what the control computer expects. In fact, comparing Figure 4.2 and
Figure 4.5, we find that a small undershoot in Experiment 2 is nicely
eliminated. This is the type behavior expected in non time-optimal runs
and gives us one method of compensating for thrust decay.

Figure 4.4 shows the problems, and there are at least two. First
there is a bad overshoot caused by the fact that the switching curve is
incorrect for the available thrust. Second there is an early change of
sign caused by the filter's lagging estimate of the state. As a small
additional time passes, the filter obtains a better estimate, reverses
sign to go up to the switching curve and then comes down on such a short
axis that the reduced thrust is unimportant.

Actually this run is a gratifying check on the filter operation.
The previous two runs have been so close to the ideal that there could
easily be a suspicion that the filter was not using external data at all.
Here we see that such is not the case. At the time when the ideal model
would be at the origin, the filter was aware of the error and did not
shut off control. Because the thrust is lower than expected, there is a
tendency to estimate the rate too far in the direction of thrust. This
is illustrated in the early switch (second switch). Then as time passes
the third and fourth switches are made bringing the satellite home.

A discussion of thrust decay compensations in the control computer

will be deferred until after the last experiment is described.
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4) Filter, real thruster, o¢ = 0.00063

The discussion of experiment 3 was heavily weighted toward
explanation of the trajectory by means of the filter behavior. This is
because the behavior under reduced thrust is predictable, consisting of
decreasing overshoots until the deadzone is reached. Any departure from
this pattern is necessarily a result of the filter behavior. In the present
experiment we can see more evidence of this.

Looking at Figures 4.8 and 4.9, we see that 6 goes to the origin
in the usual way, as we would expect, thus entering the fine pointing mode.

Looking at Figure 4.7 we see almost the same behavior of ¢ as
in experiment 3 . There is the premature second switch caused by over-
estimating the rate. But now the combination of the noisy observations
and the underestimation of rate during negative control causes the filter
to think the satellite is home before it actually is. This at present
would cause the entry to holding mode prematurely. Nevertheless because
the angle is small, such a change of mode would no doubt be successful.

The trajectory was allowed to continue, however, and very shortly an entry
to the actual deadzone occurred.

If estimation problems were occurring for large angles, this
lag in the estimator could be corrected by increasing the gain. At low
signal levels, however, the filter must depend upon its knowledge of the
dynamics and when that is faulty as here, the thrust being low, the

filter will show errors.

5) Thrust decay compensation by thrust understatement.

The thrust decay problem can be alleviated by understatement of

the thrust. This can be done precisely, very much in the same logical
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way as the time synchronization is done. However, the switching curve is
not too sensitive to this as the Figures 4.10 - 4.12 show and we can do it
much more roughly.

The thrust in each axis as known to the control computer is
70% of the initial value TO of the thrust. (The actual asymptotic
value of thrust is about 60% of To') Since this is a reasonably close
value in axis one and since the slope is not too important in axis three
because of the low rate, we obtain quite satisfactory performance.

This run also used the filter on noisy data.

Figure 4.16 shows a time-fuel curve for the thrust understatement
compensation. If we were to optimize the multiplicative factor, using a
somewhat smaller value, we could obtain a curve with a minimum time of

approximately 140 seconds. This run was made without the filter.

6) Thrust compensation by fuel conservation.

We have seen throughout that axis three is relatively unaffected
by thrust decay. This leads us to attempt compensation by keeping the
thrust on-time short.

This was done, letting X = (1, 3, 0) in all three axes.

This was quite successful as the phase plane plots Figures 4.13

and 4.14 show. However, there was a problem along the axis one switching

curve. This is the curve ¢

; 1in Figure 2.1. Figure 4.15 shows u

1
chattering on this curve. This deserves comment not only in itself but
because we showed no chatter in any previous runs. There are two factois

causing the situation. The first is quite simply that the ¢ curve

1
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has never been softened as the main switching curve and the time
synchronization switches have.

The reason for this is that the c¢, curve falls away from a

1
constant rate trajectory and this, in the noise-free case, has always

been sufficient to prevent chatter along this switching curve. The

second reason is the previously mentioned over-estimation of rates in

the thrust decay case. When control is set to zero this overestimation
corrects itself and the vehicle then finds itself below the switching

curve.

The combination of these two effects caused the three extra
actuations which appear in Uy These could be removed by a simple
softehing of the ¢, curve.

Using perfect angle and rate information, as in Figure 4.16, a
time-fuel curve Figure 4.17 was generated using the real thrusters with no
thrust understatement. The lesson to be learned from Figure 3.6, Figure 3.10,
and this plot is that not only does a weighting of about (1, 1, 0) put
the vehicle in a favorable time-fuel tradeoff position but it renders
the control quite insensitive to thrust level changes. This is of course
to be expected since time optimal trajectories are well-known to have many
undesirable properties. For instance, notice that the fuel and time
required for (1, 1, 0) in Figure 4.17 is very little different from
that used by ideal thrusters as shown in Figure 3.6.

This is very important. A great deal of study today in theoretical
and applied control is devoted to the design of control systems which are
insensitive to parameter changes. For instance if a parameter can be expected
to change by 5% and this degrades the optimal performance index by a large

amount it may be preferable to choose another control which is not as good
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=

for nominal parameters but is flat over the expected variations.

This is approximately the situation we obtained by using the
(1, 1, 0) weighting. By using a trajectory which remains a shorter
time on the (possibly incorrect) switching curve, we render our costs
less sensitive to system modeling errors. In addition we can expect such
trajectories to be somewhat less sensitive to the combined filter-thruster
errors.

Thus, unless the required trajectory time exceeds some minimum

time available for the slew, time optimal control should be avoided.
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PART V

ELASTIC DYNAMICS AND THE EFFECTS ON SYSTEM PERFORMANCE
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5.1

5.1 Control of the Flexing Satellite

The equations used to simulate the elastic effects are derived
in Appendix F. 1In this chapter we give a brief description of: 1) our
reasons for choosing lumped parameter simulation; 2) our checking pro-
cedures to assure correct translation of the equations to the machine;
3) the results of the simulation.

Our conclusion is important enough to be stated immediately.
For the physical parameters which we received from GSFC at the time,
the boom is virtually undisturbed by the control and its motion has little
effect upon the satellite motion. It appears that these conclusions will
hold for reasonably large changes in the boom damping and in the distribu-
tion of moments of inertia between loaded boom and satellite, so long as
the loaded boom has a natural frequency a thousand times higher than the
closed-loop satellite.

The analysis and simulation discussed in previous chapters has
considered the satellite to be a rigid body. Such analysis is useful
because it is comparatively simple, and because it is usually a very good
representation of the actual motion. It has enabled us to gain intuition
about the system behavior in successive stéps. We have, in particular,
demonstrated how a simple model can be made progressively more realistic
while our design can be based on a growing knowledge of the actual system.
We are in effect following an adaptive design procedure.

We proceed now to initiate an investigation of the effect on

our proposed control of the vehicle's elasticity.
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5.2

Space vehicles by their nature are light and designed close to
their structural limits, hence we may expect considerable flexibility in
all satellites. Looking to the future, it appears that these problems
may be especially serious for large space platforms. In the present case,
however, the principal contributors to any lack of rigidity are large
booms extending from the satellite and bearing loads at the distal ends.
Because these are the dominant elastic members and because the
weight of the boom itself, as opposed to its end loading, is reasonably
small, it appeared practical to simulate all the elastic effects by means
of a single spring-mass—-damper lqcated at some distance from the vehicle
center of mass.
The equations of motion for the mass particle appear, with their
derivation, in Appendix F.
For simplicity we included only one main particle, but to have it
most sensitive to control actuation, placed it on axis two, the pointing axis.
A mass of 2.18 slugs was placed 19 feet from the vehicle center of
mass. A frequency of 2.3 cps was given and a damping ratio of about 0.3
was assumed. The homogeneous equation describing the movement of the end of

the boom relative to the satellite attitude takes the form
2.18 ¢ + 20 q + 456 q =0 . (1.1)

A time optimal Mojave-Quito run has been made.
By the time two seconds had passed, equilibria were obtained in
9 and q3 of -5.4 e-6 and 2.03 e-6 feet, respectively. First we

observe that since both wy and Wy are ncgative, these are the correct

signs for a particle located on the positive 2-axis. Next we show that
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5.3

the v:.ues are correct. Restricting our consideration to single axis

motion we find that the couplecd -atellite-particle can be reduced to a

single equation for each particle

. 13 + mlz . I, + mzz ml
mq, + ( —— )Bq + (———)ogq, = T-u
1 13 1 13 ‘ 1 13 3 .
1.
. Il + mlz . I. + m22 md
miy + (Mgt (T deag =TT Y
1

Using the values mentioned above for the particle and the standard
inertias and torques we can predict much about the behavior and compare it

with the computed results.

Let I, = 3580 - me? = 2793
2
I, = 2000 - me” = 1213
lull = .08
|u3| = .12

Then the equilibria are

q3(w) 2.03e-6

which checks with the output.
The damping ratios are Ly = b, L3 = .36. Natural frequencies
are w; = 2.95 cps, Wy = 2.61 cps; damped frequencies are W, = 2.7 cps,

-7.5t

wy = 2.44 cps. The peaks of 9 should decay like e and those of

-5.9t
e .

To check the frequencies we determine the times where the functions

cross the equilibrium value. This gives a frequency of 2.7 cps in 94 and
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5.4

. 2.44 cps in Cq-

Determining the damping is rather inaccurate but we have,

avcroximately,

aq peaks of -6.8 at .18 and -5.53 at .56
d3 peaks of 2.65 at .2 and 2.08 at .62.

L . -7.45¢t
These indicate, very roughly, that a3 decays like e and

5 like e_6t which is quite adequate accuracy.

This dynamic analysis is an excellent way to check the overall
behavior and gives us both a feel for the system's motion and by predicting
the computer output, assures us that the simulation is correct. In addi-
tion, however, several spot checks were made on al and a3 during their
transients. These checked within computational accuracy thus establishing

. the validity of the mechanization.

As was expected the transient oscillations of the mass particle
cause oscillations in the angular acceleration. In fact, we observe oscilla-
tions of over 10% in the acceleration at times; however, the frequency of
these oscillations is high enough to prevent their affecting the overall
motion. In fact the difference between this elastic run and a rigid body
run could not be detected, either in fuel expenditure, fime required, or
phase plane plot. The only time the oscillations could cause a problem is
at a switching point, where they might cause chatter and conceivably a
resonance. The "softened" switching curves are apparently sufficient to
handle this case, however, since we observed no extra switchings and the
overa’l trajectory behavior was as if the boom was rigid. Naturally the
dynamics must be handled correctly; that is, the control computer must be

‘ aware of the added moment of inertia contributed by the loaded boom.
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An additional run was made with ¢ = 0.05. The computer output

showed again that the overall motion was unaffected by the boom. Further-

2
more, the influence of the quantity I+?l as a multiplicative factor in

the damping term (see 1.2) always insures a higher damping than the homo-
genous equation (1.1) would lead us to expect.

In short the present simulation leads us to expect very little
problems due to elasticity. These results could, of course, be affected
by a drastic lowering of the natural frequency of the loaded boom from

2.3 cps to say .l cps or below.
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PART VI
APPENDICES ON DETAILED MATHEMATICAL ANALYSIS
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APPENDIX A

GROUND TRACK ANALYSIS
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Appendix A

Inverse or Ground Track Program. Given a fixed target latitude and longi-

tude (LT’ zT) and a varying set of Euler angles eRb"WRb’ S2b? find the
corresponding set of initial latitude, longitude and Y, LI’ ZI and Y
In equation (1.3.32), denote the known right hand side by the

matrix with elements (cij)’ i.e.

or alternatively:

= L
Since the cij are known, we wish to solve (1.3.32) in the form:

(A3) B(L, %, Y) = (c ;)

13
for the unknown latitude, longitude and Yy (subscripts dropped). This
is the same as solving the equations (1.2.33) where the aij elements are
replaced by known c_ 's.

ij
We immediately obtain an equation for y:

c
(A4) tan y = zli
33

and two equations for the two unknowns L and %

cos L sin & _ S21

(A5) =
sin L c23
c
(46) (k - gi: t cos %) _ 22
€23
Use (A5) to eliminate ¢ in (A6):
1/ €21 .2 sin’L | €22
(A7) k - cos LV1 - ( ) 5 = ( ) sin L,
€23 cos’L €23
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an equation reducible to a quadratic in sin L. Replacing cos L and

squaring:
c c
2
(A8) (1 - sin2 L) - ('—gi )2 sin2 L= ( EZQ sin L - k)
€23 23
Collecting terms:
2 2 2 2 , 2 2
. _ _ -0
(A9) sin L(c21 + Cy9 + c23) 2kc22 ¢,y sin L+ (k l)c23
Now:
2 2 2
(A10) Cy1 + oo + Coy = 1

from (1.2.33) and the definition of o, (1.2.31).

Solving (A9) yields

. _ 2 2
(Al11) sin L = Cy3 (kczz_iw/k (c22—l) + 1)

To determine the proper sign of (All), we note that the equations (1.2.33)
must be satisfied for all values of the variables. Substitute (All) into

(1.2.33f) to obtain:

(A12)

2,2
ay kc22 i‘va (c22—l) + 1

and let L = 0 = 2. By (1.2.31), we must have

(A13) o

2 k-1

il

By (1.2.33e), we must have:

(A14) e, =)y
22 a2

Substitution of (A13) and (Al4) into (A12) gives:

(A15) k-1 = k+1
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We, therefore, use the = ~us sizn and write:

. o | R :
(A15) sin L = ¢ . (kc22 'Jk (c22 1) +1 )

We may then use (A5) to find sin £.

Summarizing:
c
(A16) tan y = Eié
33
(AL7) sin L = o (ke.. —K2E.-1) +1 )
23 22 22
“21
(A18) sin £ = = tan L .
23

The known values of ci

3

matrix multiplication we may write:

(A19) c., = (cos ¥

13 sin ebR) (sin ¢Rs)

bR

+ (sin wbR) (cos ¢Rs)

(A20) Cyq = (-sin ¢bR sin WbR sin ebR +. cos ¢bR cos GbR)(81n ¢Rs)

+ (sin g SO WbR)(cos ¢RS)

(A21) Cyz = (-cos dpr SiP Ypr sin 6 o - sin ¢, cos ebR)(51n ¢RS)
+ (cos ¢bR cos WbR)(cos ¢RS)
(A22) Cyy = (-sin bpg Sin Y p cos B g ~ €OS o cos ebR)(cos eRs)

+ (-sin ¢bR sin wbR

+ (sin ¢, cos ¥, o) (sin ¢p . sin eRs)
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may be obtained in several forms. From (Al) and

sin 6, o + cos dpp COS GbR)(-cos 2s sin eRs)




. (A23) Cpp = f-sin oo sin ¥ o cos 8, 0 - cos ¢, o sin Oyg) (sin Oz’
+ (-sin ¢bR sin wbR sin ebR + cos ¢bR cos BbR)(cos ¢Rs cos GRS)
+ (sin ¢LR cos WbR)(—sin ¢Rs cos eRs) .
An alternative to equations (A19) to (A23) is to use matrix

multiplication in equation (A2) (see equations (1.3.5) and (1.2.29) for the

matrices on the right hand side of (A2)).
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APPENDIX B

SOLAR PRESSURE TORQUE ANALYSIS
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1. Radiation pressure acting on a flat surface.

In this section we shall investigate some physical
properties of the pressure of the solar radiation on flat
surfaces with different inclinations with respect to the incoming
solar rays. The solar radiation is composed of photons of various
frequencies, emitted by the solar surface in radial directions.
The great distance between the sun and the orbiting satellite allow
us to consider the solar rays acting on a surface as travelling on
parallel paths. If the photons, composing such rays, hit an
ideal '"geometrical flat surface" then they would be reflected
according to the laws of geometrical optic. In real situations,
however, part of the photons will be absorbed while others will be
reflected in various directions. Each photon carries a momentum

whose magnitude is given from the expression

where h is Planck's energy constant, v the frequency of the pho;on and
c the speed of light. The principle of conservation of momentum

implies the momentum of a photon absorbed by the flat surface is
transmitted to the surface. If instead a photon is reflected , it
changes its direction so that by the same principle, it transmits to

the surface a momentum P such that
+p +p =

where Py is the vector which characterizes the momentum of the

incomin hoton. P is the vector which characterizes the momentum of the
g P r
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reflected photons. Thus the effect of the flux of photons on a
surface is a transfer of momentum which produces a pressure on the
surface.

We shall now proceed with a more detailed analysis of
the phenomenon. .Let us define the solar pressure constant S as
the average momentum associated with a radiation beam through a
unit surface normal to the beam in unit time., If complete absorptivity
is assumed, S can also be defined as the average force acting on
a unit area normal to the radiation beam. S has the cdimensions of
a pressure,

Let us consider a flat surface o and the unit normal
vector N through a point O. Let b denote»the unit vector that
gives the direction of the incoming beam of photons and 8 ihé angle

between b and n.

Assume that the surface we are considering is an "ideal flat surface'.
Then an incoming photon will be reflected in a direction r ‘in the

plane defined by the b and n vectors, and such that the angle

between r and n will be equal to the angle between b and n. Let us
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call y the modulus of the momentum of an incoming photon and =
that of the transmitted momentum. From the law of conservation of
momentum ub (momentum of the system photon-surface before
the impact) = pr + t1(-n) (momentum of the system after the impact)

i.e.:

1.1 -nt = ub + u(-r),

that is, the surface will acquire a momentum
1.2 -NT = -n 2ucosh.

if complete absorptivity of the surface is assumed, a photon will

yield to the surface a momentum equal to ub, whose components will be
1.3 ub = n cos® (-n) + u sind t

if t is the unitary vector that defines the intersection between the
plane defined by b and pn, and . In the average, the total

momentum incoming on ¢ in a unit time will be, if A 1is the area of O
1.4 S Alcosel

If complete reflectivity is assumed, o will be subject to a force given by
1.5 Fr = (-n) 28A|cose| cosg .

If complete absorptivity is assumed, the force acting on o will be

1.6 F, = S[A|cosg| cose (-n) + A|cosg| sing t].

As is evident |Fr| < 2|Fa].
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Let us now assume that, on a statistical basis, of n photons
incoming on a given surface, nv be reflected and (1-v)n be absorbed
(v 1is called "reflectivity constant" of a surface); then the total force

applied on the surface a will be:

1.7 Foo=8lv F. + (1-v)F,]

S[(-n) A|cos®|cosé (2v + 1-v) + t A|(cod 6| sin 6(1-v)].

T
]

S[(-n) A|cose| cos8 (L +v) +t A|cosel sind (1-v)}.
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2. The sctellite model.

Let ue as=ume tha-. as far as the radiation is concerned,
the satellite we are “nterested in could be described as a parabolic
dish I whose base radius is 15' and w nse height is 3-1/4'. This
satellite is assumed to rotate around the earth at a distance in which
there will be no appreciable variation in the solar pressure constant,
whose value will be assumed to be 9.4-10_8 lbs. per foot squared.

It is assumed further that the center of mass is the center of the

base circle.

T ) "y
| ..

Figure 2.1
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Let us define a coordinate system whose origin is the center
of mass, whose K axis points along the -p2 axis of the satellite
(here it is assumed that the p2 axis is the symmetry axis of the satel-
lite), whose 1 axis lies in the plane determined by the p, and b

directions and such that

b7 < % , i.e.,

2.1 cos bi=x0

The Jj axis is then defined so as to complete a usual right handed
system.
In this system let us write the equations of the truncated

paraboloid as
2.2 z = —Y(x2 + y2) + 2, z 32 0

and call & the angle between the k axis and the direction of the
beam in counterclockwise direction, looking from the positive J axis.

Therefore for 2.1

2.3 0< 6 <m

-

Generally, the condition under which a point P 1lying on a
given surface is lighted by a radiation beam incoming with a direction
b is as follows: if P 4+ b, - » < 1 < 0 is the parametric equation
of the half-line through P (1t = 0), for negative T, this half-line

has to have no intersection with the given surface other than < = 0.
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Then, if n 1is the vector that gives the normal to the surface, if

-

<bnc

N

kis
2
the surface at P is lighted "from outside'" (in the direction of n );

if

A
o
b
A

N
N]:l

the surface at P 1is lighted "from inside'" (in the direction of -n).

Taking advantage of the formulas 1.4, it is possible to ﬁandle,
using the coefficient v, both the cases of reflectivity and absorptivity
at once. We shall, on the other hand, consider them separately, both for
pointing out the differences between them and for taking full advantage
of the symmetries of the propos2d body, that makes possible, in the latter

case, to derive in a very easy way the applied torque.
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3. Complete absorptivity case.

Consider the satellite as a rigid body subject to forces all
in the same direction, the direction of the incoming beam b. It is
well_known that it is then possible to translate those forces along
their direction and consider them all applied, for instance, on the same
plane.

Consider a point P on II; disregarding infinitesimals of
higher order we shall identify an elementary area over I  with the
corresponding area on the plane tangent to n at P.

Let o be a plane, and A, an area over o; let Au be
subject to a radiation beam with some radiation constant S; from section
1 we know that A, will be subject to a force in the direction of b,
of modulus SA , where A, is the projection of Au over the plane
normal to b. Consider over the plane z = 0 the "shadow" of A, or
A,, i.e., their projection along the direction b; the area of this

projection is A and over this area will act a force of modulus SAL;

z?

S 1is the angle between the k axis and b; we have

A= AZ * lcoss|

which means that over an area A, of z = 0, '"shadow'" of some area A s

we can consider applied a force of modulus

|aF| = sA, |cosd] .

Let us point out that this force doesn't depend at all on Au. This means
that, in the complete absorptivity case, for computation of the torques,

over every elementary area dx dy of z =0, in the region projection on
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z = 0 of the beams that interact with a given surface, there is applied

a force
S dx dy|coss|

that aoesn't depend on the shape of the surfacts: two surfaces of
arbitrary shape, haviag the same ''shadow" are completely equivalent.

Consider then the given satellite and suppose, as in figure 2.1,
that %— <6 <m . Let us look at the geometrical figure that the
shadow of the beam will draw on the 2z = 0 plane. This figure will be
composed of: a) the circle base of the paraboloid dish I, b) the dotted
region A in figure 2.1, projection of the beam intercepted by 1 out-
side the a) region; an analytical expression of its boundary will be
derived further.

Let us fix two coordinates x, y, and search for the elementary
torque exerted on O by an infinitesimal surface between x and x + dx,
y and y + dy; as we said, it is possible to consider this elementary
surface in the plane 2z = 0. The torque applied on O by a force of

components F, F, F, acting on the point (x, y, z) is

y

T = 1i@F, - sz) + j(zFx - sz) + k(xFy - yF,)

where 1j,j,k are the directions of the x, y, and 2z axis.

Recalling that in our case 2z = 0, let us consider the
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torques applied on 0 by four points Py, Py, Pgs P, of
coordinates respectively (x,y); (-x,¥); (x;-y); (-x,-y). The
force applied in each of these points is the same F(Pl) =
F(Pz) = F(P3) = F(P&).
It is:
T = 1(yF, - yF+yF ~yF ) + j(—xF_ - xF +xF + xF )

Pl+P2+P3+P4

+ k(xFy - xFy + xFy - xFy - ny-ny+ny + yFy)

0i + 0j + Ok

So the contribution to the total torque from the points on the circle
base is zero. It remains to compute the torque from the dotted region
in figure 1.

The exterior boundary of this region is the projection on
the z = 0 plane of the radiation beams tangent to the paraboloid dish.
Let us call b the direction of the incoming beam; for a point

X,y,z over I be lighted "from outside" it is necessary that

that is cos bngo.
So we have

2yx sin 8§ + cos §

s,
(]

32.2 . 922
/v @57+ &
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ie x ¢ —=X .
T S 2y tand ?

and the points on the boundary of the lighted region lie on the

plane x = :%E- » Wwhere we put t = tan6. Let us fix Yo in this

plane; the corresponding Zq over I will be given by

1 2
z, = =Y( +y.) + 2
0 4Y2t2 0

The equations of the straight line in the plane Y =¥ through the point

(iil—-, zO) with angular coefficient tan(g-- 8 = %- will be then
1 2 1 1 _

The intersection with the plane 2z = 0, as function of y, 1is given by

1 2 1 1
Y ( +y) -2 = =(x + — ,
4Y2t2 t 2yt

i.e. the parabola

4yt

It is evident that in the case

n
< §s X
0 2

on the 2z = 0 plane there will be no more shadow, but the preceding

equations will give the projection over 2z = 0 of the beams actually

interacting with 1,
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For having the torque T on O we have to compute the integral

(recalling z = 0)

J [[1 ydF, - j xdF, + k (xdFy-ydFx) ]
A

Now dFy = 0, and let us consider a point (x,y) in 4 and the
corresponding point (x,-y); for symmetry the contribution of these
two points to i dez and -k dex is zero whereas their contributions

to xFZ sum uyp; so it remains to compute

where the region of integration is that part of 4 that lies in the
y > 0 half-plane.

From Section 1 we know that

sz = -g dxdy |cos(s-m) lCOS(G—ﬂ) = '&dxdy[cos 5[005 § =
2 .
= § dxdy cos § sign (cos§)
So
2 £ (2
T =-jJ 2SS cos"§ sign (cos §) IY dy J xdx
’ 0 X
0
where
= L
X ” y
T
— < 6
2 1 2
x; = t(=yy" + 2+ =)
4yt
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x0=—t(—yy2+z+ L) ‘,
4yt '
kil
J/__N. C Vs sy
=/ 2
Finally T can be written
’ 2
Ve ) =ty e+ =)
T = ZjS C0825 f dy J 1y 2 4yt xdx
0 Xq = —Y. -y
and Ve is given by
1 + 2 _ % y. = 2 1
2 ’ = -
4y t2 £y £ \ 4Y2t2
Ve is real if
tandz l_‘ tanbs - —1
2 Viy 2V %y

if these conditioms are not fulfilled, the integral has to be

taken as zero.

Under the preceding conditions, the integration gives

y
f
. 2
T=2§5 cos’s J % (2 vy + 2 + —l—z—)z -yt y’1 ay =
0 4yt
2 2v2 s 1 1 2.3 2.2 %
= X = (= - 2v2 ) -
j S cos"6 [t s Ypt3 G- 2vh e )yf + (L7t 2 +
Y
and recalling yf =\/~ - 2 2
Y 4t
: 2 2 1 2, %8 _ % 4 . 1
T=J6S cos” &=~ 5 2[tan(5 15 --.Y_ 15+ 5
T 4y® tan®s 30Y

Let us now consider the actual dimensions of the given

satellite.
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The relation

[tan 5[ > — gives
2 Vay
| tan 8] = 2.31,
|
[
/o i
/,' |
/
/
/ |
0 - iy i
2
|
1 ;’j/
! /
! 14
-/
- ;
and so
- SRV 10% 2 10>
T = J9.4 " 107° cos®q V225 - —=——{tan"g * 5.6 - 60 + 5 ]
8.25 tan'§ 6.21tan §

foot-pounds

, -8 77e . -
1im T= j 9.4 « 10 225 + 5.6 = j 7.910 6 foot-pounds
&> +12‘-
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4. The -omplete re lectivity case. Shadows on the satellite.

In the abscrptivity case, it was no: at all necessary
to consider exactly which portions of the satellite were
actually illuminated but only necessary to consider the global intersection
with the beam. This is not the case where reflectivity is
concerned. In fact, not only the magnitude of the force but
also its direction depend on the characteristics of surface over which
the force is applied.
Consider first the case in which the beam comes in from

above, i.e. with an angle § such that

Nll—‘
=)
”n
o
A
5

Since the surface interacting with the beam is convex, the
conditions we gave in the preceding section can be summarized in
the following statement.

A point on @I is illuminated from the direction of n

by the radiation with direction b iff

4.1 g-s b n < %-n
i.e.

4.2 cos b n <0 .
It is

b=1sin 6+ 0 -k cos §
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2yxi + 2yyj + k

/1 + (32)2 + (32)2

2yx sin 8§ - cos ¢

/1+ 67 +()

so that cos bn=b'n =

and recalling sin § > 0 we obtain the conditions

/T -1 b

- ——— -_ < <.

Y £X g 2ytang§ > 2 7 857

if |t51m i/ > 2 /4y, the whole surface will be lighted; in the

other case, the boundary of the lighted region will lie on the

-1 m

plane x = 5o—c. As $ >3, x>0, soin this position exactly

half of the satellite will be lighted.

m
2 The surfaces interacting

Consider now the case 0 s § <
with the beam will be both convex and concave, so it will be
necessary to verify both the conditions pointed out in the preceding
section. In general, if & is sufficiently close to %ﬂ, it will be
kpossible to distinguish three different regions on the satellite:
1) A region lighted from outside. 2) A region lighted from inside .

3) A region not lighted from any side, (shadow of the region 1).

NS
Consider figure 4.1 = 7
Ty
Lo 7 \\\
p /\\\14 , ™~
LS
N 2 -
\/; - . : ,//,'/"
— ~\ . B _
~)
Figure 4.1 .

~1
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For the first region the usual condition will hold:

/ L -1 o
- Y sk s 2 ytané 06+ 2

The second region is the one in which the rays interact from inside
without having any previous interaction with the surface.
Analytically this condition can be expressed as follows:

Let us fix a plane vy = Vo> and chose an arbitrary
Xq3 the corresponding z, on w will be given by

- 2 2
zy = - Y(x0 + yo) + 2

The straight line in the given plane through this point with

angular coefficient tan (g -9 = taid =.%

will be

2 2 1
z + Y(xo + yo)—l = t(x - xo)
and will interact with the paraboloid
2 2
z=Y(x"+y) +2

at X5 X, solutions of the system

z= - Y(x2 + y2) + &

2 2 _1
z + Y(x0 + yo) - %= €

(x—xo)

Y =¥,
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This will give:

X = e— —

2 "ty %o

Let us assume that =z

zy = —Y[Qi% - xo)2 + yg] + 2 <0. This condition will assure that

no other previous interaction occurs with our truncated paraboloid.

0 >0, and impose the condition

We can rewrite this condition in the form

1.2 . 2 '3
—— > —
(XO + ty) + Yo Y
i.e. the exterior of the circle with center at %% , 0) and

radius +V x . If 2 $-> \%l, the whole base of the satellite
Y
will satisfy this condition; otherwise the intersection of the two

circles will occur at the solution of

-1

i.e. =
¥ 2yt

These points of intersection lie just on the plane that bounds the
corresponding region lighted from outside, so the orthogonal projection

over z = 0 of the satellite for a given ¢ will be as in figure 4.2.
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fis

Figure 4.2

The following scheme will clarify the different phenomena occurring

as a function of §:

- 1
T~tan 1 m—
partially from
outside
. lighted from
outside
w
Figure 4.2
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partially from

outside

§ = tan-l T%—-

lighted from
inside
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5. The total reflectivity case - Expressions for the torque

Let us fix (x,y) on the z =0 plane. As we pointed

out in a previous section the force acting on an elementary area dA

is

5.1 dF = 2S dA cos 6 sign (cos 8)n = dF sign (cos ®)n

where S 1is the solar radiation constant, n the normal to
surface, 6 the angle between the direction of the beam, b ,

Let us fix a point (x,y,0) and consider over I;
z = z(x,y) the area whose projection over the =z = 0 plane
X and x +dx, y and y +dy. If ¢ is the angle between

and the Kk axis,

3z.2

5.2 dxdy—l————l— axdy V1 + GH* + ("’z 2

Further we have:

b= sin §1 + cos 6§ k

"az-sin d + cos §
so that cos 8= b-n =

/1+( )+()

and the 5.1 can be rewritten
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(- ?i'SinG + cos 6)2
0
dF = n 28 dxdy Y1 + (¢

9z,2 3z, 2
L+ 5" + G

The components of dfF over the 1i,j,k directions are:

. 3z
dF = dF 9% sign (cos 6)
x /{ 0z 2 . ,0zZ.2
DT D
dz
Ty
dF_ = dF y sign (cos 6)
dz, 2 dz, 2
Ae @D+ 6D
sz = dF sign (cos 86)

1
3z, 2 3z, 2
A'*' (ax) + (‘g‘y‘)
If z = —Y(x2 + yz) + 2,

oz
= - 2yx 3y - T2y

Consider now the elementary torque over (0,0,0). It is

daT = 1(deZ - zdFy) + J(zde - xsz) + k(xdFy - dex)

It is possible to simplify this expression taking advantage of the
symmetries of the satellite. Let us consider together two points
P1s Py of coordinates (x,y,z) -and (x,-y,2), and sum up the two
corresponding elementary torques. Since sz and de are even in

y and dFy odd in vy, G(pl) = B(Pz) the resulting torque will be
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i(0-0) + 2j(zdFX - xsz) + k (0-0)

9z
2dT = 2j sign(cos ) (z dF CE - xdF L
327, 322 327 322
S+ &% G2 1+ 6D+ gD
= 2] — dF (-2 %i—— x) sign (cos 0) =
\ 32,2 | ,9z,2
\/l + (BX) + (3}’)

3z . 2
4isign (cos 8) S dxdy (- 5;-s1n6 + cosd) [(—Y(x2+y2)+ 2) ( 2yx)-x]
0z, 2 9z,2
1+ 6D+ D

where we did substitute the expression for z. This is the expression
for the elementary torque from two points, (x,y,z) and (x,-y,z).
This expression has to be integrated over the areas described in the
preceding section, or, more precisely, over the y > 0 part of these
areas.

We are interested in three kinds of areas:
1) A semicircle.
2) A semisector.

3) Half of the region between two circumferences.

" See Figure 4.2
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We shall compute the surface integrals as double integrals.

Let us fix a value x, and perform the integration

y
1 2
Sdx dy(ZY x sind + cos §) {2Y2X3-X(2Y2 _ 1)+2Y2xy2}
2 2 22
Yo 1+ 4y™ x + 4y7y

?.dTy =-sign(cos §)4j

where the limits are:

for 1),2) Yo = 0
| —
yl_ - X
\
( % 1 2
for 3) Yo = /;‘- (x +m)

we have

2 2y2x3 - x(2y2 - 1)

2dTy =-sign (cos ) j4 Sdx(2y x siné + cos ¢)

4 Y2
I~ -1 7
[ ———1‘—2‘7‘ tan yr—
1+ 4y'x 1 + 4y x
2
by
f 2.2 y 41
+ 5_[y R 1 + 4y'x tan -1 ]

2 2 2 2

by 1+ 4y x
2 Yo

4y

So looking at the expressions for Yo» o©me should in general evaluate

integrals of two kinds:
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*1 2
f(xo,xl,é) =<+ I (2y x sin § + cos 4) .
X

Q
C2v58 - x@ye - 1) 14y tan X ]
t 2 73 1 . 2
by 1+ 4yx —5 tx
by
. . % xz
+§ [_\[-% - x2 vV —%-l— xZ ta,n—:L 1} dx
4y 1 2
-——2-+x
by
*1 2
g(xo,xl,G) = +J (2y x sin § + cos §)".
X
0
L 2
2.3 2 = - x /- (x
2y°x” - x§2yl - 1) [ b4y — (tan—l X _ tan 1Vy
by 1+hy x . x2 i x2
4Y2 &Y
X \/E 2 ‘J 2 1 2 1+ 4x2x2
+S (Y= -%x" - V== (x+ )T -
2 Y Y yYtan 6 4Y2
[v 2 \/I 1.2
- - X - (x+ )
* (tan - ——— - tan 1 “? Y?fﬁré )] dx
1 —li + x2 —li + x2
b4y b4y
L 1 2
where in the last expression — - (x + )" has to be taken as zero for
Y ytan §

3 1 2
Y - H ytan 6) < 0.
have sign (cos §) = -1.

case, we have:

where:

<

Consider first the case %-<

Since only the function f(x

T =+ 4S f(xo,xl,s)
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§ ¢ m. From (4.2), we

0°*1°

§) occurs in this




- r— <1
tan ™t (-2Viy)E S m VT +V$

< 8¢ tan_l(-z \[E;)—l _\/?: =

2y tan 6

[STE
~<

Now consider the case 0 5 § ¢ and suppose first that

NIE!

$ < tan'l(z YV SZ,y)_l

The satellite is lighted from below, and sign (cos g) = +1. Thus:

T = -j 45§ f(xo, xl,é)
-1 _l
¢ < tan (2Vay)

X = _— X = + —_—

For & > tan—1(2 .V’Z_Y-)—l the integrals are taken over two distinct regions:
one, whose contributions to T are given by the function f(x,g), 1is
lighted from above, so sign (cos®) = -1, and the other, lighted from
below, whose contributions are described by the function g(x,8), presents

sign (cos € = +1. We get then

. N 1 1
T = +J 45 f(xo,xl,é) -J 4s g(xo,xl,a)

§ > tan_l(2 VQY)'—l

where
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_1 pr—
tan (ZVIcy)lS 6512'- -vV=
Y 2ytand 2y tand Y
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6. Expression of the torque in the body system

Let us introduce a new set of coordinates, the ¢y system, in the
following way:

The plane c c contains the earth orbit, ¢y points toward

l’

the first point of Aries, ¢, is normal to the

2

3 C1s plane in such a way

so to minimize the angle between the c, direction and the polar star; cq

2

completes a usual right-handed system.
We also define an e system as follows: e; coincides with cys

e, 1is pointing north along the axis of rotation of the earth; e, completes

3
a right-handed orthonormal system.

The relation between the c; system and the e, system is given

by the transformation
e 1 0 0 c

6.1 e = 0 cosa sina c

e 0 ~sina cosa c
3 3
| %3 \ AN

or
. — -
€1 “1
6.2 e, = c(0, 0, a) ¢y
e Cc
3 3
L _ N _J

where o is the angle obtained by rotating Cy into eq (o is actually a

negative angle equal approximately to - 23°),
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-Gy

We shall assume for simplicity that the position of the earth is
such that the C2 vector points from the center of the sun to
the center of the earth. With this assumption C2 is also the
direction of the incoming beam b. The relation between the Ci
system and the p, system in terms of a, (G(t)se), (eRs’ ¢Rs)’

(e(t)bR, f(t)bR, ¢(t)bR), (ebp, Wbp, ¢bp) (See the sections on Coordinate

Systems, and Transformations, and Euler angles) is:

N

T

6.3 ipz = €T (B, Yy ) COE)ps ¥(E) g, 0(E)g) Clpgs O dpg)
I P
I
1
c(e(t) ,» 0, 0) €0, 0, a) 2
©3

Lets call G = (gij) the matrix of the resulting transformation, so that

~ -~ ~

c.p, = ; = ; -
6.4 cos C,p; = By,3 COS CyPy = By,3 COS CyP3 = 83y ’

In the computation of the torques the set (x,y,z) of
coordinates has been introduced. Let us write the transformation
between this set and the p-set in terms of an angle §# that
describes a rotation around the p2axis. With reference to fig.

6.2 it is
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6.5

or

6.6

'- - —
- -
Py cos B -sin B 0 X
Pyl = 0 0 -1 y
Py sin B cos B 0 z
- _J - aeed S
- —
pl x
m T
P2l = cqo, s, 7 )
P3 Pg Z
| B /
N )
o
2 4,'7 L e
q‘ S -~

In accordance with the assumptions of section 2, we shall determine the

angle

that is J * ¢

Zero.

B so to fulfill the following conditions:
a) The y-axis is normal to ¢, (direction of the incoming beam).

s .
g = 0 or the ay, element of C(0, B, > ) G is zero.

b) The component of ¢, on the x-axis is greater than or equal to

2 0 or the a,, element of C(O, 6,-% ) * G is greater

That is 1 * ¢ 12

2

than or equal to zero.

In terms of the elements of C(0, B, %-) * G, these conditions can

be written:

6.7

6.

8

[
O

“819 sin B + 84, COS B =

N\
O

g, coOs B + 84, Sin g
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6.7 gives

(6.9)

Eliminating 819 in 6.8 using 6.7 (or 6.9),

we obtain

sin €20,

sin B <0,

and the following cases

N

832

> 810 <0;

if

if

tan

tan

tan

tan

are possible

832 |

812

832

812

832

812

B3z

812

o3

(N1
/2%
w
A
=3

A

%ﬂ\‘BSZN

The preceding relations completely determine 8.

Let us write the computed torque as [ = Tj
Tp, = - sin B T(§)
Tp, = 0
Tp, = cos B8 T(9)
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where T 1is a function of cos 8, sin § and tan &§; from the

assumption 2.3, we have

+ V1 - cos®s
cos 6

sin § = +:Vl - coszd tan § =

and finally cos §= z-¢C where is a function of

2 T T89> €22

the angles appearing in equation (6.3).
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7. Computations.

Compute the matrix {g;

L

T
G=2=C (ebp, wbp, ¢bp) C(e(t)bR, w(t)bR, ¢(t)bR)*

c(6, , 0, ¢RS) C(e(c)se, 0, 0) Cc(0, 0, a).

Rs

Compute the angle  from the expression

g
tan B = 32
812
with the following conditions
i : I
if 839 %2 05 815,20 0z £s 35
s
839 2 05 815 0 7S Bsm
3n
g32\0,g12$0 TTSESZ—
3 . <2
By € 05 815 2 0 ot ks
St [ — .
e cos § 899}
— \/1_32
sin 6=+‘\(1—g§2 tan 0 = + ____2_2._
- 822
Set
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= (1 - V) Ta+ \)Tr

= 0.75

L
Compute — =
P Y

4 Y2 tanzé

if it is <0, put T =0

if not write

4y “tan” ¢ Y 30y tan” ¢
-8
where S=9.4 10
p=37 V= =15
4 Y
Define:
X ,
f(Xo,xl, d = I (2y x sin 8§ + cos §) .
X
0
—XLZYQ l)" v ]+
l+4YX \/1 3
by
S JEZ
— - X
el NI it
2 Y 2
by —_
S 1 2
1_2+X
by
Xl
1
1 1 , 2
g(xoa x19® = f 1 (¥ x sin 8 + cos 9) .
X
0
i3 2 v iR 1
12Y2X3 - x(2y2 - 1), by (¢ -1 Y _ -1 \¢Y - (x+ L tan
. v L \/ an tan
2 2 2
4y 1+ 4y x
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if

if

put

and

if

put

and

if

if

put

and

if

put

and

‘V[~ L &+ /=

—VFL+41X
Y Ytan 3

l b - =+ tan 6)2
(tan l-—l——————— - - ¢ )1} dx

tan

, + X ‘/

29y % 0 compute tan—l (-2v lY)—l
Y2/t e s e

»
o
]
1
)
»
[
|
+
N

3
n
wn
rh
n)
)
o
-
»
e
O
e’

>

"

|
3
»

]

|

'—I

]
n

+4 S f(xo,xl,s)

899 € 0 compute tan_1(2¢ ly)—l

0< 6 ¢ tan—l(ZV zy)_l

0 Y 1
T = -4 S £(xp>%;,0)
Larmtess 0
NV -1 1 -1
0 y > "1 2+ytan§ > 70 2 ytan§ °
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. \ 1l 1
T, =+ 48 £(xy,%,,6) = 4 5 g(x_, x],6)
Having so computed T for every §, write

T =<«s8in g T

T =cos g8 T

where Tp are the components of the torques along the
i
Py axis.
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APPENDIX C

GRAVITY GRADIENT TORQUE ANALYSIS
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Consider a satellite, whose geometrical and physical properties
are summarized in the given inertia moments and products, with respect
to the body system.
Let us describe the position of the satellite by the vector r
that points from the center of the earth to the mass center of the satellite,
and by the three Euler angles, 6,Y,5, between the S system and the b

i

*  The interaction between the earth (here considered spherical)

system.
and the satellite can be described by a potential U that is a function of
the given coordinates r,6,¥,%.

As long as the approximation of the so-called McCullagh formula
is within prescribed accuracy, the "rotational" potential of the satellite
in the earth field, that is, that part of the potential that depends on the

rotational angles, can be written

-3 B
1) U—2 r3 10 .

where IO’ the inertia moment of the satellite around the Sy axis, is given

by the relationship

2) I. =1 ai +1I -a2 +1 a2 + 21 .a

29 3y 33 33 12 + 21 a,a, +21

Here I.,. and I,, are the inertia moments and products and a, = s, * b,; in
ii ij i 2 i

terms of 6,¥,¢ these can be written

3) a, = sin 8 cos ¥
a, = - sin 6 sin ¢ sin ¥ + cos 6 cos ¢
ay = - sin 6 cos ¢ sin ¥ - cos 6 sin ¢

*In the notation of the Euler angle section, these angles would be
designated as bpss Yhgo ¢

we drop the subscripts.

bs+ In this section, for convenience
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With reference to Figure 3.1 of the section on Euler angles, let us con-

sider the three infinitesimal rotations de, d¥, d¢: the expression

- . U oy U
4) v = -[ 2 d¢ + 5o dY¥ + o del

has the dimensions of work and can be interpreted as
(5) T d¢

Where T is a vector, representing the total torque acting on the satellite
and d¢ is also a vector, the infinitesimal angular displacement.

Both the 4) and 5) are scalars, invariant under change of coordinates,
but the 5) is expressed as the scalar product of two vectors, and this scalar
product as to be specified in some set of coordinates.

Here there are two natural set of coordinates: the axis of the in-
finitesimal rotation of the Euler angles, i.e., the set
53,b1,s; of Figure 3.1 in the section on Euler angles, and the b-axis.

We want to expand the scalar product of 5) so as to have an ex-

pression of the following kind:

T+ dé = L Tid¢.

1 1

This latter expression is true only if the set of axis along which the ex-
pansion is performed are orthogonal. Now the set of rotational axis is not
an orthogonal set: this implies that the expansion as to be performed along

the b-set, and the 5) can be rewritten as

6) T+ dp = Iy Ty dey
1 1

Consider now the 4): d6, d¥, d¢ are the components of the vector de
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along the rotational set of axes: let us transform them into the b-system

R | . P
by means of the matrix D ~(¥,¢) of the section on angular velocities :

— — —
do d¢b1
7 av = p Ly, 0) ao,
2
de )
b3
S, — | ‘.‘J

and the 4) can be formally rewritten

[ a6
bl
d o J -
8) ~-dU = - [ —[dI)' s _a__[\l{ ’ -% ] D l(‘}"e) d¢b
2
d¢b3
S

Recalling the 6) and the fact that the infinitesimal angular displacements

are arbitrary the following identification can be done:

__ ;@ sy, -1
9) [Tbls sza Tb3] = = [ a¢ s P) s 2 ] D (\ype)

and transposing

— — —
T 3U
by 3¢
10) T, = -p Ly, 0 U
2 a¥
T el
Py 36

. _

So we have

fT o
I
bl ¢
- . 3y U sin ¢ 9y
11) { sz = tan Y sin ¢-§$ + cos ¢'3g ~ s ¥ 76
9y Yy cos ¢ 9y
Tb3 = tan Y cos ¢-§$ - sin ¢ x5 - eV 76
\

——————

*Multiply equation (4.11) by dt and invert D(Y,¢).
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It is possible to verify that from the 11) it follows

I = -§§ ((I..a. +1 -a +
r

0181 + 1,53 * Iygay) (may)

+ (I31a1 + 132a2 + 133a3) a2}

=]
I

3u
3 {(Tyya) + I8y + I1qa3) a5

+ (I3la1 + 132a2 + I33a3) (—al)}

=
|

3 _
by T 3 (Iy53) + I8, + Tiqa9) (may)  +

+ (IZlal + 122a2 + 123) al}

The assumed values for the principal inertia moments (in the Py system) are:

2686 slug ° ft>

I along the P axis

I, along the P, axis = 1846 slug ° ft2

1617 slug ft2

13 along the P4 axis

It is possible from these to obtain the values for the Iij components of

the inertial matrix in the bi system recalling the transformation law for

tensors of rank two:

| ] -
tuy = by hyg top
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where

pa P g

So we have:

22 21 1 22 72 23 73

12 = Ipp = hyghyy I; #Byohyy I + hyqhyg I

13 = I3p = hyghyy I +hyohgy I, +hyghay I

I, = I3y = hyyhy) Iy + hyohyy I, + hyghq, Iy

in which hi are the elements of the matrix

3
)T

that describes the transformation from the P system to the bi system

(see page 47 for the elements of the matrix C).
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APPENDIX D

SIMULATION OF ELASTIC BOOMS ON THE SATELLITE
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SIMULATION OF ELASTIC BOOMS ON THE SATELLITE

I. Introduction: We wish to investigate the effect upon satellite motion

of elastic booms projecting from the satellite proper. That is, without
compensating for the boom's motion, indeed without any knowledge of it, the
present control law will be used on a satellite with an elastic boom, just
as it is now being used on a satellite with a rigid boom. The degradation of
control can then be observed in terms of changes in fuel and time requirements,
and increased number of control actuations.

The solution of the actual physical problem requires the solution

of the partial differential equation for the elastic beam

2% _ _ k® 3%
8t2 P 854

(see Morse, Vibration and Sound, p. 154). q(t,s) is the displacement of the

boom from its equilibrium position (which is itself a function of the satellite
attitude).

The allowed frequencies of the oscillation are

_kl/2 2
i anzpl/z i
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Where

K = radius of gyration

Q = Young's modulus

see Morse, P. 151f
2 = length
p = density

and the first few values of Ai are given in Morse, p. 158.

AL = L8751, ) = 4.6941, A, = 7.8548 .

Even better we have

vy = 6.267\)1
vy = l7.548v1
v, = 34.387\)l .

As an introduction to the effect it appeared advisable to GSFC and
MSG to examine the effect upon the motion of a single particle situated off
the antenna but linked to it by a spring-damper device. The purpose of this
memorandum is the derivation of the equations of motion for the system composed
of our present satellite together with such a particle.

The equations which will be given were derived first by a lagrangian
technique and second by the vectorial methods which appear here. Since the

final results agree, we have great confidence that the equations are in fact,

correct.

have unchanged definitions.

II. Definitions and Assumptions: ¢, 6, V¥, Wys Wy, g

Il’ 12, 13 are the principal moments of inertia of the satellite about its

center of mass.

Computation of the center of mass and of the moments does not include
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the mass particle.

The lagrangian is

2
1

1 02 22,2

__1 2 1, m
L= Ea(q +q3) +35w'lnt 2(u vty )

where o is the spring constant; 4 and qq are the projections of the particle
on the body 1 and 3 axes (we assumed the particle to be on the body 2 axis,
2 units from the c.m.); and &, 6, and w are components, in the target re-
ference system, of the particle's inertial velocity.

Notice that the particle is constrained to move orthogonally to
the body 2 axis.

A damping coefficient B will also be assumed.

Given an axis system rotating with velocity w with respect to an
inertial system, it is possible to write the equation of the motion in the

“ following way:
ma = F —Zngxvo) - mw x (wxr) - mo X T 1

where

is the observed acceleration

Jm

is the observed velocity

J<

r 1is the position

F 1is the force applied.
It is important to point out that in some texts (for example,Goldstein, p. 135)
the last term is missing, because the angular velocity is assumed constant.

The force F applied on the body B by the spring and the damping is:
F = -ag1 - agqzk ~ Bqyi - Bqqk 2)

. where as usual i, j, k are the unit vectors that give the directions of the
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ql’ qzs q3 axes.

Writing down the equation 1) along the i and k axes we have:

" . .
mq; = - oqq - Bql - 2mw2q3 - mwl(w1q1+w22+w3q3)
2 * L]
+ mql(wi+w§+w3) - m(w2q3-w32)

"

mqy = - 0qq - Bq3 + mequ - mw3(wlq1+m2£+w3q3)

+

2.2, 2 .
m 3 (wy+wgtug) - m(wydy-w,q,)

These are the equations that describe the movement of B with respect to
the antenna.

The equation for the antenna, a rigid body constrained to rotate
around a fixed point, will be the Euler equations: if we assume that the

system {i, j, k} is the set of principal axes for the antenna, these are:
Ilwl + (13—12)w2w3 =1,

Izwz + (11—13)w

13 7 2

I, + (I

3 n

27Ip)wu; = g
where Ii is the pripcipal moment of»inertia and ng theltorque applied along
the corresponding axis. These torques will be both those applied directly
over the antenna and those arising from the interaction between the antenna
and the body B.
Our next step will be deriving these last.
The forces that the antenna applies over B are:
a) the force applied through the spring
b) the frictional force arising from the damping
¢) the constraining force.

We did not write the equation of the motion for B in the j direction, because
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the constraints do not allow any motion in that direction. On the other hand
. the terms in 1) arising from the movement of the reference frame do not
have zero components along the j axis. We therefore can use the j component
of equation 1) to solve for the force of constraint.
Now if a), b), c) are the forces that are applied on B by the
antenna, B will apply forces on the antenna with the same magnitude and

opposite directions. More precisely:

a') Through the spring is applied over the antenna, at the

point (0,2,0), the force

F = aqli_+ aq3§

b') From the friction is applied over the antenna, at the

point (ql,l,q3) the force

‘ F, = sc}li + s%g

c') From the relative motion is applied over the antenna at

(ql,l,qB) the force (arising from the expansion of the

right hand member of 1))

F = [—2m(w3ql—wlq3) ~- mwz(w )

L
c +w2 +w

1% 393

2,2, 2 . . .
+ ml(wl+w2+w3) - m(w3ql—w1q3)]3
Finally, recalling that the torque T over (0,0,0) is given by:
L = 1(qyFymqqFy) + J(a3F;-q;Fy) + k(q;F)=q,Fy)
where Fi is the force in the 9y direction, we have

)+m2(m2+m2+m2)

‘ Tl = l(uq3+6q3)—q3[Zm(w3ql—wq3)—mw2(wlql+w2£+w 1Hegtuy

393
- m(lzl3ql"l:)1CI3) ]
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T, = Bajq; - 9,45 ’ @

. . . 2, 2 2
T, = -2(aq +6q; )4y [-2m(uga)—uy ) -muy (g qy+up o) tmd (W) Huytug)

- m(w3q1_mlq3) ]
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CONTROL SYNTHESIS ANALYSIS
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6E.1 Optimal Synthesis of Scalar Component System

1.1 Introduction

In Part 2 the synthesis of optimal attitude control was reduced

to considering three component scalar systems of the form

Ty =ut b
xl =x2
ﬁ lu] <1
t, ,
J = J (Ay + Mgy + >\3|u|)dt
t
2]

where b 1is constant with magnitude less than 1 and optimality specifies
the minimization of J. Our control objective is to drive the systems

to x2 = xl = 0. For the synthesis developed in we shall specify in
addition that - 1 < b < 0. For b =0 the proper synthesis is given by
passing to the limit as b approaches 0. For O0< b < 1 the proper
synthesis is easily seen to be the synthesis for -b reflected about

the x2 - coordinate axis.
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Following the Pontryagin Maximal Principle we consider the

system

. 2

Ty = Ay + Ay ay” # A5 |ul )

. !

xl =x2 B \:) (1-1)
Ty =u+b . J

We may write the Hamiltonian

2
H(xy, xg, 3,, 27, 29, u) = zold; + Xg mo” + Azlull

(1.2)
+ 27 Xy + 39 (u + b).
Therefore, the co-state equations are
2 \ \
ZO=— 8.7:0:0’
. oH
B =0, ) (1.3)
s 0 _
ZBg = - Ty < T 2zo Ag Lo = 27
/

It will be necessary to actually solve the equations of motion
(1.1) on intervals of constant control u(t). Let u(t)= U, on an

interval [01, 02]. Then for 07 £ t € 09, we have from (1.1),
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\
(b +u,) (t -~ op) + xo(07) , f

!

xz(t)

; ) Y (1.4)
x7(t) =3 (b + uo) (t - 0q) + xZ(ol) (t - o7) + xl(ol) J
!
hence,
2
en =22 , (1.5)
1 2(b + u,)
2
h k i - —
where is the constant xl(cl) 205 % u,)

Let wu(t) be an optimal control with a corresponding optimal
trajectory (x7(¢), xp(t)) on [t,, t;]. Then from Pontryagin's Maximum

Principle, we have
(3,(t), 27(t), ag(t)) 7 (0, 0, 0) on [t,, t1], (1.6)
z,(t,) < 0, (1.7)

and

H(xy(t), xo(t), z,(t), 27(t), zg(t), ul(t))

(1.8)

= Mxy(t), x9(t), 3,(t), 27(t), z9(t)) =0

almost everywhere on [to, tl], where M is defined by
M(xl, Tos 25 215 22) = sup{H(xl, Tys B s Brs Zgs u) (1.9

:lul <1}

Since changing the control on a set of measure zero does not change the
trajectories nor the cost, we shall usually assume that we have redefined

the optimal control so that (1.8) holds for every t in [to, tZ]'
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1.2 Control Law
We consider separately the cases z2,(t,) = 0 and zo(to) < 0.

First, suppose that z,(¢,) =0. Then H reduces to
H=31 x2+22(u+b).

Thus M = B Ty + |z2| + z2b; that is, the optimal control wu(f) must

satisfy

u(t) = sgn zg(t) (2.1)
for every t in [to, t7]. From (1.3), we have

29 = - 24 (2.2)

so that 22(t) is linear. If 22(t) = 0, then zl(t) = 0 by (2.2) and
zo(t) = 0 by assumption. This contradicts (1.6). Thus 22(t) £ 0, so
that from (2.1), u(f) 1is bang-bang with at most one switch. Let this
switch ocecur at ¢ = 1. Then ZZ(T) = 0, hence H(t) = zl(r) xZ(T) = 0.
From (2.1), if 27(t) =0, then zg(t) = 27(t) = 0 contradicting (1.6).
Thus xg(r) =0. For ¢ > 1, either zy(¢) = (¢t - 1) or xo(t) = - (t-1).
In either case, it can never happen again that xg(t) = 0. Thus

zg(t) = x7(1) = 0; that is, the trajectory must already have reached the
target at ¢ = 1. Thus the point (x;(t,), Z5(t,)) must lie in one of the

two '"optimal parabolas"

x22 \
T1 T ey Y120 |
, ) (2.3)
.’X)2 ;
.’L‘l = > X £ 0 |
2(b-1) 1



If (x7(t,), x9(t,)) does not lie on one of the curves (2.3),
then it must be that 2z5(¢,) < 0. We may assume without loss of generality

that zo(to) - 1. We then have

H= - [)\1 + )\2 (L‘Z + )\3 |u|] + Zl .'E2 +22 (u +b), (2.4)
and H 1is maximized with respect to # by choosing

+ 1 if > A

B2 7 13
u = ; 0 if |zg| < Az, (2.4)

-1 if g < - As.

\

If 245 =Xz, we can conclude only that u is between 0 and 1, while if

g = - Xg, we can only conclude that u 1is between -I and 0. We must

then determine the sets on which 22(t) equals Az or A3 and we must

determine wu(%) on these sets. By (1.3), 52 = 2k2 Zg = 27, hence
52 = 2)\2(“ + b) .

Thus 2,(¢) > Az implies u(¢) =1 which implies 52(t) > 0 so that z,(t)
is concave up. Also, z2(t) < - Ag implies u(¢) = - 1 which implies

52(t) < 0 so that zg(t) is concave down. , Similarly, Izg(t)l < Xs implies
u(t) = 0 which implies 22(t) < 0 so that zZ(t) is concave down. If

29(t) = Az  onan interval I, 34(t) = 0 = 2x,(u(¢) + D) which implies

u(¢) = -b >0 on I, If z49(t) =- Az on an interval I,

1]
|

52(t) 0 -2l2(u(t) + b) which implies u(t) = - b > 0 on I, contradicting

the fact that u is between -1 and 0 for 39 = - Az. Thus zg(t) cannot

identically equal -A; on a interval. Furthermore, éz(t) is continuous.
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From this analysis we conclude that the set {t : z2(t) = AS} consists of
either one point or a closed interval, while the set {t : zg(t) = - AS} con-

sists of either ome point or two points. Thus an optimal control must obey

the control law

+1 if t) > A,
22( ) 3

-b if z.(t) = r, , (2.6)
u(t) = 2 8

0 if |zy(t)| < ng,

-1 if zg(t) < Az

rm—— PR N,

and zg(t) cannot equal —Xs except on a set of measure zero. Moreover,
since 22(t) is continuous, u(t) cannot assume the values 1 and -I
consecutively, nor the values -b and -I consecutively. The optimal
trajectory segments corresponding to each of the values of u(f) in (2.6)

are given below in figure 2.1, using (1.5).

J
: x
u=1 2
g u==D
A — e u,«!—l
\‘ /
u=0 )
BN Vo
\ b
i pool
| e : o 4 - >
. | i
. ! i ! x 1
. [ \
/ ! i .
i ' u=-b
IJ <
! A

|

Figure 2.1
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Furthermore, only continuous segments of the seven graphs given in Figure 2.2

are possible for 2z _(t).

i
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The corresponding strategies are

-1, 0, + 1

-1, 0, -1
-1, 0, -b, +1
: +1, 0, -1

+1, -b, 0, -1

+1, =b, +1

(I 2 O = I = O =

Of course, '"substrategies" may occur, such as -b, 0, -1 which is a sub-

strategy of E .

1.3 Switehing Point Analysis

We now determine the trajectory segments terminating at the origin.
Clearly, a trajectory segment corresponding to u = -b cannot terminate at the
origin. If a trajectory segment corresponding to u = + 1 ends at the origin,
it must lie completely in the 4th quadrant. A trajectory segment corresponding
to either u =0 and u = -1 and ending at the origin must lie completely in
the 2nd quadrant. Consider the case where termination occurs at a final time ¢

1
with u = 0. Then at ¢t = tz, we have

H=- Al + 22(t1) b = 0. (3.1)
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From (2.6), |22(t1)| € Az Hence using (3.1) we have

A
5 = 22(t1) P -X3 s
hence,
!
b< - 'xg . (3.2)
Now suppose termination occurs at a final time ¢; with u = -1

and suppose that the initial value (xl(to), xz(to)) does not lie on an
optimal parabola of the form (2.3). Then zo(to) = -1, and z,(¢) is

decreasing from the value -Ag as t > tl. Hence at t = tl, we have

H = —>\1 - )\3 + 22(t1)(b—1) = 0.:

therefore,
A, + X
1 3

Zg(tz) = 55 (3.3)
From (2.6), zz(tl) < —Xg, hence

A, FA

1 < =\

S 32
which implies

A
- T < b (3.4)
3
!
From (3.2) and (3.4) we conclude that if -1 < b g - XE-, termination
occurs from the 2nd quadrant only with u = 0, unlesg the entire trajectory
x
is a subset of the optimal parabola segment x; = 2__ , & €0 . Also,
A7 2(b-1) 1
if - < b < 0, then termination occurs from the 2nd quadrant only with
p\
3
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- 1.

These possibilities are shown in figure 3.1.

A .
2
et e . . -
%y
A u= +1
T aL
3
A
1
-1 <b g - i
3

Figure 3.1
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1.4 Relationships at Switching Points

We next derive relations between xl and Xy at various

switching points. The results are presented in table 4.1. For con-

)\1 - )\3 b '2A3 b
venience later,let § =y —— and r =\ — , and for

)\2 2

A A FA_D
1 -

-— <b<0 let q=";—————1 ) .
A3 A,

Let T be a point at which u switches to or from -b. Then

at t

i
~

2
H=- (A, + 2,2, (1) + x3|b|] + 2, (t)) zy(1) =0 (4.1)

2
and
22(1) = 2>\2 xz(r) - zz(to) =0 .

Thus 2, (to) = 2)\2 x2(T), and using this in (4,1) we have

A switch from -b to +I occurs in [cﬂ and after which u

remains +I. At this point then,

P—
X (T) = ;\\/,——————XJ _ Ag b = 8
2 Ao )
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switches from

At the

switching point, x, and

Zq satisfy

-b to -1
-1 to -b
-b to +I
-b to 0

0 to -b
+1 to -b

0 to -1
-1 to 0

0 to +1
+1 to O

no such switch can occur.

no such switch can occur.

x2=_

x2=s

x2=s

.’L‘2=S
A1
_i—<
3

(

if -1
if b

l

}

| if -

L

8

or Xy, = = 8.

or xr, = - 8.

b<0 and 0 < Ly <q .

A
<b<-->‘—3—,then .’!,'2>0.
A1
=-X:;’ then .'x:2=0 or .’X:2>0.
A
Xg-< b <0, then x5, >q or

-q < x2 < 0.

—S$x2<0.

0 < x2 £ 8.
b .- A1+A3b
s =
Ao
Table 4,1
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A switch from -b to 0 occurs in [:] and EZ] after which
4 cannot be +I. Thus the origin is entered from the 2nd quadriant,

hence
xZ(T) = 8.

Each of the switches 0 to -b and +I to -b may occur for xz(r) =8
or xz(r) = - 5, see figure 2.2.

Now suppose u switches from 0 to -1 at 1. Then

H=- [\ + 2y a2 ()] + 27(t,) @g(t) - Az b =0, (4.2)
éz(t) = ZJ& xZ(T) = zl(to) < 0, (4.3)
and u(t) = -1 for all t 2 1, see figure 2.2. Thus we must have
A
1

- <b<0 and z.(t) > 0, see figure 3.1. Thus from (4.2) and
Xz 2

(4.3),

2

A, + Ay Xo (T) + A, D

2 (t ) = 1 272 8 > 2)\2 xz(‘[)
1o xZ(T)

so that
b 2
. 2
Since z, (t) > 0,
B
11 3
0 < xg(r) <Yy ‘*“*};;‘-*— =q.

Let u switch from -7 to 0 at Tt. Then
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2
H=- D\ # 2y @, (0] +25(t,) 2y(1) = Ag b =0 (4.4)

and
22(1) = 2hy xp(t) = 27(¢) > 0. (4.5)
There are now several cases, If b = _Al/As , then (4.4) implies
0= = A, = Ay zp(1) + 55(t,) wylt) + A,
= 20(t,) To(1) - Ay 2gP(t)
so that either xZ(T) =0 or xzeT) = zl(to)/kz . Using (4.5),

xz(r) = zl(to)/xg < 29 x2(1)/A2 = 2x2(r)

which implies xZ(T) > 0, Thus if b = -Al/ﬁ s+ We can conclude only

3 A
that either xg(T) =0 or xZ(T) >0, 1If -1 <b < - Xé—, then from
(4.4) we have
2.(1 ) xo(t) =25 + A, & 2(T) +hob <A, 2(1) (4.6)
101,/ Zplc) = Ay + Ay &y 30 <Ag %y . .
If xg(r) < 0, (4.5) implies
2,(t ) xo(1) 2 2X x2(r)
1'707 "2 > a%2 "2 ’
Al
contradicting (4.6). Thus mz(T) > 0, for the case -1 <b < - -
3
*
Finally, if - o < b <0, then
3
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2
zl(to) xg(r) = Al + XZ Zg (1) + A3 b .

A
If x,(t) = 0, we have b = - Xl- , a contradiction. If xZ(T) # 0,
3

we have, using (4.5)

A, + A, x,2(t) + Ay b

< 2x2 xolt) . (4.7)
If xZ(T) > 0, (4.7) yields

A x22(r) > A

9 + Az b,

1
hence
xo(t) > q .
If xg(r) < 0, (4.7) yields
A xZZ(T) <A

7 * A3 b,

hence

xZ(T) > - q.

Let u switch from 0 to +1 at 1, Then u(t) =+ 1 for

t > 1, hence xZ(T) < 0. Also,

r 2
H=- LAI + Xz x2 (T)} + zl(to) x2(T) + AZ b =0 and

éz(r) = 2A3 xg(r) - zl(to) >0,
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hence

2
AJ + A z, (1) - 12 b

< 2A2 x2(r)

which implies

-8 < xg(r) <0 .

Let u switch from + to 0 at 1. 1In figure 2.2, this

happens only in [€ , hence xZ(T) > 0. The argument of the

preceding paragraph yields

0 < xZ(T) <s.

1.5 Construction of Optimal Trajectories

Table 4.1 contains most of the data we need to construct the
optimal trajectories in phase space. However, we do require some further
analysis by which we determine a bound on trajectory segments corresponding
to u =20,

Consider the trajectory corresponding to strategy [e] of
figure 2.2. Let wu(¢) =0 during [el on an interval [01, 02]. Then
for ¢t in [01, 02], we have 52(t) = 2A2 b, hence
55(t) = 2y b(t - o) + By(07) and -2\, = 2y(ay) - 2,(0) = A, bloy - 0,)°

+ éz(cl) (09 - a7) . Since éz(oz) $0, -2z Ay b(02 - 01)2 » hence
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|x2(02) - x2(01)| = |blo, - 0;)| = - bloy, - 07)

(5.1)

A similar analysis also applies to [a1] . For [6] , [d] , and

£, we have é2(01) =0 f(or ég(oz) = 0) , hence for these

trajectory segments

ENCOEENCRIEE R (5.2)

The one case of Lbj

one point, we have

|x2(02)

For we have
x

| 2(02)

We comnstruct

time from the final

5.3. First, let -

where 3 takes on the value X at precisely

- x2(01)|

2 3

2r .

- x2(01)| s or .

the optimal trajectories by proceeding backwards in

time.
A
Vs

The results are given in figures 5.1, 5.2, and

< b < 0, Then only segments corresponding to
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u=1 or u=-1 can end at the origin. Proceeding along the segment
2.
T2
x, = 2(b-1T into the 2nd quadrant, we have two possibilities. Either

the entire optimal trajectory is part of that half-~parabola, or this
final segment meets a trajectory segment corresponding to u = 0

0 <xy, <q, see table 4.1. Suppose the latter occurs. Then zz(t)

has one of the forms [b |, e, IE] s or :E: . Now using
table 4.1 and the first part of section 5, we see that each of these
strategies must actually occur, otherwise vast regions of the 2nd quadrant

will not be reached by optimal trajectories. For example, if [f'

does not occur, the trajectories do not reach the region

If either {f; or _B» occurs, then since u = - b only on

Ty =8 in the 2nd quadrant, and using (5.2), the u = 0 segment meets

the final u = - I segment precisely at Ty =8 - 2. Proceeding further

along this optimal trajectory, either the u

]

- b segment completes the
full trajectory, or it doesn't. If it does not, then the u = - b meets a
u =1 segment (strategy ) completing the trajectory, or it meets
a u =0 segment (strategy ﬁﬂ ). If the latter occurs and does not
complete the trajectory, then by (5.2) the u = (0 3segment meets a u = - 1
segment precisely at Tg=8+r, completing the trajectory.

If the u = 0 segment meets the final segment for 0 < Ty <8 -1

then this corresponds to strategy [e] because trajectories cannot cross

each other, and the u = 0 segment meets a u = 1 segment for 0 < Tg < 8,
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completing that trajectory. The switching curve Cl where the u = 0
segment meets the initial u = 1 segment is computed in section 6.

If the u = 0 segment meets the final segment for s - r <Xy < gq
A

(note that s - r < q whenever - X§'< b<0 and s - r =g when

M
- = b), then this corresponds to strategy [&  because trajectories
caniot cross. This u = 0 segment then meets a u = - 1 segment for
q < x2 < 8 +r, completing that trajectory. The switching curve C3
where the u =0 segment meets the initial u = - I segment is computed

in section 8. This completes the construction for the optimal trajectories

whose final segments correspond to u = - I. The region so covered is

2 2
x x

Umy, o) my ¢« gy v U gy zp)e 2y< 5y

(5.3)
and z, < 0} .
A
Still assuming that - 7—'< b <0, we proceed along the segment
2 5 '
T2
= i . imal
xz 2 (hel) into the 4th quadrant Then either the entire optima

trajectory is part of that half-parabola, or this final u = 1 segment
meets a u = 0 trajectory segment, or the u = 1l segment meets a U = - b
segment. In the first case, this completes the optimal trajectory. The
second case corresponds to strategy [a! and this switch occurs for

-§ < xgy < 0. Hence this u = 0 segment must meet a u = - I segment for
—q < Xy < 0 (we shall see later that this switch actually occurs for

s +r <x, < 0), completing that trajectory. The switching curve 02

where the u = 0 segment meets the initial u = - 1 segment is computed ‘

in section 7.
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The third case corresponds to one of the strategies Idl or

g . As before, each of these must occur, otherwise part of the

—

z; - %, plane will not be reached. In [g] the u = -b segments
meets a % =1 segment, completing the trajectory. In 'd_ the

u =-b segment meets a u = ( segment which in turn meets a u = - 1
segment at T, = -8 + r, completing the trajectory. This completes the
construction for the optimal trajectories whose final segments correspond

to u =1. The region so covered is the complement of the region in (5.3).

A
1
This finishes the case - < b <0, see figure 5.1.
3
Xl A
The two remaining cases b = - y—and -1 < b<- L are
3 A3

treated similarly, except each is slightly easier than the case handled

above. The results are shown in figures 5.2 and 5.3.
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1.6 Switehing Curve Cq

We start with a procedure which will allow us to derive both

Cﬁ and Cz. Let the interval [to, tJ] be divided into three parts so

that u=h on [¢ Tl], u =0 on [TI,T2], and u =-h on

O’
[12, tl]. If h =1, we assume that (xI(TI)’ x2(rl)) belongs to Cl
while if % = - 1, we assume that (xl (TI), .'r:2(rl)) belongs to 02.

Solving the equations (1.1) on these intervals leads to the following:

xo(t) = b(t - Tl) + x2(T1) R and
(6) = L bt - )% vz (vt
xl = 3 - T3 +x2 Tz -T1)+$1(T1)
for T <tx< Ty Thus
xg(t) = (b—h)(t—rz) + b(’l’2—T1) +x2(11), and
z(8) = L b - mt - 1 PHb(ry - 1) #aylr)] (E - )

2
+ lg'b(TZ - 11) +x2(r1)(12 - Tl) +x1(11)

for 19 <t < t;. At T =t the above becomes
\
0=x2(t1) = (b - h)(t; - 12) + b(tg = 11) +x2(11) »
0=2a,(t,) = L (b-nit -r)2+r5(r —r)+x(1:)-](t—r) (6.1)
1'*17 = 3 1 2 Eite 1 2717, "1 2 >
1 2
t 3 b(ty - 17/ +x2(rl)(r2 - 11) +x1(11). ) '
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Solving the two equations in (6.1) simultaneously; that is, eliminating

(t1 - 12), we have
b 2 n 2
0 = - h(rz - Tl) - 2h xZ(Tl)(TZ - Tl) + 2(b-h) xJ(TZ) - x2 (11). (6.2)
What we need is a relation between xl(rl) and x2(tl) with (12 - 17)

eliminated.

For T4 t < Tgs We have

22(t) = 2A2 b,
hence
éz(t) = 2x, b(t - Tl) + éZ(Tl)
and
2 .
z2(t) = AZ b(t - tl) + zZ(tl)(t - Tl) + 22(11).
But 22(11) = hAS and 32(12) = - hkg, hence

2 .
- hxs = Agb(TZ - 11) + 22(11)(T2 - 11) + hks

which implies

2
_gh}\s - }\Zb(TZ - T.'l)

zZ(Tl) =
To = 71
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We also have from (1.3)

zz(rz) 2A2 x2(11) - zz(to) R

hence

2hA3 + A2 b(T2 -1,)
zl(to) 2X2 xz(Tl) + . (6.3)

It

T - T

2 1

Using (6.3) in the Hamiltonian at ¢ = 11, we have

5]
1

2
= - [)\1 + )\2 x2 ('[1)] + Zl(to) xz(rl) + 2.'2('[1)b )

2
r -
2hx3 + Ay b(T2 Tl)

= A1t Ay Ty (T1)+l

Ty - T =) 0 6.0

so that we may eliminate (19 - T7) between (6.2) and (6.4).

Let a= 1Ty - T;7, & = xl(Tl), y = xZ(Tl), and

B =~ + A2y2 + kxs b. Then we rewrite (6.2) and (6.4) as
2 2
bho® + 2hya - 2(b-h)x + y° =0 (6.5)
Ay byo +8a+ 2y =0 . (6.6)
x2y

We now eliminate a. Multiplying (6.5) by - —7— and adding the result

to (6.6) gives
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P 2X2y(b-h)x A2y3
[-2>\2 y + Bla + —_h—...__ - —h + 2h)\3y = 0. (6.7)

Substituting (6.7) into (6.5), we obtain

2, 2 2
(bhs% + 2v6 + Y2)y" = oy°(b-h)z , (6.8)
where
Y=-A, =X, 5>+ M b
1 2 3
and
5= -2\, + Ay - 2\, (b-h)
T melg T AGY m at,lb-RJT .
Put & = 1. Then the switching curve C; 1is part of the curve
2 2 2
(b6° + 2v§ + v2)y" = oy (b-L)x , (6.9)
where
= - A A 2 A.b <0
YSoA ot Y Tt
and
- 2 o, b-1)
M
If wenow let b =- y— and y = 2bx in (6.9), there results an
2 A
identity, which means that for b = - Xl-, the switching curve Cq
2

contains the u = 0 final segment of an optimal trajectory, see
figure 5.2. The full switching curve (', 1is given by (6.9) together
with the boundary conditions

0 sy

A

8, and

bsg - 9rg + r?
2b(b-1)

n
8
"
S
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1.7 Switching Curve Cy

If we put A = -1 in (6.8), we have

(562 + 2ys + v2)y? = oy%(b + 1)z, (7.1)

where

and

2
- 2 + Ay - 2hy (b + Dz

§ =
A1
This time, y may be zero. In fact, if b = - — , then
3

is a solution of (7.1); in fact, it is the only solution

C2 which are

so that y =0
that fits the boundary conditions of the switching curve

0y € -8 +r,

; b(r - s)% - 2rs + 1
$x < 2b(b+1)
A
if 1 <b g - e (i.e., 0 ¢ -8+ 1r); and
2

-s+rsy«s<0,

. b(r—s)2 - 2rs + r2

0 £ x <
2b(b+1)

A
Kl' < b < 0.
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1.8 Switehing Curve Cq

Let the interval [to, t1] be divided into three parts so
that u =-1on [£,, 7], u=0 on [t7, 19, and u=-1 on
[12, t7]. We assume le(rl), xz(Tl)) belongs to Cg. Just as we

derived (6.1), we have

()
I

(b—l)(tl-rz) + b(TZ—Tl) + xZ(Tl),

(=
H

3 (0-1)(61-79)% + (b(xgmty) + zy(x )] (ty-1y)

1 2
+ E‘b(TZ—Tl) + xZ(Tl)(TZ—Tl) + xl(rl) .

Eliminating (t1—12), we obtain

0 = - blry1,)° = smy(t,) (1y=ty) + 2(b-Dzy(t;) = z,°(1,).

For T, S T § Ty, we have

z2(t) 2A2 b,

hence

22(t) ZAZ b(t - 11) + 32(11)

and

2 .
zZ(t) =1, b(t ~1,) + 32(11)(t -+ zz(rl) .
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But 32(11) = 22(12) = - g hence

which implies

We also have from (1.3)

éz(T )

hence

zl(to) 2h g xg(Tz) + AZ b(Tz - 11). (8.3)

Using (8.3) in the Hamiltonian at ¢ = Ty, we have

H=- Dy +0, 2, (c)] + 8,(8,) mplty) + zg(ty)b

1 2

2
- A F g xy (17) + Ay b xz(Tz)(Tg - 1) - Az b =0. (8.4)

Using (8.4) in (8.2) to eliminate (12 - 11) and letting x = xl(rl) and

y = x2(11), we have

2 4
x =L 1+ 4

(8.5)
zb (b-1)y
M
Thus if b =- 35—, q =20, and (8.5 reduces to

3

2

x= 2L

2b
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which is the same y = (¢ final segment that (6.9) reduces to, see
figure 5.2. The boundary conditions on (8.5) are
q Y £r +s,

b(s+r)2 -4rs <
2b(b-1) ® S~ 2(b-1)
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1.9 Variations of Equations
Now we have treated
X =

2 4

x =u-‘|b|, 0<|p] <1.

Suppose we are confronted with

y1=-y2,

g}2=u-|b|
Let x, = - Yy Then

17T YT Y,

Z:/2=u'|b| .

Thus we compute % from figures 5.1 - 5.3.

Suppose we are confronted with

.7./1=y_2:
92 =u+ |b| .

Let Zx; = - ¥;, x2 ==Yy V= U Then
L1 5-Y;, = Yg=%9 >
x2=_y2=-u—|b|=v—|b|

N s e

N .
R e

N e o e

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)




We compute v from figur = 5.1 - 5.3. Then we put u = - v.

Finally, suppose we are confronted with

?
Z}='y2: l
.1 ; (9.6)
y2=u+|bI. i
s/
Let x2 = - yg, v = - u, Then
Z;_—y_x:
.1 .2 2 9.7)
Gy=-gg=-u- |b| =v - |p]
We compute v from figures 5.1 - 5.3. Then we put u = - v.
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6E.2 Time of Arrival on Target and Performance Parameter Calculations

2.1 Introduction

In this section of Appendix E we calculate the parameters which are
necessary in time synchronization of three second order syntheses such as
described in the previous sections. This section together with Section 6E.1

form the heart of our control logic calculations.
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2.2 Preliminary Ca.culat.ons

Consider the switching curve Cl defined as follows:

(bs + 2v. + yz)y2 = Zyz(b - )x (2.1)
where
y=-—A-—)\2+)\b<O (2.2)
1 2Y 3 )
§== 2A,+A 2. 2x.,(b - 1) (2.3)
= 3 2 y 2 X .

bs2 - 2rs + r2

A s

26 - 1) $x20 (2.4)
We shall need the intersections of this curve with the family of
parabolas
-1 2
1720t 2t kg - (2.5)

Because direct substitution leads to a third order equation, we shall

approximate the Cl curve with a simpler one.

Precisely, for b = 0 the C1 reduces to

__(_1_+ 213 )Xz
5= 2" 2
1

- AZ X

NN

Taking advantage of the fact that b is small, we shall approximate the

by the curve Ci
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- ZA [s}
%-+ 3 2> T xz (2.6)

where T will be chosen in such a way that Ci passes through

2 2
bs”™ - 2rs + r
2b(b - l) !S 9 (2-7)

and the conditions (4) are satisfied.

Solving (6) with respect to T, we have

| 2

2 ﬂV/ 4

xz()\l + 4A3) - 2 X 2 [x (A +4A ) 2) 2%1%, ] +8A1A2xlx2
2X 4

X

2 72

(2.8)

The condition

lim T = 1

implies that in(2.8) the + sign has to be chosen. Direct substitution

in (2.8) of the values of (2.7) gives the T required.

Let us find now the intersection of (2.5) with the family (2.6);

4 I+t (b+l) (~A 2T (1+ (b+1)A
X, 3 (bt D) YCTSN) T (2hgmhk) + kA =0

(2.9)

we have
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i.e.,

4 2 _
x2 o + x2 B+ vy=20
and
2 - g+ 7% 4oy
X, = .
2a
It is
Yy <0, B>0, oc<0,
i.e.,

82 - bay < 82

(2.10)

(2.11)

The two solutions are positive; from the study of the behavior of (2.6)

it is clear that the minor has to be chosen, i.e.,

2 _ -8 - VBZ - 4ay

X2=

2a

The intersection we are interested in lies in the positive

plane, so

_ +‘\/ -8 —VBZ - bay
* = 20

where B and Yy are functions of kl.

The corresponding X is:

1° 2(b+1) 20, 1
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x2 half

(213)

(2.14)



Switching Curve C2'

For the same reasons as before, we shall approximate C, by

_ (1
x; = 2+ > T X, (2.15)
with the conditions

~-s+r<yc<oO

2.16
b(r—s)2 - 2rs + r2 5 ¢ )

2b(b+1)

T as a function of (xl, x2) is given by:

2 2 ay
Xy (A +4A 420, X %) i-\/[xz(xl+4)\3)+2)\2 X; X
A

212 x2

1 - 4
2 172 71 72

(2.17)

From the condition

limt= 1,

X, >+

1

we choose the minus sign.

Direct substitution of the values

X, =T1-8 (2.18)

_ b(r—s)2 - 2rs + r2
) 2b(b+1) (2.19)
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gives the T required.

The intersection of (14) with the family of parabolas

-

1 2
X = 2o Fotky oo k>0 (2.20)

occurs at x2 solution of

4 2 2
Xy [AZT-(b-l)AZT ]+ xz[(b-l)(TA1+4A T+2A2k_lr)-kl]—2(b—l)k A,=0

3 -1"1

R
2 -8V g% _ 4o
)

20,

where o >0, B <0, y >0.

The two solutions are positive. We choose the one with the minus sign.

Therefore,

[ 72

- B -¥B° -4
X2=:\/ : 20 = (2.21)

where B8 and vy are functions of k_

1"
The corresponding X is:
1 g -Vg® - 4oy
X1 7 20-D) 2a +k_ (2.22)
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Switching curve C

4 1

q H
1+ (b-l)x2 ) (2.23)

Its intersections with the family of parabolas

1° 2(bil) "g +k g (2.24)

occur at x2 solution of

2 4
X, - q X, + 2b(b—l)k_l = (

4, 4
G £7 4 - 8(b-1)bk_l>. (2.25)

We are interested in k . £0, X, > 0, so we choose the plus sign.

I
X2 = 2 Ql + \Vq 8(b l)bk_l . (2.26)

The corresponding Xy is

2
1 4 4
Xy _'——Z?E:IT—— <} +q\/é - 8(b-l)bk_l + k—l . (2.27)

Finally, these two results will be needed:

In the positive X, half plane, the intersections of the family of

parabols

with
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occur at

X, = V.Zb(b-l)ko

2 (2.28)

In the negative X, half plane, the intersections of the

family of parabolas

1
X =2 ¥tk
with
1 2
1 T2+ %2
occur at

kel
[]

5 = =0 /—2b(b+l)ko . (2.29)
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2.3 Notations and Conventions

Given any point (xl, xz), we shall call

2
*2
ko(xqs X5 = %) = 5~ (3.1)
2
*2
k(x5 %) = %) - Ty (3.2)
2
*2
k-l(xl’ Xz) =X - ’Z—(T)'_—l') (3.3)
ko, kl, k_1 are the intersections with the X, = 0 axis of the
parabolas
x2
2
=% tk
x2
2 +k
1T T2(04D) 1
2

2 K

X = Tb-n Tk

that pass through (xl, xz).

We shall use the letters P, Q, R for the points

b(s+r)2 - 4rs

P X, = 2b (b-1) s Xy = (s+r) (3.4)
2 2
bs™ - 2sr + ¢ -
QX = T (1) » Xy =8 (3.5)

2 2
1 - b(rqzi(;+i§8+r » Xp = (r-s) (3.6)
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so that, for instance kO(Q) will mean the operation (3.1) performed
over the point (3.5).

The initial point will be xl(O), x2(0); the corresponding
operations (3.1), (3.2), (3.3) will be indicated with the letter O,

such that, for instance
ky (¢ (0), x,(0)) = k;(0).

The operations (3.1), (3.2), (3.3) performed over X1s %Xy solutions

of (2.14), (2.13) will be indicated by the letter Cl; the same over

X1s Xg solutions of (2.22), (2.21), by the letter C2’ and over
X1s %, solutions of (2.27), (2.26) by the letter C3. For example,
k—l(CZ) = k_l(xl, xz); x; siven by (2.27); %, by (2.26).
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2.4 Time of arrival calculations

Let us divide the phédse plane into four regions, A, B, C, D
in the following way:
The region A 1is composed of

i) those points X5 X, in the second quadrant such that

x, <'s (4.1)

and

2

X, € -<;£ + ——————;l-——;>1 x2 (4.2)

1 27 2 2
172 T %2

where 1 1is given by (2.8);
ii) the third quadrant

iii) those points X15 X, in the fourth quadrant such that either

X, < -5 (4.3)
or
2
*y
X S'EZE;ET— . (4.4)

The region B is composed of those points x.,, x, that lie

1’ "2
in the second quadrant that do not belong to A, and such that

) $'8 +r (4.5)
and

xg ~ 4
) Sy (14 ®-Dx, | “.6)

-
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The region C 1is composed of those points x X

1’ 72

quadrant that do not belong to A and such that either

2
or
e .
X i+ 2>\3 > x2
Iy
1 \ 2 Al Xl T x2 2

where <t 1is given by (2.17).
The region D 1is composed of all the other points.

The given system is

X =X2

X, =u+b

in the fourth

(4.7)

(4.8)

where b 1is assumed constant and u piecewise constant. For every time

interval in which u 1is constant,

if u$ - b
C ot - x2(t1) - xz(to)
1 o} u+b
if u="‘b
xl(tl) - xl(tl)
t, -t = .
1 o X
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Take any initial point xl(O), x2(0), and call T the time required for

getting to the origin:

a) If this point lies in the region A, compute kl(O) and kl(Q);

then:

i) if kl(O) 2 0,

.- -kl(O) .\ -x,(0)
-s b+1

ii) if k(@ sk (0) <0,

1€

Compute X, from (2.137§ then from (2.13), (2.14)

compute ko(Cl). Then, recalling (2.28),

" x,(0) yZb(b—l)ko(Cl) -5, —VZb(b—l)ko(Cl)
B b+1 b b-1

iii) if kl(O) <kl(Q) s

-r , r-s
+b+—b_ .

@ - )

S

T

-

b) If the initial point lies in the region B, compute ko(O); then:

i) if kO(O) sko(Q),

.- s - %,(0) . k (Q - k_ (0) L oI, I=s
b s b -1

*reading k_ as k_(0);
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c)

d)

ii)

If the initial point lies in the region C,

i)

ii)

If the initial point lies in the

i)

ii)

if kO(O) > ko(Q), recalling (2.28),

:jzb(b-l)ko(O) - %,(0) . -'\/Zb(b—l)ko(O)
b b-1

T

compute ko(O); then:
if kO(O) > ko(R) s

-s - x2(0) kO(R) - kO(O)

T = - + - +

b+l

if 0 ¢ ko(O) < kO(R) , recalling (2.29)

—\/ézb(b+1)ko(0) - x,(0)

V-2b(b+1)k (0)
T = + 2

b b+1

region D, compute k_l(O); then

if k_,(0) < k_,(P),

T - s+r - x2(0) LoD, k_l(P) - k_l(O) L =L, I=s
- b-1 b s b b-1
if k_l(P) < k_l(O) <0,
compute Xy from (2.26), reading k—l as k_l(O);

then compute k_l(C3) from (2.26), (2.27):
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R %, (0) . Y b (b-1)k_(C,) - x, . -\/Eh(b-l)ko(c3)

b-1 b b-1

iii) 41if 0 g k_l(O) <k _.(R) ,

1

compute X from (2.21) in which k_. has to be

2 1
read as k_l(O); then from (2.21), (2.22), compute

ko(Cz):

X, = %,(0) -'\/—2b(b+l)ko(C2) - %, Y-2b(+Dk_(C,)

T= bo1 t b + b+l

iv) 1if k_(R) s k_ (0)

o - —-s+r - x2(0) LSt k_l(R) - k_l(O) , s
b-1 b -s b+1
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Region a, i)

Mx

T =

-S —x2(0) —kl(O)

S

+ +

b+1 -8 b+l
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Region a, ii)

,?xz

NN
! -
. \ \.\ R

o . | \\\\\\
: ~

o \0 x,(0), x,(0)

~.

X, - %,(0) ‘/ﬁb(b—i{imfcli - x, ~V2bb-1)k (C.)
T = + o + o 1
e} b b-1
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Region a, iii)

7 s
/!
ﬂ/ S—-r
O [k
\ \
N
AN
~ :
~ S
0 % (0),%,(0)
~
s = x,(0) k(@ -k (0) r-s
1= o+l s AN
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Region b, i)

x; (0), %, (0)

s - x,(0) k (Q-k_(0)

T=—% + .

242

k,(0) k, (@

r—-s

-r
3 T




Region b, ii)

NS

e e e o T - et

k (@ Kk (0)

Vb (b-1)k_(0) - x,(0) -VZb(b—l)l;;(OT

b + b1

T

243



Region ¢, i)

A

ko(R) e kq(O)

T =

~-s+r

e x,(0), x,(0) ‘

-8

-s -x2(0) ko(R) - kO(O)

S
b + s )

2kl




Region ¢, ii)

(
)
i
|
i
!

-str +
i

-\/-2b(b+1)k0(0) %

i
-s <+
|
i
t
1
]
3

T .S o
%, (0),%,(0)
1 R
- V-2b(b+D)k (0) - x.(0) V-2b(b+1)k (0)
_ o 2 + o

T =

b b+1
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Region d, i)

e Sy YU .

xl(O),xz(O)

(0)

k--l

2L6



Region d, ii)

—— %] (0),%,(0)
~ ...

[,

-~ X

2

. !
\\ L Yo o-nk_(cy

1
i
4
i
i
|
i

|
LT x, (0) , V2b(b-Dk_(Cy) - x, . -v2b(b—1)ko(C3)

b-1 b b-1

Y



Region d, iii)

\

x,(0),%,(0)

R e

-V -2b (b+1k_(C,)

V -2b (b+l)ko(C2)

2
b-1 b b+1

. X, - x2(0) . —“\/-2b(b+l)ko(C2) - x

+
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Region d, iv)

i\\ xl(O?,xz(OF\\

k_(R) |k,
/
AN , L
-s +r§ R K/f
‘ «
—S;L P /
|
!
i
-s +r - x,(0) k ,(R) - k _(0)
2 -s + r -1 -1 s
T b-1 * + s e
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2.5 Parametric Calculation for Specified Time of Arrival

The following problem is given: from any initial position with initial
velocity zero, reach the origin in fixed time T along optimal paths or,

in other words, given xl(O), x2(0) =0, T, find Al,AZ,A such that the

3
motion through (xl(O), 0) at t =0, solution of the optimality problem,
reaches the origin at T. Taking into account the fact that b 1is extremely

small, we shall consider it as zero, i.e., we shall treat the system

(5.1)

Besides, because of the symmetry of the system, we shall limit ourselves to the

case xl(O) < 0. The equation of the switching curve is

e (5.2)

and the paths are composed of

1) An arc of the parabola through (xl(O), 0)

%
Xy =5 + xl(O) (5.3)
2) A segment
X, = const (5.4)

3) An arc of the parabola through the origin

2
-1
2

X =

1 (5.5)
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. Suppose the switching from any of these paths to the following occurs
*
at x, = X,. From the preceding sections we know that the time required for

getting the origin along a sequence of paths is:

* 2 * 2

* 1 —(xz) (xz) *

T=x2+ | 5 - —xl(O)]+x2
X
2

x %700
= x, - —% (5.6)

*2

*
We shall solve this equation with respect to Xyt

(x;_‘)2 - T(xz) - x,(0) = 0

* 1 - \/TI__—__—_—'
‘ X, = -2- (T + ™ + 4xl(0))

Both the solutions are positive: it is easy to realize from the behavior of the

curve

+ %0
T=x2- *
*2

that the - sign has to be chosen, so

x; - % (T - V1% + 4x () . (5.7)

* %
The first switching occurs at a point XX

9 that lies both on the parabola

(5.3) and on the switching curve (5.2).

The switching curve (5.2) depends on the parameters Xl,AZ,A3. We shall assume
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one of them, AZ’ as fixed and, taking into account the constraint

A tA, HAg =L, i.e.,

(5.8)

Ay =L =h, =2 ,

we shall solve the problem with respect to Al.

From the (5.3) we have

* 2
x (X))

1 2

+ xl(O) 3 (5.9)

Let us rewrite the (5.2) with the substitution (5.8) as Al function of

kz,xl,xzz

2 _ _ 1. . 2.2 2
(Al )\sz)xl = Z(Al )\sz)x2 -2Q - AZ - Al)x2

A
2.2 72
.- xz[x2 5 + Ale -2Q - Az)]
1 ] §-x2 (5.10)
172%

The substitution in (5.10) of the values given by (5.7) and (5.9) gives

the Al required.
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6E.3 Despinning mode for large w

Let us consider the general vector equation of motion
Io+ox lu=v+f (3.1)

where [ is the moment of inertia matrix for the principle axes system,
w the angular velocity vector, V the contrbl torque vector, and f the
disturbance torque vector. Let K be a diagonal matrix whose diagonal
elements are the hard constraints on the magnitudes of the components of
vV and let k be the smallest diagonal element of K. The control syn-

thesis is formulated with J as defined in Part 2 takes the form

Ve e (3.2)

HTwl

for large ||Iw||. We shall show that from an arbitrary initial state
that ||w||, subject to control of the form (3.2), tends to zero in finite
time. This despinning assures stability for our system and justifies the
approximations made in Part 2 regarding the term w x luw.

Let 2z = ||Iw|| and note that

Ne
]

-i—(Im c10) . (3.3)

By (3.1) we have

Io * Io+ o+ wxlo=1Iuw- (V+F)
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Since

Iw cwx In=20
it follows using (3.2) that

Io «los-kz+1Iw-f
and

7 <k —e— (o - ) .

| Tw] |
By the Schwartz inequality it follows that
z < -k+ ||f]]

Our assumed design constraints requires that ||f|| <k so 2 is

negative and bounded away from zero. It follows that Z must decrease

monotonically to 0 and arrive there in finite time.
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6E.4 Proof of Proposition 1

Let b be a constant vector whose components are bounded below

I 1in magnitude. Ceonsider the system of equations

y=v+b (4.1)
and

A*(E)E = y (4.2)

together with the constraints [vi| <1, for ¢ =1,2,3 and the performance
criterion J as defined in Part 2.
Let us consider the functional equation

t

1
x(t) = - J A*(z(1))z(1)dx (4.3)

t
0

where X and 2z are differentiable vector functions defined on the interval
[tO,t ] which vanish at tl. It can be proved that for each function

X(t) there exists one and only one function 2zZ(t) satisfying (4.3).

Hence there exists a one-to-onme correspondence between the functions x(t)

and z(t) related through equation (4.3).

Now consider the system

y=v+b (4.4)

X =y (4.5)

together with J and the constraints on Vv as previously specified. Let
£,¥,V = p(£,y) be functions defined on an interval [to,tl] which satisfy
the system of equations (4.1) and (4.2) and are such that £(t1) = ¢ and

y(tl) = 0. Let x and £ be related by the equation
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ty
X (t) =J A*(e())E(E)dT . (4.6)

t
Proposition I: E,y,v = p( ,Yi;b) is an optimal synthesis for the system
of equations (4.1) and (4.2) relative to J <if and only if X,¥,V = q(x,y;b)
is an optimal synthesis for the system of equations (4.4) and (4.5) relative
to J and
t
p(g,y3b) = q(JtZA*(a(r))é(T)dr,y;b) . 4.7)

Proof. Since J 1is invariant under the change of variables (4.6) to prove
this proposition we have only to show that (4.6) establishes a one-to-one cor-
respondence between differentiable functions x and & defined on the interval
[to,tl] and vanishing at tl. To establish such a correspondence we shall
make use of the contraction principle for complete metric spaces. (A deriva-
tion of this principle is contained in the notes on control theory composing
part of the final report for contract NASA-9172).

It is tacitl& assumed in Proposition I that the coordinates of £ are

bounded away from This assures that A*(E) is nonsingular. Equation (4.6)

ut
2.
and the fact that E(tl) = (0 1imply that
t

E(t) = - J Ipe=I e ()yx(r)de . (4.8)
t

If M is an arbitrary three by three matrix we define ||M|| by the formula
[IMI] = max{||Mr]] & |[r]] < 1}

Let G be the set of all 3-dimensional vectors whose components
are bounded away from % by some fixed constant. Let D(to,tl) be the class

of all 3-dimensional wvector functions 2Z: [to,tl] + G which are differentiable
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on [to,tl] and vanish at tl. We define a norm on (to,tl) by the

formula

- t)
[lze)|| : ¢ in [to,tll} .

-n(¢

|z) = max{e !

where Z 1is an arbitrary function in (to,t ). For a fixed function X
in (to,t ) 1let us define the mapping F: (to,t ) > (to,t ) by the

formula

tl -1
F(z) (¢) = - J A" (z())x(t)dr.
t

For an arbitrary pair of functions 21 and 22 we have

t
F(z) &) - Fz) @) = - J fat ) - Az, 00)x()dr .
t

Now we can easily verify that there exists a constant N such that for

arbitrary r, and r, in G

A = Ko ] < Bl - vl

Hence

O 112,00 = 2,001 =

¢
[1F(z;) () - Pl ()] < ] 7]

t,o. M, - 1) =g, - 1)
[IFE) @) = Fz) @] < N[ [[x(x) ] e e [z,(x)-2,(x) | |dr,
t
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and

£, x(tl - 1)
[IF(z,)(2) - F(z,) ()] < ”L [1x(x) | e a |z - 2,] -

Letting m = max{||i(t)]| ¢t in [to,t 1}, we have that

= (t, - ¢) t

e 1 |IF@p® - FEH®I] < @om e*tjtle‘*Tdr) [z, - 2,
and

-A(tl - t) 1 -k(tl - t)

e [IF@z)(®) - Fz) (@) || ¢ G ¥ m -e ) |2, - 2, -

Thus
“At, -t )
JFz) - Flz))] s2mmlz-e 1 %) 2z, -2

Now we are free to choose , 80 we choose it such that

-A(t
O = %’N m(l1 - e 1

Therefore F 1is a contraction and by the contraction principle there exist
one and only one function Z such that F(z) = z. That is, there exists

one and only one function Z such that for fixed Xx(t)

t
2(5) = - JtlA'z(z(r))i(r)dr :

258



This is equivalent, of course, to the existence of one and only one

function Z such that

t
x(£) = - 1 LlA(z(r))i(r)dr .

This establishes the desired one-to-one correspondence and the proof of

Proposition I is complete.
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APPENDIX F

INCORPORATION OF THE SENSOR INTO
THE SATELLITE CONTROL LOOP

260



APPLICATION OF THE KALMAN FILTER TO RATE SENSOR

I. The control being used is computed from the satellite location

(abr and w) in the phase plane; Until now this location has been ob-
tained directly from the dynamics. We now wish to use the sensor output
to obtain the required information. This will entail quite a bit of
programming since 1) the rates are not directly available, and therefore

a filter must be used, 2) the angles a are not directly available

br

but must be obtained from three independent, nonlinear functions of Ay e
II. 1In broad outline the flow of information is: (See Figures 1 and 2.)

abr comes from the analog. }

o4 is converted to o, . )
br bs

abs generates the pure output vector (ul, Uy, Uy in GSFC memo).;

The output vector is corrupted by additive noise, giving the J

vector z.

Real world

Estimate world

The angles aés are computed as if the zy were u,.

The angles Ay

are computed as if the o

were
bs o

bs’
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The estimated a s &n of ebs and w are computed from the old

estimate by
2

>
>

- 2
v " g
uo + K Gbr (ao+0 wo+ 2 uo) (2.1)

[
+

>

n (o]

where K is a constant matrix computed externally.

ITI. Specifications.

1) 1Initialization

The commands x and y must be computed from

sin 0
X =+ 18 3.1)

/ginze + c052 6 coszw
rs rs r

s

sin ¢__ VAR 3.2)

<
]

where, in accord with our previous notation, ers and ¢rs are the angles
through which the s system must be rotated (ers first) to align finally

with the R system.

Thus
tan 6 - - cos Y sin B
rs K - cosy cos B
siny sec ers
tan ¢r =

s K - cosy cosB - cosy sinB tan ers

where Y = target latitude, positive north,

B

]

target longitude, positive east of Greenwich,

and K is the ratio of satellite orbit radius to earth radius.

These formulae are based on the GSFC letter, Isley to Jones

May 5, 1967, giving sensor transformations; equations 1.3.28a and 1.3.28b;
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. and the fact that in MSG notation A (of the GSFC memo) is

cocy - sY¥ sfeV¥
A = clcods¥ - sBs¢d coc? s¢cH + s¥sdcod
-s0cd — sps¥cHd -s¢c¥ cBcd - sbchsY

where all angles are subscripted (bs). (The subappendix of Appendix G may
prove a helpful reference.)

2) Transformation to Euler angles.

We assume that Polaris is due north, a simplification which
we believe justified in this study on the grounds that:
1) The satellite hardware will probably remove the effect, and
2) Attacking the problem without this assumption will probably
involve us in numerical (as opposed to analytic) solution of the sensor
®
output to SR transformation. This will almost certainly involve us
in more computer time and space than we have. In any case the effect
should be small and we can easily put the effect in the sensors and run

a simulation.

If Polaris is due north, then, letting
7 = 6._ X2 _ y2'

= - sin V¥ y - i b4
u x sin ¥+ vy cos¢bs cos ¥, - z sin ¢bs cos

bs

[=
n

0 Y + 9 ) ¢ in ¥ - in © in ¢

2 X COS 1 cos 1 j(COS i cos sin 1 sin 1 sin 1 )
- i ) (o) + sin ¢ in ¥ 0

- Z (S in 1 coSs sin sin 1 cos )

= gin ¥ .
ug sin ¥, _
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This can be solved as V¥ = gin u
bs 3

1_1 _ {2 /éz(l-xz) - (ul+xu

- 2
¢ = gin ) - 2(u +xu )]‘
b b(l—xz) 3 1 3
where b=Vl - ug , and
-1 Y2 -1
0 =gin T ———— - tan T =
bs N B
A2+B2
where A=

bx + yuy cos ¢bs - 2u3 sin ¢bs

(o)
L}

-y sin ¢bs - 2 cos ¢bs'

In Figure 2 this transformation inversion is written as

¢ u; +ny

_ oy _ -1 _~1
y =0, =u (z) = u u, + n, ,
8 bs ‘ u

e,
the parameters (x,y) having been set by the target command coming from the
ground.

From a it is a simple task to compute a, . since a__ is implicit
in the ground command. These are (Englar = Isley, May 22, 1967)

G . _ .
Wbr = sin “(sin ¢rs cos wbs 51n(ers ebs) + cos ¢rs sin Wbs)
~ -1 sin ¢ . sin ¥ g T cos ¢ cos ¥  sin (ebs_ers)
6, = sin [ 1
br cos V¥

br

- -1
¢b sin " [(cos ¢rs sin ¢bs cos V¥

r s " sin ¢rs cos ¢bs cos (ers-ebs)

b

- sin ¢rs sin ¢bs sin wbs sin (ers—ebs))/cos wbr]

These formulae are applied to the parameters g and the calculated

quantities aés to compute aér and these are filtered by the Kalman filter
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appearing in (2.1).

3) Filter specification (choice of K).

The remaining task is to select K. From a purely theoretical
standpoint, this is done for a linear system by obtaining an approximate idea
of the statistics of the observation noise and the dynamical or input noise,
these in turn determine K. Generally input noise is an expression of your
failure in the filter to model the complete system exactly —- this is the
situation here where we allow input noise to compensate for ignoring the
coupling terms. Usually however this technique cannot be applied directly.

It will be necessary to test various gains and try to determine a satisfactory
one. That is one sufficiently stable under the observation noise at low
signal levels (primary consideration) yet sensitive enough to compensate

for the lack of accurate modeling.

The expected bias on the output signal is 0.008° (Isley - Englar,
oral, June 12, 1967) and the expected peak noise is 0.05° and independent of
signal amplitude (ibid). We will simulate the noise by gaussian noise of
standard deviation (0.05°0.707/57.3 = 0.00063) and mean (0.008/57.3 = 0.00014).

No attempt will be made to solve for the bias in the instruments.

It could be done but since the deadband is a factor of ten larger, it doesn't

seem worthwhile.

IV. Computation of K.

An important reference for the notation here is (Englar - Isley,
June 16, 1967).

The R matrix (covariance matrix of the observation noise) is
39.7:1078 = (6.3-107%2.

The K matrix ultimately must be tested to see what kind of trajectory

it gives, but we should be able to eliminate a large amount of trial and error
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by some preliminary analysis.

Let us rewrite the filter equation as

;(k+1) = A ;(k) + K[y(k) - H:l(k)] >

x(kHl) = (A-KH)x(K) + Ky(k) .

A fundamental requirement, in every way analogous to the same re-
quirement in the control problem, is that the closed loop system be stable.
That is, the matrix (A-KH) must have its eigenvalues inside the unit disk.

In our case

>
]
=
]

[1 0] K=

0 1 k2

and the value of § at present ié § = 0.1. In what follows we take &6 = 0.1.
Remember that if the sampling interval changes, K must change.
Figure 3 shows the unit square in the kl - k2 plane with regions of ‘
interest to us delineated. Naturally the small wedge-shaped region yielding
an uns;able system must be avoided.
Moreover our particular dislike for control “chatter" which is
caused by crossing of switching lines, leads us to believe that we should avoid
the oscillatory systems to the left of rhe critical damping line, even if they
should be otherwise optimal.
Furthermore, because of the very high signal to noise ratio at low
signal levels, the ki should almost certainly be legs than 0.2, Looking at
Figure 1, we see that such restrictions have already greatly limited our
choice.

Now let us attempt to estimate the input noise levels and apply

optimal filtering to obtain another estimate of K.
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The perturbing action in the o equation is caused by terms like aquw.
We must make sure that our filter works best in the vicinity of the origin
so we compute this at o = 0.1° = 0.002 rad. When o = .002 rad, we expect w
to be about 5'10-5 rad/sec. Therefore the noise on o will be about 1‘10_7.
The maximum value for aw is about 0.2°0.002 = 4'10-4.

The perturbing action in W is caused by solar and gravitational

torques which are constant throughout a slew, by the term w x Iw, and by

control torque uncertainties such as the jet misalignments.

-4
The solar and gravitational torques are apparently less than 1.5-10

and their input bounded by

-4
1.5°10 =T
2600 = 8107 .

The jet misalignments are less than 2°. Therefore the orthogonal

2:0.12

torques are bounded by 573 and their input bounded by

0.24 -6
57.3-2000 ~ 2°10

The Euler torques w x Iw are bounded by O.75wiwj which will never

6

exceed 0.75°4°10 = = 3‘10_6 and in the region close to the origin will be much

smaller.

We might say then that the Q matrix is larger than

10714 0
0 410712
but less than
1.5-1077 0
0 13-10712

while R is constant at 4°10 ’.
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Various values of Q were used, the results are presented in
Table 1. The numbers pij are the elements:of the covariance matrix and
/;II > J;;;' are respectively the theoreéical standard deviations of the
estimation errors in angle and rate.

The noise simulation is not theoretically valid since we have used
the errors in the differential equations directly rather than using the
equivalent errors in the discrete system. However, this tends to over-
estimate the noise by about a factor of 10 and since we have obtained ap-
parently satisfactory gains, we will ignore the question.

The discrete versﬁs differential question will arise again in

testing K.

IV. Testing of K. Somewhere in this spectrum of K values lies the one we

should use. One of the tasks that is always faced in such problems is that
of determining a proper gain while using the most realistic assumptions
possible. In our case this means while using the simulation. Before doing
that however, we wish to demonstrate that at least one of these K's appears
to give tolerable results under circumstances similar to those which we have
hypothesized.

Allowing some engineering judgement to operate, one of these gains
looks particularly good, that is [0.13, 0,0054). Primarily this is becausé
it has a small k1 and a reasonably large k2.

We also mention that k2 is about the right magnitude. A magnitude
for k1 of 0.1 seems quite reasonable and the rates are approximately a
hundredth of the angles.

Let us take this gain and make two runs with it, both having obser-

vation noise of s.d. 6.3’10-4, and constant perturbations in ® of 10-5,
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which is large by a factor of five.

The first run will have a(0) = 0.005rad = 0.286° and
w(0) = -0.0005rad/sec. These are fairly typical values in the vicinity
of the origin. While in this region we might expect perturbations on o
of 2.5-10—6 so we will enter a constant term of 10_5. We put a(0) = «(0)
and ®(0) = w(0).

- We are able to investigate the behavior of this filter in the.ukwmmfﬁ

absence of control because the control is known (up to misalignments whicé
have been accounted for otherwise) and can be entered exactly in the filter.

. We expect to be in a region such as this for a maximqm of 20

seconds. T L Sety

%Figures 4 and 5 show the results of this run.  is steadily

e b

deterioraiing because the constant rate does not appear in the modeling and

.

because the observation errors are insufficient to correct the estimate. X

43 A

is - oscillating about the true value with errors of about 0.00016 radians

which is one fourth of the observation noise. ;

The second run has o(0) a&(0) = 0.05 rad and w(0) = &(0) = -0.0015rad/sec

We will use a bias in & of 410 . ' ;
In this high signal run x is very close to x, but @ appears to be
somewhat affected by the noise. Except for the observation noise, all these

perturbations are much too high and perhaps our major conclusion should be

that adequate testing of the filter can be done only on the full simulator.
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2

1 %2 k) b’ 1 P12 P22 ky < 2.3
1e-14 | 4e-12  |o.025 | 0.0031 | 1.0e-8 | 1.3-9 | 3.26-10 No
sg-12 | 1E-11 [o0.032 | o.0049 | 1.38-8 | 2.08-9 | 6.5E-10 No
1e-10 | 1.3g-11 |0.037 | 0.0056 | 1.5e-8 | 2.38-9 | 8.6E-10 No
2.5-9 | 1.3e-11 | 0.083 | 0.0055 | 3.6e-8 | 2.4E-9 | 2.0E~9 Yes
7.5-9 | 1.3e-11 | 0.3 | o0.00564 | 6.18-8 | 2.5E-9 | 3.3E-9 Yes
2.5-8 | 1.38-11 | 0.22 | o.0048 | 1.12-7 | 2.58-9 | 5.5E-9 Yes
1.5e-7 | 1.38-11 | 0.45 | o0.0036 | 3.38-7 | 2.7E-9 | 1.2E-8 Yes

Table 1
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IDENTIFICATION OF SENSOR OUTPUTS WITH EULER ANGLES

I. Introduction. We now wish to show that the (ui) sensor outputs

are, to first order, proportional to the (br) Euler angles.

II. Sensor Math Model. We first re-state the sensor math model as

follows:

(a) A certain vector is fed into the body axis system
(via the command inputs x and y).

(b) The spacecraft is slewed until the vector in (a)
(constant in the body system) is pointing along
the local vertical.

(c) During the slewing maneuver, the sensor detects

the direction of Polaris relative to the body
system and detects the vector in (a) relative
to the orbit coordinate system (the s-system in

MSG notation).

> . . . >
Let v, be the unit vector given in (a), and let v

2 1

be a unit vector pointing in the direction of Polaris. Then in our

notation, we may express (c) in the form:
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where U, Uy, ug and ué are the sensor outputs described in the GSFC letter,

2. 2 2 2 2
and uy = 1 uy = ul (uo) )

- _ _ 2 > > .
=1 (u3 (u3) (to make v, and v, unit

1
vectors), and the s and b subscripts denote that the respective vector com-
ponents are taken in the s-system (orbit coordinate system) and in the
b-system (body coordinate system).

According to (a), the vector ;2 is given in the b-system in terms
of the command inputs. Thus we may write:

~

X

—

{

%
.
Vo = 1 Z

!

1

C):

where x and y are the command inputs given in the GSFC letter and
2 2 2
X
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From astronomical information, we may also write 31 in the s-system
as follows:
. ™
- sin(0.8°) cos ¢
; = + sin(0.8°) sin g
cos(0.8°%)

u J°

where q is the satellite orbit angle. (The angle q is taken to be zero when

Polaris is in the §3§l plane and ;l makes an angle greater than 180° with v

1
By a transformation of coordinates, we may relate the components

in the b and s systems. In particular, for any . vector 5:
> >

where ebs’-wbs and ¢bs are the Euler angles in rotating the s-system into

the b-system, and the matrix C is:

" cyco cyse S¥
_ | -sesvce  -sesvse  secy
Clo, ¥, 9 ~C¢s8 +C¢C6
-COS¥CO  -CHSYSH  CCY
#5450 ~S¢C8 )

>
Thus for the v, vector, we can write:

(2 (=
.

! Yo ¢ (ebs’ LFbs’ ¢bs) z

i

'_ul s I b
L \
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where CT is the transpose of C and CT = C_l since C is an orthogonal matrix.

Writing out the preceding equation in component form, we have:

[
]

- X Slnwbs -z 31n¢bs cos‘l’bs + vy cos¢>bs cosVY

K‘ c(0.8°)  J

1 bs
u, = x cos‘l’bs cosebS - z(31n¢bS 81nwbs cosebs + cos¢bs 31n6bs)
- y(-—cosq>bs Slnwbs cosebS + 81n¢bs 81n6bs)
Similarly, for the ;1 vector:
;’u3§\ (P—S(O.8°) Cé\
i, _ o
g ul = Oy s Yy by ) +5(0.8°) Sq
0_/ b

and:

uy = (-sin(0.8°) cos q)(cos‘{’bS cosebs) + (sin(0.8°) sin q)-
(cos‘l’bS sinebs) + (cos (0.8 ))(slnwbs) s
L S o - . _ .
uy = (-sin 0.8° cos q)( sind)bS 31nwbs cosb, cos¢, 51nebs)

+ (sin 0.8° sin q) (-sinq)bs sinwbs sinebs + cos¢bs cosf, )

bs

+ (cos 0.3“)(sin¢bS coswbs) .

The sensor outputs have all been expressed in terms of Euler angles.
The command inputs x and y may also be so expressed. That is, we wish to

find an expression for (\>72)b in terms of Euler angles. According to (b), at
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the end of the slewing maneuver, 32 is along the local vertical, i. e.,

] t > >
2 2

with the r-system (or reference system) at the end of the slewing maneuver.

In MSG notation, the body coordinate system coincides

>
That is the components of v, in the b-system and in the r-system are the

same oOr (;2) ) . Combining with the preceding equation, we have

b=(2
G = G = Gy

By coordinate transformation between the s-system and the r-system,

we may write:

> >
(s?_) = C(ers, 0, ¢rs) (52)
r S

3 — > - > 3 . 3 > .
since Wrs = 0, Then from (v2)b (Sz)r and the definition of (vz)b, we have:

") (o)

X

z = c(ers, o, ¢rs) 1 .
-y 0
\\ /b /S

In component form, this gives:

%
1

sinb
rs

«
[

sing cosH .
rs rs
The relations between the bs, rs and br Euler angles have been

determined previously (see Englar »> Isley, June 12, 1967 or Englar - Isley,

May 22, 1967) and are:
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]

Slnwbr = sin¢>rs cos¥ 51n(ers - ebs) + cos¢rs siny,
s1n¢rs siny, -+ cos¢__ cos¥ 51n(ebs - ers)
sinb =
br
cos‘{‘br
cos¢rs s1n¢bS cos‘{’bs
31n¢br = I~ 51n¢rs cosq)bs cos(ers - ebs)
- 81n¢rs 31n¢bs 51nWbS s1n(ers - ebs)

cos‘{’br

IIT. Linearized Equationms. So far, we have made no approximations, and

the preceding equations are exact. We now make the following two assumptions:

(L)
(2)

One

all calculations.

equations (to

Polaris is due north.

All of the Euler angles

effect of assumption (1)
Assumption (1) also

express the Euler angles

are small.

is to remove the orbit angle q from

simplifies the inversion of the uy

as functions of the ui). Assumption (1)

can be examined later (both analytically and numerically) to see what errors

it may introduce.

As far as the preceding equations are concerned, the 0.8°

angle appearing in the ug and ué equations becomes a zero angle. Thus:

sinV¥

! bs

|

Y3

= éin¢bs cos‘}'bs .

Assumption (2) is the linearizing approximation we are interested

in.

terms only):

Using (2) we obtain the following equations (retaining first order
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]

r

If we combine certain equations above, we may write ups Uy and ug

as functions of the

These are the linearized equations for uy showing that, in fact, Uy Uy and

bs
s
rs

rs

1.0

_¢bs + ¢rs

= ¢bs - ¢ *

rs

br Euler angles.

_¢br

—ebr

Wbr

Thus:

uy are proportional to the br Euler angles.
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APPENDIX G

MINIMIZATION OF POLARIS SENSOR DEVIATION
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MINIMIZATION OF POLARIS SENSOR DEVIATION

The purpose of this appendix is to justify the assumption made
throughout the report that the definition herein used of the R system

is such as to minimize the angle between a polar axis (in particular Zs,

the 3-axis of the system) and the target 3-axis. That is, for all
orthogonal systems whose 2-axis points at the target (possible target
coordinate systems), our definition of the R system renders the angle

between ér and the polar axis a minimum.

We will give two proofs of this here. The first geometric and

conceptual - the second computational.

A. Given a target point define a plane P containing the Satellite,'the
target point, and 25. Rotate about 2 = 2b until the pointing vector 9b
lies in this plane. Notice that ﬁs = ﬁb still and therefore the polaris
sensor has no deviation.

Naturally ib is normal to this plane and the rotation p about

% which brings ¥ to bear on the target leaves
% b

ib in P , hence

5 .5 = . A-1
2 2 cos p ( )

The (ﬁb, §b’ 2b) system as it now appears is that defined by MSG to
be the target system — R. The claim is that any other system pointing at
the target will have (ﬁb . is) smaller and hence a larger deviation.

Any other system pointing at the target is obtained by rotating this

system about the pointing vector §_ . Because ?r lies in the plane P,
any rotation about §r will move 2b out of P in a plane perpendicular
to P. This alone is sufficient to tell us that the angle between ﬁb and

ES will increase.

However the proof is given by reference to some spherical trig for-

mulae. Let us take a unit sphere Q centered on the satellite. Let P
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‘ be the intersection of és and Q, P, the intersection of 2.r and Q,

and Py the intersection of Eb and Q after rotation through y about 9r.

p ps
; p
y b
pb pr

The angle £ 1is the polaris sensor deviation and from the law of

cosines
cos B = cos y cos p . (A-2)
Therefore B is minimum when y is zero.

B. The following analysis develops explicitly the formulae for the body

unit vectors in terms of the S unit vectors. The results will show that
cos B = cos p cos y
as in (A-2).

From the appendix we find that after the R system pointing at the

target is defined by rotating through 7 and p , we have

ﬁs %r
T S R
B (myp) |3, | = v,
z pa
s T
where
cT -sT cp ST sp
B(m,p) =1 s7 cT cp -cm sp
0 sp cp
Therefore
z = si si X - s ©m sin vy + ¢ z
‘ z_ sin 7 sin p X co P 08 p Z_

This agrees with (A-1).
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Now if we rotate about ?r through an angle y, we have

» ] B n
T T s "
B () B () | 9 | = | %
Zg %y
where ~ - -~ - 7
cy 0 ~-sy
B(y) = 0 1 0
sy 0 cy

and therefore

Z. .z = cos p cos .
b [ y

This agrees with (A-2) and again proves the claim.

Appendix

The two pages following derive the expressions for vector components
and for unit vectors after rotation through Euler angles in accordance with

the MSG convention.
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Let R, @ be the names of two right-handed orthogonal coordinate
systems having the same origin. Let =, y, p be the names of the Euler
angles which take R to d3 by the following procedure:

Rotate thru an angle m about

. 1
ry to create the axis system R™. Rotate thru an angle -y about

8 . 2
ré to create the axis system R". Rotate thru an angle p about
;i to create R3.

Then system R3 is system @

Define the matrix

cT ocy —CcT sSp Sy — ST cp -cTm cp sy + sT sp
B = ST cy ~-sT sp sy + em ¢p -ST Cp Sy - CTm Sp

sy sp cy cp cy

L

Let v be a vector in three-space and Vs Yy its vector of com-

ponents in the R, systems respectively.

Then
T
v, = B vy ; vb =B vr .
Checks: Let y=p =20
vy = f100] [010] {0 0 1]
v, = Tcosm —sinm 0 |
sinm cosT 0
)
> b 0 0 1
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bl-s)

o—>

v, = (1 0 0] [0 10] [0-0 1]
—— - - — —
v, = |cosy 0 -sin y
A 0 1 0
Azb' .
sin y 0 cos y
A ] L4 L
r
Let 7m =y =20
vy = [1 0 0] [0 1 0] [0 0 1]
—~ T _ _ — -
v._= 1 0 0
T
0 cosp -sinp
A
- I 0 sinp cosp
A I -
by R i

Furthermore, we can write the unit vectors as

Ty by
r2 =B b2
[ T3 _ | P3 ]
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APPENDIX H
EXPERIMENT PLAN FOR IDEAL MODEL
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I. lThe significant criteria for evaluating the performance of the control
system for a given slewing maneuver are:

1) The total fuel consumption.

2) The time required.

3) The rates achieved.

4) The number of comtrol actuations.

The first three can be manipulated by varying the performance
index. The fourth cannot be treated generally and has been minimized by
experimental tuning of the control. These criteria will be called the
control system output or costs.

The range of values of these costs is determined by what we shall
call the input parameters which split into three groups

A. Vehicle-fixed

B. Performance weights

C. Initial conditioms.

Vehicle-fixed parameters are the moments of inertia, available
control torques, and the values of perturbation torques.

Fixed for each space mission but somewhat less hardware fixed
are the weights appearing in the performance index.

Finally, a specific initial condition and target location pair
generate the values of the criteria given by any slewing maneuver;

The purpose of this initial set of experiments is to investigate
the changes in the criteria produced by changes in the input parameters

described above.
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The major portion of testing groups A) and B) can be done by
fixing terminal points o and initial point B8 on the Earth and performing
a fixed slewing maneuver. Suggested pairs might be Canberra-Mojave,
Mojave-Rosman, or Rosman-Ascension. Canberra-Mojave provide a good latitude-
longitude split. A study of this type would give a good idea of the cost of

such a slew as input varied.

II. Perturbation torque study.

The first object of this sequence would be to point out that the
perturbation torques-gravitational and solar torques -- have little effect
upon costs. This would be done by running a long-time (not time optimal)
trajectory from station a to station B and back with zero torques, the
true torques, and fixed torques ten times larger than the maximum naturally
available.

The expected results would show little change in fuel, rates, or
time. The number of actuations might increase in the large torque case
because our softened switching curves would be overpowered.

Phase plane plots of the three runs would be made with tables of
fuel, time, and stations used. This sequence could dispose of the torque

question.

ITII. Fuel vs. time tradeoff with effect of hardware changes.

Using Al =1, A3 =0, AZ can be varied to produce a graph of
time vs. fuel.
Thus far all problems have been computed with the nominal values

of hardware constants. Now the control moment of inertia ratio should be

changed, to provide information about performance changes caused by
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specification changes. We suggest that the ratio be changed by + 10%
in all axes at once and then the pitch and roll axes have their ratios
changed by 10% so as to separate them. This will give four curves on

the graph.

IV. Extremum studies.

Determine the max~min time for a hemispheric slew and its
associated fuel cost.

For this particular slew determine the time-fuel relationship.

V. Catastrophic control.

An additional study could investigate costs and the phase plane
trajectories for perturbation torques having a significant percentage of
the control torque, say 50%. This might illustrate the case of a jet

which cannot be shut off.

VI. Ground track illustration.

For several station pairs, perhaps the three named above, we
would like to graph the ground track of the pointing vector for time
optimal control. This control is chosen since it will probably give the
least smooth trajectory.

In addition the ground tracks would be made for a longtime tra-
jectory. We anticipate very little difference. These ground tracks would
be paired with the phase-plane plots.

This work does require additional programming and checkout

estimated at two weeks and additional analysis of two days.
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VII. Time and fuel contours.

Assume the target is at face-center. Draw two contours of
constant time and two of constant fuel for min time control and a
longtime control.

This is only tentative since such contours, though they need
be constructed only for one quadrant require iteration and will thus

consume a great deal of time.
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APPENDIX I
EXPERIMENT PLAN FOR REAL EFFECTS
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The real satellite differs from the ideal primarily in having
control torques which decrease with on-time and in having available
for state information only noisy angles as opposed to the precise angles
and rates available in the ideal model.

We need then to investigate the effect of these changes upon
the overall control system. Since the control system includes a filter
designed to handle the noisy, angle-only data problem we should expect
to find more problems arising from the modeling error given by the thrust
decay than from the real sensor simulation.

The following experiments test combinations of these effects
on the standard Mojave-Quito time optimal slew and also exhibit one

non-time-optimal run.

1. For comparison with the ideal model, a run using the filter
on exact sensor data with ideal thrusters. That is, only

angles available, but no noise added.

2. Tdeal thruster, realistic semsor. Angles only available
and gaussian noise added of standard deviation ¢ = 0.00063.

This run isolates the errors introduced by the filter.

3. Real thrusters, using the filter on noiseless, angle-only
data. This will isolate the thruster effects except for

a small contribution from the inherent filter lag.

4. Both sensor and thruster real effects. This gives us the
worst case situation and leads into the next set of runs

which involve compensation.
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5.

A non-time-optimal run will serve to illustrate control
law response in another situation and also probably com-

pensate for thrust decay.

Other possible control error compensation rums.
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APPENDIX J

TORQUE MISALIGNMENT CALCULATIONS
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Torque Misalignment Calculations

1. Introduction: Although the control torque vectors are nominally

aligned with the vehicle principal axes, small misalignments of the
thrusters may give control torque vectors which have projections on
all three principal axes. It is expected, however that ground testing
of the satellite will reveal the actual orientation of these torques.
That is the detection of the misalignment can be done with much greater
precision than the hardware can actually be aligned. In short we have
misalignments existing but they are known to us. In such a case we
would expect to improve our control by some compensation for these
misalignments.

The purpose of this appendix is to describe: 1) how these
misalignments enter the vehicle dynamics, 2) how the misalignments
are parameterized -- that is how the misalignments are entered in the

simulation, and 3) how they are compensated in the control law.

2. Equations of Motion: In both the analog and digital dynamics sim-

ulations the following torque equations are used

Ilwl = (12 - I3)w2w3 + T1 + bllul + b12u2 + b13u3
Iyhy = (I3 = I)wgug + Ty +byjuy + byju, + byqug
Iabg = (I = Twgwy + Ty + bgyuy +byyu) + bgauy
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Here {Ii} are the principal axis moments of inertia, {wi}
are the principal axis angular rates and {Ti} are the principal axis
torques arising from the solar and gravitational foreces. The remaining

terms on the right hand side arise from the misalignment torques.

The terms bij are the influence coefficients of the jth

.th P . :
control torque on the i principal axis rate. Usually we expect

bii to be close to unity and the off diagonal elements to be small.

Since all of the jth torque operates on the vehicle,

That is, the length of each column vector is one. The matrix B = [bij]
is not orthogonal however, since the torques need not be mutually
orthogonal.

The direction of thrust for a fixed jet is assumed to be

3
} are constant

constant. Therefore, the influence coefficients {b i=1

ij
for a fixed sign of uj. However when the sign of uj changes, the

misalignment of the control torque u, also changes. Therefore the
J

coefficients {bij} must change, and this is provided for in the
+ - -
simulation by having two matricies B = ﬂyzj] and B = [bij] the

columns of which are associated with the respective signs of the control

uj. These are treated independently in the dynamics of course so that

+ o+ + . . - -
bll’ b21, and b31 may be used for the one-axis torque while b13, b23,
and b;B are being used for the three-axis torque.

. + - . ‘s . .
The computation of B and B is done in the initialization

and setup stage of the control computer. For hybrid operation the
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. + -
matrices B and B are printed so that the appropriate potentiometer

settings can be made.

3. Parameterization of Misalignments. The following diagram illustrates

how the misalignment parameters o and € act to move the torque u,
from the e, axis to its final prosition. This diagram is placed here

for easy reference from the subsequent description.

N =

With this parameterization, and defining

bj_lk = b3k for j = 1 and b b for j = 3,

j4+1k ~ 1k

we have

bjj = cos a cos €, b = sin o cos €, b = gin €.

3-13 j+13
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The torque misalignment is specified by azimuth o and eleva-
tion € angles in each direction of the torque. The total misalignment
requires twelve parameters, two angles for each axis, in each direction.

Consider positive torque first, and for convenience denote the
€1 ™ €3 when 1 = 1 and let &+1 ™ 9

when 1 = 3. Then positive azimuth angle a on u.j causes the torque vector

axes by e &y and e3. Let e

to be rotated o degrees toward e

-1 in the ej - ej-l plane. That is,
a positive o for uj gives a positive projection of uj on ej_1 ’
that is a positive bj-l o This new position u; of the torque
’
. 1
is then rotated ¢ degrees toward the ej+l axis in the ej+1 uj plane.

The diagram at the beginning of this section shows the rotations for the
torque on axis two and may prove helpful.

The remaining task is to define the sense in which angles are
defined for negative torques.

The simplest manner of characterizing the definition is to say that
angles are defined for negative torques so that a+ = a and e+ =g
implies that the u+ = - u, that is the two torques lie on a straight
line. This can be achieved by applying the same procedure as described
above to the negative torque after reversing the sense of each axis é

i

4. Control Computations: No qualitative changes were required in the control

computer by the introduction of misalignments. The disturbing force b
(see Part I, section 6 and Part II, section 2) includes in axis j the terms
bjj-l uj_1 + bjj+l uj+1. Also the available control torque is replaced by

bjj uj .

Control computation then proceeds as before.
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