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1, INTRODUCTION

1.1 Objective of the Investigation

The objective of this investigation is to determine theoretically
the boundaries of the regions of parametric instability for principal
resonance of a simply supported stiffened rectangular plate subjected
to periodic in-plane boundary forces. The effects of size and location of
the stiffeners on the boundaries of the regions of parametric instability
are also studied. Experimental verification is obtained for stiffened plates
with a single centrally located stiffener transverse to an in-plane boundary
force acting on two opposite edges.

1.2 Historical Background

Parametric instability mainly concerns the study of the response
of a mechanical or elastic system to certain types of periodic loads.
The term "parametric instability" stems from the fact that the time-de~-
pendent load appears in the coefficients (parameters) of the differential
egquation of motion of the system.

The problem of parametric instability has been studied by several
investigators (1, 2, 3, 4). A complete history of the parametric instability
of elastic systems through 1951 is given by Beilin and Dzhanelidze (5).*

A more recent review of the history is given by Evan-Iwanowski (6, 7).

An article by Beliaev (8), published in 1924, is considered to be
the first analysis of parametric instability of a structure. He studied the
parametric response of a simply- supported beam subjected to periodic
axial loads of the type P(t) = P +P, coset,

The nonlinear problem associated with the parametric response
of an elastic column was studied by Weidenhammer (3,10), by Bolotin (11,
12), and by Grybos (13). Bolotin and Grybos not only studied the non-
linear effects in the principal region of instability but also the higher order
parametric instability regions.

Experimental verification of the principal region of parametric
resonance reported by Beliaev and others was first obtained by Utida and
Sezawa (14). Bolotin (11), verified the existence of the principal region
of parametric resonance and he also verified the behavior of the column
within the region of instability. The most extensive experimental investi-
gation of the boundaries of the principal region was performed by Somerset
(15, 16), in 1964, who was the first to take P,, P; and @ of the axial
load, P(t) = Po + P1 coset, to be independent “Variables.

The research in the area of parametric instability of plate structures
is not as extensive as for columns. The first investigation on rectangular
plates was done in 1936 by Einaudi (17).

Bolotin (18, 19), was the first to investigate nonlinear problems of
parametric response of a rectangular elastic plate. Somerset (20, 21, 22)
in 1965 reinvestigated Bolotin's nonlinear problems, and his investigation

* Numbers in parenthesis designate references listed in the Bibliography.
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is mainly concerned with an experimental study of the nonlinear problem.
This experimental study is the only experimental work that has been
performed in the area of plates prior to the work done in the investigation
presented here,

Vu and Lai (23, 24), 1966, investigated the linear and nonlinear
problems of parametric response of a sandwich plate. Ambratsumyan and
Gnuni (25,26), 1961, studied the linear and nonlinear problem for an infi-
nitely long three layered plate and took into account linear damping. The
?zon)linear problem for three layered plates was also studied by Schmidt

7) in 1965.

Research in the proximity of the area of parametric instability of
stiffened plates was done by Ambratsumyan and Khachaturian (28, 29) in
1959 and 1960. They studied the vibrational and dynamic stability charac-
teristics of rectangular anisotropic plates using a theory not based on
Kirchhoff's hypothesis.
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2. THEORETICAL ANALYSIS

2.1 Assumption

There are several mathematical models which can be used to
represent a stiffened plate system. In this investigation the mathe-~
matical model consists of discrete elements which are the plate and the
stiffeners.

The investigation presented in this analysis is limited to a dynamic
system so constructed that the stiffeners are attached to the plate in such
a manner that the middle-surface of the stiffeners coincides with the mid-
dle-surface of the plate. It is assumed that the assumptions of both the
classical plate and beam theories hold for this system. It is also as-
sumed that:

(1) the stiffeners are composed of thin walled open members
and their torsional rigidities, GJ, are taken to be negligible
(2) the effects of rotary inertia on the system are negligible

In this investigation in the in-plane loading is taken tobe periodic
in nature. The magnitude of the in-plane loading, applied at the boundaries
of the system, will propagate at the speed of the longitudinal frequency
of the system. If the frequency of the periodic in-plane boundary loading
is taken to be considerably below that of the longitudinal frequency, it is
reasonable to assume that the magnitude of the loading is independent of
the space coordinates of the system. This implies that the whole system
instantaneously senses the magnitude of the loading and that the in-plane
inertia effects due to the periodic in-plane boundary loading are negligible.

2.2 Basic Energy Expréssions
The total potential energy of the system is the sum of the strain
energies and external potential energies. In this investigation the external

in-plane forces are limited to those which are expressable in terms of a
time dependent potential. Thus:

O.
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The total kinetic energy of the system is the sum of the kinetic
energies of the plate and the stiffeners which results in:

ab R a
T=4 j j [e h(g.v,.;.)’-] didy+4 ) [ @A @%);jm

+—;’_-§_- jb }:&K Asx (SJ.@‘)L,% dy —--—=---—== (2)

2.3 Hamilton's Principle

The dynamic behavior of a continuous system can be formulated in
terms of Hamilton's principle. This principle is used as the basis for
the determination of the solutions to the problems under study in this in-

vestigation. The mathematical statement amilton's principle for a
conservative system is:
S A = (0 e Ty —— ' (3)
in which +2 "
L @
and *t,

e AV

The formulation of the dynamic behavior for the systems under investigation
in terms of Hamilton's principle can be obtained by the substitution of
Egs. (1) and (2) into Eq. (3), which results in:

SA= sj {&H j (QT)ddeZ&sf_Lf )ax+z A j(:g:gdy—
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2.4 General I-'ormulation of the Problem

For a holonomic system, Hamilton's principle yields the Euler
equations for the integral A which are differential equations of motion.
If the system has a finite number of generalized coordinates c‘k . Lagrange's
equations of motion for a conservative system are:

ad'aqK aq =0 ——————————- 7

This equation is used to obtain an approximate solution to the problem
under investigation. This approach is sometimes referred to as the Rayleigh-
Ritz method or the assumed modes method.,

A solution is assumed for the problem in the form of a series composed
of a linear combination of functions ¢1, which are functions of the spatial
coordinates, multiplied by time-dependent generalized coordinates qj(t), that is

w(x,y,t)= i q,(t) QXY ~— = — — — — — (8
A= ’
The functions ¢ j must form a complete set of functions over the region
R of the plate and because the problem is formulated in terms of Hamilton's
principle they must at least satisfy the prescribed boundary conditions,
but not necessarily the natural boundary conditions.

A set of functions, 951, that are complete over the region of the
stiffened plate 0<x<a and 0< y<b and which satisfy the simply supported
boundary conditions are

. mirx . 1r
¢m("'7)= SnTEA Sin MY (9)
Thus, according to Eq. (8) the 22sumed form for w (x,y,t) is
Ol
wivnt)=) Y q (#)SinTEAGin aTY (20)

Nzt
The first step for the solution is the determination of the Lagrangian
functionL in terms of the functions 9, “’ The substitution of Eq. (10) into
Egs. (1) and (2) and then the corresponding substitution of Eqs. (1) and
(2) into Eq. (5) gives:
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In the determination of Eq. (11) summation and integration signs are inter-
shanged. This is done on the basis that w is a fourtimes continuocusly
iifferentiable function over the region of the stiffened plate.

In this investigation only harmonic in-plane edge forces are con~
sidered, which can be expressed as {see alsoc Pig. 1)

Ne(£)=Nxo+Nxt Cos®t _ __ ____ (17

and

Ny (1) = Nyo + Ny Ces®t _ _______ (13)

in which €& is the circular frequency of the time-dependent component of
the forces, Ny, and Nyq are the static components of the forces, and Ny
and Nyt are the magnitudes of the variable components of the forces in the
x and y directioni respectively. The expression for the forces acting on
the ends of the it! rib and k stringer respectively can be written as

P (4)= m“" PM CosOt _— . ____ — (14)

and

Ry () = R + psK CosOt __ __ __ ____ __ (15)

in which the bar denotes the static component of the force and the prime
denotes the magnitude of the variable component of the force. For
computation reasons, it is convenient to express Eqs. (14). and (15) in
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Nx(t) = Ny +
+ Nx_;cosgt
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Fig. 1 Periodically Loaded Stiffened Plate
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the form
Pi(t)= Ari Viri Nxo +'V;-: Nxt Cos B8t | — — — — — (16
h }
and
PSK (’t)::-—A—-—hs—’il:%K NYO+-V5.K, Nyt Cos eﬂ ————— (17}

in which 1‘—4,; ‘ V,.f R ‘\7;,( . and ‘\Gé are proportionality constants which
relate the magnitude of the stiffener loading to the magnitude of the plate
loading.

The substitution of Eqs. (12, 13, 16) and (17) into Eq. (11) and
next the corresponding substitution of Eq. (11) into Eq. (7) gives
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o
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v=l

in which B = a/b. In order to express Eq. (18) in a more workable form
the following relationships are introduced

G =€vrifp ) By=6EsxCp —————————— — = (19)

and

4
Nyo = A Mo , Nyg=AM Nyt — — — e — — — —— (20)

in which € ri and € rg are proportionality factors relating the magnitude
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of the mass densities of the stiffeners to the magnitude of the mass density
of the plate and ix and 44 are proportionality factors relating the magnitudes
of the static and variable components respectively of the in-plane loading
on the plate in the x~direction to the corresponding components in the y-
direction. The substitution of Eqs. (19) and (20) into-Eq. (18) along with
the introduction of a set of parameters gives

R o0
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—_——————— — — (22)

A= — — —— (23

Asem L8 — —— (29

‘ bD _ (25)
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2.5 Matrix Formulation
a. Random Stiffener Size and Material Properties
The generalized coordinates qmnp(t) can be represented by a square
matrix
q" Q|2 ————— q\ﬂ-
qa; c‘aa." - T T T an
=~ ]
[@l=q =} | TN [P (29)
mmn i |
|
é qn |
moAmE o qm
form,n=1,2,3,~----,0, However, in order to express Eq. (21) in matrix
notation it is necessary to represent the set of functions qmn(t) by @ column
matrix which is composed of the column's of [ & Jas follows
i
]
§
e _
i
fQl=a) b ———— — 30
$=9d (30)
-T__
.q:‘;_
4
[ Qoo
With qp,,(t) represented in this form Eq. (21) in matrix notation can be
written as
de - 7
MVEJ+[[K]~R[s]-«'cos Bt[T]}{@}=0 -—— @)

in which
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(32)

(33)

(34)
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K=
. B, i )
[Tetopu= <22 D EASIn TR Sin U 5 T2 ()
32, P
n : '
A.—z,—g_ KZ—;V"‘)‘SK Sin MW g, Sinvi g, :ff
L h£u |
and
y:l’l b)x‘(zyga e e s e e — (36)

An examination of Eq. (21) reveals that when there are no stringers
on the stiffened plate, which implies that Agx =Jsk = 0, the equation
reduces to the form

R oo
M iy R » nn’ 4‘ oo ] ,T "
"'—"P qmn<+) + a-pM- Z‘e‘r.; Aﬂ 5"1 ——-—EL “Er‘ qmu.(t) sSin E_LZ— -t
oo

R
! 2 2 2 + . A , %
tig [m +nga ]qm(t)ﬂ»%-’g— > J; Sin DIEL; q,. ()sin un;r —_

L=l =/

- 3 .2 2 R
_[Bm* 0] & VoBmS B T s ey _ BN,
[4- .,.ﬁ‘_’%u]«qm(ﬁ, L4 < ] % 9.(5)-5Z 2/;'.'*’"

oo
.(\‘f,‘&-;-v;"’o(’c;os et)Sin 9—’-2& qu{‘i) Sin E_%E__: O, (m,n=1,-- 00)-- (37)
(73]

In the set of infinite equations given by Eq. (21), the set of functions qppn(t)
are coupled only by the subscript n. Thus, the original set of infinite
ordinary differential equations reduces to m subsets of ordinary coupled
differential equations with periodic coefficients, Equation (37) reduces

to the same general matrix form as given by Eq. (31) except that there
exists an equation of this type for each m = 1, -~-, o0, which is given by

MV ]{@)+[[K]-&[5]-'cos e—é[rﬂ Q=0 —————— —— (38)
in which ( .
-
‘?nlu_
Q= Q,i..‘ S T (39)
1
Qoo
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Equation (21) again shows that when the stiffened plate contains no ribs,
which implies that )( ri = Jri = 0, the equation reduces to
MIv]{@}+[[<]-&[s]-eCoso4[T]]{Q} =O - —— — — (44)
in which A \
Un
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Equation (44) reduces to the same general matrix form as given by Eq. (31)
except that there exists an equation of this type for eachn=1, ===, 0o,

b. Uniformly Spaced Stiffeners

Equations (31, 38) and (44) can be further reduced into additional
subsets of coupled ordinary differential equations with periodic coefficients.
This occurs in the case of uniform stiffener size, material properties,
spacing and uniform in-plane edge loadings on both the ribs and stringers
respectively. The condition of uniform stiffener spacing allows #; and §g
to be written in the form

_ < d
"W oo k= e ———— — (50)

in which N is the number of bays in the y-~direction and L is the number of
bays in the x-direction, see Fig. 2. The summation limits R and P must
now be replaced by N-1 and L-1 respectively. In addition, the condition
of uniform in-plane edge loadings on the ribs and stringers implies that

3

i =V 3 'V;K R — (51)

and

Vii=Ve s V=V — o ———— —— (52)
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Fig. 2 Uniformly Spaced Stiffeners
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If the ribs and stringers of a stiffened plate are made from the same
material as the plate, then ¢gg = and Erf = Egx = E. Also,
stiffened plates are usually designed so thag the ribs and stringers are of
a uniform size respectively, thatis Agx = Ag, A = Ar, Igx =1s, and

= Ir. Under these conditions the parameters mtroduced by Eqs. (23)
tf:.rough (26) and Eq. (19) reduce to

A
ArizAp= OF o — e — — — (53)
Asezds= 55 —— —— —— — (54)

Tri=Tr= % ~~~~~~~ (55)

G=5=E5 -

and

The substitution of Eqs. (50) through (52) and Egs. (53) through (57) into
Eqg.(21) and the corresponding interchange of finite and infinite summations
yields

M[J_c'i (£)+Z)r o0 u.7r‘c 2;(; Z A (_é).
e imn T,«:c CI\M

Ve

mu

S Sin 228 sin A el [tenta’] 4, (D THE S G, (L)

N-l

vz Sin rn‘Tc. Sin uTFC 4‘3}/.5 Z Clvn (%)Z.Sln Mﬁd Sin Z.Zﬁl
=i

..ﬂ4_m ﬂn MJ“%”(‘&) [ﬁm+pnujo<cosa-é? 4)-

....é——- /‘(r(\/rx—f-\fro( Caje—é)zq ('é)ZSl‘n '?—/—-:/r-—c—.SI'n L%TE.._.

U=/

—-é___ As (Vs A X +V5 ' exX Cos 6t) }_cy (—é—)ZSm -—-—ﬂ/ .

v=d

.Sin!—’z’—fﬂ( =0 ———— — —_——— (s8)
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form, n=1, ----, o . Budiansky, Seide, and Weinberger (93) showed
that series of the type

N~

25&?\ "ZC Sin “ZC’ ———————— (59)

<=y
and

N d rd

can be expressed in a closed form. The values given by the above series
are summarized in Table 1 for Eq, (59) and in Table 2 for Eq. (60). In ad-
dition, the condition that will apply for each value of u for a given value
on n is indicated in Table 1 where p and 1 are positive integers such that
p + 1is even, and kj and kj are positive or negative integer values that
yvield positive values of u. For a given value of m, the conditions that
will apply for each value of v is indicated in Table 2 where g and f are
positive integers such that g + f is even, and k] and kj are positive or
negative values that yield positive values of N,

When m/L and n/N are both integers Eqs. (59) and (60) are both
equal to zero. Thus, Eq. (58) reduces to

. _ N g3 2
& daoen®r[(30° 40 0 [qguy pu) (4)- & [2G - E L2 |

, 2 3,7 2 .
‘Yuguyipm (£) =2 (§L) , a(e) [ o5 ot Gepry(on) (E)=0 —==(61)

in which the following replacements are made

= gL ( =1:2;""""l °°) — -
lT:gN (g= 112:"""'1 °°) - - (62)
Equation (61) is uncoupled and a single equation exists for each set of ¢
and p. The rearrangement of Eq. (61) gives
" 2
Tigryiowy (£ + Dguyiomyl! =2 Higuy(m) CO3 9{) Ugryiom € L (63)
in which 2 2
2 2 o= 2 2 4 — R
gy (ony = Ligu)+& (o) ] - X [ p(gYrp*id(pr)™ ] s
4 M
and
_ o '[8750) 50 W (Pn)® ] L (65)
“gnony= 2[(guy*+pH(pn) 2 ] - 2R [ pH(QU+AM A (PN )



TABLE 1
Conditions N1
u+n u-n n = pN n;épN Zsin nwc sinuxc
2N 2N =1 N N
# 2K1N -
Not Not lI/é 1N u 1 n 0
Integer Integer u#F2K2N +n
Integer Integer | u=1N Never 0
Integer Not Never u=2KyjN -n -N
Integer u#2KN - n z
Not Integer Never u# 2KjN - n N
Integer u=2KN-n 2
TABLE 2
Conditions
L-1
v +m v -m m = gL m # gL Zsin mird sinyTd
2L 2L d=1 L L
Not Not v £ fL v# 2KiL - m 0
Integer Integer v #2KL + m
Integer Integer | v= fL Never 0
Integer Not Never v=2K3L - m -1
Integer v # 2K2L +m 2
Not Integer | Never v# 2KijL - m L
Integer v =2KzL +m 2

18
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Since the form of Eq. (63) is identical for all (gL) and (pN) the indices
can be omitted, hence
G5+ (1—24u4Co050¢) 9 (4) =0 — — — — — (66)

This equation is the well known Mathieu' s equation. Physically, Eq. (66)
represents the case where only the panels of the stiffened plate undergo
motion but not the ribs and stringers.

When m/L is an integer but n/N is not an integer then the series
given by Eq. (60) is equal to zero. Table 1 evaluates the series given by
Eq. (59) for certain relationships between n and u. The application of this
information to Eq. (58) yields

Ml Gqon (01252 D: C’(wzk neny (B~ Z %L)(zk,»«-m("ﬂj*z'; [ts0+

+—np] q(«;c.)n ({')"‘ j.. [z q(ga.)(zk N+n) (H Z C‘(«;L){tk.”—") (J:J
2 3 .2+
,Eé%‘:)-—i-é%ﬁj&' q(sl_)n({:)—[_@’_(z-‘:l-+ﬂ4-ﬁjp<’605 etq(?L)n(-E)._

AN (TR Cos O[T Qo pmamy (B) -
Ke |

4
- Z q(‘?LJ(Lk,N-—ﬂ) (l&)‘-} =0 - e — (67)
forg=1,2,---, wand n # pN. Expansion and examination of Eq. (67) shows

that it may be further subdivided into N-1 independent equations. These sets
of equations correspond to the first N-1 values of the integer n. I uj =
2kgN + n then for a particular n equal to z the q's appearing in the sum-
mations of Eqs. (67) will have the subscripts

=2N-Z , 4N-z 6N-‘Z, e —— - —— — — — (68) -
and

Uy=Z, 2ZN+Z ,4N+Z ,6NVZ, — — — . e - e (69)

If Eqs. (67) are written for n equal to these preceding values, then only q's
having the same subscripts will appear in the summations. Thus, if

N=2z,2Nt+z, 4N+Z, 6N+Z, — — —
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then

U, =2N"‘Z, 4"\/“2) 6N"Z, ~~~~~
and

Uy = Z,2ZN+2Z, 4N+Z, ENtZ ), - e
If

n=2N-—z, AN-Z, 6N-=z
then

W=Z,2N+Z ,4N+2Z ,6N+2Z | e —— —
and

U, = 2N-2,4N-Z ,6N-z, . _ _ _

Thus, it is evident from the above considerations that Eqs. (67) reduce to
the following N-1 independent subsets of equations, which are given by
the following two groups of equations;

‘_,_ s N oo .. -_“
M{ﬂ q(%‘—)(“”*z)m +'A?" ;Zo [q‘?k)(z}h'ﬂ)({) cl(it)(zu‘*'w-z) (J‘)] }+

;-3 2.17& 4 =
+a5 (e N2l ] gy ey O+ 2GR D [q -
4=

2 3 2 .
“CI(‘;L\(Z-(W)”"Z)(*)J -Eéﬁrﬁ). + (ahh::Z) AJ 6‘76‘7(91-)(2""’*1) (€) -

2 2 — , 2
-[mi +WJN Los 9% "!(g;.) (zhN+Z) ('&)“ﬂ(?;_) AcN .

oo
. — -~ ? ¢ s 't — — —
(Va+ie'Cos 94')42:0 [q«'-)(z)"ﬂ)( ) qffl)(z($+t)ﬂ'z) (éj) =0=---- 0
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and
| o AN & ..
MK‘B— C‘({‘)(z(hu)u-z)({.)— -—'g_jaza [q(g‘-)(l-j“‘*")(f)_q(gl—)(z(s-m)lw-z) (f)‘]} +
L L +IN- 215 J; L N
T [(?L) B (2(h +)N Z)Jﬂ(g:.)(z,d.uw-z)( ) - Z[C{(fL)(lé~+z)( )—

o), Al heN-2 R B
psiarm-ny (O [EFE AT J " Dpoyecurnyv-zy (B

2 3 LY 2 '
V4] htyN-Z) 0]
-[ (ZL) + £ (2¢ 4-‘4) ) JD< Cos 62 ?(fL)(LU--H)’\/— z) ({_) +’ﬂ(f‘-) Azl

(G R+ wset); [‘I(TL)(14N+Z)( Y- q(gt-)hquz)( J O--~- (71)

in whichg=1,2,---, wand h=0,1,2,----, o, The set of N-1 equations
is given by Eqs (70) and (71) for a particular value ofz=1,2,---,N-1,
The required equations in a given subset are generated by expanding

Eq. (70) and then Eq, (71) for a particular value of h,

Equations (70) and (71) can be expressed by a single matrix equation,
by employing a procedure similar to that used in the last section. The
resulting matrix equation is

MIVI{Q)+](K]-®[s]~«Ceset[T]]{Q}=0 ———— — - — — — (72)

in which

q(gu)( z)
Qigu)en-2y

Qier)(2w+2)
{Q} = 4 Q(gl-)'(tw—z) F T —— (73)
4

Cf(fk)(z.,l'u-c-z)

\ q(fL\(ZUH)N'—Z)J
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.
! + Sun Ar N m=vV
[V = Ve, vue JF < T on=«
Sun A N m=v | T " (74)
NFE L
. R
_ N Lm2+l82n23 +Sun iﬂm Y , Vy'?_-:;l
[K]-—Kmn,vw—{ L (75)
Su.n J;- m‘N M=y
43 J Nt
d . N
[ﬁm /d n 4‘;.. V_ m Ar =
[_S]:smn,v.ya =t s + Dun s /6} r:—\i e
4 ———
Sun V7 mz' v3 ) ey
L 4 Nt J
[ﬁm + X n Zu + SunVr M Ars m= v~
[Tj:tmn,vu"' 4 '] “+ Pon=al (77)
¢ 2
” /lr'é ) m=y
{ 4 m#&tJ
and . 3
-\ for (u+n) /2N = In*{:eger
5un= s T (78)

+i for (u—n)/Z/\/ = Infege.r
| J

In Eq. (76) both (u+n) /2N and (u-n)/2N cannot be integers for the same
values of u and n because of the nature of the relationship between u and

n. The column matrix {Q]} , Eq. (73), is composed of certain elements
from a row, which corresponds to a multiple of the panel number L, of the
general matrix {Q1 given by Eq. (29). The required elements from this
row are determined from alternate use of first (2jN + Z) and then (2(j+1) N-z),
beginning with j equal to zero and then increasing j by integer values after
each alternation. The subscripts of the representative matrix vy, .y have
the same restrictions as the subscripts of {Q 31 . The subscript of m of
vmn -vu has a constant value equal to some multiple of L. The subscript

n is constant for any particular row of vmqmn, vu. but varies alternately

from first (2hN+Z) and then (2(h+1)N-2z), beginning with h equal to zero

and then increasing by integer values after each alternation until the
required number of rows are generated. The subscript v takes on the cor-
responding value of the subscript m. The subscript u takes an alternate
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values for first (2jN+z) and then (2(j+1)N-z), beginning with j equal to
zero and then increasing j by integer values after each alternation until
the required number of columns for the matrix vy, o are generated.

Physically, Eq. (72) represents the case where only the panels
and ribs of the stiffened plate undergo motion but not the stringers.

When n/N is an integer but m/L is not an integer then the series
given by Eq. (59) is equal to zero, Table 2 gives the evaluation of the
series stated by Eq. (60) forcertain relationships between m and v. The
application of this information to Eq. (58) gives

M{J,B- qm(’”) (t) + 2\_23'1:"[ kzq.(zkl:_-#m)(pu) (t) '—Z: Q(zk,t..-m)(pu) (t )] f +

2. 2 292 .T (PN)4!—é3
+'¢1;.—[m 1A (?N)J C]m(ww)({)‘*' : 4 [g‘q(zl’,_w"")(l””) (é) -

2 3 2 2
~ L oo (C] [P BB |20 [

3, 2, /3’(,\/)2‘,(L_.__— ',y
+.[5__(%_/‘.')_4‘_Jo< C"’g'é‘fm(,m)(ﬂ“ £y Ssbe (G A R4 o

. t - ) —— e — — (79}
Cos & [%ﬁ(zkz_Lﬁ-m)(pu) ({-) Z‘_ Cf(zk‘,__m)(ph,) (é)j“ O

forp=1,2,---, »and m # gL. The integers kj and k2 in the above
equation can have either a positive or negative value or both., Expansion
and examination of Eq. (79) shows that it can be further subdivided into
L~1 independent sets of equations. These sets of equations correspond
to the first L-1 values of the integer m. If v] = 2k,L-m and vy = 2kgL+m
then for a particular m equal to e the q's appearing in the summation of
Eq. (79) will have the subscripts

V=2l -€,4L-,6L-&, —— ——————— (80)

and
LWw==€, 2L+e ,4L+€,6L48, — —————— —— (81)

If Eq.. (79) is written for m equal to these preceding values, then only
q's having the same subscripts will appear in the summations, thus, if

m=e, 2L+e 4l+e blL+e, —
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then
V,::ZL-—E.,A-L-E.} 6L-ej _____
and
Vo=e,2L+e,4L+€, 6L+E, — — — —
If
m=2L—e/4z_-—e_Jé{___e, _____
then
Vi=e,2Lte, 4L+e el+e, — —— —
and

V,=2L-€,4L-€,6L -8, — — — — —

Thus, Eq. (79) reducesto the following L-1 independent subsets of equations,
which are given by the fol owing two groups of equations:

‘— o /\ L &= . ow
Mi @ q(ﬁu..+e)(f-7~) (t) * Jﬂ_‘ ZD [ﬂ(sz-ra)(fM) (-L-) —C](z("*"ﬂ-*ﬂ)(?"’) (6)]}4'

2 + 3
+T;-¥'B?'CL+E)Z+/4 (Fv)jlqaa.-(—e)((h’) (£)+% (f’:})— LB Zﬂﬂkuﬂ(”}(f)_

K=o
. 3 2 -
- +e) VY a 5
C?(z.(nc-u)l..-e)(p/v) (t)]..[,é (zcj—. < +’£ (F4. J°< 7(zz_z_+c)( p~7) ('E) -

(zeL+e) A7 e 2 =
- £ C4 * (i#- Ajd Cospt 7(24.-&-6.)(?/\/) (.6>—é s;(PN) y

‘ s,/ =
(5 AR+ vy u'x'Cos 5’14)2 [ Feerrrer(on) ()

K=0

~7(z(l<+:)t_—e,) (pn) ('L): O- (82)

and

13 Al < T oz
MI—,Z— Cf(z_(c-«-:) L~eX(pn) ('b) _%”‘(Za[qazu-e)(pu)(t) c](z.(m—:)z.-c)(?y)(é)] } -+
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l N—e Yo zZron) % L iLs’
v [(z_(cﬂ)a. e)+a (PN)JCI(I-(QH)L—C)(?N) () - - .

< 2
'Z EQ(ZKL-fe)(PN) (-E)*ﬂ(z(k-&a\l_—e-\(?ﬂ/) <£)J - [ﬁ (Z(C_:;-) =E L -+

K=

3 = z 3 r S
23T 1 _[BGet) (=Y BYpm)ou’T .

3 Z 4
- A L PN) = X g ( g-é- b
X Cos 6L Vecerny (£)+8 54( (FAR+v U % 'Cos &)

€) (pn)
o0
. 'e —-— '& J = o ~~~~~ am—— (83)
Zg [?(m*re)(w) () G](zcz»:-)c-—e)(w) ()
in whichp =1,2,3,---,wandc=1,2,----, o, The set of L~1 equations

is given by Eqs. (84) and (83) for a particular value of e = 1,2,---, L#1.
The required equations in.a given subset are generated by expanding Eq.
482) and then Eq. (83) for a particular value of c.

Equations (82) and (83) can be expressed by a single matrix equation,
by employing a procedure similar to the one used in the previous section.
The resulting matrix equation is

MIV]{Q) +[[k]-&[s]- Cos 64 [T]]{Q}=0 —————— — (84)
in which

% (pV)
q(zL.—e)@N)

Qar+e)pm
Qf = J9ui-ersipm b oo —— —_ (a)
|

Cf(:.kL-i—e)(pN)
L Az (kN L-€)(pN)

q

L BumNsl | m=v
Jzg V4 ’ n=u
[V]-”-‘anvu.= 4 P —— — - - (86)
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3 A
ne SvmIsn Lé_ M=V
[m +p J + 2y JS
4 ”n = A
[K] ku-{ >— — - (87)
Sum Js ntLp” mEv
y 4 h= )
" _ - - \
[Art B8] bum DAl |z
pra =
[S] =Smwus=< ) >~ - - (88)
J - Svm Vs A NnT A Lﬂs m#V
4 / n=uut
2 \/I s L_ 3 -
([4 +ﬂnMJ+6¢m 3/4::1 AsL.a / V,’::‘\:
[T]‘-'":mu,«u'-'-'{ r-—-— - (89)
5vm\/5 4“ nz/\sLﬁ mEV
/

-~y

and 1
for (\/1’1’”)/2[. =In tcge_v-

SBm= < f e —————— ' (90)
+| for (V—m)/zt. = Integevr

. o

In Eq. (90) both (v+m)/2L and (v-m)/2L cannot be integers for the same
values of v and m because of the nature of the relationships between v
and m. The column matrix {Q} , BEq. (85), is composed of certain elements
from a column, which corresponds to a multiple of the panel number N,
of the general matrix {Q} given by Eq. (29). The required elements from
this column are determined from alternate use of first (2kL+e) and then
(2(k+1)L-e), beginning with k equal to zero and then increasing k by
integer values after each alternation. The subscripts of the representative
matrix vy, | vy have the same restrictions as the subscripts of Q}. The
subscript m is a constant value for any given row of vy . but it varies
alternately from first (2cL+e) and the (2(c+l)L-e), beginning with ¢ equal
to zero and then increasing ¢ by integer values after each alternation. The
subscript n has a constant value equal to some multiple of N. The sub-
script v takes an alternate values of (2kL+e) and then (2(k+1)L-e) begin-
ning with k equal to zero and then increasing k by integer values after
each alternation until the required number of columns for the matrix
vmn,vu are generated. The subscript u takes on the corresponding value
of the subscript n.

Physically, Eq. (84) represents the case where only the panels
and stringers of the stiffened plate undergo motion but not the ribs,

The only case that remains to be considered is when both m/L and
n/N are not integers. The application of the information contained in
tables 1 and 2 to Eq. (58), when both m/L and n/N are not integers,
vields
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M{Z 4, -£)+_L.-[qu(zkwm)( SO NG ]+ A5
.[ gq(LkLL+M)n (t)- Z ch‘z.k L-m)n (t )J}-i-r [W' +4 V‘J qmn(t) +
M7 M4Jrh/ [ Z qm(l,kzh/f—n) (£)- Z C‘m(z'“ ~N- ")(t)‘]f —_tzz—/:é_[zq(z& Lrm)n (£)-

_.Z 7(2‘("___"1)“ (t)}—[ﬂm +3 n'u "‘C{m(f) [ﬂm + 2 n “u Jd
K,

Z —_—
-Cos Bt q, (4)- LA (GRrviX Cos0t)[ S q
A

mizk,wen) (B —

qu(zk,ﬂ—n) (éJ—— é‘ﬁ—'&i" (\7 U X b{ ‘x’'Cos 9-(7)

.[ Zq(z.kzt_-%-m)m ({:) —‘27(1.51. L=m)n Cé)] =0 ——— = ——— (91)

The integers kj and k; in the above equation can have either positive

or negative values. pansion and examination of Eq. (91) shows that

it can be further subdivided into (L-1) x (N-1) independent sets of
equations. These sets of equations correspond to all combinations of

the first L-1 values of the integer m with the first N-1 values of the integer
n. The subscripts of Eq. (9 1) behave in a manner similar to that of the
subscripts of Eqs. (67) and (79). Thus, the subscripts uj and up take on
the values given by Eqs. (68) and (69) respectively with the subscript n
restricted to the same set of values as uj and uj for a given set of equation.
The subscripts v; and vy take on the values given by Eqs. (80) and (81)
respectively with the su%)script n restricted to the same set of values as

v] and v, a given set of equations. Hence, Eqs. (91) reduce to (L-1)

x (N~-1) independent subsets of equations, which are given by the fol-
lowing four groups of equations;

M {_—- q (2e +€ )(2h+T) (t) + 'AL— z [C} (2er+ @) (N +2) <‘£ ) q (2c L+€)(L(J*‘)”*‘q<£)]+

+,&:_._Z [_C?(zkl.f-e)(z.h/d«l-z) (-bB ﬁlz(,q. yL~€)(2hn+2) (-l:)} ] + L [(?_c.L+C) +

K=o

rB (zhwvt2) ] Q(zcre)(tha) )+ - (ZCL+€> ad Z [.7(1“-“’3)(23”’“2)(6)

+
-—7("-61-*6)(2(3*')'\/ z) H:J th;—Z.) Lﬂ Z [q(sz+e)(th+z) (€)—
[ é(zcz_+e) + ﬂ (zl«.,v—f-z\ “ J,,< .

- 7(2(;4*/) L-e)(2hnv+z) (é)J
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2 e\ Bihn Z-)a.u' ‘
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& —_— Y
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oo : , .
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oo
3 2
Z [7(1(“")“6)(1 3."”'2)(-&)- 7(z(¢+4):_.~e) (2(3'4—/)”_2.) ('L'?]i- é /I) Lih AH'Z) .

j=0 o0
- - YN
(v,uo( +V; U’ Cos 6'6) Ea[‘](zm_.,_e)(zh;v-f-z.) ('L') -

- q(z(xﬂ)l_-e) (zhw~v+z) (=0 — - — — — — — — (94)
and

M} 5 Gagernye - (E)- 2N S [5
B ey ~e)(2(h+1)N-Z) V<3- Q(Z(C-H) L.—e_)(zdnho-z) ({') -
§=°
-4 ey (i #)-2L5 4
(2(c+) L e)(z[;-n)N—z) ] 2 Z, q(LHL""C)(Z(h-f—I)N—Z) ('&) -

~Qageryi-e) (2(hsiyN-2) (4:):”+#[(1(c+f)z.-e)z+lga(z(h+,)N_z)ajz.

’ J_r* -+ - 4 &
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“Jlaqery-ey (alha N >

‘C](L(cﬂ)l.—c)(z(h.;..)fs/—z.)({:)—[P(Z(Cﬂ) L~e)2:f—/@3'(a(h+,) '\/—Z)Lu’]x .

& — ——
+ CosOL Qi pnyLoe)atjrn-2) (-l:)+é(2(c+t)L;;€) e (VR +

o0
+v/'Cos 6¢) ,Zo [‘?cuw)ue) (2mz) (€D~ Uaeery-e)(z(jyw-2) (tﬂ *

s Llehrn-2)" o ! S
+g /IS (4 +") Z) (VS X +V5/4‘°< Cos 6t)l<z=a[Q(ZKL*'C)(Z-(‘\'PI)N"Z-)(.e) —

‘-q@(w)t.‘e)(z(mu YN-2Z) ({:2] =0 ———————— - —— = — (95)

in whiche¢=1,2,----,w and h=1,2,----, » , The set of (L-1) x
(N-1) equations corresponds to Eqs. (92) through (95) for all combinations
of the integers e=1,2,~---, L-landz=1,2,~~~,N~1. The required
equations of a given set are generated by expanding Eqs (92) through (95)
for all combinations of the integers s, ¢ and h.

Equations (92) through (95) can be expressed by a singie matrix
equation, by employing a procedure similar to that used in the previous
section.

MR} +{[KI-&[s)~xCos o¢[T]] {Q} =0 ——— - — - — (99
in which
9e=
q(zxue)z
q(zom)t_-—e.)z.
{Q} = 9 QIE(zN-z.) F T (97)

- -
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am-  ponTa’ ] SunVemTAe N
[ s +5& ] + 241 3 +
+é\/m \/’/M /n?'/‘ls LA } P m=Vv
4 Nn=«u
[T:,:-t""’;v“: SunVe m Ac NB P =v (101)
4- =t A

Sum Vs w'n*As LA 3 P mz v
4 =
o, nfv
x n#u

r w
- for (utn) 2N = Integer

Sun = > — — — (102)
+) for (u-n)/2n = Integer

\ /
and

- for (v+m)/2L = Integer

+| for (v-m)/2L = In'lre_ge_r

J

In Eq. (102) both (u+n)/2N and (u-n)/2N cannot be integers for the same
value of u and n because of the nature of the relationships between u and
n. Also, in Eq. (103) both (v+m)/2L and (v-m)/2L cannot be integers for
the same value of v and m because of the nature of the relationships be~
tween v and m. The column matrix {Q} , Eq. (97), is composed of certain
elements from the general square matrix {Q} given by Eq. (29) . The
columns from which the elements are taken are determined from alternate
use of first (2kL+e) and then (2(k+1)L-e), beginning with k equal to zero
and then increasing k by integer values after each alternation. The required
elements from each of the columns are determined from alternate use of
first (2jN+z) and then (2(j+1)N-z), beginning with j equal to zero and then
increasing k by integer values after each alternation. Since {Q} is re-
stricted in form then matrices which are multiplied by {Q} , the matrix




33

fv] being representative, are also restricted. An examination of Eqgs.
(98) through (101) reveals the following requirements for the generation
of the subscripts of the representive matrix vy, . The generation of
first m rows of vy, ., requires that the subsCript b = (2hN+2) in which
h= 0. For these I?irét m rows the subscript m takes on alternate values
of first (2¢cL +e) and then (2{c+1)L-e) beginning with ¢ equal to zero and
then increasing c by integer values after each alternation. The generation
of the second m rows of vy, «,, requires that the subscript n = (2(h+1)N-z)
in which h =0. The subscgfat m is determined the same way as given
above with ¢ beginning with zero. The third set of m rows requires that
the subscript n return to the form n = (2hN+z) in which h = 1. Thus the
subscript n alternates between first (2hN + z) and then (2(h+1)N-2),
beginning with h equal to zero and then increasing h by integer values
after each 2m rows until the m x n rows of the matrix vy, , are generated,
The subscripts v and u are generated as follows ?dr each row of
vmn,vu- The subscript u alternates between u = (2jN+z) for the first columns
and then u = (2(j+1)N-z) for the second n columns, beginning with j equal
to zero and then increasing j by integer values after each 2n columns until
the m x n columns are generated. The subscript v takes on alternate values
of first (2kL-e) and then (2(k+1)L-e), beginning with k equal to zero and
then increasing k by integer values after each alternation until n columns
are generated. At the beginning of each n columns the integer k reverts
back to zero.
Physically, Eq. (96) represents the case where the panels and
both the ribs and stringers undergo motion. The independence of the sets
of equations corresponds to different modes of motion,

2.6 Solution of the System of Differential Equations

a. The General Equation

The problem of parametric stability of stiffened plates reduces to
six specific cases involving stiffener size, material properties, and spacing.
The governing expression for the six cases is given by

MIV] Q] [ ~&[s], - «'cosot[T] ]{Q), =0 - === (109

in which the subscript i refers to the specific matrix that corresponds
to a particular case. For convenience, Table 3 gives the equation number
for each matrix of Eq. (104) for all of the six cases studied. ,

It has been shown that the determination of the regions of instability
reduces to seeking conditions under which Eq. (104) has periodic solutions
with period T and 2T.(33). Since the required solutions are periodic, they can
be expressed in terms of a Fourier series, thus for a region of 2T

{Q]i' = {a}io+§4_[ {Q}"k(’” ji%t -f-{b}‘-k Sin kef:‘ ————— —_ (105)

2
represents the solutions with period T and

(@)% [{¢c]ucos kGE 4 (] Sin k5]~ __ o

represents the solutions with period 2T.



Table 3
Equation Numbers for Matrices Given in Eq. (104)

Case Equation Number

Y vi , | [kl [s1 | ([1] |
1 (30) h _(32) ,_(33)*,. (34) (35)
2 (39) (400 4y (42) (43)
3 (45) we e (48) (49)

4 | o | (75) (76) on
5 (85) (86) (87) (88) (89)
6 (97) (98) (99) (100) (101) J
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The substitution of Eq. (105) into Eq. (104) and combining like
terms of 1, cos ket and sin ket yields
2 2

AURCIEEIRRTIES Svs NI 0059”};.4{ -0 ey,
MO (K] (o]~ R [s]; {a] . ] cos KOL L[ [v] {4, £2mB%

(kL) [5]; (bl sin kgt - «[T), {a]  CosOt Cos KL _

~X|Tl:{bj Coset Sin —@-g_’-tz-.o ~~~~~~~~ (107)
However, 1
a Iy ) k"-‘: o
2
- {a_} Cos ot ) k=2
{a{ Cosét Cos k6t =4 2 4 S - — - (108)
« z 4 Cos K‘if([ag +
2 2 £ (k+2)
* li(x—z)/\ ) k=46 ‘"1
and ’
Zibf sinet ) k=2
{b}kCosaé Si"‘k'%é' =9 és"‘%“"?qmﬁ r——- (109)
t gb }i(g-z)) / k=4/é/-_
\ J

The substitution of Eqs. (108) and (109) into Eq. (107) yields

[J—[KJA %[Sl]{a}w 2 [T]i ;424—2 {“"'[TJ { IA(K-2)+
0 K DR I ST o] Cos K85+

{[ ~[v]; M6+ [K], ’XESJJ &[TJ {6 fsin ot +




3 [T, (o) O T =1 o~

- (7 (Bligeen] Sim kgL =0 — o

If (Pi is a linearly independent set of functions, then the condition

requires that the rj 's be equal to zero. Equation (110) has the same form
as Eq. (111) and the functions 1, cos k@t and sin k&t form a linearly

2 T2
independent set of functions. Thus, the coefficients of Eq. (110) are
equal to zero, which implies that

["ZL[KJL ";Z[SJiJ {a 10"% [T_L {a}‘.?_ =0 —m- === ==
-5 [T], {0y +[- V3 L2805+ [T, = [5],] {0r], —
“%[sz {ah(i«-z)soz K=2,4,6) - — ——— — ———

Filimo® (e, - F ol 57T (bl = 0= = = -

and
- O by + [ [ K15 0 - (1] b~

~22‘.:[T]i£b}i(k+z.)=0 ; k=2,4,6, e

The premultiplication of Eq. (112} by 2 [V] “1 and the corresponding
pre-multiplication of Eq. (113) by 4 [\q -1 yields
2

k

[F:L' {a}go_“IEGJL' {a}a_ =0 —— o —
_.-?z_if (), {0 +[[F1- -5 [I}] faj., - %[GL {a , =0--
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and
- Zfé. [GJL fa 4:(:4-:)+[Ak;"- Fli- 6 [IJ] ia}z_’
- Z’.(zg_.' [0 () ey =0 » k=2,46,-ccn —— ——

The premultiplication of Eq. (116) by [F]'i1 yields

{a)io=e<[F]; [Glifa),, ——————— —

The substitution of Eq. (119) into Eq. (117) gives

[EWL' =2 [IJ] ia}u_” 52_"/[.6],; £a§£+=0 —— e

in which
Wl =[F)- % [6); [F] [Glim —— ——— — —-

The premultiplication of Eq. (114) by [ V] -1 and the corresponding pre-
multiplication of Eq, (115) by _gz[ v]-1 yields
k

(7L -5 17] {081, (6] {b)g — 0 ————

and
-3 el by + [RlF1 - S I ] {Phe -

/ = 8
T L (Pl =0 0 K=t 88 o

The first system of equations, Egs. (118) and (120) contains only {a}ix

coefficients and the second system of equations, Eqs. (122) and (123),
contains only {b}jx coefficients. The existence of non-trival solutions
for the above two systems of homogeneous equations requires that {a}ix
and {b}ik be non-zero. This condition requires that the determinant of
the coefficients of each of the two systems be equal to zero. Hence,
the condition for the existence of periodic solutions with period 21T /6
has the form

det. ((A]-5[F))=0 —— — ———— ——
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and
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(125)

The matrix [O] is the null matrix. Thus the problem is reduced to

an eigenvalue problem.
Similarily the substitution of Eq. (106) into Eq. (104) yields

the condition for the existence of periodic solutions with a period 47 /©

which is

det([A1,-5[E])=0
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and
de":([AJ4—5[EJ)=O _________ (130)
in which
.
4[Pl; |—z°<’[6l-; [o] E{
—-,-—---%——_._-L—--.-—.—:l
_2ed 401, | o
[A]; ___EG%_; _9__[?:_1[__‘7_[6_5‘ H ————— (131)
(0] Zx/[ J<: 4["]4 :l
—-= :‘.‘.‘:L__—_"_'f_ it :‘_:
; | i
[R]); -2«[cli| [o] !
Bousal Wt s |
R e Lo —
A R R
(0] 1-22@lk] £ 1]
o LE L E
L__——_———-_——-—-——-—.-JJ
[6L=<'VI [Ty ———————— )
[FL=Iv1[KL -2 5] — ———————=  439)
and
[Pl =[F1i- [634. ————————— T (135)

b, Mathieu's Equation

All of the equations considered in the preceeding section belonged
to a system of equations. However, Eq. (66) is a single equation and is
known as Mathieu's equation. If each of the matrices in Eq. (104) contains
only one element then Eq. (104) is the same as Eq. (66). The conditions
for the existence of periodic solutions of Eq. (66) can be found by em-
ploying procedures similar to those used in the previous section except
that the matrix notation is replaced with the single scalar notation. Thus,
the conditions for the existence of periodic solutions with period 4 7 /&
have the form
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det.([8]-5[IN=0 ——— (39
and
det(B],-5[f])=0 —————— — (137)
in which
’ 92-
d=4F ——————— (138)
3
-~ o) {
l
- A L -
[B], ] q & |- (139)
|
_ A A
o 25 35 |
and
. 3
|+ —Ad (o) |
-4 - - &
[BJZ. 7 7 7 | |——— (140)
|
M -
° T 25 25
e e e e o )
[ )
The parameters £2 and A4 are given by Eqs.(64) and (65) respectively.
These conditions are similar to those expressed by Eqs. (129) through
(132). The conditions for the existence of periodic solutions with
period 2 T /@ have the form
7/
det.(C8)3-5"[1] ) =0 — e (141)
and
’
det([8],-5711)=0 — — ———— — — (142)
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in which ) .
|
|
N |
ML A
( 7t ) 4 o J'
]
- -4 L S I
[5]3 - 16 16 16 ( (143)
4
-4 L
© 3% 3¢ !
e — = ==
and
r ; “© | )
T T © :
A } M '
[B]4= 72 T 7 : ——— (144)
“ } ,
° T 3
oo ——— - g
‘(I‘hes)e conditions are similar to those expressed by Eqs. (124) through
128),
The eigenvalues, 5/, which are necessary for the existence of
periodic solutions of Eq. (66) are determined numerically from Eqs. (136)
(137), (141), and (142).
2.7 Special Cases
a. Natural Vibration Case
It can be shown that the natural frequencies of a stiffened plate
subjected to static in-plane boundary loading can be found from the pre-
vious results. If X is specified ande<’is taken to be equal to zero, then
Eq. (104) reduces to the form
MY.VL‘ {Q}i"'{["]r’a[ij] {Q},.; =0 ———=— — (145)
The premultiplication of Eq. (145) by [V]i"1 yields
M@l +[F{Q};=0 ————— (146)
in which [ F]; is given by Eq. (134). A solution to Eq. (146) can be sought
in the form
[Q}Fcps_n.fio}i ———————— (147)
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in which [ D] 1 is a constant column matrix andflis the natural frequency
of the stiffened plate. The substitution of Eq (147) into Eq. (146) gives
[(FL-s0]{Dhi=0 ———————— s
in which
- 2
S=MSL — e —_-— — (149}
‘The condition for the existence of a non-trival solution requires
det ([F1,-3[1])=0 —— — — — —— (150)

The matrix [ F]j is known for any given stiffened plate since o is specified.
Thus, the determination of the eigenvalues of Eq. ( 50) gives the natural
frequency when static inplane boundary loading is present.

b. Parametric Stability Near o(' Equal to Zero
An important result can be obtained for the parametric stability

case from the information given by Eq. (150). For the case & specified
and ' equal to zero Eqs. (116), (117), and (118) reduce to the following

equations _
[F]‘i{a}“:{O} —_—— (151)
[F}A-—EEI}HGL,_-:LO} — e (152)
and
£ [Fl-501){a},, ={0], k=4,6,8,-— — (153)

Each of the above equations is independent of the other. Since X is
specified, the matrix [F]j is completely known for a given stiffened
plate. The requirements for the existence of a non-trivial solution for
Egs. (151) through (153) yields the conditions

{a}o={0] — ——— ——— —— (154)
and
det.([Fl;-X5[r])=0, k=2,4,6, ———— (15}

If the above procedure is applied to Eqs. (122) and (123) an equation which
is the same Eq. (155) is obtained. An equation which is similar to Eq.
(155) can be found for odd values of k which is



det(ll’—’h—%fl{):o) }(:I)3)5; ———————

Equations (155) and (156) are the same as Eq. (150). This fact yields
the result that for e¢=>0 there exist periodic solutions with period 2T
in the vicinity of

and periodic solutions with period T in the vicinity of
o= 2 , k=2,4,6, ——— — — ——

Equations (157) and (158) give a relationship between the frequency of
the in-plane boundary forces and the frequencies of the free vibrations

of the stiffened plate, near which the formation of unboundedly increasing
vibrations is possible, Thus, these relationships define the vicinity

of the regions of parametric instability for a stiffened plate. Also these
equations indicate that there exists an infinite number of regions as-
sociated with each £ , Sommerset (20) calls the mode associated with
a particular value of £ as the spatial mode and each mode associated
with Eqs. (157) and (158) for a given spatial mode is called a temporal
mode. This nomenclature is adopted in this investigation.

c. Static Stability Case

The static stability of a stiffened plate corresponds to the
ditions that o< is not specified and that o’ is equal to zero. Als
1

system is not time dependent. Subject to these conditions Eq. (
takes the form

[0 -=tsh{a), = fo) = == —— ===

in which {Q} o 1is an unknown constant column matrix. The premultipli-
cation of Eq, (159) by [8]; vields

;- R[], ={0) — — — — ———
in which

W), =[s][k], -————— —
The condition for the existence of a non-trival solution of Eq. (161) yields

det([H], =% [1])=0 - —— — — ——

The eigenvalues of Eq. 1162 give the critical stability parameter oA cr’
However, in this investigation only the lowest eigenvalue is of interest.
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3. EXPERIMENTAL INVESTIGATION

The purpose of the experimental portion of this investigation is to
verify some of the theoretical results. For this purpose two cases are
selected. The first case represents a stiffened plate with a single central~
ly located stiffener transverse to the in-plane boundary force of the form
P(t) = Po + Pt cos © t. The size of the stiffener which is located on both
sides of the stiffener which is located on both sides of the plate is selected
so that the lowest critical instability mode is the first mode, see Fig. 3.
The second case is the same as the first except that the size of the stif-
fener is selected so that the lowest critical instability mode is the second
mode, see Fig. 4.

The experimental apparatus is designed so that the edges of the
stiffened plate rest on knife-edge supports (simple supports) and that the
load parameters P,, Py, and @ are independent variables. These para-
meters are varied within the limits of the experimental equipment so that the
boundaries {(onset) of the temporal mode regions of parametric instability
of the spatial mode which corresponds to the lowest value of the natural
frequencies can be measured.

3.1 The Apparatus

The test apparatus is shown in Figs. 5 and 6. A Calidyne model
44 electromagnetic shaker [ 2] is bolted to the test frame as shown in
Fig. 5. The variable component of the applied force is transmitted from
the shaker to a lower load bar [ 3] by means of a two force member [ 4] .
The magnitude of the variable component, Pt, of the load is controlled
by a power rheostat located on the front panel of the shaker control unit
[ 5] shown in Fig. 6. The frequency of the variable load component, .
is regulated by two rheostats also located on the front panel of the shaker
control unit.

The static component of the applied force, Py, is transmitted to
the lower load bar by means of two steel rods [ 6] which are connected
between the lower load bar and the top of the test frame. The static load
is applied by tightening a nut at the test frame end of each of the rods.
Two Baldwin-Lima-Hampliton U-1 [ 8] load cells are used to record the
total load applied to the stiffened plate.

The simple supports for the stiffened plate are constructed by means
of two rigid rectangular support frames [ 9] which have edges on one side
which are beveled, so as to achieve knife~edge supports.

The material of the test plates and stiffeners is aluminum for the
purpose of reducing the magnitude of the critical buckling force and also
the natural frequencies so that they are within the limits of the test
equipment. The modulus of elasticity of the aluminium is taken as 10 x 10

The actual stringer parameters for the test plate (first mode static
buckling) are Jg = 0.984 and Jg = 0.045. The lowest theoretical crit-
ical buckling force for this test plate is 880 lbs, The configuration and
dimensions of this plate are given in Fig, 8.

6 psi.




s
4 N(t)==N + N coset-

/

7

Fig, 3 First Static Instsbility Node

Fig. 4 Second Statlce Instsbility Mode
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The size of both test plates over the simple-supports is eighteen
inches in both directions. The tee~shaped stiffener shown in Figs. 7
and 8 are attached permanently to the plates with Armstrong Epoxy cement,

Four SR-4 A-7 strain gages are mounted to each of the test plates
with two gages on each side of the plate. The four strain gages are con-
nected together to form a Wheatstone bridge circuit., The four strain
gages are so located in the circuit that only the curvature (bending strain)
of the stiffened plate is measured.

The data monitoring and recording equipment used in the experi-
mental investigation is shown in Fig. 9.

3.2 Experimental Procedure

L4

The boundaries of the principal region of parametric instability is
considered first since it is slightly different from the procedure used to
determine the boundaries of the higher order regions of parametric in-
stability. At the beginning of each test series the stiffened plate was
loaded with a static load, P,, equal to one-half the theoretical critical
buckling load. This level o? static load was chosen so as to agree
with the value of Py selected for the theoretical case. For each test
run the power rheostat which controls the magnitude of the variable com-
ponent of the load, Py, was set at a particular value. The load fre-
quency at the start of each test run was set at a value lower than the
frequencies for the lower boundary of the region of parametric instability.
The load frequency was then increased, with the stiffened plate oscil-
lating at an idling vibration, until the plate became unstable. The in-
stability was characterized by an increase in the amplitude of the lateral
oscillation and a change in the vibration frequency of the stiffened plate,
that is, the oscillation frequency of the plate reduced to half that of the
load frequency. With the stiffened plate oscillating in the instability
region the Viscorder was turned on and the load frequency was then de-
creased until the stiffened plate again became stable. The stable oscil-
lation was characterized by a idling lateral oscillation of the stiffened
plate at a frequency equal to that of the load frequency. This procedure
was repeated for various settings of the power rheostat,

The determination of the location of the upper boundaries for the
principal region of parametric instability was much more difficult, The
upper boundary could not be determined by increasing the load frequency
from a value within the instability region to a value greater than those
on the upper boundary (33). The location of the upper boundary was
determined by starting at a load frequency greater than those of the up-
per boundary and then decreasing the load frequency with the Viscorder
on until the stiffened plate became unstable; again denoted by a change
of the amplitude and frequency of the lateral oscillation of the plate.

Experimental verification of the existence of higher order in-
stability regions was found only for the second region of parametric in-
stability. The location of the lower boundary for the second region of
parametric instability was determined by setting the power rheostat at
a particular value for each test run and then increasing the load fre-
quency until the stiffened plate exhibited an instability. The instability
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for the second region was characterized only by an increase in the lateral
oscillation of the plate. At this point the Viscorder was turned on and

the load frequency was decreased until the stiffened plate again stabilized.
The second instability region did not exhibit an instability characteristic
similar to that of the principal instability region. For this region the stif-
fened plate became stable as the load frequency passed beyond the frequencies
associated with the upper boundary of the region. The location of the up-
per boundary of the second region of parametric instability was found in

a manner similar to that used for the location of the lower region except that
the load frequency was increased instead of decreased for the recording
run.

4. EVALUATION OF RESULTS

4.1 Theoretical Results

The theory developed in Section two led to the determination
of the eigenvalues of four matrices for each of the problems studied. The
numerical procedure used to determine the eigenvalues of these matrices
is based on the idea of reducing the original matrix to a similar matrix
whose eigenvalues are much easier to determine.

The algorithm used in this investigation to reduce the matrices
to similar matrices was developed by Francis (30,31,32) which he calls
QR-Transformation. The computer subroutines based on this alogorithm are
from the SHARE library program package 3006-01 and were written by Imad and
VanNess (34). '

Three cases of the theoretic study are presented in this section.
The number of spatial modes considered for each case is limited to the three
modes having the lowest load frequency range. For a given spatial mode,
only the first four temporal modes are presented.

Case one represents a plate stiffened by a longitudinal rib sub-
jected to a uniformly distributed edge load on both the plate and rib. The
parameters for this system are given by Fig. 10. The results for this case
are given by Figs. 11 through 13. A comparison of the instability regions
which correspond to the first spatial mode, (Fig. 11, with the instability
regions associated with Mathieu's equation, (Fig. 14), shows that the first
four temporal modes are identical. This is to be expected since the governing
equation of motion for the parametric response of a simply-supported column
and plate is Mathieu's equation. Thus the first spatial mode of case one
corresponds to the superposition of the individual column and plate prob-
lem. As a check on the superposition principle, case one is repeated so
that superposition can not exist, This is accomplished by setting the variable
component of the edge load on the rib equal to zero. This situation is de-
noted as case two, Fig. 15, and the results for the first three spatial modes
are given by Figs. 16 through 18. A comparison of Fig. 16 with Figs. 14
and 11 shows that the boundaries of the instability regions for the first
spatial mode of case two are not the same as the instability boundaries
given by Mathieu's equation. This difference is indicated by the narrower
widths of the temporal modes of case two. It is also seen that widths of
the temporal modes for the higher order spatial modes are much narrower
than for the corresponding temporal modes of the first spatial mode.




o3
w
8uQ Ise) JO 9PpOoN

Tetaeds 38IT4 Y3 U3ITM PI3Bo0SSY 8uQ 9#sep Jutjussaadey
suoilay £37171Q83SUI OfI3omeIvy Il °*I14 uoy38INITIUC) 93814 DPIUSIITAS oT 914
..Uvﬁ&vo
0°% 8°0 9°0 #1°0 2’0 o.&.o .

“oo = .NO“Z\ONZ

\\\\\!ihihh.hi!in — .N.o 2°0 = Ty
\\\\\\\\\ \\\\\N‘bm . Goz = Ip
#°0 0°T = q/8 = Bj9q

30500y 4+ %y a (3)%y

am:n g = 30,5 |°°F
N%& 0= I;_

VIV J3INdH00 o
wqm¢amza SYI¥V_a3IavHs

. | _ I 7°1

Sl I E T TN N Nn UE s S R M P R N e Em e




53

suQ 888Dy JO Spoy auQp 9s8) JO 9pOK
1872edg PITUT BU3 UITM DPI3BTO0SSY 18138dg puOD9S SY3 YJTM PIJBI00SSY
suoydey £37TTq83SuUl JdtIjemsxed €T 314 suoy3ey A3711qv3sul otIjzemexsy 2T *I1g
YA ..ovokvo _
. . . . . . 0°t 8°0 ‘0 1°0 2°0 0°
0°t 8°0 9°0 #°0 2°0 ooo.o 9 1 w.o
A 2’0
-w LV Lﬁ ) N ;r 4 b &v A A A -0
L | S N D R G N
:.O .ﬂoo
gﬁ"ﬂ]]’l]v O «.ﬁf S -
9°0 9°0
fug ki
) ©
w.o wio
/ )
/) ‘
\‘ (S0 0 T / 0°T
2°'1 2°1
HESLE 9 = 100 #ESLE'9 = Mox
0ges 1t = Sun gogsH's = Su
VIVd aFINdu0d o YIVad @aINIH0D o
ZIGVISNN SVIHY GAAVES |, .; ATEVISNQ SVAHYV OFQVAS|,.q




4%%%/

— ’///// T 7/ ,

i)
o bl(D =
@ Q

o LT
s NI,
% B : I
L
— S e T L TS

| |

0.8

ttttttttttttttttttttttttttttttttttttttttttttttttttt
ooooooooooooooooooooooooooo

r---------




55

OMJ, ©88) JO ODOYW
amapmnm 4SITJd 9Y] UY3aTM PO3wvI00S8Y

oMl 9s8) Juiquessadoy

suoT8ay £3771q83SUT ojXjewsaed 9T ‘T4 uot3em3TIuo) 338Td POUSIITAS ST °*Itd
230 />0 ‘
0°t 8°0 9°0 4°0 2°0 0°0,
‘ 0°0
G*o = TOXy/OXy
2°0 z°0 = %y
B - Gz = Ip
2 ? 0°T = q/% = B39g
#°0
) 19500¥%y + %Xy = (3)%y
9°0 = : ——
( Nix]
\ e
. » qQ
\\\ § \\ 8°0 ox,, _
V4
W .
7 \\ % 07
\\\\\\\ / |
A . ‘T
\ H€SLE°9 = Vo ¢ £ \
. . 2696L°0 = ﬁdz
{ vIva a3Indubo o
, ATGVISHN SVEHV OAAVHS), .

.



(o]
w OMJ, 9S8B) JO 9DOW OM], 388D JO ODOW
18738dS PUOddg dY3J Y3ITM PI3BTO0SSY 18738dS PUOOSS 8Y3 Y3TM PIYBIO0SSY
suotday £3711Q835Ul OtI3smWEIBd gI B4 suotydey £37TIq®3sUI oTIjowBI8y LT °*814
..uvbkvd Lox\vo
0°t 8°0 9°0 1°0 2°0 0°0, 0°t 8°0 9°0 #°0 2°0 0°0

0°0 0°0
2°0 2°0

o % LH’ JH. 5 d ) H - & > -}

_Y“! 4 Y 4 JH\ Jv 4 Y v sIAY Av
#°0 4#°0

Hﬂrﬂuﬂuﬂr -0 kf & X 4 < <

Y h ¢ N Y Y % ~
9°0 9°0
ﬂqm M.Cvm
e (=]
8°0 8°0
e 0T ,S 0°T
21 r AN

HESLE®9 = Moz HESLE"9 = T9o

08€4°TT = SUN goOCSH*S = SUN

YIVa QIININOD o YIvVad qIInduod o
ATIVISNN SYHEHY JIAVHS . ATIVISNN SYIHV AIAVHS 41




57

?9ayy] 988) JO IPOYR

1e1498dg 3SITS 943 Y3im pPe3e}oo0ssy 93xyJ ase) Juyjussasadey
suotdoy £3171Qq83SUL OTIx3awBIed 02 °*ITJ uoi3eInITJuUO) 3384 P3UIITIS 6T T4
LUVO\svo
0°% g8°0 9°0 U] 2°0 c.m.o
gro = %y %y
w< - . o

fw.o ¢*L = 8p
] g*z = Ip

0°'l = q/8 = 839g

2/8
9°0 x § _ _

L

Ot 2°'T ’
L526°41 = 0

9LhLL'T = ﬂﬂaz

ViIvVd Ja3INdH0d o
JTHVICSNN SVIHY dIdVHS

165003y ¢ Xy o Auvuz\
£




58

9axyy 988) JO 9POy
18138ds PITYL 9Y3 UITM pajeloossy

9291y, 9s8) JO 3pPOW
18138dg DPUODO9IS 2Y3 Y3TM PayBI00SSY

suoyday »paa«nmumzu 0tI39uwex8y 2z °Itg suo139y ho«H«pwumcH otxjomeasy Tz °*IT4
i § y *0 *0 2° 0° 0°1 ‘0 ‘0 ‘0 2° 0°0
0 8°0 9 h 0 m.o 8 9 | 0 %0
ero [T T 77T T 270
\\\\\\ D hrres S

N\ \ \ \\ ss##?.,.- vauo

m O
.
(=]

o5
N
NN

& O

d)ﬁ o

20°1

)
\\\\\\\\\\\

S

. 2°1
152641 = 0o |81 \\\ Y L526°4T = o
§TLE5°g = nﬂna #9294, = mdqz

viva anbmamo 0 ¢B<Q QM.HDQ..SWO [~

MQQ<BAZD SVIHV Jadvis 41 ATdYISNN SVHIHV IFAVHS 4t

& _ [

.
~




|

59

The stiffened plate considered in case three is designed to buckle
first in a mode which is represented by a full sine wave in the direction of
the rib, that is, the bending rigidity of the stringer is such that it acts as.

a rigid beam. The parameters for this stiffened plate are shown in Fig. 19
while the instability regions are given by Figs. 20 through 22. Significantly
the shape of the first temporal mode region is greatly changed by the very
rigid stringer when compared with the same temporal mode region of case

one. The width of this region is the narrowest and the boundaries are the
most distorted of any principal region associated with the first spatial mode
of previous studies. The greatest change in the location of the boundaries

is for values of KX/X o greater than 0.5. The temporal mode regions

of the second spatial mode coincide with those of Pig. 14. The lowest

value of OX o 1is associated with this spatial mode. The results for the
second spatial mode of case three represent the superposition of the second
spatial mode parametric response of the individual column and plate problems.
The governing equation for the third spatial mode is Mathieu's equation and
the widths of the corresponding temporal mode regions are greater than

those of the first spatial mode. The parametric response of the second and
third spatial modes does not involve the motion of the stringer. However,

the parametric response of the first spatial mode, does involve motion of the
stringer. The same canbe shown to be true for the fourth and fifth spatial modes.
Thus, like the first spatial mode, the results show that the rigid stringer
does distort thie boundaries of the fourth and fifth spatial modes.

4.2 Experimental Results

The experimental procedure used to verify the theory developed in
this investigation was discussed in section three. The experimental results
given at the end of this section are presented in the same { © /2 L
o{'/ OX cr) parameter space as are the theoretical results.

In order to present the experimental results in the form indicated
above it was necessary to obtain values for the undamped natural frequency L
for the various values of Pxg. The theory developed shows that the value
of the load frequency, © , for small values of o< '/X or , associated with
the second temporal mode region approximately equals the undamped natural
frequency, 2 . This was confirmed by the experimental investigation. TFor
experimental case one the value of & , for small values of o¢ '/ oy ., coOI-
responded with those given by the theoretical St vs. Py, curve. Thus,
for experimental case one the theoretical curve for {2 vs. Py, was used to
obtain the magnitude of the undamped natural frequency for various values
of Pxo. For experimental case two the values of the load frequency, &,
associated the second temporal mode, for small values of o< '/X¢r ., did
not agree with either the theoretical or experimental values for the natural
frequency. Thus, for this case the values of the load frequency, 8 , as-
sociated with the second temporal mode, for small values of X '/X oy , Was
used as the values of the undamped natural frequency for a given magnitude
of the static load component.

During the experimental investigation the vibratory motion occuring
within the loading mechanism caused the magnitude of the static component
to decrease. This problem did not eliminate some of the data recorded since
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in case one the theory was found to be approximately valid for values of
o '/ cXcr less than 0.4. However, for experimental case two this does
not hold ture and therefore, the recorded data were limited to those which
correspond to a value for Pxo close to the selected magnitude for Pxo.

Because a distance is involved in the determination of the load
frequency, © , errors result because of the difficulty of obtaining a real
precise measurement of the distance. To minimize this error the distance
measured was taken over several oscillations. Because of this problem,
errors up to five per cent exist in the measured magnitude of the load
frequency, © . The magnitude of load frequency, © , was measured at
the point of transition from the idling vibration, due to initial imperfections,
to the parametric resonant vibration. Additional error in the magnitude of
the load frequency, © , is introduced here because the transition point can
not precisely be defined experimentally, see Fig. 2S5.

The experimental results obtained from the two test specimen are
presented in Figs. 23 and 24 for experimental cases one and two respectively.
These two figures represent the (€ /25, o '/oX ;) parameter space
for a value of & /X 5 = 0.5. Equations (27) and (28) show that

o‘,/(xcr':P&'t/pc.r _— = (163)

and

5(/c><¢r = Pxo/Prr - — — — — —— (164)

in which Pyt is the magnitude of the total variable component of the in-
plane force acting on the stiffened plate. The experimental investigation
established the existence of some of the regions of instability predicted
by the theory developed in section two. Figure 23 shows the location of
experimentally determined points on the boundaries of the regions of in-
stability associated with the first and second temporal mode of the first
spatial mode. The experimental results for this case show good agreement
with the theoretical boundaries shown in the same figure. Particularly
important is the good agreement with the width or openness of the v-shaped
instability region. The upper limit on the maximum value of o«¢ '/O(cr
obtained experimentally was due to the power limitations of the shaker.

Figure 24 gives the same type of results for experimental case two.
The experimental results for this case are limited only to those results
which correspond to the first temporal mode associated with the first
spatial mode. Again the agreement between the experimental and theoretical
results is good. One of the important facts established by the results for
experimental case two is that a stiffened plate will still possess parametric
resonance in the first spatial mode when this mode is not associated with
the fundamental static stability mode. An interesting observation for this
case is that the stiffened plate would not always develop a parametric
instability when it passed through the principal region of instability. This
phenomenon did not occur for the test plate of experimental case one,
Figures 25 through 30 represent actual strip charts which show behavior
of the stiffened plate prior to and just after entering a region of instability.
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Figure 25 shows the behavior of the. stiffened plate within the
principal region of the first spatial mode and then the transient motion
into the stable region denoted by the idling vibration. The transient
motion crosses the lower boundary of the principal region of instability.
This figure also shows that the period of vibration of the oscillatory
motion within the principal region is twice that of the periodic in-plane
load which is indicated by the vibratory record shown at the bottom of
Fig. 25. This agrees with the predictions of the theory for this region.
Also clearly shown on this figure is the transition point on the boundary
between the stable and unstable region as indicated by the change of the
period of oscillationcof the stiffened plate.

The parametric response of the stiffened plate within the principal
region of instability of the first spatial mode was characterized by a gradual
increase in the amplitude of the plate as the load frequency increased.
When the load frequency reaehed the theoretically predicted upper boundary,
for values of o¢ '/X o greater than 0.08 the stiffened plate did not drop
back into the stable region, but continued to vibrate at a frequency twice
that of the load frequency. The stiffened plate remained in the principal
region of instability as the load frequency was increased to a value above
that corresponding to the upper boundary. However, if the stiffened plate
was disturbed the plate would change frequency to that of the load fre~
quency and the transverse amplitude would be reduced to a level character-
istic of the stable region. When the stiffened plate was in the stable
region above the principal region and was struck hard transversely, the
stiffened plate would snap back into the principal region of instability.

This behavior is the same as that of the unstiffened flat plate which was
discussed by Sommerset {(20,21,22).

Because of the behavior of the stiffened plate discussed above
for values of o¢ '/ Xy greater than approximately 0.08, the upper boundary
had to be determined by entering the principal region of instability from
above. Figure 26 shows the transient motion of the plate from the stable
region above the principal region of instability to within the principal
region itself. Again the transition from the stable to the unstable region
is indicated by the change of frequency of the plate to half that of the
load frequency. Also indicated by Fig. 26 is a rapid increase of the
transverse amplitude as the plate goes from the stable to the unstable region.
Figure 26 also shows within the principal region of instability, the beat
phenomenon of the transverse amplitude of the plate. This result has
been predicted theoretically for a column by Bolotin (18) and has been ob-
tained experimentally by others (15, 16). The transition from the stable
region above the principal region of instability to within the unstable
region itself is again illustrated in Fig. 27. However, this time the change
of amplitude is not as rapid and the amplitude does not exhibit the beat
phenomenon.

It was indicated above that the upper boundary of the principal
region of instability could not be located when exiting from this region by
way of the upper boundary for values of o'/c<cr greater than approximately
0.08. However, when the stiffened plate was allowed to completely
transverse the principal region of instability for the first spatial mode for
values of o¢'/ ot ¢r less than approximately 0.08, the plate always became
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stable as the upper boundary was crossed from the unstable to the stable
region as indicated in Fig. 28. This result was always obtained for both
the test specimens and is contrary to the behavior predicted by the theory
for the unstiffened flat plate for values of < '/ X or less than approxi-
mately 0.08. Figure 28 again indicates clearly the transition between

the unstable and stable region.

The parametric response of the stiffened plate as it makes the
transient motion from the second temporal mode instability region cor-
responding to the first spatial mode into the surrounding stable regions is
shown in Figs. 29 and 30. Figure 29 shows the behavior of the stiffened
plate within the second temporal mode region and then the transient motion
into the stable region lying below this unstable region. This figure also
shows that the frequency of the oscillatory motion within the second
temporal mode region is the same as that of the load frequency. The periodic
in-plane load is indicated by the vibratory record at.the bottom of Fig. 29.
This result agrees with the predictions of the theory. Figure 30 shows the
transient motion from within the second temporal mode region to the stable
region lying above this unstable region. The behavior indicated by Fig.

30 is the same as for Fig. 29. The strip charts show that the buildup of
amplitude in this region is not as great as the buildup of amplitude in the
principal region of instability. Also the transient point on the boundaries
of the second mode region is not as clearly defined as it is for the principal
region. The parametric response of the stiffened plate within the second
temporal mode region appears not to be the same as it is for the principal
region of instability. The stiffened plate did not remain in the unstable
configuration as the magnitude of the load frequency passes the corres-
ponding value on the upper stability boundary. Instead, the stiffened
plate became stable again, as indicated by Fig. 30. This was not the
case for the principal region of instability.

The remaining higher order temporal mode instability regions as-
sociated with the first spatial mode were not detected during the experi-
ments. There were some indications of the existence of the third temporal
mode instability region but insufficient to obtain a detectable record.

4.3 Evaluation of Results

The theoretical results presented were limited to the first four
temporal mode instability regions associated with the first three spatial mode
regions. This restriction does not appear to be a severe limitation on the
prediction of the parametric response for several reasons. The first of
these reasons is the influence of damping. The effects of damping on the
boundaries of typical instability regions is shown in Fig. 31 which repre-
sents the results given by Mathieu's function modified to include damping,
see Bolotin (18). Figure 31 shows that damping causes the instability regions
to withdraw from the © /2 £ ordinate, The amount of withdrawal increases
as the order of the temporal mode increases. In case of an.undamped
temporal mode region the portion of the instability region where the upper
and lower boundaries coincide will disappear if a damping is present.

Figure 31 also indicates that temporal mode instability regions of order
greater than four would not exist in a practical range fore<'/o<cr . This
was confirmed by the experimental investigation. Figure 31 also shows why
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the principal region of instability is considered to be the most critical

as it exists for relatively small values of o¢'/ct or €ven when damping

is present. The widths of the temporal mode regions of instability of order
greater then four are narrow in comparison with those of lesser order. The
narrow width of these higher order regions implies that a small change in
the load frequency, € , would remove the system from these instability
regions. Thus these regions are not as critical as the lower order ones.

The experimental results also indicate that the higher the order the less

the magnitude of the transverse amplitude. The build up of the trans-
verse amplitude for these higher order modes does not appear to be suffi-
cient to cause these regions to be of concern. However, this point does
need further investigation.

The results obtained for the spatial mode regions of order greater
than five, but not presented, shows that the widths of the temporal mode
regions of instability decreased in an irregular manner as the order of the
spatial mode increases. Generally, the widths of the temporal mode regions
of instability degenerated to a line for the higher order spatial modes.

When the widths of these regions degenerate to a line if damping is not
considered, instability would probably not exist if damping was taken into
account.

The general parametric response characteristics of the stiffened
plate are for the most part similar to those of the unstiffened flat plate.
It was reported in section 4.2 that the stiffened plate exhibited a dropout
behavior as the system passed the upper boundary from the unstable to
the stable region. This phenomenon occurred for the principal region of
instability of the first spatial mode for values of &X'/ X ¢r less than 0.08
and always for the second temporal mode region of the same spatial mode.
The reason for this phenomenon may be due to the possible causes given
below. Bolotin (18) studied a typical parametric response equation which
included the effects of nonlinear inertia, nonlinear elasticity, and non-
linear damping. The effect of nonlinear elasticity on the build up of
amplitude is illustrated by Fig. 32a and was shown by Somerset and Bolotin
to be the principal effect on the build up of amplitude of the unstiffened
flat plates. Figure 32b shows the effect of nonlinear damping on the
build up of amplitude. Finally, Fig. 32c illustrates the effect on nonlinear
inertia on the build-up of amplitude. These three results indicate that
the drop-out effect may be due to an overriding influence of nonlinear
damping or it may be due to a combined and near equal influence of non-
linear elasticity and nonlinear inertia.

The theoretical results were based on a nondimensional represen-
tation of the data which is standard practice. However, such representation
can lead to misinterpretation of the results. Examination of the results
given in section 4.1 could lead to the mistaken conclusion that the temporal
mode instability regions associated with each of the spatial modes are
separate from one another. Figure 33 represents experimental case two.

It shows the first two temparal mode regions of instability for each of the
first three spatial modes superimposed in the same (o¢'/SXgp, YM O )
parameter space, in which JM @ is the square root of the eigenvalue
for this problem. As can be seen the temporal mode regions of instability
associated with the various spatial modes can overlap.
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Also it is seen that for large values of & /oX ¢y the second temporal
mode region of instability associated with the second spatial mode lies
partly below the principal region of instability associated with the first
spatial mode for values of ¢ '/ . less than 0.4. Figure 34 shows the
result for experimental case two. It illustrates the transitional motion
from the principal region associated with the first spatial mode by way
of the lower boundary. This transitional motion transcends the second
temporal mode region of instability associated with the second spatial
mode and a stable region located between the two regions of instability
under consideration. The build up and decrease of transverse amplitude
associated with both the second temporal mode region and principal mode
region can also be seen. It is significant that the build up of transverse
amplitude for the second temporal region associated with the second
spatial mode is greater than any experimentally indicated build up of
amplitude for the corresponding region of the first spatial mode. Figure
35 represents a test run in the vicinity of line b-b of Fig., 33. This
figure shows the transient motion of the stiffened plate from the principal
region associated with the first spatial mode, by way of the lower boundary,
into the second temporal mode region associated with the second spatial
mode which overlaps the principal region at this point. Figure 35 also
indicates an interaction between the two regions of instability where they
overlap. Again the buildup of amplitude for the second temporal mode
region is significant.

The experimental results presented in section 4.1 show that the

theory developed in section two gives a correct prediction of the location
of the boundaries of the regions of instability associated with the (« '/« crv

© /2 £ ) parameter space. However, the experimental results also
show that this theory does not give any information about the very important
three dimensional regions of instability located in the (o<'/ X ¢r, 8 /2 SL,
A) parameter space. The theory developed in this investigation also does
not give a clear indication about the behavior of the stiffened plate in the
vicinity of the upper boundary of the principal region of instability. The
theory seems to imply that in crossing this upper boundary from the un~
stable to the stable region the stiffened plate will become stable again
which is not the case for values of o< */ok oy greater than approximately
0.08. The linear theory presented in this investigation however does
predict accurately the location of the boundaries of the regions of instability
at which the onset of parametric response takes place. The knowledge
of these boundary locations provides the designer with the necessary
information so that a stiffened plate can be designed to operate within the

stable regions,

The theoretical results presented in section 4.1 show that the
advantages normally gained by stiffening a flat plate can be lost when the
parametric response of the plate is considered. Stiffening of a flat plate
can bring the magnitudes of the critical buckling load parameter, o< ¢r, as-
sociated with the various static stability modes closer together, For the
stiffened plate this causes an increase in the width of the temporal mode
regions of instability associated with the higher order spatial modes as
compared with the unstiffened flat plate. This is dangerous since it causes
a wider range of load frequencies, ©, over which the plate can be un~
stable. -
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5. CONCLUSIONS

Based on the results of this investigation the following conclusions
can be drawn:

1.

The theory developed for the stiffened plate treated as a
discrete element model correctly predicts the location of the
boundaries of the regions of instability as shown by good
agreement with the experimental results.

The theory developed also completely predicts the parametric
response, natural frequencies and static buckling values for
any simply-supported rectangular stiffened plate and allows
for an arbitrary choice in the size, location and numbcr of
ribs and stringers.

The location and size of the stiffeners can have a pronounced
effect on the location of the boundaries of the instability regions
when compared with those of a flat unstiffened plate.

The most dangerous region of instability, from the standpoint
of width, is the first temporal mode associated with the spatial
mode which is the closest to the fundamental static stability
mode.

Variations in the loading arrangement on the stiffened plate
can also cause changes in the location of the boundaries of
the regions of instability.

The widths of the instability regions connected with the spatial
modes, other than the one associated with the fundamental
static stability mode, are also wide if the values of o< ¢y as-
sociated with these modes are close to the lowest value of oXcr.

For the cases studied, the greatest single effect on the location
of the boundaries of the regions of instability is caused by the
increase of the rigidity of either a rib or a stringer to the point
that the lowest value of X o corresponds with a spatial mode
other than the first spatial mode.

The theories developed in this mvestlgation only predict the
boundaries of the regions of instability and they do not give
information about the behavior of the stiffened plate within a
region of instability.
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